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Abstract: Recent studies of QFT in cosmological spacetime indicate that the speeding up of
the present universe may not just be associated with a rigid cosmological term but with
a running one that evolves with the expansion rate Λ = Λ(H). This running is inherited
from the cosmic evolution of the vacuum energy density (VED), ρvac, which is sensitive to
quantum effects in curved spacetime that ultimately trigger that running. The VED is a
function of the Hubble rate and its time derivatives ρvac = ρvac(H, Ḣ, Ḧ, . . .). Two nearby
points of cosmic evolution during the FLRW epoch are smoothly related as δρvac ∼ O(H2).
In the very early universe, in contrast, the higher powers of the Hubble rate take over and
bring about a period of fast inflation. They originate from quantum effects on the effective
action of a vacuum, which we compute. Herein, we focus on the lowest possible power for
inflation to occur: H4. During the inflationary phase, H remains approximately constant
and very large. Subsequently, the universe enters the usual FLRW radiation epoch. This
new mechanism (‘RVM inflation’) is not based on any supplementary ‘inflaton’ field; it is
fueled by pure QFT effects on the dynamical background and is different from Starobinsky’s
inflation, in which H is never constant.

Keywords: cosmology; dark energy; inflation; cosmological constant; quantum field theory

1. Introduction

It is an undeniable fact that the standard or concordance model of cosmology, also
known as ΛCDM, has proven to be a rather successful practical framework for the de-
scription of the Universe in the last few decades [1]. However, it is no less true that a
number of serious pitfalls have besieged the ΛCDM more recently, which raise serious
doubts about its viability as a consistent theory of cosmological evolution, not even at
the mere phenomenological level. Dark matter (DM) is still on the tightrope since it has
never been found thus far, a fact that is more than worrisome, as otherwise we cannot
understand the dynamical origin of the large-scale structures that we observe. On the
other hand, the core ingredient of the model, namely the cosmological constant (CC), Λ,
proves to be an endless source of headaches for theoretical cosmologists. Despite Λ being
introduced into the gravitational field equations by Einstein 108 years ago [2], a serious
theoretical conundrum is usually associated with that term. The nature of the problem
was put forward by Y. B. Zeldovich [3,4] half a century later, and it goes by the name
of ‘cosmological constant problem’ (CCP) [5], and it has been in force since then. In a
nutshell, it says that the manyfold successes of quantum field theory (QFT) in the world of
elementary particles appear to be a blatant fiasco in the realm of gravity, the reason being
that QFT predicts a value for ρvac that is disturbingly much larger than that of the current
critical density [5–15].
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To put it in simple terms, the CCP stems from the fact that the observed value of the
CC, Λobs, should be related to that of the vacuum energy density (VED) in QFT through
ρvac = Λobs/(8πG), and this leads to an extreme fine-tuning between different contribu-
tions1. More specifically, the problem originates from the mismatch between the huge
theoretical contribution triggered by the vacuum fluctuations of the quantum fields and
the tiny observed value ρvac ∼ 10−47 GeV. Theoretically, vacuum fluctuations are expected
to be of the order ∼m4 for any quantized field of mass m and are, therefore, far greater than
the measured value of ρvac—given the large average mass of the known particles in the stan-
dard model of particle physics. As a consequence, when we put together the sum of all the
quartic mass contributions to the VED, this enforces an extremely unreasonable fine-tuning
of the parameters. Addressing this fundamental problem is one of the most important
tasks of modern theoretical cosmology [5]. Over the years, the CCP has been dealt with in
the literature from many different points of view, although sometimes without taking into
account the essential elements that must be involved. A more careful assessment of this
issue in the context of QFT in curved spacetime must involve at least two basic ingredients,
to wit, the parameter ρΛ in the Einstein–Hilbert action and the zero-point energy (ZPE)
of the quantized fields—a pure quantum effect. By combining these two elements in the
context of quantum field theory in curved spacetime, one obtains the renormalized vacuum
energy density. Furthermore, in the presence of spontaneous symmetry breaking (SSB), one
must still account for the contribution from the vacuum expectation value of the effective
potential, which involves, in general, classical and quantum parts [15]. In this paper, how-
ever, we will focus only on the ZPE contribution since it is in itself rather cumbersome to
deal with in curved spacetime and moreover is of pure quantum nature, which means that
it is a generic effect in all QFT theories, whether they involve SSB or not. Finally, an impor-
tant technical ingredient in our approach is that we renormalize the energy–momentum
tensor using the method of adiabatic regularization [17–19], but more specifically, we use
an off-shell variant of this method which has demonstrated to be particularly advantageous
to explore the cosmological evolution of the vacuum energy [15]. However, these QFT
models of the vacuum energy should not be confused with the well-known “Λ(t)-class”
of time-evolving Λ-models, often referred to as ‘Decaying Vacuum Cosmologies’, see
e.g., [20] and references therein. The large Λ(t)-class of phenomenological models has
no obvious relation with fundamental physics, but was useful in the past to illustrate the
possible effects implied by a time-evolving cosmological term. In a very different vein,
the proposal of dynamical scalar field models broke out trying to explain the value of the
vacuum energy (believed to be zero) through an automatic adjustment mechanism in field
theory [21–29]. Subsequently, the popular class of quintessence models (for a review, see
particularly [8–10,30]) emphasized the possible dynamical character of the dark energy (DE)
without attempting to compute its value. These models must also be clearly distinguished
from the VED option on which we focus here. They are nevertheless useful since many
fundamental notions of DE, including the dynamical VED proposal that we endorse in this
paper, can mimic quintessence (or phantom DE) behavior.

The renormalization framework of the running vacuum model (RVM)—see [12–15]
and references therein—provides a notorious example of framework where the foregoing
ideas on the dark energy stemming from the quantum vacuum properties can be imple-
mented in practice within the fundamental framework of QFT in curved spacetime. In fact,
in recent works, it has been shown that the CCP can be alleviated in the RVM context,
see [31–34]. The physical outcome is that the measurable value of ρvac, and hence of Λ,
runs smoothly with the cosmic expansion. This running, in fact, can be thought of as a
renormalization group (RG) running. To construct the physically renormalized VED, we
have to start from the higher-order bare action in QFT in curved spacetime [17,18] and



Universe 2025, 11, 118 3 of 33

produce an appropriately renormalized one. At that point the VED can be constructed from
the mentioned renormalized term ρΛ(M) in the Einstein–Hilbert part of the action and the
renormalized ZPE, which also depends on M, where M is the renormalization scale. We
may write the combined quantity very qualitatively as follows: VED = ρΛ + ZPE. The
renormalized result, however, still requires a physical interpretation since it depends on the
renormalization scale M. Its appearance is characteristic of the renormalization procedure
in QFT owing to the intrinsic breaking of scale invariance by the quantum effects. Despite
the fact that the full effective action is independent of M, different parts of it are indeed
M-dependent. In particular, the vacuum effective action induced by quantum effects of
the quantized matter fields, Weff [17,18], is explicitly dependent on the renormalization
scale M. For a physical interpretation of the theory, an adequate choice of M at the end of
the renormalization program is mandatory. Following the standard practice in ordinary
gauge theories, the choice of the renormalization scale is made near the typical energy of
the process. In the RVM framework, it is suggested to choose M around the characteristic
energy scale of cosmic spacetime at any given moment, namely the value of the Hubble rate
H in natural units at each cosmic epoch, see [31–34] for full details and [15] for a review.

The quantum vacuum in the RVM context is therefore dynamical rather than just stuck
at a rigid value. It means that there is no such thing as a rigid cosmological constant within
a QFT explanation of the expanding universe. No less remarkable is that the theory appears
to be free from fine-tuning issues caused by the aforesaid quartic mass contributions
∼m4 of the quantum fields. These fine-tuning troubles have been ascribed too often and
exclusively to the cosmological constant Λ, but they are actually not present in the RVM
framework [31,32], a fact which constitutes an important achievement of the RVM.

The headaches with the ΛCDM involve not only high-brow fundamental theoretical
conundrums such as the CCP but also impinge on very practical and ground-level issues of
modern cosmology, such as the current cosmological tensions between the standard model
predictions and different sorts of data. In particular, tensions with the local measurement
of the current Hubble parameter H0 as well as with the growth of large-scale structures.
The H0-tension involves a serious disagreement (∼5σ c.l.) between the value of H0 inferred
from CMB observations, which make use of fiducial ΛCDM cosmology, and the corre-
sponding value extracted from the distance ladder measurements. The growth tension,
on the other hand, is related with the overproduction of large scale structure in the late
universe as predicted by the ΛCDM in comparison with actual measurements. The tension
here is moderate (∼2 − 3σ) but persistent. See e.g., [35,36] and references therein for a
comprehensive review of these tensions. Interestingly enough, it turns out that the RVM
framework may also provide a clue for the resolution of the aforementioned practical
problems. The predicted running law δρvac ∼ H2 of the VED in the current universe has
been successfully tested against the global cosmological observations in different studies,
e.g., in the works [37,38] and the older ones [39–43]. In the former, tensions are substan-
tially alleviated. Notable are also the RVM-inspired proposals [44–48], which also provide
tantalizing solutions to these tensions from different perspectives [49]. See also [50–57] for
alternative proposals and discussions on the tensions and nature of DE.

A variety of dynamical DE models of various sorts have recently appeared being
spurred by the urgent need to fix the cosmological tensions; see, for instance, models
of Early DE [58–60], Emergent DE [61], and interacting DE [62,63], as well as modified
f (R) [64,65] and teleparallel f (T) gravities [66]. Scalar–tensor theories [67–69], on the other
hand, can also be used to describe dynamical DE. Notably, Brans–Dicke theories [70] with
a cosmological term can also mimic dynamical DE and can help cure the tensions [46–48].

Apart from the impact on the physics of the current universe, the RVM also has pre-
dictive power for the dynamics of the very early universe, in particular for the inflationary
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stage. Although the VED evolves as ∼H2 in the post-inflationary epoch, as noted above,
the RVM predicts that inflation is driven by higher powers of the expansion rate beyond
H2. Spurred by the phenomenological success of the RVM in describing the late universe,
the present study also explores the implications of the RVM for the physics of the very early
universe, where higher (even) powers of the Hubble rate ∼O(HN) (N = 4, 6, . . .) may bring
about inflation. In contrast to previous phenomenological approaches (see, e.g., [71–76])
where no formal justification is given for these higher powers in the structure of the VED,
here, we account for their existence in the context of QFT in curved spacetime and focus
on the inflationary effect prompted by H4. We note that such higher powers can also be
attained from the VED structure of dynamically broken supergravity models with gravitino
condensation [77], which emerge from the low energy limit of string theories, see [78–87]
and the forthcoming comprehensive review [88]. The type of inflation produced by the
H4 term—and, in general, by higher-order (even) powers of H—is characteristic of ‘RVM
inflation’. We should remark that the latter follows a different pattern as compared with
Starobinsky’s inflation [89], although graceful exit is still perfectly granted—see [14,77] for
a comparison with Starobinsky’s inflation. Being the RVM contribution nonvanishing for
H = const. and taking into account that the Starobinsky-like higher-order terms just vanish
in such a regime, it is reasonable to expect that for large values of the Hubble rate, the ∼H4

power (triggered by quantum effects) proves to be the main character at the inflationary
scale. In this sense, the RVM approach is genuinely new. The unified description of the
cosmic evolution that is gathered in this context could help change our picture of inflation
into a more RVM-like one.

