@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

15th International Particle Accelerator Conference,Nashville, TN

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-WEPR52

Bmad-Julia: A Julia ENVIRONMENT FOR ACCELERATOR SIMULATIONS
INCLUDING MACHINE LEARNING
D. Sagan'*,", M. G. Signorelli!, A. Coxe?, G. H. Hoffstaetter!

ICLASSE, Cornell University, Ithaca, NY, USA
ZPhysics, Old Dominion University, Norfolk, VA, USA

Abstract

Bmad-Julia is a new, open-source project to develop, in
the Julia language, a set of modular packages providing the
fundamental tools and methods commonly needed for accel-
erator simulations. By avoiding the necessity of “reinventing
the wheel”, simulation programs can be developed in less
time and with fewer bugs than developing from scratch. A
modern simulation framework such as Bmad-Julia is greatly
needed since the ever increasing demands placed upon ma-
chine performance require ever more comprehensive accel-
erator modeling.

In addition to the toolkit packages, the Bmad-Julia project
will develop accelerator simulation programs for various
simulation tasks. Initial program development will focus on
Machine Learning / Artificial Intelligence (ML/AI) applica-
tions. However, Bmad-Julia will be applicable to accelerator
simulations in general. Discussed is the present state of the
project as well as future plans.

INTRODUCTION

The disorganized state of accelerator physics simulation
development has been recognized by the latest High-Energy
Physics community Snowmass white paper [1]:!

The development of beam and accelerator physics
codes has often been largely uncoordinated. This
comes at a great cost, is not desirable and may not
be tenable. Due to developers retiring or moving
on to other projects, numerous simulation programs
have been completely abandoned or are seldom used.
This has resulted in a collection of codes that are
not interoperable, use different I/O formats and quite
often duplicate some physics functionalities using the
exact same underlying algorithms. Frequently there
is a huge impediment to maintaining these programs
due to poorly-written code and lack of documentation.
Additionally, many of the programs that are available
tend to be “rigid”. That is, it is generally difficult
to modify a program to simulate something it is not
designed to simulate a priori. Adding a new type of
lattice element that a particle can be tracked through
is one such example.

As a consequence, the Snowmass white paper makes a rec-
ommendation on how to ameliorate the situation:

* david.sagan@cornell.edu

 Work supported in part by Department of Energy grant DE-SC0018370
and National Science Foundation award DMR-1829070.

! DOE-sponsored Snowmass reports outline the major funding priorities
for the HEP community

WEPRS52
2612

Recommendation on community ecosystems &
data repositories Organize the beam and accel-
erator modeling tools and community through the
development of (a) ecosystems of codes, libraries
and frameworks that are interoperable via open com-
munity data standards, (b) open access data reposito-
ries for reuse and community surrogate model train-
ing, (c) dedicated Centers and distributed consortia
with open community governance models and dedi-
cated personnel to engage in cross-organization and
-industry development, standardization, application
and evaluation of accelerator and beam modeling
software and data.

The Bmad-Julia project is structured to be part of this
ecosystem. The Bmad-Julia project was started last year
(2023) and aims to develop a set of open source packages
(code modules), written in the Julia programming language,
that can serve as the basis for future accelerator simulation
programs. This will enable simulation programs to be devel-
oped in less time and with fewer bugs (due to code reuse) than
can be done for a program developed from scratch. Along
with the packages, programs will be developed for various
simulation tasks. The first applications will involve Machine
Learning / Artificial Intelligence (ML/AI) but Bmad-Julia
will not be limited to ML/AI applications.

BASED ON Bmad

Bmad-Julia is inspired by the current Bmad ecosystem
of toolkits and programs for the simulation of relativistic
charged particles and X-rays in accelerators and storage
rings [2]. Bmad has a wide range of capabilities includ-
ing tracking of polarized beams and X-rays, while simu-
lating coherent synchrotron radiation (CSR), wakefields,
Touschek scattering, higher order mode (HOM) resonances,
space-charge dominated beams, weak-strong beam-beam
interactions, and much more.

