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Abstract

A systematic derivation of the energy eigenvalue equations for one-, two-, and
three-electron atoms is presented in terms of the effective action. By using this
method, one can naturally include the field theoretical corrections into the wave

equations.

1. Introduction

In this talk we present an application of the generalized on-shell condition,"?
which is obtained by the second derivative of the effective action, and we want to
start with a quick review of this formalismm. The talk is based on the work with
R.Fukuda.®)

For simplicity, let us consider the scalar field ®(z) and the Lagrangian density
L(®) of a system. The generating functional W[J] of the connected Green’s function

is introduced as
oo
exp(iWlJ]) = [[d®] exp[if  d*z (L(2) + J(2)%(z) ) ], (1)
and the effective action ['[4] is defined by the Legendre transformation,

Llg] = WlJ] = [ d*z J(z)é(2), (2)
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$(z) = 6WJ]/6J(z). (3)

The stationary condition,

8T(gl/6¢(z) = —J(2) =0, (4)

determines the ground state expectation value of &(z), <®(z)>;_o = ¢(O(z). We
then look for another solution of (4) in the form of ¢(z)= #O(z)+A¢(z) and, by
assuming A¢(z) is small, we find the following eigenvalue equation for A¢(y) (the

generalized on-shell condition),

4 §°T[¢] _
[ dy 59(2)06(3) lo A¢(y) =0, (5)

where [ |, denotes the value of [ ] evaluated at #(z)=¢"(z).

If we take the space-time translational-invariant case, the zero of the kernel in

(5) coincides with the pole of the Green’s function by the relation,
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So, eq.(5) determines the particle spectrum or the mode. In the same way, if we
study the case where the time-independent external fleld exists (e.g. the nuclear
Coulomb field), eq.(5) is expected to determine the energy eigenvalue and its eigen-
function (xA¢(z)) of the excited level. We utilize this fact and study the systemati-
cal deriva.tion of the equations that determine the energy levels of hydrogen-, helium-,

and lithium-like atoms.

2. One-Electron Atoms

We consider QED under the external field and use the Lagrangian density of the

form,

L= ..-i- Fu P + (i —m — ed ) — j 4% + JEA* + Ty o + IS, (7)



where j(z)=( Z|e|8%*(z) , 0,0, 0 ) is the source of the nuclear Coulomb field with the

atomic number Z. The last three source terms are used as probes. If we want to dis-

cuss the finite nuclear size and/or the nuclear magnetic moment, they can be

included as the modification of j,. Here we notice that the term J, % ( or J$7E ) is

necessary for the investigation of the one fermion-number channel, while the term

JﬁA“ is used for convenience.

The effective action I" can be obtained with the help of the Legendre transforma-
tion formula given by De Dominicis and Martin 4) but with a small modification. For
the Grassmann variables, we employ the following definitions of I' and its functional

derivatives,s)

Ll = W] - Ji¢;  (di=—WJ]), (8)

ST[p/60; = —J;. (9)

The expression of I' is then summarized as follows,

sW Iw TwW
T[<A> >] = JAL T, I =T — —J J
Az sy <2l = W Ty 1= T g =g, =% 57
= "‘1,‘“<A#>iD6—1,§u<A"> + <;/’—i>i50_1ij<1/fj> — J<AF> ~ i), (10)

where Dy (S,) is the bare photon (electron) propagator and k() denotes the sum of
the one-particle irreducible (1-PI) vacuum diagrams. Graphically <#>, <¥>, and
<A¥> are expressed by the broken lines which directly connect to the vertices
(Fig.1).

As the solution of the stationary condition of I', we can choose <y¥>=<¥>=0
and, after substituting them, the on-shell condition for A<%>> is obtained in the fol-

lowing form,
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(S3L + [ § (3"(1) )1o) A<¥> =0 (11)
A I A O

This is the equation that determines the full energy levels of the hydrogen-like atoms.