All in all, the presence of the higher powers of the Hubble rate in the early universe
can be very important from different perspectives. One more example, as noted in [90],
is that they could help evade the possible trouble of string theories with the ‘swampland’
criteria on the impossibility to construct metastable de Sitter vacua, which, if so, would
forbid the existence of de Sitter solutions in a low-energy effective theory of quantum
gravity. Besides, the existence of the H4 terms does not depend on picking out a particular
potential for the scalar field, as no potential will be introduced in the RVM context. Thus,
the RVM approach, whether in QFT or stringy formulations, may provide a self-consistent
framework for inflation within fundamental physics and with minimal assumptions. In the
present study, however, we will focus exclusively on the QFT version of RVM inflation.

The various materials of interest presented in this paper can be summarized as follows.
In Section 2, we discuss the relation between the concepts of vacuum energy and cosmo-
logical constant. In Section 3, we compute the renormalized energy–momentum tensor of
a vacuum using the powerful method of the effective action. From this result, we derive
a cosmologically evolving VED that is remarkably free from quartic mass contributions
∼m4, a fact that helps alleviate the fine-tuning problem as part of the CCP. Then, we exploit
the consequences of such a smooth running of the VED in both the late and early universe.
In the former, we derive a mildly evolving Λ(H) term which deviates by ∼H2 from the
rigid Λ value of the concordance model. We also analyze the effective equation of state of
the running vacuum, which turns out to mimic quintessence or phantom DE. Finally, we
present a devoted study of the implications of the RVM in the early universe (Section 4)
and show that inflation can be triggered by an ∼H4 power. This leads to an alternative
inflationary mechanism, called ‘RVM inflation’. We discuss in detail its thermodynamic
properties and show that it can cure basic problems of the ΛCDM framework concerning,
for instance, the large entropy of the current universe. The final discussion and conclusions
of our paper are given in Section 5.
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2. Vacuum Energy and Cosmological Constant

Vacuum energy and cosmological constant are different physical concepts. It is im-
portant to emphasize this fact since, in the extensive literature on this subject over the
years, one finds that these two concepts are sometimes identified and this may cause some
confusion. A more careful consideration shows that the physical relationship between these
concepts is possible only in curved spacetime. Let us first consider Minkowski spacetime.
In this context, the calculation of the VED for the case of a single free scalar field ϕ is
completely standard, usually performed using Minimal Subtraction (MS) and dimensional
regularization (DR). The result has been known for a long time, and it is even discussed
in old textbooks of QFT [91] using path integral methods, or alternatively, from a direct
calculational approach to the ZPE [92,93]. At one-loop order, it leads to the renormalized
result (see also [12,13,15] for an expanded discussion):

ρvac = ρΛ(µ) +
m4

64π2

(

ln
m2

µ2 + Cvac

)

. (1)

In this equation, ρΛ(µ) is the renormalized additive constant term in the action2, and µ

is the conventional ’t Hooft’s mass unit of DR [94]. The two-loop calculation (involving self-
interaction of the scalar field) is also available and leaves formally unmodified the above
one-loop result [91], but this nicety does not change the situation that we wish to stand out
here. The result for an elementary fermion field is also well known (e.g., if it is uncolored,
it just amounts to multiply the coefficient of the second term on the rhs of Equation (1)
by a factor of −4), but for definiteness, we focus here on scalar fields. The mentioned
second term is the renormalized ZPE at one-loop in the MS. An arbitrary constant Cvac

is left undetermined after canceling the pole in n = 4 spacetime dimensions, since the
pole cancellation in the MS can be performed by including any additive constant. As it is
obvious, Equation (1) has no connection with the expanding universe, in particular, it does
not depend on its expansion rate H(t) or any other cosmological parameter. This point is
crucial and reminds us of another important aspect in dealing with the CCP: we should not
thoughtlessly associate VED with a cosmological constant (CC), as performed too often in
the literature. The former may exist in Minkowski spacetime, as given, e.g., in Equation (1),
whereas the latter can exist only in the context of Einstein’s equations in curved spacetime
and hence in the presence of gravity. However, the above result illustrates in a very
manifest way that a calculation of the VED in flat spacetime, even after renormalization,
has no impact whatsoever on the physics of the CC since the latter cannot be defined in
Minkowskian spacetime! In fact, Λ ̸= 0 is inconsistent with the solution of Einstein’s
equations in that spacetime. Thus, in order to make contact with the physical Λ, we
need to move to curved spacetime and compute the renormalized VED in an appropriate
renormalization framework, namely one imbued with more physical meaning than just
the formal renormalization performed within the MS scheme, in which the scale µ is a
pure artifact having no obvious relation with the physics of the cosmological spacetime.
Since just cursorily setting µ equal to H in the above flat spacetime result (as performed
sometimes in the literature so as to inject some cosmological physics in the last minute)
actually makes no sense at all since—as we should reiterate—the VED in Minkowski
spacetime has no relation whatsoever with the CC (see [15,32] for a detailed discussion.
The setting µ = H can only make sense in the context of calculations performed ab initio in
cosmological spacetime, which is when the two concepts under discussion get logically
entangled. This is what we do next.
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3. Energy–Momentum Tensor and Effective Action for a Nonminimally
Coupled Scalar Field in QFT

Consider a quantized scalar matter field ϕ of mass m nonminimally coupled to cur-
vature in Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. The corresponding
Einstein–Hilbert (EH) action reads3

SEH+ϕ = SEH + Sϕ =

ˆ

d4x
√

−g

(

1
16πG

R − ρΛ

)

+ Sϕ , (2)

and the scalar field action is

Sϕ = −
ˆ

d4x
√

−g

(

1
2

gµν∂µϕ∂νϕ +
1
2

(

m2 + ξR
)

ϕ2
)

. (3)

We pointed out in the previous section that the cosmological term is physically mean-
ingful only in curved spacetime. Its observed value Λobs becomes naturally linked to
the VED ρvac through Einstein’s equations: ρvac = Λobs/(8πG). However, even in this
gravitational context, we should not confuse the bare parameter ρΛ in the EH action with
the physical ρvac, where the former is related in a similar way to the bare values of Λ

and G in a gravitational context. The corresponding connection with physical quantities
is not immediate at this point, and it will only emerge upon properly renormalizing the
theory. Einstein’s equations follow from the standard variation in the total action SEH+ϕ

with respect to the metric:
1

8πG
Gµν = −ρΛgµν + T

ϕ
µν , (4)

where Gµν = Rµν − (1/2)gµνR is the usual Einstein tensor. The above are classical
field equations, which do not yet incorporate quantum effects. This will be performed
upon quantization.

3.1. From Classical to Quantum Field Theory

The classical energy–momentum tensor (EMT) for ϕ is obtained from the functional
variation in the matter action (3) as follows:

T
ϕ
µν = − 2√−g

δSϕ

δgµν = (1 − 2ξ)∂µϕ∂νϕ +

(

2ξ − 1
2

)

gµν∂σϕ∂σϕ

− 2ξϕ∇µ∇νϕ + 2ξgµνϕ□ϕ + ξGµνϕ2 − 1
2

m2gµνϕ2 .

(5)

It is well known that the action Sϕ given by (3) becomes (locally) conformal invariant
in the massless limit and for the value ξ = 1/6 of the nonminimal coupling. In our case,
however, the value of ξ will not be fixed a priori, and we will not assume massless particles
since some of the main effects we aim at hinge on having massive matter fields [31,32].
Varying now the action with respect to the scalar field leads to the Klein–Gordon (KG)
equation with nonminimal coupling:

(

□− m2 − ξR
)

ϕ2 = 0 , (6)

where □ϕ = gµν∇µ∇νϕ = (−g)−1/2∂µ(
√−g gµν∂νϕ).

As indicated, we perform the calculation in cosmological (FLRW) spacetime. We
assume a flat three-dimensional metric, and for convenience, we use the conformal frame
ds2 = a2(τ)ηµνdxµdxν, with ηµν = diag(−1,+1,+1,+1) the Minkowski metric in our
conventions, a(τ) is the scale factor and τ the conformal time. Differentiation with respect
to τ will be denoted by a prime, so, for example, H ≡ a′/a is the corresponding Hubble
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function in conformal time. Although calculations will be performed using the conformal
metric, our final results are rendered in terms of the usual Hubble function H(t) = ȧ/a

in cosmic time t (where a dot denotes differentiation with respect to t). Since dτ = dt/a,
we have H = aH, H′ = a2(H2 + Ḣ), H′′ = a3

(

2H3 + 4HḢ + Ḧ
)

, etc., which are useful
relations for the mentioned conversion.

The above equations hold good in classical field theory. However, in QFT, ϕ is a
quantized matter field contributing also with quantum fluctuations δϕ. In this case, it is
convenient to separate the fluctuations from the background part:

ϕ(x⃗, τ) = ϕb(τ) + δϕ(x⃗, τ) . (7)

Notice that the background field ϕb(τ) is assumed to be spatially homogeneous.
The fluctuating part is not spatially homogeneous and can be decomposed in Fourier
frequency modes:

δϕ(τ, x) =
1

(2π)3/2a

ˆ

d3k
[

Akeik·xhk(τ) + A†
ke−ik·xh∗k (τ)

]

. (8)

Upon quantization, the Fourier expansions are promoted to operators in the Heisen-
berg representation, on which we impose the canonical commutation relations. These are
encoded in those satisfied by the creation and annihilation operators, Ak and A†

k :

[Ak, A′†
k ] = δ(k − k′), [Ak, A′

k] = 0 . (9)

Using these relations, the KG-equation (6) in terms of frequency modes can be put as

h′′k + Ω2
k(τ)hk = 0 , (10)

where Ω2
k ≡ k2 + a2m2 + a2(ξ − 1/6)R, with k ≡ |k| the modulus of the comoving mo-

mentum (the physical momentum being k/a). Since the effective frequency Ωk(τ) is not
constant, the above linear differential equation corresponds to an anharmonic oscillator and
does not possess a close analytic solution, except for very particular cases, such as e.g., the
massless limit with minimal coupling (ξ = 0)—a situation which is far from our main inter-
ests. So in general, one must resort to what is called an adiabatic series expansion, which
is essentially a WKB-type solution [17–19]. To this aim, one introduces a phase-integral
ansatz for the mode function:

hk(τ) =
1

√

2Wk(τ)
exp

(

−i

ˆ τ

Wk(τ̃)dτ̃

)

, (11)

which is normalized through the Wronskian condition hkh∗′k − h′kh∗k = i. The above template
is motivated by the fact that for constant Ωk (i.e., independent of time), it provides the
exact solution for positive frequency modes. Proceeding in this way, we have traded the
original mode function hk for the new function Wk, which satisfies a nonlinear (WKB-type)
differential equation:

W2
k = Ω2

k −
1
2

W ′′
k

Wk
+

3
4

(

W ′
k

Wk

)2

. (12)

For a slowly varying effective frequency Ωk(τ), one can solve this equation pertur-
batively with the help of an asymptotic series, which can be organized through adiabatic
orders. It is obvious that the suitability of the adiabatic expansion is linked to the smallness
of the ratio |Ω′

k(τ)/Ω2
k(τ)| ≪ 1. This approach constitutes the basis for adiabatic regular-

ization [17–19], which is essentially an expansion in the number of time derivatives; if the
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time evolution is slow (measured by the aforementioned ratio), the series converges faster.
Each time derivative increases by one unit the adiabatic order, and the ansatz solution for
Wk can be written as

Wk = ω
(0)
k + ω

(2)
k + ω

(4)
k + ω

(6)
k + · · · , (13)

in which the superscript indicates the adiabatic order. If the expansion is carried out up to
Nth adiabatic order, the vacuum state annihilated by all ladder operators Ak satisfying (9)
is known as the Nth-order adiabatic vacuum. The vacuum expectation values (VEVs)
computed in the adiabatic approach always refer to that vacuum state at the given order. It
is, of course, an approximate vacuum state. One can see immediately that the adiabatic
expansion in the cosmological context ends up as an expansion in powers of H and its
time derivatives [31–34]. Not surprisingly, only even adiabatic orders (N = 0, 2, 4, . . .) are
allowed owing to the requirement of general covariance of the solution. This is confirmed
by explicit calculation, where all odd adiabatic orders are absent (see the aforementioned
papers). Finally, we should point out that the WKB expansion (13) is an asymptotic
series and therefore it is understood that it should be truncated to low adiabatic orders,
beyond which its convergence gets progressively degraded.