Although the Bmad-Julia code will be completely separate
from the existing Bmad code, the development of Bmad-
Julia will rely heavily on the many years of experience the
developers have developing Bmad. Concepts developed in
Bmad will serve as a paradigm for the present effort.

It should be noted that, due to Bmad’s wide adoption and
breadth of capabilities, for the foreseeable future, Bmad-
Julia will not be a replacement for Bmad, and both will
co-exist side by side.

WEPR: Wednesday Poster Session: WEPR

MC5.D11 Code Developments and Simulation Techniques




15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-WEPR52

2612

MC5.D11 Code Developments and Simulation Techniques

WEPR52

WEPR: Wednesday Poster Session: WEPR

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


15th International Particle Accelerator Conference,Nashville, TN

ISBN: 978-3-95450-247-9

WHY Julia?

In modern AI/ML and modeling frameworks (e.g., Py-
Torch, BLAST, WarpX, ImpactX [3]), the trend to combine a
precompiled, high-performance language such as C++ with a
scriptable interface language such as Python has been highly
successful in ensuring performance, modularity, and pro-
ductivity. Revisiting the language choice, a new alternative
emerged with the Julia programming language, which adopts
just-in-time (JIT) compilation and multiple dispatch as cen-
tral paradigms of the language. Such features significantly
simplify the development process, enable the entire ecosys-
tem to be fully differentiable, and provides performance
on-par with that of C. At the same time, Julia can be rapidly
scripted (dynamic dispatch) in simple syntax, effectively
removing the “two-language” challenge for developers [4].
Although still relatively young, Julia provides capabilities
that simplifies important aspects of this project [5].

Julia comes with a full-featured interactive command-line
REPL (Read-Evaluate-Print-Loop) built into the Julia ex-
ecutable similar to the REPL in Python. This means that
the lattice description format, and the interaction between a
user and simulation software in general, can be through the
Julia language itself. Consequently, simulations will not be
constrained by some program-defined language (like with
MAD, Elegant, Bmad, etc.), and the user will automatically
have access to such features as plotting, optimization pack-
ages, linear algebra packages, etc. This is a massive boost
to the versatility and usability of any simulation program.
Additionally, code maintainability is greatly improved since
the quantity of code that needs to be developed is reduced.

That Julia is an excellent choice for the Bmad-Julia project
is exemplified by the conclusions of the paper ‘“Potential
of the Julia programming language for high-energy physics
computing” [6] written by a team of researchers from various
laboratories around the world: “Julia and its ecosystem are
impressively fulfilling all these requirements [for use in HEP
applications]... The capacity to provide, at the same time,
ease of programming and performance makes Julia the ideal
programming language for HEP ... the HEP community will
definitively benefit from a large scale adoption of the Julia
programming language for its software development.”

Bmad-Julia PROJECT GOALS

The general goals of the Bmad-Julia project are (a) to
develop an ecosystem of modular and extensible packages
that allows for the easy construction of accelerator simu-
lation programs, and (b) to use these packages to develop
simulation programs. Initially, there will be a strong ML/AI
orientation.

The success and sustainability of Bmad-Julia will depend
heavily on the involvement of the entire accelerator physics
community. To this end, the Bmad-Julia project seeks com-
munity engagement with weekly planning meetings, open
to all, and with a SLACK workspace where development
can be discussed. Additionally, regular workshops and other

WEPR: Wednesday Poster Session: WEPR

MC5.D11 Code Developments and Simulation Techniques

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-WEPR52

informational meetings will be scheduled as the project ad-
vances.

In the short-term, needed are packages for defining and
manipulating lattices, tracking of particles, Truncated Power
Series Algebra (TPSA), differential algebra maps, and nor-
mal form decomposition and analysis of differential algebra
maps to extract such things as emittances, Twiss parameters,
resonance strengths, etc. In cases where packages external
to Bmad-Julia have the needed functionality, rather than
reinvent the wheel, appropriate interfaces will be developed.

Experience with Bmad has shown that there is no ideal
way to track through a lattice with different tracking methods,
all having their own strengths and weaknesses. Bmad-Julia
will thus include multiple tracking packages. Considerations
in developing these packages include speed, accuracy, and
the ability to simulate various models of machine compo-
nents. Needed is software that has the ability (not necessarily
at the same time) to track TPSA maps, track using GPUs,
track with backwards differentiation, etc.

