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We argue that an excess in entanglement between the visible and hidden units in a quantum neural
network can hinder learning. In particular, we show that quantum neural networks that satisfy a volume law
in the entanglement entropy will give rise to models that are not suitable for learning with high probability.
Using arguments from quantum thermodynamics, we then show that this volume law is typical and that
there exists a barren plateau in the optimization landscape due to entanglement. More precisely, we show
that for any bounded objective function on the visible layers, the Lipshitz constants of the expectation
value of that objective function will scale inversely with the dimension of the hidden subsystem with high
probability. We show how this can cause both gradient-descent and gradient-free methods to fail. We note
that similar problems can happen with quantum Boltzmann machines, although stronger assumptions on
the coupling between the hidden and/or visible subspaces are necessary. We highlight how pretraining
such generative models may provide a way to navigate these barren plateaus.
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I. INTRODUCTION

In recent years, the prospects of quantum machine
learning (QML) and quantum deep-neural networks have
gained notoriety in the scientific community. QML
builds on the success of traditional machine learning
and the potential for quantum speed-up. The QML
field has enjoyed increased attention for quantum algo-
rithms for principal-component analysis [1], support-
vector machines [2], kernel methods [3,4], and quantum
neural networks (QNNs) [3,5—8] but experiences setbacks
in the form of dequantization techniques [9—11].

A key part of a successful quantum machine-learning
algorithm is an efficient training algorithm. In recent years,
several barren-plateau results [12—16] have put limitations
on the gradient-based training of QNNs. Quantum bar-
ren plateaus arise from random initialization of quantum
machine models, which typically lead to configurations
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where the objective function is not sensitive to small devi-
ations of parameters. Hence, the gradients of the objective
function with respect to the parameters are exponentially
small. Our result complements the growing literature on
barren plateaus in quantum computing. McClean et al. [12]
showed that unitary quantum neural networks generically
suffer from vanishing gradients exponentially in the num-
ber of qubits. This issue stems from the concentration of
measure [17,18] and has subsequently been demonstrated
for other QNNs [13,14]. Another type of a barren plateau
emerges from hardware noise in the system [15]. The key
observation that we put forward in this work is that barren
plateaus can occur because of an excess of entanglement
in deep quantum models.

In this paper, we prove that entanglement between vis-
ible and hidden units hinders the learning process. The
inclusion of hidden units is essential in traditional machine
learning. Without them, the expressive power of neural
networks would be severely limited and deep learning all
but impossible. In spite of this, there has been very little
attention paid to the effect of hidden units on the training of
QNNs. Surely, the expressive power of hidden units would
translate to the quantum world. Numerical experiments
seem to contradict this intuition. A small-scale numerical
study [19] has shown that the inclusion of hidden units in
quantum Boltzmann machines does not lead to a higher
quality of reproduction. While this can be explained as
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being due to the small size of the QNN and simple data,
in our work we show that quantum Boltzmann machines
do not benefit from a large number of hidden units.

We build intuition from exploring the statistical rela-
tionship between a random state and maximally entan-
gled states in a bipartite quantum system. This intuition
has been well explored within the thermalization commu-
nity, which examines how statistical-mechanical ensem-
bles (such as the microcanonical ensemble or the canonical
ensemble) emerge for closed quantum systems through
entanglement between the system of interest and a reser-
voir, making the resulting density matrices practically
indistinguishable from the predictions of the correspond-
ing ensemble when Dgygiem << Dieservoir- In particular, we
build upon a classic thermalization result [20] that shows
that for a random initial state, the state on the visible units
is with high probability exponentially close to a maximally
mixed state. However, if the state is chosen from a k-
design, then its distance to a maximally mixed state scales
as (Di/Dh)k which is seen in Theorem 5.3 of Ref. [21].
We show that it is very difficult to escape from this state
because the gradients will be exponentially small. As such,
for a wide array of QNNs, randomness and entanglement
hinder the training.

This surplus of entanglement to some extent defeats the
purpose of deep learning by causing information to be non-
locally stored in the correlations between the layers rather
than in the layers themselves. Since the objective function
has, by definition, support only on visible units, only these
qubits will be measured. As is customary in deep learn-
ing, the state of hidden units is ignored, which can be seen
as tracing it out. Thus, when considering only the visible
subsystem, we find that the resulting state is close to the
maximally mixed state. Indeed, we show that such situa-
tions are generic as well and that gradient-descent methods
are unlikely to allow the user to escape from such a plateau
at low cost. This observation holds for both “feed-forward”
QNNs as well as Boltzmann machines and suggests that if
quantum effects are to be used to improve classical models,
then they must be used surgically. Furthermore, our work
establishes a link between the thermalization literature and
quantum machine learning that has been hitherto absent
from the literature [22,23].

We focus on two types of QNNs depicted in Fig. 1,
feed-forward unitary quantum neural networks inspired by
the quantum approximate-optimization algorithm (QAOA)
and quantum Boltzmann machines [8,19,24].

Quantum Boltzmann machines can also be trained
generatively [19], meaning that rather than optimizing
a training objective function that is a linear function
of the density operator, such as Tr[Oop;Tr; (e /7)),
we aim to optimize a nonlinear function of the den-
sity operator such as the quantum relative entropy, i.e.,

S[ptrainl |/0 (6)] = Tr{ptrain log(ptrain) — Ptrain IOg[lo (0)]}’ by
generating a quantum state p(0) using the Boltzmann

machine that optimizes this divergence with the training
density operator.