As is well known, QFT in curved spacetime is a quantum theory of fields, not particles.
The presence of the nontrivial modes satisfying Equation (10), or equivalently, the nonlinear
WKB one (12), already indicates that particles with definite frequencies cannot be strictly
defined in a curved background. So, the physics actually resides in the fields, and in
particular in the properties of the EMT. Now, since we are specifically addressing the effect
of the quantum fluctuations of the quantized matter fields, we need to focus on computing
just the VEV of the EMT, which we may call the ‘vacuum EMT’ for short. This quantity
depends on bilinears of the fluctuation δϕ and its time derivatives [31]. Being a composite
operator made of operator products, we expect the VEV to be divergent in QFT. Hence,
to extract physical results on the vacuum effects, renormalization is mandatory. The Fourier
expansion given in (8) is to be inserted in (5) using the commutation relations (9). The
resulting vacuum EMT involves integration over all modes,

´

d3k
(2π)3 (. . .), which yields UV-

divergent integrals up to fourth adiabatic order (in n = 4 spacetime dimensions). Adiabatic
orders higher than 4 decay sufficiently fast at large momentum k (short distances) to make
the corresponding integrals convergent [17]. However, unavoidably, a UV-divergent part
of the vacuum EMT must be dealt with, and this means that we need to renormalize it
by appropriately subtracting the first four (UV-divergent) adiabatic orders. In [31], the
following ‘off-shell subtraction prescription’ was proposed to renormalize the vacuum EMT:

〈

T
δϕ
µν

〉

ren
(M) =

〈

T
δϕ
µν

〉

(m)−
〈

T
δϕ
µν

〉(0−4)
(M). (14)

This specific form will be referred to as off-shell ARP (adiabatic regularization prescrip-
tion). Being off-shell, it is an extended version of the original (on-shell) procedure [17–19].
In practice, ARP implements both regularization and renormalization of the EMT at the
scale M. The superscript (0–4) in the second term on the rhs of (14) refers to the (UV-
divergent) orders being subtracted, while the first term is the on-shell value. The latter can
be computed, in principle, to any desired adiabatic order. By keeping the subtraction scale
M generic, however, we can test the evolution of the VED with M. In fact, having a floating
scale M in QFT is characteristic of the renormalization group analysis. In the previous
section, the alternative scale µ was used for Minkowski space calculations in the MS scheme
with DR, but as pointed out there, it is not convenient in cosmology. In the present curved
spacetime context, in contrast, the above subtracting procedure is more physical and M can
eventually be identified with the Hubble rate at the end of the calculation [31,32]4. However,
rather than renormalizing the vacuum EMT directly by means of the above recipe, as it was
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performed in [31], we may alternatively compute the renormalized vacuum effective action
W within the off-shell ARP framework, which also depends on the scale M [32], and from
it, we can extract the renormalized vacuum EMT. We do this in the next section.

3.2. Vacuum Effective Action and Its Adiabatic Renormalization

The effective action of a vacuum, W, accounts for the quantum effects from the
quantized matter fields. It can be obtained from the DeWitt–Schwinger expansion by
integrating out the vacuum fluctuations of these fields [17,18]. From the knowledge of W,
one can then derive the VEV of the EMT,

〈

Tµν

〉

(i.e., the ‘vacuum EMT’) by computing the
usual metric functional derivative, but now using the vacuum effective action:

⟨Tδϕ
µν ⟩ = − 2√−g

δW

δgµν . (15)

This method constitutes an alternative path to the mode expansion for the renor-
malization of the EMT through the prescription (14), see [31,32] for more details. Let us
summarize the procedure. At one loop order (the only one available for the free theory),
the value of W is obtained from the trace of the logarithm of the inverse Green’s function in
curved spacetime. More specifically,

W =
ih̄

2
Tr ln(−G−1

F ) =
ih̄

2
Tr ln(−GF)

−1 = − ih̄

2
Tr ln(−GF)

=− ih̄

2

ˆ

d4x
√

−g lim
x→x′

ln
[

−GF(x, x′)
]

≡
ˆ

d4x
√

−g LW .
(16)

The last equality defines the Lagrangian density
√−g LW associated with the quantum

vacuum effective action, i.e., that part of the full Lagrangian which encodes the quantum
effects from the vacuum fluctuations of the quantized matter fields. We have kept h̄

explicitly here only to emphasize the pure quantum character of the above action, but we
set h̄ = 1 henceforth.

In order for the Lagrangian of the theory to be renormalizable, we must include not
only the EH terms indicated in Equation (2) but also the usual higher derivative (HD)
geometric terms. Hence, the full classical part of the Lagrangian takes on the form

Lcl.
G = LEH + LHD =− ρΛ +

1
2
M2

PlR + α1C2 + α2R2 + α3E + α4□R . (17)

Here, M2
Pl ≡ 1/(8πG) = m2

Pl/(8π) is the (reduced) Planck mass squared, with mPl

the usual Planck mass. The HD terms, which carry dimensionless coefficients αi, are
conveniently grouped using the square of the Weyl tensor (C2) and the Euler density (E)
plus a total derivative [17,32]. The classical Lagrangian (17) is not yet the full Lagrangian
relevant to our considerations, of course, but is indispensable for the renormalization
process. We must still add to it the effective quantum vacuum action, LW , which at this
point is divergent and hence requires renormalization. But before doing that, we need to
find the bare LW Lagrangian from the effective action.

To compute W from (16), we must solve the Green’s function equation in
curved spacetime

(

□x − M2 − ∆2 − ξR(x)
)

GF(x, x′) = −(−g(x))−1/2δ(n)(x − x′) , (18)

where δ(n) is the Dirac δ-distribution in n spacetime dimensions. For all practical purposes,
in our work, n = 4. It is nevertheless convenient to keep n general since it allows to use
DR for regularizing the UV divergences. Such an auxiliary use of DR here is, however,
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completely independent of the renormalization procedure that we subsequently follow,
see below. Obviously an exact solution of (18) is not generally possible, but GF can be
found by means of an adiabatic expansion, in complete analogy with the alternate method
mentioned in the previous section, which is based on the mode expansion. Notice that the
key for the adiabatic solution of the above equation is the presence of the floating scale M

as well as of the important quantity

∆2 ≡ m2 − M2 . (19)

This quantity must be dealt with as being of adiabatic order 2 [32]. In fact, considering
that the term ξR in (18) is also of adiabatic order 2, the combination ∆2 + ξR is then an
adiabatic block of the same order. Now, since the adiabatic order of the terms must be
hierarchically respected throughout the expansion, and bearing in mind that the mass scale
M is of adiabatic order zero while the special quantity ∆2 is of adiabatic order 2, the solution
to Green’s function equation (18) from a consistent adiabatic expansion is different from
the solution to the corresponding on-shell equation with ∆2 = 0.

For the explicit calculation, one starts from the standard DeWitt–Schwinger expansion
of the effective action, which is obtained by computing the curved spacetime propagator
GF. In practice, this means to adiabatically expand the solution of Equation (18) since
an exact approach is not feasible. The calculation is rather cumbersome, and the details
for the on-shell case can be found in [17,18]. Once the propagator GF is found, one must
apply Equation (16) in order to identify the effective Lagrangian LW . In the off-shell
case, one proceeds similarly, but now the result involves an explicit dependence on the
renormalization scale M and extra terms which depend on the quantity ∆2 [32,95,96].
The final result for the effective Lagrangian of the vacuum fluctuations is the following:

LW =
µ4−n

2(4π)n/2

∞

∑
j=0

âj(x)

ˆ ∞

0
(is)j−1−n/2e−iM2sids =

1

2(4π)2+ ε
2

(

M

µ

)ε ∞

∑
j=0

âj(x)M4−2jΓ
(

j − 2 − ε

2

)

. (20)

Recall that we use DR to regularize the divergences, and we defined ε ≡ n − 4.
The limit ε → 0 is understood. As usual, Γ is Euler’s gamma function and µ is the afore-
mentioned ’t Hooft’s mass unit to keep the effective Lagrangian with natural dimension
+4 of energy in n spacetime dimensions, the final results being independent of µ, which is
an unphysical parameter5. The sum over j = 0, 1, 2, . . . involves the even adiabatic orders
only. The presence of ∆2 modifies the DeWitt–Schwinger coefficients âi(x). Up to the fourth
adiabatic order, the new coefficients read

â0(x) = 1 = a0(x),

â1(x) = a1(x)− ∆2 = −
(

ξ − 1
6

)

R − ∆2,

â2(x) = a2(x) +
∆4

2
+ ∆2R

(

ξ − 1
6

)

=
1
2

(

ξ − 1
6

)2

R2 +
∆4

2
+ ∆2R

(

ξ − 1
6

)

− 1
3

Qλ
λ ,

(21)

with
1
3

Qλ
λ ≡ − 1

120
C2 +

1
360

E +
1
6

(

ξ − 1
5

)

□R . (22)

The coefficients ai(x) are the ordinary DeWitt–Schwinger coefficients for ∆ = 0 (on-
shell expansion). The effective Lagrangian (20) is manifestly UV-divergent since Euler’s
Γ-function is divergent for j = 0, 1, 2 in n = 4 spacetime dimensions. Therefore, renormal-
ization is required. We avoid using the MS scheme in this context; instead, we utilize the
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off-shell ARP adapted to the effective action. In fact, we define the renormalized vacuum
effective Lagrangian at the renormalization point M as follows:

Lren
W (M) = LW(m)− L

(0−4)
W (M) ≡ LW(m)− Ldiv(M) , (23)

where Ldiv(M) ≡ L
(0−4)
W (M) is the divergent part. Notice that LW(m) and Ldiv(M) are both

divergent, but the former may involve the full DeWitt–Schwinger expansion at any desired
order, whereas the latter is computed only up to order 4. This subtraction prescription,
which is performed at the level of the effective Lagrangian, is the exact analogue of the
off-shell ARP definition (14) for the EMT and it suffices to make Lren

W (M) finite. The pole
terms (which appear in the limit ε → 0) exactly cancel out in Equation (23), leaving the
following finite result:

Lren
W (M) = δρΛ(M)− 1

2
δM2

Pl(M)R − δαQ(M)
Qλ

λ

3
− δα2(M)R2 + · · · , (24)

where the dots stand for higher-order adiabatic contributions that decouple at large m, and

δρΛ(M) =
1

8(4π)2

(

M4 − 4m2M2 + 3m4 − 2m4 ln
m2

M2

)

,

δM2
Pl(M) =

(

ξ − 1
6

)

(4π)2

(

M2 − m2 + m2 ln
m2

M2

)

,

δαQ(M) = − 1
2(4π)2 ln

m2

M2 ,

δα2(M) =

(

ξ − 1
6

)2

4(4π)2 ln
m2

M2 .

