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Chapter 1

Introduction

1.1 Motivation

With the discovery of the non-point-like nature of hadrons and nuclei from
electron scattering experiments [Hof57,Hof63] the investigation of the structure
of hadronic systems has become a vivid field of research in modern nuclear
and particle physics. According to quantum chromodynamics (QCD), which is
accepted as the fundamental theory of the strong interaction, hadrons are bound
states formed by strongly interacting quarks. The details of this mechanism are,
however, not completely understood due to calculational difficulties that arise
with a strongly-interacting quantum field theory in the low energy regime (see
for example Ref. [AH03]). The nuclear force acting between nucleons is regarded
as a residual force of the underlying strong interaction and it is responsible for
the binding of nucleons to form nuclei.

Ab initio calculations of hadron masses and the structure of hadrons require
the non-perturbative solution of the QCD bound-state problem. This can be
done by lattice as well as continuum methods, but only on account of enormous
computational efforts. Therefore many effective models have been developed
with the purpose of a phenomenological description of hadronic properties. It
is clear that such models, describing phenomena at length scales of nuclei (and
smaller) and at energies and momenta used in electron-nuclei scattering ex-
periments, should incorporate both, quantum theory and special relativity. A
particular model that does not exhibit the difficulties of a strongly interacting
quantum field theory at low energies and at the same time unifies quantum
theory and special relativity is relativistic quantum mechanics. The foundation
of such a model has been laid by Wigner [Wig39] and Bargmann [Bar54]. Con-
temporaneously, with his work about the forms of relativistic dynamics [Dir49],
Dirac found 3 preferred ways how to include interactions into a relativistic the-
ory. He called them instant, front and point form according to the hypersurfaces
in Minkowski space that are left invariant under the action of maximal sets of
Poincaré transformations which are not affected by interactions (these are called
kinematic). The point form, in particular, is characterized by the kinematic na-
ture of Lorentz boosts and rotations.

The point form of dynamics has already been considered in the context
of quantum field theory (see, e.g., Refs. [FHJ73, GRS74, BKSZ08, Kli08]).
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8 Introduction

How to put the idea of a point-form quantum field theory into practical
use is currently under investigation using the analytically solvable Schwinger
model [Sch51, Sch53]. The long-term goal is then to end up with a point-form
formulation of QCD (for a recent review, cf. Ref. [BKS11b]).

The point form can also be applied to quantum systems with a finite
number of degrees of freedom which brings up the notion of point-form rela-

tivistic quantum mechanics (PFRQM). A particularly simple Poincaré invari-
ant prescription how to set up an interacting quantum mechanical model is
the Bakamjian-Thomas construction [BT53]. What one looses, however, in a
Bakamjian-Thomas framework (for more than 2 particles) is cluster separabil-
ity [Sok79,CP82] (for a detailed discussion of this problem see Ref. [KP91]). For
the three-particle case a solution to the cluster problem (formulated in terms of
S-operators) has been given by Coester [Coe65]. A general solution for an arbi-
trary number of particles has been proposed by Sokolov by introducing unitary
operators, so-called packing operators, that restore cluster separability [Sok79].
This solution is, however, rather formal and cumbersome for practical purposes.

PFRQM has already been applied quite successfully to various problems of
relativistic few-body physics, like, e.g. for the calculation of masses [GPVW98,
GKP+05,MPS08], strong decays of hadrons [MPW05,MPS07, SMP07], strong
form factors [MCP09], axial charges [CPW10a,CPW10b] and for a classification
of baryons [MPS08].

In the present work we concentrate on the study of electromagnetic prop-
erties of few-body systems. The phenomenological quantities associated with
the electromagnetically probed structure of a hadronic bound system are the
electromagnetic form factors. They encode, in a relativistic invariant manner
all effects coming from the underlying QCD that influence the electromagnetic
vertex of the bound state.

Finding a microscopic description of the form factors amounts to finding
an expression for the electromagnetic bound-state current in terms of the elec-
tromagnetic constituents’ currents and bound-state wave function. Due to the
requirement of covariance the current cannot be the simple sum of the con-
stituents’ currents. This has first been realized by Siegert [Sie37]. Further
constraints on the bound-state current come from the requirements of current
conservation and cluster separability [Lev95].

There have been various attempts within relativistic few-body physics to cal-
culate form factors. For instance, the form factors of the most simple hadronic
systems like the π meson, the ρ meson and the deuteron have been investigated
extensively in different approaches, most of them using light-front dynamics;
see, for example, Refs. [CPCK88,BH92,CPSS95,CK99,AKP01,BCJ02,GG02,
Jau03,CJ04,dMFPS06,BdT08,CKMB09]. Also PFRQM has already been used
to analyze the electromagnetic structure of such simple hadronic two-body sys-
tems; see, for example, Refs. [Kli98a,AK98,AKP01,WBK+01,B+02,MBC+06,
MBC+07]. In these approaches the point-form spectator model is used to define
an electromagnetic current operator which satisfies already all necessary require-
ments in order to be compatible with a particular interaction model [Lev95].

In the present work we follow, however, a different strategy. Instead of mak-
ing an ansatz for the most general current on which the necessary constraints are
imposed, we rather derive a microscopic bound-state current that exhibits the
required properties. Our approach is based on a relativistic multi-channel frame-
work proposed by Klink [Kli03a], using field theoretical vertex interactions that
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are implemented in the Bakamjian-Thomas construction. This multi-channel
formalism has already been applied successfully to different relativistic few-
body problems like, e.g., for the calculation of vector-meson masses and partial
decay widths within the chiral constituent model [Kra01,KSK03,Kle10,KS10],
the study of the hydrogen atom and positronium [Lec03] and for the derivation
of a mass operator for pion-nucleon and nucleon-nucleon scattering using chiral
perturbation theory [GVK07]. This formalism, adapted to electron-bound-state
scattering, allows to calculate electromagnetic bound-state currents. It was first
proposed in Ref. [Fuc07] for the case of a pseudoscalar quark-antiquark bound
state in which the quarks were treated, for simplicity, as spinless particles. De-
spite this simplification, the form factor results were already quite promising.
In particular, they showed perfect numerical agreement with the results of the
standard front-form approach by [CCP88]. The deeper reason for this equiva-
lence was, however, not yet evident. The present work, where the constituents’
spins are fully taken into account, attempts to give an explanation to this ques-
tion. Moreover, by investigating spin-0 and spin-1 form factors and addressing
the cluster problem we will find quite remarkable similarities with the covariant
light-front approach of Refs. [KS94,CDKM98]. The present work contains also
part of a benchmark calculation of the deuteron form factors, whose aim is to de-
fine more accurately the meaning of ‘relativistic effects’ in different approaches
of few-body physics. As a common starting point, we propose a simple model
for the nucleon-nucleon interaction in the spirit of the Walecka model [Wal74].

The same coupled-channel formalism has also been applied very recently to
calculate electromagnetic and weak form factors of heavy-light systems [GRS11,
GRS10]. Therein, a simple analytical expression for the Isgur-Wise func-
tion [IW89, IW90] has been found in the heavy-quark limit.

In this thesis we restrict ourselves to instantaneous interactions between
the constituents that form the bound state. The formalism offers, however,
the possibility to include additional channels with dynamical particle-exchange
interactions between the constituents. Such an extension is under investigation
and will not be part of this thesis.

To sum up, the great advantage of our point-form approach is manifest
Lorentz covariance which will be used to derive currents and form factors for
spin-0 and spin-1 bound states of two spin-1/2 particles. Due to the Bakamjian-
Thomas framework we expect, however, difficulties associated with cluster sep-
arability. How such difficulties manifest themselves and how they can be cir-
cumvented is the second important issue of this thesis.

1.2 Synopsis

Chap. 2 is an introduction to relativistic quantum mechanics. It provides the
theoretical background on which the present work is based on. We point out the
relevance of the universal covering group of the Poincaré group for a relativistic
quantum theory and derive the Casimir operators of the Poincaré group. With
the one-particle irreducible representations we construct multi-particle repre-
sentations, one of them being the velocity-state representation which is most
convenient for our purposes.

Chap. 3 is devoted to interactions in a Poincaré invariant quantum theory.
This brings up the notion of Dirac’s forms of relativistic dynamics, where we
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focus in particular on the point form. A Poincaré invariant prescription how to
introduce interactions into a free theory is the Bakamjian-Thomas construction,
which is then used to formulate the bound-state problem for a mass operator.
In this context we address the non-trivial problem of cluster separability. The
definition of appropriate electromagnetic vertex interactions in terms of field-
theoretical interaction densities concludes this chapter.

Subsequently, in Chap. 4, we set up a relativistic coupled-channel prob-
lem which describes center-of-mass electron-bound-state scattering in the one-
photon-exchange approximation. From the associated optical potential we ex-
tract the electromagnetic bound-state current in terms of constituents’ currents
and bound-state wave functions. The properties of the current like hermiticity,
continuity and covariance are discussed for the particular cases of spin-0 and
spin-1 bound states.

The subject of Chap. 5 is the extraction of the electromagnetic form factors
from the expression of the bound-state current, which requires a careful analysis
of its Lorentz structure. In this context it will be necessary to come back to the
problem of cluster separability. By comparison of our expressions for the current
and the form factors with those of light-front dynamics notable similarities are
found.

In Chap. 6 we introduce specific models for bound states. For mesons, like
the π and ρ meson, we model confinement between the quarks by a simple
harmonic-oscillator potential. For the deuteron we propose a meson-exchange
nucleon-nucleon interaction inspired by the Walecka model.

The numerical results for our form factors of the pion, the ρ meson and the
deuteron are then presented and discussed in Chap. 7.

Chap. 8 finally summarizes the thesis and gives a short outlook to further
investigations.

The appendices contain the important definitions and conventions to be used
throughout the work together with basic relations, longer derivations and in-
volved calculations. App. A gives the Minkowski space notations and a matrix
representation of the Poincaré group in Minkowski space. App. B gives the
representations to be used for the Dirac spinors and the polarization vectors
together with their most basic properties and relations. App. C contains some
useful relations associated with the SL(2,C) and the Clebsch-Gordan coeffi-
cients. In App. D we give the rather lengthy calculations and derivations of the
currents obtained in Chaps. 3 and 4. In App. E we detail the derivation of the
microscopic bound state current from the optical potential. App. F contains
a detailed analysis of the extraction of the form factors described in Chap. 5.
Finally, App. G gives the derivation of the meson-exchange potentials in the
static approximation used in Chap. 6.



Chapter 2

Relativistic Quantum
Mechanics

In this chapter we present and briefly discuss the fundamental principles and
ideas on which the present work is built on. It provides the basis for the following
chapters. We will proceed roughly along the lines of Refs. [KP91,Pol09,Kra01,
Sen06,Tha92,Sch01].

2.1 Introduction

The basis of our investigations is relativistic quantum mechanics. This means
that we are dealing with quantum mechanical models for a finite number of
particles that are invariant under the transformations of the Poincaré group,
the symmetry group of special relativity.

Any quantum mechanical model is formulated on a Hilbert space H, i.e. a
complete complex linear vector space with elements called state vectors in the
quantum mechanical context. A state vector |Ψ〉 describes a particular state of
a physical system. Experimentally measurable quantities, i.e. the observables of
a physical system, correspond to expectation values and transition probabilities
between such states. These quantities are determined by Hilbert-space scalar
products. Hilbert-space scalar products are invariant under unitary transfor-
mations of the state vectors, which implies that probabilities are also unitarily
invariant. Therefore, in order to ensure that probabilities are preserved under
symmetry transformations of the system under consideration, one requires the
action of a symmetry transformation on a state vector |Ψ〉 to be represented by
a unitary operator.

According to the principles of special relativity the laws of physics are equiva-
lent in all inertial coordinate systems. In other words, equivalent measurements
done in different inertial coordinate systems lead to identical results. Inertial
systems are connected by Poincaré transformations which form a group, the
Poincaré group. In a theory where both, relativity and quantum mechanics are
incorporated, the principles of special relativity should be formulated in terms
of quantum probabilities in such a way that quantum observables are invariant
under the change of inertial reference systems. This is guaranteed if the effect
of a Poincaré transformation on a state vector |Ψ〉 is represented by a unitary
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12 Relativistic Quantum Mechanics

operator. In this way the only measurable quantities, namely probabilities, can-
not be used to distinguish between different inertial coordinate systems [KP91].
This integration of special relativity into quantum theory was first realized by
Wigner [Wig39]. A refined version of this theorem by Bargmann [Bar54] reads:

A quantum mechanical model formulated on a Hilbert space preserves

probabilities in all inertial coordinate systems if and only if the corre-

spondence between states in different inertial coordinate systems can

be realized by a single-valued unitary representation of the covering

group of the Poincaré group.1

The purpose for requiring the covering group of the Poincaré group instead of
the Poincaré group itself is to avoid ambiguities that appear when rotating half-
integer spin particles through an angle of 2π [KP91]. By taking the covering
group of the Poincaré group these unwanted ambiguities are removed (for a
thorough discussion of this problem we refer, e.g., to Ref. [Tha92]).

2.2 The Poincaré Group

In this section we summarize the most important features of the symmetry
group of special relativity, the Poincaré group. The theory of special relativity
postulates the existence of inertial coordinate systems. These inertial systems
are related by transformations that preserve the proper time τ12 between two
events in Minkowski space. If these two events are described by the four-vectors
xµ1 and xµ2 , τ12 is defined by

τ212 := (x1 − x2)
µgµν(x1 − x2)

ν . (2.1)

For the Minkowski-space conventions used throughout this work we refer to
App. A.1. The transformations that leave Eq. (2.1) invariant form a group, the,
so-called, inhomogeneous Lorentz group or Poincaré group. This group consists
of the continuous one-parameter transformations of time translations, space
translations, rotations and Lorentz boosts and the discrete transformations of
time reversal, space inversion and four-dimensional reflections. The Poincaré
group is the semi-direct product of the group R4 of space-time translations with
the (homogeneous) Lorentz-group O(1, 3) with elements Λ.2 Consequently, a
general Poincaré-group element is the pair (Λ, a) labeled by a Lorentz transfor-
mation Λ and a space-time translation a. The most general point transformation
associated with (Λ, a) that satisfies Eq. (2.1) is given by

xµ
(Λ,a)−→ x′µ = Λµ

νx
ν + aµ . (2.2)

This transformation defines a representation of the Poincaré group in Minkowski
space where aµ is a constant four-vector and Λµ

ν is a constant (4 × 4)-matrix.
In the following we restrict ourselves to the continuous transformations which
themselves form a subgroup of the Poincaré group, the so-called proper, or-

thochronous Poincaré group. It is the component of the Poincaré group con-

1This theorem is often referred to as the Wigner theorem.
2O(1, 3) is the linear group of Minkowski space R1+3 that leaves the scalar product,

Eq. (2.1), invariant.
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taining the identity and it is characterized by the conditions det |Λ| = 1 and
Λ0

0 ≥ 0, referring to proper and orthochronous, respectively.3

A rotation can be parametrized by a rotation axis and an angle of rotation
described by the direction and the norm of the three-vector θ, respectively. In
the (4× 4)-matrix representation Λµ

ν of the Lorentz group in Minkowski space
a rotation is given by

R (θ) :=

(
1 0
0 R (θ)

)

(2.3)

with the usual SO(3) rotation matrix R (θ).4

A canonical (rotationless) boost can be parametrized by a velocity v and is
given in the above (4 × 4)-matrix representation in Minkowski space by

Bc (v) :=

(
v0 vT

v 1+ v0−1
v2 v vT

)

(2.4)

with v0 =
√
1 + v2. The velocity v can alternatively be expressed in terms of

the rapidity ρ defined by ρ := v
|v| sinh

−1 |v|.5
At this point we introduce another type of boost associated with the helicity.

It consists of a canonical boost in the three-direction to a desired magnitude
|v|, followed by a rotation into the desired direction v̂:6

Bh (v) := R (θ)Bc (|v|x̂3) with θ =
x̂3 × v

|x̂3 × v| cos
−1(x̂3 · v̂) . (2.5)

By expressing the matrices R and Bc in exponential form we can write down
the most general proper Lorentz transformation, which can be decomposed into
a rotation and a canonical boost according to the, so-called, decomposition the-

orem (a proof of this theorem can be found, e.g., in Ref. [Sch99]):

Λ (θ,ρ) = exp (−i θ · J − iρ ·K) (2.6)

with the generators J and K for infinitesimal Lorentz transformations defined
by

Jj := i
∂Λ (θ,ρ)

∂θj

∣
∣
∣
∣
θ=ρ=0

and Kj := i
∂Λ (θ,ρ)

∂ρj

∣
∣
∣
∣
θ=ρ=0

, j = 1, 2, 3 . (2.7)

These six infinitesimal Lorentz generators can be combined to six independent
components of an antisymmetric tensorMµν of rank 2 which transforms covari-
antly under Lorentz transformations. This tensor is called angular momentum

tensor and its non-vanishing components are defined by M ij := ǫijkJk and
M0j := Kj.

The inhomogeneous part of the Poincaré group, consisting of space-time
translations, can be represented in (extended) Minkowski space by (5 × 5)-
matrices. The infinitesimal generators for space-time translations are then given

3We will use the terms Poincaré group and Poincaré transformation to refer only to
the proper, orthochronous Poincaré group. Its homogeneous part is called the proper, or-

thochronous or restricted Lorentz group SO+(1, 3).
4SO(3) is the group of real (3 × 3)-matrices R with RT = R−1 and detR = 1.
5Note that v := dx

dτ
= v0vph with the physical velocity vph = dx

dt
(see, e.g., Ref. [Sch99]).

6Here the ‘hat’ denotes a unit vector into the direction of the corresponding vector.



14 Relativistic Quantum Mechanics

by

Pµ := i gµν
∂ T (a)

∂aν

∣
∣
∣
∣
aν=0

(2.8)

with a space-time translation represented in (extended) Minkowski space by

T (a) :=

(
gµν aµ

0Tν 1

)

. (2.9)

A detailed derivation can be found in App. A.2 or, e.g., in Ref. [Sch01].

The 10 infinitesimal generators of the Poincaré group in the (5 × 5)-matrix
representation of Minkowski space satisfy a set of commutation relations, the,
so-called. Poincaré algebra.7 Its manifest covariant form reads

[Pµ, P ν ] = 0 , (2.10)

[Mµν , P ρ] = i (gνρPµ − gµρP ν) , (2.11)
[
Mµν ,Mλσ

]
= −i

(
gµλMνσ − gνλMµσ + gνσMµλ − gµσMνλ

)
. (2.12)

Eq. (2.10) are the commutation relations for the Abelian group of space-time
translations, Eq. (2.11) ensures that Pµ transforms covariantly under Lorentz
transformations and Eq. (2.12) is the Lie algebra of the Lorentz group.

2.3 The Covering Group of the Poincaré Group

2.3.1 Two-Spinor Representations

Remembering the Wigner theorem, the aim is to find a single-valued unitary
representation of the covering group of the Poincaré group which acts on states
of the Hilbert space. The covering group of Poincaré group is the inhomoge-
neous SL(2,C), also sometimes denoted as ISL(2,C), with the SL(2,C) being
the covering group of the Lorentz group SO+(1, 3). It is the group of ordered
pairs of complex (2×2)-matrices (Λ, a) with detΛ = 1 and a = a†.8 The relation
between the ISL(2,C) and the Poincaré group can be seen as follows. To this
end we note that any four-vector xµ can be represented by a 2 × 2 Hermitean
matrix defined by [KP91]

x := xµσµ ⇔ xµ =
1

2
tr (xσµ) (2.13)

with σµ := (σ0,σ). Here σ0 ≡ 12×2 is the (2× 2)-identity matrix and σ ≡ {σi}
are the usual Pauli matrices defined in App. B.1.1. Note that here the usual
Pauli matrices are defined via lower (covariant) indices. The relation to the
proper time between two events, cf. Eq. (2.1), is then given by

det |x1 − x2| = τ212 . (2.14)

7The Poincaré algebra is the Lie algebra of the corresponding Lie group, in our case the
Poincaré group.

8The ‘underline’ of a symbol denotes an element of the SL(2,C).
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The most general transformations that preserve this determinant (i.e. the proper
time), the hermiticity of x, the handedness of space and the direction of time
read

x
(Λ,a)−→ x′ = ΛxΛ† + a . (2.15)

Then the connection to the Poincaré group elements (Λ, a) follows from
Eq. (2.13):

Λ (Λ)
µ
ν =

1

2
tr(σµ Λσν Λ

†) and aµ =
1

2
tr (aσµ) . (2.16)

At this point we notice that each of the pairs (Λ, a) and (−Λ, a) correspond
to the same Poincaré transformation (Λ (Λ) , a) = (Λ (−Λ) , a). This means
that there is a 2-to-1 correspondence between the ISL(2,C) and the Poincaré
group. In other words, the group ISL(2,C) covers the Poincaré group twice. By
identifying the elements (Λ, a) and (−Λ, a) in ISL(2,C) one obtains a group that
is isomorphic to the Poincaré group [Pol09]. The most general Λ with detΛ = 1
can be written by the decomposition theorem as [KP91,Sch01]

Λ (θ,ρ) = exp

[
1

2
(ρ− i θ) · σ

]

. (2.17)

In this, so-called, spinor representation of the SL(2,C) rotations are given by
the unitary (2× 2)-matrices

R (θ) = σ0 cos
θ

2
− iσ · θ̂ sin

θ

2
, (2.18)

whereas canonical boosts are given by the Hermitean (2 × 2)-matrices

Bc (ρ) = σ0 cosh
ρ

2
+ σ · ρ̂ sinh

ρ

2
. (2.19)

In App. C.1 we have collected some useful relations for these SL(2,C) elements,
which we will need for later purposes. According to the polar decomposition

theorem any element of SL(2,C) can be written as a product of a unitary and a
Hermitean matrix [RS72,KP91]. This corresponds to the decomposition theo-
rem for Lorentz transformations. For the description of massive spin- 12 particles
there exist 2 different spinor representations of the SL(2,C): the representation
Λ with generators

J =
σ

2
and K = i

σ

2
(2.20)

which we have already introduced in Eq. (2.17) and another, inequivalent rep-
resentation defined by Λ′ := (Λ†)−1 with generators

J ′ =
σ

2
and K ′ = −i

σ

2
. (2.21)

These two spinor representations Λ and Λ′ are called the right- and the left-

handed representation, respectively. They are not equivalent but connected by
space inversion [Sch01].
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2.3.2 Four-Spinor Representation

The fact that there is no element of SL(2,C) corresponding to space inversion
requires to double the dimension of the representation space in order to obtain
a matrix representation of the Poincaré group. A direct sum (up to a similarity
transformation) of the right- and left-handed representation gives a linear matrix
representation on C4. Consequently, combining the matrices Λ and (Λ†)−1 into
a (4× 4)-matrix gives [Tha92]

S (Λ) =

(
Λ 0

0 (Λ†)−1

)

. (2.22)

In this (4 × 4)-matrix representation of the Lorentz group a general Lorentz
transformation is given by [Gro93]

S (Λ (θ,ρ)) = exp

[
1

2

(
−i γ5θ + ρ

)
· α
]

. (2.23)

Then a rotation and a canonical boost read

S (R (θ)) = 14 cos
θ

2
− i γ5α · θ̂ sin

θ

2
(2.24)

and

S (Bc (ρ)) = 14 cosh
ρ

2
+α · ρ̂ sinh

ρ

2
, (2.25)

respectively, with

14 := 14×4 and α :=

(
σ 0
0 σ

)

. (2.26)

The representation of α given by Eq. (2.26) was already determined by the
choice of the representation of S (Λ) given by Eq. (2.22). A similarity transfor-
mation transforms the representation of Eq. (2.26) into another representation,
the, so-called, standard representation defined in App. B.1.1. We will use the
standard representation throughout the present work.

2.3.3 Unitary Representation

According to the Wigner theorem we have to find a single-valued unitary rep-
resentation of the ISL(2,C) acting on H, which will be denoted by Û .9 Û is
a mapping from the ISL(2,C) to the space of linear operators on the quantum
mechanical Hilbert spaceH and can be written in an exponential form as [KP91]

Û (Λ (θ,ρ) , a) = exp(−i P̂ · a) exp(−i Ĵ · θ − i K̂ · ρ) . (2.27)

The infinitesimal generators of this unitary representation of the ISL(2,C) are
self-adjoint operators given by

Ĵj = i
∂Û (R (θ))

∂θj

∣
∣
∣
∣
∣
θ=0

, K̂j = i
∂Û (Bc (ρ))

∂ρj

∣
∣
∣
∣
∣
ρ=0

, (2.28)

and P̂µ = i gµν
∂Û (a)

∂aν

∣
∣
∣
∣
∣
aν=0

. (2.29)

9Here the ‘hat’ on the top of a symbol denotes an operator acting on H and not a unit
vector, but despite of this ambiguity in the notation the distinction between unit vectors and
Hilbert-space operators should be clear from the context.



Relativistic Quantum Mechanics 17

The generators Ĵ , P̂ and P̂ 0 have the familiar interpretations as physical quan-
tities of the system under consideration: the generator for rotations Ĵ is the
total angular momentum operator, the generator for space translations P̂ is the
total linear momentum operator, and the generator for time translations P̂ 0

represents the total energy of the system (note that the boost generator K̂ has
no physical interpretation as observable) [KP91].

Using the group representation property it can be shown that these operators
satisfy the Poincaré algebra, Eqs. (2.10)-(2.12). Furthermore, they have the
following transformation properties under Poincaré transformations [Pol09]:

Û † (Λ, a) P̂µÛ (Λ, a) = Λµ
νP̂

ν , (2.30)

Û † (Λ, a) M̂µν Û (Λ, a) = Λµ
σΛ

ν
τ

(

M̂στ − aσP̂ τ + aτ P̂ σ
)

. (2.31)

2.4 Casimir Operators and

Newton-Wigner Position Operator

This section is devoted to the Hilbert-space representation of the Casimir oper-
ators of the Poincaré group and to the Newton-Wigner position operator. The
Casimir operators (operator invariants) of the Poincaré group are defined as
the only independent self-adjoint operators, being polynomials in the Poincaré
generators, that commute with every Poincaré generator. The states of an irre-
ducible representation of the Poincaré group must be eigenstates of the Casimir
operators. Therefore, their eigenvalues can be used to classify different types of
irreducible representations [KP91, Sca07]. In particular, we will see that these
quantum numbers are the mass and the spin of a system associated with the
eigenvalues of a mass operator and a spin operator, respectively. For later pur-
poses we will also define a position operator, i.e. the canonically conjugate
operator to the three-momentum operator.

2.4.1 The Mass Operator

The mass operator squared M̂2 is defined as the square of the four-momentum
operator P̂µ:

M̂2 := P̂µP̂µ . (2.32)

It is self-adjoint, commutes with every generator and is therefore a Casimir
operator of the Poincaré group. The, so-called, spectral condition requires M̂2

to have only non-negative eigenvalues [KP91]. Then the square root of this
operator can be defined as the operator

M̂ :=

√

P̂µP̂µ . (2.33)

The eigenvalue of M̂ will be called the physical mass of the system.

2.4.2 The Spin Operator

In addition to the mass operator we can construct a second Casimir operator
from the generators of the Poincaré group. To this aim we introduce the, so-
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called, Pauli-Lubanski operator Ŵµ by

Ŵµ := −1

2
ǫµνστ P̂νM̂στ , (2.34)

which is again a self-adjoint operator. Ŵµ satisfies the following commutation
relations [KP91]:

[

Ŵµ, P̂ ν
]

= 0 , (2.35)
[

M̂µν , Ŵ ρ
]

= i
(

gνρŴµ − gµρŴ ν
)

, (2.36)
[

Ŵµ, Ŵ ν
]

= i ǫµνστŴσP̂τ . (2.37)

Eq. (2.36) ensures that Ŵµ transforms like a four-vector under Lorentz trans-
formations, cf. Eq. (2.30). Therefore, its square is a Lorentz invariant and given
by

ŴµŴ
µ = −M̂2Ĵ2

g , (2.38)

where Ĵg is the total intrinsic spin operator. Ĵ2
g is independent of M̂2, commutes

with all the Poincaré generators and is therefore (beside M̂2) the second Casimir
operator of the Poincaré group.

From the definition of Ŵµ, cf. Eq. (2.34), we find the Lorentz invariant
relation

P̂µ Ŵ
µ = 0 . (2.39)

This equation implies that Ŵµ must be a space-like vector since P̂µ is time-like
by the spectral condition. Any space-like vector can be Lorentz transformed
into a reference frame where its time component vanishes. Eq. (2.39) implies
that this transformation is a general Lorentz boost into the rest frame of the
system. This boost is denoted by B−1

g (V̂ ) where V̂ µ := P̂µ/M̂ is the four-

velocity operator. B−1
g (V̂ ) together with Eq. (2.38) can be used to define a spin

operator Ĵg by10

(0, Ĵg)
µ =

1

M̂
B−1

g (V̂ )µνŴ
ν . (2.40)

It should be mentioned that this expression does not transform like a four-vector
under Lorentz transformations. It rather transforms with a, so-called, Wigner

rotation RWg :

Û †(Λ, a) (0, Ĵg)
µ Û(Λ, a) = RWg(V̂ , Λ̂)

µ
ν(0, Ĵg)

ν (2.41)

with

RWg(V, Λ) := B−1
g (ΛV )ΛBg(V ) . (2.42)

The proof of Eq. (2.41) can be found, e.g., in Ref. [Pol09].

10The spin operator Ĵg can equivalently be defined via the angular momentum tensor op-

erator M̂µν by the relation Ĵi
g = 1

2
ǫiklB

−1
g (V̂ )kµB

−1
g (V̂ )lνM̂

µν [KP91].
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The definition of Ĵg in Eq. (2.41) is still not unique, since there exist in
principle infinite many different boosts (combinations of rotationless boosts and
rotations) that transform a system with a given momentum P̂µ into its rest
frame with momentum (M̂,0)µ. Note that Lorentz invariance of Eq. (2.38)
implies that the square of the spin operator is independent of the particular
choice of the boost B−1

g (V̂ ) and therefore unique. In case B−1
g (V̂ ) is a canonical

(rotationless) boostB−1
c (V̂ ) (cf. Eq. (2.4)), then Eq. (2.40) defines the canonical

spin operator Ĵc:

(

0, Ĵc

)µ

:=
1

M̂
B−1

c (V̂ )µνŴ
ν . (2.43)

Only this canonical spin operator Ĵc transforms like a three-vector under ro-
tations, since Wigner rotations for canonical boosts have the special property
that

RWc (V,R) = R (2.44)

where R is a rotation.11 Therefore, the canonical Wigner rotation of a rotation
is the rotation itself. The proof of Eq. (2.44) can be found, e.g., in Ref. [Pol09]
using the SL(2,C). If a helicity boost is used in Eq. (2.40) to define the spin we

speak of a helicity spin operator Ĵh, because its third component is the familiar
expression for the helicity:

Ĵ3
h =

P̂ · Ĵ
|P̂ |

. (2.45)

The special property of the helicity is that it has a well-defined value in the
limit of a vanishing mass.

Using Eq. (2.37) together with the spectral condition on M̂2 we obtain the
usual SU(2) Lie algebra for the spin operators:12

[

Ĵ i
g, Ĵ

k
g

]

= iǫiklĴ l
g. (2.46)

These relations imply that the spin eigenvalue J can only be an integer or a
half-integer number. In the case of the helicity spin the SU(2) commutation

relations are satisfied by the components Ĵ3
h and Ĵh × x3/|x3|.

2.4.3 Newton-Wigner Position Operator

For the case of canonical spin one finds by direct computation that Ĵc is related
to the Lorentz generators by

Ĵ = X̂c × P̂ + Ĵc (2.47)

and

K̂ = −1

2
{P̂ 0, X̂c} −

P̂ × Ĵc

P̂ 0 + M̂
. (2.48)

11Note that Eq. (2.44) implies the relation RBc(V )R−1 = Bc(RV ) .
12SU(2) is the group of (2 × 2)-matrices R with R† = R−1 and det |R| = 1. It is the

universal covering group of the rotation group SO(3).
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Here the Hermitean operator X̂c is the canonically conjugate operator to P̂ and
given by

X̂c = −1

2
{ 1

P̂ 0
, K̂} − P × (P̂ 0Ĵ − P̂ × K̂)

P̂ 0M̂(P̂ 0 + M̂)
. (2.49)

It was introduced by Newton and Wigner in Ref. [NW49] and is called the
Newton-Wigner position operator. The role of this operator will become evident
later when dealing with the construction of dynamical representations of the
Poincaré group.

It should be mentioned that the above relation between the canonical spin
operator Ĵc and the total angular momentum Ĵ is equivalent to the correspond-
ing relation in non-relativistic quantum mechanics. This is special to canconical
spins and allows to couple spin and orbital angular momentum to the total angu-
lar momentum using the standard addition rules of combining angular momenta
in non-relativistic quantum mechanics [KP91].

2.5 One-Particle Irreducible Representations

The aim of this section is to end up with a Poincaré-invariant quantum me-
chanical description of a single particle with mass m and spin j. This amounts
to finding an irreducible representation of the Poincaré group on a one-particle
Hilbert space. The eigenvalues m2 and j(j + 1) of the Casimirs m̂2 and ĵ2,
respectively, together with the sign of the eigenvalue p0 of the Hamiltonian p̂0

can be used to classify irreducible representations [Pol09]. In the present work
we will only consider the massive spin-j case with m2 > 0 and p0 > 0 and the
massless spin-1 case with m2 = 0 and p0 > 0.

2.5.1 Massive Representations

We start with massive particles. A suitable basis for a one-particle Hilbert-space
representation is given by the set of simultaneous eigenstates |m, j,p, σ〉 of the
commuting Hermitean one-body operators

m̂2, ĵ2, p̂ and ĵ3c . (2.50)

For the states |m, j,p, σ〉 short-hand denoted as |p, σ〉 we use a covariant nor-
malization given by

〈p′, σ′|p, σ〉 = (2π)3δσσ′2p0δ3 (p− p′) . (2.51)

The corresponding completeness relation reads

1̂ =

∫

R3

d3p

(2π)32p0

j
∑

σ=−j

|p, σ〉〈p, σ| . (2.52)

The action of Û (Λ, a) on |p, σ〉 is given by

Û (Λ, a) |p, σ〉 = exp (−iΛp · a)
j
∑

σ′=−j

Dj
σ′σ

[
RWc

(v, Λ)
]
|Λp, σ′〉 , (2.53)
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with v = p/m. For a detailed derivation of Eq. (2.53) see, e.g., Ref. [KP91].
Here

Dj
σ′σ(R) := 〈j, σ′|Û (R, 0) |j, σ〉 (2.54)

are the familiar Wigner D-functions being a (2j + 1) dimensional unitary irre-
ducible representation of the rotation group SU(2) in the basis |j, σ〉 ≡ |σ〉 (see,
e.g., Ref. [VMK88]). Some useful relations of these Wigner D-functions which
will be repeatedly used throughout this work are collected in App. (C.2).

2.5.2 Massless Representations for Spin-1 Particles

In this section we turn to the case of massless particles with m2 = 0. For
a detailed discussion on the covariant treatment of massless spin-1 particles,
like the photon γ, within the so-called Gupta-Bleuler formalism see, e.g.,
Refs. [Ble50,Gup50, Sch61,Kli03b]. A suitable basis for massless spin-1 states
is given by the state vectors |j,p, λ〉 ≡ |p, λ〉 with λ denoting the 4 polarization
degrees-of-freedom of a massless vector field (2 physical and 2 unphysical ones).
These states are simultaneous eigenstates of the operators

ĵ2, p̂ and ĵ3h . (2.55)

These massless states are normalized covariantly according to

〈p′, λ′|p, λ〉 = (2π)3(−gλλ′)2|p|δ3 (p− p′) . (2.56)

The corresponding completeness relation reads

1̂ =

∫

R3

d3p

(2π)32|p|

3∑

λ=0

(−gλλ)|p, λ〉〈p, λ| . (2.57)

The transformation properties of |p, λ〉 under Poincaré transformations are given
by

Û(Λ, a)|p, λ〉 = exp (−iΛp · a)
3∑

λ′=0

RWh
(p, Λ)λ′λ |Λp, λ′〉 (2.58)

where

RWh
(p, Λ) := B−1

h (Λp)ΛBh(p) (2.59)

is the massless analogue of a Wigner rotation.

2.6 Multi-Particle Representations

After having found the one-particle irreducible representations of the Poincaré
group in the previous section we consider now systems with more than 1 particle.
We will restrict our considerations to a finite number of degrees of freedom. Our
aim is to end up with a multi-particle representation of the Poincaré group which
is constructed from the one-particle irreducible representations. In particular,
we will use two different kinds of multi-particle bases, the tensor-product-state
and the velocity-state basis.
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2.6.1 Tensor-Product States

The first step towards a multi-particle representation of the Poincaré group is to
consider a n-particle Hilbert space which is the n-fold tensor product of single-
particle Hilbert spaces of the previous section. A free n-particle momentum state
basis of this n-particle Hilbert space is then constructed from tensor products
of n single-particle basis states as follows:

|p1, σ1;p2, σ2; . . . ;pn, σn〉 ≡ |{pi, σi}〉 := |p1, σ1〉 ⊗ |p2, σ2〉 ⊗ . . .⊗ |pn, σn〉 .
(2.60)

Here pµi and σi are the physical four-momentum and canonical spin projection
of the ith particle, respectively. We assume that all single particles are on their
respective mass shells, i.e.

p0i =
√

m2
i + p2

i , ∀ i = 1, . . . , n . (2.61)

The kinematic variables

Pµ
n =

n∑

i=1

pµi and Mn =
√

P 2
n (2.62)

are the free total four-momentum and the free invariant mass of the n-particle
system, respectively. A unitary representation of the Poincaré group acting on
the tensor-product states (2.60) is given by a tensor product of n irreducible
single-particle representations:

Û12···n [Λ, a] := Û1 [Λ, a]⊗ Û2 [Λ, a]⊗ . . .⊗ Ûn [Λ, a] . (2.63)

Consequently, the Poincaré generators of the n-particle system are sums of the
n one-particle generators:

P̂µ
n := p̂µ1 ⊗ 1̂2 ⊗ · · · ⊗ 1̂n + 1̂1 ⊗ p̂µ2 ⊗ · · · ⊗ 1̂n + . . .+ 1̂1 ⊗ 1̂2 ⊗ · · · ⊗ p̂µn ;

M̂µν
n := m̂µν

1 ⊗ 1̂2 ⊗ · · · ⊗ 1̂n + 1̂1 ⊗ m̂µν
2 ⊗ · · · ⊗ 1̂n + . . .

+1̂1 ⊗ 1̂2 ⊗ · · · ⊗ m̂µν
n . (2.64)

The transformation properties of the multi-particle tensor-product states under
Poincaré transformations follow from the corresponding transformation proper-
ties of the single-particle states, cf. Eqs. (2.53) and (2.58):

Û12···n [Λ, a] |{pi, σi}〉 = e−iΛPn·a
∑

{σi}
|{Λpi, σ′

i}〉
n∏

i=1

Dji
σ′

i
σi

[
RWc

(vi, Λ)
]
(2.65)

where vi := pi/mi is the four-velocity of the ith particle.

2.6.2 Velocity States

In this section we will introduce another, alternative basis for multi-particle
states which is associated with the overall and internal motion of the multi-
particle system. To be more precise, we will define a multi-particle state which
is specified by the overall free four-velocity of the n-particle system

V µ :=
Pµ
n

Mn
(2.66)



Relativistic Quantum Mechanics 23

and the individual center-of-mass momenta

ki := B−1
c (V ) pi , i = 1, . . . , n . (2.67)

Note that the n center-of-mass momenta k1, . . . ,kn are not independent from
each other but constrained by the relation

n∑

i=1

ki = 0 . (2.68)

Thus, the center-of-mass momentum of the jth particle kj can be expressed in
terms of the remaining n− 1 center-of-mass momenta.

A multi-particle state characterized by V and by the n − 1 {ki} will be
called a velocity state. It was introduced by Klink in Ref. [Kli98b]. Such a
velocity state is defined by applying a canonical boost Û12···n [Bc (V )] to the
multi-particle rest state:

|V ;k1, µ1;k2, µ2; . . . ;kn, µn〉 ≡ |V ; {ki, µi}〉

:= Û12···n [Bc (V )] |{ki, µi}〉 =
∑

{σi}
|{pi, σi}〉

n∏

i=1

Dji
σiµi

[
RWc

(wi, Bc(V ))
]

(2.69)

with the internal four-velocities defined by wi := ki/mi. µi denotes the canoni-
cal spin projection of the ith particle associated with the multi-particle state in
the rest frame.