A key assumption of our results is that an untrained
quantum neural network produces outcomes that are close
to being random. Specifically, we assume that the initial
circuit for the unitary model can be seen as sampled from
an unitary 2-design. This assumption is well justified for
quantum circuits with a depth that grows polynomially
in the number of input qubits and that are generated by
random sequences of universal gates [25-27]. A random
circuit consisting of / layers of alternating operators in the
Z or X basis can also approximate a 2-design to accuracy
© (D), where D here is the dimension of the Hilbert space
[28]. Lastly, there are exact and approximate 2-designs that
can be implemented by logarithmic-depth quantum circuits
[29,30]; however, it is unclear how likely one would be
to accidentally initialize a unitary quantum neural network
to such a construction. In the case of quantum Boltzmann
machines, we make assumptions about the eigendecompo-
sition of the initial Hamiltonian that are stated in Theorem
4. We introduce a parameter I" that characterizes the bound
between energy levels of the Hamiltonian and figures in the
bound on eigenvalues. We further assume that the eigen-
vectors of the Hamiltonian are typical of the columns of
a random matrix drawn from a unitary 2-design. Such dis-
tributions are commonplace for Hamiltonians that describe
complex quantum systems [31].

II. THE IMPACT OF ENTANGLEMENT ON DEEP
MODELS

The central question of our work is to understand how
the entanglement in the neural network affects the vis-
ible units. Instead of providing speed-up, entanglement
between visible and hidden units causes thermalization
on the visible subsystem. Thus, the inclusion of entan-
glement between the hidden and visible layers of a QNN
can, unless carefully controlled, be harmful to the neural
network model.

The relationship between the representational power of
a neural network and the degree of entanglement between
the visible and hidden systems has been discussed in Ref.
[32]; however, here we reexamine this question and arrive
at a different conclusion. Specifically, we conclude that
large amounts of entanglement (as quantified by a vol-
ume law) can be catastrophic for the model; whereas an
area-law scaling for the entanglement entropy between the
hidden and visible can often be tolerated.

To see this, we need to make a few formal definitions.
Let S ¢ CPvPrxPubi be a family of parametrized density
operators, where D, = 2" is the dimension of the #,-
qubit visible subspace and D; = 2" is the dimension of
the hidden subspace. For each p € S, the qubits can be
uniquely assigned to the vertices of a graph G on a ver-
tex set V;, JV,, where V), consists of log,(D,) = n, and
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FIG. 1.

Examples of QNNs. (a) A quantum unitary network characterized by a circuit with parametrized unitaries U; = e

—i6; Hj
s

where the 0; are the parameters that we aim to learn and the H; are Hamiltonians that specify the QNN. The output is then

U, ..

.,0,) |¥o), where |) can be taken to be |0...0) for generative learning. In this model, visible units correspond to the

qubits on which we evaluate the objective function, in this case the last two registers. The remaining qubits are called hidden units. (b)
Quantum Boltzmann machines (QBMs) defined on a graph. Each edge and each vertex correspond to a weight on a local Hamiltonian
corresponding to the pair of qubits or a single qubit. The top layer of units (circles) corresponds to visible units and the bottom layer
(rectangles) are hidden units. QBMs model data as a thermal state e /) /Z(6) := e~ 2.i%fli /Tt (e~ 2i%"). Without loss of generality,
we take Tr(H) = 0 for all quantum Boltzmann machines. The aim when training a quantum Boltzmann machine is to learn a vector 6
such that for a training objective function given by Oy, that acts on the visible subsystem, we maximize Tr(Oopi Try[e 7@ /Z(6)].

V,, of log, (D) = nj, qubits. We then define n,(f) to be the
number of vertices in V, that are at least graph distance
j away from the vertices in V;, and we define nﬁl’) to be
the analogous number for the vertices in V), (see Fig. 2).
We then say that S satisfies an area law if for all p € S,
S[Try(p)] € @(n,gl)); similarly, we say that S satisfies a
volume law if |S[Tr,(p)] — log(D,)| € ®(D,/D;), where
S is the von Neumann entropy. Note that here we specifi-
cally choose a slightly stronger definition of a volume-law
scaling than is used in some other settings. In our context,
the leading-order constant factor is important to bound
the remainder term for a finite value of Dj,. With these
definitions in place, we can concisely claim our result.

Proposition 1. Let S be a family of density operators with
visible dimension D,, and hidden dimension Dy, > D,, with
n and nél) qubits in the first visible and hidden layers,
respectively. We then have that for any operator on the
visible subsystem O,y and p € S C CPvDy*DuDy

1 Tr{(Oo; & In)[p — 1/ (DyDy)1}] (1

is in O(||00bj||oo\/log(Dv) — nﬁ,”) if S satisfies an area

law and is in O<||00bj||om/(Dv/D;,)> if S satisfies a
volume law, where || - || Is the spectral norm of an
operator.

Proof. The proof follows from standard inequalities for the
quantum relative entropy:

1
E”Trh(p) — 1,/Dy|I} < S[Trs(p)||1,/D,]
= —S[Tru(p)] + log(Dy).  (2)
Then, from the von Neumann trace inequality, we have

ITr[(Oob; @ 1) (0 — I,/D)]| < 100w;lloo I Trs(0) — L, /Dy |l
< [ Oowjllsoy/2{log(Dy) — S[Try(0)]}- A3)

If p satisfies an area-law scaling, then S[Tr;(p)] € O (n{D),
from which the claimed result for the area-law scaling
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FIG. 2. For an area law, the entanglement entropy scales as the
number of qubits on the boundary (in the dashed rectangle).

immediately follows. If, instead, we assume that p obeys
a volume law, then |S[Tr,(p)] — log(D,)| € ®(D,/Dy) =
(2mM "), |

This shows that if our quantum neural network outputs
states that satisfy a volume law, then asymptotically the
predictions of the neural network would be no better than
random guessing. In contrast, quantum neural networks
will not necessarily observe this problem if the entangle-
ment entropy is characteristic of an area-law scaling unless
the number of hidden units in the first layer becomes much
larger than the number of visible units. We therefore see
that uncontrolled entanglement, such as that yielded by
volume laws, can be catastrophic for a quantum variant
of deep-neural networks that requires a number of hidden
units much larger than the visible units. Instead, limited
entanglement yielded by area laws may be more desirable.
This means that when designing neural networks, it is vital
to aim for sub-volume-law scaling. However, such states
often have concise representations using matrix-product
states [33] and so might be no more performant than clas-
sical neural networks. Nonetheless, we show in Sec. 111
that such sub-volume-law scalings are not typical and that
almost all quantum neural networks within the ensembles
that we consider obey volume-law scalings.

