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семинаров ПОМИ

Том 494, 2020 г.

Т. А. Болохов

ИНФРАКРАСНЫЕ РАСШИРЕНИЯ КВАДРАТИЧНОЙ
ФОРМЫ ОСНОВНОГО СОСТОЯНИЯ СКАЛЯРНОЙ
ТЕОРИИ ПОЛЯ

Введение

Формулировка квантовой теории поля в терминах представления
Шредингера является удобной базой для описания краевых эффектов
на пространстве полевых конфигураций. В этом представлении кван-
товые состояния являются функционалами на конфигурационном про-
странстве классической теории, а наблюдаемые – линейными операто-
рами, действующими на такие функционалы (см., например, [1], [2]).
Функционалы свободной теории строятся как возбуждения основного
состояния, которое является Гауссовым функционалом, то есть экс-
понентой некоторой отрицательно определенной квадратичной фор-
мы. При этом оказывается, что множество конфигураций, на котором
определен Гауссов функционал, с точки зрения поведения в инфра-
красной области меньше множества, допустимого в классической тео-
рии. В данной работе мы исследуем математические объекты, которые
возникают при попытке расширить квадратичную форму основного
состояния на конфигурации с более медленным убыванием на беско-
нечности.

Основное состояние свободного скалярного квантового поля стро-
ится как собственное состояние оператора Гамильтона, дейтсвие кото-
рого на функционалы Ω(ϕ) выглядит следующим образом

H : Ω(ϕ) → −

∫

R3

d3x
δ

δϕ(~x)

δ

δϕ(~x)
Ω(ϕ) +Q∆(ϕ)Ω(ϕ), (1)

где Q∆ – это квадратичная форма лапласиана

Q∆(ϕ(~x)) =

∫

R3

∣

∣

∂ϕ

∂xk

∣

∣

2
d3x.

Ключевые слова: расширения квадратичных форм, свободный квантовый га-
мильтониан, сингулярные возмущения самосопряженных операторов.
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После замены переменных в конфигурационном пространстве в виде
преобразования Фурье

ϕ(~x) → ϕ(~k) =
1

(2π)
3

2

∫

R3

ϕ(~x)e−i~k·~x d3x

потенциальная часть гамильтониана переходит в интеграл с весом |~k|2

Q∆(ϕ(~k)) =

∫

R3

k2|ϕ(~k)|2 d3k, k = |~k|, (2)

а кинетическая часть не меняет свой вид. Это позволяет переписать
оператор H как интеграл по трехмерному пространству

H : Ω(ϕ) →

∫

R3

d3k
(

−
δ

δϕ(~k)

δ

δϕ(~k)
+ k2|ϕ(~k)|2

)

Ω(ϕ),

и превратить уравнения движения

i
∂Ω

∂t
= HΩ (3)

для каждой переменной ϕ(~k) в уравнение движения гармонического
осциллятора с частотой k. Решения уравнения (3) теперь могут быть
построены как осцилляции возбуждений основного состояния, задава-
емого функционалом

Ω∆1/2 = exp{−
1

2

∫

k|ϕ(~k)|2 d3k} = exp
{

−
1

2
Q∆1/2(ϕ)

}

.

Исходя из вида дейтсвия оператора (1), можно заметить, что в об-
ласть его определения входят 2 раза дифференцируемые функциона-
лы, заданные на области определения D[∆] квадратичной формы Q∆.
В то же время, основное состояние Ω∆1/2 задано на области опреде-
ления D[∆1/2] квадратичной формы Q∆1/2 , которая на инфракрасно
расходящихся функциях отличается от D[∆]. Действительно, интеграл

в (2) накладывает более мягкие условия на поведение ϕ(~k) в окрест-
ности начала координат, чем интеграл в

Q∆1/2(ϕ(~k)) =

∫

R3

k|ϕ(~k)|2 d3k. (4)

Например, функции с поведением

ϕ(~k) ≃
1

k2
, k → 0, (5)
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и даже более сингулярным, попадают в D[∆], но не попадают в D[∆1/2].
Таким образом, целью настоящей работы является построение рас-

ширений QM
∆1/2 квадратичной формы Q∆1/2

Q∆1/2 ⊂ QM
∆1/2 : Q∆1/2(ϕ) = QM

∆1/2(ϕ), ϕ ∈ D[∆1/2]

на множество функций с поведением вида (5) в окрестности начала
координат. Такие расширения далее могут быть использованы для по-
строения собственных функций квантовых операторов, включающих
в себя квадратичное длинноволновое взаимодействие определенного
вида.

