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Abstract

We consider a quantum fleld theory that creates at any point of
the space-time particles described by a ¢-deformed Heisenberg algebra
which is interpreted as a phenomenological quantum theory describing
the scattering of spin-0 composed particles. We discuss the generaliza-
tion of Wick's expansion for this case and we compute perturhatively
the scattering L +2 ~— 1"+ 2" to second order in the coupling constant.
The result we find shows rhat the structure of a composed particle, de-
scribed here phenomenologically by the deformed algebraic structure.
can modify in a simple but non-trivial way the perturbation expansion
for the process under consideration.
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1 Introduction

Heisenberg algebra is an essential tool in the second quantization formal-
1sm since its generators are interpreted as creating or annihilating particle
states. In [1] it was shown that a class of quantum svstems characterized b
having successive energy eigenvalues obe\'in €ar1 = f(€q) 1s described by a
generalized Heisenberg algebra (CHJ\) "31 with the function f{.r) being a
characteristic function of the algebra.

The representations of the GHA were studied in [3] and they were con-
structed by studying the stabilitv of the fixed points of the characteristic
function of the algebra and of theu composed functions. Moreover. the non-
relativistic (1 and relativistic ¥ square-well potentials in one-dimension and

the harmonic oscillator on a civcle Pl were shown to be described | v a GHA
with an appropriated function f{z) for each physical system.

When the characteristic function of the algebra f(x) is linear with slope
tan~'{¢?) the algebra turns into 31 the well known g-oscillator algebra 6],
The algebra of ¢-oscillators has found applicatioas in different areas of physics
(1 and in particular in [3] it was shown that creation and annihilation op-
erators of correlated fermion pairs. in simple many body svstems. satistv
a deformed Heisenberg algebra that can be approximated by g-oscillators.
Since the combined pairs of fermions can be viewed as a composed system
it seems reasonable to explore the consequences of using g-oscillators as an
approximated way ot considering composed particles in the context of the
formalism of second quantization.

Along these lines we constructed in [9] a quantum field theory (QFT) that
creates at any point of the space-time particles described by a g-deformed
Heisenberg algebra interpreting it as a phenomenological QFT describing
the interaction of composed particles. [n that paper we constructed the
propagator. cdefined as the Dyson-Wick contraction of two felds. for the free
theory and computed perturbatively the scattering | + 2 - ' + 2" to first
order 1n the coupling constant.

In order to compute perturbatively this scattering process to higher or-
ders in the coupling constant it is necessary to extend the Wick’s expansion
since. in this case. the propagator is not a c-number. In this paper we discuss
the extension of the Wick's expansion adapted to this case and we compute
perturbatively the scattering under consideration to second order in the cou-

pling constant. The result we find shows that the structure of a composed
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particle, described here phenomenologicailv by the algebraic structure, can
modity in a simple but non-trivial way the perturbation expansion for the
process under consideration.

[n section 2. we summarize the GHA. we realize the linear case of the
algebra in terms of physical variables and we discuss Its interpretation in
terms of a phenomenological description of composed particles in the contevt
of the formalism of second quantization. In section 3. after a brief review of
the scattering to first order in the coupling constant we discuss the necessity
to extend the Wick’s expansion in order to compute scattering processes to
higher orders in the coupling constant and we present the main result of the
paper. Le.. the scattering I +2 — 1’ + 2 to second order in the coupling
constant. [n section 4. we discuss our vesults and present two conjectures.
Finally. we present in appendix A the result for the Wick's expansion of tour
fields which contains the main modifications necessary to construct a general
Wick's expansion for the product of any number of fields based on a GHA.