III. TYPICALITY OF VOLUME-LAW SCALING

While area laws occur for certain systems [34,35], such
as ground states of gapped translationally invariant Hamil-
tonians on lattices, we expect volume-law scalings to be

much more common. This intuition can be made rigorous
by making appropriate assumptions about the interactions
between the visible and hidden layers in the model. In par-
ticular, we assume that the quantum states on the joint
system of the QNN approximate a Haar random state. In
practice, this assumption is too strong, as Haar random
states typically require exponentially long quantum cir-
cuits to generate them. Instead, we focus on ensembles
generated by unitary 2-designs.

Proposition 2. Let U e CPPwPli pe drawn from a
unitary 2-design and let H = U'SU for some diago-
nal matrix S € CP*P, where D = D,Dy, If either p =
U|0) (0| U (unitary network) or p = e /Tr(e ™) (Boltz-
mann machine), then for any bounded operator Oy, €
CPv*Dv qcting on the visible subspace, we have that

| Dy
|Tr [(Oopy ® In)(p — 1/D)]| € O (||00b,-||0o D_h> ,

with high probability over U.

Proof. Let us first examine the case of p = U’ |0) (0] U.
We have that if we take the expectation value over U drawn
from a 2-design, then

| E(Tt[(Oobj ® 1) (U" 10) (01 U — 1/D)))]
< 1| 0ot BN Tra (U 10) (01 U = 1/D) 1

< ||Oobj||oo\/DvE||Trh(w 0) (0| U —1/D)]5.  (4)

Since the partial trace of a density operator is a density
operator, it follows that the argument is positive definite
and in turn that the result can be written as

10abill oo/ E(Tt[(p — 1/D) & (p — I/D))(Fyy ® 1)),
)

where F,, is the flip or swap operator that swaps the two
visible subsystems.

Since the result is quadratic in the probability distribu-
tion, we have, from the definition of a unitary 2-design,
that

E(Tr[(p —1/D) ® (p — 1/D)])
= EHaar(Tr[(p - I/D) & (/0 - I/D)]), (6)

where Ep,,, is the Haar expectation value. The result then
follows immediately from invoking Theorem 2 from the
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result of Popescu et al. [20], that

1 OabilloovVE(Tt[(0 — /D) ® (o — 1/D)](Fyr @ 1))

D,
€0 <||00bj||oo\/D:h> . (7

Next, let us assume that p = e~ /Tr(e~). We have, from
the definition of H and the previous result, that for any
eigenvector |j) of H,

|Tr [(Ootj ® I)(1j) (| — I/D)]| € O (”Oobj“oo\/g:Z) .

(®)
Since p = Y= ) (1 eV Te(e™) := 3 Eu(lf) G,

the required result immediately follows by interchanging
the order of the expectation values over the mixed state and
over the unitary 2-design. These results also hold with high
probability as a consequence of Markov’s inequality. W

This shows that for both the Boltzmann machine as well
as unitary quantum networks, any observable measured
on the visible layers will be indistinguishable, in expecta-
tion, to the maximally mixed state with high probability. In
other words, the presence of entanglement actually weak-
ens these models as the dimension of the hidden subsystem
grows relative to the visible subsystem. For deep net-
works, we anticipate that there will be many more hidden
neurons than visible neurons and hence that, generically,
entanglement is a bane, not a boon, for deep QNNs.

There are a number of caveats to this analysis. First,
we assume that the states in question are typical of a
unitary 2-design. This assumption may not be appropri-
ate if a structured ansatz is used or if the used circuits
are shallow. The next assumption is that the observable is
supported on the visible system only. The final, potential,
caveat is that gradient-based optimizers may allow us to
train our way out of these typical points and thereby find
a way to productively leverage quantum effects. While the
first two caveats do speak to ways to escape this appar-
ent no-go result, the ubiquity of “entanglement-induced
barren plateaus” will make the third option fail with high
probability.

IV. ENTANGLEMENT-INDUCED BARREN
PLATEAUS

Our arguments for why gradient descent will fail to
improve the quality of a training objective function due
to entanglement between the visible and hidden layers
follows from reasoning similar to that employed in Propo-
sition 2. However, the specific arguments require slightly
more nuanced assumptions, since we need to worry about
how perturbations to the model parameters impact the

resulting state. Such assumptions are also made, for exam-
ple, in the original McClean et al. work that identified
barren plateaus for unitary networks [12]. Further, while
we are able to directly employ existing results from the
literature of thermalization to prove Proposition 2, the nec-
essary conditions do not hold for the gradients operator.
We state the main results below and provide an explicit
proof in Appendices A and B.

A. Plateaus for unitary networks

Here, we prove one of the main results of our paper, a
barren plateau for a unitary neural network. We consider
the case of unitary networks of the form

U, ...,0,) = e Hn =it 9)
as depicted in Fig. 1(a). We consider the case where one of
the parameters is shifted by a constant amount §; and argue
about the maximum possible shift in the expectation of an
observable that is supported only on the visible subsystem.