The action of the four momentum operator on this velocity state can be
easily evaluated using the transformation properties of P̂µ, Eq. (2.30):

P̂µ
n |V ; {ki, µi}〉 =MnV

µ|V ; {ki, µi}〉 , (2.70)

where Mn =
∑n

i=1 k
0
i . Therefore, a velocity state |V ; {ki, µi}〉 is an eigenstate

of P̂µ
n with eigenvalue MnV

µ. This suggests to write P̂µ
n as the product

P̂µ
n = M̂nV̂

µ (2.71)

where

M̂n =

√

P̂µ
n P̂nµ and V̂ µ :=

P̂µ
n

M̂n

(2.72)

are the free invariant mass operator and the free four-velocity operator, re-
spectively. V̂ µ transforms like a four-vector operator under Lorentz transfor-
mations and satisfies the relation V̂ µV̂µ = 1̂. A velocity state |V ; {ki, µi}〉
is a simultaneous eigenstate of M̂n and V̂ µ with eigenvalues Mn =

∑n
i=1 k

0
i

and V µ = (
√
1 + V 2,V ), respectively. |V ; {ki, µi}〉 is also an eigenstate of

the center-of-mass momentum operators k̂µi . These operators do not transform
covariantly under Lorentz transformations, but they rather transform with a
Wigner rotation in the same way as the spin operator (0, Ĵg)

µ, cf. Eq. (2.41).
The transformation properties of the velocity states under Lorentz transfor-

mations are given by

Û12···n (Λ) |V ; {ki, µi}〉

=
∑

{µ′

i
}
|ΛV ; {RWc(V, Λ)ki, µ

′
i}〉

n∏

i=1

Dji
µ′

i
µi

[
RWc

(V, Λ)
]
. (2.73)
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For each massless spin-1 particle occurring in the velocity state the correspond-
ing Wigner D-function has to be replaced by the (4×4)-dimensional Minkowski-
space representation of the Lorentz group (cf. Eq. (2.3)):

Dji
µ′

i
µi

[
RWc

(V, Λ)
]
→ RWc(V, Λ)µ′

i
µi
. (2.74)

A comparison of the transformation properties of the tensor-product states,
Eq. (2.65), with those of the velocity states, Eq. (2.73), leads to the following
notable observation: for tensor-product states each Wigner rotation in the D-
functions depends on a different single-particle four-velocity vi, whereas for
velocity states all momenta and spins rotate with the same Wigner rotation
as a consequence of Eq. (2.44). This property of the velocity states makes it
possible to couple spins and orbital angular momenta according to the standard
addition rules using SU(2) Clebsch-Gordan coefficients [Kli98b].

The transformation properties of a velocity state under a space-time trans-
lation Û12···n (a) are equivalent with those for a tensor-product state if one
identifies Pµ

n with MnV
µ in the exponent of Eq. (2.65):

Û12···n (a) |V ; {ki, µi}〉 = |V ; {ki, µi}〉e−iMnV ·a . (2.75)

Orthogonality and completeness relations for the velocity states can be derived
from the ones for the usual tensor-product states. To this we have to transform
the corresponding integral measures for a system of n particles according

∫ n∏

i=1

d3pi
2p0i

=

∫
d3V

V 0

n−1∏

i=1

d3ki
2k0i

(
∑n

j=1 k
0
j )

3

2k0n
, (2.76)

where k0i :=
√

m2
i + k2

i for ∀ i = 1, . . . , n − 1 and k0n :=
√

m2
n + (

∑n−1
j=1 kj)2 .

Here the nth momentum has been chosen to be redundant without loss of gen-
erality. Then the completeness relation for the velocity states follows from the
one for the tensor-product states:

1̂{n} =
∑

{µi}

∫
d3V

(2π)3V0

(
n−1∏

i=1

d3ki
(2π)32k0i

) (∑n
i=1 k

0
i

)3

2k0n

×|V ; {ki, µi}〉〈V ; {ki, µi}| .
(2.77)

The corresponding orthogonality relation reads:

〈V ′; {k′
i, µ

′
i}|V ; {ki, µi}〉

= V0 δ
3(V ′ − V )

(2π)32k0n

(
∑n

i=1 k
0
i )

3

(
n−1∏

i=1

(2π)32k0i δ
3(k′

i − ki)

)(
n∏

i=1

δµ′

i
µi

)

.

(2.78)

A derivation of these relations can be found in Ref. [Kra01]. The completeness
and orthogonality relations, Eqs. (2.77) and (2.78), have to be modified for
each occurring photon according to the replacements

∑

µγ
→ ∑

µγ
(−gµγµγ )

and δµγµ′

γ
→ (−gµγµ

′

γ ).
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2.6.3 Clebsch-Gordan Coefficients

In the present work we restrict our considerations to systems consisting of n = 3
and n = 4 particles where two particles (1 and 2) are coupled together forming
a composite subsystem (12). The free two-body subsystem is the subject of this
section in which we proceed along the lines of Refs. [Pol09,KP91]. Since we
will work in the velocity-state representation for 3 and 4 particles we adopt the
notation (2.69) for the momenta and spins of the particles 1 and 2. It should be
noted that k1 and k2 can take any value if they denote the momenta of particles
1 and 2 in the center of mass of the 3- or 4-particle system.

The aim of this section is to construct appropriate Clebsch-Gordan coeffi-
cients of the Poincaré group which define a two-particle basis on which Û12 (Λ, a)
acts irreducibly. This is equivalent to expressing tensor products of single-
particle eigenstates in terms of linear combinations of two-particle eigenstates
of the total four momentum such that this eigenstate at rest transforms with
a (2j + 1)-dimensional irreducible representation of the SU(2) with respect to
rotations [Pol09]:

Û12 (R) |(m12, j);0, µj〉 =
∑

µ′

j

|(m12, j);0, µ
′
j〉Dj

µ′

jµj
(R) . (2.79)

Here m12 is the free invariant mass of the (12)-subsystem given by

m12 =
√

kµ12k12µ with kµ12 := kµ1 + kµ2 . (2.80)

With the free velocity of the (12)-subsystem

w12 :=
k12
m12

(2.81)

we can define the relative (internal) momentum k̃ of the the (12)-subsystem:13

k̃i := B−1
c (w12)ki with i = 1, 2 ⇒ k̃1 = −k̃2 =: k̃ . (2.82)

In this representation the non-interacting mass operator m̂12 has the form

m̂12 =

√

m2
1 +

ˆ̃
k2 +

√

m2
2 +

ˆ̃
k2 . (2.83)

The velocities of the individual particles in the center-of-momentum frame of
the (12)-subsystem then read

w̃i :=
k̃i
mi

with i = 1, 2 . (2.84)

The two-particle state associated with the system at rest is obtained by applying
a canonical boost Û−1

12 [Bc(w12)] on the state |k1, µ1;k2, µ2〉 and multiplying the
Wigner-D functions to the other side with the help of Eq. (C.7):

|k̃, µ̃1;−k̃, µ̃2〉
=

∑

µ1µ2

Û−1
12 [Bc(w12)]|k1, µ1;k2, µ2〉

×Dj1
µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]
Dj2

µ2µ̃2

[
RWc

(w̃2, Bc(w12))
]
. (2.85)

13Quantities with a ‘tilde’ always refer to the center-of-momentum frame of the (12)-
subsystem.
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This rest eigenstate of the four-momentum transforms under a rotation in the
same way as rest eigenstates do in non-relativistic quantum mechanics:

Û12(R)|k̃, µ̃1;−k̃, µ̃2〉 =
∑

µ̃′

1µ̃
′

2

|Rk̃, µ̃′
1;−Rk̃, µ̃′

2〉Dj1
µ̃′

1µ̃1
[R]Dj2

µ̃′

2µ̃2
[R] . (2.86)

In the derivation of Eq. (2.86) we have exploited the special properties of canon-
ical Wigner rotations, cf. Eq. (2.44). Eq. (2.86) reveals the benefit of using
canonical boosts that permits to combine spins and angular momenta in the
usual non-relativistic manner. We can couple the spins j1 and j2 of the parti-
cles 1 and 2 to the total spin s and the total spin and orbital angular momentum
l to the total angular momentum j by using standard SU(2) Clebsch-Gordan

coefficients Csµs

j1µ̃1j2µ̃2
:= 〈j1, µ̃1; j2, µ̃2|s, µs〉 and C

jµj

sµslµl
:= 〈l, µl; s, µs|j, µj〉.

Keeping this in mind we introduce

|0; k̃; (l, s), j, µj〉 :=
∑

µ̃1µ̃2µlµs

∫

Ω

dΩ(
ˆ̃
k)Ylµl

(
ˆ̃
k)|k̃, µ̃1;−k̃, µ̃2〉Csµs

j1µ̃1j2µ̃2
C

jµj

sµslµl

(2.87)

with k̃ := |k̃|. ˆ̃
k := k̃/k̃ and dΩ(

ˆ̃
k) being the two-dimensional surface element

for the angular integration.14 Here we have eliminated the angles in ˆ̃
k in favor

of discrete quantum numbers using the usual spherical harmonics Ylµl
(k̂) :=

〈k̂|l, µl〉. The quantum numbers s and l corresponding to total spin and orbital

angular momentum label degeneracies. The spherical harmonics Ylµl
(k̂) and

the Clebsch-Gordan coefficients C
jµj

lµlsµs
satisfy the orthogonality relations

∫

Ω

dΩ(ˆ̃k′)Y ∗
l′µ′

l
(ˆ̃k′)Ylµl

(ˆ̃k′) = δll′δµlµ′

l
(2.88)

and [VMK88]

∑

µlµs

C
j′µ′

j

lµlsµs
C

jµj

lµlsµs
= δjj′δµjµ′

j
, (2.89)

respectively. The rest eigenstate of Eq. (2.87) has the desired transformation
properties under rotations as given in Eq. (2.79). Applying a canonical boost
Û12[Bc(w12)] on this state gives an irreducible representation:

|k12; k̃; (l, s), j, µj〉
= Û12[Bc(w12)]|0; k̃; (l, s), j, µj〉

=
∑

µ̃1µ̃2µlµs

∫

Ω

dΩ(ˆ̃k)Ylµl
(ˆ̃k)|k1, µ1;k2, µ2〉Csµs

j1µ̃1j2µ̃2
C

jµj

lµlsµs

×Dj1
µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]
Dj2

µ2µ̃2

[
RWc

(w̃2, Bc(w12))
]
.

(2.90)

This state transforms irreducibly under the action of Û12 (Λ, a), i.e. it has the
transformation properties of a single-particle state, cf. Eq. (2.53). The states

14In this case the ‘hat’ denotes a unit vector and not an operator.
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|k12; k̃; (l, s), j, µj〉 defined by Eq. (2.90) are simultaneous eigenstates of the

operators m̂12, ĵ
2
c , ĵ

3
c and k̂12. These operators together with the canonically

conjugate operators of k̂12 and ĵ3c commute with m̂12 [Pol09].
Finally we write down the Clebsch-Gordan coefficients which are determined

from Eq. (2.90) [KP91,Pol09]:

〈k12; k̃; (l, s), j, µj|k1, µ1;k2, µ2〉

= (2π)6
∫

Ω

dΩ(ˆ̃k)2k01δ
3(k1 −Bc(w12)k̃1)2k

0
2δ

3(k2 −Bc(w12)k̃2)Y
∗
lµl

(ˆ̃k)

×Csµs

j1µ̃1j2µ̃2
C

jµj

lµlsµs
Dj1

µ̃1µ1
[R−1

Wc
(w̃1, Bc(w12))]D

j2
µ̃2µ2

[R−1
Wc

(w̃2, Bc(w12))]

= (2π)6
∫

Ω

dΩ(
ˆ̃
k)2k012δ

3(k12 − k1 − k2)
2k̃012k̃

0
1

2m12
δ3(k̃ −B−1

c (w12)k1)Y
∗
lµl

(
ˆ̃
k)

×Csµs

j1µ̃1j2µ̃2
C

jµj

lµlsµs
Dj1

µ̃1µ1
[R−1

Wc
(w̃1, Bc(w12))]D

j2
µ̃2µ2

[R−1
Wc

(w̃2, Bc(w12))] .

(2.91)

Here we have used the Jacobian determinant
∣
∣
∣
∂(k12,k̃)
∂(k1,k2)

∣
∣
∣ =

k0
12k̃

0
1 k̃

0
2

m12k0
1k

0
2
in order to

account for the change of variables in the delta functions. This Clebsch-Gordan
coefficient in Eq. (2.91) corresponds to the coupling of 2 particles with canonical
spin to a superposition of irreducible representations with canonical spin.

The state vectors in Eq. (2.90) are eigenstates of commuting self-adjoint
operators. Their eigenvalues are the quantum numbers labeling the states in
Eq. (2.90). The Clebsch-Gordan coefficient C

jµj

lµlsµs
implies that the canonical

spin operator ĵc of Eq. (2.43) is the sum of 2 other operators l̂ and ŝ, i.e.

ĵc = l̂+ ŝ , (2.92)

whose eigenvalues are l and s, respectively. The other Clebsch-Gordan coeffi-
cient Csµs

j1µ̃1j2µ̃2
implies that ŝ is a sum of 2 one-body spin operators, where each

is rotated by a different Wigner rotation:

ŝ = RWc

[
w1, B

−1
c (w12)

]
ĵ1 +RWc

[
w2, B

−1
c (w12)

]
ĵ2 . (2.93)

Eq. (2.92) can be considered as defining equation for the operator l̂ with ĵc and
ŝ defined by Eqs. (2.43) and (2.93), respectively [KP91].
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Chapter 3

Dynamical Representations

In the previous section we were dealing with a free many-body theory. The aim
of this chapter, in which we proceed partly along the lines of Refs. [KP91,Pol09,
Kra01, KSK03, BKS11b], is to construct a relativistically invariant quantum
mechanical model with interactions.

3.1 Introduction

The usual procedure of incorporating interactions into a free many-body the-
ory is to add an interaction term to the free Hamiltonian P̂ 0

n . Simultaneously,
the Poincaré commutation relations have to be retained in order to guarantee
relativistic invariance. As we will see, the only consistent way of adding inter-
actions to P̂ 0

n and retaining the Poincaré algebra at the same time is to include
interaction terms also in, at least, some of the 9 remaining Poincaré generators.
Encountering some minimal sets of these interaction dependent generators will
bring up the notion of Dirac’s relativistic forms of dynamics. A Poincaré invari-
ant prescription of building up an interacting quantum mechanical model from
a free theory is the, so-called, Bakamjian-Thomas construction. In particular,
this construction will be applied to instantaneous two-body interactions and
to vertex interactions. The instantaneous interactions will be used to formu-
late a bound-state problem, whose solution provides a two-body wave function.
The vertex interactions, which are motivated by a local quantum field theory,
will allow us to set up a relativistic coupled-channel problem in the following
chapter.

3.2 The Forms of Relativistic Dynamics

Wigner’s fundamental theorem of Sec. 2.1 phrases the formal problem of con-
structing a relativistically invariant quantum theory. This amounts to finding
a representation of the Poincaré generators in terms of self-adjoint operators
that act on the multi-particle Hilbert space of Sec. 2.6 and satisfy the Poincaré
algebra, Eqs. (2.10)-(2.12). For a many-body theory without interactions this is
easily achieved. The multi-particle generators of Eq. (2.64), being tensor prod-
ucts of the one-body generators, trivially satisfy the Poincaré algebra. To set
up an interacting quantum mechanical model is, however, a non-trivial task.

29
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Figure 3.1: The space-like hypersurface of Minkowski-space x0 = 0, which is
invariant under the instant-form stability group of spatial translations and ro-
tations. Indicated is also the light cone.

The complication can be seen most easily by taking a closer look at a particular
commutation relation, namely Eq. (2.11),

[P̂ j , K̂k] = i δjk P̂
0 , (3.1)

between the generators for space translations P̂ j and the boost generators K̂k.
This commutation relation already indicates that interaction terms must ap-
pear in more than just one of the Poincaré generators: if interaction terms
are included in the Hamiltonian P̂ 0, which is the natural way of doing, i.e.
P̂ 0 = P̂ 0

n + P̂ 0
int, then K̂k or P̂ j (or both) must be interaction dependent too.

A particular form of relativistic dynamics is then characterized by the mini-
mal set of Poincaré generators that have to contain interactions. In Dirac’s
seminal paper [Dir49] on the forms of classical relativistic dynamics the interac-
tion dependent (dynamical) Poincaré generators are called Hamiltonians. The
remaining interaction free generators are called kinematical and they generate
the, so-called, stability group. The stability group of a form leaves a particular
space-like (or light-like) hypersurface of Minkowski space invariant. In this way
there is a hypersurface associated with each form of relativistic dynamics.

The most prominent forms are the instant form, the front form and the point
form (for a thorough discussion on the relativistic forms of dynamics we refer to
Refs. [Dir49,KP91,Kra01]). The instant form is the standard form characterized
by the set of dynamical generators given by {P̂ 0, K̂1, K̂2, K̂3}. Its stability
group consists of spatial translations and rotations leaving the hypersurface of
the instant x0 = 0 invariant. This hypersurface is depicted in Fig. 3.1. In the
case of the front form the hypersurface left invariant under the action of the
associated stability group is the light front x0 + x3 = 0, which is illustrated in
Fig. 3.2. A special feature about the front form is the fact that it has the largest
stability group containing 7 generators. The remaining 3 dynamical generators
are given by {P̂ 0 − P̂ 3, K̂1 − Ĵ2, K̂2 + Ĵ1}. Among the three forms the point
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Figure 3.2: The light-like hypersurface x0 + x3 = 0 associated with the front
form (together with the light cone).

Figure 3.3: The forward hyperboloid xµxµ = τ2, which is invariant under the
Lorentz group, the stability group of the point form (together with the light
cone).

form is the least known and, although it has definite virtues, the least utilized.
The stability group of the point form is the Lorentz group, which leaves the
hyperboloid xµxµ = τ2 (plotted in Fig. 3.3) and in particular the point xµ = 0

invariant. The point-form set of Hamiltonians is given by {P̂ 0, P̂ 1, P̂ 2, P̂ 3},
which provides a clean separation of Poincaré generators that are interaction
dependent from those that are interaction free. The former are components of
the four-vector P̂µ whereas the latter can be combined into the antisymmetric
Lorentz tensor M̂µν , which has been already introduced in Sec. 2.2. This permits
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to express equations in point form in a manifestly Lorentz covariant form and
makes for simple behavior under Lorentz transformations. The conditions for
Poincaré invariance can, e.g., be phrased in terms of the point-form equations

[P̂µ, P̂ ν ] = 0 and Û(Λ) P̂µ Û †(Λ) = (Λ−1)µν P̂
ν . (3.2)

Here the Lorentz part of the Poincaré commutation relations has been integrated
out, which is possible due to the kinematic nature of the rotation and boost
generators.

3.3 The Bakamjian-Thomas Construction

By looking at the commutation relations involving the dynamical Poincaré gen-
erators it is evident that the interaction terms are, in general, subject to non-
linear constraints. It has been already realized by Dirac in Ref. [Dir49] that such
conditions imposed by the Poincaré algebra are in general not easily fulfilled.
This makes the problem of constructing a Poincaré-invariant few-body quan-
tum theory quite intricate. A particular solution to the problem of finding a
consistent set of the 10 Poincaré generators for an interacting quantum mechan-
ical system with finitely many degrees of freedom is the, so-called, Bakamjian-

Thomas construction proposed by Bakamjian and Thomas in Ref. [BT53]. This
construction is summarized as follows (for a detailed discussion we refer to
Refs. [KP91,Kra01]): One starts with the non-interacting Poincaré generators,
Eq. (2.64), which satisfy the Poincaré algebra trivially. From these generators
one constructs a particular set of auxiliary operators which depends on the form
of dynamics. The Poincaré algebra requires certain commutation relations be-
tween these auxiliary operators. One of these operators is always the free mass
operator M̂n. In the next step an interaction term M̂int is added only to this
mass operator to obtain an interacting mass operator

M̂ = M̂n + M̂int . (3.3)

This interaction has to commute with all auxiliary operators such that the
commutation relations between the auxiliary operators remain satisfied. This
imposes linear constraints on the interaction terms which are, in general, easier
to satisfy than the non-linear constraints imposed by the Poincaré algebra. In
the final step the interacting Poincaré generators are (re-)constructed by sim-
ply replacing the free mass operator with the interacting mass operator in the
expressions that define the generators in terms of the auxiliary operators. The
commutation relations between the auxiliary operators imply that the Poincaré
algebra is satisfied. This ensures relativistic invariance of the interacting quan-
tum mechanical model resulting from this construction.

Instant Form

It is clear that the set of auxiliary operators depends on the set of dynamical
generators and is therefore different for each form of relativistic dynamics. In
the instant form the auxiliary operators are given by M̂n, P̂n, X̂c, Ĵ

2
c , Ĵ

3
c and

the operator canonically conjugate to Ĵ3
c . Equivalently, one can take the set

{M̂n, P̂n, Ĵc, X̂c}. In this case the only generators that are mass dependent and
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therefore become interaction dependent are the Hamiltonian P̂ 0 and the boost
generators K̂, cf. Eqs. (2.33) and (2.48). The instant-form conditions on the
interaction term ensuring Poincaré invariance read

[M̂int, P̂n] = [M̂int, Ĵc] = [M̂int, X̂c] = 0 . (3.4)

Point Form

If the Bakamjian-Thomas construction is carried out in the point form the
set of auxiliary operators is given by {M̂n, V̂ , M̂nX̂c, Ĵc} or equivalently (cf.

Eqs. (2.47) and (2.48)) by {M̂n, V̂ , K̂n, Ĵn}. Then the resulting interacting
four-momentum operator P̂µ is seen to separate into an interacting mass oper-
ator M̂ and the free four-velocity operator V̂ µ,

P̂µ = P̂µ
n + P̂µ

int =
(

M̂n + M̂int

)

V̂ µ . (3.5)

The point-form equations (3.2) imply that the interacting part of the mass
operator M̂int must be a Lorentz scalar that has to commute with the free
velocity operator, i.e.

[M̂int, V̂
µ] = [M̂int, M̂

µν
n ] = 0 . (3.6)

Equivalently, these point-form conditions on the Bakamjian-Thomas type mass
operator M̂int can be rewritten in terms of the operators X̂c and Ĵc as

[M̂int, V̂
µ] = [M̂int, X̂c] = [M̂int, Ĵc] = 0 . (3.7)

Remarks

One benefit of the Bakamjian-Thomas approach is that the operator for the
total spin Ĵg of the interacting system is not affected by interactions.

Furthermore, the Bakamjian-Thomas framework allows to construct
Poincaré invariant models with instantaneous interactions, i.e. action at a dis-
tance. What one looses with instantaneous interactions as compared to a local
quantum field theory is, however, microscopic locality. Microscopic locality, or
sometimes also called Einstein causality or microcausality roughly means that 2
observables commute if they are associated with 2 different regions of space-time
that are separated by an arbitrarily small space-like distance [SW00,KP91]. It
is possible to find infinitely many such independent observables for every finite
space-time volume which implies that microscopic locality requires an infinite
number of degrees of freedom. Therefore, in a relativistic quantum theory with
a finite number of degrees of freedom this property of microcausality is replaced
by the weaker condition of macroscopic locality, which is sometimes called clus-

ter separability or macrocausality [Fol61]. For a definition of macrocausality
one simply replaces ’arbitrarily small’ by ’sufficiently large’ in the definition of
microcausality. In other words, macrocausality means that disjunct subsystems
of a quantum mechanical system should behave independently from each other,
if they are separated by sufficiently large space-like distances. It turns out that
it is the condition of macrocausality (and not microcausality) that can be tested
by experiments [KP91].

As we will see, however, already for systems consisting of more than 2 par-
ticles the Bakamjian-Thomas framework will even violate macrocausality.
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3.4 Two-Body Interactions

Our aim is to find a two-body interaction defined on a three-particle Hilbert
space within a point-form Bakamjian-Thomas framework. This means that we
have conservation of the overall four-velocity of the three-particle system, i.e.
the incoming and outgoing four velocities are equal. At the same time, the
incoming and outgoing three-momenta of the non-interacting particles satisfy
spectator conditions. These 2 requirements imply that the four-velocity of the
interacting two-particle subsystem cannot be conserved. Therefore, we cannot
directly use the point-form Bakamjian-Thomas construction on the two-particle
Hilbert space to define the two-body interaction on the three-body Hilbert space.
The only way to satisfy the above requirements is to define the two-body inter-
action on the two-particle Hilbert space in a way that resembles the instant-form
Bakamjian-Thomas framework and then imbed this two-body interaction con-
sistent with the point-form Bakamjian-Thomas framework into the three-body
Hilbert space.

3.4.1 Two-Body Mass Operator

It has been mentioned already that instantaneous interactions can be used
within the Bakamjian-Thomas framework without loosing Poincaré invariance.
In this section we concentrate on the incorporation of instantaneous two-body
interactions into a quantum mechanical model.

To this end we use an instant-form Bakamjian-Thomas construction formu-
lated on a two-particle Hilbert space. In our rather brief discussion we follow
closely the more detailed disquisitions of Refs. [Pol09, KP91]. In Sec. 2.6.3
we have derived a basis for free two-particle states given by |k12; k̃; (l, s), j, µj〉
which transforms irreducibly under the non-interacting unitary representation
Û12 (Λ, a). The free invariant mass operator m̂12 of the two-body system in this
representation was given by Eq. (2.83). An interaction between particles 1 and
2 is introduced by adding an interaction operator m̂int to the free mass opera-
tor according to Eq. (3.3) to obtain a total mass operator for the two-particle
cluster C:

m̂C := m̂12 + m̂int . (3.8)

Poincaré invariance requires that the instant-form set of the auxiliary operators
{m̂C, k̂12, ĵc, x̂c} satisfies the same commutation relations as {m̂12, k̂12, ĵc, x̂c}
which implies the instant-form constraints Eq. (3.4) on m̂int:

[

k̂12, m̂int

]

=
[

ĵc, m̂int

]

= [x̂c, m̂int] = 0 . (3.9)

From these conditions on m̂int we infer that matrix elements of m̂int in the
non-interacting representation |k12; k̃; l, s, j, µj〉 can be written in the form

〈k′
12; k̃

′; (l′, s′), j′, µ′
j |m̂int|k12; k̃; (l, s), j, µj〉

= δjj′δµjµ′

j
(2π)32k012δ

3 (k12 − k′
12) 〈k̃′; l′, s′||m̂j

int||k̃; l, s〉 . (3.10)

Here the reduced kernel 〈k̃′; l′, s′||m̂j
int||k̃; l, s〉 is independent of the total two-

particle momentum k12 and the total spin projection µj . The eigenvalue prob-
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lem for the mass operator m̂C is given by
(√

m2
1 +

ˆ̃
k2 +

√

m2
2 +

ˆ̃
k2 + m̂int

)

|ΨC〉 = mC|ΨC〉 . (3.11)

In the present work we concentrate on the study of bound states.1 Therefore,
the eigenvalue equation (3.11) is considered to be a bound-state equation leading
to a discrete spectrum of m̂C. The eigenvalues of m̂C will be denoted by mn

where n = 0, 1, 2, . . . is the quantum number for radial excitations.
We have constructed m̂C in such a way that it satisfies the same commu-

tation relations as m̂12, i.e. it commutes with the remaining (free) auxiliary

operators ĵ2c , ĵ
3
c , k̂12, x̂c and the operator canonically conjugate to ĵ3c [Pol09].

Thus, there exist simultaneous eigenstates of m̂C, ĵ
2
c , ĵ

3
c and k̂12 denoted by

|k12;mn, j, µj〉 ≡ |k12;n, j, µj〉. These states transform irreducibly under the

action of ÛC (Λ, a) and thus define a dynamical representation of the Poincaré
group. It is simply obtained by replacing all eigenvalues m12 by mn in the
non-interacting representation defined by the action of Û12 (Λ, a) on the non-
interacting states |k12; k̃, (l, s), j, µj〉 [KP91]. Then, the four-momentum of the
interacting two-particle cluster is given by

kC :=

(
k0C
k12

)

with k0C :=
√

k2
12 +m2

C . (3.12)

Bound-State Wave Function

Solving the bound-state problem Eq. (3.11) leads to mass eigenfunctions of the
form

〈k′
12; k̃

′; (l′, s′), j′, µ′
j|k12;n, j, µj〉

= N̄2δjj′δµjµ′

j
δ3 (k12 − k′

12)u
j
nl′s′(k̃

′) (3.13)

where N̄2 is a normalization constant. From Eq. (3.13), using Eqs. (2.90)
and (2.91) together with the relations Eqs. (C.5), (2.88) and (2.89), we ob-
tain a representation of the eigenfunctions in terms of constituents’ degrees of
freedom

〈k′
1, µ

′
1;k

′
2, µ

′
2|k12;n, j, µj〉 = Ñ2δ

3 (k12 − k′
1 − k′

2)Ψnjµjµ′

1µ
′

2
(k̃′) ,

(3.14)

where Ñ2 is a normalization constant and with the wave function defined by

Ψnjµjµ′

1µ
′

2
(k̃′)

:=
∑

lsµlµsµ̃1µ̃2

Ylµl
(ˆ̃k′)Csµs

j1µ̃1j2µ̃2
C

jµj

lµlsµs
ujnls(k̃

′)

×Dj1
µ′

1µ̃1

[
RWc

(w̃′
1, Bc(w

′
12))

]
Dj2

µ′

2µ̃2

[
RWc

(w̃′
2, Bc(w

′
12))

]
. (3.15)

We normalize this wave function to unity:
∫

d3k̃′
∑

µ′

1µ
′

2

Ψ∗
njµjµ′

1µ
′

2
(k̃′)Ψn′j′µ′

j
µ′

1µ
′

2
(k̃′) = δnn′δjj′δµjµ′

j
. (3.16)

1From now on we will also refer to the particles 1 and 2 as the constituents c1 and c2 of
the bound state C.
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3.4.2 Embedding into a Three-Particle Hilbert Space

In the next step we embed the two-body interaction defined by Eq. (3.10) into a
three-body Hilbert space of a system consisting of the two interacting particles
1 and 2 plus an additional spectator particle denoted by e.2 To this end we
pursue a similar strategy as presented in Ref. [KP91].

In the velocity-state basis of Sec. 2.6.2 the free three-particle system is repre-
sented by the state vector |V ;k1, µ1;k2, µ2; (ke), µe〉. The momentum in brack-
ets is redundant since the momenta occurring here are subject to center-of-
mass constraints, cf. Eq. (2.68). With the help of the Clebsch-Gordan co-
efficients for the Poincaré group, Eq. (2.91), we can perform a basis change
to |V ;k12, k̃, (l, s), j, µj ; (ke), µe〉. In this basis we define the interaction on
the three-body Hilbert space by simply including another Dirac delta function
and 2 other Kronecker deltas in the definition of the two-body interaction in
Eq. (3.10). The additional delta function corresponds to overall-velocity con-
servation and is given by V 0δ3(V − V ′). The 2 additional Kronecker deltas
δJJ′ and δMJM ′

J
correspond to the total angular momentum of the three-

particle system |J(′)
c | = |j(′)c + j

(′)
c,e| and its projection into the 3-direction

M
(′)
J = µ

(′)
j + µ

(′)
e , respectively. Therefore, due to the Kronecker delta δµjµ′

j

occurring in Eq. (3.10) (implying µj = µ′
j), we can replace δMJM ′

J
by δµeµ′

e
.

Furthermore, due to the center-of-mass kinematics for velocity states, we can
use δ3(k12 −k′

12) = δ3(ke −k′
e). With these manipulations the definition of the

two-body interaction on the three-body Hilbert space reads

〈V ′;k′
12, k̃

′, (l′, s′), j′, µ′
j ; (k

′
e), µ

′
e|m̂int|V ;k12, k̃, (l, s), j, µj ; (ke), µe〉

:= NV 0δ3(V − V ′)δjj′δµjµ′

j
δµeµ′

e
δ3(ke − k′

e)〈k̃′; l′, s′||m̂j
int||k̃; l, s〉 ,

(3.17)

where N is a normalization constant which is not fixed for the moment. The
interaction m̂int satisfies the following commutation relations with the operators
of the non-interacting system:

[m̂int, V̂ ] = [m̂int, Ĵc] = [m̂int, X̂c] = 0 , (3.18)

[m̂int, k̂e] = [m̂int, ĵc,e] = 0 . (3.19)

The first commutation relations Eq. (3.18) are identical with the conditions of
a point-form Bakamjian-Thomas construction (cf. Eq. (3.7)) which means that
Eq. (3.17) defines a point-form Bakamjian-Thomas type mass operator. The
commutation relations (3.19) follow from Eq. (3.9) and can be viewed as specta-
tor conditions for the additional particle which has been assumed to be a non-
interacting spectator. Note that Eqs. (3.18) and (3.19) imply that [m̂int, ĵc] = 0,
which corresponds to the Kronecker deltas δµjµ′

j
and δjj′ in Eq. (3.17). Further-

more, [m̂int, k̂e] = 0 is equivalent to [m̂int, k̂12] = 0 since k̂12 = −k̂e. Hence, the
commutation relations on the two-body Hilbert-space, Eq. (3.9), remain valid.
Eq. (3.17) reveals that in a velocity-state representation of a Bakamjian-Thomas
type model the overall velocity of the system can always be factored out as a
velocity-conserving delta function, leaving the part for the pure internal motion.

2‘e’ will stand later for ‘electron’, not to be confused with the elementary charge. The
distinction between them should, however, be clear from the context.
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Four-Momentum Operator

The next objective is to find a representation of the four-momentum opera-
tor corresponding to the interaction of Eq. (3.17) on the three-body Hilbert
space. To this end we define the interacting mass operator associated with the
interacting pair and the spectator particle by

M̂Ce :=

√

k̂2
e + m̂2

C +

√

k̂2
e +m2

e . (3.20)

Then we can determine the two-body interaction on the three-body Hilbert
space by subtracting the free mass operator M̂12e from Eq. (3.20):

M̂int := M̂Ce − M̂12e . (3.21)

This operator satisfies the same commutations relations as m̂int, cf. Eqs. (3.18)
and (3.19). Finally, the interacting four-momentum operator associated with
M̂eC of Eq. (3.20) is easily obtained from Eq. (3.5):

P̂µ = M̂eCV̂
µ . (3.22)

Bound-State Wave Function

Next we look at the matrix elements of free and clustered3 velocity states
〈V ′;k′

1, µ
′
1;k

′
2, µ

′
2; (k

′
e), µ

′
e|V ;k12, n, j, µj ; (ke), µe〉 which define the two-body

wave function on the three-body Hilbert space. As a consequence of Eq. (3.17)
they have the general form [KSK03]

〈V ′;k′
1, µ

′
1;k

′
2, µ

′
2; (k

′
e), µ

′
e|V ;k12, n, j, µj; (ke), µe〉

= N3V
0δ3(V − V ′)δµeµ′

e
δ3 (ke − k′

e)Ψnjµjµ′

1µ
′

2
(k̃′) , (3.23)

where we have used Eq. (3.14) together with the relation δ3 (k12 − k′
1 − k′

2) =
δ3 (ke − k′

e). k̃′ is the momentum of particle 1 in the center of momentum of
the free (12)-subsystem (cf. Eq. (2.82)). The normalization factor N3 occurring
in Eq. (3.23) is fixed by the normalization of the states |V ;k12, n, j, µj ; (ke), µe〉,
cf. Eq. (2.78), which reads

〈V ′′;k′′
12, n

′′, j′′, µ′′
j ; (k

′′
e ), µ

′′
e |V ;k12, n, j, µj ; (ke), µe〉

= (2π)6V 0δ3(V − V ′′) 2k0
C2k0

e

(k0
C+k0

e )
3 δ

3(k12 − k′′
12)δnn′′δjj′′δµjµ′′

j
δµeµ′′

e
.

(3.24)

N3 is computed as follows: first we insert the three-particle velocity state unit
1̂′12e of Eq. (2.77) into the bracket of the left-hand side of Eq. (3.24) and use the
Jacobian

d3k1
2k01

d3ke
2k0e

(k01 + k02 + k0e )
3

2k02
=

d3ke
2k0e

d3k̃

2k̃01

2(k̃01 + k̃02)

k̃02

(k012 + k0e )
3

2k012
. (3.25)

3With clustered velocity states we mean velocity states which describe a n-particle system
where particles 1 and 2 form a bound system.
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After performing the V ′- and k′
e-integrations together with the sum over µ′

e the
left-hand side of Eq. (3.24) becomes

〈V ′′;k′′
12;n

′′j′′, µ′′
j ; (k

′′
e ), µ

′′
e |1̂′12e|V ;k12, n, j, µj ; (ke), µe〉

=
1

(2π)9
V 0δ3(V − V ′′)δ3(ke − k′′

e )

∫
k̃′2dk̃′

2k̃′01

2(k̃′01 + k̃′02 )

2k̃′02

(k′012 + k′0e )3

2k′0122k
′0
e

N2
3

×
∫

dΩ(
ˆ̃
k′)

∑

µ′

1µ
′

2

Ψ∗
n′′j′′µ′′

j
µ′

1µ
′

2
(k̃′)Ψnjµjµ′

1µ
′

2
(k̃′) . (3.26)

With the normalization of the wave function, Eq. (3.16), and from comparison
of the result with the right-hand side of Eq. (3.24), we finally infer that the
normalization factor has the form

N3 = (2π)15/2

√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k0C2k
0
e

(k0C + k0e )
3

√

2k′0122k
′0
e

(k′012 + k′0e )
3
. (3.27)

Transformation Properties

In this subsection we investigate the transformation properties of the wave func-
tion Ψnjµjµ′

1µ
′

2
(k̃) under Lorentz transformations. For simplicity, we restrict

ourselves to a wave function with l = 0, which is often referred to as S-wave. In
this case the Clebsch-Gordan coefficients and the spherical harmonics are simple

expressions given by C
jµj

00sµs
= δsjδµsµj

and Y00(
ˆ̃
k′) = 1/

√
4π. Then, from the

normalization condition of the wave function, Eq. (3.16), using the property of
the Wigner D-functions, Eq. (C.5), together with the orthogonality relations for
the Clebsch-Gordan coefficients, Eq. (2.89), we find the following orthogonality
relation for the radial wave function un0(k̃) ≡ ujn0j(k̃):

∫ ∞

0

dk̃ k̃2 u∗n′0(k̃)un0(k̃) = δnn′ . (3.28)

We start our analysis by Lorentz transforming the matrix element of
Eq. (3.23):

〈V ′;k′
1, µ

′
1;k

′
2, µ

′
2;µ

′
e|V ;k12, n, j, µj ;µe〉

Λ−→ 〈V̄ ′; k̄′
1, µ̄

′
1; k̄

′
2, µ̄

′
2; µ̄

′
e|V̄ ; k̄12, n, j, µ̄j ; µ̄e〉 . (3.29)

Here we have dropped the dependences on the (redundant) momenta ke and
k′
e. From the transformation properties of velocity states under Lorentz trans-

formations, Eq. (2.73), we can rewrite the transformed matrix element in terms
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of the original one (using the short-hand notation R
(′)
Wc

≡ RWc(V
(′), Λ)):

〈V̄ ′; k̄′
1, µ̄

′
1; k̄

′
2, µ̄

′
2; µ̄

′
e|V̄ ; k̄12, n, j, µ̄j ; µ̄e〉

= 〈ΛV ′;R′
Wc
k′1, µ

′
1;R

′
Wc
k′2, µ

′
2;µ

′
e|ΛV ;RWckC;n, j, µj ;µe〉

×Dj1∗
µ′

1µ̄
′

1

[
R−1

Wc
(V ′, Λ)

]
Dj2∗

µ′

2µ̄
′

2

[
R−1

Wc
(V ′, Λ)

]
Dje∗

µ′

eµ̄
′

e

[
R−1

Wc
(V ′, Λ)

]

×Dje
µeµ̄e

[
R−1

Wc
(V, Λ)

]
Dj

µj µ̄j

[
R−1

Wc
(V, Λ)

]

= (2π)15/2

√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k0C2k
0
e

(k0C + k0e )
3

√

2k′0122k
′0
e

(k′012 + k′0e )
3

×V 0δ3(V − V ′)δµeµ′

e
δ3 (ke − k′

e)Ψnjµjµ′

1µ
′

2
(¯̃k′)

×Dj1∗
µ′

1µ̄
′

1

[
R−1

Wc
(V, Λ)

]
Dj2∗

µ′

2µ̄
′

2

[
R−1

Wc
(V, Λ)

]

×Dj
µjµ̄j

[
R−1

Wc
(V, Λ)

]
. (3.30)

Here we have used Lorentz invariance of the delta functions and the fact that
energies are not affected by (Wigner) rotations of the momenta. Note that under
a Lorentz transformation the cluster center-of-mass momenta undergo the same
Wigner rotation as the center-of-mass momenta of the three-particle system:

¯̃k′1 = B−1(RWc(V, Λ)w
′
12)RWc(V, Λ)k

′
1

= B−1(RWc(V, Λ)w
′
12)RWc(V, Λ)Bc(w

′
12)k̃

′
1

= RWc(w
′
12, RWc(V, Λ))k̃1

(2.44)
= RWc(V, Λ)k̃

′
1 . (3.31)

Since a pure S-wave depends only on the magnitude of the three-momentum,

which is not affected by a rotation, we have Ψnjµjµ′

1µ
′

2
(¯̃k′) = Ψnjµjµ′

1µ
′

2
(k̃′).

Comparing Eq. (3.30) with Eq. (3.23) we can read off the transformation prop-
erties of the wave function under Lorentz transformations:

Ψnjµjµ′

1µ
′

2
(k̃′)

Λ−→ Ψnjµ̄j µ̄′

1µ̄
′

2
(
¯̃
k′)

= Ψnjµjµ′

1µ
′

2
(k̃′)Dj1

µ̄′

1µ
′

1

[
RWc

(V, Λ)
]
Dj2

µ̄′

2µ
′

2

[
RWc

(V, Λ)
]
Dj∗

µ̄jµj

[
RWc

(V, Λ)
]
.

(3.32)

In App. C.3 we also derive the transformation properties of the Clebsch-Gordan
coefficients under Lorentz transformations which read

C
jµj

j1µ̃1j2µ̃2

Λ→ C
jµ̄j

j1 ¯̃µ1j2 ¯̃µ2

= C
jµj

j1µ̃1j2µ̃2
Dj∗

µ̄jµj

[
RWc

(V, Λ)
]
Dj1

¯̃µ1µ̃1
[RWc

(V, Λ)]Dj2
¯̃µ2µ̃2

[RWc
(V, Λ)] .