2 Generalized Heisenberg algebras

Let us consider a class of quantum systems characterized by having energy
eigenvalues obeving
Entl = j(tn) (H
where €,.; and €, are successive energy levels of the physical system under
consideration and f(z) is a different function for each physical svstem.
We showed in [1] that this class of quantum systems is described by a
generalized Heisenberg algebra (GHA). The GHA is generated by Jy. A and

A" and described by the relations 3]

JoAt = AT fLA), (2)

A -];_) = f(.]o);"i, (3)

AAT = fh) = . (4)

where ! means the Hermitian conjugate and. by hypothesis, .JJ = .7, and

Slx) 15 a general analytic function. .Jy is the Hamiltonian operator of the
system. A" and A are the ladder operators of the physical svstem. We stress
that the functions J{x) which appear in eq. (1) characterizing the physical
systemnn and in eqs. (2-4) characterizing the algebraic structure are the same.
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This algebra has a Casimir operator given by
C=AT4 -y =a4"= fJy). (5

As proved in [3]. under the hypothesis tha: there is a vacium state e D
tesented by |0). for a general function f we obtain

Jolm) = fMag)m), m=0,1.2, - . (6]

rlT\m—l) = N, |m). (7

Alm) = Ny |m - 1), (3,

where V?_| = S o) ~ as. oy is the lowest Jy eigenvalue and FMeg) s

the mth iteration of ag through function f. For each function fley the
representations of the algebra are constructed by the analvsis of the abote
equations as done in [3] for the linear and quadratic f(z).

Let us now focus on the linear case. f(v) = G r + 5. since it will be
used in the next section to construct a QFT. The algebraic relations for the
lmeat case can be rewritten, after the rescaling Jy — s.Jy, 4 — A//s and

F— ATV5 a

oAt = A (9

oAl = ——A, 10,
e

{_4*,.4} = (1-¢5)Jy— L. (11;

where [¢. 0], = ab—rbais the r-deformed commutation of two operators «

and b.
In this linear case we can see that

Ny = fMan) — oo = [m],. N3 (12
where f™(ap) denotes the m-th iterate of f. [m] = (r™ — 1)/(r — 1) is
the Gauss number of m and Vi = ap{q? — 1) + L. Nloreover, defining
b= AT/(£Ng). b = A/(£Np) and N such that N|m) = m|m). we can

als0 see that these operators satisfy
ot —g?btb=1 . {13

(Nb = b {\ bw =H .
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. . . 16
which corresponds to the usual g-oscillator relations 9.

Let us consider a one-dimensional lattice in momentum space. As it 1s
well known. the two possible definitions of discrete derivatives on this lattice

are
1. .
(@ f){p) = EU(pM)—_Hp)]« (4]
_ J_r. ]
(D FY(p) = Etf(p)—f(p—a)]- (15

where @ is the lattice spacing. It is also possible to introduce the momentin
shift operators

I' = 1+ad,. (16)
T = 1-ad,. (L7]

that move the momentum value by a

(Lf)e) = Jlp+a). (13
(I'fitp) = flp~a) (19)

and satisty )
TT=TT=1. (20)

where | means the identity on the algebra of functions of p. Finally, we also
introduce the momentum operator P (10]

(PF)(p) =pfip). (2L}

Now, we are going to present the realization of the deformed Heisen-
berg algebra eqs. {9-11) in terms of phvsical operators. We can associate
to the one-parameter deformed Heisenberg algebra in eqs. (9-11) the one-
dimensional lattice we have just presented. Observe that we can write J, In
this case as

Jg = qZP/“ ceg + [P/(quz . {22]
with P given by eq. (21). The application of the operator P to the vector
states {m) appearing in [6-8) gives (h

Plmy=majm) m=0.1.-- . (23)
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which can be written as .V = P/a with Nlm} = mim). Moreover,
Tlm)y=im+1) . m=01... : (24

where T and T = 7 are defined in eqs. (16-17).
With the definition of J; given in eq. {22} we see that f™(ay) given in
eq. {6) is the Jy eigenvalue of the state [n) as we wish. Let us now define
)

AT = ST . (23

A = TSP, (261
where.

S(PY =0y ~ oy . (27

ag being the lowest J, elgenvalue. It was proven in [9] that the realization
given in eqs. (22 and 25-26) really satisfies egs. (9-11).
Now. we are going to discuss an interpretation of the deformed Heisenberg
algebra that will be used in the next section. It is well known that HPJbGHbEIU
algebra is an essential tool in the second quantization formalism because their
generators create and annihilate point particles. As in the generalized case
the energy difference of any two successive levels is not equal, one can still
consider that the ladder operators of the deformed Heisenberg algebra create
and annihilate particles with the difference that the total energy of n particles
is not equal to n times the energy of each particle. The next question to be
answered is what kind of free physical particle can have this non-additive
energy.