Formally, we give a bound on the Lipshitz constant A of
the expectation value of Oy, such that

A | Try{Oon Tralp () — p (6 + 801}
- |8kl ’

(10)

for all deviations §; from the model parameters 6.

A major challenge to analyzing what happens when
shifting parameters of a unitary network is that such net-
works are so complicated that the impact of this perturba-
tion is difficult to measure. An example of such an effect
can be seen in the Loschmidt echo, which shows expo-
nential sensitivity to perturbations in the parameters of
complex quantum dynamics [31,36]. Our solution, similar
to that taken in Ref. [12], is to assume that the dynamics
scrambles the states so much that almost all subsequences
of the product ]_[1.‘:l e % form a unitary 2-design. We
then see that the value of the objective function is Lipshitz
continuous with a constant that scales inversely with the
hidden dimension D; = 2" . This shows that the plateau
exists both for gradient-descent as well as gradient-free
methods [37]. A formal statement of this intuition and the
result are given below.

Theorem 3 (Gradient in Unitary Networks.). Assume that
p(0) is drawn from a unitary 2-design, where p(0) is
generated through a unitary ansatz of the form

N 1

p©) =Te ™% 10) (0l [T ™"

j=1 j=N

that acts on a Hilbert space that is the product of a hidden
and visible space of dimensions D;, and D,, respectively.
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Further, define that H;(0) = ]_[j].‘=1 e "% Hy, ]_[jlzk et
for each k obeys E[H(0)p(0)] = E[H(0)]1E[p(0)]. We
then have that

E (|Tr{ 0o Tralo 0)]}])

is a Lipshitz continuous function of 6 with constant A,

obeying
D,
A € O 100illoolHilloo, [ 7~ ] -
Dy,

The proof of the theorem follows by using the uni-
tary invariance of the trace norm and Hadamard’s lemma
to rewrite the difference between the perturbed exponen-
tial and the original exponential as a commutator series
of Hi(0) and p(f). We then use the triangle inequal-
ity, Cauchy-Schwarz inequality, and the independence
assumption made above to arrive at the result. An explicit
proof is given in Appendix A. A similar result can be
also obtained from Levy’s lemma under a much stronger
assumption, Haar randomness. We provide this result in
Sec. V.

B. Plateaus for Boltzmann machines

Next, we turn our attention to Boltzmann machines. We
show that parametrized Hamiltonians drawn from a unitary
ensemble also experience an entanglement-induced barren
plateau. The nature of this plateau, however, differs from
that of the plateau of the unitary network in that it occurs
under reasonable assumptions if Tr(/;)? /Tr(hﬁ) € o(Dy),
as we see below.

Theorem 4 (Gradient for Boltzmann Machines.). Assume
that H € CP*P is a random Hermitian matrix drawn
from an ensemble in the following manner: a diagonal
matrix with eigenvalues E; € R is chosen according to
a probability Pr(E;) such that max; B{1/D*[}"; , (E; —
E) "'} < I'? and is then conjugated with a unitary drawn
from a distribution that is a unitary 2-design. Let Hy =
hy, ® hy, € CP*P where h,, hy, are fixed Hermitians acting
on the visible and hidden subspace, respectively, and

06 = e_(H+0kH")/Tr(e_(H+6kH")).
Finally, let Oy € CPv*Pv pe g Hermitian matrix. Then
K = Tr{(Oop; & I)[p(Ok) ]}

is a differentiable function that obeys

(A m<ﬁwﬁ+o
obj k — \ —(———>°C 5
6,=0 yiee *\ Dy \D,Tr(h})

with high probability over the ensemble.

oK
30,

The proof of Theorem 4 can be found in Appendix B.
The sketch of the proof is relatively simple. We use the
assumption that the eigenvectors are taken to be columns
of matrices drawn from a unitary 2-design and then use
perturbation theory to argue about the perturbed H. The
use of perturbation theory introduces the parameter I" that
characterizes the inverse minimal gap. We then take the
partial trace of the resulting perturbed eigenvectors to
show that if the reduced density matrix over the hidden
units of the perturbation Hamiltonian H} has zero trace,
then the partial trace over the hidden layers of each eigen-
vector remains the maximally mixed state as per Propo-
sition 2. This partial-trace assumption is needed because
if bias terms are added to the hidden units then one can
disentangle them from the visible units in the ground state
through the perturbation. While such a perturbation may
save the predictive power of the Boltzmann machine, it
effectively eliminates the hidden layers, causing the model
to revert to a shallow one. With these observations, the
results then follow from the use of standard inequalities
and the Haar expectation value of random states given,
for example, in Ref. [38]. The result holds with high
probability as a consequence of Markov’s inequality.

In particular, we find that the gradient of the objec-
tive function with respect to terms that nontrivially act on
the hidden layers is exponentially small in the number of
hidden qubits since, without loss of generality, we may
take Tr(h,) = 0 for all such terms. In contrast, the gra-
dient with respect to the visible Hamiltonian coefficients
need not be exponentially small in the number of hidden
qubits. Indeed, if we have a k-local random Hamiltonian
where each Hamiltonian coefficient is chosen indepen-
dently from a distribution that is independent of D, then
I' € O[log(D)'~*]; thus, for any k > 2, the gradient may
only be polynomially small.

A side effect of these observations is that they explain,
in part, the observations in Ref. [19] that the number of
hidden units included in the model does not increase the
performance of quantum Boltzmann machines. This can
now be understood from the fact that the Gibbs states for
typical Hamiltonians generate thermal states that are close
to the maximally mixed state. Thus, the inclusion of hid-
den units will not typically be expected to increase the
performance of quantum Boltzmann machines.

