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Abstract

Scalar extensions of the Standard Model of particle physics are well motivated from several

theories that attempt to explain phenomena like neutrino oscillations, hypercharge quantiza-

tion, etc. By adding more scalars, the Renormalization Group Equations of the theory change

as they become active species in the interactions. In the case of Grand Unified Theories, a

unification of the gauge and Yukawa couplings is expected at a high energy, which could be

used as a selection tool in the space of scalar extensions.

Here, the scalar extensions with representations {(1, 2)0, (3, 1)0, (3̄, 1)0} under the Standard

Model gauge group are investigated at 1-loop. By inserting multiple generations at up to

two scales between 103 GeV and 1015 GeV in the Modified Minimal Subtraction scheme, and

running the Renormalization Group Equations to the Grand Unified Theory scale ≈ 1015 GeV,

we look for optimal scenarios for gauge and Yukawa unification. A comparison is done against

FlexibleSUSY to check that the results are comparable for 2 models; the SM and a model with

2 of each scalar type with pole masses of 103 GeV.
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1 Introduction

The Standard Model (SM) of particle physics has recently been completed by the discovery of

the Higgs boson with the Large Hadron Collider [1, 2]. While this is a great success of high

energy physics, there are still theoretical conundrums and experimental measurements that

need mechanisms and explanations. Several theories expect a unification of the forces of the

SM, while others extend the SM with new fields, so as to explain observations like neutrino

oscillations.

The work done here is to extending the SM by adding new degrees of freedom in the form

of extra scalar fields. This is done to see how they contribute towards Yukawa and gauge

unification at the Grand Unified Theory (GUT) scale ≈ 1015 GeV, that is far from what we can

achieve with today’s experiments. There are numerical tools that are able to do this with a high

degree of precision, but are quite slow as they are built with a high degree of flexibility in their

design and capabilities. To search a subset of the space of possible extra degrees of freedom

quicker, specifically new scalars at 1-loop, a tool is built to rapidly examine new models. With

this tool a subset of possible models are investigated.

The outline of the thesis is as follows;

In Section (2) I quickly review basic building blocks of the SM; Quantum Field theory

(QFT), Yang-Mills theory, Lie group theory and the Higgs mechanism, leading in the end to

a quick formulation of the SM. A quick tour into renormalization is then required to motivate

some of the various theoretical questions that face the SM in the current era, and to get the

Renormalization Group Equations (RGEs) that are used to investigate these. To motivate this

work, we look at some of the problems that are facing the SM in Section (3), and a solution

to some of the problems in the form of GUTs. We then go back to renormalization to find the

Yukawa beta functions in Section (4), before we look at how the numerical integration of the

RGEs is done, uncertainty control and some benchmarks against FlexibleSUSY to check for

consistency, in Section (5). The results of some selected scalar extensions are given in Section

(6).
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Notation

• ~y - 3-dimensional space vector.

• xµ - 4-dimensional space-time vector.

• Y - represents a matrix.

• (x, y)z - Gauge group field representation with representations x under SU(3), y under

SU(2) and hypercharge z. E.g. the lepton doublet is given as (1, 2)−1/2, which is a singlet

under SU(3), doublet under SU(2) and has hypercharge −1/2.

• N - N-plet representation under a gauge group.

• N - conjugate N-plet representation under a gauge group.

Abbreviation

• CKM - Cabibbo–Kobayashi–Maskawa

• GeV - Giga electronvolt

• GUT - Grand Unified Theory

• irrep - Irreducible representation

• MS - Modified Minimal Subtraction

• ppm - parts per million

• QCD - Quantum Chromodynamics

• QED - Quantum Electrodynamics

• QTF - Quantum Field Theory

• RGE - Renormalization Group Equation

• RK4 - Runge-Kutta of 4th order

• SM - Standard Model

• SO - Special Orthogonal

• SSM - Spontaneous Symmetry Breaking

• SU - Special Unitary

• SUSY - Supersymmetry
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2 Background

The leading theory for getting a grip on the physics at the smallest experimentally accessible

scales today is QFT1. QFT is a framework which uses at its starting point classical relativistic

fields and the known Lagrangian principle to derive the dynamical equations of the system.

The typical fields one works with are integer and half-integer spin fields, or more commonly

known as bosons (or scalars for s = 0) φi and fermions ψj respectively. Their Lagrangian L
as free, non-interactive, fields is given as

Lψ = ψ̄(i/∂ −mψ)ψ, (1)

Lφ =
1

2
(∂µφ)2 − 1

2
m2
φφ

2. (2)

To get the equations of motion for the fields, the Euler-Lagrange equations are applied which

are solved analytically or numerically. To successfully merge this with quantum mechanics, a

quantization procedure is done, second canonical quantization, where all the degrees of freedom

are expanded into harmonic oscillators and then quantized in the following way

{ψa(x), ψ†b(y)} = δ(4)(x− y)δab, (3)

{ψa(x), ψb(y)} = {ψ†a(x), ψ†b(y} = 0, (4)

and

[φ(x), π(y)] = iδ(4)(x− y), (5)

[φ(x), φ(y)] = [π(x), π(y)] = 0, (6)

where π =
∂L

∂(∂0φ)
. Again, applying the Euler-Lagrange equation with these considerations we

get the well known Klein-Gordon equation for scalars and the Dirac equation for fermions

(
∂2

∂t2
−∇2 +m2

φ

)
φ =

(
∂2 +m2

φ

)
φ = 0, (7)

(iγµ∂µ −mψ)ψ = 0. (8)

These respect locality, causality and special relativity, and are together with spin 1 gauge fields

Aµ responsible for the massive particles that we are today able to experimentally access.

1A good amount of the introduction and results in this chapter are based on the QFT bible by Peskin &
Schröder [3] .
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2.1 Symmetries and Yang-Mills theory

The framework above is powerful, but additional ingredients are needed to build the final theory.

Upon making the equations respect special relativity, the Lagrangian is made invariant under

space-time transformations, known as Lorentz transformations. This means that if we have a

Lagrangian L(ψ, ∂ψ), with fermion field ψ, and we do a Lorentz transformation xµ → Λxµ the

fields would also transform in the following way so as to not change the Lagrangian

ψ(xµ)→ ψ′(xµ) = Λψ(xµ), L → L′ = L. (9)

This is known as a symmetry of the Lagrangian and is a central principle in theoretical physics.

It stems from Nöethers theorem that for every symmetry of the Lagrangian, there is a conserved

quantity. Note that the transformation Λ did not depend on the position, and is known as a

global transformation. There are also local transformations that depend on the spacetime

position

ψ(xµ)→ Λ(xµ)ψ(xµ). (10)

The transformations Λ above could be a simple phase exp(iθ), or a more complicated matrix

that adhere to a set of rules given by group theory. Let’s quickly review the basic group

theoretical concepts that we will need to understand and make the calculations down the road.

2.1.1 Group theory

A group is a set of elements G together with a binary operation · that have the following

properties:

• Closure: For all a, b ∈ G, a · b = c ∈ G

• Associativity: For all a, b, c ∈ G, a · (b · c) = (a · b) · c

• Identity: There exists an element e ∈ G known as the identity such that for all a ∈ G,

a · e = e · a = a

• Inverse: For each element a ∈ G there exists an element b ∈ G such that a ·b = b ·a = e

If we look at the simple phase example above, we see that the set of elements exp(iθ), with

θ ∈ R and the group operation exp(iθ1) · exp(iθ2) = exp(i(θ1 + θ2)) adhere to the requirements

with e = exp(0i) = 1 and the inverse of a given element exp(iθ) is given by exp(−iθ). If we

look at the values of all the exp(iθ), they form a circle in the complex plane, and this group is

known as the unitary group of degree 1, U(1) or the circle group.
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We can classify groups further based on how the ordering of the binary operation acts, i.e.

if

[a, b] = a · b− b · a = 0, (11)

then the group is abelian, otherwise it is non-abelian. Again we look at the example of a

phase and see that the ordering of two elements does not matter, leading to a classification as

a abelian group.

A group can also have a subgroup, where there exists a subset H ⊂ G which under

the same binary operation is closed. As an example the even integers under addition form a

subgroup of the integers. For all groups, the identity and the group itself form two subgroups,

and subgroups that are not equal to these are called proper subgroups. Furthermore, we can

multiply groups together via direct product and form new groups. A example would be for the

groups G,H with the binary operations (∗,ˆ)we have G×H in the following way

(g1, h1)× (g2, h2) = (g1 ∗ g2, h1ˆh2). (12)

The fermion and scalar fields X are not themselves group elements in G, but are acted upon

by them. The precise terminology is a group action φ : G×X → X such that

φ(e, x) = x,

φ(g, φ(h, x)) = φ(g · h, x).

(13)

The smallest set of elements {αa} that can generate the whole group are called the gener-

ators of the group. For the group of integers under addition Z+ the element +1 is a generator,

as by repeated application to itself or repeated application of its inverse gives the whole set of

integers. The smallest number of generators of a group is called the dimension of a group and

has a direct correspondence to the number of gauge bosons in the theory.

The set of generators ta and the commutation relations between them

[ta, tb] = fabctc, (14)

where fabc are known as the structure constants, fully describe the properties of the group

close to the identity element of the group.