In [3] it was shown that the algebra of fermion pairs of zero angular mo-
mentum can be approximated by the g-oscillator algebra. eq. (13). Moreover.
the pairing Hamiltonian has the above mentioned non- acdditivizy property.
Let us briefly focus on the shell model of nuclear collective motion. Fermion
pairs of angular momentum J = 0 in the theory of pairing in a single-; shell
are created by the pair-creation operator

L n
BT:\/—SZ( )J+} fjm-f_;—!n’
- m>»0

with —7 < m < ;. where f}m are fermion creation operators and 20 = 2y + |
1s the degeneracy of the shell. The pair creation operator just defined and
the annihilation operator satisty a deformed Heisenberg algebra given by

—
[~
L

[B.BT} -1 % . (29,
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with Ng = Lol S fron + £r o frem)- the fermion number operator while
the pairing Hamiltonian is # = —(30B'B. I [8] it was shown thar the
deformed algebra of composed operators given in eq. {29) can be approxi-
mated by the g-oscillator algebra given ineq. (13) with ¢ = exp{—1/0) and
the pairing Hamiltonian being approximated by the g-oscillator Hamiltonian
H = =GOV,

From the fact that the combined pairs of fermions created by the oper-
ator BT can be viewed as a composed system that is approximated bv the
q-oscillator algebra eq. (13) with ¢ = exp(=1/Q). it seems reasonable 1o
explore the consequences of using g-oscillators as an approximated way 1o
describe composed particles in the contey: of the formalism of second quan-
tization.

3 'Perturbative computation in a deformed
quantum field theory

We are going to discuss in this section a QFT having as excitations objects
described hy the one-parameter deformed algebra given in eqs. (9-11). In
this QFT the mass spectrum consists of only one particle with mass m. In
this case the energy of n particles is not equal to n times the energv of one
particle and therefore the energy does not obey the additivity rule. This non-
additivity comes from the fact that g-oscillators are seen as an approximated
way to describe composed particles in the context of the formalism of secoud

quantization.

3.1 First order analysis

In [9], following similar steps to those used to construct a standard spin-0
quantum field theory 12 we analyzed a deformed QFT to first order in the
coupling constant. The initial observation is that the analog of the Heisen-
berg algebra obeyed by the quantum excitations of a standard QFT is in this

case
[Pl = iaQ. (30
[PQ] = iav. (31
[\.Q] = 2S(PYS(P+a)—-S(P—a)). [32)
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where

o= 0 {S(P)L = ad,) - (1 +ady)S(PY) = —i(A— 4 . (33
Q = S(PHl—ad,) + (1 +ad,)S(P) =4+ AT, (341
Pis defined ineq. (21} and 4, and J, are the lett and right discrete derivatives

defined in egs. (14, 15).
With the help of y and @ it is possible to define

l

ofF t) = e (AL T g R 35

| %\f’ow()( a ) -

Mt = “d (Ufﬁu) .' (36)
VLTI, '

where w(k) = A2+ m? i is a real parameter and O is the volume of a

rectangular box and

- ok Wl
f)xz %.5E€‘h'r. (37)

We stress that an independent copy of the one-dimensional momentum lattice

defined in the previous section was introduced in each point of this k-latbice

50 that P- = Prand 1¢, T and 5S¢ have the same definitions given previously.
5. (16- lf) ancl (273, th[Ouﬂh the substitution £ — P;. Moreover,

AL = 5Ty, (38
Ag = T 5, (39)
Jolky = @il ag 4 B /a} , (40)

satisty the same algebra given in eqs. (9-11) for each point of this A-lattice
and the operators 4 , Ag and Jol k) commute among them for different points

of this k-lattice.
By a straightforward computation the Hamiltonian

H= | d‘3-r(1—[( L 4 ulp(F O 4 o7 e~ V4 mhe(r. f)) . _
(41}
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where 1 is an arbitrary number, can be written as

1 e e o e
H = 5 37 k) (SN + 17 4 (14 0) SV = [0 = Dag — 1) . (42
Note that in the limit ¢ — | {u — 0). the above Hamiltonian is proportional
to the number operator.
The eigenvectors of H form a complete set and span the Hilbert space of
this system. they are

0y, ALY, ALALIO) for b # K (Al0). (43)

where the state [0) satisfies as usual Az{0) = 0 for all i and Az Al for each

i satisty the ¢-deformed Heisenberg algebra given by egs. (9-11).