V. HAAR RANDOM UNITARIES

In the previous sections, we assume that the eigenbasis
the neural networks scramble at least as effectively as a
unitary 2-design. However, if we assume that in the case
of the unitary networks the gate sequence is Haar random
or, in the case of the Boltzmann machine, that the basis
is Haar random, then the type of concentration that we see
can be radically improved. Specifically, Levy’s lemma [20]
can be used in place of Markov’s inequality to show that
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the vast majority of randomly selected networks will have
vanishing gradients. In particular, we have the following.

04 @ I®" for a € {x,y,z} and define

=YY ot + X5 Y el

i i<j a b

Lemma 5 (Levy.). Given a function f : U(D) — R that (1)

is Lipshitz with constant n with expectation value over the
Haar measure E(f"), it follows that there exists C € ©(1)
such that, for any U sampled from the Haar measure on

UD) where we refer to J! as the on-site coefficients and Jj’]l;

as the off-site coefficients of our model. For the unitary
model, we exhaustively sample from the individual terms
in Eq. (11) to construct the individual unitaries. For the
Boltzmann model, we use H as our Hamiltonian.

In Figs. 3(a) and 4, we compare the trace-distance scal-
ing of the maximally mixed state and three models: the
Gaussian unitary ensemble model, the unitary QNN, and
the quantum Boltzmann machine. In Fig. 3(a), we see that
for an increasing number of hidden units, these models
will produce states close to the maximally mixed state.
This result can be understood in the context of Sec. III.
Figure 4 highlights this effect on the data histograms: as
we increase the number of hidden units, we see the trace
distance concentrating around zero.

In Fig. 3(b), we measure how the gradients of the uni-
tary QNN change in relation to the number of hidden units.
We observe an overall decrease in co norm of the gradient
vector as we increase the hidden units of our model. We
generate a fixed thermal state e~/ /Z with on-site coeffi-
cients drawn from a normal distribution with mean 0 and
variance 0.01, i.e., A'(0,0.01) and N (0, 1), for the off-site
coefficients. We then proceed to estimate the gradient vec-
tor of the fidelity, F', between our model and this fixed
state using finite differences. We generate 1000 instances
of our unitary model by initializing all the coefficients
with samples from A(0,1). The figure shows an aver-
age decrease in the oo norm of the gradient vector on a
semilog scale. We also calculate the exponential rate of

2
Probllf (U) — E(f)] > ] < 2exp (%) ,

In the context of training QNNs, the function f in
Levy’s lemma denotes the objective function evaluated
on visible units Tr{Og;Trs[0(#)]}. This result ends up
allowing us to use an even-tighter-concentration result for
the systems than is possible using Markov’s inequality,
because it shows that a large deviation from the Haar
expectation is exponentially small. This further means that
a substantial deviation from the results stated above is in
fact exponentially smaller than would be expected if we
only had a 2-design condition. If unitary k-designs are used
in place of 2-designs, then it should be noted that it is
possible to interpolate between these two results [21], how-
ever, the bounds that arise from using this result under the
assumption that we only have a 2-design are not superior
to our Markov-based analysis.

VI. NUMERICAL RESULTS

We run a series of numerical experiments, summarized
in Figs. 3 and 4, to demonstrate that our asymptotic results
apply to small-sized quantum networks.

We construct our ansatz drawing terms from a random
2-local Hamiltionian model on n-qubits. Let o, = I¥ ! ®

(@ (b) (€)-s6—
2734 xo_ -x- Unitary 1.4 . -%- D,=23=8 . -%- D,=23=8
el - GUE ---- Slope = —0.441 +0.003 4.8 N ---- Slope = —0.423 + 0.025
———— X~ -x- Bound
N -1.6
2™ e _ 50 \\
MR 3 -18 .. 3 N
= = w E -
“a2 Syeee > B o N 5 =%
é ~~~~~~ 3 EN A o E‘l -5.4
o . > N
6 8-22 % 8 NS
2 -5.6 N
-2.4 N
-7 -5.8 \\\
2.6 s N
-6.0
6 7 8 9 10 1 2 3 4 1 2 3 4
Registers: logx(Dy - Dp) Hidden Units Hidden Units
FIG. 3. (a) A log-log plot showing the trace-distance data in relation to our bound. The blue and orange marked values correspond

to the estimated maximum peaks of the data histograms of 1000 model instances and the width of the shaded area corresponds to
two standard deviations for a fix D, = 2! = 2. The green marked values are our bound results, i.e., E[T(p,1/D)] < 1/2./D,/Dy.
(b),(c) Semilog plots highlighting the decay in the expected value of the co norm of the gradient vector over an ensemble of initialized
models. The dashed blue line represents the average of 1000 model instances. The dash green line represents the best fit obtained from
least squares with the standard error of the estimated slope under the assumption of residual normality: (b) gradient estimates for the
unitary model; (c) gradient estimates for the normalized quantum Boltzmann machine.
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FIG. 4. Computation of the trace distance between the reduced density matrices of our models and the maximally mixed state for
1000 instances. The models considered have only one visible unit, i.e., D, = 2! = 2. (a) The empirical trace-distance distribution of
a real-time evolution (e, for t = 10) of Hamiltonians drawn from the Gaussian unitary ensemble (GUE). (b) The empirical trace-
distance distribution of the unitary model. All coefficients are drawn from a uniform distribution over [0, 1). (c) The empirical trace-
distance distribution of the quantum Boltzmann machine. The on-site coefficients, J[’,', are drawn N'(0, 0.01). The off-site coefficients,

J ;Jb, are drawn from A/(0, 1). Moreover, the Hamiltonian is normalized by its operator norm.

decay using least-squares fitting. We see the same over-
all decay as we increase the number of hidden units that
is predicted in Theorem 3, despite the fact that the fidelity
is not an objective function in the form described by the
theorem. We also observe an overall decay in the vari-
ance of the oo norm of the gradient vector as we increase
the number of hidden units. We include these results in
Appendix 5.