There exists a huge literature of such mathematical structure, and we can make physics

theories based on our demands that the Lagrangian should be invariant under this or that group

action applied to the fields it contains. If we look at a fermion field that has a Lagrangian that

respect a local U(1) symmetry in the form ψ → exp(iα(xµ)θ)ψ, then the extra gauge field that

14



is required to keep the Lagrangian invariant is the vector gauge boson Aµ. It transforms as

Aiµ → Aiµ +
1

g
∂µα

i, (15)

where g is the coupling constant. For example, at energies below the SM scale there is one field of

this type, which corresponds to the photon. The dynamical field equations of the gauge boson

that come out of such a Lagrangian perfectly reproduce the equations of electromagnetism,

which is a great success of the theory.

We can further specify the subset of groups of interest to this work and that are also the

basis of the SM. These are called Lie Groups.

2.1.2 Lie Groups

A group could, for example, be the set of integers Zn, a permutation of n alements or a complex

phase, as described above. There is a fundamental distinction between the first two and the

last, which is the granularity at which one can do the group operation. There is no such thing

as a half-permutation, while we can split the phase θ as much as we want. The first are known

as discrete groups while the latter is known as a Lie group and these are the groups that

allow infinitesimal transformations2 of the form

ψ → eiα
ataψ = (1 + iαata +O(α2))ψ, (16)

where αa are the parameters of the hermitian generators ta. In the example we have already

used, the U(1) group, we know that we can expand the exponential on the form

exp(iθ) = 1 + iθ − 1

2
θ2 +O(θ3). (17)

The generators of Lie groups form a vector space called the Lie Algebra which contains the

properties that we need close to the identity element3. If the Lie group is non-abelian and does

not have a normal subgroup it is called a simple group4, and if it does but does not contain

a U(1) subgroup it is semi-simple. There are many interesting simple Lie groups and two

common ones are

• SU(N) - the groups of n × n complex unitary matrices with determinant 1. These are

2The opposite of discrete groups are continuous groups, of which Lie groups are a subset. These are defined
on manifolds with a smooth binary operation.

3We are justify studying only the local properties of groups as it is normal not to include terms in the
Lagrangian with mass-terms greater that 4 as they are highly suppressed (non-renormalizable), and as the
coefficient αa are small any exponential expansions of Lie groups will contain rather few powers of αata.

4This is a simplification, a thorough definition would need a some extra pages.
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the ones that are used in the SM, and are of special interest to us. The dimension is

SU(N) = N2 − 1. The classical example is the SU(2) group which describe spin 1/2

systems and the generators are the Pauli matrices.

• SO(N) - the groups of n× n real orthogonal matrices with determinant 1. Rotations in

Euclidean space are described by the group SO(3), and in the plane by SO(2) as they

both leave the length invariant and are orthogonal.

As described above, making the Lagrangian invariant under a abelian group, E.g. U(1), required

a single gauge field. In a similar way we can use non-abelian groups as the gauge symmetries

giving more structure to the theory. These are known as Yang-Mills theories and have a

Lagrangian on the form

L = ψ̄(i /D)ψ − 1

4
(F i

µν)
2 −mψ̄ψ, (18)

where ψ̄ = ψ†γ0 is the Dirac adjoint, /D = Dµγ
µ and F i

µν = ∂µA
i
ν − ∂νAiµ + εijkAjµA

k
ν is the field

strength tensor. Dµ = ∂µ − igAaµta is the covariant derivative, where g is a coupling constant

between the field ψ and A, and Aiµ is the gauge field and transform as

Aiµ 7→ Aiµ +
1

g
∂µα

i + fabcAbµα
c. (19)

The most interesting part is the term εijkAjµA
k
ν which leads to self-interaction among the fields

and new phenomena, and was not present for abelian groups.

2.1.3 Representations

A notion that is especially important for model builders are representations of groups. It is

roughly defined as a map from the group G to the general linear group (GL) on a vector space

V

φ : G→ GL(V ), (20)

where the elements g ∈ G and ρ ∈ GL(V ) satisfy

ρ(g1 · g2) = ρ(g1)ρ(g2). (21)

In physics we often use representations of the groups of interest, and use them to act upon the

fields of the theory by the group action defined above. This means that as long as we can keep

the structure of (21) we can choose any dimension of V as we would like to. A consequence

of this in the group action is the dimensionality of the space X which is acted upon which

now needs to be equal to the dimensionality of the vector space V , often called a n-plet where

16



n = dim(V ). Groups are often defined in a representation which is called the fundamental

representation. For SU(N) groups this is the n × n dimensional matrices as noted above,

but one can use larger dimensions also. Looking at SU(2) as an example, in the fundamental

representation we have ta = σa/2, the Pauli matrices

t1 =
1

2

0 1

1 0

 , t2 =
1

2

0 −i

i 0

 , t3 =
1

2

1 0

0 −1

 , (22)

which act upon a two dimensional vector called a doublet and is often written as 2. We can

also use a 3-dimensional vector space giving the representation matrices

t1
′
=


0 0 0

0 0 −i

0 i 0

 , t2
′
=


0 0 i

0 0 0

−i 0 0

 , t3
′
=


0 −i 0

i 0 0

0 0 0

 , (23)

and the fields that are acted upon are now triplets 3, while the Lagrangian still has the

same SU(2) symmetry. If the group is complex5, then a related representation is the anti-

fundamental representation. It is the complex conjugate of the fundamental representation

and is represented as 3̄. In the SM all matter fields are in fundamental or anti-fundamental

representations of the gauge groups, but the additional gauge fields reside in the adjoint rep-

resentation in which the generators have the form

(tb)ac = ifabc. (24)

For simple groups the dimension is then equal to the dimension of this representation on

the vector space V. At last there is also the trivial or singlet representation 1 which is 1-

dimensional, i.e. all ta = 0. It tells us that the fields does not transform under this group, and

is also a heavily used representation in the SM.

If we have a representation of a group and look at a subspace W ⊂ V , we call it a subrep-

resentation if ρ(g)w ∈ W for all g ∈ G, w ∈ W and ρ(g) is restricted to a subgroup H ⊂ G.

In a similar way as we had simple groups, we have irreducible representations in which the

only subrepresentations are trivial. If we have a reducible representation we can decompose it

to a sum of irreducible ones (irreps), which are easier to study as they act upon the fields as

block diagonal matrices.

To construct Lagrangian invariants under the symmetries, one can use Young tableaux,

5The vector space that is acted upon is complex.
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which are a set of blocks (irreps) and some rules as to how to combine them to other blocks.

As a showcase of this tool we will try to build product which contains a invariant (singlet) from

fundamental representations of SU(3). Each fundamental representation is denoted as a

N = , (25)

while anti-fundamental N ones are

N =
...

(26)

with N − 1 vertically stacked boxes. In the Lagrangian there are products of fields in irreps,

one irrep for each group. Now we multiply them in the following way6

3⊗ 3̄ = ⊗ = ⊕ (27)

To calculate the dimension of the resulting irreps, we introduce the hook number for a box,

which is the number of boxes below and to the right on the same line, plus itself. Then the

diagrams above gives

3 1

1
⊕ 3

2

1

(28)

In addition to this, as this is a representation of SU(N) we include another number which has

N in the upper left-hand corner, and for each block to the right add 1, and subtract for one

down. This gives for SU(3)

3 4

2
⊕ 3

2

1

(29)

Now to get the final dimension of the irreps we divide the product of last numbers we calculated

by the product of the hook numbers giving

2

1

3

3

4

1
⊕ 3

3

2

2

1

1
= 8⊕ 1. (30)

6For the full set of rules for multiplying together irreps, see e.g. [4].
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The result is that from a product of a fundamental and a anti-fundamental representation of

SU(3) we get a singlet and a octet representation. The singlet is invariant under the transfor-

mation, and is an allowed term in the Lagrangian when we require that it should be invariant

under SU(3) transformations. Such a check needs to be done for all the groups the theory is

invariant under, but as we have irreducible representations the groups are independent and give

simple calculations as the one above.

2.1.4 Group invariants

Finally we will look at some tools that will be useful in calculations down the road. The

generators tar in the representation r are usually normalized in the following way

tr[tart
b
r] = C(r)δab, (31)

where C(r) is known as the Dynkin index. Now for fundamental representations of SU(N),

r = N we define C(N) = 1/2. This is the reason for the factor 1/2 in front of the Pauli matrices

above, Eq. (22). For U(1) ta are proportional to the identity, so it is common to define the

gauge coupling g to be universal for all fields that have such U(1) transformations, and absorb

any difference in the U(1) charge q. This gives for C(U(1), 1) = q2. The Casimir operator is

given by

T 2 = tata, (32)

and is an invariant of the Lie algebra. The archetypical example of this is the angular momen-

tum squared, J2 from quantum mechanics, as it commutes with all the components along the

individual axes. Since it is an invariant, it commutes with all the generators of the group and

we get

tart
a
r = C2(r)1, (33)

where r denotes the representation. E.g., for the SU(2) doublet we get 3/4, for the triplet 6.