Bmad-Julia CURRENT STATE

All Bmad-Julia development is in public open-source Git
repositories hosted on GitHub. At present, the packages
being developed are:

AcceleratorLattice.jl [7] Package for accelerator lattice
construction and manipulation. Lattice elements are Julia
structs which have a Dict component that can store arbitrary
information which is important for flexibility as Bmad-Julia
is developed. As in Bmad, ordered lists of elements, which
can represent rings, linacs, injection and extraction lines,
etc., are grouped into Branch structures. A Lat structure
— which is essentially a set of Branches — can contain all
the information about an entire accelerator complex includ-
ing interconnections between different branches and is thus
capable of being used for start-to-end simulations.

Bmad concepts such as the superposition of elements on
top of other elements and control elements which control
the parameters of other elements will exist in Bmad-Julia.

AtomicAndPhysicalConstants.jl [8] Library of atomic
and subatomic particle properties and other physical con-
stants (speed of light, etc.). The package has Particle structs
for defining particles such as Helium-3+ and positrons. The
units used are flexible and can be set differently in different
packages that use this package. EG: Units of mass may be
set to MeV/c2, AMU, or something else as desired.

GTPSA.jl [9] Full-featured Julia interface to the General-
ized Truncated Power Series Algebra (GTPSA) library devel-
oped by Laurent Deniau [10]. GTPSA performs automatic
differentiation (AD) of real and complex multi-variable func-
tions to arbitrary orders. GTPSA jl is significantly faster than
other Julia AD packages for calculating derivatives above
first-order.

NonlinearNormalForm.jl [11] Nonlinear normal form
analysis using differential algebra maps including spin. In-
cluded are methods for calculating parameter-dependent nor-
mal forms using vector fields (Lie operators), operations in-

WEPRS52
2613

@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-WEPR52

MC5.D11 Code Developments and Simulation Techniques

2613

WEPR: Wednesday Poster Session: WEPR

WEPR52

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

15th International Particle Accelerator Conference,Nashville, TN

ISBN: 978-3-95450-247-9

cluding vector fields and maps (e.g. logarithms of maps, Lie
brackets, etc.), map inversion/partial inversion, and more.
SimUltils.jl [12] Simulation utility routines for needed
functionality that does not exist in any external packages.
Except for the AcceleratorLattice package, all the pack-
ages currently being developed are useful in fields outside
of accelerator physics from cosmology to chemistry.

MACHINE LEARNING

Machine Learning (ML) and Artificial Intelligence (AI)
are having a large impact on accelerator operations and opti-
mizations. ML/AI can provide advanced optimization tools
that are uniquely suited for many accelerator tasks, e.g.,
physics-informed Bayesian Optimization addresses tasks
where measurement uncertainties are relevant [13] or where
obtaining measurements is time-consuming or expensive.
Additionally, the construction of ML-based surrogate mod-
els has shown powerful speedups when describing hard-
to-model sections of accelerators, e.g., for space charge-
dominated beams [14].

Despite this, no comprehensive accelerator simulation
toolkit has been designed with ML/AI in focus. The devel-
opment of Bmad-Julia will address this. Bmad-Julia will
provide a maximally-differentiable simulation and lattice de-
sign environment, with the full-features of present Bmad and
more. This enables machine learning techniques (e.g. back-
wards differentiation to train ML models) to be employed
naturally, as well as any optimization techniques utilizing
automatic differentiation for lattice design purposes; Julia’s
entire ecosystem of optimizers and machine learning pack-
ages are at one’s fingertips in Bmad-Julia. Alternatively,
Julia provides bindings to existing Python ML/AI packages
such as OpenAl Gym [15] and PyTorch [16], allowing for
their utilization as well.

Computation speed is critical for ML/AI applications as
well as for other accelerator-based simulations. Hence, there
will be a heavy focus on developing GPU compatible code
along with multi-threading and multi-processing capabili-
ties.

