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Abstract: We address minimization of information leakage from continuous-variable quantum

channels. It is known, that regime of minimum leakage can be accessible for the modulated signal

states with variance equivalent to a shot noise, i.e., vacuum fluctuations, in the case of collective

attacks. Here we derive the same condition for the individual attacks and analytically study the

properties of the mutual information quantities in and out of this regime. We show that in such

regime a joint measurement on the modes of a two-mode entangling cloner, being the optimal

individual eavesdropping attack in a noisy Gaussian channel, is no more effective that independent

measurements on the modes. Varying variance of the signal out of this regime, we observe the

nontrivial statistical effects of either redundancy or synergy between the measurements of two modes

of the entangling cloner. The result reveals the non-optimality of entangling cloner individual attack

for sub-shot-noise modulated signals. Considering the communication between the cloner modes,

we show the advantage of knowing the residual noise after its interaction with the cloner and extend

the result to a two-cloner scheme.

Keywords: quantum communication; continuous variables; quantum entanglement; quantum key

distribution; entangling cloner

1. Introduction

Ability to transmit information in an advanced way, impossible within the classical
realm, is an important feature of quantum states, studied by quantum communication.
However, during propagation through a quantum channel the states interact with the
environment and part of the information becomes shared with it. Such information leakage
is essential when security of quantum key distribution (QKD) [1] is considered. Indeed,
as follows from the Csiszár-Körner theorem [2], secure key can be distilled from the partially
correlated data when the mutual information between the trusted parties exceeds the upper
bound on the information which is leaking to the untrusted channel, i.e., is available
to a potential eavesdropper. Assessment of this quantity depends on the presumable
effectiveness of measurement, which an eavesdropper is capable of. In the most feasible
case of individual measurements on the leaking signal, which do not require efficient
quantum memories, needed for more advanced collective measurements, the upper bound
is given by the Shannon classical information [3]. It was shown for continuous-variable
(CV) [4] squeezed signal states that controllable modulation allows reduction of information
leakage to an untrusted noisy environment [5] and its complete cancellation once the
environment is purely lossy [6] even when an eavesdropper is capable of collective attacks.
In this paper we address the minimization of information leakage in the individual attacks
case, derive the respective condition and study the properties of the mutual information
in the regime of minimum information leakage as well as out of this regime. In the case
of individual attacks, a generally noisy environment can be optimally modeled as an
entangling quantum cloner [7]. While such an eavesdropping attack can reach the bounds
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set by the Heisenberg uncertainty principle, it can be feasible with the current technology
as it only requires a tunable two-mode squeezed vacuum (TMSV) source [8] and homodyne
detection. We evaluate the information accessible on the signal after the measurements on
the cloner modes, assuming their joint as well as independent measurements, and show
that optimality of either of the approaches differs depending on whether the modulated
signal is below or above the shot noise, defined by the level of vacuum fluctuations. For the
sub-shot-noise modulated signals we observe that the cloner is redundant, meaning the
independent measurements on its modes are more efficient compared to the joint strategy.
In this regime, the standard entangling cloner attack based on the joint treatment of the
measurement outcomes from the cloner modes is not optimal anymore and the modes
have to be optimally treated independently. On the other hand, for the above-shot-noise
modulated signals the cloner is synergistic, when the joint strategy yields more information
on the signal. In the regime, when the leakage is minimum, the two approaches are
equivalent. Our results are essential for security of practical squeezed-state CV QKD
systems against individual attacks as well as reveal nontrivial statistical properties of
entangling cloner attacks.