C2(r) is known as the Quadratic Casimir and in the fundamental representation of SU(N)

groups it is given by

C2(N) =
N2 − 1

2N
, (34)

while in the adjoint representation we get

G2(G)δab = facdf bcd. (35)
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By combining (31),(33) and the definition of C(N) = 1/2 for a given SU(N) group we get the

following useful equation for consistency between representations

d(r)C2(r) = d(G)C(r), (36)

where r = G is the adjoint representation.7

2.2 Standard Model gauge group and content

We are now equipped with enough theoretical concepts to look the SM. Its gauge group is a

direct product of several groups

GSM = SU(3)C × SU(2)L × U(1)Y , (37)

where the subgroups are

• U(1)Y - Hypercharge

• SU(2)L - Left-handed weak isospin

• SU(3)C - Color

We see that it is a direct product of 3 groups, which means that each field in the Lagrangian is

now in a irreducible representation for each of them and that the transformation is decomposable

to a block diagonal matrix. The list of fields are given in Table (1) where all the representations

under the various gauge groups are given.

As there are 3 gauge groups, there are also 3 coupling constants gi by our definitions above.

Note that there is a peculiar pattern for the U(1)Y representations, i.e. all come in multiples

of the same underlying quantity. Currently there is no deeper understanding as to why all the

SM fields have hypercharges of the form

qU(1),i =
ni
6
e n ∈ Z. (38)

One could ask why all these seemingly arbitrary gauge groups and field configurations are

chosen, and the answer is currently that it is this setup that currently fits the data best. Also

note the odd scalar in the mix, which is a complex spin 0 particle compared to all the other

fields that have either spin 1/2 or 1. We will pursuit the problem of the hypercharges after a

7To get the values at the different representations, some more group theory is needed which we will not go
into. Tabulated values are easy to find, see e.g. [5].
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Table 1: The field content of the SM and their representation under the SM gauge group GSM =
SU(3)× SU(2)× U(1).

Field Type SU(3)C SU(2)L U(1)Y generations

QL Fermion 3 2 1/6 3

uR Fermion 3̄ 1 -2/3 3

dR Fermion 3̄ 1 1/3 3

LL Fermion 1 2 -1/2 3

eR Fermion 1 1 1 3

H Scalar 1 2 1/2 1

B Gauge 1 1 0 1

W Gauge 1 3 0 1

G Gauge 8 1 0 1

quick review of the possible interactions in the Lagrangian, and how scalars and the breaking

of gauge symmetries are connected.

2.3 Yukawa Couplings and masses

Mass terms in the Lagrangian are the ones that are quadratic in the fields, i.e. we associate

the mass m to the parameter ξ in ξ2(φ†φ) or ξ(ψ̄ψ). For a scalar field it is sufficient to simply

add such a parameter and the Lagrangian would stay invariant, the story for fermions is quite

different and more complicated as the Dirac mass terms ΨΨ are not gauge invariant in the SM.

The solution to this problem is the Higgs mechanism, which involves using scalars to generate

masses for the fields via a vacuum expectation value (VEV). We start by looking at all

terms of the following type

yψ̄LφψR, (39)

which are gauge and Lorentz invariant. These terms are interactions between a scalar and two

Weyl fermions, and are known as Yukawa couplings. The fermion fields in the SM come in 3

copies, or generations, leaving us with the possibility of choosing a ψ̄L and ψR from different

generations giving the Cabibbo–Kobayashi–Maskawa (CKM) matrix. If we write the up type

quarks (u, c, t) as ui, the down type quarks (d, s, b) as di and the charged leptons (e, µ, τ) as li

we write the most general Yukawa terms as

−
∑
ij

(ūi, d̄i)

ydij
φ+

φ0

 djR + yuij

 φ0∗

−φ−

ujR

+ (ν̄i, l̄i)y
l
ij

φ+

φ0

 ljR

 , (40)

21



where H = (φ+, φ0)/
√

2, H∗ = (φ0∗,−φ−)/
√

2. Now spontaneous symmetry breaking

(SSB) occurs when the SM gauge group is broken to the subgroup SU(3)C × U(1)em at low

energies. The driving force for this is the scalar Higgs field that has a non-zero minimum v0 in

its potential, and by re-parameterizing the scalar field with small perturbations around v0

φ = v0 + h, (41)

we get terms that look like yv0ψ̄LψR + yψ̄LhψR. The first term is recognized as a effective mass

term with masses yv0 and the second gives an interaction of the fermions with the Higgs field.

By choosing the VEV to be in the real φ0 component, and using the unitary gauge given by

H =
1√
2

0

φ

 =
1√
2

 0

v0 + h(x)

 , (42)

to explicitly show how the Goldstone bosons get absorbed by the gauge bosons. By looking at

the covariant derivative of the Higgs field

|DµH|2 = |
(
∂µ − ig2A

a
µt
a − ig1YφBµ

)
H|2, (43)

which after inserting the Pauli matrices gives three massive gauge bosons given by

W±
µ =

1√
2

(A1
µ ∓ A2

µ),

Z0
µ =

1√
g2

1 + g2
2

(g2A
3
µ − g1Bµ),

(44)

with masses g2v0/2 and
√
g2

1 + g2
2v0/2, respectively. The last gauge boson, the photon γµ,

becomes massless and is given by

γµ =
1√

g2
2 + g2

1

(g1A
3
µ + g2Bµ). (45)

At energies lower than the masses of the Z and W± bosons, only the massless γµ remain active,

corresponding to the unbroken U(1)B symmetry. We now have the typical mass terms e.g. for

the electron as v0y
l l̄LlR where we can identify the mass with

mi =
1√
2
v0yi. (46)
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Notice that the neutrinos do not have a mass in the SM, and is thus conflicting with observations

of neutrino oscillations.8 We see that from the theory side the fundamental parameter of the

SM masses are not the masses, but the Yukawa couplings and the VEV. Note the general

mechanism that a large symmetry group breaks into a smaller one via scalars that obtain

VEVs. When the breaking of SU(2)L × U(1)Y to U(1)B occurs, we get a relation between the

diagonal generators of the gauge groups, in the form of the Gellman-Nishijima relation

Q = I3 + Y, (47)

where Y is the hypercharge, I3 is the third component of the SU(2)L isospin and Q is the

familiar, everyday, electric charge. The isospin for a SU(2) doublet comes in pairs of ±1/2,

leading to electric charges that are related by a factor 1/3. One could entertain the idea

that there might be something similar going on creating the mysterious pattern in the SM

hypercharges.

2.4 Renormalization

Now for something completely different, but a important concept nevertheless for understanding

quantum field theories. It will also serve as a highly motivating factor for extending the SM

and give us the primary equations for investigating its behavior at extremely high energies.9

Calculations in QFT are between specific in-states and out-states, and what happens in the

middle are the interactions that interest us. In the path-integral formalism we exponentiate

the action

A =

∫
Dφei

∫
d4xL(φ,∂µφ) =

∫
DφeiS, (48)

and create observables that are known as n-point functions. An example for a scalar field theory

with multiple scalars is showed below

〈Ω|TΠiφi(xi) |Ω〉 =

∫
DφeiSΠiφi(xi)∫
DφeiS

, (49)

and corresponds to the probability amplitude for the process of finding the fields in the con-

figuration given by Πiφi(xi). Upon expanding the eiS in powers of the coupling constants we

get the analytic amplitude, but we will in reality have to settle with only a couple of terms as

the calculations quickly become tedious and the number of terms increases rapidly. Mnemonic

8The problem of neutrino masses is not solved in the SM, but there are several ways of solving it, e.g. by
adding a sterile (singlet representations (1, 1)0) right-handed neutrino would allow Yukawa couplings of the
correct type yν ν̄RHLL.

9What you should get out of this chapter is that coupling constants is a bad name, and coupling coefficients
are more appropriate as they change as a function of the energy scale.
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e−

γ

e−

Figure 1: Tree-level contribution to the process e−γ → e−, SM electron absorbing a photon.

Feynman diagrams are used to visualize the interactions, and by doing some calculation one

can get the Feynman rules which tell us what interaction terms the diagrams represent. If

we look at the SM process e−γ → e− depicted in Figure (1), the Feynman rules tell us that

this diagram in momentum space gives the finite amplitude

−ieγµ. (50)

These leading order contributions to the amplitude without loops are known as tree-level

diagrams, while higher order diagrams are called loop-diagrams.

2.4.1 Loop diagrams

To calculate the same process to a higher precision, we include terms that are at 1-loop known

as leading order (LO) corrections. Now we have the diagram in Figure (2), which has a

significantly uglier equation to solve. The main cause for this is the loop which requires us to

integrate over all possible momenta p ∈ (−∞,+∞). In the end it boils down to a logarithmically

divergent term

≈ −ieγµα log Λ2, (51)

where Λ is a regularization cutoff and α is the QED coupling constant.

e−

γ

e−

Figure 2: Divergent 1-loop electron-photon QED interaction.
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Renormalization is needed to fix these problems, which essentially forces us to reinterpret

the coefficient in the Lagrangian as effective parameters at a given scale µ, and that they are

necessarily not what we observe. In the most common framework renormalized perturba-

tion theory, new counterterms are needed for each divergent diagram, and we make these

absorb the infinite parts of the integrals. For each of these counterterms a arbitrary set of

renormalization conditions are applied at a scale M so as to connect with measurement.