The Boltzmann-machine results are summarized in
Fig. 3(c). In order to observe gradient decay in our experi-
ments, we need to amplify the effect of the off-site terms
in relation to the on-site terms to encourage a volume-
law scaling. The emergence of these volume laws can be
understood from perturbation theory, since the leading-
order shift in an eigenvector |n) with eigenvalue E,, propor-
tional to Zﬁén ) (| Hy |n) /(E, — E;). This shows that if
we take |n) to be an eigenstate of the one-body terms in
the Hamiltonian, then the entanglement generated by H is
suppressed by the energy gaps between these states. We,
therefore, choose these magnitudes to be small, so that sig-
nificant entanglement can be introduced in the eigenstates
despite the small values of D, which can be explored on a
classical computer.

In Fig. 3(c), we estimate the oo norm of the gradi-
ent vector of the trace distance, 7, between our model
and its perturbation along each direction in the space of
parameters using finite differences (see Theorem 4). The
on-site coefficients are drawn from /N (0,0.01) and the off-
site coefficients from (0, 1). Moreover, we normalize the
Hamiltonian by its operator norm. Although the results of
Theorem 4 do not apply to the trace distance as an objec-
tive function, we nonetheless see an overall decay in the
gradients as we increase the number of hidden units of the
model. We also see a similar decay occurring when we
consider the variance of the co norm of the gradient vector
(see Appendix 5).

VII. CONCLUSION

We show that for Haar random pure states and thermal
states of random Hamiltonians, the gradient of an observ-
able objective function vanishes exponentially with the
number of hidden units. This shows that common types of
QNN s are not only generically difficult to train via local
optimization methods but also that the addition of hid-
den units will not always increase the power of QNNs.
Indeed, asymptotically we see that unless the states gen-
erated satisfy an area law, such hidden neurons will likely
be harmful.

One can prevent these entanglement-induced barren
plateaus by violating any of the assumptions in our proofs.
The first is to choose an atypical initial state: this has
already been explored in Ref. [39]. Next, one could try
to depart from the use of gradient-based optimization to
train such quantum models. However, it is unlikely that,
without knowledge of the global properties of the training
objective function, such methods would succeed in light of
Proposition 2. Lastly, one can train models using an objec-
tive function that does not correspond to an observable and
is independent of the density operator.

Of the three approaches, it is this last approach that we
advocate greater attention should be paid to in quantum
machine learning. One tactic that can be used to circum-
vent our pessimistic results is to begin a discriminative
learning task by first training generatively according to
a quantity such as the quantum relative entropy [8,19],
which is nonlinear in the quantum state p. We will show in
subsequent work that this quantum generative pretraining
approach can be used to successfully train both Boltzmann
machines and unitary networks and thereby mitigate some
of the challenges identified here for training deep QNNs.

As a final point, it is important to recognize that while
entanglement is a powerful tool to add to our models, it
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(a),(b) A semilog plot highlighting the decay in the variance of the co norm of the gradient vector over an ensemble of

initialized models. The dashed blue line represents the variance over 1000 model instances. The dashed green line represents is the
best fit obtained from least squares with the standard error of the estimated slope under the assumption of residual normality: (a)
gradient estimates for the unitary model; (b) gradient estimates for the normalized quantum Boltzmann machine.

must be used like a scalpel and not a sledgehammer. Quan-
tum properties such as entanglement may be harmful if not
surgically deployed and judicially used. Careful integra-
tion of quantum effects into models will be necessary if we
wish to realize the promised gains of quantum machine-
learning algorithms [40].
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APPENDIX A: PROOF OF UNITARY NETWORK
GRADIENT

Here, we provide a complete proof of Theorem 3.

Theorem 6 (Gradient in Unitary Networks.). Assume that
p(0) is drawn from a unitary 2-design, where p(0) is

generated through a unitary ansatz of the form
N 1
p©) =[Te ™% 10)¢0 ]
j=1 j=N

that acts on a Hilbert space that is the product of a hidden
and visible space of dimensions D, and D,, respectively.

Further, define that Hy(9) = 1_[],;1 e "M% H, ]_[;:k et
for each k obeys E[H(0)p(0)] = E[H(0)]E[p(0)]. We
then have that

E (|Tr{Out Tral 0 (0)1}])

is a Lipshitz continuous function of 6 with constant A,

obeying
D,
A € O 10opilloo 1 Hlloo, | 7~ ] -
Dy,

Proof. In the above theorem, we introduce the quality
H;(0) that concatenates H with a part of the circuit. This
quality arises when computing gradients of the objective
function. To prove the above theorem, we first use the
definition that

k
10(9 + (Sk) = l_[ e_iHjej e—inSk 1_[ e_iHjej %
J=1 j>k

+

k
« l—[ o= iH;0) p—iHid% 1—[ o—iHjY)
Jj=1

j>k

(AT)
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We then wish to analyze the distribution over 6 of |Trv{00bjTrh[,o (@) — p(0 + 8¢)]1}|, under the assumption that the
unitaries satisfy a 2-design condition.

Using Hadamard’s lemma, we can express the difference between the expectation values as

k 1 k 1 f
Try 3 Oobi Tty | (0) — l_[ef’]“)feﬂHk“skll_[e’erf p0) nelefefelekl‘sk‘l_[e’Hfgf
j=1 j=k j=1 j=k

2. Tra{Ad? ) [0 (0) 11841

= {Tr, [Outi Ty (0(8) — ™™D p 0™ D) [} = Tr, | O /!