2. CV QKD and Entangling Cloner

We consider the generalized Gaussian CV QKD protocol between the trusted parties
Alice (A) and Bob (B) [5] based on the arbitrary Gaussian quadrature modulation of arbi-
trarily quadrature-squeezed states belonging to a single mode of electromagnetic radiation.
Field quadratures are real and imaginary parts of the annihilation and creation operators of
a respective mode of the electromagnetic field, which can be introduced as x̂ = â† + â and
p̂ = i(â† − â), from which follows the commutation relation for the quadrature operators,
[x̂, p̂] = 2i. Introducing the variance of an observable Â as Var(Â) = 〈Â2〉 − 〈Â〉〈Â〉, one
can obtain the quadrature variance of a vacuum or coherent state of light, being equal
to one in the used definition and being referred to as the shot-noise unit (SNU). With no
loss of generality assuming that the signal states are squeezed in x-quadrature, we denote
their x-quadrature variance by VS. The squeezed variance is then VS ≤ 1, which represents
the fact that the squeezed quadrature fluctuations are suppressed below the shot-noise
level. Accordingly, the fluctuations of the complementary p-quadrature of a pure squeezed
state have the variance 1/VS ≥ 1. The Gaussian modulation is applied by displacing the
x-quadrature by value xM and the p-quadrature by value pM, both taken from the Gaussian
distributions with variances σx and σp respectively. Then the overall variance of the signal
entering the channel will be VS + σx := V in x-quadrature and 1/VS + σp in p-quadrature
(where σx,p are the modulation variances of the respective quadratures).

The modulated states travel through an untrusted Gaussian channel (being the worst-
case assumption in Gaussian CV QKD [7]), typically characterized by transmission η and
quadrature excess noise ǫ. The channel parameters then explicitly define the strength of
an eavesdropping attack in the channel (i.e., how much signal is lost and how much noise
is added) and, together with the state preparation parameters, give the upper bound on
the amount of information, which is leaking to the channel. If the channel excess noise
ǫ is defined with respect to the channel input, the variance on detection outcomes XB

on the channel output, measured by the remote trusted party Bob using a homodyne
detector, reads

VB = η(V + ǫ) + 1 − η, (1)

which is the result of coupling the noisy signal with variance V + ǫ to vacuum with the
coupling ratio η.

The optimal individual attack on the Gaussian CV QKD is the entangling cloner attack,
which allows an eavesdropper to achieve the bound on the information about the key set
by the Heisenberg uncertainty principle [9]. The entangling cloner is a TMSV state with
variance N; one mode (E1) of the cloner is coupled to the signal mode, as shown in Figure 1,
while another mode (E2) is left intact. Both modes are then measured by an eavesdropper
using homodyne detectors, resulting in outcomes XE1

and XE2
, which allows to minimize
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the uncertainty on the noise added to the signal by mode E1, while the signal is measured
by the remote party. Entangling cloner can therefore be seen as a purification of a thermal
noise in mode E1, coupled to the signal, or as a controllable noise addition to the signal
after the measurement on mode E2, thanks to the strong correlation between the two modes
of the TMSV state (see more on security proofs and security analysis methods in CV QKD
in the reviews [10,11]).

detectionEPR

signal

cloner

X
B

η

X
E
2

X
E
1

B

E

E

1

2

Figure 1. Entangling cloner eavesdropping attack, performed on the continuous-variable quantum

communication in a noisy channel with transmittance η.

It is known [9], that in order to mimic the actual channel parameters, the coupling η

between the signal and the cloner mode has to be set to the actual channel transmittance,
while the variance of the cloner modes has to be N = 1 + ηǫ/(1 − η). Then after the
interaction between the signal and mode E1, the variance of the data measured by Bob,
VB = ηV + (1 − η)N, is equivalent to (1), corresponding to the given channel.

To evaluate the upper bound on the leaking information after the entangling cloner
attack, we first derive the covariance matrix of the x-quadrature data XB, XE1

and XE2
,

measured on the signal mode B and the cloner modes E1 and E2, respectively, by the
homodyne detectors. The elements of an x-quadrature covariance matrix are obtained as
γij = 〈x̂i x̂j〉 − 〈x̂i〉〈x̂j〉, for i = j giving the quadrature variance of a given mode, and for
i 6= j giving the quadrature covariance (correlation) between the modes i and j. Such x-
quadrature covariance matrix of an entangling cloner in modes E1, E2 with mode variance
N prior to interaction with the signal mode B reads

γ
(x)
E1E2

=

(

N
√

N2 − 1√
N2 − 1 N

)

, (2)

with p-quadrature matrix being the same up to the sign flip in the correlation (off-diagonal)
term, corresponding to strong anti-correlation in p-quadrature. Coupling η between the
mode B, containing the modulated signal with variance V, and the noise mode E1 of
TMSV with variance N, can be modelled as a beamsplitter interaction, described by the
input-output relation for quantum operators in the respective modes as

(

âB

âE1

)

out

=

( √
η

√

1 − η

−
√

1 − η
√

η

)(

âB

âE1

)

in

, (3)
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where η represents the transmittance and 1 − η represents the reflectance of a beamsplitter,
similarly for the conjugate operators. The resulting covariance matrix then reads