We will use the modified minimal subtraction (MS) scheme where we require that the

counterterms should absorb the divergent part of the integral at a scale M (and the term

containing the Euler–Mascheroni constant). The theory is then defined by the fact that the

n-point correlation function 〈Ω|Tφ(x1)...φ(xn) |Ω〉 ≡ G(n) is still the same, as this is what we

measure experimentally. As it is a function of the fields and all the coupling constants, after

a infinitesimal shift in the renormalization scale M the correlation function should stay the

same. This forces us to infinitesimally shift the values of the field strengths and the coupling

constants in the following way

M 7→M + δM,

λ 7→ λ+ δλ,

φ 7→ φ+ δηφ.

(52)

For G(n) to stay invariant under this shift, we get an equation of the form

dG(n) =
∂G(n)

∂M
δM +

∂G(n)

∂λ
δλ = nδnG(n), (53)

leading to the Callan-Symanzik equation

[
M

∂

∂M
+ β

∂

∂λ
+ nγ

]
G(n)(x1, ..., xn;M,λ) = 0, (54)

where β ≡ Mδλ/δM =
dg

d log(µ/M)
is the beta function that describes the evolution,10 of

the coupling constant λ and γ ≡ −Mδη/δM is the anomalous dimension and describes the

rescaling of the field φ. Now it is relatively easy work to find how the coefficient change as a

function of scale by looking at explicit examples of the n-point functions. As an example, the

QED beta function at 1-loop is

β(e) =
e3

12π2
. (55)

10Other names are running or RG-flow for the flow generated by a change in energy scale in coupling-
constant space.
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Similar expression can be found for all of the coefficients in front of terms in a Lagrangian, and

are important tools for evaluating how the theory looks at other energy scales. Note that the

example of e at 1-loop is an exception as it only dependent upon itself. Going to higher loop

orders one often finds that the beta functions of all the parameters in the theory are strongly

coupled, which means that analytic solutions are off the table. An important consequence

of renormalization, is that in all the final physical observables any reference to the cutoff Λ

disappears. This is a property which is known as separation of scales as the scales at Λ are

integrated out in the evolution of the constants.

2.5 SM gauge coupling evolution

Calculating the evolution of the SM gauge couplings is a worthwhile task as experimental

detectors work at various scales, but it is also interesting to extrapolate the couplings to high

energies.11 We will use the following equations in numerical integration later on, so we will start

showing more intermediate calculations from this point on. The general 1-loop beta function

for a gauge coupling g is given by

β(g) =
dg

d log(µ/M)
= −b g3

(4π)2
, (56)

where b is a coefficient determined by the particle content of the theory and some group theory.

Then we need the general form of b for a non-abelian SU(N) gauge theory with scalars, fermions

and gauge bosons which was found in 1973 by 2 groups independently [6, 7].

b(g) =
11

3
C2(G)−

∑
fermions

4

3

C2(r)d(r)

d(G)
−
∑
scalars

1

6

C2(r)d(r)

d(G)

=
11

3
C2(G)−

∑
fermions

4

3
C(r)−

∑
scalars

1

6
C(r),

(57)

where C2(G) is the quadratic Casimir invariant of the group, C(r) is the Dynkin index, d(r)

is the dimension of the representation, the factor 4/3 is used for Dirac fermions, while 2/3

is the one used for Weyl and Majorana fermions. For the scalars the factor 1/6 is for real

representations, and 1/3 is for complex representations.

We also note that the sums only include particles that are smaller than the scale µ, i.e. at

the SM scale we do not include the top-quark which has a pole-mass of 172.9+2.5
−2.6 GeV [8]. This

low energy theory is a Effective Field Theory (EFT) where the top-quark is integrated out. It

should still describe the same physics, and as new fields are available we match the EFT to

11It is important to keep in mind that this is extreme extrapolation by many orders of magnitude outside the
measurements.
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a new EFT where the new fields are included. To do this the running constants are patched

together, and a set of threshold corrections are applied to account for the missing information

that the low energy EFT has lost from integrating out the new fields. The 1-loop threshold

corrections are of the form in the MS scheme [9],

g−2
full = g−2

eft −
f

8π2
, (58)

where f is a function similar to (57) which contains group theory and field content parameters.

It is however quite common to only keep (N−1)-loop threshold corrections when doing N -loop

calculations. For this calculation it means that we can neglect them as we keep ourselves to

1-loop. As mentioned in Section (2.1.4) we will use the charge or hypercharge squared for C2(r),

which allows us to use Equation (57) for the abelian U(1) group as well. We start by finding

the analytic solution to (56) by first defining t ≡ log(p/M)

dg

dt
= −b g3

(4π)2
,

dg

g3
= − b

(4π)2
dt.

(59)

Integrating both sides, assuming that b is constant, with the boundary conditions g0 = g(t0)

and g = g(t) we get

− b

16π2
[t− t0] =

1

2

[
1

g2
− 1

g2
0

]
g(t) =

g0√
g2

0

b

8π2
(t− t0) + 1

,
(60)

where only b is unknown (assuming that we know g0(t0) from measurement). To explicitly show

that the result does not depend upon the arbitrary scale M , we can put back the definition of

t and see that

t− t0 = log(µ/M)− log(µ0/M) = log(µ/µ0). (61)

Since the SM is broken we will need to match the coupling constants gSU(2) and gU(1)Y at mz

to e. This is done via the equations that show the mixing that occurs during the spontaneous

symmetry breaking

e = g sin θW = g′ cos θW , where cos θW ≡
mW

mZ

. (62)

For the SM we will start at the scale of the Z-boson mass 91.1876(21) GeV [10], and run the
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Table 2: Initial values of the SM gauge couplings used at the mZ scale [10, 11].

α−1
QED sin θ2

W α−1
s

127.916± 0.015 0.23120± 0.00015 0.1185± 0.0006

values up to mt = 172.9 GeV. Then we include the top quark and run up to MGUT ≈ 1016 GeV

scale. In Table (2) the initial values after the symmetry breaking at mz is shown.

Then we have to calculate b(g) for the theory between mZ and mt. When calculating these

values we also have to multiply by the multiplicity of the fields in orthogonal groups, e.g. in

SU(2) we need to multiply by the number of SU(3) fields, and note that all the fields are

complex Weyl fermions (except the complex Higgs boson). Starting with SU(3)C we have from

Equation (57)

b3 =
11

3
3− (ng)(4Weyl quarks)

2

3

1

2
− 0

= 11− nf
2

3
,

(63)

where the number of generations is given by ng = nf/2 and nf is the number of flavors. This

is done for later convenience as we can simply switch nf from 5 to 6 when we pass the mt pole

mass. For SU(2)L we have

b2 =
11

3
2− (ng)[3Weyl quarks + 1Weyl lepton]

2

3

1

2
− 1

3

1

2

=
19

3
− nf

2
− 1

6
.

(64)

At last we have U(1)Y for which C2(G) = 0 as it is an abelian group and the structure constants

are 0. Furthermore we have C(r) = Y 2 for the hypercharges giving

b1 = −2

3

[
6

(
1

6

)2

+ 3

(
2

3

)2

− 3 ∗
(

1

3

)2
]
ng,quark

+
2

3

[
2

(
1

2

)2

+ 1 ∗ 12

]
ng,leptons −

1

3
2 ∗
(

1

2

)2

= −11

18
nf − ng,leptons −

1

6
.

(65)

Now inserting the correct values for nf and ng, we show in Table (3) the beta function coefficient

in the intermediate scale (nf = 5) and the desert scale (nf = 6). We then multiply b1 by a

factor of 3/5 to correctly account for possible unification à la SU(5), which we will see later.

Is quite normal to represent the running of coupling constants both as gi, but also in the form

of α−1 = 4π2/g2 as they form straight lines with respect to the 1-loop evolution, and it is
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Table 3: b1, b2 and b3 represent the b coefficient for the groups U(1)Y , SU(2)L and SU(3)C
respectively.

intermediate scale b desert scale b

b3 23/3 7
b2 22/6 19/6
b1 -56/9 -62/9

historically used for the U(1)QED fine structure constant. In Figure (3) the running of α−1 is

showed by using the analytic expression and matching. As the coupling constants get close

to the GUT scale ≈ 1015 they nearly meet and this is one of the motivations for new physics

beyond the SM from a theoretical perspective. By this result one might be tempted to try to

check if the lines meet by including higher loop corrections, but that is not the case as we will

see later. The values at the scale of 3 · 1015 GeV is given in Table (4).

In the calculation of the bi of the gauge groups we saw that each field contributed to the

running based on their representations. Now one could imagine that an extra field might just

be in the correct representation to make this unification perfect. There might also be other

normalization factors other that the 3/5 that we used above in the case of SU(5), which we

will come back to later.

Figure 3: The 1-loop running of the SM gauge couplings calculated with Equation (60). The
SU(5) normalization for α1 is used.
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Table 4: The gauge couplings at the Z scale, top mass scale and at the typical GUT scale 3 ·1015

GeV.

mz mt 3 · 1015 GeV

g3 1.22 1.18 0.54
g2 0.65 0.65 0.52
g1 0.46 0.46 0.57
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3 Motivation for extended SM

Now that we have seen the basic tools that are used to construct the SM we will focus on some

troublesome experimental and theoretical issues that are the motivation for this work.