§1. Симметрический оператор

Квадратичная форма Q∆ на пространстве функций в R
3 порождает

скалярное произведение

(ϕ, ψ)∆ =

∫

R3

k2ϕ(~k)ψ(~k) d3k (6)

и Гильбертово пространство H∆. Действительно, на каждой ограни-
ченной области σ, не включающей окрестность начала координат, про-
изведение (6) эквивалентно скалярному произведению из простран-
ства L2(σ). Для того, чтобы показать, что каждый элемент из H∆

может быть представлен в виде функции, надо лишь убедиться, что
норма, порожденная (6) запрещает особенности типа δ-функции в на-
чале координат.

Квадратичная форма Q∆1/2 в скалярном произведении (6) задается
самосопряженным оператором

T∞ : ϕ(~k) →
1

k
ϕ(~k),

действительно

Q∆1/2(ϕ) =

∫

R3

k|ϕ(~k)|2 = (ϕ, T∞ϕ)∆, ϕ ∈ D(T∞).

Этот оператор определен на линейном множестве D(T∞), которое яв-
ляется пересечением пространств H∆ и L2(R

3). Для построения рас-
ширений квадратичной формы Q∆1/2 мы воспользуемся идеями тео-
рии сингулярных возмущений дифференциальных операторов [3] и ее
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первоначальной реализации в импульсном представлении [4]. Выберем
в качестве сингулярного потенциала следующую функцию

v(~k) =
ρ

k3(k + ρ)
, ρ ∈ R

+ ∪∞

и рассмотрим линейное множество

Dv = {ϕ ∈ H∆, ϕ ∈ L2(R
3) : (v, ϕ)∆ = 0},

где под обозначением (v, ϕ)∆ мы подразумеваем интеграл

(v, ϕ)∆ =

∫

R3

k2v(~k)ϕ(~k) d3k =

∫

R3

ρ

k(k + ρ)
ϕ(~k) d3k.

Функция v(~k) не лежит в H∆, при этом множество Dv всюда плотно в
H∆, а значит его можно использовать в качестве области определения
оператора

Tv = T∞|Dv : ϕ(~k) →
1

k
ϕ(~k), ϕ ∈ Dv.

Этот оператор, являясь сужением самосопряженного оператора T∞,
симметричен. Для того, чтобы говорить о самосопряженных расши-
рениях Tv, нужно проверить его замкнутость, то есть доказать, что
верно

Утверждение. Если последовательность ϕn ∈ Dv сходится в себе в

пространстве H∆ и в пространстве L2(R
3), то существует ϕ ∈ Dv,

такой, что ||ϕn − ϕ||H∆
→ 0 и ||ϕn − ϕ||L2(R3) → 0.

Доказательство. Существование ϕ ∈ H∆ ∩ L2(R
3), к которому схо-

дится последовательность ϕn по нормам в пространствахH∆ и L2(R
3),

очевидно ввиду того, что Tv является сужением самосопряженного
оператора T∞. Из неравенства Коши-Буняковского для пространства
L2(R

3)

∣

∣

∣

∫

R3

ρ

k(k + ρ)
ϕ(~k) d3k

∣

∣

∣
6

∥

∥

∥

ρ

k(k + ρ)

∥

∥

∥

L2(R3)
· ‖ϕ‖L2(R3)

следует конечность интеграла
∣

∣

∣

∫

R3

ρ

k(k + ρ)
ϕ(~k) d3k

∣

∣

∣
<∞, (7)
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а из этого же неравенства, примененного к разности ϕn − ϕ, ϕn ∈ Dv

∣

∣

∣

∫

R3

ρ

k(k + ρ)
(ϕn(~k)− ϕ(~k)) d3k

∣

∣

∣
6

∥

∥

∥

ρ

k(k + ρ)
||L2(R3) · ||ϕn − ϕ

∥

∥

∥

L2(R3)
,

следует, что интеграл (7) равен нулю для всех ρ <∞.
Если ρ = ∞, то функция k2v∞ = 1

k не интегрируема с квадратом

в пространстве R
3. В этом случае можно разделить интегрирование

на две части: по шару BΛ с центром в начале координат и по его
дополнению R

3 \BΛ

∣

∣

∣

∫

R3

1

k
(ϕn(~k)− ϕ(~k)) d3k

∣

∣

∣
6

∥

∥

∥

1

k

∥

∥

∥

L2(BΛ)
· ‖ϕn − ϕ‖L2(BΛ)