For example, if we concentrate ourselves on the tree diagram of rc(l), we get

<AP> = —iD§¥j, = A as the stationary solution and eq.(11) becomes,
2 : '
[P, — m 4+ vg —=—] A<y>, = 0. (12)
4r|z|

This is nothing but the Dirac equation under the Coulomb poténtial. In the same
way, if we choose the diagrams shown in Fig.1, the lowest-order radiative corrections

are properly taken into account and we get the modified Dirac equatioa from (11) as
[—m -2 — eAl {7, + v, D87, +A,} | A<y> =0, (13)

where w,,, —iX, and —ieA, denote the lowest-order contribution of the vacuum
polariza.tion, the electron self-energy, and the vertex correction, respectively. In this
way, we can systematically include the quantum field theoretical corrections into the

relativistic wave equation.

<A>
E]
H

M §
K = B R <A> Qfﬁ? . <F> /4\<¢> +<?/F> /(*\\f."f? e

Fig.1 Some of the diagrams included in n(l), which contribute to the modified Dirac
equation (13). The wavy line is the photon propagator. The solid line with an arrow

denotes the electron one.



3. Two- and Three-Electron Atoms

Next we consider the helium- and lithium-like atoms. In the case of the helium-
like atoms, we start with the Lagrangian density (7) plus new source term
(1/2)K(a,b)®(a)®(b) where ® = [, ¥, A ] and a,b denote the species of the fields
as well as the other degrees of freedom. (Summations over the repeated indices are
implied.) In the same way, for the lithium-like atoms, we further use the source term
(1/3)M(a,b,c)®(a)®(b)®(c). Each source is to be antisymmetrized for Grassmann
components and to be symmetrized for the others. We notice that the sources
K(¢,¥) (K@) and M(¢,%,%) (,M(¥,9,¥)) are necessary for the investigations of
two and three fermion-number channels. Other sources are employed in order to use
the (modified) De Dominicis-Martin rules. For the new arguments of I, we introduce
the notations <ab> and <abc>. They are defined as the connected part of
207 W/6K(a,b) and 3!_5’W/5M(a,b,c), respectively.

As the stationary solutions, <¥>, <¥>, <¢y>, <¢ ¥>, <PpyYy¥>, <P ¥ ¢¥>,
and other variables which couple to them can be set equal to zero. Then we get the
on-shell conditions in the form of the Nambu-Bethe-Salpeter type wave equations.

The result is summarized for helium-like atoms,

-1 . | - 5 (SK:(Z)
% STA<Y > = | <trp> (5<$.~7;j> ) Jo A<pp>, (14)

L
2!

and for lithium-like atoms,

)
N Szt St St A<ttty >

g ( kB o Aot o)
-—[5<¢;'¢j"¢k'> 5<-'17:’$j:$k> 0 PR

where S;; denotes the full fermion propagator ( i.e. the stationary solution of
<Y¥;>). In (14), k) represents the sum of the one- and two-particle irreducible

(1,2-PI) vacuum diagrams constructed out of <a>, <ab> (propagator), and the
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original QED vertex. Similarly, xB) in (15) denotes the sum of the one-, two-, and
three-particle irreducible (1,2,3-PI) vacuum graphs made up of <a>, <ab>, and
<abc>. Graphically, each <abc> is represented by the full vertex with the full pro-
pagators.s) The term "three-particle irreducible (3-PI)" usually means the graphs
which cannot be disconnected by cutting any three internal lines. But even when the
graph is disconnected by this process, if one (and only one) of the disconnected part
is the full vertex itself, we also call it the 3-PI graph by the conventions adopted in

Ref 4.

4. Comments

Nuclear recoil corrections can be included into our formalism by considering the
on-shell condition for A<%y % - - - 9>, where 9, denotes the nucleon field operator

and % is that of the electron.

Our method is also available for the non-relativistic models. For example, we
can derive the Schrodinger equation under the external potential instead of the Dirac

equation (12). The extensions for other cases are straightforward.
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