3.1 Issues of interest

As seen above, the rather ad hoc choice of gauge groups, number of fields, representations and

especially hypercharges in the SM might be unsatisfactory to some. Why is there only a single

scalar while there are 5 fermion fields each with 3 generations? The SM also consists of a

high number of free parameters, 19 or 26 if one respectively excludes or includes the neutrino

mixing matrix and masses. Does the running of the coupling constants we saw in Figure (3)

hint at a unification at a higher scale, with a spontaneous symmetry breaking as in the case

of the electroweak symmetry? While these are rather theoretical questions, other experimental

problems haunt the SM.

The observation of ”missing” or dark matter in galaxies as inferred by galactic rotation

curves [12] and the CMB power spectrum, leads to estimates of the missing mass by a whopping

80% of the total mass content of the universe. This suggest that Table (1) is missing something,

possibly heavy fields that are we are not able to experimentally excite. The observation of

neutrino oscillations could also possibly require new fields to generate the corresponding mass,

even if they are Majorana fermions and are their own antiparticles. As an example, a new scalar

triplet ∆ that acquires a VEV ν∆ could generate the correct gauge invariant mass term [13]

Lν ∼ λν̄L∆νL ∼ λv∆ν̄LνL, (66)

in what is known as the type II seesaw mechanism. To do this, we have to extend the SM by

introducing new degrees of freedom in the form of new scalar fields. There exists many theories

that attempt to solve this problem with scalar extension e.g. Two Higgs Doublet Models [14],

Zee models [15], Higgs triplet [16] etc. There are many other Beyond the SM (BSM) theories

that add new fields to solve other problems, and it is a common procedure in model building.

We will quickly look at one of the historically main contenders to solve some of the theoretical

headaches.
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3.2 Grand Unified Theories

Grand Unified Theories are attempts to unify the symmetry groups of the SM into a single

larger symmetry group [17], which is theoretically cleaner/simpler and solves a few problems:

• Why do the hypercharges of the SM fermion fields have their current values? The quarks

and leptons have fractional values of the same underlying unit, which leads to the can-

cellation of the electron and proton charge.

• Why does the Weinberg mixing angle θW take the arbitrary value sin2(θW ) = 0.2223(21)

[10]

• Is there any mechanism generating the spectrum of fermion masses in the SM? They

currently range from 0.5 MeV for the electron up to 172.9 GeV for the Top quark, which

has a Yukawa coupling constant of ≈ 1.

• As portrayed above in Figure (3), the running coupling constants seem to almost meet

at energies around the scale 1015 GeV is the SM, which might suggest that there is some

underlying relation of the groups and their coupling constants.

Already in 1974, an extension of the SM into the rank 4 simple Lie Group SU(5) was

undertaken by Georgi and Glashow [18], and has become known as the Georgi-Glashow model.

This is the smallest Lie group that can contain a generation of fermions, without including

new fields, and is thus a minimal GUT. All the gauge coupling constants are unified into the

SU(5) coupling constant, and also θW is a prediction (which however does miss the observed

value slightly). For each generation of the SM, all the fermions can be fitted into the reducible

representation

5̄⊕ 10, (67)

where 5̄ 3 dc, L and 10 3 Q, uc, ec (dc is the charge conjugate down quark triplet). As it is a

Yang-Mills theory, the gauge bosons reside in the adjoint representation, which has 52− 1 = 24

generators. We can recognize the SM gauge group generators among them which are under the

normalization requirement Tr[T aT b] = δab/2 as mentioned earlier. This gives specially for the

diagonal generator

T 12 =
1

2
√

15



−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 3 0

0 0 0 0 3


, (68)
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which we will relate to the hypercharge. The SU(3) generators are embedded in the 3 × 3

upper-left hand block of the SU(5) generators, while the SU(2) are in the 2 × 2 lower-right

hand block. The electric charge is a diagonal operator which is a linear combination of these.

Since all the generators are traceless, we get a requirement on the spinor fields in the 5

3qdc + qν + qec = 0 → qdc = −1

3
qec = −1

3
e, (69)

which is just the explanation of the hypercharges we sought. We can now also see why the

factor
√

5/3 enters as we can compare the generator of the electric charge

Q = diag

(
−1

3
,−1

3
,−1

3
, 1, 0

)
, (70)

with T 12 giving

Q =

√
5

3
T 12 + T 11, (71)

where T 11 is the diagonal generator for the neutral SU(2)L component. Here we see that based

on the unification gauge group, we get some numerical factors like
√

5/3 for the SU(5), and

we get a explanation for the hypercharges.

To break the SU(5) gauge symmetry down to the SM gauge group, a extended scalar field

is needed in the adjoint representation, which takes an expectation value in the hypercharge

direction. There are however several problems with this theory that currently rules it out. The

24 gauge bosons, of which 12 are the SM gluons, W±, Z0 and γ, have 12 extra ones which have

dangerous consequences. These are called leptoquarks as they have both isospin, color and

hypercharge leading to a violation of baryon and lepton number, B and L, respectively. This

leads to couplings in the Lagrangian which allow proton decay. By a simple estimate from such

a proton decay process assuming the mass of the leptoquarks lies at the MGUT scale, leads to a

prediction of the proton lifetime at ≈ 1031 years. This is ruled out as the current experimental

lower bound of the proton lifetime at 1.67 · 1034 years [19]. As mentioned earlier there is also

the problem with θW which does not come out correct.

There is a zoo of possible gauge groups, and a huge possibility of adding new fields to

various representations providing a huge theoretical model building freedom. The Lie group

SO(10) [17] is another interesting possibility as it allows a combination of all the SM fermions

plus a νR into a 16. Here one needs to include further scalars to break the SO(10) to one

of the many subgroups, some have intermediate groups on their way to GSM as SU(5). A

typical breaking pattern is SO(10) → SU(5) ⊗ U(1) → GSM where we now have two scales

at which symmetry breaking occurs. To generate the masses of the fermions a scalar in the
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representation 10S gives the Yukawa coupling

y10S16f16f , (72)

where y is a 3×3 matrix in generation space. Note that the Yukawa coupling of all the fermions

in a generation is the same, predicting unification of the SM Yukawas within a generation.

GUTs are not the only theories that predict that there should be some sort of Yukawa or gauge

unification. Whenever there is a gauge group that have a simple group which the SM gauge

groups unify into we expect unification of the coupling constants.

3.3 Other motivating theories

Supersymmetry [20] (SUSY) is a well known candidate for extending the SM, and predicts a

superpartner for all each of the SM fields. It is easy to achieve gauge unification in simplified

models as the MSSM [21], and Yukawa unification has been studied to a great extent [22] in this

framework. One can also combine SUSY with GUT theories, known as SUSY-GUTs, which is a

highly active area of research. One of the main problems is, however, that as the intermediate

SUSY scale is being probed by Large Hadron Collider, no sign of any new supersymmetric

particles has been found. Further up the energy scale there is string theory, which in some

cases predict unification at a higher scale. The gauge groups and fields are here an emergent

phenomena of the string vacua, and some of these groups might contain the SM.

3.4 This work

By looking at these theories, we see that the motivation for gauge and Yukawa unification is

there, but there is no single satisfactory solution to all of the problems yet. The way that these

extended gauge groups are broken is often through extra scalars via the spontaneous symmetry

breaking mechanism that we have already described lightly for the Higgs, and briefly touched

upon for SU(5)/SO(10). This require extra scalars at the various stages that the symmetries are

broken. Typically, a high scale gauge group is chosen together with various fields and couplings,

which are then tested against the SM after integrating the RGEs, e.g in [23]. Another common

approach is to add a few fields/extended gauge symmetry and either start at the GUT scale

by postulating unification and evaluating the model at the electroweak scale, or starting at the

electroweak scale and evaluating it at the GUT scale.

What we will do here instead is to start with the SM and assume no specific gauge group

at high scale, except a SU(5) normalization of the hypercharge. As the space of possible extra

fields is gigantic, we will only including some rather minimal scalar extensions. The ones that
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we will investigate are a triplet of SU(3), a anti-triplet of SU(3) and a doublet of SU(2),

which we will denote in the following chapters as s3, s3 and s2. See Table (5) for full GSM

representations. These extra scalars are added at up to two scales between 103 GeV and 1015

GeV in 3 different representations. The coupling constants and Yukawas of the third generation

are then run from 103 GeV up to the GUT scale 1015 GeV to look for optimal scenarios for

gauge and Yukawa unification. This is done at the 1-loop level and only the gauge couplings

and the third generation Yukawas are evaluated for two reasons; the other parameters do not

enter the RGEs at 1-loop and these 6 parameters are direct hints for unification if they meet.

We will ignore the exact Lagrangian parameters in the models besides the SM ones, as is

not relevant for the analysis at 1-loop. New renormalizable couplings are: ρiφ
2
iH
†H between

the complex Higgs doublet H and all the new scalars φi, and quartic couplings between the

scalars ρijφ
2
iφ

2
j . Based on the coupling constants these could strongly affect other parameters or

observables at higher loop order, and a further analysis including these would be enlightening.

Table 5: Representations under SM gauge groups of the scalar extensions that we investigate.