+
∥

∥

∥

1

k2

∥

∥

∥

L2(R3\BΛ)
· ‖k(ϕn − ϕ)‖L2(R3\BΛ),

(8)

и воспользоваться неравенствами

||(ϕn − ϕ)||2L2(BΛ) 6 ||(ϕn − ϕ)||2L2(R3),

||k(ϕn − ϕ)||2L2(R3\BΛ) =

∫

R3\BΛ

k2|ϕn(~x)− ϕ(~x)|2 d3k 6 ||ϕn − ϕ||2H∆
.

Здесь правые части стремятся к нулю, и значит интеграл в левой части
(8) также равен нулю. �

Таким образом, мы доказали, что Tv является замкнутым симмет-
рическим оператором в пространстве H∆ с всюду плотной областью
определения, а оператор T∞ является его самосопряженным расшире-
нием.

§2. Самосопряженные расширения

Для построения других самосопряженных расширений оператора
Tv воспользуемся формулами из теории Бирмана–Вишика–Крейна [5].
Мы знаем, что резольвента оператора T∞ является оператором умно-
жения на функцию ( 1k − µ)−1

R(µ) : ϕ(~k) →
1

1
k − µ

ϕ(~k).
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Несложно увидеть, что, в соответствие с теорией сингулярных возму-

щений, результат применения резольвенты к потенциалу vρ(~k)

dµ = R(µ)vρ =
ρ

k2(k + ρ)(1 − kµ)

лежит в дефектном подпространстве оператора Tv

(R(µ)vρ, (Tv − µ̄)ϕ)∆ =

∫

R3

k2
1

1
k − µ̄

vρ(~k)
(1

k
− µ̄

)

ϕ(~k) d3k

=

∫

R3

k2vρ(~k)ϕ(~k) d
3k = 0, ϕ ∈ Dv.

Таким образом, функция dµ является аналитическим дефектным век-
тором оператора Tv для резольвенты R(µ)

dµ − dλ = (R(µ)−R(λ))v = (µ− λ)R(µ)R(λ)v = (µ− λ)R(µ)dλ.

Вычислим скалярное произведение дефектных векторов

(dµ̄, dλ) = (R(µ̄)v,R(λ)v) =
1

µ− λ
(v, (R(µ̄)−R(λ))v)

= lim
Λ→0

γ(µ,Λ)− γ(λ,Λ)

µ− λ
,

(9)

где мы ввели обозначение

γ(µ,Λ) =

∫

R3\BΛ

ρ2

k3(k + ρ)2(1− kµ)
d3k

= 4π

∞
∫

Λ

ρ2

k(k + ρ)2(1− kµ)
dk

= 4π
( ρµ

1 + ρµ
−

ρ2µ2

(1 + ρµ)2
ln(−ρµ) + ln

ρ

Λ
− 1 + σ(Λ)

)

,

(10)

и вынесли стремящиеся к нулю слагаемые в выражение σ(Λ)

σ(Λ) =
ρ2µ2

(1 + ρµ)2
ln(1− Λµ) +

1 + 2ρµ

(1 + ρµ)2
ln

Λ + ρ

ρ
+

Λ

(Λ + ρ)(1 + ρµ)
.

При вычислении интеграла (10) мы считаем, что разрез у логарифма
направлен вдоль отрицательной полуоси и выбрана такая ветвь, что

lnµ = ln µ̄.
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После сокращения расходящихся слагаемых ln Λ и констант скалярное
произведение (9) представляется как отношение разностей

(dµ̄, dλ) =
Γ(µ)− Γ(λ)

µ− λ
, (11)

где

Γ(µ) = −4π
( µ2ρ2

(1 + µρ)2
ln(−µρ)−

µρ

1 + µρ

)

, (12)

то есть в виде, необходимом для построения самосопряженных расши-
рений оператора Tv. Из работ теории Бирмана–Вишика–Крейна сле-
дует, что резольвента RM (µ) такого расширения может быть записана
через резольвенту оператора T∞ следующим образом

RM (µ) = R(µ) +
1

M − Γ(µ)
dµ(dµ̄, · ). (13)