γ
(x)
BE1E2

=





ηV + (1 − η)N
√

η(1 − η)(N − V)
√

(1 − η)(N2 − 1)
√

η(1 − η)(N − V) ηN + (1 − η)V
√

η(N2 − 1)
√

(1 − η)(N2 − 1)
√

η(N2 − 1) N



, (4)

which, in particular, reflects the fact that the mode E2 with variance N remains intact (does
not interact with the signal), while the initial TMSV correlation between the cloner modes√

N2 − 1 is scaled by
√

η.
Considering the individual attacks, we analytically evaluate the accessible information

in terms of the Shannon (classical) mutual information, defined for a pair of random vari-
ables X, Y as I(X : Y) = H(X) + H(Y)− H(X, Y) through the entropies of the form H(X)
and the joint entropy of the form H(X, Y). For the Gaussian-distributed continuous vari-
ables X and Y, the mutual information can be expressed as I(X : Y) = (1/2) log2 (VX/VX|Y)
(with no loss of generality assuming binary coding), where VX is the variance of variable
X and VX|Y = VX − C2

XY/VY is the conditional variance expressed through the variance
VY of variable Y and the correlation (covariance) CXY between the variables X and Y. We
will also use an extension of the Shannon mutual information to the joint distribution of
variables Y and Z in the form I(X : Y, Z) = (1/2) log2 (VX/VX|Y,Z), where VX|Y,Z is the
variance of X conditioned on Y and Z.

In the reverse reconciliation scenario (which is typically considered in CV QKD as it is
much more robust against channel losses [7], when the receiver (Bob) is the reference side
of the protocol, the information accessible after a joint measurement on the cloner modes
can be directly obtained from (4) as

I(B : E1, E2) =
1

2
log2

[

ηV + (1 − η)N
]

[

η

V
+ (1 − η)N

]

, (5)

which is larger, than the information obtained from the measurement of only the mode E1:

I(B : E1) =
1

2
log2

[

ηV + (1 − η)N
]

[

η

V
+

(1 − η)

N

]

, (6)

concerned with the replacement of N → 1/N in the second term, which corresponds to
replacement of VB|E1

→ VB|E1,E2
after the measurement on the mode E2 and represents the

information advantage of the entangling cloner. Note that the information between the
signal and the auxiliary mode E2 of the cloner, which reads

I(B : E2) =
1

2
log2

N[(1 − η)N + ηV]

ηNV + 1 − η
, (7)

is also lower than (5) for the physically valid parameters V > 0, N ≥ 1, η ∈ [0, 1].
When the channel noise is absent, i.e., ǫ = 0, it means N = 1 and the cloner is

reduced to two uncorrelated vacuum modes, hence corresponding to the pure channel loss,
in which case the measurement on E2 has no effect on the information obtained from the
measurement on E1.

3. Minimization of Information Leakage

The condition for minimizing information leakage was obtained in [5] for the case of
collective attacks, here we analytically derive this condition in the case of the individual
ones. It can be directly obtained from the information leakage to the entangling cloner (5)
by taking its derivative by V, which reads

dI(B : E1, E2)

dV
=

(1 − η)ηN(V2 − 1)

V[ηV + (1 − η)N][NV(1 − η) + η]
. (8)
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As I(B : E1, E2) is the convex function of V in the physically valid region V ∈ (0, ∞),
the minimum is reached when either η = 1 (channel is perfect), or V = 1, meaning
σx = 1 − VS. Therefore, in order to reach the minimum information leakage, the control-
lable quadrature modulation of the squeezed states, applied by the amplitude or phase
modulator (for the amplitude or phase quadrature squeezed state respectively), has to be
set in such a way, that the resulting modulated state has the shot-noise variance in the
modulated squeezed quadrature. In the case of the noiseless channel ǫ = 0 this means
that the outputs of the beamsplitter, simulating the channel attenuation, are completely
uncorrelated and the information leakage is fully removed [6]. For the noisy channels ǫ 6= 0
the residual correlations remain due to the noise and the minimum information leakage
remains non-zero.