SU(3)C SU(2)L U(1)Y

s2 1 2 0
s3 3 1 0

s3 3̄ 1 0
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4 Yukawa and Gauge unification

Now that we understand the rationale for extending the SM with extra scalar fields, we will

look at how this affects the beta functions of the gauge constants and Yukawa couplings. We

will also need a way of checking how good a proposed model is so as to be able to evaluate them.

As the gauge couplings need to unify we use a SU(5) normalization of the U(1)Y coupling and

the measure

Rg =
max(g3, g2, g1)

min(g3, g2, g1)
. (73)

For the Yukawas we will use a similar measure as we expect in a unified theory that there

might be a way of including all the fermions in a generation in a single multiplet. For the third

generation we have

Ry =
max(yt, yb, yτ )

min(yt, yb, yτ )
. (74)

As we already have the expression for beta function for the gauge couplings, we only need the

beta function for the Yukawas.

4.1 Yukawa beta functions

All the parameters of the SM theory are subject to radiative corrections and renormalization.

This means that the renormalized masses will change as a function the scale, and we can

integrate the RGEs up to a high scale in a similar fashion as the gauge couplings. There are

however 3 generations which in itself is hard to explain, and the pattern of masses are quite

different across the generations. It is therefore quite common to focus only on one generation

as it is quite hard to achieve Yukawa unification at all with any of the generations. The choice

of the third generation often stems from the uncertainties in the measurements, which is better

at high energy as QCD still is perturbative.

The 1-loop beta function for the Yukawas in a Yang-Mills theory with gauge group G =

G1 ×G2...Gn is given by [24]

(4π)2βa =
1

2
[Y †2(F )Y a +Y aY 2(F )] + 2Y bY a†Y b + 2κY bTr[Y †bY a]− 3

n∑
k=1

g2
k{C2,k(F ),Y a},

(75)

where Y 2(F ) = Y †aY a, Y a = Y a
ij is the Yukawa for the spinors ψi,ψj and the real scalar field

φa, and Ck,2(F ) is the Casimir of the spinor fields under gauge group k. For the SM most of

the terms in this matrix are zero as they break gauge invariance, and the non-zero ones are

Y u,Y d and Y e which are matrices in generation space. From the Equation (75) we see that

there is no dependence on any scalar factors at 1-loop, as they would only create new Yukawa

coupling matrices as Y ′
a above or be couplings of the type ψ̄ψφ2

i which are heavily suppressed
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and therefore not considered. As we are currently limiting the investigation to 1-loop SM and

additional scalars, we need the base SM version which is given below [25]

Y −1
U

dY U

dt
=

1

16π2
β

(1)
U +O(β2

U),

Y −1
D

dY D

dt
=

1

16π2
β

(1)
D +O(β2

D),

Y −1
L

dY L

dt
=

1

16π2
β

(1)
L +O(β2

L),

(76)

where

β
(1)
U =

3

2
(Y †UY U − Y †DY D) + Y 2(S)−

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
, (77)

β
(1)
D =

3

2
(Y †DY D − Y †UY U) + Y 2(S)−

(
1

4
g2

1 +
9

4
g2

2 + 8g2
3

)
, (78)

β
(1)
L =

3

2
Y †LY L + Y 2(S)− 9

4
(g2

1 + g2
2), (79)

and

Y2(S) = Tr(Y †LY L + 3Y †UY U + 3Y †DY D). (80)

With a field content enriched with scalar fields, further Yukawa coupling matrices like the

one above would exist and based on the representation of the scalar and fermion there could be

non-zero terms. However with the scalar fields we are investigating, there are no such allowed

terms.

We will assume that the mass eigenstates and the SU(2) states are the same, giving only

diagonal couplings in the matrices. The CKM-matrix is nearly diagonal, given by [26]


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

 =


0.97427± 0.00015 0.22534± 0.00065 0.00347+0.00015

−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

 . (81)

The maximal diagonal element of the third generation is 0.0412 which is the mixing between the

charm and bottom quark, which already have a mass difference of ≈ 3. The error in assuming

that all the off-diagonal elements are zero when we are only interested in the third generation

elements are thus maximally ≈ 0.04/3 ≈ 2%. We will later see that the theoretical uncertainty

of 2-loop calculations are ≈ 2% and ≈ 20% for Gauge and Yukawas respectively, making this
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assumption acceptable. The matrices YL, YU and YD with the assumptions are then given by

Y L =


ye 0

0 yµ 0

0 0 yτ

 , Y D =


yd 0

0 ys 0

0 0 yb

 , Y U =


yu 0

0 yc 0

0 0 yt

 . (82)

This leads to the simple relation

Y2(S) =
∑
leptons

y2
lepton + 3

∑
quarks

y2
quarks. (83)

The third generation Yukawa betas are then

dyt
dt

=
yt

16π2

(
3

2

[
y2
t − y2

b

]
+ Y2(S)−

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

))
,

dyb
dt

=
yb

16π2

(
3

2

[
y2
b − y2

t

]
+ Y2(S)−

(
1

4
g2

1 +
9

4
g2

2 + 8g2
3

))
,

dyτ
dt

=
yτ

16π2

(
3

2
y2
τ + Y2(S)− 9

4
(g2

1 + g2
2)

)
.

(84)

While we could analytically integrate the gauge running at 1-loop, we would struggle to do this

here with Yukawa couplings as there are too many variables that depend on the scale t. We

then have to turn to numerical methods to get anywhere with these equations.
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5 Numerical tools

We now have a set of differential equations for each of the relevant parameters in the theory,

in the form of beta functions for the coupling constants and the third generation Yukawas. As

we are only looking at the 1-loop RGEs, only these 6 of the 19 SM parameters are needed,12

which is a huge simplification compared to higher loop orders. The set of equations we now

have are of the form
dpi

d log(µ)
= βi(µ; p1, p2, ..., pn) = fi(µ, ~p), (85)

where (p1, p2, ..., pn) is the set of all the parameters of the theory, and i ∈ {1, ...,m} is the third

generation Yukawa and gauge parameters. As already showed in the background, an analytic

solution is available for the gauge couplings. This is not the case for the Yukawas, as they form

a set of equations which are strongly coupled first order ordinary differential equations (ODE).

To get any progress we turn to numerical integration. The initial values as MS masses are

known at the electroweak scale, and only an integration upwards in energy is needed. Several

methods for numerical integration exists, from the Euler methods which is a first order method

to the often used family of Runge-Kutta (RK) methods which has multiple intermediate stages

and achieves a higher order. A stage is a evaluation of fi(µ, ~p) at a set of (µ, ~p).

5.0.1 Runge-Kutta 4

For the RK methods the number of stages is equal to the order up to order 4. After this the

number of stages increases more than a linear function of the order [27], and the fourth order

is usually chosen to achieve a balance between low error and computational intensity. It uses a

weighted set of 4 vectorized evaluations in the following intermediate stages

~k1 = f (µ, ~p(µ)) ,

~k2 = f

(
µ+

δµ

2
, ~p(µ) +

δµ

2
~k1

)
,

~k3 = f

(
µ+

δµ

2
, ~p(µ) +

δµ

2
~k2

)
,

~k4 = f
(
µ+ δµ, ~p(µ) + δµ~k3

)
,

(86)

and at the end we calculate the change to the next ~p as

~p(µ+ δµ) = ~p(µ) +
δµ

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
. (87)

12This means that in the determination of Y2(S) there will be a small error as the first and second generation
Yukawas do not run. The largest contribution is 3y2t ≈ 3, while the largest one we neglect as not changing is
3y2c ≈ 0.0002, so the error is not that large.
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By using this set of equations is can be shown that the total accumulated error of O(δµ4) which

is a huge improvement over the much simpler Euler method O(δµ), but notice that we need 4

evaluations of the function f . The following sections describe how this was done numerically

and compared/sanity checked against FlexibleSUSY.

5.1 FlexibleSUSY

FlexibleSUSY version 2.0.0 was released on October 2017 [28,29], and was used as a benchmark

for the SM running and a special scalar extension of the SM. It is a spectrum generator for

both SUSY and non-SUSY theories with general gauge groups and fields at up to 3-loop and

4-loop in special cases (e.g. the SM Higgs). It builds upon SARAH [30] which takes in a theory

where the gauge group, fields and Lagrangian are defined and calculates the beta functions,

tadpole equations, self-energy and more. FlexibleSUSY then compiles it into C++ code with

a modified RK4 integrator which then works as a spectrum generator. When it generates a

spectrum it runs the SM at a mix of 2 and 3-loop order up to a scale where it matches to the

model requested by the user. It then continues on at either 1 or 2-loop as requested by the

user, and the pole masses, MS masses and Yukawas are given at a desired scale.