Let us define £09(k) as the energy eigenvalue of the state {A2)7/0). Note

i
that for the Hamiltonian in eq. (12) we have £'%)( ') #£ 2EWEY which is a
property of non-additivity similar to that we commented jllbt above of eq.
(28) for the composed system made with fermions pairs.

The time ev olution of the flelds can be studied by means of Heisenbers's
equation for ~¥ Ag and 5z Now. let us define

NG = U+t ) (SN 1) - 2y

Iy

(I +u+ ¢ HAE(N o) (+4)

1\J|r—~lu|-—

Thus. using egs. (42) and {9-11) we obtain
¢ 4*} = wik) AL h(vp) (43)
The Heisenberg equation can be solved and the Fourier transformation shown
in eq. (33) can thus be written as
o(F t) = ol ) + ol F. 1), (46}
where . )
C!(F.t) - Z —_— ‘;lgefk.I“—i?_".u'(k)ﬁ(:’\f';:_)f . (“]:T)
Ag given in eq. {47) is time-independent and a7, #)T is the Hermitian con-
jugate ot «(rF. ).
The Feynman propagator DF(xy.wq) defined, as usual. as the Dyvson-
Wick contraction between ' ofr) and ofr:). can be computed USINE eqs.

'Our notation means that »; = (ri ¢
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{9-11) and (46-47) and 15 given in the integral representation as

‘_’E:‘.’\'.F—tko AN A

N ~1 SN+ 1)
DY(z) = (2w)4/ YN l.kz — — (N = N = 1), (43
where, in the second part of the right hand side of the above equation can
be obtained just doing vV — N — 1. Note that when ¢ — [, A{.Vz) — | and
SN +1)2=S(N)? — L. the standard result for the propagator is recovered.
It is interesting to point out that this propagator is not a simple c-number
since it depends on the number operator V.

We shall now present the result of the first order scattering process 1 +2 —

I+ 2 for p1 # ps # pl # py with the initial state

L2y = AL ALY (4]

anc the final state

.2y = AN AL (50,
where 4, and .‘l;x satisfv the algebraic relations in eqs. (9-11). These particles
are supposed to be described by the Hamiltonian given in eq. (1} with an
interaction given by A [ : o7 ) : &®r. To the lowest order in A, we have

(now 5 means the standard S-matrix)

Q)

(19,2512 = —a,\/d‘hzu’.z’l pot(z):[1.2) (31

[n [9] we computed the first order scattering process and we obtained the

following result

NP+ P =P =B,

(1',2'15]1,2) =

where

(531

and Q = (1 4+ u +¢*)/2. Note that when ¢ — | we have Vg T L, w = 0.
() — | and eq. {32) becomes the standard undeformed result (12,
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3.2 Wick’s expansion and second order computation

[n order to compute the scattering process | +2 — ' +2' to second order
the coupling constant we muyst use the Wick's expansion. The propagator i
the present case. see eq. (431 is not a simple c-number since it depends on
the number operator V. This fact induces to modifications in the stancdard
Wick expansion.

The coasequences of the propagator being not a c-numiber can already be
seen in the Wick's expansion for three flelds. After standard calculations we
obtain

Flolao{as)o(rs)) = oler)olrajofes) : + olro(ry)oles)
[S—

+iolzjolas)eles) : + olrp)ole)olas) . (341

where : o{wp)o(as)o(xs) : is the standard normal orcer of the product of
three fields and

roled)olea)élas) = D¥ (1. x,) ofay) . (53)
| I
colr)o(ay)o(rs) = O(LL'I)Dg(.Z’g..L';g} ‘ (36}
[
ole1}olw)é(rs) i= D xy)oley) + ol () DY ey 2s) (37
N

since the propagator is not a c-number. As will be shown in appendix A
for the Wick's expansion of four fields. for four felds or more an additional
difference appears. In certain terms of this expansion the order the number
Operator appearing in the propagator is altered by an integer.