INTEROPERABILITY

Bmad-Julia is being developed with consideration for com-
patibility with the wider accelerator modeling community.
This includes data standards and lattice description. This
will facilitate cross-checking and benchmarking results, and
enable integration between toolkits. This is important for
start-to-end simulations, integration with external optimiza-
tion tools, and seamless training of machine learning models.
For example, routines for reading and writing particle dis-
tributions using the openPMD standard [17, 18] will be
developed and Bmad-Julia will leverage prior investment in
a scalable data stack that was developed for the US Exascale
Computing Project (ECP) [19].

WEPRS52
2614

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-WEPR52

Translation software will be developed to translate be-
tween the Bmad-Julia lattice format and the existing Bmad
format, as well as other commonly used formats (MAD, etc.).
Since Bmad-Julia will encompass the major features found
in Bmad, translation from Bmad to Bmad-Julia should be
close to 100%. Back translation to Bmad will be fairly good
except in a few areas such as control element descriptions
since Bmad-Julia has a more expressive syntax in this area.

For translation to non-Bmad lattice formats, translation
will never be perfect (far from it) since different programs
have different element types and differing constructs. Yet
experience has shown that just being able to translate basic
information, like type of element lengths and strengths, is
very helpful.

For portability for programs that do not use Julia, or do
not use the Bmad-Julia lattice parsing package, a standard
lattice syntax will be developed using a standard data format
(EG: YAML, TOML, JSON). Along with this, standardized
parameter names and meanings will be established. The
lattice syntax will be extensible in the sense that the syntax
will allow custom information to be stored along side the
information defined by the standard. It is envisaged that this
portable lattice standard could serve as a lingua franca for
lattice communication among non Bmad-Julia programs.

OUTLOOK

The Bmad-Julia project is in its infancy but already shows
much promise. Bmad-Julia has the potential to have an im-
pact similar to that of Geant4. The versatility of the Geant4
toolkit for the simulation of particle passage through mat-
ter [20] has resulted in Geant4 having a large impact not
only in the field of particle physics, but in other domains as
well — including nuclear physics, astrophysics and space
science, biomedical physics, and archaeology. Geant4’s
main reference [21] has achieved more than 16,000 citations
in the Web of Science [22], making it the most cited pub-
lication in particle and field physics, nuclear physics, and
other fields [20]. Similarly, the versatility of the Bmad-Julia
package ecosystem means that the potential payback for the
Bmad-Julia project is very large compared to the investment.

The key to achieving success of the Bmad-Julia project
is, ultimately, engaging the entire accelerator physics com-
munity just as there is a thriving community for Geant4 that
supports it. A strong effort will be made to create such a
community.

ACKNOWLEDGEMENTS

Thanks must go to the many people who have contributed
their expertise, knowledge, to this project especially Laurent
Deniau and Etienne Forest. Other contributors are Dan
Abell, Juan Pablo Gonzalez-Aguilera, Scott Berg, Oleksii
Beznosov, Auralee Edelen, Axel Huebl, Li Liching, Chris
Mayes, Ryan Roussel, Hugo Slepicka, Qi Tang, and Jean-
Luc Vay.

WEPR: Wednesday Poster Session: WEPR

MC5.D11 Code Developments and Simulation Techniques




15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-WEPR52

2614

MC5.D11 Code Developments and Simulation Techniques

WEPR52

WEPR: Wednesday Poster Session: WEPR

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


ISBN:

1

—

(2]

(3]

[4

—_

[5

—

[6

—_

(7]

(8]

(9]

[10]

(1]

15th International Particle Accelerator Conference,Nashville, TN

978-3-95450-247-9

REFERENCES

S. Biedron et al., “Snowmass21 accelerator modeling com-
munity white paper,” arXiv, 2022.
doi:10.48550/arXiv.2203.08335

D. Sagan, “Bmad: A relativistic charged particle simulation
library,” Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 558, no. 1, pp. 356-359,
2006, Proceedings of the 8th International Computational
Accelerator Physics Conference.
doi:10.1016/j.nima.2005.11.001