(25)

These quantities are finite renormalization effects which are generated in the subtrac-
tion (23). We defined δρΛ(M) = ρΛ(M)− ρΛ(m) and δM2

Pl(M) = M2
Pl(M)−M2

Pl(m).
In general, for two arbitrary values M1 and M2 of the scale, we have

ρΛ(M2)− ρΛ(M1) =
1

8(4π)2

(

M4
2 − M4

1 − 4m2(M2
2 − M2

1)− 2m4 ln
M2

1

M2
2

)

, (26)

M2
Pl(M2)−M2

Pl(M1) =

(

ξ − 1
6

)

(4π)2

(

M2
2 − M2

1 + m2 ln
M2

1

M2
2

)

. (27)

Similarly with the dimensionless coefficients α2 and αQ of the HD terms.
We confirm from the above results that the dependence on µ has canceled along with

the poles. It should be emphasized that the subtracted term Ldiv(M) at the scale M in (23)
involves not just the UV-divergences but also the full expression obtained up to adiabatic
order 4 (j = 0, 1, 2) in the DeWitt–Schwinger expansion (20), and therefore it includes their
finite parts. It follows that no arbitrary additive constants are left in the subtraction. This
is consistent with the off-shell ARP procedure (14) for the EMT. We conclude that the
renormalized effective action of a vacuum reads6

Wren(M) =

ˆ

d4x
√

−g

(

δρΛ(M)− 1
2

δM2
Pl(M)R − δαQ(M)

Qλ
λ

3
− δα2(M)R2

)

. (28)

In turn, the renormalized vacuum EMT now follows from computing the functional
derivative in Equation (15) using the above Wren(M). Notice that we may drop the con-
tribution from the Euler density E in Qλ

λ, Equation (22), since the functional variation in
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the Gauss–Bonnet term associated with it is exactly zero in n = 4 spacetime dimensions.
Similarly, we may also drop the total derivative term □R at the level of the action. The final
result for the renormalized vacuum EMT is the following:

⟨Tδϕ
µν ⟩ren(M) = δM2

Pl(M)Gµν + δρΛ(M)gµν + δα(M)(1)Hµν −
1

30
δαQ(M)

(

(2)Hµν −
1
3
(1)Hµν

)

, (29)

where we have used 2δα2 = δα and we recall that the coefficients of the various tensor
terms on the rhs of the previous formula are given explicitly by Equation (25). The last three
terms in that formula involve the standard covariantly conserved HD tensors (1)Hµν and
(2)Hµν, which are essentially given by the metric functional derivatives of R2 and RµνRµν,
respectively [17]. For the FLRW spacetime, these two HD tensors are not independent, they
are related as (2)Hµν = 1

3
(1)Hµν, which is a direct consequence of the vanishing of the Weyl

tensor for conformally flat backgrounds. Thus, the previous equation boils down to

⟨Tδϕ
µν ⟩ren(M) =δρΛ(M)gµν + δM2

Pl(M)Gµν + δα(M)(1)Hµν . (30)

Finally, the ZPE is the 00th-component of the vacuum EMT. Expressing the result in
terms of the cosmic time and the corresponding Hubble function H = ȧ/a, we find the
renormalized ZPE:

〈

T
δϕ
00

〉

ren
(M) =

a2

128π2

(

−M4 + 4m2M2 − 3m4 + 2m4 ln
m2

M2

)

−
(

ξ − 1
6

)

3a2H2

16π2

(

m2 − M2 − m2 ln
m2

M2

)

+

(

ξ − 1
6

)2 9a2

16π2

(

6H2Ḣ + 2HḦ − Ḣ2
)

ln
m2

M2 +O
(

H6

m2

)

,

(31)

where we have used the expressions for G00 = 3a2H2 and (1)H00 = −18a2
(

Ḣ2 − 2HḦ − 6H2Ḣ
)

in the flat FLRW metric and the coefficients (25) of the effective Lagrangian. The notation
O(H6/m2) schematically denotes the terms of adiabatic order 6 (consisting of 6 time deriva-
tives of the scale factor in different combinations, many of them involving time derivatives of
H), which will not be addressed here. The interested reader can check [32] for more details.

It is important to realize at this point that the full vacuum EMT must include the
(renormalized) ρΛ term in the EH action (2), that is to say,

⟨Tvac
µν ⟩ren(M) = −ρΛ(M)gµν + ⟨Tδϕ

µν ⟩ren(M) . (32)

This equation is also valid for the bare values, of course. The VED as measured by an
observer with 4-velocity Uµ can now be extracted from (32) as follows: ρvac = ⟨Tvac

µν UµUν⟩.
In the rest frame of the observer, we have Uµ = (1/

√−g00, 0, 0, 0) = (1/a, 0, 0, 0), which
correctly satisfies gµνUµUν = −1. Thus, the renormalized VED reads

ρvac(M) =
⟨Tvac

00 ⟩ren(M)

a2 = ρΛ(M) +
⟨Tδϕ

00 ⟩ren(M)

a2 . (33)

Insofar as concerns the vacuum pressure, we should not pretend a priori that its
equation of state (EoS) is Pvac(M) = −ρvac(M) since quantum effects can modify it. How-
ever, we may licitly assume that the vacuum behaves as a perfect fluid, ⟨(Tvac)µ

ν⟩ =

Pvac δ
µ
ν + (ρvac + Pvac)UµUν. This assumption is perfectly consistent with Equation (33). In

fact, by just rewriting (32) in the alternative form ⟨(Tvac)µ
ν⟩ = −ρΛδ

µ
ν + gµα⟨Tδϕ

αν ⟩, we may
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combine the last two equations and find the expression for the VED as ρvac = −⟨(Tvac)0
0⟩ =

ρΛ − g00⟨Tδϕ
00 ⟩ = ρΛ +

⟨Tδϕ
00 ⟩
a2 , which is just Equation (33).

By the same token, upon taking the trace of the above perfect fluid equation we find the
vacuum pressure Pvac =

1
3 (ρvac + ⟨Tvac⟩), where Tvac ≡ gµν Tvac

µν is such a trace. The latter
can also be computed by tracing over Equation (32), which yields ⟨Tvac⟩ = −4ρΛ + ⟨Tδϕ⟩,
with Tδϕ ≡ gµν T

δϕ
µν . Upon combining them both and using Equation (33) to eliminate ρΛ

in favor of ρvac, we find the final sought-for equation for the vacuum pressure. In terms of
the renormalized quantities at the scale M, it reads

Pvac(M) = −ρvac(M) +
1
3

(

⟨Tδϕ⟩ren(M) + 4
⟨Tδϕ

00 ⟩ren(M)

a2

)

. (34)

Incidentally, one can easily show that this equation can also be obtained from
Pvac = ⟨Tδϕ

ii ⟩ren(M)/a2 (which follows from the perfect fluid form of the vacuum EMT,
without the sum over i, for any i = 1, 2, 3) using the isotropy condition. It is apparent from
the result (34) that the effective EoS of a vacuum deviates from the naive one Pvac = −ρvac

by terms which depend on the VEV of the trace of the EMT as well as on the ZPE. These
terms obviously stand both for quantum corrections to the classical EoS of a vacuum.

Notice that ⟨Tδϕ
00 ⟩ren(M) on the rhs of Equation (34) has already been computed in (31).

However, in order to obtain an explicit expression for the vacuum pressure, we also need
to compute the VEV of the trace of the EMT. It can be found by taking the trace of the
renormalized vacuum EMT, Equation (30). The result up to fourth adiabatic order is
as follows:

〈

Tδϕ
〉

ren
(M) =

1
32π2

(

3m4 − 4m2M2 + M4 − 2m2 ln
m2

M2

)

+

(

ξ − 1
6

)

3
8π2

(

2H2 + Ḣ
)

(

m2 − M2 − m2 ln
m2

M2

)

−
(

ξ − 1
6

)2 9
8π2

(

12H2Ḣ + 4Ḣ2 + 7HḦ +
...
H
)

ln
m2

M2 +O
(

H6

m2

)

.

(35)

Substituting (31) and (35) into (34), and after some rearrangements, we find that the
vacuum pressure can be written in a remarkably simple way:

Pvac(M) =− ρvac(M) +

(

ξ − 1
6

)

1
8π2 Ḣ

(

m2 − M2 − m2 ln
m2

M2

)

− 3
8π2

(

ξ − 1
6

)2
(

6Ḣ2 + 3HḦ +
...
H
)

ln
m2

M2 .

(36)

In particular, we note that all the quartic mass terms ∼m4 introduced by the quantum
corrections on the rhs of Equation (34) have exactly canceled out in the final expression for
the vacuum pressure. In addition, we find that the net quantum correction to the classical
vacuum EoS vanishes identically for H = const. since it depends only on time derivatives
of H. This feature will play an important role when we discuss the inflationary epoch. We
should also remark that the mentioned quantum corrections also vanish identically in the
conformal limit, ξ = 1/6, as could be expected.