In the regime of the modulated state variance equal to a shot noise, i.e., V = 1, we
obtain that the mutual information (5) reads

I(B : E1, E2)
∣

∣

V=1
= log2 [(1 − η)N + η]. (9)

It is straightforward to see by putting V = 1 to (6), (7) and comparing to (9) that, in
the regime of the minimum leakage, the information between the signal and the jointly
measured cloner modes is equal to the sum of the mutual information quantities between
the signal and each of the cloner modes:

I(B : E1, E2) = I(B : E1) + I(B : E2). (10)

From this, using the definition of Shannon conditional mutual information
I(X : Y|Z) = H(X|Z) + H(Y|Z) − H(X, Y|Z) through the conditional entropies of the
form H(X|Z) and the conditional joint entropies of the form H(X, Y|Z), we obtain, that in
the regime of minimum leakage

I(E1 : E2) = I(E1 : E2|B), (11)

where I(E1 : E2|B) is the conditional mutual information between the modes E1, E2, con-
ditioned by the measurement results at B, i.e., in the regime of the minimum leakage the
conditioning on the residual signal does not change the mutual information between the
two cloner modes.

Indeed, we obtain the mutual information I(E1 : E2) between the modes of the
entangling cloner from the elements of the E1, E2 submatrix of the matrix (4) as follows:

I(E1 : E2) =
1

2
log2

N[ηN + (1 − η)V]

(1 − η)NV + η
. (12)

The conditional mutual information I(E1 : E2|B) can be obtained from the condi-
tional covariance matrix γE1E2|B, containing variances of the form VEi |B = VEi

− C2
Ei B

/VB,

i = {1, 2}, and the conditional correlation of the form

CE1E2|B = CE1E2
− CE1BCE2B

VB
, (13)

which contains the correlations CE1B and CE2B between either of the cloner modes and the
signal mode B.

We then obtain the resulting matrix as

γ
(x)
E1E2|B =

1

ηV + (1 − η)N

(

NV V
√

η(N2 − 1)

V
√

η(N2 − 1) ηNV + 1 − η

)

(14)

and obtain the mutual information between the cloner modes conditioned on the signal
mode B as follows:
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I(E1 : E2|B) =
1

2
log2

N[ηNV + 1 − η]

ηV + (1 − η)N
, (15)

which is evidently the same as I(E1 : E2) given by (12) when V = 1.
In the next section we show the regimes of redundancy and synergy of the entangling

cloner, when the equalities (10), (11) do not hold.

4. Redundancy and Synergy of an Entangling Cloner

Outside of the optimal regime of the minimum leakage from a Gaussian CV quan-
tum channel, obtained in the previous Section, i.e., when V 6= 1, one of the quanti-
ties in (10) and (11) exceeds another. Similar effect was previously discussed in neuro-
science [12] and information theory [13,14]. In particular, the situation when I(B : E1, E2) >
I(B : E1) + I(B : E2) is referred to as synergy, when jointly systems E1, E2 provide more
information on B than separately. Alternatively, when the joint information is less than the
sum of the individual ones, i.e., I(B : E1, E2) < I(B : E1) + I(B : E2), the system E1, E2 is
called redundant in accessing the information on the system B. In this terms, the optimal
regime of the minimized leakage VS = 1 is achieved when entangling cloner E1, E2 is
neither synergistic, nor redundant, while varying the modulated signal variance V we
access both redundancy and synergy regimes of an entangling cloner, used to optimally
estimate the signal.

Importantly, this means that for the sub-shot-noise modulated signal V < 1 the optimality
of the entangling cloner individual attack [9], well-known in CV QKD and broadly used to
study the security of the protocols, does not hold anymore. So do the security bounds set
by the Heisenberg uncertainty principle, as the product of uncertainties of XB knowing the
outcomes of the measurements on the purifying system E and the modulation XA is below
1 SNU. It turns out, that in this regime a more efficient attack can be implemented by treating
the measurement outcomes of the two modes of an entangling cloner separately.