(3.33)

3.4.3 Extension to Four-Body Hilbert Space

The procedure of embedding two-body interactions into a three-body Hilbert
space can be easily generalized to a n-body Hilbert space. For our purposes
we consider a four-body Hilbert space of a system consisting of the interacting
pair 1 and 2, the spectator e and another massless spectator γ (‘γ’ stands for a
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photon). Instead of going explicitly through an analogous procedure as above
we simply list the most important results which will be needed in the following
sections. The total mass operator for the four-particle system is given by

M̂Ceγ :=

√

k̂2
C + m̂2

C +

√

k̂2
e +m2

e + |k̂γ | . (3.34)

The two-body wave function is defined via the velocity-states matrix elements
by

〈V ′;k′
1, µ

′
1; (k

′
2), µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |V ; (k12);n, j, µj ;ke, µe;kγ , µγ〉

= (2π)21/2

√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k0C2k
0
e2k

0
γ

(k0C + k0e + k0γ)
3

√

2k′0122k
′0
e 2k

′0
γ

(k′012 + k′0e + k′0γ )
3
V 0

×δ3(V − V ′)δµeµ′

e
δ3 (ke − k′

e) (−gµγµ′

γ
)δ3
(
kγ − k′

γ

)
Ψnjµjµ′

1µ
′

2
(k̃′) .

(3.35)

The orthogonality and completeness relations of this basis vectors are given by

〈V ′;k′
12;n

′, j′, µ′
j ; (k

′
e), µ

′
e;k

′
γ , µ

′
γ |V ;k12, n, j, µj; (ke), µe;kγ , µγ〉

= (2π)9V 0δ3(V − V ′)
2k0C2k

0
e

(k0C + k0e + k0γ)
3
δ3(k12 − k′

12)δnn′δjj′δµjµ′

j

×δµeµ′

e
(−gµγµ

′

γ )2k0γδ
3(kγ − k′

γ) (3.36)

and

1̂Ceγ =
1

(2π)9

∫
d3V

V 0

d3k12
2k0C

d3kγ
2k0γ

(k0C + k0e + k0γ)
3

2k0e

×
∑

njµjµeµγ

(−gµγµγ )|V ;k12, n, j, µj ; (ke), µe;kγ , µγ〉

×〈V ;k12, n, j, µj ; (ke), µe;kγ , µγ | , (3.37)

respectively.

3.4.4 Cluster Properties

We have already mentioned that the concept of macrocausality (or equivalently
cluster separability) becomes unsustainable within a Bakamjian-Thomas con-
struction for relativistic quantum mechanics of more than 2 particles. In this
subsection we follow closely Ref. [KP91] and discuss the most simple non-trivial
case on this issue, the (2+1)-problem of a pair C of interacting particles 1 and
2 and a non-interacting spectator e. What follows applies equally to 2 or more
non-interacting spectators. Cluster separability requires that, if the spectator
is separated by a sufficient large space-like distance from the cluster, then both,
the cluster and the spectator, should behave as independent subsystems. In
other words, all relevant physical properties of the (12e)-system should also
hold for the (12)-subsystem. With relevant physical properties in the context
of cluster separability we mean the relativistic transformation laws [KP91].

In order to find a mathematical formulation of the condition of cluster sep-
arability we consider a Hilbert space of the (2+1)-system, which is the tensor
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product of the Hilbert spaces of the cluster and the spectator. A unitary repre-
sentation of the Poincaré group on this Hilbert space is then given by Eq. (2.63):

ÛCe (Λ, a) := ÛC (Λ, a)⊗ Ûe (Λ, a) . (3.38)

Here ÛC (Λ, a) and Ûe (Λ, a) are unitary representations associated with the
interacting pair and the spectator, respectively. Both these representations are
assumed to have the same relativistic transformation properties as the whole
(Ce)-system. From Eq. (3.38) we can define translation operators by

T̂C (a) := ÛC (12, a)⊗ 1̂e and T̂e (a) := 1̂C ⊗ Ûe (12, a) (3.39)

that translate the interacting pair and the spectator by aµ, respectively. Ad-
ditionally, we consider an interacting representation Û (Λ, a) of the Poincaré
group associated with the interacting (Ce)-system. This representation satisfies
cluster separability if it satisfies the, so-called, cluster condition [KP91]:

lim
(b−c)2→−∞

〈Ψ |T̂ †
C (Λb) T̂ †

e (Λc)
{

Û (Λ, a)− ÛCe (Λ, a)
}

T̂C (b) T̂e (c) |Ψ〉 = 0 .

(3.40)

This condition can be interpreted in the sense that for infinitely large space-like
separations of the subsystems C and e, Û (Λ, a) becomes identical to the tensor-
product representation ÛCe (Λ, a). For infinitesimal Poincaré transformations
the cluster condition Eq. (3.40) can be written as a cluster condition on the

generators [KP91]:

lim
(b−c)2→−∞

〈Ψ |T̂ †
C (b) T̂ †

e (c)
{

Ĝ− ĜCe

}

T̂C (b) T̂e (c) |Ψ〉 = 0 . (3.41)

Here the infinitesimal generators ĜCe ≡ {P̂µ
Ce, M̂

νλ
Ce } of the tensor-product rep-

resentation, Eq. (3.38), are given by Eq. (2.64):

P̂µ
Ce = p̂µC ⊗ 1̂e + 1̂C ⊗ p̂µe and M̂νλ

Ce = m̂νλ
C ⊗ 1̂e + 1̂C ⊗ m̂νλ

e . (3.42)

In our case of the point form the generators of the cluster are

p̂µC = p̂µ12 + p̂µint and m̂νλ
C = m̂νλ

12 = m̂νλ
1 ⊗ 1̂2 + 1̂1 ⊗ m̂νλ

2 . (3.43)

Ĝ ≡ {P̂µ, M̂νλ} are the generators formally obtained from the derivative of
Û (Λ, a) with respect to the parameters for vanishing values of the parameters,
cf. Eqs. (2.28) and (2.29).

The physical interpretation of the cluster condition, Eq. (3.41), is quite obvi-
ous [KP91]: cluster separability is satisfied if the total energy, linear and angular
momentum of the (Ce)-system in the cluster limit is equal to the sum of the in-
dividual energies, linear and angular momenta of the cluster and the spectator,
respectively.

With a condition for macrocausality at hand we are now able to investigate
the cluster properties of the representation of the Poincaré group associated
with the point-form Bakamjian-Thomas construction derived in the previous
sections. The generator of interest in our point-form formulation is the inter-
acting four-momentum operator given by Eq. (3.22). For simplicity, we can
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restrict our considerations (without loss of generality) to separation operators
being pure spatial translations T̂i(a) = ei p̂i·a. Then the left-hand side of the
cluster condition, Eq. (3.41), for the point-form Bakamjian-Thomas generators
P̂µ of Eq. (3.22) reads

lim
|b−c|→∞

〈Ψ |e−i (p̂C·b+p̂e·c)
{

P̂µ − P̂µ
Ce

}

ei (p̂C·b+p̂e·c)|Ψ〉

= lim
|b−c|→∞

〈Ψ |e−i (p̂C·b+p̂e·c)
{

P̂µ
int − P̂µ

12int,e

}

ei (p̂C·b+p̂e·c)|Ψ〉 (3.44)

where we have used that P̂µ = P̂µ
12e + P̂µ

int and P̂µ
Ce = P̂µ

12e + P̂µ
12int,e from

Eqs. (3.21) and (3.42), respectively. Since P̂µ
12int,e commutes with p̂C and p̂e by

definition, the exponentials cancel in the second term of Eq. (3.44):

lim
|b−c|→∞

〈Ψ |e−i (p̂C·b+p̂e·c)P̂µ
12int,ee

i (p̂C·b+p̂e·c)|Ψ〉 = 〈Ψ |P̂µ
12int,e|Ψ〉 .

(3.45)

The first term of Eq. (3.44) can be rewritten in terms of the operators V̂ and

k̂e with k̂C = (
√

m̂2
C + k̂2

e ,−k̂e) as

lim
|b−c|→∞

〈Ψ |e−i (Bc(V̂ )k̂C·b+Bc(V̂ )k̂e·c)M̂intV̂
µ ei (Bc(V̂ )k̂C·b+Bc(V̂ )k̂e·c)|Ψ〉

= lim
|b|→∞

〈Ψ |V̂ µ e−iBc(V̂ )k̂C·bM̂int e
iBc(V̂ )k̂C·b|Ψ〉 . (3.46)

Here we have used that V̂ µ commutes with k̂e and m̂C = m̂12 + m̂int. We have
further used that M̂int commutes with V̂ µ and k̂e. Note that from Eq. (2.4) we
have

Bc(V̂ )k̂C =

√

k̂2
e + m̂2

CV̂ − k̂e −
V̂ 0 − 1

V̂ 2
V̂ (V̂ · k̂e) . (3.47)

We observe that only the first term of this expression does not commute with

M̂int since it involves the operator ˆ̃
k which occurs in m̂C, cf. Eq. (2.83). Using

this, Eq. (3.46) can be further reduced to

lim
|b|→∞

〈Ψ |V̂ µ e−i
√

m̂2
C+k̂2

e V̂ ·bM̂int e
i
√

m̂2
C+k̂2

e V̂ ·b|Ψ〉 . (3.48)

This expression has a similar structure as a corresponding expression in an
instant-form analysis of Ref. [KP91]. Therefore, we can use similar arguments
as therein: under certain assumptions (for details we refer to [KP91]) about
the regularity of the interaction and the wave function it can be shown that
expression (3.48) vanishes, whereas in general Eq. (3.45) does not. This repre-
sents a violation of the cluster condition, Eq. (3.41), for the Bakamjian-Thomas
generators P̂µ of Eq. (3.22).

The vanishing of (3.48) indicates the vanishing of the interaction between
particles 1 and 2 in the limit where the non-interacting spectator is separated
by an infinite large space-like distance. This means that the physical properties
of the interacting pair are not independent of the non-interacting spectator.
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The problem is inherent in the definition of the cluster wave functions from
velocity states for more than 2 particles, see, e.g., Eq. (3.23). In particular,
the wave function depends on the energy of the spectator which is reflected
in a k0e -dependence of the normalization factors of Eq. (3.27). Likewise the
wave function changes in the presence of additional non-interacting particles.
This change is essentially proportional to the fraction of the cluster binding
energy over the invariant mass of the whole system. This indicates that, if the
invariant mass of the whole system is made sufficiently large, the effects of wrong
cluster separability properties should be minimized or in particular cases even
be eliminated.

3.5 Quantum Field Theoretical

Vertex Interactions

Up to now we discussed only instantaneous interactions. In order to set up
a relativistic multi-channel problem we need interactions which describe parti-
cle creation and annihilation. The definition of such quantum field theoretical
vertex interactions within our point-form Bakamjian-Thomas framework is the
subject of this section. It relies on the ideas of Refs. [Kli03a,Kra01].

3.5.1 Field Operators

The first step towards a field theoretical vertex interaction is the construction
of field operators. In the present section we will consider only fermion-photon
vertices with the fermion field being a (anti-)quark, nucleon or electron field.

Dirac Fields

The field operators for a charged massive spin-1/2 fermion field read

ψ̂ (x) =
1

(2π)3

∫
d3p

2p0

∑

σ=± 1
2

(

eip·xvσ(p)d̂
†
σ(p) + e−ip·xuσ(p)ĉσ(p)

)

(3.49)

and

ˆ̄ψ (x) =
1

(2π)3

∫
d3p

2p0

∑

σ=± 1
2

(

e−ip·xv̄σ(p)d̂σ(p) + eip·xūσ(p)ĉ
†
σ(p)

)

. (3.50)

ψ̂α (x) with α = 1, . . . , 4 transforms under Poincaré transformations with the
four-dimensional matrix representation of the SL(2,C), which has been intro-
duced in Eq. (2.23):

Û(Λ, a) ψ̂α (x) Û †(Λ, a) = Sαβ(Λ
−1) ψ̂β (Λx+ a) . (3.51)

With the help of Eq. (B.13) the transformation properties of the adjoint field
operators follow immediately:

Û(Λ, a) ˆ̄ψα (x) Û †(Λ, a) = ˆ̄ψβ (Λx+ a)Sβα(Λ) . (3.52)
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uσ(p)α and vσ(p)α are the Dirac four-spinors defined by the action of a canonical
boost on the spinors in the rest frame:

uσ(p)α = Sαβ [Bc(v)]uσ(0)β , (3.53)

vσ(p)α = Sαβ [Bc(v)]vσ(0)β . (3.54)

They correspond to fermion and anti-fermion solutions of the Dirac equation,
respectively:

(γµpµ −m)uσ(p) = 0 and (γµpµ +m) vσ(p) = 0 . (3.55)

The explicit forms of the spinors are fixed by the representation used for the
γ-matrices. In the standard representation, which will be used throughout this
work, the spinors are given in App. B.1. The adjoint Dirac spinors defined by
ūσ(p) := u†σ(p)γ

0 and v̄σ(p) := v†σ(p)γ
0 satisfy the adjoint Dirac equation:

ūσ(p) (γ
µpµ −m) = 0 and v̄σ(p) (γ

µpµ +m) = 0 . (3.56)

The operators ĉ†σ(p) (ĉσ(p)) and d̂†σ(p) (d̂σ(p)) are creation (annihilation) op-
erators for fermions and anti-fermions, respectively. They act on the, so-called,
Fock space which is the direct sum over all tensor products of single-particle
Hilbert spaces. The vacuum state |0〉 of this Fock space is defined via the action
of the annihilation operators:

ĉσ(p)|0〉 = d̂σ(p)|0〉 = 0 . (3.57)

A n-particle tensor-product state containing (anti-)fermions is obtained by ap-
plying n creation operators for (anti-)fermions to the vacuum state. Hence, for
a n-fermion state, for example, we have

ĉ†σ1
(p1)ĉ

†
σ2
(p2) · · · ĉ†σn

(pn)|0〉 = |p1, σ1;p2, σ2; . . . ;pn, σn〉 . (3.58)

For each anti-fermion occurring in Eq. (3.58) the corresponding fermion operator

ĉ†σi
(pi) has to be replaced by d̂†σi

(pi). The creation and annihilation operators
satisfy the following anti-commutation relations:

{ĉσ(p), ĉ†σ′ (p
′)} = {d̂σ(p), d̂†σ′ (p

′)} = (2π)32p0δ3 (p− p′) δσσ′ . (3.59)

They are fixed by the normalization of the massive one-particle states Eq. (2.51).
All other anti-commutators vanish.

Maxwell Field

A field operator for a neutral massless spin-1 boson field like, e.g., a photon is
given by

Âµ(x) =
1

(2π)3

∫
d3p

2|p|

3∑

λ=0

(−gλλ)
(

eip·xǫµλ(p)â
†
λ(p) + e−ip·xǫ∗µλ (p)âλ(p)

)

.

(3.60)

The field operator Âµ(x) transforms under a Poincaré transformation with the
usual four-dimensional matrix representation of the Lorentz group Eq. (2.6):

Û(Λ, a) Âµ(x) Û †(Λ, a) =
(
Λ−1

)µ

ν
Âν(Λx+ a). (3.61)
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The appropriately orthonormalized photon polarization vectors ǫµλ(p) are most
conveniently expressed as the components of the helicity boost matrix ǫµλ(p) =
Bh(p)

µ
λ [Kli03b], which satisfy the completeness relation

3∑

λ=0

ǫµλ(p)(−gλλ) ǫ∗νλ (p) = −gµν . (3.62)

The operators â†λ(p) and âλ(p) are photon creation and annihilation operators,
respectively. They satisfy the commutation relations

[âλ(p), â
†
λ′(p

′)] = (2π)32p0δ3 (p− p′) (−gλλ′) . (3.63)

All other commutators vanish. âλ annihilates the vacuum state |0〉:

âλ(p)|0〉 = 0 . (3.64)

3.5.2 Vertex Operators from Interaction Densities

In a velocity-state basis the Bakamjian-Thomas type four-momentum operator,
Eq. (3.5), becomes diagonal in the total four-velocity V µ. This is a special fea-
ture of the Bakamjian-Thomas construction which, in general, does not hold
for arbitrary interacting relativistic quantum theories. It is, in particular, not
possible to factorize the four-momentum operator of an interacting point-form
quantum field theory into a product of a four-velocity operator and an interact-
ing mass operator, cf. Ref. [BKSZ08]. Therefore, vertex operators responsible
for photon emission and absorption cannot directly be taken from point-form
quantum electrodynamics. One rather has to make the approximation that the
total four-velocity of the system is conserved at the electromagnetic vertices to
end up with a Bakamjian-Thomas type mass operator. In Ref. [Kli03a] it has
been demonstrated in some detail that this is a natural way to implement general
field theoretical vertex interactions into a Bakamjian-Thomas type framework.

Constituents

We start our discussion by looking at the interaction of a photon field with
the constituents and the electron. To this end we consider a field theoretical
interaction density L̂int(x) for spinor quantum electrodynamics [BD64]. It is
given by the normal ordered product of the field operators defined above:

L̂int(x) := − : Ĵµ
1 (x)Âµ(x) : − : Ĵµ

2 (x)Âµ(x) :

− | e |Qe :
ˆ̄ψe(x)γ

µψ̂e(x)Âµ(x) : . (3.65)

L̂int(x) describes the coupling of a photon field to the 2 spin-1/2 constituents’
fields and to the electron field. The Ĵµ

i (x) are current operators of the con-
stituents and are given for point-like constituents like, e.g. quarks, explicitly

by Ĵµ
q (x) = | e |Qq

ˆ̄ψq(x)γ
µψ̂q(x). The transformation properties of the fields,

Eqs. (3.51) and (3.52), together with Eq. (B.15) imply that the fermion cur-

rent of the form ˆ̄ψ(x)γµψ̂(x) transforms like a vector field (cf. Eq. (3.61)).
Furthermore, it satisfies current conservation:

∂

∂xµ
Ĵµ
q (x) = 0 . (3.66)
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We require a general current operator Ĵµ
i (x) for non-point-like objects like,

e.g., nucleons to have the same covariance and continuity properties as Ĵµ
q (x).

Consequently, L̂int(x) transforms like a Lorentz scalar:

Û(Λ, a) L̂int(x) Û
†(Λ, a) = L̂int(Λx+ a) . (3.67)

From the interaction Lagrangean density operator we can immediately con-
struct the interaction part of the energy-momentum tensor operator, which
reads T̂ µν

int (x) = −gµνL̂int(x). We have already seen in Sec. 3.2 that the space-
like hypersurface of Minkowski space that is left invariant under the point-form
stability group is the forward hyperboloid xµxµ = τ2. In a point-form quantum
field theory obtained from canonical quantization this hyperboloid represents
the field quantization surface on which the canonical (anti-)commutation re-

lations on the field operators ψ̂ (x), ˆ̄ψ (x) and Âµ(x) are imposed [BKSZ08].
Accordingly, the interaction four-momentum operator in a point-form quan-
tum field theory is obtained by integrating T̂ µν

int (x) over the forward hyper-
boloid [Kli03a,BKSZ08]:

P̂µ
int = −

∫

2d4x δ(xµxµ − τ2) θ(x0)xµL̂int(x) . (3.68)

The correct transformation properties of P̂µ
int under Poincaré transformations,

Eq. (2.30), follow immediately from Eq. (3.67) and the invariance of the hyper-
surface element d4x δ(xµxµ − τ2) θ(x0). Since L̂int(x) is a local field operator
that transforms like a Lorentz-scalar density it can be shown that the Lie algebra
for translations, Eq. (2.10), is satisfied [Kli03a].

Now consider particular matrix elements of this interacting momentum op-
erator between velocity states:

〈V ′;k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |P̂µ

int|V ;k1, µ1;k2, µ2;ke, µe〉
= −〈V ′;k′

1, µ
′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |L̂int(0)|V ;k1, µ1;k2, µ2;ke, µe〉

×
∫

2 d4x δ(xµxµ − τ2) θ(x0)xµ e−i(M ′

12eγV
′−M12eV )·x . (3.69)

Here we have used the transformation properties of the Lagrangean density
and the velocity states under space-time translations, Eqs. (3.67) and (2.75),
respectively.

In order to find a Bakamjian-Thomas-type mass operator from P̂µ
int that

commutes with the velocity operator we have to assume the matrix elements in
Eq. (3.69) to be diagonal in V and V ′. For V = V ′ the integral in Eq. (3.69)
can be evaluated and one finds

〈V ;k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |L̂int(0)|V ;k1, µ1;k2, µ2;ke, µe〉

×
∫

2d4x δ(xµxµ − τ2) θ(x0)xµ e−i(M ′

12eγ−M12e)V ·x

= fv(|M ′
12eγ −M12e|)V µ

×〈k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |L̂int(0)|k1, µ1;k2, µ2;ke, µe〉 . (3.70)

The vertex factor fv(|M ′
12eγ −M12e|) is a known function (for its explicit form

we refer to Ref. [Kli03a]), but it might as well be replaced by a phenomenolog-
ical function to compensate for the neglect of the contributions of terms that
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are off-diagonal in the four-velocity, as well as regulate the integrals, if neces-
sary [Kra01]. These are, however, not our primary objectives here. Hence, we
set fv(|M ′

12eγ −M12e|) = 1 in the following. By separating the four-velocity
V µ in Eq. (3.70), the remaining expression can be used to define the matrix
elements of the electromagnetic vertex operators K† and K between velocity
states:

〈V ′;k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |K̂†|V ;k1, µ1;k2, µ2;ke, µe〉

≡ 〈V ;ke, µe;k1, µ1;k2, µ2|K̂|V ′;k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ〉∗

:=
(−1)(2π)3
√

M ′3
12eγM

3
12e

V 0δ3(V − V ′)

×〈k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |L̂int(0)|k1, µ1;k2, µ2;ke, µe〉 (3.71)

with

〈k′
1, µ

′
1;k

′
2, µ

′
2;k

′
e, µ

′
e;k

′
γ , µ

′
γ |L̂int(0)|k1, µ1;k2, µ2;ke, µe〉

= (2π)6 | e |Qe ūµ′

e
(k′

e)γνuµe(ke) ǫ
ν
µ′

γ
(k′

γ) δµ1µ′

1
2k01δ

3(k′
1 − k1)

×δµ2µ′

2
2k02δ

3(k′
2 − k2)

+(2π)6J1ν(k
′
1, µ

′
1;k1, µ1)ǫ

ν
µ′

γ
(k′

γ) δµeµ′

e
2k0eδ

3(k′
e − ke)

×δµ2µ′

2
2k02δ

3(k′
2 − k2)

+(2π)6J2ν(k
′
2, µ

′
2;k2, µ2) ǫ

ν
µ′

γ
(k′

γ) δµeµ′

e
2k0eδ

3(k′
e − ke)

×δµ1µ′

1
2k01δ

3(k′
1 − k1) .

(3.72)

The factor V 0/
√

M ′3
12eγM

3
12e in Eq. (3.71) is derived from the requirement that

an analogous procedure for the kinetic term in the Lagrangean provides the
usual (kinetic) mass term [Lec03]. The detailed derivation of Eq. (3.72) is
demonstrated in App. D.1. Here Jµ

i (k
′
i, µ

′
i;ki, µi) := 〈k′

i, µ
′
i|Ĵµ

i (0)|ki, µi〉 are the
constituents’ currents which are given for the point-like (structureless) particle
case of a quark and an antiquark by the expressions

Jµ
q (k

′
q, µ

′
q;kq, µq) = | e |Qqūµ′

q
(k′

q)γ
µuµq(kq) (3.73)

and

Jµ
q̄ (k

′
q̄, µ

′
q̄;kq̄, µq̄) = − | e |Qq̄v̄µq̄(kq)γ

µvµ′

q̄
(k′

q̄) , (3.74)

respectively. For non-point-like constituents like nucleons the corresponding
current matrix elements are given by

Jµ
N(k

′
N, µ

′
N;kN, µN) = | e | ūµ′

N
(k′

N)

[

FN
1 (Q2

N)γ
µ + FN

2 (Q2
N)

i qNνσ
µν

2mN

]

uµN(kN)

(3.75)

with N ≡ (p, n) standing for ‘proton’ and ‘neutron’, respectively. The electro-
magnetic structure of the nucleons is described by Dirac and Pauli form factors
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FN
1 (Q2

N) and FN
2 (Q2

N), respectively, which are functions of the square of the
four-momentum transfer on the constituents defined by4

qN := k′N − kN , −qµNqNµ =: Q2
N . (3.76)

Eq. (3.75) is the most general expression for an electromagnetic current of an
extended spin-1/2 object satisfying current conservation

qNµJ
µ
N(k

′
N, µ

′
N;kN, µN) = 0 (3.77)

and Lorentz covariance, cf. App. B.1.2 (for a derivation of the expression (3.75)
we refer to, e.g., Ref. [AH03]). The operator K (K†) describes the annihila-
tion (creation) of a photon by the constituents 1 and 2 and by the electron.
In the following chapter we will see how a point-form Bakamjian-Thomas-type
mass operator is constructed from these vertex operators. The prescription,
Eq. (3.71), is a very natural way to introduce field theoretical vertex interac-
tions into the Bakamjian-Thomas framework. It preserves the Lorentz structure
of field theoretical vertex interactions. However, due to the overall velocity con-

serving delta function δ3(V − V ′) and the kinematical factor 1/
√

M ′3
e12M

3
e12γ ,

the locality of the vertex is violated. These quantities do not only depend on the
kinematics at the vertex, but also on the kinematics of the spectator particle(s).

Bound State

We can also define a Lagrangean density LC
int(x) which describes the coupling

of the photon field to the electron and to the bound state:

L̂C
int(x) := − | e |Qe :

ˆ̄ψe(x)γ
µψ̂e(x)Âµ(x) : − : Ĵµ

C(x)Âµ(x) : . (3.78)

In a similar way as above we can define vertex operators that describe the
emission and absorption of a photon by the bound state. To distinguish them
from the vertex operators for the constituents we will denote them by K̂C† and
K̂C. They are defined by

〈V ′;k′
e, µ

′
e;k

′
C, µ

′
j ;k

′
γ , µ

′
γ |K̂C†|V ;ke, µe;kC, µj〉

≡ 〈V ;ke, µe;kC, µj |K̂C|V ′;k′
e, µ

′
e;kC, µj ;k

′
2, µ

′
2;k

′
γ , µ

′
γ〉∗

:=
(−1)(2π)3
√

M ′3
eCM

3
eCγ

V 0δ3(V − V ′)

×〈k′
e, µ

′
e;k

′
C, µ

′
j ;k

′
γ , µ

′
γ |L̂C

int(0)|ke, µe;kC, µj〉

=
(−1)(2π)6
√

M ′3
eCM

3
eCγ

V 0δ3(V − V ′)

×
[

| e |Qe ūµ′

e
(k′

e)γνuµe(ke) ǫ
ν
µ′

γ
(k′

γ) δµjµ′

j
2k0Cδ

3(k′
C − kC)

+ JCν(k
′
C, µ

′
j;kC, µj ;Ke) ǫ

ν
µ′

γ
(k′

γ) δµeµ′

e
2k0eδ

3(k′
e − ke)

]

. (3.79)

4The four-momentum transfer squared Q2
i on the constituent should not be confused with

the constituents charge (squared), but the distinction should be clear from the context.
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Here Jµ
C(k

′
C, µ

′
j ;kC, µj ;Ke) is the bound-state current. It is the most general

current that one can write down for a bound state with spin j and may contain
phenomenological form factors that account for the substructure of the bound
state. Beside the incoming and outgoing bound-state momenta and spins we
have also written, as a further dependence, the sum of the incoming and out-
going electron momenta Kµ

e := kµe + k′µe into the argument of the current. The
latter dependence can be understood as an effect of the violation of cluster sepa-
rability in the Bakamjian-Thomas framework, which has been already discussed
in Sec. 3.4.4. As a consequence, the physical properties of the bound state are
not independent of the electron. In particular, as we will see, the bound-state
current contains, so-called, unphysical contributions that exhibit a dependence
on Ke. Finding an explicit form of Jµ

C(k
′
C, µ

′
j ;kC, µj ;Ke) in terms of bound-

state wave functions and constituents’ currents and investigating its Lorentz
structure is one of the central objectives of this work.

Covariance Properties

At first glance it might seem that the currents for the electron
ūµ′

e
(k′

e)γ
µuµe(ke), for the constituents J

µ
i (k

′
i, µ

′
i;ki, µi) and for the bound-state

Jµ
C(k

′
C, µ

′
j ;kC, µj ;Ke) defined in Eqs. (3.72) and (3.79) transform like four-

vectors under Lorentz transformations. This is, however, not the case due to
the center-of-mass momenta of the electron-bound-state(-photon) system that
appear in the currents. The effect of a Lorentz transformation on such center-of-
mass momenta is a Wigner rotation, which can be seen from the transformation
properties of velocity states, Eq. (2.73). In order to investigate the transfor-
mation properties of the currents we look at velocity-state matrix elements of a

Lorentz transformed vertex operator ˆ̄K† = Û(Λ)K̂†Û †(Λ) (using the short-hand

notation R
(′)
Wc

≡ R
(′)
Wc

(V (′), Λ)):

〈V ′;k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ |Û(Λ)K̂Û †(Λ)|V ;ke, µe;k1, µ1;k2, µ2〉

= 〈ΛV ′;R′
Wc
k′e, µ̄

′
e;R

′
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′
1;R

′
Wc
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2;R
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γ |
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1
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1
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1
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×D
1
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2
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)RWh
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2
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. (3.80)
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From the covariant transformation property of the polarization vectors,
Eq. (B.24), we find

ǫµµ′

γ
(k′

γ)
Λ−→ ǫνµ̄′

γ
(RWck

′
γ) = RWc(V, Λ)

µ
νǫ

ν
µ′

γ
(k′

γ)R
−1
Wh

(
k′γ , RWc

)

µ′

γ µ̄
′

γ

.

(3.81)

Demanding Lorentz invariance of the vertex by comparing Eq. (3.80) with
Eq. (3.71) we find the transformation properties of the currents under Lorentz
transformations:

Jµ
i (k

′
i, µ

′
i;ki, µi)

Λ−→ Jµ
i (RWck

′
i, µ̄

′
i;RWcki, µ̄i)

= RWc(V, Λ)
µ
νJ

ν
i (k

′
i, µ

′
i;ki, µi)D

ji∗
µ′

iµ̄
′

i
[R−1

Wc
(V, Λ)]Dji

µiµ̄i
[R−1

Wc
(V, Λ)]

(3.82)

with i = e, q, N. For the bound-state current Jµ
C(k

′
C, µ

′
j;kC, µj ;Ke) one finds

the same transformation properties as in Eq. (3.82). We see that our currents
do not behave like four-vectors under Lorentz transformations. Instead, they
transform by a Wigner rotation RWc(V, Λ). Currents with the correct covari-
ance properties, however, are obtained by going back to the physical particle

momenta p
(′)
i and spin projections σ

(′)
i of Eq. (2.60) by means of a canonical

boost with velocity V (cf. Eq. (2.67)) and a Wigner rotation R−1
Wc

(w
(′)
i , Bc(V )),

respectively. Such covariant currents are defined by [BSFK09]

Jµ
i (p

′
i, σ

′
i;pi, σi) := Bc(V )µνJ

ν
i (k

′
i, µ

′
i;ki, µi)

×Dji∗
µ′

i
σ′

i
[R−1

Wc
(w′

i, Bc(V ))]Dji
µiσi

[R−1
Wc

(wi, Bc(V ))]

(3.83)

with i = e, q, N. It is checked in App. D.2.1 that these currents exhibit the cor-
rect covariance properties under Lorentz transformations. Similarly, the bound-
state current Jµ

C(p
′
C, σ

′
j ;pC, σj ;Pe) with Pe = pe + p′e is obtained according to

the prescription of Eq. (3.83).5

5The term ‘physical current’ for J
µ
C
(p′

C, σ
′
j ;pC, σj ;Pe) is avoided due to the unphysical

contributions proportional to Pe which may occur in the expression for this current. Therefore,
we rather speak in this context of covariant currents.



Chapter 4

Relativistic
Coupled-Channel Problem

4.1 Introduction

In this chapter we look at elastic electron-bound-state scattering in the center-
of-momentum frame. This process is treated as a coupled-channel problem for a
Bakamjian-Thomas-type mass operator. The corresponding system of coupled
equations can be reduced to an eigenvalue problem for the elastic channel with
a one-photon-exchange optical potential. ‘On-shell’ matrix elements of this op-
tical potential in the velocity state basis are sufficient for the identification and
extraction of the electromagnetic bound-state current. Corresponding analytical
expressions in terms of bound-state wave functions and constituents’ currents
will be derived. The following formalism can also be found in Ref. [BSFK09]
for the particular case of the bound state being a pseudoscalar meson.

4.2 Electron-Bound-State Scattering

4.2.1 Coupled-Channel Problem

The stability group of the point form is the Lorentz group which makes a man-
ifest Lorentz covariant formulation feasible. It is easy in the point form to ob-
tain a relativistic generalization of the Schrödinger equation. This is achieved
by simply replacing the non-relativistic Hamiltonian, i.e. the energy operator,
by the four-momentum operator, whose components contain all interactions of
the system. The resulting dynamical equations to be solved are given by the
eigenvalue problem for the four-momentum operator [Kli03a]:

P̂µ|Ψ〉 = Pµ|Ψ〉 . (4.1)

We have already pointed out in Sec. 3.3 that a point-form Bakamjian-Thomas
construction results in a total four-momentum operator that is the product of
the free four-velocity operator times the total mass operator, cf. Eq. (3.5).
The latter contains all information about the dynamics of the system. As a
consequence it suffices to study the eigenvalue problem for the mass operator.
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Therefore Eq. (4.1) can be reduced to

M̂ |Ψ〉 =M |Ψ〉 . (4.2)

Our aim is to construct a Bakamjian-Thomas type mass operator M̂ that de-
scribes photon exchange in such a way that retardation effects are fully taken
into account. This can be achieved within a coupled-channel framework that
allows for the creation and annihilation of a photon by means of the vertex
operators defined in the previous chapter. To this end we treat the electromag-
netic scattering of an electron by a bound two-body system as a two-channel
problem for an appropriately defined Bakamjian-Thomas type mass operator.
Such a mass operator acts on a Hilbert space that is the direct sum of the 12e
and 12eγ Hilbert spaces. It can be written as a (2× 2)-matrix operator [Kli03a]

M̂ := M̂Ce(γ) + M̂int =

(
M̂Ce 0

0 M̂Ceγ

)

+

(
0 K̂

K̂† 0

)

. (4.3)

The diagonal elements of this mass operator, M̂Ce and M̂Ceγ of Eqs. (3.20)
and (3.34), respectively, are the invariant mass operators of the uncoupled Ce-
and Ceγ-systems. They may contain instantaneous two-body interactions be-
tween the constituents 1 and 2 (in the way introduced in Sec. 3.4). The off-
diagonal terms K̂† and K̂ are the vertex operators defined by Eq. (3.71) and
they account for the creation and annihilation of the photon at the electron
and the constituents. In this way they couple the 12e Hilbert space to the
12eγ Hilbert space. The mass operator of Eq. (4.3) is of point-form Bakamjian-
Thomas type (cf. Eq. (3.6)) since it is defined to commute with V̂ µ due to
the delta functions in Eqs. (3.17) and (3.71). Decomposing an arbitrary mass
eigenstate of the system |Ψ〉 into components belonging to the 2 channels 12e
and 12eγ,

|Ψ〉 :=
(

|ΨCe〉
|ΨCeγ〉

)

, (4.4)

and inserting the definitions (4.3) and (4.4) into the eigenvalue equation (4.2)
we have (

M̂Ce K̂

K̂† M̂Ceγ

)(
|ΨCe〉
|ΨCeγ〉

)

=M

(
|ΨCeγ〉
|ΨCeγ〉

)

. (4.5)

This is a linear system of 2 coupled equations for the respective components:

M̂Ce|ΨCe〉+ K̂|ΨCeγ〉 = M |ΨCe〉 , (4.6)

K̂†|ΨCe〉+ M̂Ceγ |ΨCeγ〉 = M |ΨCeγ〉 . (4.7)

4.2.2 One-Photon-Exchange Optical Potential

Constituents

For our further purposes it is useful to apply a Feshbach reduction to Eqs. (4.6)
and (4.7) which means to solve the second equation for |ΨCeγ〉 and insert the
resulting expression into the first one to end up with an equation for |ΨCe〉:

(

M̂Ce −M
)

|ΨCe〉 = K̂
(

M̂eCγ −M
)−1

K̂†

︸ ︷︷ ︸

=:V̂opt(M)

|ΨCe〉 . (4.8)
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The right-hand side of this equation describes the action of the one-photon-
exchange on the state |ΨCe〉. This equation has the structure of an eigenvalue
equation, but with the mass eigenvalue M also appearing in the optical
potential V̂opt(M). V̂opt(M) consists of all possibilities to exchange the photon
between the electron and the constituents. It also includes loop contributions,
i.e. absorption by the emitting particle. (M − M̂Ceγ)

−1 describes the propaga-
tion of the Ceγ intermediate state and is thus responsible for retardation effects.

Bound State

On the bound-state level, where the structure of the bound state is not re-
solved in terms of constituents, the corresponding one-photon-exchange optical
potential is simply obtained by replacing K̂ with K̂C of Eq. (3.79) in V̂opt(M):

V̂ C
opt(M) := K̂C

(

M̂Ceγ −M
)−1

K̂C† , (4.9)

with V̂ C
opt(M) acting now on a two-particle Ce Hilbert space.

4.3 Calculation of the Bound-State Current

4.3.1 Matrix Elements of the Optical Potential

Our objective of this section is to derive an expression for the bound-state
current Jµ

C(k
′
C, µ

′
j ;kC, µj ;Ke) in terms of bound-state wave functions and con-

stituents’ currents. To this end we consider matrix elements of the optical
potential V̂opt(M) of Eq. (4.8) between velocity states of the electron-bound-
state system. The electromagnetic current of a bound state is usually extracted
from the elastic electron-bound-state scattering amplitude calculated in the one-
photon-exchange approximation. This means that we can restrict our consider-
ations to ‘on-shell’ (os) matrix elements of V̂opt(M) for which the total invariant
mass of the incoming and outgoing electron and bound state has to be the same,
i.e.

M = k0e + k0C = k′0e + k′0C (4.10)

since

k0e = k′0e and k0C = k′0C . (4.11)

Note that the velocity-state representation is associated with center-of-mass
kinematics, cf. Eq. (2.68).

We start our calculation by looking at on-shell matrix elements of the optical
potential between clustered electron-bound-state velocity states of Sec. 3.4.2:1

〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j | V̂opt(M)|V ;ke, µe

;k12, n, j, µj〉os

= 〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j | K̂

(

M̂eCγ −M
)−1

K̂†

×|V ;ke, µe
;k12, n, j, µj〉os . (4.12)

1Here we introduce the ‘underlining’ of spins, momenta and velocities in order to have a
further mean (beside multiple primes) for distinguishing quantum numbers in clustered from
those in free velocity states. This underline should not be confused with the underline denoting
elements of the SL(2,C), but the distinction should be clear from the context.
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The first step towards an evaluation of Eq. (4.12) is a multiple insertion of
the completeness relations for free and clustered velocity states, cf. Eqs. (2.77)
and (3.37), at the appropriate places on the right-hand side of Eq. (4.12):

〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j | 1̂′12e K̂ 1̂′′′12eγ

(

M̂eCγ −M
)−1

1̂′′Ceγ

×1̂′′12eγ K̂
† 1̂12e |V ;ke, µe

;k12, n, j, µj〉os . (4.13)

Next we use the orthogonality relations for the free and clustered velocity states,
Eqs. (2.78) and (3.36), respectively, together with the expressions for the ma-
trix elements of the vertex operators, Eq. (3.71), and the definitions of the wave
functions, Eqs. (3.23) and (3.35). Then the necessary integrations and sums can
be done by means of the appropriate Dirac and Kronecker deltas, respectively.
In the rather lengthy calculation, which is presented in detail in App. E, we
neglect the 5 self-energy contributions in which the photon is emitted and ab-
sorbed by the same particle.2 The remaining 4 time-ordered contributions can
be combined to 2 covariant contributions corresponding to the photon exchange
between the electron and the two constituents. The result has the structure
of a contraction of the electron current with the sum of 2 integrals (involving
the wave functions and the constituents’ currents) multiplied with the covariant
photon propagator:

〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j| V̂opt(M)|V ;ke, µe

;k12, n, j, µj〉os
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∫
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×
∑

µ2

Ψ∗
njµ′

jµ
′

1µ
′

2
(k̃′)Ψnjµjµ′
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× (−gµν)

Q2
| e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke) . (4.14)

A diagrammatic representation of these contributions is depicted in Fig. 4.1.
Here the blobs that connect the c1 and c2 lines symbolize integrals over wave
functions of the incoming and outgoing bound state. The denominator of the
covariant photon propagator, which includes both time orderings, is given by
−qµqµ = Q2 with qµ = k′µC − kµC being the four-momentum transfer between
electron and bound state.3 Momenta with and without prime are related by
k′
i = ki+q = ki+kγ with i = 1, 2 and k′

e = ke−kγ . This means that we have

2Photon exchange between particles 1 and 2 is also excluded as it is a self-energy contri-
bution to the bound state.