(A2)
qg=1

Next, making the assumption that H;(6) and p (9) are uncorrelated, we can further simplify this result. Our exposition now
follows that of Popescu et al. [20]; which we modify to show that a concentration of measure exists for the commutators
of H,(0) and p(0).

We now work under the assumption that the expectation values are independent. We further denote the expectation
value over the Hamiltonian as [Ey and the expectation value over the state as [E,. If this independence assumption holds,
then we need to argue about the magnitude of terms of the form Ey (Tr, {Tr,[H(0) p(6)1?)). We can estimate this by
introducing two copies of the quantum state and linking both terms through the use of a flip operator F,,s such that

Fo =Y _[v) (0] @ [v) (V'] (A3)

v’

In the following, we use this notation of primed indices to refer to the visible and hidden subsystems of the first and
second copies, respectively.

The commutators in general consist of many different products of Hj and the state operator. Below, we argue about their
form in generality. Let us assume that py, ps, ¢1, ¢» are positive integers. We then wish to compute the product of traces of
the form Trj, (Hr(0)P! pH(0)P2) Try[Hi (6)9! pHi(0)42]. By applying the flip operator and taking the quantum state p(6) to
be |p) (4],

Tr(Ey {Tra[Hi(0)"' 10 H (0)> Try[Hi () pHi(6)721})
= Trow[ By (TralH}' () p () H? (0)] ® Trs[HY' () p () H{* ()]} )]
= Ty Trw[ By (TralHE' (0) 0 (O)HL? (0)] © Tru[HY' (0)p(O)H}* ()} (For ® 1))]
= Tr(Ey{(19) (9| ® |#) (DDIHL' (0) @ H]' (0)](Fuy @ D[HL*(0) ® H{*(0)])). (A4)

The next step in this is to recognize that if |¢) (¢|, the above tensor products are a symmetric quantum state. Therefore,
if we express the state as the sum of its antisymmetric component and its symmetric component, then the antisymmetric
component must be zero [20]. We then see from the fact that p () is assumed to be drawn from a unitary 2-design that the
expectation value is unitarily invariant and we can then follow the arguments laid out in Ref. [20], that

Tr(Eg {Tra[He(0)"' 10 H(0)> Try[H(0)" pHi (6)71})

= 2—D2T {[ (@) [HY'(0) @ H'(0)]
“po+1 || b ) k

x (Foy ® DIH(6) ® H? (9)]] } (AS)
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Next, if we define the flip operator on the dilated space including the hidden and visible units to be F;» = Fyyv @ Fpy, we
can then express [T%™ = %(1 + F,v). Finally, using the properties of the flip operator, we find that we can write

Trv(E¢{Trh[Hk(9)”‘ 10H (0> Tra[He(6)* pH(0)*1})

- <[H’” ) ® H{'()](Fpy ® D[HP(0) ® H}? (9)])

D(D 1) D?

<(FUU ® Fu)[HY' (0) ® H]' (0)1(F,w ® DIHL* () ® H? (9)1)
D(D 1) D?

<[le ) ® H! (0))(Fyy ® D[H(0) ® H (0)1)
D(D +1) D?

<[qu 0) ® H' ()] ® Fuy)[H*(0) @ H? <9>])
D(D +1) D?

(Foy ® DIH2(0) ® H'(0)] D? s Fu)[H{"72(0) ® HY'(6)]
D(D+ T D? DD+1) D2
D? Tru[HY 72 (0)1Tra[H 2 (6)] D? Tr, [H{" 2 (0)]Tr, [H] T (6)]
=5 o : Tty : (A6)
D+1) D DMD+1) D

Therefore, we have from the triangle inequality that

Try (B {Tra[Hi () 1o Hi (0) > Tra[He (0)7 pHe(0)1}) —

D? T T, [HY 72 (0)1Tra[H T (0)]
DO+ D?

(A7)

D? D? = D,

(Tru[HZI*”Z(9>]Trv[H£”*‘“<9>])‘ _ TH 2 O NI T [H( @)l _ [ Hillo ™
Iy = .

Here, the last inequality follows from the fact that the Schatten co norm is unitarily invariant and thus ||H;(0)|lc =

[l Hll -
Next, let us consider the expectation value for one of the terms in the expansion

E (I Traf Ad? 1 5, [0 O)]} 1)
< EW/D,ITri{Ad” ;o [0O)]1}]2)

< /D E(ITry(AdY, o [o @]} ). (A8)

Every term in AdZIk(e)[P (6)] consists of g H(9) and, further, the 29~ terms have a positive coefficient and the 2¢~! terms
have a negative coefficient. The proof of this fact is inductive. For ¢ = 1,

Adyi0)[p(0)] = Hr(0)p(0) — p(0)Hi(0), (A9)

which demonstrates the base case of ¢ = 1. Now assume that the claim is valid for ¢ = p. We then have that

Ao [pO)] = H@)Ady, o [p(©)] — Ady, o [0(O)1Hi(6). (A10)

The induction step follows immediately from this observation and it is clear that the claim is valid for all g.