3.3. Running Vacuum and EoS in the Late Universe

In the current universe, the O(H4) terms are negligible, and hence from
Equations (31) and (33), we find the leading form of the VED at low energy:
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ρvac(M, H) = ρΛ(M) +
1

128π2

(

−M4 + 4m2M2 − 3m4 + 2m4 ln
m2

M2

)

+

(

ξ − 1
6

)

3H2

16π2

(

M2 − m2 + m2 ln
m2

M2

)

,

(37)

and from (36), we find the leading expression for the pressure:

Pvac(M, H) =− ρvac(M, H) +

(

ξ − 1
6

)

1
8π2 Ḣ

(

m2 − M2 − m2 ln
m2

M2

)

. (38)

Let us now focus for a while on the VED (37). As is mandatory in any calculation
in QFT, a renormalization scale M appears in the result. For a physical interpretation,
an appropriate choice of that scale is necessary when we focus on just a part of the full
action, in this case, the vacuum effective action. To deal with this fact, let us first note that
in the above expressions, the values of M and H are independent, so we may compute
the difference between the VED values at points (M, H) and (M0, H0). The result is
the following:

ρvac(M, H)− ρvac(M0, H0) =
3
(

ξ − 1
6

)

16π2

[

H2
(

M2 − m2 + m2 ln
m2

M2

)

−H2
0

(

M2
0 − m2 + m2 ln

m2

M2
0

)]

,

(39)

where we should note that the quartic mass terms have canceled out upon using
Equation (26). For a physical interpretation, it is reasonable that M should be near the
characteristic energy scale of the FLRW spacetime at the given cosmic epoch. It has been
proposed that the value of the Hubble rate H satisfies this condition because this choice
should have physical significance in the cosmological context [31,32]. Therefore, we set
M = H and M0 = H0, and we can neglect the O(H4) for the present universe. The
outcome is

ρvac(H)− ρvac(H0) =
3
(

ξ − 1
6

)

16π2

[

H2
(

H2 − m2 + m2 ln
m2

H2

)

− H2
0

(

H2
0 − m2 + m2 ln

m2

H2
0

)]

+ · · ·

≃
3
(

ξ − 1
6

)

m2

16π2

[

−
(

H2 − H2
0

)

+ H2 ln
m2

H2 − H2
0 ln

m2

H2
0

]

,

(40)

where we have defined ρvac(H) ≡ ρvac(M = H, H) and similarly ρvac(H0) ≡ ρvac(H0, H0).
This equation provides the VED at the scale M = H in terms of the VED at another
renormalization scale M0 = H0, and hence it expresses the ‘running’ of the VED between
the two scales. One can see that such running is manifestly slow in the current universe,
which is consistent with the fact that the description of the cosmological expansion with a
rigid CC is approximately possible (as is the case for the ΛCDM). However, the present
RVM picture predicts a small departure from that rigid behavior since the VED is evolving
slowly with the expansion, and hence the effective CC too. As it is apparent, for the minimal
coupling situation (ξ = 0), there is still running of the VED, and this is also true for any
nonminimal coupling value ξ of the scalar field with gravity, except for the case ξ = 1/6,
where there is no running at all. This was expected because of conformal invariance.
In addition, owing to the aforementioned absence of ∼m4 contributions in this framework
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(which can be extremely large for any typical particle in the standard model of particle
physics), there is no need to perform an unnatural fine-tuning of the VED within this
renormalization context. This fact obviously alleviates the CCP in the RVM approach [15].

It is convenient to rewrite Equation (40) as follows:

ρvac(H) ≃ ρ0
vac +

3ν(H)

8π
(H2 − H2

0)m2
Pl , (41)

where ρ0
vac ≡ ρvac(H0) is identified with today’s value of the VED through the measured

CC. In addition, we introduced the effective ‘coefficient’

ν(H) ≡ 1
2π

(

ξ − 1
6

)

m2

m2
Pl

(

−1 + ln
m2

H2 − H2
0

H2 − H2
0

ln
H2

H2
0

)

. (42)

In point of fact, ν(H) is not a numerical coefficient, since it is a function of H. However,
due to the log behavior, it changes very slowly with the Hubble rate, and its evolution
from the last term quickly becomes suppressed for higher values of H above H0. Moreover,
because ln m2

H2 ≫ 1 at present (this actually true as well for the entire post-inflationary
history of the universe; see Section 4) ν(H) can be approximated by the effective parameter

νeff =
1

2π

(

ξ − 1
6

)

m2

m2
Pl

(

−1 + ln
m2

H2

)

≃ ϵ ln
m2

H2
0

, (43)

where

ϵ =
1

2π

(

ξ − 1
6

)

m2

m2
Pl

. (44)

Despite that both parameters are small (|νeff|, |ϵ| ≪ 1), we have νeff ≫ ϵ since
ln m2

H2
0
= O(100).

Therefore, for practical purposes, we can write (41) as follows:

ρvac(H) = ρ0
vac +

3νeff

8πGN
(H2 − H2

0) . (45)

Herein, GN ≡ 1/m2
Pl is assumed to be the currently measured value of the gravitational

constant. It is remarkable that this expression for the VED turns out to adopt the canonical
RVM form, see [15] and references therein7. The implied evolution of the VED is clearly
moderate, as the effective parameter νeff is expected to be small due to its proportionality to
m2/m2

Pl ≪ 1. However, the main contribution should come from scalar fields originating
from a typical Grand Unified Theory (GUT) at the scale MX ∼ 1016 GeV. Their large masses
and large multiplicities can make νeff still sizable for phenomenological considerations,
typically one expects νeff ∼ 10−3, although this theoretical estimate may vary within a few
orders of magnitude around this value [100].

From the phenomenological perspective, studies based on fitting the above RVM
formula to the overall cosmological data yield an estimate for νeff at the level of
νeff ∼ 10−2 − 10−4 [37,38]. The order of magnitude is therefore reasonable, since it falls
within the expectations of the mass spectrum and large particle multiplicities in a typical
GUT. Noteworthy, too, is the fact that these estimates on νeff lie in the ballpark of the primor-
dial Big Bang Nucleosynthesis (BBN) bounds obtained for this parameter in [101]. In actual
fact, the value of ν(H) around the BBN is smaller than νeff since H is larger than H0.

The equation of state (EoS) analysis is always very important in studies of the DE.
Using the RVM expression for the vacuum pressure, Equation (38), we can obtain the
leading form for the effective EoS of the running vacuum:
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wvac =
Pvac(H)

ρvac(H)
≃ −1 +

(

ξ − 1
6

)

Ḣm2

8π2ρvac(H)

(

1 − ln
m2

H2

)

. (46)

As it is obvious, wvac does not remain constant with the expansion; it takes on the
naive value wvac = −1 only for H = const. But this is never so in the current universe,
and therefore, the vacuum EoS is generally dynamical in QFT. The above equation can be
further worked out using Equations (41) and (42) for the VED:

wvac(z) = −1 +
νeff

(

Ω0
m(1 + z)3 + 4

3 Ω0
r (1 + z)4

)

Ω0
vac + νeff(−1 + Ω0

m(1 + z)3 + Ω0
r (1 + z)4 + Ω0

vac)
, (47)

where we have used the definition of νeff given in (43) and the current cosmological
parameters for matter and radiation: Ω0

i = ρ0
i /ρ0

c = 8πGNρ0
i /(3H2

0). Remarkably, the EoS
for the cosmological vacuum is a function of the redshift. The term producing a deviation
from the traditional value wvac = −1 is proportional to νeff and involves the leading
quantum effects. Thus νeff is responsible both for the dynamics of the VED and for the
dynamics of its EoS. For very low redshift z, the above expression is easily seen to boil
down to the very simple form

wvac(z) ≃ −1 + νeff
Ω0

m

Ω0
vac

(1 + z)3. (48)

The following interesting conclusion ensues. If we assume a positive sign for νeff,
the above equation predicts that the vacuum energy behaves as quintessence (wvac(z) ≳ −1)
around the current time, whereas if νeff < 0 it behaves effectively as phantom DE
(wvac(z) ≲ −1). It is interesting to note that for the typical values of νeff mentioned above,
the small deviation from −1 could be subject to measurement around the present time
and could act as a smoking gun of the underlying RVM mechanism. Although the EoS
Formula (48) is valid only for small values of the redshift z, the more precise Formula (47)
shows that at very high redshifts wvac → 0 or wvac → 1/3 depending on whether we
are in the matter- or radiation-dominated epochs, which are controlled by the redshift
factors (1 + z)3 and (1 + z)4, respectively. Thus, the vacuum adopts a kind of ‘chameleonic’
behavior: it tracks the EoS of matter at different epochs; see [33] for more details. All in
all, we should emphasize that these are dynamical properties of the quantum vacuum
which we have obtained from first principles, namely from explicit QFT calculations in the
FLRW background.

To graphically illustrate the above results, in Figure 1, we display the evolution of
the matter and vacuum energy densities normalized with respect to the critical density,
i.e., Ωi(z) = ρi(z)/ρc(z) (i = m, vac) for different values of νeff > 0, as well as the evolution
of the normalized Hubble rate to the present value, E(z) = H(z)/H0. As could be expected,
the departure from the standard model scenario is minimal for these observables and
small values of νeff. The truly remarkable effects deviating from the standard behavior can
instead be grasped in Figure 2, where we illustrate the dynamics of the vacuum EoS in
the low redshift region (which comprises the part that is relevant for type Ia supernova
measurements, up to z ∼ 2), as well as in the intermediate redshift region. In Figure 2a,
we assume νeff > 0 and include two sets of curves, one set (with dashed lines) based on
the approximate EoS (48) and another set (with solid lines) based on the more accurate
expression (47). For relatively low redshifts (z < 3), the approximate EoS formula works
pretty well, but at higher redshifts the more precise form becomes necessary. In Figure 2b,
instead, all curves use the exact expression (47). In it, we superimpose curves with both
signs of νeff. We can see that for νeff < 0 vertical asymptotes appear, caused by the fact that
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the denominator of Equation (47) vanishes. However, this is not a real singularity since
the energy densities remain finite at all times, see e.g., [102–104]. Finally, in Figure 3 we
display the EoS of the running vacuum in the extended redshift domain comprising the
matter-dominated epoch up to the radiation-dominated epoch, where one can appreciate
very clearly that at higher and higher redshifts the vacuum EoS tends to adopt the EoS of
the dominant matter component (namely, first wvac ≃ 0 and subsequently wvac ≃ 1/3).
This curious ‘chameleonic nature’ of the quantum vacuum, referred to before, is caused
by the quantum effects on the classical description. Despite the fact that wvac ≃ −1 at
present, the quantum corrections induce a deviation in the standard expectations, which
leads to an effective quintessence or phantom-like behavior (depending on the sign of
νeff). The canonical form w = −1 is recovered again, with great precision, in the very early
universe where inflation occurs. Nevertheless, we cannot show this part in Figure 3 since
the VED must first incorporate additional quantum effects that we have neglected in the
low-energy domain. We deal with this situation in detail in the next section.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Matter (  = 0.005)

Vacuum (  = 0.005)

Matter (  = 0)

Vacuum (  = 0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.5

2

2.5

3

3.5

 = 0.005

 = 0

(a) (b)

Figure 1. (a) Evolution of energy densities with the redshift for different values of νeff; (b) similarly
for the normalized Hubble rate E(z) = H(z)/H0. Differences are small for these observables with
the typically small values of νeff. The background evolution is essentially ΛCDM-like.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) (b)

Figure 2. (a) EoS of the running vacuum wvac(z) evolving with the redshift in the late universe.
Both the exact (47) and approximate (48) formulas for different positive values of νeff are shown.
The approximate curves deviate significantly from the exact ones for z > 3; (b) Here, we consider
both signs of νeff, and all curves follow the exact formula (47). The vertical asymptotes appear only
for νeff < 0; see the text for an explanation.
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Figure 3. EoS of the running vacuum wvac(z) up to a redshift range covering the entire FLRW regime
for three positive values of νeff. The low z region is described in more detail in Figure 2. The horizontal
dashed lines mark the EoS value of radiation (the higher line) and the limiting value for producing
acceleration (the lower one).

On the phenomenological side, the situation concerning the possible detection of signs
of dynamical DE looks encouraging in view of the recent data releases from the DESI
collaboration, see [105–107]. The results, using various parameterizations of the DE, seem
to point to quintessence behavior at low redshifts. This would be consistent with νeff > 0
within the RVM. However, the EoS behavior at higher redshifts is more difficult to assess
using simple parameterizations. In fact, direct comparison between parameterizations and
models in wide ranges of redshift must be performed with caution. We will have to wait
until more data are collected in the future.