3Note that q = kγ , but q0 6= k0γ = |kγ |.
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ee

CC
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c2

γ

ee

CC

c1

c2

γ

Figure 4.1: The diagrammatic representation of the 2 covariant contributions
to the one-photon-optical potential corresponding to the 2 terms in Eq. (4.14).

three-momentum conservation at the electromagnetic vertices, a property which
one would not expect in point-form quantum mechanics. Here it results from
the velocity-state representation, in particular the associated center-of-mass
kinematics and the spectator conditions for the inactive particles. The energy
is, however, not conserved at the vertices. For the physical momenta, i.e.
the center-of-mass momenta boosted by Bc(V ), none of the four-momentum
components is, in general (if V 6= 0), conserved at the electromagnetic vertices.4

4.3.2 Matrix Elements of the Optical Potential on the
Bound-State Level

In a similar way as in the previous section on the constituents’ level we can also
calculate on-shell velocity-state matrix elements of the optical potential V̂ C

opt(M)
given by Eq. (4.9). We work on the bound-state level which means that the
structure of the bound state is not resolved in terms of constituents. The purpose
of this calculation is the identification of the bound-state current from Eq. (4.14).
In particular, it serves for the identification of the kinematical factors belonging
to the current, which stand in front of the integral of Eq. (4.14). The explicit
calculation will not be demonstrated here, instead we refer to the thorough
derivation in Ref. [Fuc07]. It is briefly summarized as follows: one starts with
the insertion of a velocity-state completeness relation at the appropriate place
of matrix elements of V̂ C

opt(M). Then one uses the matrix elements of the vertex
operators between velocity states, Eq. (3.79), in order to carry out the necessary
integrals and sums by means of the corresponding Dirac and Kronecker deltas,
respectively. If self-energy contributions are again neglected the optical potential
consists of 2 terms corresponding to the 2 possible time orderings. Restricting
ourselves to on-shell matrix elements, cf. Eq. (4.10), we can combine the 2 time
orderings to the covariant photon propagator, cf. Eq. (E.12). The final result
is then given by [Fuc07,BSFK09]

〈V ′;k′
e, µ

′
e;k

′
12, µ

′
j | V̂ C

opt(M)|V ;ke, µe;k12, µj〉os

= (2π)3V 0δ3(V − V ′)
1

√

(k′0e + k′0C )
3

1
√

(k0e + k0C)
3

× | e |Qeūµ′

e
(k′

e)γµuµe(ke)
(−gµν)

Q2
JCν(k

′
C, µ

′
j ;kC, µj ;Ke) . (4.15)

4Note that boosts mix spatial and temporal components.
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The expression on the right-hand side reveals that on-shell matrix elements
of the optical potential can be expressed as a contraction of the electromag-
netic electron current | e |Qeūµ′

e
(k′

e)γµuµe with an electromagnetic bound-state
current JCν(k

′
C, µ

′
j ;kC, µj ;Ke) multiplied with the covariant photon propaga-

tor −gµν/Q2 (and a kinematical factor). Apart from the kinematical factor in
front, the right-hand side of Eq. (4.15) corresponds to the familiar one-photon
exchange amplitude for elastic electron-bound-state scattering (calculated in the
electron-bound-state center-of-mass system).

It should be mentioned that, in general, the four-momentum transfer be-
tween incoming and outgoing (active) constituent qµ1 := (k′1 − k1)

µ devi-
ates from the four-momentum transfer between incoming and outgoing cluster
qµ := (k′C − kC)

µ. This can be seen as follows: whereas the three-momentum
transfers are the same on the bound-state and on the constituent level, i.e.
q = q1, the zero components differ, i.e. q0 6= q01 . Due to the center-of-mass
kinematics associated with the velocity states k0C = k′0C and hence q0 = 0. On
the other hand it can be shown that

(k′01 )
2 = (k01)

2 − 2q · k ′
2 so that q01 6= 0 . (4.16)

Accordingly, not all of the four-momentum transferred to the cluster is also
transferred to the active constituent.

4.3.3 Identifying the Bound-State Current

By comparison of Eq. (4.15) with Eq. (4.14) we can identify the bound-state
current as
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∑
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(k̃)Jµ

2 (k
′
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′
2;k2, µ2)

]

. (4.17)

Simplifications for Equal Mass and Spin of the Constituents

In the this work we restrict our considerations to bound systems consisting
of 2 equal-mass equal-spin constituents. For the treatment of systems with
unequal constituent masses within the present formalism, like heavy-light bound
systems, we refer to Refs. [GRS10,GRS11]. According to our case, we assume
the constituents to have equal masses, i.e. m1 = m2 =: m and same spins, i.e.
j1 = j2 = 1

2 , which simplifies the expression for the current, Eq. (4.17), even
further. First we manipulate the second term of Eq. (4.17) by simply renaming
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momenta and spins (which are integrated and summed over). We make the
replacements

k′1 ↔ k′2 , k1 ↔ k2 and µ′
1 ↔ µ′

2 , µ1 ↔ µ2 . (4.18)

Consequently, using the symmetry of the Clebsch-Gordan coefficients, i.e.
Csµs

j1µ1j2µ2
= Csµs

j2µ2j1µ1
, we can write Eq. (4.17) in a more compact form:
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1;k1, µ1)] . (4.19)

A further simplification of this expression is achieved by going from the k′1-
integration to a k̃′1-integration by means of the appropriate Jacobian, cf.
Eq. (E.4). Note that for equal masses we have k̃01 = k̃02 = m12/2 and
k̃′01 = k̃′02 = m′

12/2. Moreover, it can be shown that the spinor product
for anti-particles, v̄µ1 (k1)γ

µvµ′

1
(k′

1), can be replaced by the one for particles,
ūµ′

1
(k′

1)γ
µuµ1(k1), cf. Eq. (B.11). Writing out the wave functions defined in

Eq. (3.14) we can combine the Wigner D-functions for the inactive (spectator)
constituent 2 by means of Eq. (C.5) due to the spectator condition k2 = k′

2:
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12))RWc

(w̃2, Bc(w12)) = RWc

(
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−1
c (w′

12)Bc(w12)
)
.

(4.20)

With these manipulations the expression for the bound-state current finally
reads
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=
√

2k0C

√

2k′0C
∑

∫
d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

×Y ∗
l′µ′

l
(
ˆ̃
k′)C

s′µ′

s∗
1
2 µ̃

′

1
1
2 µ̃

′

2

C
jµ′

j∗
l′µ′

l
s′µ′

s
uj∗nl′s′(k̃

′)Ylµl
(
ˆ̃
k)Csµs

1
2 µ̃1

1
2 µ̃2

C
jµj

lµlsµs
ujnls(k̃)

×D
1
2

µ̃′

1µ
′

1

[
R−1

Wc (w̃
′
1, Bc(w

′
12))

]
D

1
2

µ1µ̃1
[RWc (w̃1, Bc(w12))]

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc(w12)
)]

× | e | ūµ′
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µuµ1(k1) . (4.21)

Here Γµ
i is the ciγci-vertex. It is given for point-like and non-point-like con-

stituents like quarks and nucleons by the expressions

Γµ
q = Qqγ

µ and Γµ
N = FN

1 (Q2
N)γ

µ + FN
2 (Q2

N)
i qNνσ

µν

2mN
, (4.22)

respectively.
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4.4 Current Properties

In this section we investigate hermiticity, covariance and continuity properties
of our bound-state current given by Eq. (4.21). The two former can be discussed
without specifying the spin of the bound state. For the latter we consider the
particular cases of a pseudoscalar and a vector bound state.

4.4.1 Hermiticity

Hermiticity of the current means that

Jµ
C(k

′
C, µ

′
j ;kC, µj ;Ke) =

[
Jµ
C(k

′
C, µ

′
j;kC, µj ;Ke)

]†

= Jµ∗
C (kC, µj ;k

′
C, µ

′
j ;Ke) , (4.23)

which amounts to showing invariance under interchange of all primed with
unprimed momenta and spins and complex conjugation. To this we show
hermiticity of the bound-state current Eq. (4.21) as follows: we write down
Jµ∗
C (kC, µj ;k

′
C, µ

′
j ;Ke) from Eq. (4.21) by interchanging all primed and un-

primed momenta and spins and perform complex conjugation:

Jµ∗
C (kC, µj ;k

′
C, µ

′
j ;Ke)

=
√

k0Ck
′0
C

∑
∫

d3k̃1
k′01

√
m12′

m12

√

k′012
k012

×Y ∗
l′µ′

l
(ˆ̃k′)C

s′µ′

s∗
1
2 µ̃

′

1
1
2 µ̃

′

2

C
jµ′

j∗
l′µ′

l
s′µ′

s
uj∗nl′s′(k̃

′)Ylµl
(ˆ̃k)Csµs

1
2 µ̃1

1
2 µ̃2

C
jµj

lµlsµs
ujnls(k̃)

×D
1
2∗
µ̃1µ1

[
R−1

Wc
(w̃1, Bc(w12))

]
D

1
2∗
µ′

1µ̃
′

1

[
RWc

(w̃′
1, Bc(w

′
12))

]

×D
1
2∗
µ̃2µ̃′

2

[
RWc

(
w̃′

2, B
−1
c (w12)Bc(w

′
12)
)]

× | e |
[
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. (4.24)

Next we transform the integration measure in Eq. (4.24) according to Eq. (E.4)

d3k̃1 = d3k̃′1
m12

m′
12

k012
k′012

k′01
k01

(4.25)

since d3k′1 = d3k1. Further the Wigner D-functions can be rewritten in their
original form by using Eq. (C.5). Finally we use the hermiticity of the con-
stituents’ current, Eq. (B.22), to rewrite it in its original form. This shows that
the right-hand sides of Eq. (4.24) and Eq. (4.23) are equal.

4.4.2 Covariance

In this section we discuss the covariance properties of the current given by
Eq. (4.21). For simplicity, we restrict our investigation to the case of a pure S-
wave with l = l′ = 0, which has already been discussed in Sec. 3.4.2. In this case

the spherical harmonics become a constant, Y ∗
00(

ˆ̃
k′) = Y00(

ˆ̃
k) = 1/

√
4π and the

Clebsch-Gordans become Kronecker deltas, C
jµ′

j∗
00s′µ′

s
= δs′jδµ′

sµ
′

j
and C

jµj

00sµs
=



Relativistic Coupled-Channel Problem 59

δsjδµsµj
. Then the expression of the bound-state current, after summation and

reordering, reads
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In App. D.2.2 we prove that this bound-state current associated with the center-
of-mass system has the same transformation properties under Lorentz transfor-
mations as the center-of-mass currents of Eq. (3.82):
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(4.27)

This serves as a reasonableness check of our microscopic bound-state current,
cf. Eq. (4.17), expressed in terms of wave functions and constituents’ current.
The bound-state current with the correct covariance properties is obtained in
the same way as for the phenomenological currents, cf. Eq. (3.83), namely by
going to the physical particle momenta and corresponding spins by means of a
canonical boost [BSFK09]:
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with w
(′)
C := k

(′)
C /m

(′)
C . Here we have used the transformation properties of the

constituents’ current, Eq. (3.82). The covariant current Jµ
C(p

′
C, σ

′
j ;pC, σj ;Pe)
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of Eq. (4.28) transforms like a four-vector under Lorentz transformations. The
corresponding proof is carried out in a similar manner as for the constituents’
currents in App. D.2.1.

4.4.3 Pseudoscalar Current

In this section we consider our bound-state current of Eq. (4.19) for the case
of the bound state being a charged, massive pseudoscalar particle (PS) with
j = 0 like, e.g., a π± meson (charged pion). In the constituent quark model
a pseudoscalar meson is described by a confined quark-antiquark (qq̄) pair. In
particular, π+ is a bound state of a u-quark and a d̄-quark.

Simplifications

In the case of j = 0 and a pure S-wave the Clebsch-Gordan coefficients in the
wave functions of Eq. (4.19) can be written as
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=
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√
2

δµ̃2−µ̃1 . (4.29)

With these Kronecker deltas the sums over µ̃2 and µ̃′
2 can be carried out. Then

the product of the Clebsch-Gordan coefficients with the Wigner D-function for
the inactive constituent 2 becomes
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Here we have made use of the properties of the Wigner D-functions, Eqs. (C.5)
and (C.8). Using this expression allows us to combine all three D-functions to
a single one. With these findings the current for a pseudoscalar particle reads
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The argument of the single Wigner D-function in this expression can be simpli-
fied by using some relations for canonical boosts in the SL(2,C) representation,
which are collected in App. C.1:
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With this simplification and going back to physical momenta the covariant cur-
rent for a pseudoscalar bound state finally reads
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Continuity

The microscopic current for a pseudoscalar bound system of Eq. (4.33) satisfies
the condition of current conservation, cf. Eq. (3.66), which reads

(p′C − pC)µJ
µ
PS(p

′
C,pC, Pe) = (k′C − kC)µJ

µ
PS(k

′
C,kC,Ke) = 0 . (4.34)

The rather lengthy analytical proof of Eq. (4.34) is given in App. D.3.1. It
amounts to showing that the integral in Eq. (4.33) vanishes if the spinor product
ūµ′

1
(k′

1)γνuµ1(k1) is replaced by ūµ′

1
(k′

1)γ · (k1 − k′
1)uµ1(k1). By a change of

the integration variables d3k̃′1 → d3k̃1 it can be shown that the integral over
ūµ′

1
(k′

1)γ · k′
1uµ1(k1) goes over into the integral over ūµ′

1
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1)γ · k1uµ1(k1) (and
vice versa) so that the difference of them vanishes.

4.4.4 Vector Current

In this work we also consider charged, massive vector bound states with j = 1.
Examples for such systems are, e.g., the ρ± meson and the deuteron D. In the
constituent quark model the ρ+ meson is, like the π+, considered as a confined
pair of a u-quark and a d̄-quark. The deuteron, the simplest of all nuclei, is
composed of a proton p and a neutron n. In the following we do not further
resolve the proton and the neutron in terms of quarks and gluons. Instead, the
structure of the nucleons is taken into account in terms of phenomenological
electromagnetic nucleon form factors, cf. Eq. (3.75).

Simplifications

For j = 1 and the case of a pure S-wave the Clebsch-Gordan coefficients in

the wave functions of Eq. (4.19), C
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(2 × 2)-matrix form as [BG79]
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Here ε = iσ2 is the metric spinor and ǫµ
µ
(′)
j

(0) are the polarization vectors for

massive spin-1 particles in the rest frame given in App. B.3.1. Using Lorentz
invariance, cf. Eq. (B.40) and inserting for the Clebsch-Gordan coefficients into
Eq. (4.26) gives
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where we have used Eq. (C.9). The current with the correct covariance proper-
ties is then obtained from Eq. (4.37) according to Eq. (4.28):
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where we have used Eq. (B.32). From Eq. (4.37) using
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we can read off the current tensor as
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This current tensor is independent of the incoming and outgoing spin projections
µj and µ′

j . The covariant current tensor is then obtained analogously from
Eq. (4.38) as
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Continuity

Current conservation, Eq. (3.66) does, in general, not hold for the electromag-
netic current we obtain for a vector bound system as given by Eq. (4.38). This
means

(p′C − pC)µJ
µ
V(p

′
C, σ

′
j ;pC, σj ;Pe)

= −(k′
C − kC) · JV(k

′
C, µ

′
j ;kC, µj ;Ke)

×Dj∗
µ′

j
σ′

j
[R−1

Wc
(w′

C, Bc(V ))]Dj
µjσj

[R−1
Wc

(wC, Bc(V ))]
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This issue is discussed in more detail in App. D.3.2. There we explain that
the reason for the failure of proving continuity is the fact that the product
of the three Wigner D-functions together with the two Clebsch-Gordan coeffi-
cients in Eq. (4.28) cannot be written as one single Wigner D-function like in
the pseudoscalar case. Consequently, the properties of the Wigner D-functions
necessary for showing current conservation cannot be used. An analysis of the
covariant structure of the current (4.38) together with numerical results support
the non-vanishing of the left-hand side of Eq. (4.42).
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Chapter 5

Electromagnetic Form
Factors

5.1 Introduction

The invariant electron-bound-state scattering amplitude in the one-photon-
exchange approximation is usually expressed as the contraction of the electron
current with a bound-state current times the covariant photon propagator. The
bound-state current is a sum of independent Lorentz covariants which are multi-
plied by Lorentz invariant functions, the so-called electromagnetic form factors

of the bound-state. They are real functions of the four-momentum-transfer
squared (qµqµ = −Q2) and they represent the observables that describe the
electromagnetic structure of the (extended) bound-state. The aim of this chap-
ter is to extract such electromagnetic form factors from the bound-state currents
derived in the previous chapter and finally express them in terms of the bound-
state wave functions.

5.2 Covariant Structure

In this section we investigate the covariant structure and the number of form
factors needed to parametrize the bound-state currents derived previously. We
start with the simple pseudoscalar case and then turn to the more complicated
example of a spin-1 bound system.

5.2.1 Pseudoscalar Current

From covariance, continuity and macrocausality arguments it is clear that a cor-
rect physical current IµPS(p

′
C,pC) of a pseudoscalar bound system should depend

on only one covariant which is the sum of incoming and outgoing bound-state
momenta PC := pC + p′C times an electromagnetic form factor F of the bound
system, with F being a function of Mandelstam t = −Q2. It turns out, however,
that this is not the case for our electromagnetic current of a pseudoscalar bound
system Jµ

PS(p
′
C,pC, Pe), which we have derived from the one-photon-exchange

optical potential. It does not have all the properties it should have. It sat-
isfies current conservation and transforms like a four-vector, but it cannot be

65



66 Electromagnetic Form Factors

written as a sum of covariants times Lorentz invariants (Q2 and m2
C) which are

solely built from the incoming and outgoing bound-state four-momenta (pµC and
pµ ′
C ). Our current exhibits an additional dependence on Pe which has already

been indicated. The general covariant structure of our current Jµ
PS(p

′
C,pC, Pe)

can be derived from the following considerations: without spin one has, in gen-
eral, four independent current components corresponding to the Lorentz indices
µ = 0, . . . , 3. Hence, one needs four independent covariant structures multiplied
by four form factors to parametrize the current. Due to the condition of cur-
rent conservation, which is proved analytically in App. D.3.1, one component of
the current can be expressed in terms of the other three, which eliminates one
covariant structure. Another structure can be eliminated by the fact that the
current Jµ

PS(p
′
C,pC, Pe) transforms covariantly under the Lorentz group. This

means that the current can always be transformed into a frame where one of its
components vanishes. Finally, we are left with just 2 independent components
of the current. Therefore, the current can be expanded in terms of 2 conserved
covariants times 2 form factors f and b̃. The expansion in terms of Lorentz
covariants times form factors has to satisfy hermiticity. This has already been
proved for the current in Sec. 4.4.1. Thus, the first of 2 covariants available is
simply the sum of the incoming and outgoing bound-state momenta PC. For
the second covariant we have to recall that our derivation of the current is
based on the Bakamjian-Thomas construction which is known to provide wrong
cluster properties. This issue has already been discussed in Sec. 3.4.4. As a
consequence, the physical properties of the bound state are not independent of
an additional particle, in our case the electron. Therefore, we cannot be sure
that the bound-state current we get does not also depend on the electron mo-
menta. We actually find that our current cannot be fully expressed in terms of
Hermitean bound-state covariants. The second current conserving Hermitean
covariant available is the sum of the incoming and outgoing electron momenta
Pe. This is the reason why we have included Pe as a further dependence in the
argument of the bound-state current, cf. Eq. (3.79).

The only independent Lorentz invariants that can be built from the incoming
and outgoing bound-state and electron momenta are Mandelstam t and Mandel-
stam s, i.e. the four-momentum-transfer squared and the square of the invariant
mass of the electron-bound-state system, respectively. Therefore, wrong cluster
properties may also influence the invariant vertex form factors f and b̃ such that
they do not only depend on t = −Q2 but also on

s = (pC + pe)
2 =

(√

m2
C + k2

C +
√

m2
e + k2

C

)2

. (5.1)

The s-dependence can equivalently be expressed as a dependence on the mag-
nitude of the particle momenta

k := |k′
C| = |k′

e| = |kC| = |ke| , (5.2)

which turns out to be more convenient for our purposes. Here we have used
Eqs. (4.11) and (2.68). At this point it should be mentioned that Poincaré
invariance of our Bakamjian-Thomas type approach would not be spoiled by
vertex form factors that depend even on the whole set of independent Lorentz
invariants involved in the process. A reasonable microscopic model for electro-
magnetic form factors should, of course, only depend on the momentum transfer
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squared t and not on s. Nevertheless, due to the non-locality of the vertex de-
fined in Eq. (3.71) both form factors f and b̃ exhibit also a s-dependence. As
we will see in the following, this dependence can, however, be eliminated in a
certain limit.

With these findings we can write down our pseudoscalar bound-state current
as a sum of Lorentz covariants times form factors [BKS11a,BKS11b]:1

Jµ
PS(p

′
C,pC, Pe) = | e | [f(Q2, k)Pµ

C + b̃(Q2, k)Pµ
e ]

= | e |
[

f(Q2, k)Pµ
C + b(Q2, k)Pµ

e

P 2
C

PC · Pe

]

. (5.3)

Here the factor P 2
C/PC · Pe has been separated from b̃ for convenience. The

decomposition (5.3) holds for arbitrary values of the bound-state momenta pC
and p′C with one exception: in the so-called Breit frame, i.e. backward scat-
tering (kC = −k′

C) in the electron-bound-state center-of-mass system. In this
frame the two covariants Pµ

C and Pµ
e become proportional which precludes the

separation of the two form factors.

It is clear that the two covariants PC and Pe are not orthogonal to each
other, i.e. PC · Pe 6= 0. If we choose, e.g., the second covariant as

Pµ
⊥ := Pµ

e

P 2
C

PC · Pe
− Pµ

C , (5.4)

which is orthogonal to PC, then we have, in general, different form factors f̄
and b̄:

Jµ
PS(p

′
C,pC, Pe) = | e | [f̄(Q2, k)Pµ

C + b̄(Q2, k)Pµ
⊥] . (5.5)

Thus, there seems to be an ambiguity how to define the form factors by expand-
ing the current in terms of covariants. It turns out, however, that only the form
factor f(Q2, k) defined via the expansion (5.3) provides the correct charge of
the bound state at Q2 = 0, as it is required for the physical form factor. This
justifies to call f(Q2, k) defined in Eq. (5.3) the physical form factor of the pseu-
doscalar bound state. The remaining structure in Eq. (5.3) that is proportional
to Pe will then be referred to as non-physical (or spurious) contribution with
b(Q2, k) being the spurious form factor. Hence, only the expansion (5.3) pro-
vides a sensible separation of the physical from the spurious contribution. The
separation of Eq. (5.3) leads to the following definition: spurious contributions
are defined as structures that depend on Pe [CDKM98].

By applying a canonical boost Bc(−V ) to Jµ
PS(p

′
C,pC, Pe) we find, according

to Eq. (4.28), the covariant structure of Jµ
PS(k

′
C,kC,Ke):

Jµ
PS(k

′
C,kC,Ke) = Bc(−V )µνJ

ν
PS(p

′
C,pC, Pe)

= | e |
[

f(Q2, k)Kµ
C + b(Q2, k)Kµ

e

K2
C

KC ·Ke

]

= | e | [f(Q2, k)Kµ
C + b̃(Q2, k)Kµ

e ] . (5.6)

1The covariant structure of our current resembles the corresponding one obtained in a
covariant light-front approach of Refs. [KS94,CDKM98]. The relation between them will be
discussed later.
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5.2.2 Vector Current

A correct physical current IµV(p
′
C, σ

′
j ;pC, σj) of a vector bound system should

depend on 3 form factors, F1, F2 and GM which are functions of Mandelstam
t = −Q2. Its covariant structure is usually obtained by constructing from
the tensor ǫµ∗σ′

j
(p′

C)ǫ
ν
σj
(pC) all Hermitean, conserved four-vectors by appropriate

multiplication and contraction with gµν , the sum Pµ
C and/or the difference dµ :=

p′µC − pµC of the incoming and outgoing bound-state four-momenta.

However, as in the pseudoscalar case, the covariant structure of our bound-
state current Jµ

V(p
′
C, σ

′
j ;pC, σj ;Pe) of Eq. (4.38), cannot be solely built from

the incoming and outgoing momenta and spins of the bound state. Due to the
violation of cluster separability in the Bakamjian-Thomas framework, we expect
that it exhibits an additional dependence on the sum of the electron momenta
Pe. Furthermore, unlike in the pseudoscalar case due to Eq. (4.42), we cannot
demand current conservation and therefore we have to allow for non-conserved
Lorentz structures proportional to dµ.

The explicit construction of the covariant structure of Jµ
V(p

′
C, σ

′
j ;pC, σj ;Pe)

is demonstrated in App. D.4. The analysis reveals that one can find 11 Her-
mitean covariants by contracting and/or multiplying the tensor ǫµ∗σ′

j
(p′

C)ǫ
ν
σj
(pC)

with gµν and/or the available four-vectors Pµ
C , d

µ and/or Pµ
e . Consequently, we

can parametrize the current Jµ
V(p

′
C, σ

′
j ;pC, σj ;Pe) in terms of 11 form factors,

the 3 physical form factors f1, f2 and gM and 8 spurious form factors denoted
b1, . . . , b8. The form factors exhibit, due to the non-locality of the vertex in
the Bakamjian-Thomas framework, an additional dependence on Mandelstam
s. The expansion of the current in terms of the Hermitean covariants that are
collected in (D.40), (D.41) and (D.42) times the form factors reads2

1

| e | J
µ
V(p

′
C, σ

′
j ;pC, σj ;Pe)

=

{

f1(Q
2, k)ǫ∗σ′

j
(p′

C) · ǫσj
(pC) + f2(Q

2, k)
[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · d]

2m2
C

}

Pµ
C

+gM(Q2, k)
{

ǫµ∗σ′

j
(p′

C)[ǫσj
(pC) · d]− ǫµσj

(pC)[ǫ
∗
σ′

j
(p′

C) · d]
}

+
m2

C

Pe · PC

{

b1(Q
2, k)ǫ∗σ′

j
(p′

C) · ǫσj
(pC) + b2(Q

2, k)
[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · d]

m2
C

+b3(Q
2, k) 4m2

C

[ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · Pe]

(Pe · PC)2

+b4(Q
2, k)

[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe]− [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]

Pe · PC

}

Pµ
e +

2Like in the pseudoscalar case the covariant structure we obtain for our current resembles
the corresponding ones of Refs. [KS94,CDKM98]. Thus, for later comparison, we have adopted
the notation and normalizations of the spurious form factors of these works.
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+b5(Q
2, k) 4m2

C

[ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · Pe]

(Pe · PC)2
Pµ
C

+b6(Q
2, k)

[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe]− [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]

Pe · PC
Pµ
C

+b7(Q
2, k) 2m2

C

ǫµ∗σ′

j
(p′

C)[ǫσj
(pC) · Pe] + ǫµσj

(pC)[ǫ
∗
σ′

j
(p′

C) · Pe]

Pe · PC

+b8(Q
2, k)

[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe] + [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]

Pe · PC
dµ .

(5.7)

As in the pseudoscalar case there seems to be an ambiguity how to separate the
physical from unphysical contributions. Again it turns out, however, that only
the above decomposition with the associated definition of form factors gives the
correct charge of the bound state at zero momentum transfer, as it is required
for the physical charge form factor GC. Again this justifies to define unphysical
(or spurious) contributions as structures proportional to first or higher degrees
of Pe, i.e. all structures multiplied by the spurious form factors b1, . . . , b8 in
Eq. (5.7).

By separation of the polarization vectors we find the covariant structure of
the current tensor JV(p

′
C,pC, Pe)

µ
στ :

1

| e | JV(p
′
C,pC, Pe)

µ
στ

=

{

f1(Q
2, k)gστ + f2(Q

2, k)
dσdτ
2m2

C

}

Pµ
C + gM(Q2, k) {gµσdτ − gµτ dσ}

+

{

b1(Q
2, k)gστ + b2(Q

2, k)
dσdτ
m2

C

+ b3(Q
2, k)4m2

C

PeσPeτ

(Pe · PC)2

+b4(Q
2, k)

Peτdσ − Peσdτ
Pe · PC

}
m2

C

Pe · PC
Pµ
e

+b5(Q
2, k)

PeσPeτ

(Pe · PC)2
4m2

CP
µ
C + b6(Q

2, k)
Peτdσ − Peσdτ

Pe · PC
Pµ
C

+b7(Q
2, k) 2m2

C

gµσPeτ + gµτPeσ

Pe · PC
+ b8(Q

2, k)
dσPeτ + dτPeσ

Pe · PC
dµ . (5.8)

The covariant structure of the bound-state current Jµ
V(k

′
C, µ

′
j ;kC, µj ;Ke)

is then obtained by inverting Eq. (4.28), which means canonically
boosting Jµ

V(p
′
C, σ

′
j ;pC, σj ;Pe) with Bc(−V ) and multiplying with
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D1∗
σ′

j
µ′

j
[RWc

(w′
C, Bc(V ))]D1

σjµj
[RWc

(wC, Bc(V ))]:

1

| e | J
µ
V(k

′
C, µ

′
j ;kC, µj ;Ke)

=
1

| e | Bc(−V )µνJ
ν
V(p

′
C, σ

′
j ;pC, σj ;Pe)

×D1∗
σ′

j
µ′

j
[RWc

(w′
C, Bc(V ))]D1

σjµj
[RWc

(wC, Bc(V ))]

=

{

f1(Q
2, k)ǫ∗µ′

j
(k′

C) · ǫµj
(kC) + f2(Q

2, k)
[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) · q]

2m2
C

}

Kµ
C

+gM(Q2, k)
{

ǫµ∗µ′

j
(k′

C)[ǫµj
(kC) · q]− ǫµµj

(kC)[ǫ
∗
µ′

j
(k′

C) · q]
}

+
m2

C

Ke ·KC

{

b1(Q
2, k)ǫ∗µ′

j
(k′

C) · ǫµj
(kC) + b2(Q

2, k)
[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) · q]

m2
C

+b3(Q
2, k) 4m2

C

[ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) ·Ke]

(Ke ·KC)2

+b4(Q
2, k)

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke]− [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

Ke ·KC

}

Kµ
e

+b5(Q
2, k)

[ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) ·Ke]

(Ke ·KC)2
4m2

CK
µ
C

+b6(Q
2, k)

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke]− [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

Ke ·KC
Kµ

C

+b7(Q
2, k) 2m2

C

ǫµ∗µ′

j
(k′

C)[ǫµj
(kC) ·Ke] + ǫµµj

(kC)[ǫ
∗
µ′

j
(k′

C) ·Ke]

Ke ·KC

+b8(Q
2, k)

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke] + [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

Ke ·KC
qµ , (5.9)

where we have used Eq. (B.32). The covariant structure of the current tensor
JV(k

′
C;kC;Ke)

µ
στ can be obtained from JV(p

′
C;pC;Pe)

µ
στ with the help of the

canonical boosts Bc(−V ):

1

| e | JV(k
′
C;kC;Ke)

µ
στ

=
1

| e | Bc(−V ) λ
σ Bc(−V ) ρ

τ Bc(−V )µνJV(p
′
C;pC;Pe)

ν
λρ

=

{

f1(Q
2, k)gστ + f2(Q

2, k)
qσqτ
2m2

C

}

Kµ
C + gM(Q2, k) {gµσqτ − gµτ qσ}

+

{

b1(Q
2, k)gστ + b2(Q

2, k)
qσqτ
m2

C

+ b3(Q
2, k)4m2

C

KeσKeτ

(Ke ·KC)2

+b4(Q
2, k)

Keτqσ −Keσqτ
Ke ·KC

}
m2

C

Ke ·KC
Kµ

e +
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+b5(Q
2, k)

KeσKeτ

(Ke ·KC)2
4m2

CK
µ
C + b6(Q

2, k)
Keτqσ −Keσqτ

Ke ·KC
Kµ

C

+b7(Q
2, k) 2m2

C

gµσKeτ + gµτKeσ

Ke ·KC
+ b8(Q

2, k)
qσKeτ + qτKeσ

Ke ·KC
qµ ,

(5.10)

where we have used Eq. (A.6).

5.3 Extracting the Form Factors

The aim of this section is to extract the physical form factors defined by
Eqs. (5.6) and (5.9) from the corresponding expressions for the bound-state
currents, Eqs. (4.31) and (4.37), respectively.

5.3.1 Kinematics

In order to find explicit expressions for the form factors as overlap integrals of the
bound-state wave functions we have to specify our kinematics. For convenience
(without loss of generality) we choose the (1,3)-plane as the scattering plane and
the incoming bound-state three-momenta and the momentum transfer as [Fuc07,
BSFK09]

kC =






−Q
2
0

√

k2 − Q2

4




 , q =





Q
0
0



 , k′
C = kC + q , (5.11)

with k given by Eq. (5.2). It should be noted that Q is restricted by Q < 2k in
order to keep the bound-state momenta real. In the following we will consider
two particular choices of frames, which are characterized by the value of k: the
standard Breit frame with k = Q/2 and the infinite-momentum frame with
k → ∞.

Limit k → ∞

In the infinite-momentum frame, where k → ∞, we have for the incoming
bound-state and electron four-momenta

kµC
k→∞−→







k

−Q
2
0
k







µ

and kµe
k→∞−→







k
Q
2
0
−k







µ

, (5.12)

respectively. For the internal cluster center-of-mass momentum and the free
invariant cluster mass we find in this limit [Fuc07,BSFK09]

k̃1
k→∞−→






k̃1′1 +
(

k̃3′
1

m′

12
− 1

2

)

Q

k̃2′1
k̃3′1

m12

m′

12




 , (5.13)
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and

m12
k→∞−→

√
√
√
√
m′2

12 −
4k̃1′1 m

′
12

2k̃3′1 +m′
12

Q+

(

m′
12 − 2k̃3′1

)

2k̃3′1 +m′
12

Q2 , (5.14)

respectively. Further, the kinematical factors of the microscopic bound-state
current, Eq. (4.26), become

√

k0Ck
′0
C

k→∞−→ k and

√

k012
k′012

k→∞−→ 1 . (5.15)

Finally, we give the expression for the constituents’ current over k0i expanded
in a series around k = ∞ and keeping only terms up to O(1/k):

Jµ
i (k′

i, µ
′
i;ki, µi)

k0i

= | e |F i
1(Q

2
i )
[
δµiµ′

i

×
(

2,
4m′

12k̃
′1
i −m′

12Qi + 2k̃′3i Qi

k(m′
12 + 2k̃′3i )

,−2m′
12(−2k̃′2i − 2µi iQi)

k(m′
12 + 2k̃′3i )

, 2

)µ

+ δµ′

i
−µi

(

− 2m′
12Qi

k(m′
12 + 2k̃′3i )

, 0, 0,− 2m′
12Qi

k(m′
12 + 2k̃′3i )

)µ]

+(−1)µi− 1
2
√
τ | e |F i

2(Q
2
i )

[

δµ′

i
µi

k(m′
12 + 2k̃′3i )

×
(

−2im′
12(−2k̃′2i − 2µi iQi), 0, 4imim

′
12,−2(−2im′

12k̃
′2
i + 2µim

′
12Qi)

)µ

+δµ′

i
−µi

(

2,
4m′

12k̃
′1
i −m′

12Qi + 2k̃′3i Qi

k(m′
12 + 2k̃′3i )

,
4m′

12k̃
′2
i

k(m′
12 + 2k̃′3i )

, 2

)µ]

+O(1/k2) (5.16)

with i = q,N. In the limit k → ∞ the above expression becomes

Jµ
i (k′

i, µ
′
i;ki, µi)

k0i
k→∞−→ | e |

[

F i
1(Q

2)δµ′

i
µi

+ (−1)µi− 1
2
√
τF i

2(Q
2)δµ′

i
−µi

]

(2, 0, 0, 2)µ ,

(5.17)

with τ := Q2

4m2
i

. In addition, we note that in the limit k → ∞ the four-momentum

transfer to the (active) constituent, in particular its zero-component, goes over
to the four-momentum transfer to the cluster:

qµi = k′µi − kµi
k→∞−→ qµ = k′µC − kµC . (5.18)

5.3.2 Pseudoscalar Bound States

Coupled Equations for the Form Factors

The analysis in Sec. 5.2.1 revealed that the current for pseudoscalar bound sys-
tems Jµ

PS(k
′
C;kC;Ke) has 2 vanishing components due to current conservation
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and covariance. With the chosen kinematics given in Sec. 5.3.1 the two, in gen-
eral non-vanishing components are J0

PS(k
′
C;kC;Ke) and J

3
PS(k

′
C;kC;Ke). This

can be easily seen from Eq. (5.6) by inserting (5.11) for the momenta. Therefore,
we have 2 coupled equations for the form factors:

2
√

k2 +m2
Cf(Q

2, k) + 2
√

k2 +m2
e b̃(Q

2, k) =
1

| e |J
0
PS(k

′
C;kC;Ke) ,

2

√

k2 − Q2

4
f(Q2, k)− 2

√

k2 − Q2

4
b̃(Q2, k) =

1

| e |J
3
PS(k

′
C;kC;Ke) .

(5.19)

Solving for the form factors we obtain the expressions

f(Q2, k) =
1

| e |
(

1 +

√
k2+m2

C√
k2+m2

e

)




J0
PS(k

′
C;kC;Ke)

2
√

k2 +m2
e

+
J3
PS(k

′
C;kC;Ke)

2
√

k2 − Q2

4



 ,

(5.20)

b̃(Q2, k) =
1

| e |
(

1 +

√
k2+m2

e√
k2+m2

C

)




J0
PS(k

′
C;kC;Ke)

2
√

k2 +m2
C

− J3
PS(k

′
C;kC;Ke)

2
√

k2 − Q2

4



 .

(5.21)

A numerical analysis of these expressions, which will be presented in Sec. 7.1,
confirms that both, the physical form factor f and the spurious form factor b̃
depend indeed on k. However, this k-dependence of f vanishes rather quickly
with increasing k (or equivalently increasing invariant bound-state-electron mass

M
(′)
Ce or increasing Mandelstam s). At the same time the spurious form factor b̃

is seen to vanish. It is thus suggestive to take the limit k → ∞ to get a sensible
result for the physical form factor f that only depends on Q2. In addition, this
limit removes all (unwanted) spurious contributions in the current of (5.3) due
to the vanishing of b̃ [BKS11a,BKS11b].

Limit k → ∞

Before we examine the analytic expressions for the form factors f and b̃,
Eqs. (5.20) and (5.21), in the limit k → ∞, we note that the point-like con-
stituents’ current over k0i becomes, for k → ∞, equal to | e | δµ′

i
µi
(2, 0, 0, 2)µ,

as can be seen from Eq. (5.17). Thus, for point-like constituents, the only ex-
pression occurring under the integral of the pseudoscalar bound-state current,
Eq. (4.31), that has not yet been investigated in this limit is the sum over the

Wigner D-function D
1
2

µ1µ′

1
multiplied by the constituents’ current. Evidently,

this product becomes the trace over the Wigner D-function and is given with
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our standard kinematics, Eq. (5.11), by3 [BSFK09]

1

2

∑

µ1

D
1
2
µ1µ1

[

Bc (w1)στ

(
w0

12

−w12

)τ

w2 σν

(
w′0

12

−w′
12

)ν

Bc (w
′
1)

]

k→∞−→ m′
12

m12
− 2k̃′11 Q

m12(m′
12 + 2k̃′31 )

=: S . (5.22)

Note that the factor 1/2 in front comes from the two Clebsch-Gordan coefficients

that have been included in D
1
2

µ1µ′

1
, cf. Eq. (4.30). S of Eq. (5.22) is obviously

a finite expression. Eq. (5.17) together with the expressions for the kinematical
factors, Eqs. (5.15) and (5.22), give rise to the conclusion that

lim
k→∞

Jµ
PS(k

′
C;kC;Ke) =: | e |F (Q2) lim

k→∞
Kµ

C (5.23)

⇒ lim
k→∞

J0
PS(k

′
C;kC;Ke) = lim

k→∞
J3
PS(k

′
C;kC;Ke) . (5.24)

We see that the microscopic current factorizes explicitly into the covariant Kµ
C

times a Q2-dependent integral which can be identified as the physical form
factor of the pseudoscalar bound system. We finally end up with a quite simple
analytic expression for F defined by Eq. (5.20) for k → ∞ (or equivalently by
Eq. (5.23)) [BSFK09]:

F (Q2) := lim
k→∞

f(Q2, k)

=
1

| e | lim
k→∞

1

2k
J0
PS(k

′
C;kC;Ke)

=
1

4π

∫

d3k̃′1

√
m12

m′
12

S u∗n0 (k̃′1)un0 (k̃1) . (5.25)

This expression is clearly independent of k. Further, we note that F (Q2) is
independent of the reference frame since our Bakamjian-Thomas type approach
ensures Poincaré invariance. The integrand on the right-hand side of Eq. (5.25)
depends only on the momentum transfer Q and the internal constituent momen-
tum k̃′

1, which is integrated over. Details of the dynamics enter solely via the
form of the bound-state wave function un0 (k̃1) and not via the mass of the bound
cluster. What we have achieved with Eq. (5.25) is an impulse approximation
to the electromagnetic bound-state form factor. In the limit k → ∞ the whole
photon momentum is transferred to one of the constituents due to Eq. (5.18),
whereas the other one acts as a spectator. It should also be noted that the con-
stituents’ spins described by the spin-rotation factor S have a substantial effect
on the electromagnetic form factor over nearly the whole momentum-transfer
range and thus must not be neglected [BSFK09].

The spurious form factor vanishes in the limit k → ∞ [BKS11a,BKS11b]:

lim
k→∞

b̃(Q2, k) = 0 . (5.26)

3Due to the complexity of the left-hand side this equation has been computed using
Mathematica c©.



Electromagnetic Form Factors 75

Furthermore, the whole spurious part of the current is seen to vanish in the
limit k → ∞:

lim
k→∞

b̃(Q2, k)Kµ
e = 0 . (5.27)

Thus the electromagnetic current for a pseudoscalar bound system Jµ
PS(p

′
C;pC),

Eq. (4.33), exhibits the correct cluster-separability properties in the limit
k → ∞. We can also turn this around and say that we have found a reference
frame for the γ∗C → C subprocess in which a one-body constituent current al-
ready provides the correct cluster-separability properties for the electromagnetic
current of a pseudoscalar bound system [BSFK09].

Projection Vector

Another prescription to extract the form factor is similar to the one proposed in
Refs. [KS94,CDKM98]. Contracting the pseudoscalar bound-state current with
the four-vector Kµ

e /KC ·Ke in the limit k → ∞ projects out the form factor:

F (Q2) =
1

| e | lim
k→∞

Keµ

KC ·Ke
Jµ
PS(k

′
C;kC;Ke) . (5.28)

This prescription for the extraction of the form factors is equivalent to solving
the system of equations for the form factors. Both results for F (Q2), Eqs. (5.28)
and (5.25), coincide.