The typical regimes of an entangling cloner inferring a transmitted signal are given
in Figure 2 in terms of two types of mutual information analytically given by (5)–(7) with
respect to the signal variance for different values of channel transmittance (cloner coupling
ratio) η. It is evident from the graph that the joint information I(B : E1, E2) is constantly
minimized upon signal variance being equal to a shot-noise unit, V = 1. When the signal
remains squeezed (V < 1) the redundancy of the cloner is observed, while as signal
becomes more noisy than the shot noise, V > 1, the synergy of the cloner takes place.

redundancy synergy

0.6 0.8 1.0 1.2 1.4
V

0.02

0.04

0.06

0.08

I(B:E1E2),I(B:E1)+I(B:E2)

Figure 2. Joint mutual information I(B : E1, E2) (solid lines) and sum of individual mutual informa-

tion quantities I(B : E1) + I(B : E2) (dashed lines) between the cloner modes and the signal versus

signal variance V at channel transmittance η = 0.1 (upper plots) and η = 0.5 (lower plots) and cloner

variance N = 1.05 SNU (equivalent to the channel noise ǫ = 0.45 SNU at η = 0.1 and ǫ = 0.05 SNU

at η = 0.5).
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Similarly, we can revert the scheme and consider the communication between the
cloner modes E1, E2 and the role the measurement results on the mode B take in this
communication. Out of the minimum leakage regime V = 1 given by (11), when the
state in mode B before the coupling η has shot-noise variance in the measured quadrature,
the mutual information between the cloner modes can be increased on decreased by
conditioning on the measurement results at B. The typical dependencies of I(E1 : E2) and
I(E1 : E2|B), given by (12) and (15), i.e., before and after conditioning on B, respectively,
depending on the variance of the state in mode B prior to the interaction with the cloner,
are given in Figure 3.

redundancy synergy

0.6 0.8 1.0 1.2 1.4
V

0.01

0.02

0.03

0.04

I(E1:E2),I(E1:E2|B)

Figure 3. Mutual information between the cloner modes before I(E1 : E2) (solid lines) and after

I(E1 : E2|B) (dashed lines) conditioning on the measurements on mode B versus signal variance

V at channel transmittance η = 0.1 (lower plots) and η = 0.5 (upper plots) and cloner variance

N = 1.05 SNU.

It is evident from the plots in Figure 3, that, contrary to the mutual information
quantities between the channel output and the cloner modes (joint or separate) given in
Figure 2, which are the convex functions of the modulated signal variance V, the mutual
information between the cloner modes E1, E2 continuously increases with the increase of
the signal variance V if conditioned on the output of mode B or continuously decreases
without the conditioning. Indeed, the variance of mode B then plays the role of an external
noise, which either contributes to the mutual information once conditioning is performed,
or does not, once the measurements on B are not taken into account. We further extend
the scheme to interaction between two entangling cloners and show how conditioning
on an auxiliary cloner modes changes the mutual information between the modes of the
main one.

5. Two Interacting Entangling Cloners

To generalize the result of the effect of conditioning on the external noise in mode B
on the mutual information between the modes of an entangling cloner, we consider the
scheme of two mutually interacting entangling cloners, as shown in Figure 4.

Prior to interaction each of the cloners can be described in x-quadrature by a covariance
matrix of the form (2) with variances N and V. We consider the communication between
the cloner modes E1 and E2 (which can be also seen as a purification of the modulation
performed on a single mode E1 [9]) and study the effect of conditioning on (using the knowl-
edge of the quadrature values of) the auxiliary cloner modes A, B. We analytically derive
the covariance matrices of the two cloners and obtain the respective mutual information
quantities as discussed below.
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V
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X
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1
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1
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Figure 4. Two entangling cloners: one with variance V in modes A, B and another with variance N in

modes E1, E2, interacting between modes B and E1 with coupling η.

After the coupling η between the modes B and E1 the x-quadrature covariance matrices
of the two cloners have the form

γ
(x)
AB =

(

V
√

η(V2 − 1)
√

η(V2 − 1) ηV + (1 − η)N

)

, (16)

γ
(x)
E1E2

=

(

ηN + (1 − η)V
√

η(N2 − 1)
√

η(N2 − 1) N

)

, (17)

and their correlation matrix reads

σ
(x)
ABE1E2

=

(

−
√

(1 − η)(V2 − 1)
√

η(1 − η)(N − V)

0
√

(1 − η)(N2 − 1)

)

. (18)