The initial conditions at the electroweak scale are not straightforward to get, e.g. the

Yukawas are usually measured at the pole masses of the fields and then translated to MS at

that scale. To get a set of initial values at a single scale ready for integrating towards the GUT

scale, one would have to start with some rough guesses of the parameters at a scale. Then one

would loop through the scales of the pole masses where e.g. the running top Yukawa would

be set equal to the experimental yMS,top(mtop). The loop would go on until the values have

converged, and the initial values would then be ready for integration. However this would not

lend itself to a good comparison with FlexibleSUSY as they use a higher loop order before

matching to the extended theory. To make any accurate comparison with it, I did not calculate

these initial values myself, but made FlexibleSUSY output the following SM parameters at the

scale 103 GeV

~p(103GeV ) = (g1, g2, g3, yt, yb, yτ ) = (0.4641, 0.6476, 1.0457, 0.9956, 0.01378, 0.01021). (88)

5.2 1-loop tool

The numerical tool that was written to do the numerical integration is done in python initially

and the slow parts are sped up with Cython [31]. Cython is a superset of the python language

which allows static annotation of variables and functions, and then generates C code which is

compiled. This mix allows for quick prototyping and development time, and during optimization
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to speed up the hot loops which gave a factor 20 improvement in speedup this work. The general

structure is to start with a struct of a model

cde f struct TheoryC :

FieldC [ 1 2 ] f i e l d s

int n f i e l d s

where FieldC is roughly

cde f struct FieldC :

f loat sp in

f loat rep su3

f loat rep su2

f loat rep u1

int gene ra t i on s

double p o l e m a s s s c a l e

f loat s u3 ca s im i r

f loat s u2 ca s im i r

f loat u1 cas im i r

f loat su3 dynkin

f loat su2 dynkin

f loat u1 dynkin

Then the SM field content in Table (1) is added and the values of the Casimir and Dynkin

are either calculated or looked up from a table. E.g., for the quark doublet a FieldC with 3

generations at the top pole mass is added, which only allows for accurate calculation above this

scale. As the initial values are given at 103 GeV this is no issue. For each scalar extension, a

set of extra fields was added with the correct representations. As they are added in up to 2

scales for each of the three scalars s3, s3, s2, the number of each type is simply the number of

generations which is nothing but a multiplicative factor. The scalar fields are assumed to be

real.

To determine the contribution to the gauge coupling beta functions, all the fields in the

TheoryC are looped over and their contribution to the bi are added. The contribution is added

if the evaluation scale of bi is above or below the FieldC pole mass. This method would only

work at 1-loop, and is therefore not very well suited for more precise work. It does however

allow a quick evaluation of the contribution to the unification measures Ry and Rg for a given

theory which was the target of this work. Compared to FlexibleSUSY which is a hugely more
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accurate, versatile and flexible framework for doing these calculations, it offers a factor ≈ 60 000

speedup at 1-loop for the SM.13

The final evaluation speed of running the SM up to the mGUT scale were ≈ 5 ms on a

i5-7200U @ 2.50GHz with 1 physical core and is embarrassingly parallel (I used 2 cores for a

perfect speedup factor of 2). As the space of possible combinations of scalars at various scales

is so large, the storage of the results became the main limitation.14

5.2.1 Uncertainty

To control the integration error, a comparison of the unification measures of the SM as a

function of the integration steps was done.

errg(n) =
Rg(n)−Rg(n = 103)

Rg(n = 103)
,

erry(n) =
Ry(n)−Ry(n = 103)

Ry(n = 103)
.

(89)

In Figure (4) the equations (89) are plotted as a function of the integration steps with a 1-loop

SM RG-flow evaluated at 1016 GeV. Here we see that the integration error is negligible even

at small n ≈ 100. In the work below n = 300 integration steps are used, which is overkill

compared to other sources of uncertainty, and reducing this number to 100 would be sufficient

and at the same time give a huge speedup in runtime.

(a) Rg (b) Ry

Figure 4: Absolute error of Rg and Ry for the 1-loop SM as a function of the integration points
n compared to n = 103 integration points.

13Here I have included the building and compiling of the RGE equations that FlexibleSUSY does which is
the primary time-taker for a grid search. A single evaluation with a precompiled C++ model in FlexibleSUSY
takes on the order of 1 second.

14I did not include any persistent database for this, so a limitation of 8 GB RAM was hit quite early as
python used 6 times more memory than the underlying float or double, and kept everything in memory.
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Other sources of uncertainty are the theoretical uncertainty of 1-loop approximations that is

done here, and initial values. The initial values are known relatively accurate, with the highest

uncertainty in the MS top mass 175.3 ± 5.1 GeV [32] at the mW scale which corresponds to a

3% uncertainty. We will see that the theory error of 1-loop approximation are the main source

of uncertainty, so we can quickly forget the uncertainty of the initial values. To put a number on

the 1-loop approximation, a comparison of the third generation Yukawa- and gauge couplings

are seen in Table (6) and visually in Figure (5) . These are calculated with FlexibleSUSY,

which runs a mixed 2/3-loop model up to 103 GeV and then pure 1 or 2-loop up to 1016 GeV.

Looking at the values there is a clear grouping of gauge coupling and Yukawa couplings with

respect to how they run, which is reflected in the change in Rg and Ry respectively. The gauge

couplings are relatively stable from 2-loop corrections, which will greatly help when we do extra

scalars extension. The same cannot be said about Ry which has a difference of 21%, but an

improvement in the extremal Yukawas yt or yb would still be an improvement as the lines ”have

not crossed” as a result of the 2-loop corrections.

(a) (b)

Figure 5: a) The gauge coupling and b) the third Yukawa running of the SM at 1 (solid) and 2
(dotted)-loops calculated with FlexibleSUSY. The erratic behavior of errg(n) with n & 300 does
most likely stem from numerical issues.

Table 6: Comparison of SM parameters at 1- and 2-loop evaluated at 1016 GeV with the same
initial conditions at 103 GeV.

g3 g2 g1 yt yb yτ Rg Ry

1-loop 0.5294 0.5282 0.569 0.62 0.0064 0.0110 1.08 97
2-loop 0.5284 0.5243 0.577 0.45 0.0058 0.0097 1.10 77
% diff 0.2 0.7 −1.3 28 9 11 −2 21

A similar analysis is done in a model where the SM is extended to include 2 of each of the

extra scalars in Table (5) with a pole mass at 103 GeV. The relative difference is here −2%
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and 20% for Rg and Ry respectively, and there is still the same uncertainty as seen in Figure

(6). As the models we will use extension are an of this type, some with more extreme numbers

of scalars, it is comforting to see that the uncertainty is relatively stable as a function of their

number.

(a) (b)

Figure 6: a) The gauge coupling and b) the third Yukawa running of a BSM model with 2 of
each scalar in Table (5) with a pole mass of 103 GeV. Lines are 1 (solid) and 2 (dotted)-loops
calculated with FlexibleSUSY.

5.3 Replicating FlexibleSUSY at 1-loop

Before we start investigating models with an extended field content, we want to make sure that

we can trust that the 1-loop integration done here is reasonable and comparable to Flexible-

SUSY.

5.3.1 Matching the SM

Here the SM gauge and 3rd generation Yukawa couplings are integrated from 103 GeV to up to

1016 GeV in both tools. The running as seen for the gauge couplings in Figure (7) shows that

the results are comparable to a high degree, which is verified by looking at the final values in

Table (7). The maximal absolute deviation between any of the values is 0.004%.

Table 7: Comparison of SM parameters after integrating the SM RGE with both FlexibleSUSY
and my own calculations from 103 GeV with the same initial conditions up to 1016 GeV. n=300
integration point in RK4.

g3 g2 g1 yt yb yτ

FS 0.5294 0.5282 0.5690 0.6202 0.00637 0.01096
Here 0.5293 0.5282 0.5690 0.6202 0.00637 0.01096
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(a) (b)

Figure 7: RG-flow of a) gauge couplings, b) Yukawa couplings, with both the SM (solid) and a
extended model (stripes), with FlexibleSUSY (stars) and my own calculation (lines). Flexible-
SUSY’s RG-flow overlap with with my own calculations at both the SM and the scalar extension
of choice.

1

5.3.2 Scalar extension

As we are going to check extensions of the SM, it is important that the additional contributions

from extra scalars to the beta functions are correct. As there are 3 types of scalars that we

are going to do a grid search over later, we will use a model where we place 2 of each scalar

in Table (5) with pole masses of 103 GeV. This should give a change in the running in both

tools, and allows us to see how the uncertainty evolves in the vector space of possible scalar

extensions. In Table (8) we see that at the scale of 1016 GeV we have reasonably similar values

with a maximal difference of 0.004% = 40ppm. This running is also showed in Figure (7) where

the dots perfectly overlap with the lines, confirming the last values across the energy interval

(103 GeV, 1016 GeV) .

Table 8: Comparison of SM extension after running both FlexibleSUSY and my own tool from
103 GeV with the same initial conditions up to 1016 GeV. N=300 integration points in RK4.

g3 g2 g1 yt yb yτ

FS 0.5492 0.5377 0.5690 0.5857 0.006094 0.01079
OWN 0.5492 0.5377 0.5690 0.5857 0.006095 0.01079

By comparing the values in the Table (8) to (7) one sees a clear difference between the values.

The g1 stayed constant, which is expected as none of the scalars had a non-zero hypercharge,

while both g2 and g3 increased in values. As a consequence of these changes, the Yukawas are

47



shifted towards lower values as their RGEs are dependent on the gauge couplings.

The general picture we now have is that the fit to FlexibleSUSY is achieved for the SM and

with 3 specific scalar extensions at 1-loop. While we have only added 6 scalars, we see that the

uncertainty stays approximately the same, which are dominated by the 1-loop approximation.