Physical Current

With a prescription for eliminating the unphysical contributions we are now
able to define a physical covariant current of a pseudoscalar bound system that
satisfies all required properties including macrocausality. It is given by

IµPS(V ) := Bc(V )µν lim
k→∞

Jν
PS(k

′
C;kC;Ke) . (5.29)

Comparison with the Standard Front-Form Approach

We extract the electromagnetic form factor of a pseudoscalar bound system in
the limit k ≡ |kC| → ∞. It means that we consider the subprocess where
the photon is absorbed or emitted by the the bound state in the infinite-
momentum frame of the bound state [BSFK09]. This offers the possibility of
making a direct comparison with form factor analyses done in the front form
of relativistic dynamics. The k → ∞ limit with our standard kinematics, as
chosen in Eq. (5.11), implies in particular that we work in a reference frame
in which the plus component of the four-momentum transfer q+ := q0 + q3

vanishes. q+ = 0 frames are also popular in the form-factor studies in front
form [CCP88,KP91, Sim02,CP05]. One reason is that the impulse approxima-
tion can be formulated consistently in any q+ = 0 frame (for the plus component
of the current operator) [KP91]. The other benefit is that, so-called, Z-graphs
are suppressed in such frames [Sim02].

Our point-form calculation can be related to front form results by an ap-
propriate change of variables. To show this relation we define the longitudinal
momentum fractions z as

z(′) :=
k̃
3(′)
1

m
(′)
12

+
1

2
(5.30)
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and introduce the short-hand notation

k
(′)
⊥ :=

(

k̃
1(′)
1

k̃
2(′)
1

)

(5.31)

for the intrinsic transverse momentum of the active incoming (outgoing) con-
stituent. From Eq. (5.13) we infer that

z = z′ and k′
⊥ = k⊥ + (1− z) q⊥ with q⊥ =

(
Q
0

)

. (5.32)

The free invariant mass of the incoming (outgoing) 12-system can then be writ-
ten as

m
(′)
12 =

√

m2 + k
(′)2
⊥

z(1− z)
. (5.33)

With these relations the Jacobian for the variable transformation
{k̃1′1 , k̃2′1 , k̃3′1 } → {z, k1⊥, k2⊥} becomes

∂(k̃1′1 , k̃
2′
1 , k̃

3′
1 )

∂(z, k1⊥, k
2
⊥)

=
m′

12

4z(1− z)
. (5.34)

Then the integral for the electromagnetic form factor takes on the
form [BSFK09]

F (Q2) =
1

4π

∫ 1

0

dz

∫

R2

d2k⊥

√

m12m′
12

4z(1− z)
M u∗n0 (k̃

′
1)un0 (k̃1) . (5.35)

The argument of the wave functions is easily expressed in terms of z and k⊥ if

one uses k̃
(′)2
1 = m2 +m

(′) 2
12 /4 and Eq. (5.33). By the change of variables the

spin-rotation factor S, cf. Eq. (5.22), goes over into the Melosh-rotation factor
of Ref. [CCP88]

M =
m12

m′
12

(

1 +
(1− z) (q⊥ · k⊥)

m2 + k2
⊥

)

. (5.36)

S and M describe the effect of the constituents’ spin onto the electromagnetic
form factor in point form and in front form, respectively. Eqs. (5.35) and (5.36)
are identical to the corresponding formulae in Refs. [CCP88, Sim02]. This is a
remarkable result. Starting from two different forms of relativistic dynamics and
applying completely different procedures to identify the electromagnetic form
factor of a pseudoscalar bound system the outcome is the same. It means that
relativity is treated in an equivalent way and the physical ingredients are alike.
Since the infinite-momentum frame we use is just a particular q+ = 0 frame,
Z-graph contributions to the electromagnetic form factor are also suppressed in
our point-form approach. This is a welcome feature, because Z-graphs can play
a significant role in q+ 6= 0 frames [Sim02] and one should have control on them
when form-factor predictions are compared with experiment.

Comparison with Covariant Light-Front Dynamics

The above standard front form of relativistic dynamics, which is characterized
by the light-front plane x0+x3 = 0 (cf. Sec. 3.2) is not manifestly (explicitly) co-
variant due to the dynamic nature of some Lorentz transformations that change



Electromagnetic Form Factors 77

the orientation of the light front. This problem can, however, be overcome by
introducing an arbitrary light-like four-vector ωµ that defines the orientation
of the light front which is then described by the equality ω · x = 0. Such
an explicit covariant light-front approach has been formulated in the works of
Refs. [KS94, CDKM98]. The particular choice of ω = (1, 0, 0,−1) then corre-
sponds to the standard (non-covariant) front-form approach.

The Lorentz structure of the current Jµ
PS(k

′
C;kC;Ke) for a pseudoscalar

bound state described by Eq. (5.3) resembles the corresponding current obtained
within the covariant light-front dynamics of Refs. [KS94, CDKM98]. In these
works the authors encounter a spurious (unphysical) contribution to the current
which is associated with ωµ. Their spurious contribution is comparable to our
spurious contribution if ωµ is identified with Kµ

e . It has already been mentioned
that spurious Ke-dependent terms in the current of our point-form Bakamjian-
Thomas approach can be traced back to the violation of cluster separability.
However, by taking the limit k → ∞ we can eliminate these cluster separability
violating effects [BKS11a]. In the covariant light-front formalism the spurious
ω-dependent contribution is rather the consequence of the most general ansatz
for a current of a pseudoscalar bound-state that includes the orientation of the
light front.

In the standard light front approach, i.e. ω = (1, 0, 0,−1), the electromag-
netic form factor of a pseudoscalar bound state is usually extracted from matrix
elements of the plus component of the current operator. Due to ω+ = 0 in the
standard case, the second (spurious) part of the current proportional to ωµ does
not contribute [KS94]. Therefore, it is not surprising that standard light-front
and covariant light-front dynamics give the same results for the form factor of a
pseudoscalar bound-state, which is some way a special case due to the simplicity
of spin-0 systems. Consequently, taking the plus component of the current to
extract the form factor in the standard light-front approach plays a similar role
to taking the limit k → ∞ in our approach in the sense that in both cases one
gets rid of the spurious contribution in the current.

Comparison with the Point-Form Spectator Model

Relativistic point-form quantum mechanics has also been applied in
Ref. [WBK+01, B+02] to calculate electroweak baryon form factors within a
constituent quark model. The strategy for the extraction of electromagnetic
form factors, however, differs from the one in the present work. We apply the
Bakamjian-Thomas type framework to the full electron-bound-state system in
order to derive the electromagnetic bound-state current. In their works the
Bakamjian-Thomas framework for the bound-state system is only used to ob-
tain the bound-state wave function. This wave function is then plugged into an
ansatz for the electromagnetic bound-state current. The ansatz is constrained
by the requirements of continuity and covariance. It is shown that these con-
straints can be satisfied by a spectator current if not all of the photon momentum
is transferred to the active constituent. The momentum transfer to the active
constituent q1 is uniquely determined by total four-momentum conservation for
the γ∗C → C subprocess and by the spectator conditions. An ambiguity in
defining such a spectator current, however, enters through a normalization fac-
tor which has to be introduced in order to recover the bound-state charge from
the electric form factor in the limit Q2 → 0 [MCPW05]. Since both quantities,
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q1 and the normalization factor depend effectively on all quark momenta and
not only on those of the active ones, the model current constructed in this way
cannot be considered as a pure one-body current [MBC+07]. It has therefore
been termed point-form spectator model to distinguish it from the usual impulse
approximation.

A comparison of our result for the form factor with the one of the point-
form spectator model reveals that the dynamics enter into the former solely
via the bound-state wave function, whereas the latter also exhibits an explicit
dependence on the bound-state mass mC. Within the point-form spectator
model the eigenvalue spectrum of the mass operator is thus directly connected
with the electromagnetic structure of its eigenstates [BSFK09]. We shall come
back on this issue when doing a numerical comparison between both approaches.

5.3.3 Vector Bound States

Current Matrix Elements

By a numerical analysis, whose dynamical ingredients will be discussed in detail
later, using the standard kinematics of Eq. (5.11) we observe that our vec-
tor bound-state current Jµ

V(k
′
C, µ

′
j ;kC, µj ;Ke) of Eq. (4.37) has, in general, 11

independent, non-vanishing matrix elements. They are given by (using the
short-hand notation Jµ

V(k
′
C, µ

′
j ;kC, µj ;Ke) ≡ Jµ

V(µ
′
j , µj)):

J0
V(1,−1) , J3

V(1,−1) , J0
V(0, 0) , J3

V(0, 0) , J0
V(1, 0) , J1

V(1, 0) ,

J2
V(1, 0) , J3

V(1, 0) , J0
V(1, 1) , J2

V(1, 1) , J3
V(1, 1) . (5.37)

This confirms numerically the outcome of the formal analysis in Sec. 5.2.2. Note
that the remaining non-vanishing matrix elements are related to the above ones
by the following relations:

J0
V(1,−1) = J0

V(−1, 1) , (5.38)

J3
V(1,−1) = J3

V(−1, 1) , (5.39)

J0
V(1, 1) = J0

V(−1,−1) , (5.40)

J3
V(1, 1) = J3

V(−1,−1) , (5.41)

J2
V(1, 1) = −J2

V(−1,−1) , (5.42)

J0
V(1, 0) = −J0

V(−1, 0) = J0
V(0,−1) = −J0

V(0, 1) , (5.43)

J3
V(1, 0) = −J3

V(−1, 0) = J3
V(0,−1) = −J3

V(0, 1) , (5.44)

J1
V(1, 0) = −J1

V(−1, 0) = J1
V(0, 1) = −J1

V(0, 1) , (5.45)

J2
V(1, 0) = J2

V(−1, 0) = −J2
V(0, 1) = −J2

V(0,−1) . (5.46)

Limit k → ∞
Of the 11 form factors only the 3 physical form factors f1, f2 and gM are of
interest. We extract them from Eq. (4.37) by using the decomposition (5.9). As
in the pseudoscalar case, we take the limit k → ∞ where the form factors become
independent of k. Furthermore, using our standard kinematics, we observe that
the zeroth and third component of the current become identical in this limit,
i.e.

J0
µ′

j
µj

:= lim
k→∞

J0
V(µ

′
j , µj) = lim

k→∞
J3
V(µ

′
j , µj) = J3

µ′

j
µj
, (5.47)
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which reduces the number of independent matrix elements from 11 to 7. This
means, however, that 4 of the 8 spurious contributions cannot be eliminated by
simply taking the limit k → ∞. This complication occurs due to the complexity
of spin-1 bound systems as compared to the previous spin-0 case. Nonetheless,
a careful analysis (cf. App. F.1) of the covariant structure of the current reveals
that the 3 current matrix elements J0

11, J
0
1−1 and J

2
11 do not contain leading order

spurious contributions. These “good” matrix elements are therefore appropriate
for the extraction of the physical form factors, which are then given by the
following rather lengthy expressions (for a derivation we refer to App. F.1):

F1(Q
2) := lim

k→∞
f1(Q

2, k)

= − 1

| e | lim
k→∞

1

2k

[
J0
V(1, 1) + J0

V(1,−1)
]

= − 1

4π

∫

d3k̃′1

√
m12

m′
12

u∗n0

(

k̃′1

)

un0

(

k̃1

)

×
{[
F 1
1 (Q

2) + F 2
1 (Q

2)
]
(S11

1 + S1−1
1 )

+
√
τ
[
F 1
2 (Q

2) + F 2
2 (Q

2)
]
(S11

2 + S1−1
2 )

}
, (5.48)

F2(Q
2) := lim

k→∞
f2(Q

2, k)

= − 1

| e | η lim
k→∞

1

2k
J0
V(1,−1)

= −1

η

1

4π

∫

d3k̃′1

√
m12

m′
12

u∗n0

(

k̃′1

)

un0

(

k̃1

)

×
{[
F 1
1 (Q

2) + F 2
1 (Q

2)
]
S1−1
1 +

√
τ
[
F 1
2 (Q

2) + F 2
2 (Q

2)
]
S1−1
2

}
,

(5.49)

GM(Q2) := lim
k→∞

gM(Q2, k)

= − i

| e |QJ
2
11

= − i

Q

1

4π

∫

d3k̃′1

√
m12

m′
12

u∗n0

(

k̃′1

)

un0

(

k̃1

) m′
12

(m′
12 + 2k̃′31 )

×
{
[
F 1
1 (Q

2) + F 2
1 (Q

2)
]
(

k̃′21 S11
1 +

iQ

2
S11
3

)

+
√
τ
[
F 1
2 (Q

2) + F 2
2 (Q

2)
] (

imS11
3 + k̃′21 S11

2

)}

,

(5.50)

with η = Q2/(4m2
C). Here Sµ′

jµj

1 , Sµ′

jµj

2 and Sµ′

jµj

3 are the spin rotation factors
given by

Sµ′

jµj

1 := lim
k→∞

∑

D
1
2

µ1µ̃1

[
RWc

(w̃1, Bc (w12))
]
C

1µj

1
2 µ̃1

1
2 µ̃2

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc (w12)
)]

×C1µ′

j

1
2 µ̃

′

2
1
2 µ̃

′

1

D
1
2

µ̃′

1µ1

[
RWc

(
w′

1, B
−1
c (w′

12)
)]
, (5.51)
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Sµ′

jµj

2 := lim
k→∞

∑

(−1)µ1− 1
2D

1
2

µ1µ̃1

[
RWc

(w̃1, Bc (w12))
]
C

1µj

1
2 µ̃1

1
2 µ̃2

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc (w12)
)]

×C1µ′

j

1
2 µ̃

′

2
1
2 µ̃

′

1
D

1
2

µ̃′

1−µ1

[
RWc

(
w′

1, B
−1
c (w′

12)
)]
, (5.52)

Sµ′

jµj

3 := lim
k→∞

∑

(−1)µ1− 1
2D

1
2

µ1µ̃1

[
RWc

(w̃1, Bc (w12))
]
C

1µj

1
2 µ̃1

1
2 µ̃2

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc (w12)
)]

×C1µ′

j

1
2 µ̃

′

2
1
2 µ̃

′

1

D
1
2

µ̃′

1µ1

[
RWc

(
w′

1, B
−1
c (w′

12)
)]
. (5.53)

The expressions for the form factors Eqs. (5.48)-(5.50) cannot be simplified
further like in the pseudoscalar case. However, for point-like constituents like
quarks with F 1

1 (Q
2) + F 2

1 (Q
2) = 1 and F 1

2 (Q
2) = F 2

2 (Q
2) = 0, they become a

little bit shorter.

Projection Tensors

Another, equivalent prescription to extract the physical form factors is proposed
in Refs. [KS94,CDKM98]. To this end we define appropriate tensors F στ

1µ , F στ
2µ

and Gστ
Mµ that project out the form factors F1, F2 and GM from the current

tensor JV(k
′
C,kC,Ke)

µ
στ . These projection tensors are fixed by Eq. (5.10) and

given by [KS94,CDKM98]

F στ
1µ :=

Keµ

Ke ·KC

(

gστ − qσqτ

q2
− Kσ

CK
τ
e +Kτ

CK
σ
e

Ke ·KC
+K2

C

Kσ
e K

τ
e

(Ke ·KC)2

)

,

(5.54)

F στ
2µ := − Keµ

(Ke ·KC)q2

(

gστ − qσqτ

q2
− Kσ

CK
τ
e +Kτ

CK
σ
e

Ke ·KC

+4m2
C

Kσ
eK

τ
e

(Ke ·KC)2
− qσKτ

e − qτKσ
e

Ke ·KC

)

, (5.55)

Gστ
Mµ :=

1

2

[
gσµq

τ − gτµq
σ

q2
+

gσµK
τ
e + gτµK

σ
e

Ke ·KC

+
Keµ

Ke ·KC

(

−K2
C

qσKτ
e − qτKσ

e

(Ke ·KC)q2
+
qσKτ

C − qτKσ
C

q2

+2K2
C

Kσ
eK

τ
e

(Ke ·KC)2
− Kσ

CK
τ
e −Kτ

CK
σ
e

Ke ·KC

)

+KCµ

(
qσKτ

e − qτKσ
e

q2(Ke ·KC)
− 2

Kσ
eK

τ
e

(Ke ·KC)2

)

− qµ
qσKτ

e + qτKσ
e

(Ke ·KC)q2

]

.

(5.56)
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Then the form factors are obtained by contraction of the projection tensors with
the current tensor:

F1(Q
2) =

1

| e | lim
k→∞

F στ
1µ JV(k

′
C,kC,Ke)

µ
στ , (5.57)

F2(Q
2) =

1

| e | lim
k→∞

F στ
2µ JV(k

′
C,kC,Ke)

µ
στ , (5.58)

GM(Q2) =
1

| e | lim
k→∞

Gστ
MµJV(k

′
C,kC,Ke)

µ
στ . (5.59)

These are finite expressions and independent of k. It can be shown that these
expressions are identical to the corresponding ones obtained from current matrix
elements, Eqs. (5.48), (5.49) and (5.50) (for details, see App. F.2).

Physical Current

We have already discussed in Sec. 4.4.4 the failure of showing continuity for the
bound-state current Jµ

V(p
′
C, σ

′
j ;pC, σj ;Pe). Actually the current is not conserved

due to the spurious contributions of b7 and b8 (cf. Eq. (5.8)). A numerical
analysis using our standard kinematics shows that these contributions do not
cancel such that there is a non-vanishing contribution to J1

V(1, 0). Even in the
k → ∞ limit these continuity violating contributions survive. Nevertheless,
with an unambiguous prescription at hand to separate the physical from the
unphysical contributions we can define the physical part of the current by

1

| e |I
µ
V(k

′
C, µ

′
j ;kC, µj)

:=

[

f1(Q
2, k)ǫ∗µ′

j
(k′

C) · ǫµj
(kC) + f2(Q

2, k)
[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) · q]

2m2
C

]

Kµ
C

+gM(Q2, k)
[

ǫµ∗µ′

j
(k′

C)[ǫµj
(kC) · q]− ǫµµj

(kC)[ǫ
∗
µ′

j
(k′

C) · q]
]

. (5.60)

The covariant physical current is then obtained from Eq. (4.28) by

IµVσ′

j
σj
(V ) := Bc(V )µν lim

k→∞
IνV(k

′
C, µ

′
j ;kC, µj)

×Dj∗
µ′

j
σ′

j
[R−1

Wc
(w′

C, Bc(V ))]Dj
µjσj

[R−1
Wc

(wC, Bc(V ))] .

(5.61)

This current satisfies all required properties including current conservation and
macrocausality.

Angular Condition

The four matrix elements I011, I
0
1−1, I

0
10 and I000 with IµVσ′

j
σj
(0) =: Iµσ′

j
σj

depend

on the 3 physical form factors and hence are not independent from each other.
They satisfy the, so-called, angular condition (cf., e.g., Ref. [GK84,CDKM98])

(1 + 2η)I011 + I01−1 − 2
√

2ηI010 − I000 = 0 , (5.62)
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where η = Q2

4m2
C
. For the matrix elements of the full current J0

µ′

j
µj

including

spurious contributions the angular condition is, however, not satisfied due to
the spurious contributions of B5 and B7 (cf. Eqs. (F.32)-(F.35)):

(1 + 2η)J0
11 + J0

1−1 − 2
√

2ηJ0
10 − J0

00 = − | e |
[
B5(Q

2)−B7(Q
2)
]
, (5.63)

with Bi(Q
2) := limk→∞ bi(Q

2, k).
From Eq. (5.63) it becomes evident that the 4 matrix elements J0

11, J
0
1−1, J

0
10

and J0
00 cannot be used to extract the 3 physical form factors in an unambiguous

way. In the literature different triplets have been chosen to calculate the form
factors [GK84, CPCK88,BH92, FSF93]. These different prescriptions lead to,
in general, different results for the form factors due to non-physical contribu-
tions that enter the form factors (for a numerical and analytical comparison of
different approaches, see Ref. [CGN+95] and Ref. [Kar96], respectively). It is
clear that if the angular condition were satisfied, different prescriptions would
lead to the same form factor results [Kei94,CDKM98]. However, the magnetic
form factor obtained from the plus component current would still contain the
spurious form factor B6 (for the relations between the form factors obtained
from different prescriptions cf. Ref. [CDKM98]). Translating to our case this
can be seen from Eqs. (F.33) and (F.34):

GM(Q2)−B6(Q
2) =

1

| e | lim
k→∞

1

k
(J0

V(1, 0)−
mC

√
2

Q
J0
V(1, 1)) . (5.64)

Anyway, as we shall see later by a numerical analysis, the spurious contributions,
that violate continuity and the angular condition together with B6, are relatively
small.

GC, GQ and Elastic Scattering Observables

The charge and quadrupole form factors GC and GQ, respectively, are expressed
through F1, F2 and GM by

GC(Q
2) = −F1(Q

2)− 2η

3

[
F1(Q

2) +GM(Q2)− F2(Q
2)(1 + η)

]
,

(5.65)

GQ(Q
2) = −F1(Q

2)−GM(Q2) + F2(Q
2)(1 + η) . (5.66)

These form factors have the limits given by

lim
Q2→0

GC(Q
2) = 1 , (5.67)

lim
Q2→0

GM(Q2) = µV , (5.68)

lim
Q2→0

GQ(Q
2) = QV , (5.69)

where +1 is the charge in units of the fundamental charge | e |, µV the magnetic
dipole moment in units of | e |/2mC and QV the electric quadrupole moment in
units of | e |/m2

C. For point-like spin-1 bound systems the magnetic dipole and
the electric quadrupole moments are µV = 2 and QV = −1, respectively.

The usual observables of elastic scattering of an electron by a vector bound-
state are the structure functions A(Q2), B(Q2) and the tensor polarization
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T20(Q
2). A(Q2), B(Q2) are determined from the unpolarized laboratory frame

differential cross section using the Rosenbluth formula. They are given in terms
of form factors by

A(Q2) = G2
C(Q

2) +
8

9
η2G2

Q(Q
2) +

2

3
η G2

M(Q2) (5.70)

and

B(Q2) =
4

3
η(1 + η)G2

M(Q2) . (5.71)

The observable T20(Q
2) for quadrupole polarization is extracted from the dif-

ference in the cross sections for target bound states having canonical spin po-
larizations µj = 1 and µj = 0. In terms of form factors it reads

T20(Q
2)

= −
√
2η

4
9η G

2
Q(Q

2) + 4
3GQ(Q

2)GC(Q
2) + 1

3 (
1
2 + (1 + η) tan2(θ/2))G2

M(Q2)

A(Q2) +B(Q2) tan2(θ/2)
.

(5.72)

Comparison with Covariant Light-Front Dynamics

The covariant structure of the bound-state current Jµ
V(k

′
C, µ

′
j ,kC, µj ,Ke) resem-

bles the corresponding one obtained within the covariant light-front approach
of Refs. [KS94, CDKM98]. In these works the authors encounter 8 spurious
contributions to the current that are associated with ωµ. These ω-dependent
spurious contributions correspond to our Ke-dependent spurious contributions.
Like in the pseudoscalar case, our spurious contributions to the spin-1 current
can be traced back to the violation of cluster separability (cf. Sec 3.4.4). The
ω-dependent contributions of Ref. [CDKM98] are rather the consequence of the
most general ansatz for a current of a vector bound state. The difference to
the pseudoscalar case is, however, that we cannot completely get rid of all 8
spurious contributions by simply taking the k → ∞ limit. This resembles the
situation in standard light-front dynamics with ω = (1, 0, 0,−1), in which the
extraction of the form factors is based on the plus component of the current
operator. By restricting to the plus component in the standard approach the 4
spurious contributions of B1, . . . , B4, proportional to ω

µ, are eliminated. How-
ever, the contributions of B5, . . . , B8 survive which lead to the violation of the
angular condition. In this sense the prescription of taking the limit k → ∞
in our approach can be compared to taking the plus component of the current
operator in standard light-front dynamics.

The only consistent way to extract the physical form factors unambiguously
in covariant light front dynamics is the method of projecting them out of the
current tensor by means of appropriate tensors (cf. Refs. [KS94,CDKM98] and
the above discussion). After elimination of the spurious contributions the spin
matrix elements of the plus component of the remaining physical part satisfy
the usual angular condition, Eq. (5.62).

Comparison with Point-Form Spectator Approximation

The point-form of relativistic dynamics has also been used to calculate the
elastic form factors of a vector system, cf. e.g. Ref. [AKP01]. Similar as in



84 Electromagnetic Form Factors

the point-form spectator model the Bakamjian-Thomas type framework is only
applied on the Hilbert space of the 2 constituents (and not on the electron-
bound-state Hilbert space as in our case). This means that cluster separability
is trivially satisfied. The point-form Bakamjian-Thomas construction is used to
obtain the bound-state wave function and the bound-state mass which are then
inserted into a general ansatz for a Lorentz covariant electromagnetic bound-
state current for a spin-1 system. The independent matrix elements of this
spectator current are defined in the Breit frame where the Jµ

V(1,−1) contribution
vanishes. The constraints from current conservation are also imposed in the
Breit frame where they are most easily satisfied. Due to the kinematic nature
of Lorentz transformations in the point form the current can be transformed
into any arbitrary frame. This procedure ensures that the angular condition is
satisfied. The 3 electromagnetic form factors are then extracted in the Breit
frame from the 3 independent current matrix elements. As in the case of the
spectator model, the momentum transfer on the active constituent is greater
than the momentum transfer on the bound state [AKP01].



Chapter 6

Models

6.1 Introduction

In order to make a numerical analysis of the form factors derived in the previous
chapter we have to specify the dynamics to obtain a bound-state wave function
and a bound-state mass that can be inserted into the analytical expressions for
the form factors. In this chapter we introduce the particular models we are
using in order to describe the interaction between the constituents. For sim-
plicity we will restrict ourselves to instantaneous interactions which can be used
within the Bakamjian-Thomas framework without loosing Poincaré invariance.
According to Eq. (3.8) the term m̂int describing this instantaneous interaction
is added to the free invariant two-particle mass operator m̂12. For hadrons like,
e.g., the π meson (pion) or the ρ meson, we need a confining quark-antiquark
interaction which will be modeled in our case by a simple harmonic-oscillator
potential [KP91]. For nuclei like, e.g., the deuteron, the interaction between the
2 nucleons is described by a simple Walecka-type two-meson-exchange model.
In the static approximation each term of this potential becomes a usual (instan-
taneous) Yukawa interaction.

6.2 Harmonic-Oscillator Model for Mesons

6.2.1 Wave Function

The fact that particles with color, like quarks, are not observed as free particles
is known as confinement. The three-dimensional isotropic harmonic oscillator
provides already a simple analytically solvable model for 2 quarks with a con-
fining interaction. In the following we will restrict ourselves to the case of equal
quark masses mq. We start our rather brief discussion, which goes along the
lines of Refs. [KP91,Kra01], by squaring the mass operator in Eq. (3.8) to obtain

m̂2
C = m̂2

12 + ˆ̃m2
int . (6.1)

By setting

ˆ̃m2
int = −4a2∇2

k̃
, (6.2)

85
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the square of the total mass operator m̂2
C in Eq. (6.1) takes the form of a

harmonic-oscillator Hamiltonian. Here the parameter a is the oscillator length.
The corresponding eigenvalue problem for m̂2

C

m̂2
CΨ(k̃) = m2

CΨ(k̃) (6.3)

leads to the eigenfunctions Ψ(k̃) = Ψnlµl
(k̃) = unl(k̃)Ylµl

(
ˆ̃
k). Here the radial

wave function is given by

unl(k̃) =
1

π
1
4 a

3
2

√

2n+l+2n!

(2n+ 2l+ 1)!!
L
l+ 1

2
n

(

k̃2

a2

)(

k̃

a

)l

e−
k̃2

2a2 (6.4)

where L
l+ 1

2
n are the generalized Laguerre polynomials. The eigenvalues of m̂2

C

are given by

m2
nl = 8a2

(

2n+ l +
3

2

)

+ 4mq. (6.5)

6.2.2 Parameters

There are just 2 free parameters in this simple model, the oscillator parameter
a and the quark mass mq. For the simplest case of the ground state the wave
function reads

u00(k̃) =
2

π
1
4 a

3
2

e−
k̃2

2a2 . (6.6)

The wave function is solely determined by the oscillator parameter a (cf.
Eq. (6.4)). We are going to use 2 sets of parameters which are fixed either
by fitting the electromagnetic pion form factor or by fitting the mass spectra.
For the latter we observe that a free constant c0 can be added to the confinement
potential to shift the mass spectrum without changing the wave function. We
have fixed the parameters a, mq and c0 for the harmonic-oscillator confinement
potential through the vector-meson spectrum as done in Refs. [Kra01,KSK03].
With the values for the parameters a = 312 MeV, c0 = −1.04 GeV2 and
mq = 340 MeV, the masses m00 and m10 of the vector-meson ground states
and first excited states, respectively, are reasonably well reproduced [KSK03].
Applying them to the π and ρ meson and its excitations we observe that the
first and second radial excitations are about 10% too high as compared to ex-
periment and the π and ρ ground state have a mass of 770 MeV [Kra01,KSK03].
These are quite reasonable values for a pure central confining potential in view
of the fact that spin-spin forces from an additional hyperfine interaction can
bring them close to the experimental masses [CKP83].

6.3 Walecka-Type Model for the Deuteron

In this section we propose a simple nucleon-nucleon interaction potential that
is inspired by the, so-called, Walecka model [Wal74]. The derivation presented
here can also be found in Ref. [BB10]. It is the first step of a benchmark calcu-
lation with the purpose to reach unanimity in different approaches of few-body
physics regarding the definition of ‘relativistic effects’. The idea is to find a
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common ground on which the deuteron electromagnetic form factors are calcu-
lated in various approaches and then compared with each other. All numerical
computations of this section have been carried out with Mathematica c©.

6.3.1 Introduction

We define an interaction Lagrangean density that is simple enough to derive a
simple, effective nucleon-nucleon interaction, but realistic enough in the sense
that this interaction supports an S-wave bound state that resembles the S-wave
part of the deuteron. The Lagrangean chosen is inspired by the σ−ω-model, also
known as the Walecka model [Wal74], which is also often referred to as quan-

tum hadrodynamics [SW97]. The present model means a drastic simplification,
which, of course, does not meet the sophistication of realistic nucleon-nucleon
interactions found to be needed to achieve precise agreement with the data.
Below we apply this idea in the simplest possible context, namely to write the
interaction in the form of a static potential to be used in the non-relativistic
Schrödinger equation. Our model is compared throughout to the Malfliet-Tjon
potential [MT69]. The Walecka model requires a regularization procedure for
which we take Pauli-Villars regularization [PV49]. This amounts to introducing
for every exchanged physical boson an unphysical one that regulates the bo-
son propagator in such a way that the interaction defined by boson exchange
becomes well-behaved in momentum space.

6.3.2 Lagrangean Density of the Walecka Model

We use the system of natural units c = ~ = 1, which means that masses and
momenta are given in MeV and radii in 1/MeV. The translation to lengths in
fm is given by ~ c = 197.3 MeV fm.

The interaction Lagrangean densities in the Walecka model are given
by [Wal74,Nag75,Rij74]

L̂Nσ
int (x) = gσ

ˆ̄ψN(x)ψ̂N(x)σ̂(x) (6.7)

and

L̂Nω
int (x) = i gω

ˆ̄ψN(x)γµψ̂N(x)ω̂
µ(x)+

fω
4mN

ˆ̄ψN(x)σµν ψ̂N(x)(∂
µω̂ν(x)− ∂ν ω̂µ(x)).

(6.8)
Here ψN(x) denotes the nucleon field of mass mN, σ(x) denotes a neutral scalar
meson field of mass mσ and ωµ(x) denotes a neutral vector meson field of mass
mω. L̂Nσ

int (x) describes the coupling of the scalar meson (σ) to the nucleons and

L̂Nω
int (x) describes the coupling of the vector meson (ω) to the nucleons. Using

the Feynman rules the second-order amplitudes for scalar and vector exchange
become, respectively

mNσ
int (k̃

′
1, k̃1) = g2σ ¯̃uµ̃′

1
(k̃′

1)ũµ̃1(k̃1)
1

(k̃′1 − k̃1)2 −m2
σ

¯̃uµ̃′

2
(k̃′

2)ũµ̃2(k̃2) , (6.9)

mNω
int (k̃

′
1, k̃1) = −g2ω ¯̃uµ̃′

1
(k̃′

1)γµũµ̃1(k̃1)
gµν + (k̃′µ1 − k̃µ1 )(k̃

′ν
2 − k̃ν2 )/m

2
ω

(k̃′1 − k̃1)2 −m2
ω

×¯̃uµ̃′

2
(k̃′

2)γν ũµ̃2(k̃2) .

(6.10)
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Here we use Dirac spinors normalized to unity, i.e. ũσ(p) :=
1√
2m
uσ(p). Note

that for simplicity we take only pure vector exchange for the ω meson. This can
be justified by looking at a comparison of different models for the vector-meson
exchange in Ref. [Erk74]. Realistic models favour no, or only very small tensor
coupling for the ω meson.

For the Pauli-Villars particles, the same basic forms for the second-order
matrix elements are used with one difference: the amplitudes have opposite
sign. This sign difference is, of course, the reason why the Pauli-Villars bosons
provide regularization of the potentials.

Static Potentials in Momentum Space

In the static (non-relativistic) approximation the amplitudes turn out to be (for
details see App. G)

mNσ
int (q̃1) = − g2σ

q̃2
1 +m2

σ

(6.11)

and

mNω
int (q̃1) =

g2ω
q̃2
1 +m2

ω

, (6.12)

where q̃1 := k̃′
1 − k̃1 denotes the exchanged three-momentum. The energies

occurring in the Dirac spinors have been approximated by the nucleon masses
and only the large components of the Dirac spinors are retained.

Potentials in Coordinate Space

The potentials in configuration space are given by the Fourier transforms of
expressions (6.11) and (6.12):

V Nσ(r) =

∫
d3q̃1
(2π)3

mNσ
int (q̃1) e

iq̃1·r . (6.13)

This integral can be done by contour integration giving the usual Yukawa po-
tential [PS95]

V Nσ(r) = − g2σ
4π

e−mσr

r
, (6.14)

where r = |r|. Similarly for the vector-meson-exchange potential:

V Nω(r) =
g2ω
4π

e−mωr

r
. (6.15)

Pauli-Villars Regularization

In the Pauli-Villars regularization prescription one introduces fictitious heavy
particles in the Lagrangean density. Then the regularized interaction La-
grangean density is given by

L̂int(x) = gσ
ˆ̄ψN(x)ψ̂N(x)σ̂(x) + i gω

ˆ̄ψN(x)γµψ̂N(x)ω̂
µ(x)

+i gσ
ˆ̄ψN(x)ψ̂N(x)σ̂PV(x) + gω

ˆ̄ψN(x)γµψ̂N(x)ω̂
µ
PV(x) , (6.16)

where σPV(x) and ω
µ
PV(x) are the Pauli-Villars fields with large masses Λσ and

Λω, respectively. Note that we couple the Pauli-Villars bosons with the same
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strength as the physical bosons but with an additional factor i, which translates
in second order into a relative minus sign of the amplitudes.

This introduction of Pauli-Villars fields in the Lagrangean results in making
the following replacement for the σ-meson propagators in Eq. (6.11):

1

q̃2
1 +m2

σ

−→ 1

q̃2
1 +m2

σ

− 1

q̃2
1 + Λ2

σ

. (6.17)

Similarly for the ω-meson propagator in Eq. (6.12):

1

q̃2
1 +m2

ω

−→ 1

q̃2
1 +m2

ω

− 1

q̃2
1 + Λ2

ω

. (6.18)

Therefore, the Walecka potential in configuration space finally reads

V (r) = − g2σ
4π

e−mσr

r
+
g2σ
4π

e−Λσr

r
+
g2ω
4π

e−mωr

r
− g2ω

4π

e−Λωr

r
. (6.19)

6.3.3 Coordinate Space

Solving the Schrödinger Equation and Fixing the Parameters

The two-body S-wave (l = 0) Schrödinger equation for the reduced deuteron
wave function w0(r) := r ũ0(r) reads

[

− ~2

2mred

d2

dr2
+ V (r)

]

w0(r) = EB w0(r) , (6.20)

where

2mred =
2mpmn

mp +mn
= 938.92 MeV/c2 ≈ mN . (6.21)

The potential has the form, (re)expressing r in fm and the λ’s in fm−1

V (r) = ~ c

[

− g2σ
4π

e−r/λσ

r
+
g2σ
4π

e−r/λPVσ

r
+
g2ω
4π

e−r/λω

r
− g2ω

4π

e−r/λPVω

r

]

, (6.22)

where the quantities λ are the Compton wavelengths of the corresponding meson
masses, e.g. λσ = ~/mσc.

We use the existing data on the recommended σ-meson mass, the experimen-
tal ω-meson mass, the deuteron binding energy, and the triplet scattering length
to fix the parameters. For the Pauli-Villars particles we use the mass values (cut
off values) Λσ = 1000 MeV and Λω = 1500 MeV, which are reasonable values
for these cut offs, although they are somewhat smaller than usual. We did not
vary them, because the model proposed here is simply not realistic enough to
warrant much effort in this direction. Yet, we wanted this model to produce
a reasonable S-wave deuteron wave function. The values of the parameters we
found are given in Tab. 6.1.

The potential is depicted in Fig. 6.1 together with the simple Malfliet-Tjon-
III potential [MT69]. It is clear that the present model has stronger attraction
at intermediate range and stronger repulsion at short range than the Malfliet-
Tjon potential. This difference can be expected to show up in the bound-state
wave function at intermediate range.
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parameters (units) present present, no PV MT [MT69]

EB (MeV) -2.224575 -3.36772 -2.27203

at (fm) 5.4151 4.58658 5.4739

g2σ/4π 6.31 6.31 3.22749

g2ω/4π 18.617 18.617 7.40758

λσ (fm) (mσ (MeV/c2)) 0.493317 (400) 0.493317 (400) 0.643087 (306.8)

λω (fm) (mω (MeV/c2)) 0.25211 (782.7) 0.25211 (782.7) 0.321543 (613.6)

λPVσ (fm) (Λσ (MeV/c2)) 0.19732 (1000) 0 (∞) 0 (∞)

λPVω (fm) (Λω (MeV/c2)) 0.131551 (1500) 0 (∞) 0 (∞)

Table 6.1: The values for the masses and coupling constants are chosen such that
the deuteron binding energyEB and the scattering length at are well reproduced.
These values are also similar to those proposed in [Erk74].

-

-

100

100

50

50

1 2 3 4
r (fm)

V (r) (MeV)

present model

present model, no PV

Malfliet-Tjon III [MT69]

Figure 6.1: The present potential with and without Pauli-Villars regularization
compared with the Malfliet-Tjon potential [MT69]. The parameters are given
in Tab. 6.1.

The Schrödinger equation (6.20) is solved numerically, with the solution
w0(r) being subject to the boundary condition w0(0) = 0. The normalized
bound state wave function w0(r) is depicted in Fig. 6.2.

As a characteristic quantity that measures the quality of the wave function
non-locally, we calculated the mean-square radius defined by [BLOT90]

〈r2〉 := 1

4

∫ ∞

0

dr r2w2
0(r) . (6.23)

We find a value for the root-mean-squared radius
√

〈r2〉 = 1.95015 fm close

to Malfliet-Tjon’s value
√

〈r2〉 = 1.97625 fm. This is also in accordance with
other results for the deuteron root-mean-square radius [BLOT90]. The triplet
scattering length at is obtained from the solution w0(r) of the Schrödinger equa-
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Figure 6.2: Present model wave functions with and without Pauli-Villars reg-
ularization compared with the Malfliet-Tjon model wave function in units of

fm− 1
2 . The Schrödinger equation for the Malfliet-Tjon potential is solved with

the parameters given in Tab. 6.1.

tion Eq. (6.20) corresponding to EB = 0, see Fig. 6.3. We find the value
at = 5.421 fm, compared to the experimental value of 5.432 fm [Rij06]. It
is amusing to check the importance of the Pauli-Villars bosons in the static ap-
proximation, where they are not needed for convergence. In Table 6.1 we give
the values of the energy and the scattering length in the situation that these
bosons are omitted. Clearly, the values of the bound-state energy, −3.368 MeV,
compared to −2.225 MeV, and 4.587 fm compared to 5.421 fm, are quite rea-
sonable, although of course far outside the error bounds of the experimental
data.

Body Form Factor

As we do not specify the charges of the fermions in the simple benchmark model,
we calculate the body form factor of the bound state only. For the S-wave bound
state found here, it is given by the well-known formula1 [BJ76]

FB(q̃1) =

∫ ∞

0

dr j0(q̃1r)w
2
0(r) , (6.24)

where j0(q̃1r) = sin(q̃1r)/(q̃1r) is the first spherical Bessel function and w0(r) is
normalized as ∫ ∞

0

dr w2
0(r) = 1 . (6.25)

1FB(q̃1) corresponds to the electric charge form factor GC(2q̃1) (cf. Eq. 5.65) for point-like
nucleons and for the relativistic kinematical factors and spin-rotation factors set equal to one.
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Figure 6.3: Wave functions at energy EB = 0 for the present model with and
without Pauli-Villars regularization included in the potential. The scattering
length is determined by a linear fit to the wave function at large r.

This normalization guarantees FB(0) = 1. The resulting form factor for the
present model is depicted in Fig. 6.4.