4. H
4 Inflation from Running Vacuum

Inflation is a cosmic phenomenon that is necessary to cure a variety of serious incon-
sistencies of the ΛCDM. In its absence, we could not understand how causality laws could
arrange for securing the homogeneity and isotropy of the observed CMB, for instance,
or how to explain the high level of spatial flatness of the universe at present without
fine-tuning, or even its large amount of entropy today: S ∼ 1088 (in natural units). Since the
ΛCDM does not have the capacity to solve any of these problems and related ones, which
originate deep in the remote past, they are usually ‘fixed’ by postulating the existence
of a devoted scalar field (called the ‘inflaton’) which takes care of these arrangements
during the very first stages of the cosmic history [108]. Even if this quick fix or patch-up
of the malfunctioning of the ΛCDM in the early stages of the universe can be efficiently
implemented and is generally considered acceptable, we must recognize that it is not very
natural, since it is ultimately ad hoc. It should be much more natural that a unified theory
of cosmic evolution could explain the correct expansion history from end to end.

From our former considerations we have seen that the structure of the RVM contains
not only the necessary ingredients to influence on the physics of the current epoch through
a mildly time-evolving VED, but also to account for the evolution in the opposite end
of the cosmic span, namely at an epoch where the higher powers of the Hubble rate can
be really significant, in fact dominant. Thus, remarkably enough, this crucial segment of
the very early cosmic history also comes about encoded in the RVM framework. Indeed,
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once the vacuum energy density in cosmological spacetime is renormalized through the
off-shell adiabatic procedure, a definite prediction for a new mechanism of fast inflation
naturally emerges, which is characterized by a short stage, where H ≃ HI = const. early
on in the cosmic history. The value HI must, of course, be very large, presumably around
a characteristic GUT scale just below the Planck mass. The quantized matter fields in the
GUT constitute the material support for this framework. Hence, no ad hoc scalar field
potential associated with some inflaton is required [108]. It is instead the pure work of
gravity fueled by the quantum matter effects of the semiclassical theory. Such an alternative
form of inflation, based on the constancy of H for a short lapse of cosmic time, is what we
have called ‘RVM inflation’. To bring about an inflationary period with this mechanism,
we need powers of H higher than H2. Since only even powers of the Hubble rate are
permitted by the general covariance of the effective action, the next leading power is H4.
These powers are in fact available in our result (39) when we implement our setting M = H

for the renormalization scale, in the same way as we conducted for the current universe.
Given the fact that H > m for the very early universe (m being a typical particle mass in the
GUT), and that H0 ≪ m for the current Hubble parameter, we can neglect the contribution
from the VED at present. As a result, within a very good approximation, the VED at the
early universe can be expressed as follows:

ρvac(H) ≃
3
(

ξ − 1
6

)

16π2

[

H4 + H2m2
(

ln
m2

H2 − 1
)]

, (49)

where, for simplicity, we assume that the scalar fields of the GUT dominate the VED and
that their effect is represented on average by a single component of mass m. It is understood
that multiplicity factors may account for additional contributions. In the above equation for
the VED, the subleading effect attached to the H2 term is still kept as a correction, but now
the obvious leading power for the inflationary phase is H4. The above equation can be
conveniently rewritten as follows:

ρvac(H) =
3
(

ξ − 1
6

)

16π2 H4 +
3ν(H)

8πGN
H2 . (50)

In the above expression, we can use

ν(H) ≃ ϵ

(

−1 + ln
m2

H2

)

, (51)

with ϵ as in (44). Notice that the approximation (51) for ν(H) is fully justified in the high
energy regime since now H ≫ H0 and the last term of (42), which is proportional to H2

0 ,
can be neglected. As we shall see, during the inflationary period, H remains essentially
constant around a large value HI ≫ m. It follows that in this stage we can approximate
ν(H) by ν(HI) ≡ νI , given by

νI ≡ ϵ ln
m2

H2
I

. (52)

This parameter is the analogue of νeff in the inflationary epoch. We note, however, that
|νI | ≪ |νeff| since the logarithmic term in (52) is not as large (in absolute value) as in (43).
Below, we shall be more precise about the value of HI . Once inflation is left behind, the
more accurate form (51) may be necessary since H evolves towards values much smaller
than HI , so we must check its effect.



Universe 2025, 11, 118 20 of 33

4.1. Analytical and Numerical Solution of the H4 Inflationary Scenario

As a first approach on our way to solving the cosmological equations with the VED
given by Equation (50), let us assume that ν(H) in that equation can be approximated by
the mentioned constant value νI from (52). This is tantamount to assuming that the effect
of the logarithmic term in it is negligible even after inflation. We will come back to this
point later on, but let us make things simple to start with. For ν(H) = ν(HI) ≡ νI constant,
the cosmological equations can be solved analytically. In this case, Equation (50) can be
considered as a particular case of the generalized VED form8

ρvac(H) =
3
κ2

(

c0 + νH2 +
H4

H2
I

)

. (53)

We used the notation κ2 = 8πGN = 8π/m2
Pl. The above template for the VED

actually encompasses the unified description of the cosmic history in the RVM context
from the very early times to our day. In the absence of quadratic and quartic powers of H,
the parameter c0 in this equation would be related to the cosmological constant that we
have measured today simply as Λ = 3c0. However, in the presence of the dynamical terms,
this is no longer true, as the physical value of the cosmological term at present (H = H0) is
Λ = κ2ρvac(H0). Since ν is small and H ≪ HI today, the previous relation between Λ and
c0 is still approximately true, but the fact that it is not exactly true means that in general
ρvac(H) evolves with the expansion, and so does Λ(H) = κ2ρvac(H) in this class of models.
Near our time, we can neglect the H4 term, as we performed previously, and we recover the
simpler form (45), whereas in the early universe the H4 power becomes dominant and we
may completely neglect the constant term c0, which, as we have seen, is of the order of the
measured CC value today, but we can still keep the H2 term as a subdominant correction.
The cosmological equations to solve are therefore the following:

3H2 = κ2(ρrad + ρvac) ,

3H2 + 2Ḣ = −κ2(Pvac +
1
3

ρrad) .
(54)

In these equations, we are considering that at this stage of the primeval cosmic history,
we just have vacuum energy and relativistic particles (i.e., radiation, with EoS wrad = 1/3)
exchanging energy. Notice that since we aim at an inflationary solution for H =const., the
vacuum pressure satisfies the traditional equation of state Pvac = −ρvac during the very
short inflationary period, as can be seen from Equation (36). This allows us to combine the
above two equations (54), together with Equation (53), into the following one:

Ḣ + 2H2 = 2(νH2 +
H4

H2
I

) , (55)

where, as noted, we neglect the small parameter c0 which is relevant only at the current time.
It is apparent from it that there exists an inflationary solution for H = const., specifically
for H = HI

√
1 − ν ≃ HI , which is the starting point for inflation. However, there is an

evolution of the Hubble rate from this point onward, which can be computed by solving
Equation (55). An exact analytical solution is possible for ν = const in terms of the scale
factor (recall that d/dt = aHd/da), with the following outcome:

H(a) =
√

1 − ν
HI

√

1 + Da4(1−ν)
. (56)
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Introducing this result into Equation (54), we can also solve analytically for the energy
densities of a vacuum and radiation:

ρvac(a) =
3H2

I (1 − ν)(1 + νDa4(1−ν))

κ2 (1 + Da4(1−ν))2
, (57)

ρrad(a) =
3H2

I (1 − ν)2Da4(1−ν)

κ2(1 + Da4(1−ν))2
. (58)

Here, D is an integration constant that is determined by the condition ρvac(aeq) =

ρrad(aeq). The latter defines the equality point aeq where the vacuum energy density
at the end of the inflationary epoch equals the radiation energy density, and this also

defines the early start of the radiation era. Thus, we find D = 1
1−2ν a

−4(1−ν)
eq ≡ a

−4(1−ν)
∗ .

The above cosmological solution is general for a VED of the form (53) and for c0 null or
negligible. Previous studies considered that form on pure phenomenological grounds
without establishing any fundamental connection with QFT calculations, see [14,71–76].

In our case, we derived the VED structure (53) in the context of QFT in curved
spacetime, and we show that at low energies, ν in (53) is effectively described by νeff,
given by Equation (43), whereas at much earlier times (viz. those relevant for the study of
inflation and its connection with the radiation-dominated era), ν is essentially given by νI ,
Equation (52), with some evolution (51) during the transit into the radiation-dominated
epoch, whose impact we still have to carefully assess.

It is particularly convenient to re-express the above solution in terms of the rescaled
variables â = a/a∗ and H̃I =

√
1 − νHI :

H(â) =
H̃I

√

1 + â4(1−ν)
, (59)

ρvac(â) = ρI
1 + νâ4(1−ν)

[1 + â4(1−ν)]2
, (60)

ρrad(â) = ρI(1 − ν)
â4(1−ν)

[1 + â4(1−ν)]2
, (61)

where we have introduced the total energy density at the early start of the inflationary
period: ρI =

3
κ2 H̃2

I . It is remarkable to observe that the initial point a = 0 is nonsingular in
this framework since the Hubble function and the energy densities are well-defined func-
tions taking finite values at that point: H(0) = H̃I , ρvac(0) = ρI =

3
κ2 H̃2

I and ρrad(0) = 0.
In other words, RVM inflation is characterized by a nonsingular de Sitter phase.

It is also interesting to note that once we leave inflation behind and enter deep into
the radiation-dominated epoch, i.e., when â ≫ 1 (or a ≫ a∗) we obtain the following
asymptotic behavior: ρrad(â) ≃ ρI(1 − ν)â−4(1−ν) ≃ ρI a4

∗ a−4 for small |ν| ≪ 1. This
behavior is essentially coincident with the standard evolution law of the radiation energy
density: ρrad = ρ0

rada−4. This allows to derive a useful estimate for a∗ which depends in
part on measured parameters:

a∗ ∼
(

Ω0
rad

ρ0
c

ρI

)

1
4

. (62)

We shall use this relation later on to estimate the numerical value of a∗ once we assess
the order of magnitude of ρI . Notice also the following important point, which can be
read off immediately from Equations (60) and (61). During the radiation-dominated epoch,
the vacuum energy is suppressed by the small factor ν (i.e., ρvac/ρrad ∼ ν) and hence the
primordial BBN period can proceed standard [101].
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The scale of inflation H̃I in our QFT context can be determined by comparing
Equations (50) and (53). We find

HI =

√

2π

ξ − 1
6

mPl . (63)

The above scale is not well defined in the conformal limit since there would be no
running of the VED to account for inflation. In addition, we cannot accommodate a minimal
coupling (ξ = 0) in the presence of a single scalar field. Therefore, we need a nonminimal
coupling satisfying ξ > 1/6. This is to be expected, since only if this condition is met,
the coefficient of the leading power H4 in Equation (50) would be positive to trigger
inflation. However, with multiple scalar fields with different nonminimal couplings ξi, that
condition could be relaxed and some of them (but not all) could be vanishing.

Notice that Equation (63) can also be written in terms of the particle mass as follows:
HI = m/

√
ϵ using Equation (44). This shows that H ≫ m during inflation since ϵ ≪ 1.