We will use this as a basis to add even more scalars, up to 72 in total. It is hard to quantify the

uncertainty at this high number of scalars as the way I added scalars in FlexibleSUSY made

the time to calculate the various functions grow polynomially/exponentially as a function of

the number of fields in the theory. We will also see that models with a high number of scalars

start to move away from the asymptotic freedom of SU(2)L and SU(3)C as their bi change sign.
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6 Results and discussion

6.1 Individual scalar type effects

We will look at some selected searches for improvements in Ry and Rg with the real scalars s3,

s3 and s2 from Table (5). The variables we will use for visualization are

• Z3: number of scalars at the first scale

• Z3: number of scalars at the second scale

• R2: two scales for the scalar pole masses

• R2: third gen Yukawas condensed to Ry, and gauge couplings condensed to Rg

• R: energy scale at which we look at the values of Rg and Ry

In the first part we will look at each of these extension individually to see how they might affect

the running, since we saw from the test results that we got an improvement by including all of

them. This data stems from a search where all possible combinations of 0 to 20 of each scalar

type at one varying pole mass scale, which run from 103 GeV to 1015 GeV.

6.1.1 Scalar doublet s2 (1, 2)0

For each model including only scalars of type s2, Ry and Rg is plotted in Figure (8) at the scale

1015 GeV.

(a) Ry (b) Rg

Figure 8: The unification measures Rg and Ry as a function of the number of s2 scalars and
their pole mass. The Ry has a slight preference for a high number of scalars at a low pole mass,
while there is a valley of points that are acceptable for Rg.

50



Here we see that as we increase the number of scalars at a low scale, we get a minuscule

improvement in Ry from 96 to 95.5. The preference for low scales comes from the fact that

it then has a longer scale-interval where it can change the integration. The rate of change is,

however, rather low at this point, and for any noticeable change to take place the new scalars

need to be at a very low scale. For Rg the picture is more interesting, as there seems to be a

valley of points that are viable at this scale which gives good unification within the uncertainty

Rg ≈ 1.00±0.02. Adding too many scalars at a low scale makes the unification worse compared

to the SM, which in the plot is the vertical line with ns2 = 0.

6.1.2 Scalar triplets s3 (3, 1)0 and s3 (3, 1)0

A identical search as the one for s2 is done for s3 as well, where the results are displayed in

Figure (9). The contributions from s3 and s3 were the same, so no separate analysis for both

is done. A similar effect on Ry is found, where a high number of scalars at a low scale is

preferable. Rg gets worse by adding a high number of low pole mass scalars, but is not affected

to any noticeable extent by high pole mass scalars. We do not get any improvement from the

SM here as we got for s2.

(a) Ry
(b) Rg

Figure 9: The unification measures Rg and Ry as a function of the number of s3 scalars and
their pole mass. The optimal choice for Ry is to have at least 6 scalars at as low scale as
possible, while Rg is closest to 1 with few scalars at a high pole mass, essentially the SM.

6.2 Models with all scalar types

6.2.1 One scale search

We will then look at some searches where we include both type of scalars at the same scale.

We know that by including SU(2) doublets, we get gauge unification, so we will study what
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combinations of s2 and s3 scalars get Rg < 1.02 at the GUT scale. In Figure (10) a) we see

that it is beneficial for Rg to include both types of scalars. As we include more s2 fields, the

space of allowed s3 scalars increase, which is good for Ry which is at this stage far from O(1).

Figure (10) also includes in red the models that have Ry ≤ min(Ry) + 1 = 93.9 which generally

reside in areas with a high number of s3 scalars. The best model at the scale 1.11 · 1015 GeV,

with respect to Ry, is a model with 12 s3 scalars and 6 s2 scalars at a pole mass of 103 GeV.

In Figure (10) b) Ry as a function of the energy scale is plotted for this model, where we see

that it is far from being any form of unification at all. The separation into two regimes comes

from the crossing of the yτ with yb at ≈ 105−6 GeV.

(a) (b)

Figure 10: a) All models with blue: Rg < 1.02, red: Ry ≤ min(Ry) + 1 = 93.9. Both as a
function of s2 scalars and s3 + s3 scalars at a scale of 1.23 · 1015 GeV and where the scalar
pole masses lie between (103, 1015) GeV. b) Ry running of optimal Ry(1.11 · 1015 GeV) model.

6.2.2 Two scale search

In the motivational part about GUTs, it was mentioned briefly that the symmetry group of

the theory might break at multiple scales on the way down to the SM. Assuming that for each

symmetry breaking scale the scalars which break the symmetry have a pole mass at that scale,

we add scalars at multiple scales. Even though evaluating a model takes ≈ 5 ms, the model

space becomes gigantic when multiple scales are included. As an example, a search with the 3

scalar types up to 10 generations each spread out over 2 different scales, gives roughly 2.6 ∗ 107

models, which again corresponds to around 70 CPU hours. This search is done on a coarse

grid where only 0, 4, 8 or 12 of each scalar type are included. In Figure (11) we see again the

distribution of the best models in the space of the number of scalars. Again, a similar pattern

as Figure (10) emerge, where the preferred models for Ry is at the maximal extension of 40
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s3+s3 and 20 s2 scalars with a Ry = 85, and the gauge unification has a wider area of allowed

scalar combinations.

Figure 11: All models with blue: Rg < 1.02, red: Ry ≤ min(Ry) + 1 = 93.9. Both as a function
of s2 scalars and s3 + s3 scalars at a scale of 1.23 · 1015 GeV and where the scalar pole masses
lie between (103, 1015) GeV.

One might be tempted to continue to add more scalars, as we got a reduction in Ry of

96 → 85 with the current best model at the GUT scale, but there is a catch to this solution.

As hinted at in Section (5.2.1), we will look at when the values of b3 or b2 change sign as a

function of the active number of scalars of type s3 + s3 or s2 respectively. As soon as they

change sign, g3 and g2 will grow towards higher energies, making the 1-loop approximation

worse. The number of scalars when this sign change happens is

n′s2 = 19 n′s3+s3 = 43. (90)

The best way of seeing this is to look at the running of the best model with respect to Ry

at the GUT scale. We see in Figure (12) the gauge couplings diverge as we run the model

towards higher energies, making the gauge unification worse. It is clear that we need to take

the models with a high number of low-mass non-singlet SU(3) representations with a pinch of

extra uncertainty.

6.3 Outlook

We see that we are efficiently able to investigate some specific scalar extensions at 1-loop, and

achieve gauge unification in a broad set of models. Yukawa unification is harder to achieve as

the starting point, the SM, is far from unification, at Ry = 96, and that we are only able to get

it to Ry = 85 by including 72 new scalars. Including more scalars makes the gauge couplings
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Figure 12: Gauge running of a model with 24 of each s3, s3 and s2 scalars with pole mass of
103 GeV.

get closer to the non-perturbative limit, so this is not a promising way forwards. The most

obvious steps one could take to extend the analysis are

• New gauge groups

• 2-loop

• New scalars in other representations

• New fermions

• Flavor symmetry

or a combination of them. The 2-loop might also reveal some additional problems in this

analysis, as it would require, in general, all the parameters of the model. As mentioned earlier,

there are quartic couplings associated with scalars, which are of the form

Lφ,I ∼ λijklφiφjφkφl. (91)

If we include only 1 field type, there is still the multiplicity of the generations, nφ,g, making

λ contain n4
φ,g free parameters. For our models with 72 scalars, only the quartic interactions

alone of type φ4
s2 would contain ≈ 3 ·105 free parameters. We would likely see a difference in Rg

and Ry, if λijkl would all be O(1) or O(0.0001), and it would be enlightening to see how the set

of unifying models changes. This is quite an uneconomical model and other, more minimalistic

approaches might be preferred.
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Including new fields and NLO corrections would require new calculations of the RGEs.

Tools that do these calculations automatically are not to be underestimated, as the amount of

equation juggling that would be needed for e.g. a model with 4 extra scalars, 3 extra fermions,

all in different representations at 2 loop, is tedious at minimum. A brute force search in

model-space would be even worse.

Upon adding new fields, gauge, scalar or fermion, there will be new interactions that could

affect commonly used observables to evaluate these models, e.g. proton decay. Here one should

do a study of the effects that the new interactions have, as this could be used as an effective

way of ruling the models out.
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7 Conclusion

The SM is a hugely successful framework for explaining most of the experimental observations in

high energy physics that we have today. There are measurements that are not explainable by the

theory, and together with some theoretical conundrums, the quantization of the hypercharges

and the near gauge unification at high scale, leads to the expectation of new physics at higher

energies. Scalar extensions are well motivated from several theories, and the RG-flow towards

higher energies is investigated in search for models that allow unification of the Yukawas and

the gauge couplings.

In this work we have seen that by adding scalars in the SM representations (3, 1)0, (3, 1)0

and (1, 2)0, we are able at 1-loop to unify the gauge couplings at the GUT scale with a high

number of models. Yukawa unification is harder to achieve with these extra degrees of freedom,

as yt is much larger than yb and yτ , and there is no explicit 1-loop effect on the Yukawa RGEs.

The indirect effects give an improvement in Ry from 96→ 85 at the GUT scale, at the cost of

adding 24 of each scalar type representation to the model with a pole mass of 103 GeV.
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