We are going now to compute the scattering process of the previous sib-
section to second ovder in A

(1. 2501, 2), = Lf)i_)',\'z /‘/fm- Ay 21T (oM e) oMy L2y . (50,
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where T denotes the time-ordered product. [n order to convert the time-
ardered product into a normal product we use the Wick's expansion taking
mto account that the propagator is not a c-number. This was done using
a ptoolam of algebraic computation. Coming from the Wick's expansion of
T o'r) = ¥ y) 1) there are three representative terms that contibute to
the scattering process of eq. (59) up to second order in ). theyv are:

a'lejal(zhalyiaiy) DY (e y) DEle. y) . (60
o’ (y)al{y)ateial) DF (e )1 DY (2. y) . (61]
a'(z)el(ylalz)a(y) DE e y) DE(x.y) . (62)

All the other terms contributing to the second order scattering process arve
different from the above terms only by the position of the propagators in
eqs. (60-62) or by a shift of the type Neg = N+ (5{,,;); in the propagators
appearing in eqs. (60-62).

Let us firstly compute the second order contribution to the scattering
under consideration coming from the term given in eq. (60). As seen in eq.
(43) the propagator has two terms and we start considering only the first
terrn of the propagator since. as it will be clear in what follows, the second
term from the propagator gives a trivial contribution. Thus, putting the
representative term given in eq. (60) into eq. (39). taking the exponentials
and S{:V) outside the matrix element. using

(01 A AL AL Ag Ag AL AL I0) = N {NJ0g 5 02,55 7 87+
_'\"'5;\.5(572;;?)(5-, L0 _bp 5 bz 5 .-‘VL')‘)AE(&;”E)5;:,!;25;‘4,), Mplé,;,,‘, -

ksl ke hap'y Thip's

AE(S,

we can sun: over the A's coming from the Fourier expansion of afz) given in
eq. (47) obtaining, after a redefinition of the time as ¢ — ¢/A(0)

Co ‘\-'5‘,\2 dFadiydik dtky
(L 2181L2) = sonmirns /(A:'f (R )

{hl + Ko —~ Pll - Pfg)..l"

+iP A+ Py — k= ra)y
{64

I; 1 .P—
ep[o

S(L+8; o +8g 5 S48 o + &ﬁ)
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where
o= (khok!) =12 165
b= (B (661
ho = h {8z 5 + 0z 5] [RI0) . (67)
Using the property [75 da flo+0r0) = [ dov f(x) we can integrate eq.

(64) over r. y and using btanclazd properties of delta iunctions we call also
integrate over &y or &, obtaining

P+ PP P, (63

S, 2):

[V

2022

where [ is the standard one loop divergent integral that appears in the usual
A-of model with value

1
[=[d'% .
/ Tam[(—k 4+ 5)2 + m?] [69)

I\.J

where s = P, + F,. As usual the finite part of this integral can be computed
using for example the method of dimensional regularization (L3] giving the
standard result.

We recall again that the propagator (see eq. (43)) has two terms and in
the above computation we considered only the first term of the propagator,
Now let us discuss the consequence of using the second term of the propagator
in eq. (43) for the first propagator appearing in eq. (60) and the first term
of the propagator for the second propagator appearing in eq. (60). After a
similar computation as the one described above that vesulted in eq. (63) we

obtaln

NES(0)2N

P+ PP =P T, (70

which gives a trivial result since ${0)* = 0. We will have this trivial result
every time the second term of the propagator enters the game. Thus. the
second order contribution to the scattering under consideration coming trom
the term given in eq. (60) is given in eq. (63). We note that the difference
from the standard spin-0 comes only from the constant NE/Q* which goes

to one when ¢ — 1.
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Now. let us compute the contribution to the scattering in eq. {39) which
avises from the term shown in eq. (61). This computation goes along the
same lines as the previous computation and the result is

P+ P~ P =P [ (71)

where [ = I{s — —3),

Finally, we discus now the contribution to the scattering in eq. {39)
coming from the term shown in eq. [62). The first thing to do is to put
the representative term given in eq. (62) into eq. (39), next. performing the
following steps: :

L. Take the exponentials and S{:V) outside the matrix element.
2. use eq. (63).

3. sum over the &'s coming from the Fourier expansion of afa).
4. redefine ¢ — ¢/h({0).