The small-q̃1 behaviour can be read off in the usual way from the small-x
behaviour of the spherical Bessel function, namely j0(x) ∼ 1−x2/6, which gives

FB(q̃1) ∼ 1− q̃21
6

∫ ∞

0

dr r2 w2
0(r) . (6.26)

In Fig. 6.5 we show the form factor at small q̃1 together with the limiting form
given in Eq. (6.26). (Note the factor 4 that comes from the factor 1/4 in the
definition of 〈r2〉, Eq. (6.23).)

6.3.4 Momentum Space

Solving the Integral Equation

In order to facilitate the comparison of our model with calculations restricted
to momentum space, we transformed the Schrödinger equation to momentum
space which is the integral equation obtained by Fourier transforming Eq. (6.20):

k̃2

mN
u0(k̃) +

∫
d3k̃′

(2π)3
mint(|k̃1 − k̃′

1|)u0(k̃′) = EB u0(k̃
′) , (6.27)
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Figure 6.4: The form factor in the present model including Pauli-Villars regu-
larization. The form factor for the Malfliet-Tjon deuteron is indistinguishable
on this scale.
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Figure 6.5: The form factor together with the form for small q̃1.

where

mint(|k̃ − k̃′|) = − g2σ

(k̃ − k̃′)2 +m2
σ

+
g2σ

(k̃ − k̃′)2 + Λ2
σ

+
g2ω

(k̃ − k̃′)2 +m2
ω

− g2ω

(k̃ − k̃′)2 + Λ2
ω

. (6.28)

Note that Eq. (6.25) fixes the normalization of u0(k̃) as

∫ ∞

0

dk̃ k̃2 u20(k̃) = (2π)3 . (6.29)
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This defines the difference between u0(k̃) and u00(k̃) from Eq. (3.28) by a factor

of (2π)
3
2 :

u00(k̃) ≡
1

(2π)
3
2

u0(k̃) . (6.30)

Since there is only one bound-state for the deuteron, we have left away the index
n = 0 which also served as a distinction between u0(k̃) and u00(k̃).

2 The angular
integrations can be done by expanding mint(|k̃1 − k̃′

1|) in terms of partial waves
(for a detailed discussion see, e.g. Ref. [vIvdBB00]). The result is

k̃2

mN
u0(k̃) +

1

8π2

∫ ∞

0

dk̃′mint(k̃, k̃
′)u0(k̃

′) = EBu0(k̃) , (6.31)

where

mint(k̃, k̃
′) =

k̃′

k̃

{

−g2σ ln
[

(k̃ + k̃′)2 +m2
σ

(k̃ − k̃′)2 +m2
σ

]

+ g2σ ln

[

(k̃ + k̃′)2 + Λ2
σ

(k̃ − k̃′)2 + Λ2
σ

]

+g2ω ln

[

(k̃ + k̃′)2 +m2
ω

(k̃ − k̃′)2 +m2
ω

]

− g2ω ln

[

(k̃ + k̃′)2 + Λ2
ω

(k̃ − k̃′)2 + Λ2
ω

]}

.

(6.32)

The integral equation (6.31) is solved for the wave function of the bound state
with the numerical method of standard Gauss quadrature (for details see, e.g.
Ref. [vIvdBB00]). The determination of the energy served as a check of our
numerical calculations. Indeed, we found the same energy in momentum space
and coordinate space. The momentum-space wave function u0(k̃) is shown in
Fig. 6.6. On this scale, we cannot see the difference between the Malfliet-Tjon
wave function and the one obtained with the present model. Looking at Fig. 6.2
we see that in coordinate space the two models differ most below a few fm, so
we may expect the momentum-space wave functions to be different at momenta
around 200 MeV/c, which turns out to be true, as Fig. 6.7 shows.

For small values of the momenta the momentum-space wave function is dom-
inated by the asymptotic behaviour of the coordinate-space wave function, i.e.
ũ0(r) ∼ exp(−αr) with α2 = −EBmN. The corresponding behaviour in mo-
mentum space is u0(k̃) ∼ 1/(α2 + k̃2). The latter is plotted in Fig. 6.8.

Relativistic Kinetic Energy

The simplest modification of the present model replaces the kinetic-energy oper-

ator k̃2/mN by the operator 2
√

k̃2 +m2
N−2mN. Then the bound-state equation

Eq. (6.31) becomes a mass eigenvalue equation (cf. Eq. (3.11))

2

√

k̃2 +m2
Nu0(k̃) +

∫
d3k̃′

(2π)3
mint(|k̃1 − k̃′

1|)u0(k̃′) = (Erel
B + 2mN
︸ ︷︷ ︸

=mD

)u0(k̃
′) .

(6.33)

2Note that we define Ψ̃00(r) = Y00(r̂)ũ0(r) and its Fourier transform as Ψ00(k̃) =

Y00(
ˆ̃
k)u0(k̃).
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Figure 6.6: The wave function u0(k̃) in momentum space for the present model
including Pauli-Villars regularization. The wave function for the Malfliet-Tjon
deuteron is indistinguishable on this scale.
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Figure 6.7: The wave function u0(k̃) in momentum space for the present model
including Pauli-Villars regularization and the wave function for the Malfliet-
Tjon deuteron for large momenta.

It is well known that this replacement effectively weakens the kinetic energy and
consequently lowers the energy of the bound state(s) if the potential remains
the same. This is indeed what we find. The eigenvalue of the Hamiltonian
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Figure 6.8: The momentum-space wave function u0(k̃) for the present model
including Pauli-Villars regularization and the pole part of this wave function for
small momenta.
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Figure 6.9: The momentum-space wave function u0(k̃) for the present model
including Pauli-Villars regularization and relativistic kinetic-energy operator.
Also shown is the pole part.

drops to Erel
B = −2.73414 MeV which gives a deuteron mass of m00 = mD =

1.87511 GeV.

In Fig. 6.10 we show the momentum-space wave functions for the case where
the non-relativistic kinetic-energy operator is used and the one where the rela-
tivistic operator is used.

The body form factor expression, Eq. (6.24), is given in momentum space
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by

FB(q̃1) =
1

4π

∫

d3k̃ u0(k̃)u0(|k̃ + q̃1|) . (6.34)

In Figs. 6.11 and 6.12 we show again the form factor for the Walecka-type model,
but now together with the one where the relativistic kinetic energy is used. The
differences between the two are hardly noticeable.
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200 400100 3000
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u0(k̃), relativistic

u0(k̃), non-relativistic

Figure 6.10: The momentum-space wave functions u0(k̃) for the present
model including Pauli-Villars regularization and relativistic and non-relativistic
kinetic-energy operator.
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Figure 6.11: A comparison of the form factors obtained for the present model in-
cluding Pauli-Villars regularization with the relativistic kinetic-energy operator
and the non-relativistic one.
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Figure 6.12: The same in semi-log representation.



Chapter 7

Numerical Results

Having solved the bound-state problem for the harmonic-oscillator potential
and the Walecka-type model in the previous chapter we are now ready to
make a numerical analysis of the form factor expressions for pseudoscalar and
vector bound-states. All computations of this chapter have been done using
Mathematica c©.

7.1 Electromagnetic π-Meson Form Factor

In the present work confinement between the quark and the antiquark of a
charged pion π± is modeled by the simple harmonic-oscillator potential intro-
duced in Sec. 6.2. There are just 2 free parameters in this simple model, the os-
cillator parameter a and the constituent-quark massmq. Using Eq. (5.25) for the
form factor a reasonable fit of the experimental data [H+08,B+78,B+76,B+74,
B+73,A+86] can be achieved by choosing the parameter values a = 350 MeV
and mq = 210 MeV, which are taken from Ref. [CCP88]. At this point we shall
emphasize that our goal is not to end up with an optimal fit of the pion form
factor, but we rather want to exhibit the virtues of our point-form approach and
compare it to other attempts to develop microscopic models for hadron form
factors.

7.1.1 Numerical Study

We start with a numerical study of the influence of cluster-separability violating
effects on the pion current and on the pion form factors. To this end we take
the simple harmonic-oscillator wave function, Eq. (6.6), to calculate the pion
current, Eq. (4.31).1 Using our standard kinematics of Eq. (5.11) we find that
the current Jµ

π (k
′
C, kC) has actually 2 vanishing components as expected from

the theoretical analysis of Sec. 5.2.1: J1
π(k

′
C,kC) = J2

π(k
′
C,kC) = 0. There are,

in general, 2 non-vanishing non-equal components, J0
π(k

′
C,kC) and J

3
π(k

′
C,kC),

except in the Breit frame (k = Q/2) and in the infinite-momentum frame (k →
∞). In the Breit frame the third component is seen to vanish: J3

π(k
′
C,kC) = 0.

1We have chosen for the 2 parameters, mq = 340 MeV and a = 312 MeV. A justification
for these values has already been given in Sec. 6.2.2 or can also be found in Ref. [Kra01].
Their precise value, however, is not important for this qualitative study.

99
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Figure 7.1: Dependence of the physical pion form factor f of Eq. (5.20) on the
pion center-of-mass momentum k for different values of the squared momentum
transfer Q2.

This confirms exactly our findings of Sec. 5.2.1, namely that it is not possible to
separate the 2 form factors f and b̃ in the Breit frame, which essentially means
that one is left with just one form factor (a linear combination of f and b̃).

Nevertheless, for k > Q/2 the 2 form factors f and b̃ can be separated
uniquely by means of Eq. (5.6). They are then given by Eqs. (5.20) and (5.21)
and plotted in Figs. 7.1 and 7.2 versus k for fixed Q2. One observes that both,
the physical form factor f and the spurious form factor b̃ depend on k. The
k-dependence of f vanishes rather quickly with increasing k. At the same time
the spurious form factor b̃ is seen to vanish for large k. This means by taking
the limit k → ∞ effects from the violation of cluster separability are removed.
In this limit we also ended up with the simple analytic expression for the form
factor F given in Eq. (5.25). This expression has been proved in Sec. 5.3.2 to
be equivalent with the standard front-form expression for the pion form factor
of Ref. [CCP88] obtained from a spectator current in the q+ = 0 frame.

From Fig. 7.1 we also read off the correct charge of the pion, i.e. F (0) =
limk→∞ f(0, k) = 1 in units of the elementary charge e. This is only the case
for the form factor one gets from the decomposition of the pion current given
by Eq. (5.3), which justifies to call f the physical and b̃ the unphysical form
factors of the pion [CDKM98]. In addition, we note that the fact that we
end up with only one form factor is also confirmed by the observation that
J0
π(k

′
C,kC) → J3

π(k
′
C,kC) in the limit k → ∞.

In Figs. 7.3 and 7.4 we show the Q2-dependence of the electromagnetic pion
form factor F

(
Q2
)
as evaluated by means of Eq. (5.25) along with experimental

data. Also shown is the role of the spin-rotation factor S. The quark spin
obviously has a substantial effect on the electromagnetic form factor over nearly
the whole momentum-transfer range and thus cannot be neglected [BSFK09].
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Figure 7.2: Dependence of the spurious pion form factor b̃ of Eq. (5.21) on the
pion center-of-mass momentum k for different values of the squared momentum
transfer Q2.
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Figure 7.3: Q2-dependence of the electromagnetic pion form factor squared
F 2
(
Q2
)
in the low-Q2 region, as evaluated by means of Eq. (5.25) with param-

eters a = 350 MeV and mq = 210 MeV with and without spin-rotation factor
S [BSFK09]. Data are taken from Ref. [A+86].
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Figure 7.4: Q2-dependence of the electromagnetic pion form factor scaled by Q2

as evaluated by means of Eq. (5.25) with the same parameters as in Fig. 7.3 with
and without spin-rotation factor S [BSFK09]. Data are taken from Refs. [B+73,
B+76,B+74,B+78,H+08].

7.1.2 Results and Comparisons

We have already mentioned previously that the pion form-factor expression
obtained in the point-form spectator model [WBK+01,B+02,MBC+07] is not
only determined by the pion wave function, but exhibits also an explicit de-
pendence on the pion mass. Therefore, the spectrum of the mass operator is
directly connected with the electromagnetic structure of its eigenstates. This
makes it somewhat delicate to compare our form-factor results for the simple
harmonic-oscillator confinement potential with corresponding point-form model
predictions [BSFK09]. Whereas the wave function is solely determined by the
oscillator parameter a (cf. Eq. (6.6)), another free constant c0 can be added
to the confinement potential (cf. Eq. (6.5)) to shift the eigenvalue spectrum.
Unlike our results, which do not depend on c0, the point-form spectator model
predictions exhibit a strong dependence on c0. The parameters a = 350 MeV
and mq = 210 MeV as proposed in Ref. [CCP88] give a reasonable fit of our
pion form factor with the data. Taking these parameters together with c0 < 0,
such that the harmonic-oscillator ground state were to coincide with the physi-
cal mass of the pion of mπ = 140 MeV, the fall-off of the point-form spectator
model form factor would be unreasonably strong. With c0 = 0, on the other
hand, the pion ground-state mass would be larger than 1 GeV and the fall-
off of the form factor would be much too slow [BSFK09]. We have therefore
tried to take the set of parameters of a = 312 MeV, c0 = −1.04 GeV2 and
mq = 340 MeV, which have been already discussed in Sec. 6.2. These are
reasonable values for the purpose of a qualitative comparison between our ap-
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Figure 7.5: The electromagnetic pion form factor F
(
Q2
)
as evaluated by means

of Eq. (5.25) with parameters mq = 340MeV and a = 312MeV in comparison
with the outcome of the point-form spectator model with the same parameters
and m00 = 770MeV [BSFK09]. Data are taken from Refs. [A+86,B+73,B+76,
B+74,B+78,H+08].

proach and the point-form spectator model predictions. In Fig. 7.5 we compare
our result with the point-form spectator model prediction and experimental
data. Both results become comparable at small momentum transfers. Above
Q2 ≈ 1 GeV2, however, significant differences can be observed. These differ-
ences resemble the situation for the electromagnetic nucleon form factors. In
the latter case the stronger fall-off produced by the point-form spectator model
is a welcome feature which brings the theoretical predictions from constituent
quark models close to experiments [MBC+07]. For the usual front-form spec-
tator current in the q+ = 0 frame agreement with experiment is achieved only
by introducing electromagnetic form factors for the constituent quarks [Sim01].
It remains to be seen whether the situation for the electromagnetic pion form
factor could also change in favor of the point-form spectator model if a more
sophisticated quark-antiquark potential is employed which reproduces the mass
of the pion and its lowest excitations sufficiently accurately [BSFK09].
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Figure 7.6: The electromagnetic ρ-meson form factor F1
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)
evaluated by

means of Eq. (5.48) with F 1
1 (Q

2) + F 2
1 (Q

2) = 1 and F 1
2 (Q

2) = F 2
2 (Q

2) = 0
and parameters mq = 340MeV, a = 312MeV and c0 = −1.04GeV2 such that
m00 = 770MeV.

7.2 Electromagnetic ρ-Meson Form Factors

7.2.1 Discussion and Predictions

A charged ρ± meson in a constituent quark model is considered to be a quark-
antiquark bound state with total spin j = 1. As for the pion the confining
interaction between the quarks is modeled by the simple harmonic-oscillator
potential of Sec. 6.2. We have fixed the 3 parameters a = 312 MeV, c0 =
−1.04 GeV2 and mq = 340 MeV via the vector-meson spectrum, therefore the
mass of the ground state m00 = 770 MeV coincides already with the correct
ρ-meson mass mρ.

The ρ-meson electromagnetic form factors are computed by simply plugging
the ground-state harmonic-oscillator wave function u00 and the ground-state
mass m00 into the form factor expressions Eqs. (5.48), (5.49) and (5.50) with
F 1
1 (Q

2) + F 2
1 (Q

2) = 1 and F 1
2 (Q

2) = F 2
2 (Q

2) = 0 (since the quarks are con-
sidered as point-like). The results are depicted in Figs. 7.6-7.8. By means of
Eqs. (5.65) and (5.66) we obtain from F1

(
Q2
)
, F2

(
Q2
)
and GM

(
Q2
)
the elec-

tric charge and quadrupole form factors of the ρ meson, GC

(
Q2
)
and GQ

(
Q2
)
,

respectively. They are plotted in Figs. 7.9 and 7.10. From Fig. 7.9 we read
off the correct ρ+-meson charge GC(0) = 1 in units of the fundamental charge
| e |. This is ensured only by the decomposition of the ρ-meson current given in
Eq. (5.7), which justifies this particular way of separating the physical from the
unphysical contributions. Our predictions for the magnetic dipole and the elec-
tric quadrupole moment given by the Q2 → 0 limits of GM

(
Q2
)
and GQ

(
Q2
)
,

cf. Eqs. (5.68) and (5.69), are µρ = 2.2 and Qρ = −0.47 (in units | e |/2mρ and
| e |/m2

ρ), respectively.

From the form factors GC(Q
2), GM(Q2) and GQ(Q

2) we obtain the elas-
tic scattering observables A(Q2), B(Q2) and T20(Q

2) by means of Eqs. (5.70),
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Figure 7.7: The electromagnetic ρ-meson form factor F2
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Figure 7.8: The magnetic ρ-meson form factor GM
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2) = 1 and F 1
2 (Q

2) = F 2
2 (Q

2) = 0 and with the
same parameters as in Fig. 7.6.

(5.71) and (5.72), respectively. The corresponding results are depicted in
Figs. 7.11, 7.12 and 7.13.

It is also interesting to see how large the spurious contributions to the ρ-
meson current are. In particular we shall concentrate on the violation of current
conservation, the violation of the angular condition and the spurious form factor
B6(Q

2), cf. Sec. 5.3.3. The ρ-meson current is not conserved due to a non-
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Figure 7.9: The electric charge ρ-meson form factor GC

(
Q2
)
calculated from

Eq. (5.65) with the same parameters as in Fig. 7.6.

vanishing current component J1
10(Q

2). For our standard kinematics, Eq. (5.11),
its magnitude is depicted in Fig. 7.14. We also give our result for the violation of
the angular condition, which is equal to the sum of the spurious form factors B5

and B7 (cf. Eq. (5.63)). The result is plotted in Fig. 7.15. Finally we calculate
the spurious form factor B6(Q

2) from the difference of GM and the expression
Eq. (5.64). It is shown in Fig. 7.16. As one observes, the spurious contributions
can contribute significantly to the current matrix elements and their separation
is crucial for the extraction of meaningful physical form factors.

7.2.2 Comparisons

In order to make reasonable comparisons with other approaches to ρ-meson
form factors we look, in particular, at calculations that have also used the simple
harmonic-oscillator potential of Sec. 6.2: the light-front approach of Ref. [CJ04],
the covariant extension of the light-front formalism of Ref. [Jau03], the covariant
light-front prescription of Ref. [CDKM98] (the results from this prescription
using a Gaussian wave function can be found in Ref. [Jau03]) and the standard
light-front prescription of Ref. [CPCK88] (the results from this prescription can
be found in Ref. [Jau03]). In order to end up with qualitative comparable
results we adopt the values for the 2 parameters mq and a of each approach
and use them in our prescription. The predictions for the magnetic dipole
moment µρ and the electric quadrupole moment Qρ are compared in Tab. 7.1.
It turns out that our results for µρ and Qρ show agreement with the results
of Carbonell et al., Ref. [CDKM98]. This is just what we expected due to
the similarities and correspondences in both approaches. Our value for Qρ also
coincides with the approach of Jaus, Ref. [Jau03], however the values for µρ differ
significantly. Quite good agreement is found with Chung et al., Ref. [CPCK88].
In particular, their value for µρ is about 0.0434 units of | e |/2mρ lower than ours
which coincides exactly with the value of B6(0)−B5(0)−B7(0). This difference
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Figure 7.10: The electric quadrupole ρ-meson form factor GQ
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calculated

from Eq. (5.66) with the same parameters as in Fig. 7.6.
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Figure 7.11: The elastic scattering observable A(Q2) from Eq. (5.70) for the ρ
meson calculated with the same parameters as in Fig. 7.6.
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Figure 7.12: The elastic scattering observable B(Q2) from Eq. (5.71) for the ρ
meson calculated with the same parameters as in Fig. 7.6.
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ρ meson calculated with the same parameters as in Fig. 7.6.
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Figure 7.15: The violation of the angular condition for the ρ-meson given by
Eq. (5.63) calculated with the same parameters as in Fig. 7.6.

between our value for the magnetic moment and theirs can be understood as
the spurious term −B6(Q

2) + (B5(Q
2) + B7(Q

2))/(1 + η)) which is added to
the magnetic form factor when using the standard light-front prescription of
Ref. [CPCK88] (cf. Ref. [CDKM98]).

In Tab. 7.2 we also give our predictions for µρ and Qρ in comparison with
predictions of other approaches which use different model wave functions. Our
predicted µρ and Qρ have quite reasonable values which are lying between those
of other approaches. In Tab. 7.3 we compare our approach with the work by
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Figure 7.16: The spurious form factor B6(Q
2) of the ρ-meson calculated with

the same parameters as in Fig. 7.6.

Ref. mq (MeV) a (MeV) µρ Qρ

this work 340 312 2.20 -0.47
Choi et al. [CJ04] 220 365.9 1.92 -0.43
this work 220 365.9 2.33 -0.33
Jaus [Jau03] 250 280 1.83 -0.33
this work 250 280 2.25 -0.33
Carbonell et al. [CDKM98] 250 262 2.23 -0.005
this work 250 262 2.231 -0.0058
Chung et al. [CPCK88] 250 316 2.23 -0.19
this work 250 316 2.27344 -0.253915

Table 7.1: Comparison of the magnetic dipole moment µρ (in units | e |/2mρ)
and the electric quadrupole momentQρ (in units | e |/m2

ρ) in different approaches
with a harmonic oscillator confining potential.

Ref. µρ Qρ

this work 2.20 -0.47
Bagdasaryan et al. [BETI85] 2.30 -0.45
Samsonov [Sam03] 2.00±0.3 -
Aliev et al. [AS04] 2.30 -
Cardarelli et al. [CGN+95] 2.23 -0.61
Bhagwat et al. [BM08] 2.01 -0.41
Hawes et al. [HP99] 2.69 -0.84
De Melo et al. [dMF97] 2.14 -0.79

Table 7.2: Predictions of the magnetic dipole moment µρ (in units | e |/2mρ) and
the electric quadrupole moment Qρ (in units | e |/m2

ρ) in different approaches.
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Q2(GeV2) [CJ04] this work
GC 0.38 0.29

Q2 = 1 GM 0.93 0.93
GQ -0.23 -0.21
GC 0.18 0.12

Q2 = 2 GM 0.59 0.58
GQ -0.15 -0.14
GC 0.08 0.05

Q2 = 3 GM 0.41 0.41
GQ -0.10 -0.10

Table 7.3: Comparison of the form factors of our approach with the work by
Choi et al., Ref. [CJ04] for some fixed values of Q2. In both approaches the same
harmonic-oscillator potential has been used with the parametersmq = 220 MeV
and a = 365.9 MeV.

Q2(GeV2) this work [BM08] [HP99] [AS04] [BO04]
GC 0.29 0.22 0.17 0.25 0.10

Q2 = 1 GM 0.85 0.57 0.85 0.58 0.46
GQ -0.21 -0.11 -0.51 -0.49 -0.16
GC 0.11 0.08 0.04 0.13 0.16

Q2 = 2 GM 0.47 0.27 0.45 0.28 0.27
GQ -0.12 -0.05 -0.32 -0.24 -0.11
GC 0.05 0.11 0.08 -0.03

Q2 = 3 GM 0.30 0.25 0.17 0.18
GQ -0.07 -0.23 -0.15 -0.10

Table 7.4: Comparison of the ρ-meson form factors in various approaches.

Choi et al., Ref. [CJ04] using the harmonic-oscillator potential with the same
parameters as therein. Here it turns out that best agreement is achieved for the
magnetic form factor GM.

In Tab. 7.4 we compare our prediction for the ρ-meson form factors with
those of other approaches which use different model wave functions. First we
observe that our electric charge form factor GC lies for small values of Q2 above
the predictions of other approaches. For higher Q2 our values for GC lie some-
where between the values of the other approaches. Second, our magnetic form
factor GM lies above the values of other approaches in the whole range of Q2.
Third, our prediction for the electric quadrupole form factor GQ lies between
the ones of other approaches.

To conclude, in view of the simplicity of our harmonic-oscillator confining
potential these are altogether quite reasonable results for our electromagnetic
ρ-meson form factor.
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Figure 7.17: The deuteron form factor F1 evaluated within the Walecka-type
model together with 2 different parametrizations for the nucleon form factors
taken from Refs. [GK92] and [MMD96] and for point-like nucleons.

7.3 Electromagnetic Deuteron Form Factors

In the present work we model the nucleon-nucleon interaction by the Pauli-
Villars regularized Walecka-type potential which we have proposed in Sec. 6.3.
For simplicity we have restricted ourselves to the static limits for the meson-
exchange potential. However, we have refined our bound-state problem by re-
placing the non-relativistic by the relativistic kinetic-energy operator. To get
numerical results for the deuteron form factors we plug the solution u00 and
the mass eigenvalue m00 = mD of the Walecka-model mass eigenvalue equa-
tion (6.33) into the expressions for the spin-1 form factors Eqs. (5.48), (5.49)
and (5.50). In the present work we do not derive expressions for the nu-
cleon form factors F p

1 (Q
2), F n

1 (Q
2), F p

2 (Q
2) and F n

2 (Q
2) but we rather use

the 2 parametrizations for the nucleon form factors proposed in Refs. [GK92]
and [MMD96]. For comparison, we also consider point-like nucleons, i.e.
F p
1 (Q

2) = 1 and F n
1 (Q

2) = F p
2 (Q

2) = F n
2 (Q

2) = 0. The electromagnetic
deuteron form factors F1

(
Q2
)
, F2

(
Q2
)
and GM

(
Q2
)
are then evaluated with

these 3 parametrizations. They are depicted in Figs. 7.17, 7.18 and 7.19, respec-
tively. With the help of Eqs. (5.65) and (5.66) we obtain from F1

(
Q2
)
, F2

(
Q2
)

and GM

(
Q2
)
the electric charge and quadrupole form factors of the deuteron,

GC(Q
2) and GQ(Q

2), respectively. The correct charge GC(0) = −F1(0) = 1 can
be read off from Fig. 7.17, which is, in general, guaranteed only by the particular
decomposition of the deuteron current given by Eq. (5.7). Our predictions for
the magnetic dipole moment µD and the electric quadrupole moment QD defined
by the Q2 → 0 limits of GM

(
Q2
)
and GQ

(
Q2
)
are summarized in Tab. 7.5.

Due to the simplicity of our Walecka-type model we do not expect to get
form factor results that are close to experimental data. Therefore we do not
compare our results with data, which is anyway not the purpose of this work.
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Figure 7.18: The deuteron form factor F2 evaluated within the Walecka-type
model together with 2 different parametrizations for the nucleon form factors
taken from Refs. [GK92] and [MMD96] and for point-like nucleon.
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Figure 7.19: The magnetic dipole form factor GM of the deuteron evaluated
within the Walecka-type model together with 2 different parametrizations for
the nucleon form factors taken from Refs. [GK92] and [MMD96] and for point-
like nucleons.
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nucleon form factor parametrizations µD QD

Gari et al., Ref. [GK92] 1.76354 -0.013501
Mergell et al., Ref. [MMD96] 1.76585 -0.013519
point-like nucleons 2.00472 -0.018137

Table 7.5: The magnetic dipole moment µD (in units | e |/2mD) and the electric
quadrupole moment QD (in units | e |/m2

D) for the deuteron evaluated with the
Walecka-type wave function and 2 different parametrizations for the nucleon
form factors taken from Refs. [GK92] and [MMD96] and for point-like nucleons.
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Figure 7.20: The elastic scattering observable A(Q2) of the deuteron evaluated
within the Walecka-type model together with 2 different parametrizations for
the nucleon form factors taken from Refs. [GK92] and [MMD96] and for point-
like nucleons.

We should mention, however, that we find a quite reasonable value for the
magnetic dipole moment µD. The value for point-like nucleons, e.g. comes close
to the value µD = 2 for point-like spin-1 particles. Our results for the electric
quadrupole moment QD are quite small as a consequence of the absence of a
D-wave contribution. In the absence of a D-wave contribution the non-vanishing
of QD is a pure relativistic effect.

From the form factors GC, GM and GQ we obtain the elastic scattering
observables A(Q2), B(Q2) and T20(Q

2) by means of Eqs. (5.70), (5.71) and
(5.72), respectively. We compare the results for different parametrizations of
the nucleon form factors in Figs. 7.20, 7.21 and 7.22.

Finally, it is quite interesting to look at the spurious contributions to the
deuteron current causing violation of continuity, violation of the angular condi-
tion and the spurious form factor B6(Q

2). To this end we use the parametriza-
tion for the nucleon form factors of Ref. [MMD96] and compare it to the point-
like nucleon case. The continuity-violating matrix element of the current is
J1
10(Q

2) (with our standard kinematics). It is depicted in Fig. 7.23. In Fig. 7.24
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Figure 7.21: The elastic scattering observable B(Q2) of the deuteron evaluated
within the Walecka-type model together with 2 different parametrizations for
the nucleon form factors taken from Refs. [GK92] and [MMD96] and for point-
like nucleons.
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Figure 7.22: The elastic scattering observable T20(Q
2) of the deuteron evaluated

within the Walecka-type model together with 2 different parametrizations for
the nucleon form factors taken from Refs. [GK92] and [MMD96] and for point-
like nucleons.
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Figure 7.23: The violation of current conservation given by J1
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standard kinematics of momentum transfer in the 1-direction calculated within
the Walecka-type model together with the nucleon form factor parametrization
of Ref. [MMD96] and for point-like nucleons (here depicted in units of the ele-
mentary charge e) .

we show the violation of the angular condition which is equal to the sum of
the spurious form factors B5(Q

2) + B7(Q
2). The spurious form factor B6(Q

2),
which is contained in the magnetic form factor extracted from the plus compo-
nent of the current in the standard light-front prescription [CPCK88,CDKM98],
is plotted in Fig. 7.25. What we observe is that the relative importance of spu-
rious contributions diminishes if one goes from the strongly bound qq̄ system to
the weakly bound two-nucleon system. The influence of spurious contributions
is further reduced by the nucleon form factors.

We should stress once more that the purpose of the above computation
of the deuteron form factors within the simple Walecka-type model is not to
find best agreement with experimental data. The calculation is rather part of
the benchmark about relativistic effects in few-body physics, where different
approaches to deuteron form factors are compared on equal grounds starting
with the same fully covariant Walecka-model Lagrangean. Therefore, in order
to make concise statements about our deuteron form factor results the findings
of the other approaches participating in the benchmark are required.
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Chapter 8

Summary and Outlook

8.1 Summary

The point form is the least utilized of Dirac’s forms of relativistic dynamics, al-
though it has several advantageous properties. The key benefit of the point form
is the property that the Lorentz group is its stability group implying that only
the Abelian group of space-time translations is affected by interactions. This
natural way of separating the kinematic from the dynamic Poincaré generators
allows for a manifest Lorentz covariant formulation of dynamical equations and
makes for a simple behavior under Lorentz transformations.

In the present work we exploit the virtues of point-form relativistic quantum
mechanics to analyze the electromagnetic properties of relativistic two-body sys-
tems. To this end we treat the elastic electromagnetic scattering of an electron
by a bound-state as a two-channel problem for a Bakamjian-Thomas type mass
operator. The 2 channels are coupled by appropriately defined electromag-
netic vertex operators which are constructed from quantum field theoretical
Lagrangean densities. These vertex interactions describe the emission and ab-
sorption of a photon by the electron or the constituents of the bound state and
they have the Lorentz structure of a field theoretical vertex. In this way the
dynamics of the exchanged photon is taken explicitly into account. These ver-
tices are, however, non-local due to the conservation of the overall four-velocity
of the electron-bound-state(-photon) system that is inherent to the point-form
Bakamjian-Thomas framework. This four-velocity conservation at the vertex is
a necessary approximation in order to be able to formulate electron-bound-state
scattering as a simple eigenvalue problem for a Bakamjian-Thomas type mass
operator.

In this work we consider, for simplicity, only instantaneous interactions be-
tween the constituents forming the bound state. Instantaneous interactions
can be used within the Bakamjian-Thomas framework without loosing Poincaré
invariance. Therefore, our approach preserves Poincaré invariance by construc-
tion. What we violate, however, within a Bakamjian-Thomas construction for
more than 2 particles is macroscopic locality (i.e. cluster separability).

By a Feshbach reduction the eigenvalue problem for the coupled-channel
mass operator can be boiled down to a non-linear eigenvalue problem which
defines the one-photon-exchange optical potential. As expected, the optical po-

119
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tential is a contraction of the (point-like) electron current with a bound-state
current times the covariant photon propagator. The resulting bound-state cur-
rent, which is expressed in terms of bound-state wave functions and constituents’
currents, is Hermitean and transforms covariantly under Lorentz transforma-
tions. Its Lorentz structure is, however, not fully determined by the incoming
and outgoing bound-state momenta and spins. It turns out that additional, un-
physical Lorentz covariant terms are needed to parametrize the current. These
spurious contributions depend on the momentum of the electron and are the
consequence of the violation of cluster separability in the Bakamjian-Thomas
framework. Furthermore, both the physical and the spurious form factors (as-
sociated with the spurious contributions) do not only depend on Mandelstam
t, i.e. the four-momentum transfer squared, but they also exhibit an addi-
tional dependence on Mandelstam s, i.e. the total invariant mass squared of
the electron-bound-state system. These are the only independent Lorentz in-
variants that can be constructed from the incoming and outgoing bound-state
and electron momenta.

In the present work we consider, in particular, spin-0 bound systems, like
the pion, and spin-1 bound systems, like the ρ meson and the deuteron. The
current we obtain for the case of a spin-0 bound state is conserved. It can be
parametrized by 2 form factors, a physical and a spurious form factor. The
structure of our current reveals an interesting correspondence between our ap-
proach and the covariant light-front approach [KS94,CDKM98]. Their current
also contains a spurious contribution which is, in their case, associated with an
arbitrary light-like four-vector ω that describes the orientation of the light front.
The dependence on this light-front orientation is a consequence of retaining ex-
plicit Lorentz covariance in the light-front approach.

We observe that the s-dependence of our physical form factor vanishes rather
quickly with increasing s, which suggests to take the limit s → ∞ to obtain a
sensible physical form factor that depends only on Mandelstam t. At the same
time the spurious form factor is seen to vanish, implying that taking the limit
s → ∞ removes all cluster-separability-violating effects. The current in the
limit is a one-body current. The limit of letting the bound-state momentum
go to infinity can be understood as considering only the subprocess where the
photon is absorbed or emitted by the bound state in the infinite-momentum
frame of the bound state. Therefore, it is not too surprising that in this limit
we have been able to prove that our analytical formula for the form factor
coincides with the standard front-form expression that is extracted from the
plus component of a spectator current in the q+ = 0 frame [CCP88]. With
regard to the similarities of our approach and the covariant light-front approach
this is quite obvious: in the standard-light front dynamics, with the fixed light
front vector ω = (1, 0, 0,−1), the plus component of the current does not contain
any spurious contributions (since ω+ = 0).

Like in the scalar case, the Lorentz structure of our spin-1 bound-state cur-
rent, that contains 3 physical and 8 spurious contributions, resembles the corre-
sponding current of the covariant light-front dynamics if the sum of the incoming
and outgoing electron momenta is identified with the light-front vector ω. How-
ever, unlike the spin-0 case, by taking the limit s → ∞, only the 4 spurious
contributions proportional to ω are removed. The remaining 4 contributions
are responsible for the violation of current conservation and for the violation of
the angular condition. This again resembles the situation of covariant light-front
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dynamics after fixing ω to the standard value ω = (1, 0, 0,−1). The plus com-
ponent of the spin-1 spectator current (from which the form factors are usually
extracted) then still contains 4 spurious contributions leading to the violation
of the angular condition. There is, however, an unambiguous prescription pro-
posed by Karmanov and Smirnov [KS94] how to separate the physical from the
unphysical contributions, which can be directly applied to our case.

For mesons, we model the confining interaction between the quark and the
antiquark by a simple harmonic-oscillator potential. Our numerical results for
the ρ-meson magnetic dipole moment and electric quadrupole moment are, as
expected, in agreement with the results obtained from the covariant light-front
prescription (using the same model). The results for the magnetic dipole mo-
ment obtained from the standard front-form prescription (using the same model)
differ from our results exactly by the value of the spurious contribution that is
contained in the magnetic form factor obtained from the standard, non-covariant
light-front prescription.

For the deuteron we propose a simple Walecka-type model based on a La-
grangean density for a field theoretical description of nucleons that interact via
scalar σ- and vector ω-exchange. This model is intended to serve as a common
starting point for a benchmark calculation on ‘relativistic effects in few-body
physics’. The aim is to identify and compare such effects in different relativistic
approaches to few-body systems by means of the deuteron structure. We have
fixed the free parameters of the model such that the experimental values for the
binding energy of the deuteron and the triplet scattering length are reasonably
well reproduced in the non-relativistic limit. In order to go beyond the non-
relativistic limit we have included Pauli-Villars regulators. The simplest quan-
tity we can derive is the, so-called, body form factor, which is just the Fourier
transform of the charge distribution. All calculations within this thesis use the
static approximation to this Walecka-type one-boson exchange nucleon-nucleon
interaction. As a consequence the deuteron is a pure S-wave. Nevertheless it is
possible to study several relativistic effects. The first is the change of the body
form factor that occurs if the non-relativistic kinetic energy is replaced by the
corresponding relativistic expression. This affects the wave function and in the
sequel the body form factor. As a next step we have plugged this “relativized”
deuteron wave function into our point-form expression for the deuteron current
and the form factors. Here Wigner rotations and further relativistic kinemati-
cal factors come into play. Due to the covariance of the deuteron current not
only one, but 3 form factors are found. The body form factor corresponds then
to the electric monopole form factor GC. We observe that cluster-separability
violating effects are less important in the weakly bound deuteron than in the
strongly bound ρ meson.

To summarize, we have presented a relativistic formalism which allows to
derive the electromagnetic currents and form factors of bound few-body sys-
tems consistent with the binding forces. One advantage of this approach is that
the bound-state current is uniquely determined by the interaction dynamics
which is responsible for the binding. Furthermore, the current can directly be
extracted from the one-photon-exchange optical potential. However, in using
a Bakamjian-Thomas approach, problems involving cluster separability arise
which manifest themselves by unphysical contributions to the current. Never-
theless, we have found an unambiguous procedure how to separate them from
the physical contributions to get meaningful results for the form factors.
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8.2 Outlook

Our coupled-channel formalism to calculate form factors is quite general and it
can be applied immediately to other few-body systems. In Refs. [GRS10,GRS11]
for example, the present formalism has been applied to calculate electromagnetic
and weak form factors of heavy-light systems. Therein, a simple analytical
expression for the Isgur-Wise function [IW89,IW90] has been found in the heavy-
quark limit.

The above formalism can also be generalized in different directions. A next
step to full relativity would be to account for dynamical particle-exchange in-
teractions by adding additional channels. In particular, for the Walecka-type
model one could make the σ- and ω-exchange dynamical. This would add meson-
exchange contributions to the spectator current that results from instantaneous
binding forces. Corresponding extensions of the point-form approach are un-
der investigation. In general, the construction of such many-body currents is
a highly nontrivial task [GR87]. It remains to be seen how large the effects of
such additional exchange-current contributions on the form factors are. Fur-
thermore, due to the generality of our approach, applications to bound systems
with half-integer spins like, for example, baryons or other nuclei seem to be
straightforward.

Altogether, the approach of this thesis offers the possibility to be further
refined and generalized and to be applied to various problems of relativistic
few-body physics.



Appendix A

Minkowski Space

A.1 Notations and Basic Relations

We define a contravariant four-vector by

xµ := (x0, x1, x2, x3) = (x0,x) . (A.1)

The corresponding covariant vector is defined by

xµ := (x0, x1, x2, x3) = (x0,−x) = gµνx
ν (A.2)

with the metric tensor

diag (gµν) = (1,−1,−1,−1) . (A.3)

Throughout the present thesis we use Einstein’s sum convention meaning that
a sum over repeated indices is always assumed. Greek indices like µ, ν, τ, . . . on
four-vectors {xµ} ≡ x vary from 0 to 3 and Roman indices like i, j, k, . . . on
three-vectors {xi} ≡ x vary from 1 to 3.