R.T. Sandberg et al., “Synthesizing particle-in-cell simula-
tions through learning and gpu computing for hybrid particle
accelerator beamlines,” Proceedings of the Platform for Ad-
vanced Scientific Computing, vol. PASC24, 2024, accepted.
doi:10.48550/arXiv.2402.17248

J. Storopoli, R. Huijzer, and L. Alonso, Julia Data Science.
2021. https://juliadatascience.io

J. Revels, M. Lubin, and T. Papamarkou, Forward-mode
automatic differentiation in julia, 2016.

J. Eschle ez al., “Potential of the julia programming language
for high energy physics computing,” English (US), Comput-
ing and Software for Big Science, vol. 7, no. 1, 2023.
doi:10.1007/s41781-023-00104-x

D. Sagan et al., AcceleratorLattice.jl. https://github.

com/bmad-sim/AcceleratorLattice. jl

A. Coxe et al., Atomicandphysicalconstants.jl,
https://github.com/bmad-sim/
AtomicAndPhysicalConstants.jl.

M. G. Signorelli et al., GTPSA.jl. https://github.com/
bmad-sim/GTPSA. jl

L. Deniau and C. I. Tomoiagd, “Generalised Truncated Power
Series Algebra for Fast Particle Accelerator Transport Maps,”
in Proc. IPAC’15, Richmond, VA, USA, May 2015, pp. 374-
377.doi:10.18429/JACoW-IPAC2015-MOPJE0O39

M. G. Signorelli et al., NonlinearNormalForm.jl. https://
github.com/bmad-sim/NonlinearNormalForm. j1

WEPR: Wednesday Poster Session: WEPR

MC5.D11 Code Developments and Simulation Techniques

ISSN: 2673-5490

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

JACoW Publishing
doi: 10.18429/JACoW-IPAC2024-WEPR52

D. Sagan, L. Li, et al., SimUtils.jl. https://github.com/
bmad-sim/SimUtils.jl

J. Duris et al., “Bayesian optimization of a free-electron
laser,” Phys. Rev. Lett., vol. 124, p. 124 801, 12 2020.
doi:10.1103/PhysRevLett.124.124801

C. Garcia-Cardona and A. Scheinker, “Machine learning sur-
rogate for charged particle beam dynamics with space charge
based on a recurrent neural network with aleatoric uncer-
tainty,” Phys. Rev. Accel. Beams, vol. 27, no. 2, p. 024 601,
2024.doi:10.1103/PhysRevAccelBeams.27.024601

G. Brockman et al., “Openai gym,” arXiv, 2016.
doi:10.48550/arXiv.1606.01540

A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural in-
Jormation processing systems, vol. 32, 2019.

A. Huebl et al., openPMD: A meta data standard for particle
and mesh based data, https://github.com/openPMD, 2015.
doi:10.5281/zenodo.591699

F. Poeschel et al., “Transitioning from file-based hpc work-
flows to streaming data pipelines with openpmd and adios2,”
in Smoky Mountains Computational Sciences and Engineer-
ing Conference, Springer, 2021, pp. 99-118.
doi:10.1007/978-3-030-96498-6_6

A. Huebl et al., “Next Generation Computational Tools for
the Modeling and Design of Particle Accelerators at Exas-
cale,” in Proc. NAPAC’22, Albuquerque, NM, USA, 2022,
pp. 302-306. doi : 10.18429/JACOW-NAPAC2022-TUYE2

T. Basaglia, Z. Bell, D. D’Agostino, P. Dressendorfer, M. Pia,
and E. Ronchieri, “Geant4 silver anniversary: 25 years en-
abling scientific production,” J. Instrum., vol. 19, no. 01,
p- C01037, 2024.
doi:10.1088/1748-0221/19/01/C01037

S. Agostinelli ef al., “Geantd—a simulation toolkit,” Nucl.
Instrum. Meth. A, vol. 506, no. 25, 2003.
doi:10.1016/S0168-9002(03)01368-8

Web of science. https://www.webofscience.com/wos

WEPRS52
2615

@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-WEPR52

MC5.D11 Code Developments and Simulation Techniques

2615

WEPR: Wednesday Poster Session: WEPR

WEPR52

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