Without the conditioning, the mutual information I(E1 : E2) between the cloner modes
is given by (12). After the conditioning performed on mode B, the x-quadrature covariance
matrix of the state in modes E1, E2 has the form (14) and the respective conditional mutual
information I(E1 : E2|B) is given by (15). As the variance V of the cloner in modes A, B is
always V ≥ 1 (equality means the cloner reduces to two uncorrelated vacuum states), which
is implied by the physicality constraint given by the Heisenberg uncertainty principle [15],
the mutual relation of those two mutual information quantities for the two-cloner scheme
corresponds to the right part of the plot in Figure 3. Hence, conditioning on the state in
mode B having variance larger than the shot noise level improves the mutual information
between the cloner modes. Since the thermal state in mode B, after it is split between
modes B and E1 by the beamsplitter η, introduces correlations between the two modes,
the conditioning can be seen as application of additional controllable modulation to the
mode E2 of the entangling cloner. Such additional modulation is known to improve the
entangled resource for quantum communication [16].

If instead of measurement and conditioning on mode B, the measurement on mode A
is taken into account, the covariance matrix of the conditional state in modes E1, E2 obtains
the form (note that the mode E2 is not affected as it is not correlated to mode A):

γ
(x)
E1E2|A =

(

ηNV+1−η

V

√

η(N2 − 1)
√

η(N2 − 1) N

)

, (19)

the resulting mutual information I(E1 : E2|B) is then exactly the same as I(E1 : E2|A) given
by (15). Hence, conditioning on either mode of the auxiliary cloner A, B improves the
mutual information between the modes E1, E2 due to the strong correlation between the
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modes A and B. Finally, if the measurements on both modes A, B is taken into account, the
resulting conditional matrix reads

γ
(x)
E1E2|AB

=
1

η + (1 − η)NV

(

N
√

η(N2 − 1)
√

η(N2 − 1) ηN + (1 − η)V

)

, (20)

and the resulting mutual information I(E1 : E2|AB) is exactly the same as I(E1 : E2) without
any conditioning, given by (12). Hence, conditioning on both modes of the auxiliary cloner
cancels the positive effect of the additional correlations in modes B and E1.

6. Discussion

Inspired by the optimality of entangling cloner as an individual attack in Gaussian CV
QKD, we have analyzed the mutual information quantities between a modulated signal
and an entangling cloner. We have derived the condition for minimization of information
leakage under the individual attacks, which is the same as for the collective ones. We have
then shown, that when the information leakage from the Gaussian channel is minimized,
the joint measurement on the entangling cloner modes yields the same mutual information
as when the measurement data is taken independently. In this regime of minimum leakage,
the mutual information between the modes of a cloner does not change with conditioning
on the residual signal. Out of this regime the cloner is either redundant, when the signal
is moduated below the shot noise, which means that obtaining the information on the
signal from the joint measurement on the cloner modes is less effective than from the sum
of individual information quantities, or synergistic, which is the typical known regime
for the entangling cloner, when the signal is modulated above the shot noise and treating
the measurement data from the cloner modes jointly is more efficient. Importantly, our
result shows that entangling cloner with joint measurement on the cloner modes is not
an optimal individual attack for the signals modulated below the shot noise. This affects
the whole security analysis of CV QKD with the sub-shot-noise-modulated signals in the
assumption of individual attacks, particularly in the case of low modulation regime, which
can be used to compensate for the low error correction efficiency [5] (e.g., due to high-speed
real-time processing of the key data). Despite the fact, that individual attacks are less
efficient than collective ones in CV QKD, this class of attacks is important as the security
analysis can be reduced to the individual attacks, e.g., in the free-space and satellite CV
QKD, where visibly controllable line of sight suggests the absence of bulky equipment
capable of collective attacks, such as quantum memories, which can improve the protocol
applicability [17]. Furthermore, we extended our consideration to the scheme with two
interacting entangling cloners and shown, that while an auxiliary cloner acts as an external
noise, degrading the mutual information between the main cloner modes, the conditioning
on either of the modes of the auxiliary cloner improves the mutual information of the main
cloner, providing additional correlations to the entangled state [16]. The effect vanishes,
when the conditioning is taken on both the modes of an auxiliary cloner. Note, that we
consider interaction between two modes, one of each cloner, while if both modes of each
cloner are interacting, this can be seen as a correlated cross talk and can be effectively
removed for entanglement distribution [18] and QKD [19].
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Abbreviations

The following abbreviations are used in this manuscript:

CV Continuous-variable

QKD Quantum key distribution

SNU Shot-noise unit

TMSV Two-mode squeezed vacuum
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