The invariant scalar product between 2 four-vectors xµ and yµ is defined by

x · y := xµgµνy
ν = x0y0 − x · y . (A.4)

This scalar product is invariant under the Lorentz transformation

xµ
Λ−→ x′µ = Λµ

νx
ν (A.5)

if the matrices Λµ
ν satisfy a generalized orthogonality relation

Λµ
νΛ

σ
τg

ντ = gµσ. (A.6)

This relation can be rewritten as

Λµ
νΛ

ν
σ = gµσ ≡ δµσ (A.7)

which implies that

Λ ν
σ = (Λ−1)νσ . (A.8)
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124 Minkowski Space

A.2 Matrix Representation of the
Poincaré Group

In order to find a matrix representation for the inhomogeneous part of the
Poincaré group, we go over to homogeneous coordinates defined by the five-
component vectors [Sch01]

ξη :=
(
ξ4x0, ξ4x1, ξ4x2, ξ4x3, ξ4

)
. (A.9)

Then a Poincaré group element is given by the (5× 5)-matrix

Π (Λ, a) :=

(
Λµ

ν aµ

0Tν 1

)

(A.10)

and a Poincaré transformation can be written in the homogeneous form

ξ′η = Πη
θξ

θ with η, θ = 0, . . . , 4 . (A.11)

Consequently, a Lorentz transformation and a space-time translation are given
by

Π (Λ, 0) :=

(
Λµ

ν 0µ

0Tν 1

)

and T (a) := Π (14×4, a) , (A.12)

respectively. Writing T (a) in exponential form as T (a) = exp (−i aµP
µ) the

generators Pµ for infinitesimal space-time translations, being (5 × 5)-matrices,
are defined by

Pµ := i gµν
∂T (a)

∂aν

∣
∣
∣
∣
aν=0

. (A.13)



Appendix B

Spinors and
Polarization Vectors

B.1 Spin-1/2 Dirac Particles

B.1.1 Dirac Representation

We use the standard (Dirac) representation of the Dirac matrices given by

γ0 =

(
12 0
0 −12

)

, γ =

(
0 σ

−σ 0

)

= γ0α (B.1)

and

γ5 =

(
0 12
12 0

)

. (B.2)

Here

σ1 = −σ1 =

(
0 1
1 0

)

, σ2 = −σ2 =

(
0 −i
i 0

)

and

σ3 = −σ3 =

(
1 0
0 −1

)

(B.3)

are the usual Pauli matrices. A useful relation for the Pauli matrices is

(σ · a) (σ · b) = 12 a · b+ iσ · (a× b) . (B.4)

Using this standard representation a canonical boost in the 4× 4 matrix repre-
sentation of the SL(2,C), Eq. (2.25), has the form

S[Bc(v)] =

√

p0 +m

2m

(
12

σ·p
p0+m

σ·p
p0+m 12

)

with v :=
p

m
. (B.5)

The Dirac spinors for an (anti)particle at rest are given by

uσ(0) :=
√
2m

(
ςσ
0

)

and vσ(0) := −
√
2m

(
0
εςσ

)

, σ = ±1

2
,

(B.6)
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where ςσ is the two-component Pauli spinor

ςσ =

(
1
2 + σ
1
2 − σ

)

and ε = iσ2 . (B.7)

Here σ denotes the canonical spin projection on the 3-axis. The Pauli spinors
are normalized according to ς†σ′ςσ = δσ′σ. The spinors for an (anti)particle with
momentum p = mv are given by

uσ(p)α = Sαβ [Bc (v)]uσ(0)β =
√

p0 +m

(
ςσ

σ·p
p0+m ςσ

)

β

, (B.8)

vσ(p)α = Sαβ [Bc (v)] vσ(0)β = −
√

p0 +m

( σ·p
p0+mεςσ
εςσ

)

β

,

(B.9)

with α, β = 1, . . . , 4. We use the Greek letters α and β to denote Dirac indices.
For equal particle and antiparticle masses the spinors uσ (p) and vσ (p) are
related by [BD64,Nac86]

vσ (p) = CūTσ (p) and uσ (p) = Cv̄Tσ (p) , (B.10)

where C := iγ2γ0 = −C−1 = −C† = −CT is the charge conjugation operator.
With CγµTC−1 = −γµ it follows immediately that

v̄σ (p) γ
µvσ′ (p′) = [ūσ′ (p′) γµuσ (p)]

T
= ūσ′ (p′) γµuσ (p) (B.11)

since ūσ′ (p′) γµuσ (p) is a scalar quantity.

B.1.2 Covariance Properties

Under a Lorentz transformation Λ the spinor uσ(p) and its adjoint ūσ(p) trans-
form according to [KP91]

uσ(p)
Λ−→ uσ̄(Λp) = D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)
S(Λ)uσ(p) ,

ūσ(p)
Λ−→ ūσ̄(Λp) = ūσ(p)S

−1(Λ)D
1
2∗
σσ̄

(
R−1

Wc
(v, Λ)

)
,

(B.12)

with σ, σ̄ = ± 1
2 . Here we have used

S†(Λ)γ0 = γ0S−1(Λ) . (B.13)

The aim of this section is to find the transformation properties of the current
of an extended massive spin-1/2 particle like, e.g., a nucleon. Such a current is
given by

Jµ(p′, σ′;p, σ)

= |e| ūσ′(p′)

[

F1((p− p′)2)γµ + F2((p− p′)2)
i(p′ − p)νσ

µν

2m

]

uσ(p)

(B.14)
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where σµν = i
2 (γ

µγν−γνγµ) and e is the elementary charge. In our notation the
anomalous magnetic moment κ of the spin-1/2 constituent (in units of the Bohr
magneton) is absorbed into F2 such that F2(0) = κ. For point-like particles
like, e.g., quarks (electrons) the current simplifies by setting the Dirac form
factor F1((p− p′)2) = Qq(e) and the Pauli form factor F2((p− p′)2) = 0, where
Qq(e) is the electric charge of the corresponding quark (electron). For the first
term in Eq. (B.14) we find, using the transformation properties of the spinors,
Eq. (B.12), together with

S−1(Λ)γµS(Λ) = Λµ
νγ

ν , (B.15)

the following transformation properties under a Lorentz transformation:

ūσ′(p′)γµuσ(p)
Λ−→ ūσ̄′(Λp′)γµuσ̄(Λp)

= Λµ
ν ūσ′(p′)γνuσ(p)D

1
2∗
σ′σ̄′

(
R−1

Wc
(v′, Λ)

)
D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)
. (B.16)

For the σµν -part we use the transformation properties of the Dirac matrices
S−1(Λ)γµγνS(Λ) = Λµ

ργ
ρΛν

σγ
σ to find

ūσ′(p′)σµνuσ(p)
Λ−→ ūσ̄′(Λp′)σµνuσ̄(Λp)

= Λµ
ρΛ

ν
τ ūσ′(p′)σρτuσ(p)D

1
2∗
σ′σ̄′

(
R−1

Wc
(v′, Λ)

)
D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)
.

(B.17)

The whole term proportional to σµν transforms in the same way as the γµ-part:

ūσ̄′(Λp′)
i(Λp′ − Λp)νσ

µν

2m
uσ̄(Λp)

= Λµ
ρΛ

ν
τ ūσ′(p′))

i(Λ−1)λν(p
′ − p)λσ

ρτ

2m
uσ(p)

×D
1
2∗
σ′σ̄′

(
R−1

Wc
(v′, Λ)

)
D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)

= Λµ
ρūσ′(p′))

i(p′ − p)λσ
ρλ

2m
uσ(p)

×D
1
2∗
σ′σ̄′

(
R−1

Wc
(v′, Λ)

)
D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)
, (B.18)

where we have used (by rewriting Eq. (A.6))

Λµ
νΛ

ν
σ = gµσ = δµσ ⇒ Λ ν

σ = (Λ−1)νσ . (B.19)

With these findings we are finally able to write down the transformation prop-
erties of a spin-1/2 current under Lorentz transformations:

Jµ(p′, σ′;p, σ)
Λ−→ Jµ(Λp′, σ̄′;Λp, σ̄)

= Λµ
νJ

ν(p′, σ′;p, σ)D
1
2∗
σ′σ̄′

(
R−1

Wc
(v′, Λ)

)
D

1
2
σσ̄

(
R−1

Wc
(v, Λ)

)
.

(B.20)

B.1.3 Hermiticity

With the help of the relations

γ0γµ†γ0 = γµ and γ0σµν†γ0 = σµν (B.21)
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Hermiticity of the spin-1/2 current (B.14) is easily proved. To this end we look
at the Hermitean conjugate of the current matrix:

[Jµ(p′, σ′;p, σ)]
†

= [Jµ∗(p′, σ′;p, σ)]
T

= | e |u†σ(p)
[

F1((p− p′)2)γµ† − F2((p− p′)2)
i(p′ − p)νσ

µν†

2m

]

γ0uσ′(p′)

= Jµ(p, σ;p′, σ′)

= Jµ∗(p′, σ′;p, σ) , (B.22)

where we have used in the last step Jµ∗(p′, σ′;p, σ) = [Jµ∗(p′, σ′;p, σ)]T since
it is a scalar quantity.

B.2 Massless Spin-1 Particles

Appropriately orthonormalized photon polarization vectors ǫµλ(p), which are
most convenient for our purpose are given by the components of the helicity
boost matrix ǫµλ(p) := Bh(p)

µ
λ [Kli03b]. They satisfy the usual completeness

relation
3∑

λ=0

ǫµλ(p)(−gλλ) ǫ∗νλ (p) = −gµν . (B.23)

These photon polarization vectors transform under a Lorentz transformation
according to

ǫµλ(p)
Λ−→ ǫµ

λ̄
(Λp) = R−1

Wh
(p, Λ)λλ̄Λ

µ
νǫ

ν
λ(p) . (B.24)

B.3 Massive Spin-1 Particles

B.3.1 Polarization Vectors

The polarization vectors ǫνσ(0) of a spin-1 particle at rest with σ = ±1, 0 are
usually defined by [AH03,Sca07]

ǫν1(0) := − 1√
2
(0, 1, i, 0)ν , (B.25)

ǫν−1(0) :=
1√
2
(0, 1,−i, 0)ν , (B.26)

ǫν0(0) := (0, 0, 0, 1)ν . (B.27)

The boosted polarization vectors are obtained from the rest-frame vectors by a
canonical boost with velocity v := p/m:

ǫµσ(p) = Bc(v)
µ
νǫ

ν
σ(0) . (B.28)

The transversality property then reads

ǫσ(p) · p = 0 . (B.29)
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The transformation properties of the polarization vectors under Lorentz trans-
formations are given by

ǫµσ(p)
Λ−→ ǫµσ̄(p̄) = D1

σσ̄

(
R−1

Wc
(v, Λ)

)
Λµ

νǫ
ν
σ(p) , (B.30)

with σ, σ̄ = ±1, 0.
Polarization vectors of spin-1 particles which are described by velocity states

|V ; . . . ;kj , µj ; . . .〉 transform under a Lorentz transformation with a Wigner
rotation according to

ǫµµj
(kj)

Λ−→ ǫµµ̄j
(RWc(V, Λ)kj) = D1

µj µ̄j

(
R−1

Wc
(V, Λ)

)
RWc(V, Λ)

µ
νǫ

ν
µj
(kj) .

(B.31)

The relation between ǫµσj
(pj = Bc(V )kj) and ǫ

µ
µj
(kj) is then given by

ǫµµj
(kj)D

1
µjσj

(
R−1

Wc
(wj , Bc(V ))

)
= B−1

c (V )µνǫ
ν
σj
(pj) (B.32)

with wj := kj/mj.

B.3.2 Clebsch-Gordan Coefficients

The Clebsch-Gordan coefficient C
1µj

1
2 µ̃1

1
2 µ̃2

of Eq. (3.33) can be written in terms

of the polarization vectors as [BG79]

C
1µj

1
2 µ̃1

1
2 µ̃2

=

(

σµǫ
µ
µj
(0)

iσ2√
2

)

µ̃1µ̃2

(B.33)

with

σµǫ
µ
µj
(0) = σ · ǫµj

(0) . (B.34)

Explicitly, they are given in matrix form by

C11
1
2 µ̃1

1
2 µ̃2

= δ 1
2 µ̃1

δ 1
2 µ̃2

=

(
1 0
0 0

)

µ̃1µ̃2

, (B.35)

C1−1
1
2 µ̃1

1
2 µ̃2

= δ− 1
2 µ̃1

δ− 1
2 µ̃2

=

(
0 0
0 1

)

µ̃1µ̃2

, (B.36)

C10
1
2 µ̃1

1
2 µ̃2

=
1√
2
δµ̃1−µ̃2 =

1√
2

(
0 1
1 0

)

µ̃1µ̃2

. (B.37)

Since the Clebsch-Gordan coefficients are real we can write

C
1µ′

j

1
2 µ̃

′

1
1
2 µ̃

′

2
= C

1µ′

j∗
1
2 µ̃

′

1
1
2 µ̃

′

2
= −

(

σ∗
µǫ

∗µ
µ′

j
(0)

iσ∗
2√
2

)

µ̃′

1µ̃
′

2

. (B.38)

Moreover, due to the symmetry of the Clebsch-Gordan coefficients under µ̃′
1 ↔

µ̃′
2 exchange and the hermiticity of the Pauli matrices we obtain

C
1µ′

j

1
2 µ̃

′

1
1
2 µ̃

′

2

= C
1µ′

j†
1
2 µ̃

′

1
1
2 µ̃

′

2

= −ǫ∗µµ′

j
(0)

(

iσ†
2√
2
σ†
µ

)

µ̃′

2µ̃
′

1

= −ǫ∗µµ′

j
(0)

(
iσ2√
2
σµ

)

µ̃′

2µ̃
′

1

.

(B.39)



130 Spinors and Polarization Vectors

Since the contraction σµǫ
µ
µj
(0) is Lorentz invariant we can write

σµǫ
µ
µj
(0) = ǫµµj

(kC)gµνBc(wC)
ν
ρσ

ρ

= ǫµµj
(kC)gµνBc(wC)

ν
ρg

ρλσλ

= ǫνµj
(kC)Bc(wC)

λ
ν σλ

= ǫνµj
(kC)Bc(−wC)

λ
νσλ , wC :=

kC
mC

, (B.40)

were we have used Eq. (B.19).



Appendix C

Useful Relations in SL(2,C)
and SU(2)

C.1 Canonical Boosts in the SL(2,C)

In Eq. (2.19) a Hermitean SL(2,C)-matrix representation of canonical boosts is
introduced by

Bc (v) :=

√

v0 + 1

2
σ0 +

σ · v
√

2 (v0 + 1)
. (C.1)

One can prove by direct calculation that

Bc (v)Bc (v) = σ0v0 + σiv
i = σ0v0 + σ · v = σµv

µ . (C.2)

This can be equivalently written as

Bc (v)Bc (v) = Bc (v)σµ(1,0)
µBc (v) = σµBc(v)

µ
ν(1,0)

ν . (C.3)

Generalizing to arbitrary vectors w gives

Bc (v)σµw
µBc (v) = σµBc(v)

µ
νw

ν . (C.4)

C.2 Useful Relations of Wigner D-Functions

The Wigner D-functions defined by Eq. (2.54) satisfy the following useful rela-
tions:

Dj∗
σσ′ (R) = Dj†

σ′σ(R) = Dj
σ′σ(R

−1) ; (C.5)
∑

σ′′

Dj
σσ′′ (R)D

j
σ′′σ′ (R

′) = Dj
σσ′(RR

′) ; (C.6)

Dj
σσ′ (12) = δσσ′ ; (C.7)

Dj
σσ′ (R) = (−1)σ

′−σDj∗
−σ−σ′(R) . (C.8)
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For the spin-1/2 case we need the relation

σ2D
1
2 ∗(R)σ2 =




D

1
2∗
− 1

2− 1
2

(R) −D
1
2∗
− 1

2
1
2

(R)

−D
1
2∗
1
2− 1

2

(R) D
1
2 ∗
1
2

1
2

(R)





=




D

1
2
1
2

1
2

(R) D
1
2
1
2− 1

2

(R)

D
1
2

− 1
2

1
2

(R) D
1
2

− 1
2− 1

2

(R)





= D
1
2 (R) , (C.9)

where we have used Eq. (C.8).

C.3 Transformation Properties of the
Clebsch-Gordan Coefficients

In order to find the transformation properties of the Clebsch Gordan coeffi-
cients under Lorentz transformations (for l = 0 bound states) we look at the
transformed wave function of Eq. (3.32):

Ψnjµ̄j µ̄′

1µ̄
′

2
(
¯̃
k′)

= Ψnjµjµ′

1µ
′

2
(k̃′)Dj1

µ̄′

1µ
′

1

[
RWc

(V, Λ)
]
Dj2

µ̄′

2µ
′

2

[
RWc

(V, Λ)
]
Dj∗

µ̄jµj

[
RWc

(V, Λ)
]

= C
jµj

j1µ̃1j2µ̃2
un0(k̃

′)Dj∗
µ̄jµj

[
RWc

(V, Λ)
]

×Dj1
µ′

1µ̃1

[
RWc

(w̃′
1, Bc(w

′
12))

]
Dj2

µ′

2µ̃2

[
RWc

(w̃′
2, Bc(w

′
12))

]

×Dj1
µ̄′

1µ
′

1

[
RWc

(V, Λ)
]
Dj2

µ̄′

2µ
′

2

[
RWc

(V, Λ)
]
. (C.10)

Here we have inserted Eq. (3.15) for the wave function Ψnjµjµ′

1µ
′

2
(k̃′). On the

other hand, from Eq. (3.15), we have

Ψnjµ̄j µ̄′

1µ̄
′

2
(
¯̃
k′)

= C
jµ̄j

j1 ¯̃µ1j2 ¯̃µ2
un0(k̃

′)

×Dj1
µ̄′

1
¯̃µ1

[
RWc

(RWc(V, Λ)w̃
′
1, Bc(RWc(V, Λ)w

′
12))

]

×Dj2
µ̄′

2
¯̃µ2

[
RWc

(RWc(V, Λ)w̃
′
2, Bc(RWc(V, Λ)w

′
12))

]
. (C.11)
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Here, we can further simplify the argument of the Wigner D-functions containing
the transformed spins (using the short-hand notation RWc := RWc(V, Λ)):

RWc
(RWcw̃

′
1, Bc(RWcw

′
12))

= B−1
c (Bc(RWcw

′
12)RWcw̃

′
1)Bc(RWcw

′
12)Bc(RWcw̃

′
1)

= RWc
(w̃′

1, Bc(RWcw
′
12)RWc

︸ ︷︷ ︸

=RWcBc(w′

12)

)B−1
c (w̃′

1)R
−1
Wc

×B−1
c (RWcw

′
12)Bc(RWcw

′
12)Bc(RWc w̃

′
1)

= RWc
(w̃′

1, RWcBc(w
′
12))B

−1
c (w̃′

1)R
−1
Wc
Bc(RWcw̃

′
1)

= B−1
c (RWcBc(w

′
12)w̃

′
1)RWc

Bc(w
′
12)Bc(w̃

′
1)B

−1
c (w̃′

1)R
−1
Wc

×RWc
Bc(w̃

′
1)R

−1
Wc

= RWc
B−1

c (Bc(w
′
12)w̃

′
1)R

−1
Wc
RWc

Bc(w
′
12)Bc(w̃

′
1)R

−1
Wc

= RWc
B−1

c (Bc(w
′
12)w̃

′
1)Bc(w

′
12)Bc(w̃

′
1)R

−1
Wc

= RWc
RWc

(w̃′
1, Bc(w

′
12))R

−1
Wc
. (C.12)

Here we have made use of the property of canonical Wigner rotations, Eq. (2.44).
A similar calculation applies to constituent 2. Consequently, we can split the
Wigner D-functions in Eq. (C.11) into 3 D-functions:

Dj1
µ̄′

1
¯̃µ′

1

[
RWc

(RWc(V, Λ)w̃
′
1, Bc(RWc(V, Λ)w

′
12))

]

= Dj1
µ̄′

1µ
′

1
[RWc

(V, Λ)]Dj1
µ′

1µ̃1
[RWc

(w̃′
1, Bc(w

′
12))]D

j1
µ̃1

¯̃µ1
[R−1

Wc
(V, Λ)]

(C.13)

and similarly for constituent 2. Comparing Eqs. (C.10) and (C.11) gives the de-
sired transformation properties of the Clebsch-Gordan coefficients under Lorentz
transformations:

C
jµj

j1µ̃1j2µ̃2

Λ→ C
jµ̄j

j1 ¯̃µ1j2 ¯̃µ2

= C
jµj

j1µ̃1j2µ̃2
Dj∗

µ̄jµj

[
RWc

(V, Λ)
]
Dj1

¯̃µ1µ̃1
[RWc

(V, Λ)]Dj2
¯̃µ2µ̃2

[RWc
(V, Λ)] .

(C.14)
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Appendix D

Electromagnetic Vertices

In this chapter we derive the phenomenological currents from matrix elements of
the interaction Lagrangean density and investigate their covariance properties.
We also take a closer look at the covariance and continuity properties of the
microscopic bound-state current.

D.1 Vertex Interaction

In this section we present the explicit calculation of Eq. (3.72). In the present
work we consider two kinds of bound systems: charged mesons (π+ and ρ+) con-
sisting of a quark and an antiquark of different flavors (u and d̄) and a charged
nucleus (deuteron) consisting of 2 nucleons (proton and neutron). It should be
noted that the creation and annihilation operators associated with quark and
anti-quark of different flavors anti-commute. In this section we will derive the
constituents’ currents for the point-like case of quarks and then generalize the
result to non-pointlike constituents like nucleons.

We start with the left-hand side of Eq. (3.72) and insert for the interaction
Lagrangean density Eq. (3.65) at x = 0, where constituent 1 is a quark and
constituent 2 is an antiquark:

−〈k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ |L̂int(0)|ke, µe;k1, µ1;k2, µ2〉

= | e | 〈k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ |
[

Qe :
ˆ̄ψe(0)γ

µψ̂e(0)Âµ(0) :

+Q1 :
ˆ̄ψ1(0)γ

µψ̂1(0)Âµ(0) : +Q2 :
ˆ̄ψ2(0)γ

µψ̂2(0)Âµ(0) :
]

×|ke, µe;k1, µ1;k2, µ2〉 .
(D.1)
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First we concentrate on the second term of this expression:

〈k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ | : ˆ̄ψ1(0)γ

µψ̂1(0)Âµ(0) : |ke, µe;k1, µ1;k2, µ2〉

=
1

(2π)3

∫
d3p1
2p01

∑

σ1=± 1
2

1

(2π)3

∫
d3p′1
2p′01

∑

σ′

1=± 1
2

1

(2π)3

∫
d3pγ
2|pγ |

3∑

λγ=0

(−gλγλγ )

×ūσ1(p1)γνuσ′

1
(p′

1)Bh(p)
ν
λγ
〈0|cµ′

e
(k′

e)dµ′

2
(k′

2)cµ′

1
(k′

1)aµ′

γ
(k′

γ)

× : ĉ†σ1
(p1)ĉσ′

1
(p′

1)â
†
λγ
(pγ) : d

†
µ2
(k2)c

†
µe
(ke)c

†
µ1
(k1)|0〉

=
1

(2π)3

∫
d3p1
2p01

∑

σ1=± 1
2

1

(2π)3

∫
d3p′1
2p′01

∑

σ′

1=± 1
2

1

(2π)3

∫
d3pγ
2|pγ |

3∑

λγ=0

(−gλγλγ )

×ūσ1(p1)γνuσ′

1
(p′

1)Bh(p)
ν
λγ

×〈0|cµ′

1
(k′

1)ĉ
†
σ1
(p1)|0〉〈0|ĉσ′

1
(p′

1)c
†
µ1
(k1)|0〉〈0|dµ′

2
(k′

2)d
†
µ2
(k2)|0〉

×〈0|cµ′

e
(k′

e)c
†
µe
(ke)|0〉〈0|aµ′

γ
(k′

γ)â
†
λγ
(pγ)|0〉

=
1

(2π)3

∫
d3p1
2p01

∑

σ1=± 1
2

1

(2π)3

∫
d3p′1
2p′01

∑

σ′

1=± 1
2

1

(2π)3

∫
d3pγ
2|pγ |

3∑

λγ=0

(−gλγλγ )

×ūσ1(p1)γνuσ′

1
(p′

1)Bh(p)
ν
λγ
(2π)3δσ1µ′

1
2p01δ

3(p1 − k′
1)

×(2π)3δσ′

1µ1
2p′01 δ

3(p′
1 − k1)(2π)

3δµeµ′

e
2k0eδ

3(k′
e − ke)

×(2π)3δµ2µ′

2
2k02δ

3(k′
2 − k2)(2π)

3(−gµ′

γλγ
)2k0γδ

3(k′
γ − pγ)

= ūµ′

1
(k′

1)γνuµ1(k1)Bh(k
′
γ)

ν
µ′

γ

×(2π)3δµeµ′

e
2k0eδ

3(k′
e − ke)(2π)

3δµ2µ′

2
2k02δ

3(k′
2 − k2).

(D.2)

Here we have usedWick’s theorem (see, e.g., Ref. [AH03]), the anti-commutation
and commutation relations, Eqs. (3.59) and (3.63), and that the annihilation
operators annihilate the vacuum, Eqs. (3.57) and (3.64). The calculation of the
first term is equivalent to the one for the second term:

〈k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ | : ˆ̄ψe(0)γ

µψ̂e(0)Âµ(0) : |ke, µe;k1, µ1;k2, µ2〉
= ūµ′

e
(k′

e)γνuµe(ke)Bh(k
′
γ)

ν
µ′

γ

×(2π)3δµ1µ′

1
2k01δ

3(k′
1 − k1)(2π)

3δµ2µ′

2
2k02δ

3(k′
2 − k2) . (D.3)

For the third term we obtain a similar result, except for a relative minus
sign which emerges from the normal ordering of the anti-particle operators,
: d̂σ1(p1)d̂

†
σ′

1
(p′

1) := −d̂†σ′

1
(p′

1)d̂σ1(p1), i.e.

〈k′
e, µ

′
e;k

′
1, µ

′
1;k

′
2, µ

′
2;k

′
γ , µ

′
γ | : ˆ̄ψ2(0)γ

µψ̂2(0)Âµ(0) : |ke, µe;k1, µ1;k2, µ2〉
= −v̄µ2(k1)γνvµ′

2
(k′

2)Bh(k
′
γ)

ν
µ′

γ

×(2π)3δµeµ′

e
2k0eδ

3(k′
e − ke)(2π)

3δµ1µ′

1
2k02δ

3(k′
1 − k1) . (D.4)

The matrix elements of the Lagrangean density derived above for point-like
spin- 12 particles can be immediately generalized to current matrix elements
for extended objects like, e.g., nucleons, mesons or the deuteron. This is
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done by simply replacing | e |Qiūµ′

i
(k′

i)γ
µuµi

(ki) by the appropriate expression
for the current matrix elements of an extended particle, Jµ

i (k
′
i, µ

′
i;ki, µi) and

Jµ
C(k

′
C, µ

′
j ;kC, µj ;Ke).

D.2 Covariance Properties

D.2.1 Phenomenological Currents

In this section we prove the correct transformation properties of the currents
Jµ
i (p

′
i, σ

′
i;pi, σi) defined by Eq. (3.83). Note that the currents Jµ

i (p
′
i, σ

′
i;pi, σi)

are defined via the center-of-momentum currents Jµ
i (k

′
i, µ

′
i;ki, µi) whose trans-

formation properties are given by Eq. (3.82). We start our analysis by looking
at the Lorentz transformed current:

Jµ
i (p

′
i, σ

′
i;pi, σi)

Λ−→ Jµ
i (Λp′

i, σ̄
′
i;Λpi, σ̄i)

= Bc(ΛV )µνJ
ν
i (RWc(V, Λ)k

′
i, µ̄

′
i;RWc(V, Λ)ki, µ̄i)

×Dji∗
µ̄′

i
σ̄′

i

[
R−1

Wc
(RWc(V, Λ)w

′
i, Bc(ΛV ))

]
Dji

µ̄iσ̄i

[
R−1

Wc
(RWc(V, Λ)wi, Bc(ΛV ))

]

= Bc(ΛV )µνRWc(V, Λ)
ν
ρ

︸ ︷︷ ︸

=(ΛBc(V ))µρ

Jρ
i (k

′
i, µ

′
i;ki, µi)

×Dji∗
µ′

i
µ̄′

i

[
R−1

Wc
(V, Λ)

]
Dji

µiµ̄i

[
R−1

Wc
(V, Λ)

]

×Dji∗
µ̄′

i
σ̄′

i

[
R−1

Wc
(RWc(V, Λ)w

′
i, Bc(ΛV ))

]

×Dji
µ̄iσ̄i

[
R−1

Wc
(RWc(V, Λ)wi, Bc(ΛV ))

]

= Λµ
νJ

ν
i (p

′
i, σ

′
i;pi, σi)D

ji∗
σ′

i
µ′

i

[
RWc

(w′
i, Bc(V ))

]
Dji

σiµi

[
RWc

(wi, Bc(V ))
]

×Dji∗
µ′

i
σ̄′

i

[
R−1

Wc
(V, Λ)R−1

Wc
(RWc(V, Λ)w

′
i, Bc(ΛV ))

]

×Dji
µiσ̄i

[
R−1

Wc
(V, Λ)R−1

Wc
(RWc(V, Λ)wi, Bc(ΛV ))

]

= Λµ
νJ

ν
i (p

′
i, σ

′
i;pi, σi)

×Dji∗
σ′

i
σ̄′

i

[
RWc

(w′
i, Bc(V ))R−1

Wc
(V, Λ)R−1

Wc
(RWc(V, Λ)w

′
i, Bc(ΛV ))

]

×Dji
σiσ̄i

[
RWc

(wi, Bc(V ))R−1
Wc

(V, Λ)R−1
Wc

(RWc(V, Λ)wi, Bc(ΛV ))
]

= Λµ
νJ

ν
i (p

′
i, σ

′
i;pi, σi)D

ji∗
σ′

i
σ̄′

i

[
R−1

Wc
(v′i, Λ)

]
Dji

σiσ̄i

[
R−1

Wc
(vi, Λ)

]
. (D.5)

Here we have used in the last step

RWc
(wi, Bc(V ))R−1

Wc
(V, Λ)R−1

Wc
(RWc(V, Λ)wi, Bc(ΛV ))

= B−1
c (vi)Bc(V )Bc(wi)B

−1
c (V )Λ−1Bc(ΛV )B−1

c (RWc(V, Λ)wi)
︸ ︷︷ ︸

=R−1
Wc

[wi,RWc(V,Λ)]=R−1
Wc

(V,Λ), cf. Eq. (2.44)

×B−1
c (ΛV )Bc(B

−1
c (ΛV )RWc(V, Λ)wi)

= B−1
c (vi)Bc(V )R−1

Wc
(V, Λ)B−1

c (ΛV )Bc(B
−1
c (ΛV )RWc(V, Λ)wi)

= B−1
c (vi)Λ

−1Bc(Λvi) (D.6)

and a similar relation for the primed momenta. We see, by comparison with
Eq. (B.20), that Jµ

i (p
′
i, σ

′
i;pi, σi) transforms under Lorentz transformations like

a contravariant four-vector.
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D.2.2 Microscopic Bound-State Current

In this section we prove the transformation properties of the bound-state cur-
rent, Eq. (4.27), under Lorentz transformations for the case of equal constituent
masses and for a pure S-wave (l = l′ = 0). First we note that, under a
Lorentz transformation Λ, the center-of-mass momenta of the electron-bound-

state system, k
(′)
C , k

(′)
1 and k

(′)
2 , undergo a Wigner rotation RWc(V, Λ). Conse-

quently, their zero components are not affected by a Lorentz transformation,

i.e. k̄
(′)0
C = k

(′)0
C , k̄

(′)0
1 = k

(′)0
1 and k̄

(′)0
2 = k

(′)0
2 . Note that under such a Lorentz

transformation also the cluster center-of-mass momenta k̃1 and k̃′1 undergo the
same Wigner rotation, cf. Eq. (3.31). Therefore, the three-dimensional inte-
gration measure as well as quantities involving the magnitude of the cluster
center-of-mass three-momenta remain invariant under Lorentz transformations,

i.e. d3
¯̃
k′1 = d3k̃′1,

¯̃
k
(′)2
1 = k̃

(′)2
1 and m̄

(′)
12 = m

(′)
12 . With these findings at hand we

look at the Lorentz transformed current of Eq. (4.19):

Jµ
C(RWc(V, Λ)k

′
C, µ̄

′
j ;RWc(V, Λ)kC, µ̄j;RWc(V, Λ)Ke)

=

√

k0Ck
′0
C

4π

∫
d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

u∗n0(k̃
′)un0(k̃)

×D
1
2
¯̃µ′

1µ̄
′

1

[
R−1

Wc
(RWc(V, Λ)w̃

′
1, Bc(RWc(V, Λ)w

′
12))

]
C

jµ̄′

j∗
1
2
¯̃µ′

1
1
2
¯̃µ′

2

×D
1
2
¯̃µ′

2
¯̃µ2

[
RWc

(
RWc(V, Λ)w̃2, B

−1
c (RWc(V, Λ)w

′
12)Bc(RWc(V, Λ)w12)

)]

×Cjµ̄j

1
2
¯̃µ1

1
2
¯̃µ2
D

1
2

µ̄1
¯̃µ1

[
RWc

(RWc(V, Λ)w̃1, Bc(RWc(V, Λ)w12))
]

×| e | ūµ̄′

1
(RWc(V, Λ)k

′
1)(Γ1 + Γ2)

µuµ̄1(RWc(V, Λ)k1) . (D.7)

Next we look at the product of the two Clebsch-Gordan coefficients between the
three Wigner D-functions. Using the transformation properties of the Clebsch-
Gordans derived previously, cf. Eq. (3.33), together with Eq. (C.12), which
allows to split the transformed D-function into the product of three D-functions,
we obtain the following equation:

D
1
2
¯̃µ′

1µ̄
′

1

[
R−1

Wc
(RWcw̃

′
1, Bc(RWcw

′
12))

]
C

jµ̄′

j∗
1
2
¯̃µ′

1
1
2
¯̃µ′

2

×D
1
2
¯̃µ′

2
¯̃µ2

[
RWc

(
RWcw̃2, B

−1
c (RWcw

′
12)Bc(RWcw12)

)]

×Cjµ̄j

1
2
¯̃µ1

1
2
¯̃µ2
D

1
2

µ̄1
¯̃µ1

[
RWc

(RWcw̃1, Bc(RWcw12))
]

= D
1
2

µ̃′

1µ
′

1

[
R−1

Wc
(w̃′

1, Bc(w
′
12))

]
C

jµ′

j∗
1
2 µ̃

′

1
1
2 µ̃

′

2

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc(w12)
)]

×Cjµj

1
2 µ̃1

1
2 µ̃2

D
1
2

µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]

×D
1
2∗
µ̄′

1µ
′

1
(RWc

)D
1
2
µ̄1µ1

(RWc
)Dj∗

µ̄jµj
(RWc

)Dj
µ̄′

j
µ′

j
(RWc

) . (D.8)

In this calculation the 4 Wigner D-functions D
1
2

µ̃1
¯̃µ1
, D

1
2

µ̃2
¯̃µ2
, D

1
2∗
µ̃′

1
¯̃µ′

1
and D

1
2∗
µ̃′

2
¯̃µ′

2

have been canceled with the corresponding inverse ones from the Clebsch-
Gordan coefficients. From the transformation properties of the constituents’
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currents, Eq. (3.82), we get 2 more Wigner D-functions which cancel D
1
2
µ̄1µ1

and

D
1
2 ∗
µ̄′

1µ
′

1
in Eq. (D.8). With these findings we finally end up with the transforma-

tion properties of the microscopic bound-state current given by Eq. (4.27).

D.3 Current Conservation

D.3.1 Pseudoscalar-Bound-State Current

In this appendix we prove the conservation of the electromagnetic current,
Eq. (4.33), for pseudoscalar bound states. For simplicity we restrict our con-
siderations to point-like constituents, like quarks, for which the vertex reads
(Γ1 + Γ2)

µ = (Q1 +Q2)γ
µ. We start with the right-hand side of Eq. (4.34):

(k′C − kC)µJ
µ
PS(k

′
C,kC,Ke)

= −(k′
C − kC) · JPS(k

′
C,kC,Ke)

= −| e | (Q1 +Q2)
1

4π

√

k0Ck
′0
C

2

∫
d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

u∗n0(k̃
′)un0(k̃)

×
∑

µ′

1µ1

D
1
2

µ1µ′

1

[

Bc (w1)στ

(
w0

12

−w12

)τ

w2 σν

(
w′0

12

−w′
12

)ν

Bc (w
′
1)

]

×ūµ′

1
(k′

1)(k
′
1 − k1) · γuµ1(k1) , (D.9)

since k′0C = k0C and q = k′
C − kC = k′

1 − k1 = q1. In the following calculation
we will suppress the argument of the Wigner D-function for better readability.
Let us first concentrate on the contraction of the spatial part of the constituent
current with q1. Using the standard representation of Dirac spinors, Eq. (B.8),
we obtain after a short calculation
∑

µ′

1µ1

ūµ′

1
(k′

1)(k
′
1 − k1) · γ uµ1(k1)D

1
2

µ1µ′

1

=
√

k01 +m
√

k′01 +m
∑

µ′

1µ1

[(
k′2
1

k′01 +m
+

k1 · k′
1

k01 +m
− k2

1

k01 +m
− k1 · k′

1

k′01 +m

)

δµ1µ′

1

+ik′
1 × k1 · ςTµ′

1
σ ςµ1

(
1

k01 +m
− 1

k′01 +m

)]

D
1
2

µ1µ′

1
, (D.10)

where we have used Eq. (B.4). On the right-hand side of Eq. (D.10) the terms
between the first round brackets are multiplied by δµ1µ′

1
and the Wigner D-

function. Summation over the spins gives for this product

∑

µ′

1µ1

δµ1µ′

1
D

1
2

µ1µ′

1
=
∑

µ1

D
1
2
µ1µ1 = 2ℜ(D

1
2
1
2

1
2

) , (D.11)

where we have used Eq. (C.8). Let us now concentrate on the first two terms

between the first round brackets,
k′2
1

k′0
1 +m

+
k1·k′

1

k0
1+m

. If we replace all primed by

unprimed momenta and vice versa we obtain simply
k2
1

k0
1+m

+
k′

1·k1

k′0
1 +m

. Further,

we observe that this expression has just the opposite sign of the second two
terms between the first round brackets. Consequently, if we can show that
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the remaining expressions under the integral in Eq. (D.9) are symmetric under
the interchange of primed and unprimed momenta, these 4 terms between the
first round brackets cancel upon integration. To this aim we transform the
integration measure in Eq. (D.9) according to Eq. (4.25). Then we obtain for
the kinematical factors under the integral of Eq. (D.9) the following equality:

d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

=
d3k̃1
k′01

√

m′
12

m12

√

k′012
k012

. (D.12)

It is evident that this expression is symmetric under the interchange of primed
and unprimed momenta. The Wigner D-function in Eq. (4.33) transforms un-
der the interchange of primed and unprimed momenta and spins by complex
conjugation:

D
1
2

µ1µ′

1

[
RWc

(w̃1, Bc(w12))R
−1
Wc

(
w̃2, B

−1
c (w′

12)Bc(w12)
)
R−1

Wc
(w̃′

1, Bc(w
′
12))

]

{ki,µ1}↔{k′

i,µ
′

1}−→ D
1
2

µ′

1µ1

[
RWc

(w̃′
1, Bc(w

′
12))R

−1
Wc

(
w̃2, B

−1
c (w12)Bc(w

′
12)
)

×R−1
Wc

(w̃1, Bc(w12))
]

= D
1
2∗
µ1µ′

1

[
RWc

(w̃1, Bc(w12))R
−1
Wc

(
w̃2, B

−1
c (w′

12)Bc(w12)
)

×R−1
Wc

(w̃′
1, Bc(w

′
12))

]
.

(D.13)

Further we have
∑

µ′

1µ1

δµ1µ′

1
D

1
2 ∗
µ1µ′

1
= 2ℜ(D

1
2
1
2

1
2

) , (D.14)

where we have used Eq. (C.8). Thus, by comparison with Eq. (D.11), we see that
this expression is also symmetric under the interchange of primed and unprimed
momenta. For real radial wave functions un0(k̃) the product u∗n0(k̃

′)un0(k̃) is
also symmetric under interchange of primed and unprimed momenta. Putting
the pieces together we have

√

k0Ck
′0
C

∫
d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

u∗n0(k̃
′)un0(k̃)

×
∑
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1µ1

D
1
2

µ1µ′

1
δµ1µ′

1

√

k01 +m
√

k′01 +m

(
k′2
1

k′01 +m
+

k1 · k′
1

k01 +m

)

=
√

k0Ck
′0
C

∫
d3k̃1
k′01

√

m′
12

m12

√

k′012
k012

u∗n0(k̃)un0(k̃
′)

×
∑

µ′

1µ1

D
1
2

µ′

1µ1
δµ1µ′

1

√

k01 +m
√

k′01 +m

(
k′2
1

k′01 +m
+

k1 · k′
1

k01 +m

)

=
√

k0Ck
′0
C

∫
d3k̃′1
k01

√
m12

m′
12

√

k012
k′012

u∗n0(k̃
′)un0(k̃)

×
∑

µ′

1µ1

D
1
2

µ1µ′

1
δµ1µ′

1

√

k01 +m
√

k′01 +m

(
k2
1

k01 +m
+

k′
1 · k1

k′01 +m

)

.

(D.15)
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Here we have in the last step just renamed the integration variable. The right-
hand side of this equation is just the negative of the second 2 terms between the
first round brackets in Eq. (D.10). Therefore, the first 2 terms cancel the second
two terms between the first round brackets due to the relative minus sign.

Next we consider the first term between the second round brackets in
Eq. (D.10), 1

k0
1+m

, which has just the opposite sign of the second term if all

primed and unprimed momenta are interchanged. Therefore, in an similar man-
ner as above, we have to show that all other factors are symmetric under the
interchange of primed and unprimed momenta in order that these two terms can-
cel. To this aim we start with the terms proportional to ςTµ′

1
σ3 ςµ1 in Eq. (D.10).

The relevant factors to be considered are

(k′
1 × k1)

3
∑

µ′

1µ1

ςTµ1
σ3 ςµ′

1
D

1
2

µ′

1µ1
. (D.16)

Performing the sums over the spins gives

∑

µ′

1µ1

ςTµ′

1
σ3 ςµ1D

1
2

µ1µ′

1
= 2 iℑ(D

1
2
1
2

1
2

) . (D.17)

Under interchange of all primed and unprimed momenta this expression picks
up a minus sign:

∑

µ′

1µ1

ςTµ1
σ3 ςµ′

1
D

1
2

µ′

1µ1
= 2 iℑ(D

1
2∗
1
2

1
2

) = −2 iℑ(D
1
2
1
2

1
2

) . (D.18)

Since this expression is multiplied by (k′
1 × k1)

3, the product, Eq. (D.16), is
again symmetric under primed-unprimed momenta interchange. Therefore, the
two terms proportional to ςTµ′

1
σ3 ςµ1 cancel.