Так как Γ(µ) = Γ(µ̄) и dµ = dµ̄, то выражение RM (µ) удовлетворяет
требованию

RM (µ) = RM (µ̄)

для резольвенты самосопряженного оператора, только если M – это
вещественный (самосопряженный) параметр. Следовательно разность
M − Γ(µ) может иметь только вещественные нули по аргументу µ.
Учитывая, что

ImΓ(µ± i0) = ∓4π2 µ2ρ2

(1 + µρ)
, µ > 0,

можно сделать вывод, что полюса в (13) могут появляться только при
µ 6 0. Несложный анализ показывает, что функция Γ(µ) равна нулю
при µ = 0 и монотонно возрастает до бесконечности при µ → −∞.
Отсюда следует, что при M < 0 резольвента (13) не имеет полюсов,
а сооветствующее ей самосопряженное расширение TM не имеет дис-
кретного спектра. И, напротив, при любом M > 0 резольвента (13)
имеет простой полюс, а расширение TM имеет одномерное собственное
подпространство, отвечающее собственному значению, которое опре-
деляется как корень уравнения

Γ(µ)−M = 0.

В случае ρ = ∞ происходит размерная трансмутация, подобная про-
цессу, описанному в [6]. Функция Γ(µ) превращается в

Γ(µ) = −4π ln(−κµ),
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где κ – новый размерный параметр модели. Знаменатель M −Γ(µ) те-
перь обращается в ноль при любом M , а соответствующее расширение
TM имеет отрицательное дискретное собственное значение.

§3. Перенормировка и квадратичная форма

Для того, чтобы записать квадратичную форму самосопряженного
расширения оператора TM , вычислим его действие в виде перенорми-
ровки возмущения оператора T∞. Введем проекторы

PΛ : ϕ(~k) → PΛϕ(~k) = χ(k − Λ)ϕ(~k),

где χ(k) – это ступенчатая функция Хевисайда. Векторы

vΛ(~k) = PΛv(~k) =
ρχ(k − Λ)

k3(k + ρ)

лежат в пространстве H∆ и при Λ → 0 слабо сходятся к сингулярному

потенциалу v(~k). Рассмотрим самосопряженный оператор

TΛ = PΛT∞ − α(Λ)vΛ(vΛ, · ) (14)

и попытаемся построить его PΛ-резольвенту в виде следующего выра-
жения

RΛ(µ) = PΛR(µ) + b(µ)dΛµ (d
Λ
µ̄ , · ), (15)

где

dΛµ = PΛdµ = PΛR(µ)v = R(µ)vΛ.

Подберем функцию b(µ) таким образом, чтобы при всех µ было вы-
полнено равенство

RΛ(µ)(TΛ − µ) = PΛ.

Подставим в это равенство выражения (14) и (15)

PΛ = PΛR(µ)(T∞ − µ) + b(µ)dΛµ (d
Λ
µ̄ , (PΛT∞ − µ) · )

− αb(µ)dΛµ (d
Λ
µ̄ , v

Λ)(vΛ, · )− αR(µ)vΛ(vΛ, · )

= PΛ + (b(µ)− αb(µ)(dΛµ̄ , v
Λ)− α)dΛµ (v

Λ, · ),

(16)

отсюда следует, что

b(µ)− αb(µ)γ(µ)− α = 0,

где мы обозначили

γ(µ) = γ(µ,Λ) = (dΛµ̄ , v
Λ) = (vΛ, R(µ)vΛ). (17)
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Выразим α через b(µ) и γ(µ)

α =
b(µ)

1 + b(µ)γ(µ)
. (18)

Мы хотим, чтобы функция α(Λ), участвующая в построении оператора
TΛ, не зависела от спектрального параметра µ. Тогда должно быть
верно равенство

0 =
dα

dµ
=
b′(1 + bγ)− b(b′γ + bγ′)

(1 + bγ)2
=

b′ − b2γ′

(1 + bγ)2
=
d(1b + γ)−1

dµ
,

из которого следует, что сумма 1
b + γ не зависит от µ и функция b(µ)

выражается через γ(µ) следующим образом

b(µ,Λ) =
1

α−1(Λ)− γ(µ,Λ)
.