For example, if we take into account the estimate νeff ∼ 10−4–10−2 [37,38] obtained from fit-
ting the low energy data (i.e., from the current cosmological observations), we find from (43)
that ϵ ∼ 10−6–10−4, which implies that H/m ∼ 100–1000 during the inflationary period.
The estimate on ϵ determines in turn the order of magnitude of the nonminimal coupling pa-
rameter: ξ − 1/6 = 2πϵ(mPl/m)2. For particle masses near the GUT scale, m ≲ MX ∼ 1016

GeV, we have ξ = O(100–1000), so HI < mPl. However, as we have indicated, the final
result will depend on the multiplicity of fields in the particular GUT considered. Finally,
from Equation (52) and the above results, we find νI = ϵ ln(m2/H2

I ) = ϵ ln ϵ, and hence
we can estimate numerically that |νI | = O(10−5–10−3).

Recall that the analytical solution (59) was based on solving the differential Equa-
tion (55) under the assumption that ν = νI = const., whose numerical value we have just
estimated. This should be reasonable for the pure inflationary period (â < 1). However,
when ν = ν(H) evolves with the expansion, even as slowly as in Equation (51), we should
expect some modification of the above picture. During inflation, H ≫ m, but when inflation
is over the Hubble rate can get close to m and even substantially smaller. To check the
impact of an evolving ν(H) in the immediate post-inflationary regime, e.g., when we enter
the primordial radiation-dominated epoch, we need to solve Equation (55) numerically. We
have used Mathematica for that [109]. The result is shown in Figure 4.
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Figure 4. (a) Numerical solution of the VED (solid line) versus the analytical solution (60) (dotted
line) around the transition time from inflation to the radiation epoch; (b) Numerical solution for both
the VED and the radiation energy (61) densities during the same transition period. In both cases,
ν = 10−4, and m is of the order of a GUT scale, the dependence being only logarithmic.
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We only need to fix m and ϵ, which we already performed in the context of a typical
GUT, and of course also a boundary condition for H at the beginning of the radiation epoch
when the inflationary period comes to an end. Since |ν| ≪ 1, the analytical result (59) can
be used for the boundary condition of the numerical solution. Therefore, we impose that
for â = 1:

H(â = 1) ≃ 1√
2

HI =
1√
2

m√
ϵ

. (64)

We note that for â ≪ 1 the huge Hubble rate makes the system of equations insensible
to ν. However, for â ∼ 100 the VED has decayed enough into radiation and the precise value
of ν(H) can play a role. Taking e.g., ϵ ∼ 10−5 within our former estimate, the numerical
solution yields H(â = 100) ∼ 10−5mPl, and hence from (51) we find ν ∼ O(10)ϵ at this
point. This contrasts to the situation where ν is fixed at the inflationary regime value (52),
since in such a case νI even has the opposite sign to ϵ because H ≫ m. When we move on
to the low-energy stage, in which H ≪ m, the sign of ν switches to that of ϵ and remains so
until we approach the late universe when ν → νeff and Equation (43) holds.

Let us now compare the numerical analysis of the energy densities in Figure 4 with the
results of the analytical solution. From that figure, we can see that in the beginning (â = 0)
there is no radiation at all while the vacuum dominates and its energy density is the total
energy density of the universe, ρI . This is also clearly reflected in the analytical solution
for the vacuum and radiation energy densities, Equations (60) and (61). The vacuum then
starts to decay very fast into radiation and the inflationary period ‘graceful exits’ into
the standard FLRW radiation-dominated epoch. Moreover, after the universe exits the
inflationary phase, which occurs for â ≫ 1, both energy densities scale approximately as
ρ ∼ a−4, although the VED is suppressed by a tiny coefficient ν—which in this regime
is actually the function ν(H), and hence this part can only be handled exactly through
the numerical solution. The vacuum further evolves and its EoS changes from −1 during
the inflationary period into wvac −→ 1/3, i.e., adopting the same EoS as that of radiation,
as previously noted from Equation (47). In the case of the very early universe, this can be
clearly appreciated in Figure 5.
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Figure 5. EoS of the running vacuum in the very early universe, as a function of â = a/a∗. It is shown
the transition from the value at inflation (wvac = −1) into de radiation-dominated epoch, where the
vacuum adopts the EoS of radiation: wvac = 1/3. Compare with Figure 3.

Overall, the inflationary epoch leads in a continuous way into the canonical RVM
description of the late universe that we have studied in the previous section (see
Equation (45)), which remains very close to the standard FLRW picture but possesses
a mildly evolving VED as a fundamental distinctive feature. It is important to stress that
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the RVM account of the early cosmic history is capable not only of achieving a graceful exit
from the inflationary era but also of leaving a remnant VED during the radiation-dominated
epoch that is highly suppressed in front of the energy density of radiation. This fact is
crucial in order not to spoil the successful explanation of the BBN by the standard model
of cosmology [101]. At the end of the day, it is reassuring to see that the analytical and
numerical analyses of the cosmological transit from the inflationary phase into the standard
radiation regime both lead to consistent conclusions.

Some more details can be of interest, and we comment on them now briefly. For ex-
ample, the corrections of order ∼H2 become relevant only for the stage when the VED
decreases. As can be seen in Figure 4, the analytical solution proves to be quite reasonable
in almost all relevant regimes, since it only misses the abrupt decay of the VED at the
point H = m, which corresponds to a root of the equation ρvac(H) = 0, that is, we have
ρvac(m) = 0, as is apparent from Equation (49). This root ultimately stems from our subtrac-
tion procedure (cf. Section 3) and is exact when we keep only the high-energy terms of the
VED, which are the only relevant ones in the early universe. At this point, ν(H = m) = −ϵ,
according to (51). An amplification of this transition region for the VED from inflation into
the radiation regime is displayed in Figure 6. After the sharp trough in that figure, where
the VED essentially vanishes, there is a local maximum that can be determined numerically
and lies at â ≃ 26.1, a point that is already far from the inflationary stage. This is consistent
with the fact that it corresponds to the point m/H ≃ 2.218 in the figure (marked with a
vertical line) and hence at this point H is already below the value of m. We also remark that
despite the drastic transitory effect on the VED caused by the presence of the logarithm,
the impact on ρrad(a) and H(a) is negligible since the analytical approximations previously
found are virtually indistinguishable from the numerical solution; see Figure 4b. This is
because at the time when ρvac(H) is sensitive to these transitory effects, the vacuum energy
is already subdominant and the universe is well within the radiation-dominated epoch.

Figure 6. Numerical detail (in a normal scale) of the part of Figure 4 around the sharp dip produced
by the logarithmic term of the VED in Equation (49) once the early radiation epoch is attained and
the H4 power becomes subdominant versus the overall O(H2) contribution. Shown are the full VED
(solid line) and the individual contributions from the H4 and H2 terms (dotted lines).

4.2. Thermodynamic Aspects of H4 Inflation

We should also note that the thermodynamic history of RVM inflation is different from
the conventional one associated with, say, scalar inflaton. Strictly speaking, there is no
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intermediate stage of (highly nonadiabatic) ‘reheating’ [108], characterized by superheavy
massive particles decaying into conventional particles. In this sense, it is also different from
the Starobinsky type of inflation [89], in which, as already remarked, H never goes through
an inflationary regime characterized by H = const. and where, in addition, there is an
intermediate state of decay of the scalaron field. Here, in contrast, there is a continuous
heating-up process caused by the decay of the quantum vacuum into relativistic particles.
The energy reservoir of RVM inflation stems from the H4 nonlinearities imprinted on
the external gravitational field of the very early universe by the quantum fluctuations
associated with the quantized matter fields. This is the ultimate driving force of RVM
inflation and the reason why the RVM has no horizon problem. Indeed, since H ≃ HI

remains approximately constant during inflation, a light pulse beginning in the remote
past at t = t1 ≳ ti (i.e., shortly after inflation started at ti) will have traveled until the end
of inflation, t f , the physical distance

dH(a f ) = a(t f )

ˆ a f

a1

da′

a′2 H
=

a f

HI

(

1
a1

− 1
a f

)

≃
(

a f

a1

)

H−1
I . (65)

Since a f is exponentially larger than a1 at the end of inflation, we have a f /a1 ≫ 1; so,
the above integral (the particle horizon) can be as big as desired. Therefore, all entropy
production is causally produced, in contrast to the standard ΛCDM model for which
dH(a)/a → 0 for a → 0 (and hence observers become isolated in the past).

The temperature of the heat bath generated from the decay of the primeval vac-
uum follows from equating the radiation density ρrad(a), given by Equation (61), to the
black-body formula (π2/30)g∗T4, where g∗ = O(100) is the number of active degrees of
freedom (d.o.f.) at the given temperature (e.g., g∗ = 160.75 in non-super-symmetric SU(5)).
This yields

Trad(â) = TI (1 − ν)1/4 â(1−ν)

[

1 + â4(1−ν)
]1/2

, (66)

where, for convenience, we associated a temperature TI with the formerly defined total
energy density through ρI =

π2

30 g∗ T4
I . The maximum of the radiation temperature can be

easily computed from Equation (66) and is achieved at precisely the point â = 1 (a = a∗),
with the following value:

Tmax =
TI√

2
(1 − ν)1/4 ∼

(

45m2
Plm

2

16π3g∗ϵ

)1/4

=

(

45
8π2g∗(ξ − 1/6)

)1/4

mPl , (67)

where, in the above approximation, we have neglected terms of order |ν| ≪ 1. From the
typical estimates on g∗ and ξ mentioned above, it is easy to verify that this temperature
remains one order of magnitude below the Planck mass, which is meaningful. Notice that
for â ≫ 1 (i.e., a ≫ a∗, corresponding to a region deep into the radiation-dominated epoch),
the scaling of the temperature (66) with the scale factor is

Trad a1−ν = const. (68)

Since |ν| ≪ 1, we virtually recover the canonical scaling law of the adiabatic regime:
Trad ∝ 1/a.

Relevant for this thermodynamic discussion of RVM inflation is certainly the issue of
entropy production. Associated with the above radiation temperature, we may compute
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the corresponding (comoving) radiation entropy Sr = (4ρr/3Trad)a3 [108]. The result is
the following:

Sr(â) =
2π2

45
g∗T3

rada3 =
2π2

45
g∗ T3

I a3
∗ (1 − ν)3/4 â6−3ν

[

1 + â4(1−ν)
]3/2

. (69)

From this formula, we can see that during the heating-up period, the comoving entropy
rockets approximately as the sixth power of the scale factor, S ∼ â(6−3ν) ∼ â6, until it finally
reaches an approximate saturation plateau in the radiation-dominated phase:

Sr(â ≫ 1) ≃ 2π2

45
g∗ T3

I a3
∗(1 − ν)3/4 â3ν ≡ Sr0 â3ν . (70)

It is not an exactly flat plateau for ν ̸= 0, but since ν is small, the ulterior evolution of
the entropy is much more tempered. Equation (70) stands for the (approximate) asymptotic
comoving entropy. For ν = 0 the quantity g∗T3

rada3
r becomes conserved during the adiabatic

phase, and hence, it must equal the current value gs,0 T3
γ0 a3

0, in which Tγ0 ≃ 2.725 K (CMB

temperature now) and gs,0 = 2 + 6 × (7/8)
(

Tν,0/Tγ0
)3 ≃ 3.91 is the entropy factor for the

light d.o.f. today, computed from the ratio of the present neutrino and photon temperatures.
The upshot is that the huge entropy enclosed in our horizon today, H−1

0 , namely

S0 =
2π2

45
gs,0 T3

γ0

(

H−1
0

)3
≃ 2.3h−31087 ∼ 1088 (h ≃ 0.7), (71)

can be explained from the approximately asymptotic value (70) acquired in the radiation
epoch after vacuum decay. This result cannot be accounted for in the standard model of
cosmology without violating causality, this being the origin of the entropy and horizon
problems [108]. In the present RVM framework, the large entropy generated at the end of
the inflation period is transferred to the radiation phase, and then it is preserved by the
standard (adiabatic) evolution, up to a small ν-dependent correction. Thus, the observed
entropy was causally produced in our remote past, and the result does not depend on the
details of the underlying GUT.