5. use the property given just below eq. (67).

6. ntegrate over d*r and 'y,

we obtain

VA2 / drodtydthidth,
7,0 b Pk 4 m?)

= 3VQ? jwrmy g
Sl +hy+ P— P8 =k —ky+ Py — Py)+
ks + ka4 Py — PR =k = by + Py = Py +
ki ky = P— P)8t =k — ke + Py = P+
64

(ki + ks + Py — POS —ke — ks + B — P1y)]

—

(72)

Note that the first two terms in the main bracket correspond to a contribution
in the {-channel while the last two in the u- channel. Considering separately
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the contributions in the two channels we have

C o A0 . |
(L. 2)5]1.2)5" = T == A B = P = P 1773
R N T
! .)’ o g4 Chte ‘\‘5\‘\2 4 / I e -
(1-~f~5|1~-)3 ZSD‘ZQ? p—— - : (S(Pl‘f'Pg“Pl—Pg)[ .{I-H
: \/,‘wp:u;lg.:wp-,!ub .

where [ = [{s = t)and " = [1s — u) with ! = Pi — P, and t = P, — P/,

We have computed so far the contribution to the scattering process | —
2 — 1"+2" to second order in A coming from the representative terms given in
eqs. (60- 62). The other terms appearing in the generalized Wick's expansion
of T(: ¢*{x) - 0'(y) 1) that contribute to the scattering are of the form given
in eqs. (60-62) having the propagator in different positions of the product.
Moreover, in these terms N has possible shifts of the type Nz — V. +
ﬂ15,ﬂ.gl 4,—;2-_)6?.'.&-2 +n36,ﬂ'k—3 +mdﬂ“‘{—4. where n; = 0.1.2, 3. 4; 1s the momentum
assoclated with the propagator and A—j the momenta of the fields. But. since
we have alwavs a finite number of deitas in this shift and the functions
S(x) and A(x) that will carry these shifts are finite at the shifted points
then it will be possible to exclude the finite number of the shitted points.
The final result will be independent on the position where the propagator is
inside the product shown in egs. (60-62) and it 1s also independent of the
shifts. Thus the result of using any other term of the Wick's expansion of
T oMx) = oty) ) ineq (39) it it is different from zero. it will be necessarily
one of the three results we presented in eqs. (63), {73) and (74).

In summary, the scattering process | +2 — 1" + 2 for p; # p2 # p} # 1}
with the initial state and the final state given 1 eqs. (49, 30) respectively.
where A,,, A;l satisfv the algebraic relations in eqs. {9-11) and the particles
are supposed to be described by the Hamiltonian given in eq. (41} with an
interaction given by A [ : o7 t)* : d®r is given up to second order in the
coupling constant A as

'ri 28

9) = ANS . A -ﬁo
Q @
where A4;, A3, AL and AY are the same contributions that we find in the
standard A-6* (non-deformed) model corresponding to the tree level, the «.
t and u channels for one-loop level respectively. Then. the contribution we

find in the perturbation series due to the phenomenological way we consider

-1

ot
Rag

(1, 2'1511. (A3 + A5+ 43) (
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the structure of a particle appears only as non-trivial factors depending on
the parameters of the algebra. namely the factor N§/Q for the tree part and
N3 /Q? for the one-loop level.

These algebraic contributions are non-trivial since we cannot get rid of
them by a simple redefinition of A. Note that. depending on the values of the
parameters of the algebra we could improve or even destroy the convergence
of the perturbation series. This result shows that the structure of a parti-
cle can change in a non-trivial way the behavior of the perturbation series
corresponding to the physical process involving these particles.

4 Final comments

Motivated by a result given in reference [3] we have used the g-oscillator al-
gebra as an approximated description of composed particles in the context of
the formalism of second quantization. We have constructed a QFT which cre-
ates al any space-time point, particles described by a ¢-deformed Heisenberg
algebra. Apart a non-propagating term the free Hamiltonian is the standard
Klein-Gordon Hamiltonian describing spin-0 particles. The propagator for
the free theory. defined as the Dyson-Wick contraction between ¢(.r;) and
o(x:). depends on the number operator. thus being not a c-number anymore
and this fact introduces differences in the Wick's expansion as explained in
the paper.