Здесь константа интегрирования α−1(Λ) подобрана так, чтобы функ-
ция b(µ) удовлетворяла соотношению (18). Подставим теперь конкрет-
ные функции vΛ и R(µ) в скалярное произведение (17)

γ(µ,Λ) = (vΛ, R(µ)vΛ) =

∞
∫

0

ρ2χ2(k − Λ)

k(k + ρ)2(1− kµ)
d3k

= 4π

∞
∫

Λ

ρ2

k(k + ρ)2(1− kµ)
d3k.

Как и следовало ожидать, функция γ(µ,Λ) совпадает с функцией (10)
из предыдущей части. Теперь подставим выражение для b(µ,Λ) в (15),
получим

RΛ(µ) = PΛR(µ) +
1

α−1(Λ)− γ(µ,Λ)
dΛµ (d

Λ
µ̄ , · ). (19)

Мы хотим, чтобы резольвента RΛ(µ) переходила в пределе Λ → 0 в
резольвенту (13)

RM (µ) = R(µ) +
1

M − Γ(µ)
dµ(dµ̄, · ).

Это требование выполняется, если

1

α−1(Λ)− γ(µ,Λ)
→

1

M − Γ(µ)
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при Λ → 0 или

α−1(Λ) → γ(µ,Λ)− Γ(µ) +M.

Подставляя в правую часть формулы (10) и (12) получаем

α−1(Λ) → γ(µ,Λ)− Γ(µ) +M = 4π
(

ln
ρ

Λ
− 1 + σ(Λ)

)

+M.

Учитывая, что σ(Λ) → 0 при Λ → 0, можно сделать вывод, что если
взять в качестве α(Λ) функцию

α(Λ) =
(

4π
(

ln
ρ

Λ
− 1

)

+M
)−1

,

то выражение (14) будет, по крайней мере слабо, стремиться к самосо-
пряженному расширению TM , определяемому параметром M . Такой
вид представления действия оператора TM позволяет записать выра-
жение для его квадратичной формы в виде предела по параметру ре-
гуляризации Λ

QM
∆1/2(ϕ) = lim

Λ→0

(

∫

R3\BΛ

k|ϕ(~k)|2 d3k − α(Λ)
∣

∣

∣

∫

R3\BΛ

ρϕ(~k)

k(k + ρ)
d3k

∣

∣

∣

2)

. (20)

Видно, что если функция ϕ(~k) попадает в область определения опера-
тора T∞, то она лежит в L2(R

3), норма интеграла

∣

∣

∣

∫

R3\BΛ

ρϕ(~k)

k(k + ρ)
d3k

∣

∣

∣
6

∥

∥

∥

ρ

k(k + ρ)

∥

∥

∥

L2(R3)
· ‖ϕ(~k)‖L2(R3)

ограничена, всё второе слагаемое стремится к нулю и правая часть в
(20) переходит в интеграл

QM
∆1/2(ϕ) =

∫

R3

k|ϕ(~k)|2 d3k = Q∆1/2(ϕ), ϕ ∈ D(T∞).

В то же время, если ϕ(~k) ведет себя в окрестности начала координат
как

ϕ(~k) ≃
1

k2
, k → 0,

то первое слагаемое в QM
∆1/2(ϕ) расходится как −4π ln Λ, квадрат ин-

теграла во втором слагаемом расходится как 16π2(lnΛ)2 и, с учетом
знаменателя в α(Λ), ведущего себя как −4π ln Λ, разность (20) при-
обретает конечное значение, зависящее от M . То есть квадратичная
форма (20) является расширением квадратичной формы Q∆1/2 .
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Заключение

Мы показали, что квадратичная форма оператора ∆1/2, участву-
ющая в построении основного состояния свободного квантового поля,
имеет нетривиальные расширения на набор функций, сравнительно
медленно (как |~x|−1) убывающих на бесконечности. Полученные рас-
ширения зависят от искусственно введенного положительного размер-
ного параметра ρ, вещественного безразмерного параметра расшире-
ния M и при отрицательных значениях последнего имеют однократ-
ный отрицательный дискретный спектр.
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Bolokhov T. A. Infrared extensions of the quadratic form of the ground
state of scalar field theory.

We extend the quadratic forms of the Gaussian functionals of the free
quantum scalar field theory to the set of functions decreasing in the infinity
as |~x|−1. We use the momentum-space representation (after the Fourrier
transform) and as the scalar product we take the product generated by
the quadratic form of the Laplace operator (potential term of the quantum
Hamiltonian).
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