If only within a rough order of magnitude, it is easy to convince oneself from the above
formulas that to match the desired total amount of entropy in the context of RVM inflation,
we need to fulfill the condition TI a∗ ∼ Tγ0 ∼ 10−13 GeV. This relation must be satisfied
within the order of magnitude so as to connect the inflationary epoch and the current
epoch. It is a nontrivial condition in that Tγ0 is a measured quantity at present, whereas
TI and a∗ are primordial parameters that belong to the very early universe and which we
have previously estimated. Let us check that relation in an approximate way. Upon using
ρI = 3H2

I m2
Pl/8π in combination with Equation (63), and considering ξ = O(103) within

the range of our estimate for this parameter, we find ρI ∼ 1073 GeV4. Next, using this result
together with the measured quantities Ω0

rad ∼ 10−4 and ρ0
c ∼ 10−47 GeV4 in Equation (62),

we can extract the following estimate for the inflationary scale a∗:

a∗ ∼
(

10−4 10−47

1073

)1/4

∼ 10−31 . (72)

Putting the numbers together, we arrive at an estimate of the temperature at which the
bulk of the radiation entropy was produced and subsequently leveled off: TI ∼ Tγ0/a∗ ∼
1018 GeV, or equivalently TI ∼ 0.1mPl, a result which is indeed in the ballpark of our
original estimate for TI . This shows the numerical consistency of our result within the
rough order of magnitude. Notice that in performing the check, we also utilized the range
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of fitted values of νeff, which was necessary to acquire an estimate for ξ. Of course, a more
detailed calculation ought to take into account the multiplicity of fields in the theory and
other considerations, but it is rewarding to see that the order of magnitude is nevertheless
in place.

We should emphasize that the above discussion of RVM inflation has been derived
within the general QFT formulation of the running vacuum approach [15], which goes
well beyond previous phenomenological considerations on these matters. Our approach
provides a theoretical basis for a possible solution to these cosmological problems within
fundamental physics. As noted in [75], the clues to cosmological problems of the present
may well have profound roots in the past.

Let us finally mention that although H4 inflation is the simplest inflationary scenario in
the context of the RVM, higher powers of the Hubble rate can also participate, for example
H6/m2. These powers appear explicitly in the adiabatic expansion regardless of the value
of the renormalization scale, although their calculation is more cumbersome; see [32,34].
However, H4 inflation is the canonical mechanism for considering the transition to the
radiation epoch. Furthermore, as noted in the Introduction, it has a stringy counterpart
which is based on a process of Chern-Simons condensation in the very early universe [78,79].
In general, H4 inflation in its various forms is very convenient as it allows one to make
contact with the exact de Sitter solution. This will be shown in a forthcoming publication.

5. Discussion and Conclusions

In this work, we have further elaborated on the idea that the vacuum energy density
(VED) in quantum field theory (QFT) in the expanding universe is a dynamical quantity
which can provide a fundamental explanation not only for the dark energy (DE) but also
for its time evolution throughout the cosmic history. This is the essence of the approach
called the running vacuum model (RVM); see [12–15] and references therein. For more
technical details on recent developments, see [31–34]. Using the effective action approach,
we have revisited the computation of the renormalized energy–momentum tensor (EMT) of
a quantized scalar field nonminimally coupled to the FLRW background. We have derived
the corresponding VED, and we have analyzed the consequences both for the current and
for the very early universe. The RVM approach indeed provides a nice unified picture of
the cosmological evolution, which differs very little from the standard ΛCDM cosmological
model in the late universe but provides a significant completion of the cosmic history at
very early times; in particular, it describes the inflationary phase and its connection with
the radiation-dominated epoch, a link which is completely missed by the ΛCDM model,
wherein inflation is not described at all.

In our RVM context, we use an off-shell adiabatic renormalization prescription. As in
any renormalization calculation in QFT, the renormalized VED in that context depends on
a floating scale M. The existence of such a scale is characteristic of any renormalization
scheme in QFT due to the intrinsic breaking of conformal invariance by quantum effects.
The value of M plays the role of the renormalization point. The various epochs of the
cosmic history (characterized by the value of the Hubble rate, H) are explored by setting
that scale to the value of H at each epoch. The VED emerges as an expansion in an even
number of time derivatives of the scale factor, which can be conveniently rephrased in
terms of H and its time derivatives, ρvac = ρvac(H, Ḣ, Ḧ, . . .). The obtained expression
for the VED can then be used to explore the entire history of the universe from the very
early times where inflation occurs (triggered by the quantum effects associated with the
quantized matter fields), going through the radiation- and matter-dominated epochs until
reaching the current DE epoch. In this framework, what we call the dark energy density
can be thought of as the remnant tail of the huge VED that brought about the exponential
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inflation at the very early times and is still decaying very slowly at present. Therefore,
the RVM predicts in a natural way that the DE is dynamical.

In a number of phenomenological studies, the RVM has been successfully confronted
with a large number of cosmological observations, and it has been shown to seriously
compete with the corresponding ΛCDM description of the same data [39–43]. The currently
preferred fitting values for the parameter νeff that controls the running of the VED fall in
the ballpark of ∼10−3 (depending on particular realizations, see [37,38]). Such analyses
also show that the H0-tension and the growth tension can both be significantly alleviated in
the RVM context. These positive phenomenological implications notwithstanding, perhaps
the principal message of the RVM picture of the cosmic expansion is the following: neither
the VED at the present time, ρ0

vac = ρvac(H0), nor the associated cosmological ‘constant’
Λ = 8πG ρ0

vac that we have measured, are really constants of nature in a fundamental QFT
context. For, at any expansion history time, the VED is given by the above-mentioned
function of H and its time derivatives, and the associated cosmological term is dynamical
too: Λ(H) = 8πG(H) ρvac(H). Needless to say, the dynamics is smooth enough so as to
make them appear as approximately constant and hence preserve the basic properties of
the ΛCDM. In other words, the RVM behavior around the present time (and for that matter
during the entire post-inflationary epoch) is essentially ΛCDM-like. The VED change
between two nearby epochs in recent history is δρvac ∝ νeffH

2, where the small parameter
|νeff| ≪ 1 is calculable in QFT and plays the role of β-function of the VED running [15]. Not
less remarkable is the fact that the VED is free of the undesired quartic mass contributions
∼m4 from any quantum matter field with a nonvanishing rest mass [31,32]. If they were
present, these contributions would recreate the need for extreme fine-tuning, and hence
would reproduce such an ugly feature of the cosmological constant problem [5]. Obviously,
this theoretical property of the RVM is truly remarkable.

In the high-energy domain, i.e., for the very early universe, the RVM provides a
genuinely new mechanism of inflation based on a period where H = const. The driving
force of RVM inflation is embodied in higher-order terms HN (N ≥ 4) that appear as
additional quantum effects on the effective action of a vacuum. These terms are irrelevant
for the present universe, but play a major role in primeval cosmic times. Here we have
focused on the lowest-order even power that is capable of unleashing inflation in the very
early universe, namely H4. We found that it can describe the transition from the high-energy
densities and entropy of the very early times into the standard FLRW regime. Therefore,
it can implement the graceful exit of the inflationary phase into the radiation-dominated
epoch and eventually lead to the current epoch. In the process, the RVM can overcome the
flatness and horizon problems as well as the entropy problem, which is a thermodynamic
reformulation of the latter. We have checked that RVM inflation can indeed account for the
large entropy observed today in a way consistent with causality.

Last but not least, a potentially important implication of the RVM picture for the
current universe (and hence subject to physical measurement) bears relation to the vacuum
equation of state (EoS), which receives quantum corrections in our QFT context. Despite
the background cosmology of the RVM being almost indistinguishable from the ΛCDM in
the late universe, the vacuum EoS deviates slightly from w = −1 and can effectively mimic
quintessence around the present time (wvac(z) ≳ −1) or phantom DE (wvac(z) ≲ −1),
depending on the sign of νeff. Interestingly, this result is actually consistent with generic
parameterizations of the dynamical DE that have been revived from the recent release of
DESI measurements [105–107]. Dynamical DE could be dynamical vacuum energy. It is to
be noticed that our conclusions have been derived within the framework of QFT in curved
spacetime, and therefore, they might provide a fundamental explanation of dynamical DE
in terms of a running vacuum within a unified theory of cosmological evolution.
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Notes

1 For an informal introduction to the Cosmological Constant Problem, see [16]. For a more formal exposition of the problem along
the lines of our presentation, see [15].

2 Despite the notation, the term ρΛ has no a priori relation with the bare cosmological term of a gravitational action since there is
no gravity in this (flat spacetime) context. See, however, the next section.

3 Our metric and curvature conventions are as in [32], see particularly Appendix A of that reference.
4 Off-shell renormalization is actually the clue to our approach [31,32], as is also the case in other QFT contexts. For example,

the entire QCD theory of strong interactions is renormalized off-shell since the quarks do not participate on-shell in their
interactions with gluons. Also, in quantum electrodynamics it allows to discuss the renormalization group running of the fine
structure constant, whose confirmation was a major triumph of RG theory. As a matter of fact, off-shell renormalization is
completely natural in cosmology if we take into account that the characteristic energy parameter H (in natural units) during most
of the cosmological evolution is certainly much smaller than the average mass of any known particle. The exception is during the
inflationary period, which we deal in detail in Section 4.

5 In fact, our final renormalized result depends on M only, not on the auxiliary µ introduced for DR regularization purposes.
In contrast, in the approach of [97], which lacks of our subtraction prescription at M, the final results still carry explicit µ-
dependence and calculations lead to the unwanted ∼m4 contributions responsible for extreme fine-tuning in the CCP.

6 The vacuum effective action depends on the renormalization scale M since it is only a part of the full effective action. In fact,
in the QFT context the classical part of the action, Equation (17), is also dependent on M through the running couplings. This is
how the full renormalized effective action is independent of M, as the bare action itself.

7 We note that the canonical RVM form (45) of the VED, which in our case emerges from off-shell ARP renormalization of the
EMT in QFT in curved spacetime, has also been independently highlighted in recent studies of dynamical dark energy in the
context of lattice quantum gravity using also the same scale setting M = H [98]. Remarkably enough, these authors obtain
numerical lattice calculation estimates for ν in the ballpark of the fitted values for this parameter from the analyses of cosmological
observations [37–43]. For recent work exploring the running vacuum energy density in cosmology from different perspectives,
see e.g., [99].

8 In general, we could also have G = G(H) rather than just GN [32]. However, for the sake of simplicity and aiming to obtain an
exact analytical solution of the cosmological equations we shall not consider this possibility here.
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