We have computed the scattering process 1 +2 — 1’ + 2" to second order
in the coupling constant and the final result given in eq. {75) shows that the
structure of a composed particle. viewed here by the algebraic structure, can
modify non-trivially the perturbation expansion of a specific process. The
modification we find due to our phenomenological way of treating a scattering
of composed particles results as follows. The perturbative expansion corre-
sponding to the scattering under consideration, computed with the standard
A-¢" interacting term, is given term by term by a factor coming from the al-
gebraic structure multiplying the non-deformed result. This fact may provide
interesting surprises when implementing the ideas developed here to specific
phenomenological models. Note that depending on the values that appear in
the scattering coming from the algebra the convergence of the perturbation
series can be changed.

We suspect that the above mentioned rule we found, to second order in
the coupling constant, to construct the deformed scattering 1 +2 — 1" + 2’
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in terms of the non-deformed one and the algebraic structure is general. The
relevant differences from the standard computation are the algebraic part of
the matrix element inside the integrals {as in the integrands in eqs. (Hh)
and (39)) and moreover comes from the factor S(N) in the first part of the
propagator.

We have developed here a QFT for the linear case of the generalized
Heisenberg algebra (GHA) we summarized in section 2. Since a realization
similar to the one presented here in egs. 125)-(27) was presented in [1]-[3] for
three non-linear particular cases of the GHA we also suspect that a consistent
QFT can also. besides the QF T considered here. be developed for a subclass
of the GHA.

Acknowledgments: The authors thank CNPq for partial support.
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A Wick’s expansion of four fields

The Wick's expansion of four felds is the simplest case in which we can see
the differences from the standard case. In order to establish our notations.
we define the field ofx,) as given in eqs. (46-47) with & — A—t and & beting
the momentum to be integrated in the propagator.

With the notations defined above we obtain after standard manipulations

Tiolrelr)elrs)e(ry)) = oleoira)olas)efes) - 4+ olw ool ry)oiry

+ rolejeler)olay)oley)  + s olroler)olra)oley) - + 1 olejolry)olis)oles)
+ rolr)olrylolrs)oley)  +olryjeley)o(es)dley) -+ ole)elrolrlole,
+ :olz)o(no(rs)olay) « +: olojolez)oles)olry) {70}
L—l:]__._____.i L | S
where
colegoles)olejolay) = Dy(ay aa) r olrs)o(aa) -, (77)

Colzno(w:)élas)o(r) = Dylwy, ) [alryalzs) + allziale)]

+GT(.ITQ)D‘\-'(‘L'1.i’;;)@(.l’_}) \ (TS)

: Q?(.L'l)O{RE-J)@'(R,'g)?’(I_;) = Dyl e)adryo(es) + of (@) Dy (v vaales)+

a (r3)Dyley, radales) + al(z)a Dyler ay) . (79)

co(ar)olre)oles)d(ry) 1= o) Dvizy, 23)aley) + QT(‘IH)D.\:(I?-1-’:3)0(1’4)+

| I

al(wg)alry) Dyys, (29, 23) o (o) Dy en)aT(e) .
B (30)
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colu)e(r)olas)e(ry) t = ale ) Dyley. rydales) + o (o) Dy r)alrsy)+

| |
a'{ry)al ) Dyleg g + O'r(a’.';.}ﬂ‘{l.‘g)D‘\'l‘:.l'g. i) .
(ol
: 0(11)0(13)0(13)O(I;) = O(‘I‘L)OI: .I‘g) : -D.V(;l‘.‘j--r-&) . {Sl}
:
colryolesio(rslolrs) = Dioy o) Dyvies, xy) . (33;
L | L .
cota)elar)olasjofey) i = Dylo ay) Dy, xy) . (34)
—
cotepjolrz)oles)olay) r = Dyl va) Dyvys, o (02, 23) (33)
. — . Noky

with DA.\-:*% . in egs. {80) and (33) meaning that we substitute Ny + 407 in
Ay E AL

place of NV in the expression for the propagator being & the momentum to
be integrated in the propagator. We note that from the operator dependence
of the propagator its position in the Wick's expansion is important.
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