The proof for the ςTµ′

1
σ2 ςµ1 -terms is similar. Carrying out the spin sums we

get

∑

µ′

1µ1

ςTµ′

1
σ2 ςµ1D

1
2

µ1µ′

1
= −2 iℜ(D

1
2

− 1
2

1
2

) . (D.19)

If we interchange again all primed by unprimed variables we find also a relative
minus sign:

∑

µ′

1µ1

ςTµ1
σ2 ςµ′

1
D

1
2

µ′

1µ1
= 2 iℜ(D

1
2

− 1
2

1
2

) . (D.20)

Therefore,

(k′
1 × k1)

2
∑

µ′

1µ1

ςTµ1
σ2 ςµ′

1
D

1
2

µ′

1µ1
(D.21)

is symmetric under primed-unprimed momenta interchange and the two terms
proportional to ςTµ′

1
σ2 ςµ1 cancel.

Finally we are left with the ςTµ′

1
σ1ςµ1 -terms:

∑

µ′

1µ1

ςTµ′

1
σ1ςµ1D

1
2

µ1µ′

1
= 2 iℑ(D

1
2

− 1
2

1
2

) . (D.22)
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Interchanging all primed by unprimed variables we find also a relative minus
sign:

∑

µ′

1µ1

ςTµ1
σ1ςµ′

1
D

1
2

µ′

1µ1
= −2 iℑ(D

1
2

− 1
2

1
2

) . (D.23)

Therefore, also the product

(k′
1 × k1)

1
∑

µ′

1µ1

ςTµ1
σ1ςµ′

1
D

1
2

µ′

1µ1
(D.24)

is invariant under primed-unprimed interchange and the two terms proportional
to ςTµ′

1
σ1ςµ1 cancel.

Since all contributions cancel each other upon integration over k̃1 the con-
servation of our pseudoscalar-bound-state current is proven.

D.3.2 Vector-Bound-State Current

For the vector-bound-state current, Eq. (4.38), current conservation does, unlike
the pseudoscalar case, in general not hold. This statement is expressed by
Eq. (4.42) and will be justified numerically later on. As we will see in this section,
an analytical proof of current conservation along the lines of the pseudoscalar
case does not work, since the product of the 3 Wigner D-functions together with
the 2 Clebsch-Gordan coefficients in Eq. (4.28) cannot be written as one single
Wigner D-function. Therefore, it is not possible to use symmetry arguments
for the spin-dependent factors under the interchange of primed and unprimed
momenta and spins. To see this it suffices to consider the constituents as point-
like particles. For better readability we use the following abbreviation for the
product of the 3 Wigner D-functions and the 2 Clebsch-Gordan coefficients:

Sµ′

jµj

µ1µ′

1
:= D

1
2

µ̃′

1µ
′

1

[
R−1

Wc
(w̃′

1, Bc(w
′
12))

]
C

1′µ′

j∗
1
2 µ̃

′

1
1
2 µ̃

′

2

×D
1
2

µ̃′

2µ̃2

[
RWc

(
w̃2, B

−1
c (w′

12)Bc(w12)
)]

×C1µj

1
2 µ̃1

1
2 µ̃2

D
1
2

µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]
. (D.25)

On the right-hand side of Eq. (4.42) we have the contraction of the spatial part
of the (point-like) constituent current with q1 (cf. Eq. (4.26))

∑

µ′

1µ1

ūµ′

1
(k′

1)(k
′
1 − k1) · γ uµ1(k1)S

µ′

jµj
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1

=
√
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√

k′01 +m
∑
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[(
k′2
1

k′01 +m
+

k1 · k′
1

k01 +m
− k2

1

k01 +m
− k1 · k′

1

k′01 +m

)

δµ1µ′

1

+ik′
1 × k1 · ςTµ′

1
σ ςµ1

(
1

k01 +m
− 1

k′01 +m

)]

Sµ′

jµj

µ1µ′

1
. (D.26)

For the first term proportional to δµ1µ′

1
we can perform the spin sum

∑

µ′

1µ1

δµ1µ′

1
Sµ′

jµj

µ1µ′

1
=
∑

µ1

Sµ′

jµj

µ1µ1 . (D.27)
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The important observation is that this expression is, in general, complex and
not just a real number like in the pseudoscalar case. On the other hand, by

interchanging all primed and unprimed momenta and spins in Sµ′

jµj

µ1µ′

1
that are

integrated and summed over, respectively, we find

Sµ′

jµj

µ′

1µ1
= D
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2
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1
. (D.28)

Carrying out the spin sum of this expression gives

∑

µ′

1µ1

δµ1µ′

1
Sµ′

jµj∗
µ1µ′

1
=
∑

µ1

Sµ′

jµj∗
µ1µ1 6=

∑
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Sµ′

jµj

µ1µ1 , (D.29)

since this is, in general, a complex number. Consequently, cancellation of the
4 terms between the first round brackets of Eq. (D.26) cannot be shown by
simply renaming primed and unprimed momenta and spins that are integrated
and summed over.

With a similar argumentation we proceed for the other terms between the
second round brackets of Eq. (D.26). For the term proportional to ςTµ′

1
σ3 ςµ1 we

can perform the spin sums:

∑

µ′

1µ1

ςTµ′

1
σ3 ςµ1S
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µ1µ′

1
= Sµ′
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2− 1

2
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On the other hand, interchanging all primed and unprimed variables that are
summed and integrated over we get

∑
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Since Sµ′
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is a complex number, we have in general
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)∗ (D.32)

and therefore the terms between the round brackets do not cancel.
Similarly, we proceed for the ςTµ′

1
σ2 ςµ1 -term:
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Interchanging all primed and unprimed variables that are summed and inte-
grated over gives

∑
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Since, in general
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the corresponding terms do not cancel.
Finally, for the ςTµ′

1
σ1 ςµ1 -term we have
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Interchanging all primed and unprimed variables and summing over gives
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Since, in general
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the corresponding terms do also not cancel.
Since, in general, the integrals will not vanish by symmetry arguments we

do not expect the vector-bound-state current, Eq. (4.38), to be conserved.

D.4 Covariant Structure

The explicit analysis of the covariant structure of the vector bound-state cur-
rent Jµ

V(p
′
C, σ

′
j ;pC, σj ;Pe) is carried out as follows: by multiplying the tensor

ǫµ∗σ′

j
(p′

C)ǫ
ν
σj
(pC) with the available covariants Pµ

C , d
µ and/or Pµ

e together with

gµν we build all independent Hermitean covariants. From the transversality
property, Eq. (B.29), follow the relations

ǫ∗σ′

j
(p′

C) · PC = −ǫ∗σ′

j
(p′

C) · d and ǫσj
(pC) · PC = ǫσj

(pC) · d . (D.39)

Then, we can immediately construct the following two independent Hermitean
covariants:

ǫµ∗σ′

j
(p′

C)[ǫσj
(pC) · d]− ǫµσj

(pC)[ǫ
∗
σ′

j
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ǫµ∗σ′

j
(p′

C)[ǫσj
(pC) · Pe] + ǫµσj

(pC)[ǫ
∗
σ′

j
(p′

C) · Pe] . (D.41)

In order to set up the other covariants we construct all independent scalars
where the two polarizations vectors appear either symmetric or antisymmetric
under mutual exchange:

ǫ∗σ′

j
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(pC) , [ǫ∗σ′

j
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j
(p′

C) · Pe][ǫσj
(pC) · d] .

These scalars are then multiplied with the available covariants Pµ
C , d

µ and Pµ
e .

Now we exclude all anti-Hermitean combinations such that only the following
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Hermitean covariants remain:

[ǫ∗σ′

j
(p′

C) · ǫσj
(pC)]P

µ
C , [ǫ∗σ′

j
(p′

C) · ǫσj
(pC)]P

µ
e ,

[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · d]Pµ

C , [ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · d]Pµ

e ,

[ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · Pe]P

µ
C , [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · Pe]P

µ
e ,

{[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe]− [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]}Pµ

C ,

{[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe]− [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]}Pµ

e ,

{[ǫ∗σ′

j
(p′

C) · d][ǫσj
(pC) · Pe] + [ǫ∗σ′

j
(p′

C) · Pe][ǫσj
(pC) · d]}dµ . (D.42)

These 9 covariants together with (D.40) and (D.41) are then 11 Hermitean
covariants. Consequently, we can parametrize the current Jµ

V(p
′
C, σ

′
j ;pC, σj ;Pe)

in terms of 11 form factors, the 3 physical form factors f1, f2 and gM and 8
spurious form factors b1, . . . , b8.
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Appendix E

Matrix Elements of the
Optical Potential

E.1 Constituent-Level Calculation

In this appendix we present the rather lengthy calculation of the on-shell
velocity-state matrix elements of the one-photon-exchange optical potential for
elastic electron-bound-state scattering. A similar and quite detailed calculation
for the case of spinless constituents can be found in Ref. [Fuc07]. In the same
manner we start with Eq. (4.12) and insert completeness relations for free and
clustered velocity states, Eqs. (2.77) and (3.37), at the appropriate places:

〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j |K̂

(

M̂eCγ −M
)−1

K̂†

×|V ;ke, µe
;k12, n, j, µj〉

= 〈V ′;k′
e, µ

′
e
;k′

12, n, j, µ
′
j |1̂′12e K̂ 1̂′′′12eγ

(

M̂eCγ −M
)−1

1̂′′Ceγ

×1̂′′12eγ K̂
† 1̂12e|V ;ke, µe

;k12, n, j, µj〉
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=
1
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The matrix elements we need to know are typically scalar products between
free and clustered velocity states as well as matrix elements of the vertex oper-
ators between free velocity states, which have been already derived previously.
The former define the bound-state wave functions on the three- and four-body
Hilbert spaces, cf. Eqs. (3.23) and (3.35). The latter consist of 3 terms and
are defined by Eq. (3.71). Inserting the latter gives altogether 9 terms which
are depicted in Figs. E.1 and E.2. There the blobs that connect the c1 and
c2 lines stand for integrals over wave functions of the incoming and outgoing
bound state.

We are interested only in the 4 contributions of Fig. E.1, since the remaining
5 of Fig. E.2 are self-energy contributions in which the photon is emitted and
absorbed by the same particle. The latter contribute to the renormalized masses
of the electron and the bound state and will therefore be neglected. The first
contribution of Fig. E.1, Γe→1, where the photon is emitted by the electron and
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Figure E.1: The graphical representation of the 4 possibilities Γe→1, Γ1→e,
Γe→2 and Γ2→e to exchange the photon between the electron and one of the
constituents.
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Figure E.2: The graphical representation of the 5 self-energy contributions Γ1→2,
Γ2→1, Γe→e, Γ1→1 and Γ2→2 to the optical potential, where the photon is emitted
and absorbed by the same particle.
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absorbed by constituent 1 is given by the rather lengthy expression
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2k′′01

d3k′′2
2k′′02

(k′′01 + k′′02 + k′′0e + k′′0γ )3

2k′′0γ

∑

µ′′

e µ
′′

1 µ
′′

2 µ
′′

γ

(−gµ
′′
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′′

γ )

×
∫

d3V

V 0

d3ke
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3
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∑
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×
√
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2

2(k̃′01 + k̃′02 )

√

2k′0C2k
′0
e

(k′0C + k′0e )
3

√

2k′0122k
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e

(k′012 + k′0e )
3
V ′0
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e
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e
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(
k′
e − k′

e

)
Ψ∗
njµ′

j
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1µ
′

2
(k̃′)

× (−1)
√

M ′3
e12M
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e12γ
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′
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′
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′′′
1 , µ

′′′
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γ
(k′′′

γ ) δµ′

eµ
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e
2k′0e δ

3(k′
e − k′′′

e )δµ′
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′′′
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2 − k′′′

2 )

×
√
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2(k̃′′′01 + k̃′′′02 )

√
√
√
√

2k′′0C 2k′′0e 2k′′0γ

(k′′0C + k′′0e + k′′0γ )3

√

2k′′′012 2k′′′0e 2k′′′0γ

(k′′′012 + k′′′0e + k′′′0γ )3
V ′′0
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e
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e
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(
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e − k′′′

e

)
(−gµ′′

γ
µ′′′

γ
)δ3
(
k′′
γ − k′′′

γ

)

×Ψn′′j′′µ′′

j
µ′′′

1 µ′′′

2
(k̃′′′)

(
k′′0e + k′′0C + k′′0γ −M

)−1

×
√

2k̃′′01 2k̃′′02
2(k̃′′01 + k̃′′02 )

√
√
√
√

2k′′0C 2k′′0e 2k′′0γ

(k′′0C + k′′0e + k′′0γ )3

√

2k′′0122k
′′0
e 2k′′0γ

(k′′012 + k′′0e + k′′0γ )3
V ′′0

×δ3(V ′′ − V ′′)δµ′′

e
µ′′

e
δ3
(
k′′
e − k′′

e

)
(−gµ′′

γ
µ′′

γ
)δ3
(
k′′
γ − k′′

γ

)

×Ψ∗
n′′j′′µ′′

j
µ′′

1 µ′′

2
(k̃′′)

(−1)
√

M3
e12M

′′3
e12γ

V 0δ3(V − V ′′)

×| e |Qe ūµ′′

e
(k′

e)γνuµe(ke) ǫ
ν
µ′′

γ
(k′′

γ) δµ1µ′′

1
2k01δ

3(k′′
1 − k1)

×δµ2µ′′

2
2k02δ

3(k′′
2 − k2)

√

2k̃012k̃
0
2

2(k̃01 + k̃02)

√

2k0C2k
0
e

(k0C + k0e)
3

√

2k0122k
0
e

(k012 + k0e )
3
V 0

×δ3(V − V )δµ
e
µeδ

3 (ke − ke)Ψnjµjµ1µ2(k̃) . (E.2)

The integrations over V , V ′, V ′′, V ′′′, V ′′, ke, k
′
e, k

′′
e , k

′′′
e , k

′′
e , k

′′
γ , k

′′′
γ ,

k′′
1 , k

′′
2 , k

′′′
2 together with the sums over µe, µ

′
e, µ

′′
e , µ

′′′
e , µ

′′
e
, µ′′′

γ , µ
′′
γ
, µ′′

γ ,

µ′′
1 , µ

′′
2 , µ

′′′
2 can be carried out by means of the corresponding Dirac delta

functions and Kronecker deltas, respectively. Then the contribution simplifies
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to

Γe→1 = (2π)3V 0δ3(V − V ′)

×
∫

d3k′1
2k′01

1

2k′02

∑

µ′

1µ
′

2

1

2k′′′01

∑

µ′′′

1

1

2|ke − k′
e|

∑

n′′j′′µ′′

j

∫
d3k1

2k012k
0
2

∑

µ1µ2

×
√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k′0122k
′0
C

(k′0C + k′0e )
3
Ψ∗
njµ′

j
µ′

1µ
′

2
(k̃′)

×J1ν(k′
1, µ

′
1;k

′′′
1 , µ

′′′
1 )

√

2k̃′′′01 2k̃′′′02

2(k̃′′′01 + k̃′′′02 )

√

2k′′′012

×Ψn′′j′′µ′′

j
µ′′′

1 µ′

2
(k̃′′′)

(
k′0e + k′′0C + |ke − k′

e| −M
)−1

×2k012Ψ
∗
n′′j′′µ′′

j
µ1µ2

(k̃)(−gµν) | e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke)

× 2k̃012k̃
0
2

2(k̃01 + k̃02)

√

2k0C
(k0C + k0e)

3
Ψnjµjµ1µ2(k̃) . (E.3)

Here we have used the completeness relation for the photon polarization vectors
Eq. (B.23). Furthermore, the delta function δ3(k′′

2 − k2) of Eq. (E.2) has been
rewritten according to δ3(k′′

2 −k2) = δ3(k′′
γ − (ke−k′

e)) by using k′
e+k′

γ +k1 =

−k′′
2 and ke+k1 = −k2. For better readability we have kept k′′′

1 = k′
1−ke+k′

e

and k′′′
2 = k′

2. In Ref. [Fuc07] the Jacobian for the variable transformation
between the integration measures d3k1 and d3k̃1 has been derived:

d3k1 = d3k̃1
2k012k

0
2

2k̃012k̃
0
2

2(k̃01 + k̃02)

2(k01 + k02)
. (E.4)

Subsequently, the integration over d3k̃1 can be carried out with the help of
the normalization condition of the wave function, Eq. (3.16). For the special
case of a pure central potential as used, e.g., in Ref. [KSK03], the normalization
condition can be proved with the help of the appropriate orthogonality relations
of the Wigner D-functions, the Clebsch-Gordan coefficients and the spherical
harmonics, Eqs. (C.7), (2.89) and (2.88):

∫

d3k̃1
∑

µ1µ2

Ψ∗
n′′j′′µ′′

j
(l′′s′′)µ1µ2

(k̃)Ψnjµj(ls)µ1µ2
(k̃)

=

∫

d3k̃1
∑

µ′′

l
µ′′

s µ̃
′′

1 µ̃′′

2 µlµsµ̃1µ̃2

Y ∗
l′′µ′′

l
(ˆ̃k)C

s′′µ′′

s

j1µ̃′′

1 j2µ̃
′′

2
C

j′′µ′′

j

l′′µ′′

l
s′′µ′′

s
u∗n′′l′′ (k̃)

×Ylµl
(
ˆ̃
k)Csµs

j1µ̃1j2µ̃2
C

jµj

lµlsµs
unl(k̃)

×
∑

µ1

Dj1
µ̃′′

1 µ1

[
R−1

Wc
(w̃1, Bc(w12))

]
Dj1

µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]

︸ ︷︷ ︸

=δµ̃1µ̃′′

1
, Eq. (C.7)

×
∑

µ2

Dj2
µ̃′′

2 µ2

[
R−1

Wc
(w̃2, Bc(w12))

]
Dj2

µ2µ̃2

[
RWc

(w̃2, Bc(w12))
]

︸ ︷︷ ︸

=δµ̃2µ̃′′

2
, Eq. (C.7)
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=

∫

dk̃ k̃2
∑

µ′′

l
µ′′

s µlµs

∑

µ̃1µ̃2

C
s′′µ′′

s

j1µ̃1j2µ̃2
Csµs

j1µ̃1j2µ̃2

︸ ︷︷ ︸

=δss′′δµsµ′′
s
, Eq. (2.89)

C
j′′µ′′

j

l′′µ′′

l
s′′µ′′

s
u∗n′′l′′(k̃)

×
∫

dΩ(ˆ̃k)Y ∗
l′′µ′′

l
(ˆ̃k)Ylµl

(ˆ̃k)

︸ ︷︷ ︸

=δll′′δµlµ
′′

l
, Eq. (2.88)

C
jµj

lµlsµs
unl(k̃)

=
∑

µlµs

C
j′′µ′′

j

lµlsµs
C

jµj

lµlsµs

∫

dk̃ k̃2u∗n′′l(k̃)unl(k̃)

= δjj′′δµjµ′′

j
δnn′′ . (E.5)

Here we have assumed that the radial wave functions are normalized to unity:
∫

dk̃ k̃2u∗n′′l(k̃)unl(k̃) = δnn′′ . (E.6)

Finally we denote all incoming momenta and spins by unprimed symbols and
all outgoing momenta and spins by primed symbols. Then the result reads

Γe→1 = (2π)3V 0δ3(V − V ′)
1

2|ke − k′
e|

√

2k′0C
(k′0C + k′0e )

3

√

2k0C
(k0C + k0e)

3

×
(
k′0e + k0C + |ke − k′

e| −M
)−1

×
∫

d3k′1
2k′01

1

2k′02

1

2k01

×
√

2k′012

√

2k012

√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k̃012k̃
0
2

2(k̃01 + k̃02)

×
∑

µ1µ′

1µ
′

2

Ψ∗
njµ′

j
µ′

1µ
′

2
(k̃′)Ψnjµjµ1µ′

2
(k̃)

×J1ν(k′
1, µ

′
1;k1, µ1)(−gµν) | e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke) . (E.7)

In this expression the momenta satisfy the relations k1 = k′
1 − (ke − k′

e) since
k′
2 = k2 ⇒ −k′

1 − k′
e = −k1 − k′

e − k′′
γ . The other three contributions from

Fig. E.1 are obtained in an analogous manner and will not be calculated here
explicitly. They read

Γe→2 = (2π)3V 0δ3(V − V ′)
1

2|ke − k′
e|

√

2k′0C
(k′0C + k′0e )

3

√

2k0C
(k0C + k0e)

3

×
(
k′0e + k0C + |ke − k′

e| −M
)−1

×
∫

d3k′2
2k′01

1

2k′02

1

2k02

×
√

2k′012

√

2k012

√
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2

2(k̃′01 + k̃′02 )

√

2k̃012k̃
0
2

2(k̃01 + k̃02)

×
∑
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′

2

Ψ∗
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j
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1µ
′

2
(k̃′)Ψnjµjµ′

1µ2
(k̃)

×J2ν(k′
2, µ

′
2;k2, µ2)(−gµν) | e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke) (E.8)
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where k2 = k′
2 − (ke − k′

e) and k′
1 = k1,

Γ1→e = (2π)3V 0δ3(V − V ′)
1

2|k′
e − ke|

√

2k′0C
(k′0C + k′0e )

3

√

2k0C
(k0C + k0e)

3

×
(
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e − ke| −M
)−1

×
∫
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1
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1
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√
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√
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√
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2
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∑
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Ψ∗
njµ′

j
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(k̃′)Ψnjµjµ1µ2(k̃)

×J1ν(k′
1, µ

′
1;k1, µ1)(−gµν) | e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke) (E.9)

where k′
1 = k1 − (k′

e − ke) and k′
2 = k2 and finally

Γ2→e = (2π)3V 0δ3(V − V ′)
1

2|k′
e − ke|

√

2k′0C
(k′0C + k′0e )

3

√

2k0C
(k0C + k0e)

3

×
(
k0e + k′0C + |k′

e − ke| −M
)−1

×
∫

d3k2
2k01

1

2k02

1

2k′02

×
√
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∑
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e
(k′

e)γµuµ
e
(ke) (E.10)

where k′
2 = k2 − (k′

e − ke) and k′
1 = k1.

E.2 Combining the Time Orderings

The next step towards a simplification of the sum of the four contributions we
have obtained above is to combine the 2 possible time orderings for each ex-
change process to one covariant contribution. To this end we use for Γ1→e

the spectator condition k02 = k′02 and the equality of integration measures
d3k1 = d3k′1 since k′

e − ke is a constant. Moreover, we can simply rename the
spin indices that are summed over according to the spectator condition µ2 = µ′

2

and by the replacement µ1 ↔ µ′
1. These rewritings make Γ1→e easier compa-

rable with Γe→1. An analogous manipulation applies to Γ2→e. Consequently,
after neglecting the self-energy contributions, the optical potential, Eq. (E.1),
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becomes

Γe→1 + Γ1→e + Γe→2 + Γ2→e

= (2π)3V 0δ3(V − V ′)
1

2|ke − k′
e|

√

2k′0C
(k′0C + k′0e )

3

√
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3
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]
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∑
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∫
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1
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0
2
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√
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√

2k012
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∑
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′
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′
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′
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+

∫
d3k′2
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1
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1

2k02

√

2k̃′01 2k̃
′0
2

2(k̃′01 + k̃′02 )

√

2k̃012k̃
0
2
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√

2k′012

√

2k012

×
∑

µ2

Ψ∗
njµ′

j
µ′

1µ
′

2
(k̃′)Ψnjµjµ′

1µ2
(k̃)J2ν(k

′
2, µ

′
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]

×(−gµν) | e |Qe ūµ′

e
(k′

e)γµuµ
e
(ke) . (E.11)

The two terms in the first square brackets correspond to the two possible time
orderings, i.e. emission of the photon with subsequent absorption by one of
the constituents and vice versa. Since we consider on-shell matrix elements, cf.
Eq. (4.10), both time orderings of the photon exchange can be combined to give
the covariant photon propagator:

(
k′0e + k0C + |ke − k′

e| −M
)−1

+
(
k0e + k′0C + |k′

e − ke| −M
)−1

=
2|k′

e − ke|
(k0e − k′0e )(k0C − k′0C ) + (ke − k′

e)
2

=
2|k′

e − ke|
Q2

, (E.12)

with the four-momentum transfer to the bound-state (or equivalently of the
electron) given by

q :=

(
k′0C − k0C
k′
12 − k12

)

≡
(
k0e − k′0e
ke − k′

e

)

and Q2 := −qµqµ . (E.13)

Note that the three-momentum of the photon is k′′
γ = ±(k′

e − ke) = ±q. Here
the sign depends on the time ordering whereas k0′′γ = | (k′

e−ke)| = Q 6= q0 is in-
dependent of the time ordering. This modification further simplifies Eq. (E.11),
which then finally takes the form given by Eq. (4.14).



Appendix F

Extraction of
Electromagnetic Form
Factors

F.1 Current Matrix Elements

Similarly as in the pseudoscalar case we extract the electromagnetic form factors
of a vector bound state, f1, f2 and gM, from Eq. (5.9) in the limit k → ∞, where
the form factors become independent of k. First we shall analyze the behavior
of the current (5.9) in this limit. For better readability we use the following
abbreviations for the covariants multiplying the form factors. The covariants
associated with the physical form factors f1, f2 and gM are defined by

Lµ
1 (µ

′
j , µj) := ǫ∗µ′

j
(k′

C) · ǫµj
(kC)K

µ
C , (F.1)

Lµ
2 (µ

′
j , µj) :=

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) · q]

2m2
C

Kµ
C , (F.2)

Lµ
M(µ′

j , µj) :=
{

ǫµ∗µ′

j
(k′

C)[ǫµj
(kC) · q]− ǫµµj

(kC)[ǫ
∗
µ′

j
(k′

C) · q]
}

, (F.3)

155



156 Extraction of Electromagnetic Form Factors

respectively. The Ke-dependent spurious covariants which are multiplied with
the spurious form factors b1, . . . , b8 are denoted by

Cµ
1 (µ

′
j , µj) := ǫ∗µ′

j
(k′

C) · ǫµj
(kC)

m2
CK

µ
e

Ke ·KC
, (F.4)

Cµ
2 (µ

′
j , µj) := [ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) · q]

Kµ
e

Ke ·KC
, (F.5)

Cµ
3 (µ

′
j , µj) := 4

{

[ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) ·Ke]

} m4
CK

µ
e

(Ke ·KC)3
, (F.6)

Cµ
4 (µ

′
j , µj) :=

{

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke]− [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

} m2
CK

µ
e

(Ke ·KC)2
,

(F.7)

Cµ
5 (µ

′
j , µj) :=

[ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) ·Ke]

(Ke ·KC)2
4m2

CK
µ
C , (F.8)

Cµ
6 (µ

′
j , µj) :=

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke]− [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

Ke ·KC
Kµ

C , (F.9)

Cµ
7 (µ

′
j , µj) := 2m2

C

ǫµ∗µ′

j
(k′

C)[ǫµj
(kC) ·Ke] + ǫµµj

(kC)[ǫ
∗
µ′

j
(k′

C) ·Ke]

Ke ·KC
, (F.10)

Cµ
8 (µ

′
j , µj) :=

[ǫ∗µ′

j
(k′

C) · q][ǫµj
(kC) ·Ke] + [ǫ∗µ′

j
(k′

C) ·Ke][ǫµj
(kC) · q]

Ke ·KC
qµ . (F.11)

Using our standard kinematics introduced in Sec. 5.3.1 the non-vanishing co-
variants in the limit k → ∞ are given by

Lµ
2 (1,−1)

k→∞−→ − Q2

4m2
C

2k(1, 0, 0, 1)µ , (F.12)

Lµ
M(1,−1)

k→∞−→ − Q2

2mC
(1, 0, 0, 1)µ , (F.13)

Lµ
1 (1, 0)

k→∞−→
(

−Q(4(k −mC)mC +Q2)

2
√
2m2

C

, 0, 0,−Q(4(k −mC)mC +Q2)

2
√
2m2

C

)µ

,

(F.14)

Lµ
2 (1, 0)

k→∞−→
(

4(k −mC)mCQ
3 +Q5

8
√
2m4

C

, 0, 0,
4(k −mC)mCQ

3 +Q5

8
√
2m4

C

)µ

,

(F.15)

Lµ
M(1, 0)

k→∞−→
(

−Q(2kmC +Q2)

2
√
2m2

C

, 0,
iQ2

2
√
2mC

,−Q(2kmC +Q2)

2
√
2m2

C

)µ

, (F.16)

Cµ
5 (1, 0)

k→∞−→ − Q√
2
(1, 0, 0, 1)µ , (F.17)

Cµ
6 (1, 0)

k→∞−→ Q(2kmC +Q2)

2
√
2m2

C

(1, 0, 0, 1)
µ
, (F.18)

Cµ
7 (1, 0)

k→∞−→ 1√
2
(−Q,−mC, imC,−Q)µ , (F.19)

Cµ
8 (1, 0)

k→∞−→ (0,
Q2

2
√
2mC

, 0, 0)µ , (F.20)
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Lµ
1 (1, 1)

k→∞−→ −(2k +
Q2

mC
) (1, 0, 0, 1)

µ
, (F.21)

Lµ
2 (1, 1)

k→∞−→ 2kmCQ
2 +Q4

4m3
C

(1, 0, 0, 1)
µ
, (F.22)

Lµ
M(1, 1)

k→∞−→
(

− Q2

2mC
, 0, iQ,− Q2

2mC

)µ

, (F.23)

Cµ
6 (1, 1)

k→∞−→ Q2

2mC
(1, 0, 0, 1)

µ
, (F.24)

Lµ
1 (0, 0)

k→∞−→ −2km2
C + (k − 2mC)Q

2

m2
C

(1, 0, 0, 1)
µ
, (F.25)

Lµ
2 (0, 0)

k→∞−→ − (k − 2mC)Q
4

4m4
C

(1, 0, 0, 1)µ , (F.26)

Lµ
M (0, 0)

k→∞−→ − (−k +mC)Q
2

m2
C

(1, 0, 0, 1)ν , (F.27)

Cµ
5 (0, 0)

k→∞−→ k (2, 0, 0, 2)
µ
, (F.28)

Cµ
6 (0, 0)

k→∞−→ (−k +mC)Q
2

2m2
C

(2, 0, 0, 2)
µ
, (F.29)

Cµ
7 (0, 0)

k→∞−→ k(2, 0, 0, 2)µ . (F.30)

It becomes evident that the current is not conserved, not even in the limit
k → ∞, due to the non-vanishing contributions of C1

7 (1, 0) and C1
8 (1, 0) (note

that for the given kinematics the four-momentum transfer is qµ = (0, Q, 0, 0)µ).
In addition, we observe, using our kinematics, that the zeroth and third com-
ponents of the current become identical in this limit, i.e.

J0
µ′

j
µj

:= lim
k→∞

J0
V(k

′
C, µ

′
j ;kC, µj;Ke) = lim

k→∞
J3
V(k

′
C, µ

′
j ;kC, µj ;Ke) = J3

µ′

j
µj
.

(F.31)

This reduces the number of independent matrix elements given by (5.37) from
11 to 7. Consequently, we need 7 form factors, the 3 physical f1, f2, gM and the 4
spurious form factors b5, . . . , b8, to parametrize the current in the limit k → ∞.
From Eqs. (F.12)-(F.30) we find the following leading-order contributions to
the current matrix elements in the limit k → ∞ (using the short-hand notation
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limk→∞ Jµ
V(k

′
C, µ

′
j ;kC, µj ;Ke) ≡ Jµ

µ′

j
µj

and limk→∞ fi(Q
2, k) ≡ Fi(Q

2) ):

1

| e | J
0
00 = F1L

0
1(0, 0) + F2L

0
2(0, 0) +GML

0
M(0, 0)

+B6C
0
6 (0, 0) +B5C

0
5 (0, 0) +B7C

0
7 (0, 0) +O(k0) , (F.32)

1

| e | J
0
11 = F1L

0
1(1, 1) + F2L

0
2(1, 1) +O(k0) , (F.33)

1

| e | J
0
10 = F1L

0
1(1, 0) + F2L

0
2(1, 0) +GML

0
M(1, 0) +B6C

0
6 (1, 0) +O(k0) ,

(F.34)

1

| e | J
0
1−1 = F2L2(1,−1) +O(k0) , (F.35)

1

| e | J
2
11 = GML

2
M(1, 1) +O(k−1) , (F.36)

1

| e | J
1
10 = B7C

1
7 (1, 0) +B8C

1
8 (1, 0) +O(k−1) , (F.37)

1

| e | J
2
10 = B7C

2
7 (1, 0) +O(k−1) . (F.38)

We observe that the current components J0
11, J

0
1−1 and J2

11 do not contain any
dominant spurious contributions and are therefore “good” components for the
extraction of the physical form factors. With the help of the limiting expressions
for the kinematical factors and constituents’ currents, cf. Eqs. (5.13) and (5.17),
respectively, we find for the limit of the zeroth (and third component) of the
current (divided by 2k| e |) the following overlap integral:

1

| e | lim
k→∞

1

2k
J0
V(µ

′
j , µj)

=
1

4π

∫

d3k̃′1

√
m12

m′
12

u∗n0

(

k̃′1

)

un0

(

k̃1

)

×
{[
F 1
1 (Q

2) + F 2
1 (Q

2)
]
Sµ′

jµj

1 +
√
τ
[
F 1
2 (Q

2) + F 2
2 (Q

2)
]
Sµ′

jµj

2

}

.

(F.39)

Here Sµ′

jµj

1 and Sµ′

jµj

2 are the spin factors from the Wigner D-functions and
Clebsch-Gordan coefficients as given by Eqs. (5.51) and (5.52). Then using
Eqs. (F.12), (F.21) and (F.22) the physical form factors F1 and F2 can be
extracted from J0

V(1, 1) and J
0
V(1,−1) according to

F1(Q
2) := lim

k→∞
f1(Q

2, k) = − 1

| e | lim
k→∞

1

2k

[
J0
V(1, 1) + J0

V(1,−1)
]
,

(F.40)

F2(Q
2) := lim

k→∞
f2(Q

2, k) = − 1

| e | η lim
k→∞

1

2k
J0
V(1,−1) , (F.41)

with η = Q2/(4m2
C). For the magnetic form factor GM we need the current

matrix element J2
11. From the expansion of the nucleon current around k = ∞,

cf. Eq. (5.16), we see that the second component of the nucleon current is
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suppressed by 1/k. By pulling the factor 1/k out of the integral it is seen to
cancel with the factor

√

k0Ck
′0
C . Thus we find the following overlap integral:

1

| e | J
2
µ′

j
µj
(Q2)

=
1

4π

∫

d3k̃′1

√
m12

m′
12

u∗n0

(

k̃′1

)

un0

(

k̃1

) m′
12

(m′
12 + 2k̃′31 )

× | e |
{
[
F 1
1 (Q

2) + F 2
1 (Q

2)
]
(

k̃′21 S
µ′

jµj

1 +
iQ

2
Sµ′

jµj

3

)

+
√
τ
[
F 1
2 (Q

2) + F 2
2 (Q

2)
] (

imSµ′

jµj

3 + k̃′21 S
µ′

jµj

2

)}

, (F.42)

with the spin factor Sµ′

jµj

3 given by Eq. (5.53). Then the magnetic form factor
is extracted using Eq. (F.23) as

GM(Q2) := lim
k→∞

gM(Q2, k) = − i

| e |Q J2
11(Q

2) . (F.43)

F.2 Projection Tensors

To see explicitly that the expressions (5.57)-(5.59) are identical with the inte-
grals of Eqs. (5.48)-(5.50) we have to investigate the particular expressions that
appear under the integral after contracting with the projection tensors. Using
our standard kinematics we obtain the following expressions of interest in the
limit k → ∞:

√

k0Ck
′0
C

k01

k→∞−→ 2m′
12

m′
12 + 2k̃′31

, (F.44)

Bc(−wC)q
k→∞−→

(
Q2

2mC
, Q, 0,− Q2

2mC

)

, (F.45)

Bc(−w′
C)q

k→∞−→
(

− Q2

2mC
, Q, 0,

Q2

2mC

)

, (F.46)

Bc(−wC)KC
k→∞−→

(

2mC +
Q2

2mC
, Q, 0,− Q2

2mC

)

, (F.47)

Bc(−w′
C)KC

k→∞−→
(

2mC +
Q2

2mC
,−Q, 0,− Q2

2mC

)

, (F.48)

2
Bc(−wC)Ke

(Ke ·KC)

k→∞−→ 1

mC
(1, 0, 0,−1) , (F.49)

2
Bc(−w′

C)Ke

(Ke ·KC)

k→∞−→ 1

mC
(1, 0, 0,−1) , (F.50)

Bc(−w′
C)

λ
σg

στBc(−wC)
ν
τ

k→∞−→







1 +Q2/(2m2
C) Q/mC 0 −Q2/(2m2

C)
−Q/mC −1 0 Q/mC

0 0 −1 0
−Q2/(2m2

C) −Q/mC 0 −1 +Q2/(2m2
C)







λν

.

(F.51)



160 Extraction of Electromagnetic Form Factors

Furthermore, the expressions involving the constituents’ currents

Bc(−w
(′)
C )µτJ

τ
i (k′

i, µ
′
i;ki, µi) , qτJ

τ
i (k′

i, µ
′
i;ki, µi) ,

KeτJ
τ
i (k′

i, µ
′
i;ki, µi) /(Ke ·KC) and KCτJ

τ
i (k′

i, µ
′
i;ki, µi) (F.52)

are seen to be finite in the limit k → ∞. They are rather lengthy and will not
be given here explicitly. Also, the spin matrix

D
1
2

µ1µ̃1

[
RWc

(w̃1, Bc(w12))
]
(σν)µ̃1µ̃2D

1
2

µ̃2µ̃′

2

[
RWc

(
w̃′

2, B
−1
c (w12)Bc(w

′
12)
)]

×(σλ)µ̃′

2µ̃
′

1
D

1
2

µ̃′

1µ
′

1

[
R−1

Wc
(w̃′

1, Bc(w
′
12))

]
(F.53)

is a lengthy but also finite in the limit k → ∞. Therefore, the form factors
defined in Eqs. (5.57)-(5.59) are finite in the limit k → ∞. Putting everything
together it can be shown that Eqs. (5.57)-(5.59) are actually equivalent with the
integrals given in Eqs. (5.48)-(5.50).1

1Due to the complexity of the problem we have carried out the proof using the symbolic
Mathematica c© programming language.



Appendix G

Exchange Potentials in
Static Limit

Here we use appropriately normalized Dirac spinors given by

ũσ(p) =
1√
2m

uσ(p) . (G.1)

In the static approximation and taking the limit m→ ∞ the Dirac spinor takes
the form

ũσ(p) → unrσ =

(
ςσ
0

)

, (G.2)

with
ūnrσ′ unrσ = ς†σ′ ςσ = δσ′σ . (G.3)

Then is easy to see that the second-order amplitude for the scalar meson ex-
change mNσ

int in Eq. (6.10) becomes just the static potential in Eq. (6.11):

g2σ ū
nr
µ̃′

1
unrµ̃1

1

−(k̃′
1 − k̃1)2 −m2

σ

ūnrµ̃′

2
unrµ̃2

= −g2σ
δµ̃′

1µ̃1
δµ̃′

2µ̃2

q̃2
1 +m2

σ

, (G.4)

where q̃1 = k̃′
1 − k̃1 is the three-momentum transfer. For the vector meson ex-

change contribution mNω
int in Eq. (6.10) we first concentrate on the contributions

of the second term of the ω-meson propagator which reads

−g2ω ¯̃uµ̃′

1
(k̃′

1)γµũµ̃1(k̃1)
(k̃′µ1 − k̃µ1 )(k̃

′ν
2 − k̃ν2 )/m

2
ω

(k̃′1 − k̃1)2 −m2
ω

¯̃uµ̃′

2
(k̃′

2)γν ũµ̃2(k̃2). (G.5)

Making use of the Dirac equations for the spinors, Eqs. (3.55) and (3.56), we
have

¯̃uµ̃′

1
(k̃′

1)γµ(k̃
′µ
1 − k̃µ1 )ũµ̃1(k̃1) = ¯̃uµ̃′

1
(k̃′

1)(mN −mN)ũµ̃1(k̃1) = 0 . (G.6)

Thus, we find that the second term of mNω
int vanishes for on-shell nucleons. For

the contributions of the first term of the ω-meson propagator

−g2ω ¯̃uµ̃′

1
(k̃′

1)γµũµ̃1(k̃1)
gµν

(k̃′1 − k̃1)2 −m2
ω

¯̃uµ̃′

2
(k̃′

2)γν ũµ̃2(k̃2) (G.7)
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we use the standard representation of the γ-matrices, cf. Eq. (B.1). In the static
limit the spatial components of the nucleon current, being proportional to the
three-momentum divided by the mass, vanish:

¯̃uµ̃′

1
(k̃′

1)γ
iũµ̃1(k̃1) ≈ ūnrµ̃′

1
γiunrµ̃1

= 0, ∀ i = 1, . . . , 3 . (G.8)

Thus the three-vector part of the contraction of the currents vanishes:

−g2ω ūnrµ̃′

1
γiunrµ̃1

1

q̃2
1 +m2

ω

ūnrµ̃′

2
γiunrµ̃2

= 0 . (G.9)

We are left only with the temporal components ¯̃uµ̃′

1
(k̃′

1)γ
0ũµ̃1(k̃1) which become

unity in the non-relativistic limit:

¯̃uµ̃′

1
(k̃′

1)γ
0ũµ̃1(k̃1) ≈ ūnrµ̃′

1
γ0unrµ̃1

= δµ̃′

1µ̃1
. (G.10)

Therefore, the second-order contribution in the static limit is

−g2ωūnrµ̃′

1
γ0unrµ̃1

1

−q2 −m2
ω

ūnrµ̃′

2
γ0unrµ̃2

= g2ω
δµ̃′

1µ̃1
δµ̃′

2µ̃2

q2 +m2
ω

, (G.11)

which is just the static potential given in Eq. (6.12).
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