Now, if we expand (Trh{AdH olp (6)]11)? using the linearity of the partial-trace operation, we find that each term is
of the form Tr,[H;' (0)p (0)H,> (9)]Tr;,[H,fl (0)p(0)H?(0)], where p1 + p» = ¢ = q1 + g2. The expression in Eq. (A7)
then shows us that we can replace each term with [D?/D(D + 1)]Tr,({Tr;, [HZ (0)1¥2/D?) while incurring a small error.
Importantly, this value is independent of py, p2, q1,q2. Thus, since there are 2¢~! such terms with a negative coefficient

040316-11



CARLOS ORTIZ MARRERO, KIEFEROVA, and WIEBE PRX QUANTUM 2, 040316 (2021)

and 29! with a positive coefficient for each of the partial traces, there are similarly 229~ terms with a negative coefficient
in the expansion and 22¢~! with a positive coefficient. Ergo, the sums over all such terms present in the adjoint are zero
up to the small error terms given in Eq. (A7). Thus we have that

D EAToAA,  [p@IBD < @I1Hil)? [ (All)

Next, from Eq. (A10), we have that
=, Trp{Ad? ;) [0 (0)]1}18k19
q!

Trh{AdIi,’Hk(Q)[p (9)]} |8k|q
q!

E |Try | Oob;

q=1

< ||00bj||mZE(

g=1

)

2
Trh{Ad_,Hk(g) [0 (0)]} k|7
q!

oo

< 100billec Y, | DyE
q=1

D
< |8k|”Oobj||oo||Hk||oerHHk”w‘5k|1/ =,
Dy,
D,
€ O | 18«1 Oowjlloo 1 H Il oo D]’ (A12)

where we use the assumption that | Hy || »|8x| € O(1). From this, our claim about the Lipshitz constant follows immediately
from the definition of Lipshitz continuity and from Eq. (A2). |

2

APPENDIX B: PROOF OF QUANTUM BOLTZMANN MACHINE GRADIENT

Here, we provide a complete proof for the gradient of a quantum Boltzmann machine. We can always assume that
the Hamiltonian is traceless. Indeed, for any Hamiltonian A’ with a nonzero trace, we can introduce a Hamiltonian
H = H' — ol¥ such that Tr(H) = 0 and H leads to the same thermal state:

! ’ ’
e—Ht e—H tHol¥t eate—Ht e—Ht

Tr(e—Ht) = Tr(efH’t+ozH‘t) = e""Tr(e*H/’) = Tr(e*H")'

Pthermal = (B 1)

Theorem 7 (Gradient for Boltzmann Machines.). Assume that H € CP*P is a random Hermitian matrix drawn from an

ensemble in the following manner: a diagonal matrix with eigenvalues E; € R chosen according to a probability Pr(E;)
such that max; E(1 /DZ(Z #(E —E)™H2) < T2 and is then can]ugated with a unitary drawn from a distribution that

is a unitary 2-design. Let Hy = h, ® h;, € CP*P where h,, h;, are fixed Hermitians acting on the visible and hidden
subspace, respectively, and
,O(Ok) = e_(H+9kH")/Tr(e_(H+6ka)).

Finally, let Oy € CPv*Pv pe g Hermitian matrix. Then

k= Tr{(Opp @ 1) [p (6]}

is a differentiable function that obeys

oK

e 0 (10w llooT 1 il oo. | 22 (W’”)z +1>
00 obj |l oo klloco Dh D Tr(h )

90

with high probability over the ensemble.
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Proof. First, note that if we begin with an observable O,y acting on the visible subspace, then the difference between the
observable for p(0) = e~ W+0%H0) /7(6,) and p(0) := p reads as follows

E{|Tr[(Ogbj ® 1n) p(Ok)] — Tr[(Oop; @ 1n) P11} < 1O0billoc E{lI Tralp (6r) — p1lI1}

=< [[Oow; IIOO\/DU E{ITrtalo G — p1l3}- (B2)

Therefore, just like the unitary network case, we now focus our attention on bounding the expectation value of the differ-
ence between the density operators. The main difference here is that the density operators are defined via imaginary time
evolution rather than real time.

From Taylor’s theorem, we have that if the Hamiltonian H + sH; has no level crossings on the interval s € [0, 6;]
then, to order 0(9,?), the eigenvectors of H + 6;H; can be identified using perturbation theory. In particular, for any p €
{0,...,D — 1}, let |p) be an eigenvector of H with eigenvalue E,. Then, the eigenvector |n’) of H + 6; that corresponds
to the eigenvector |n) of H can be expressed as

.
iy = )+ 0 3 VI o2y (B3)
jn

This implies that

6y 1) G 1 Hi |m) (n| n ) (nl Hi ) ¢/ |

T (1) (0| — =T
ty(|n) (7’| = |n) (n]) = Try iy E,—E;

+ 0@6p). (B4)

j#n n

Next, let us write, for any € € {0,...,D — 1}, the eigenvector |¢) = Y «af’) |pg), where af) is a complex number and
lpg) = |p), ® |q), for some appropriate basis for the visible and hidden subsystems. The expectation value over the state
vectors can then be thought of as an average of these coefficients.

We use the fact that H; = h, ® H, to choose the bases of the visible and hidden subsystems to diagonalize 4, and 4.
Thus we can state &, ® hy, |pq) = Ayq |pq) for Ay, € R.

With these choices in place, we can write

S DG ]

B E
*() (1) x(n)
Ot O( o, O
=> T > Mwm (rs| Hy |tu) <vw|>
J#n qrstuvw

() *(/)a(n)a*(n))\

Sy (3 e

J#n qrsvw

lpq) <vWI)

G) *G) (n) *(n)
ozpqozrs o, o A
=>1> P ><v|> (B3)
J#n qrsv
Try(|n') (| = |n) (n])?
2
G) *G) _(n) ., x(n) ) yx@m) ) %)
(apqars oo + o, o o Qg Vs
Z Z rs qu _qu' il Ip) (v| +0(9/?)
Jj#n \pgrsv n J
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Z Z apq ars(])a(;l)ajén) + alsz)aiv(n)ag g))(a(]) :ﬁ(])a,(Jn)/ *,(n/) + Of(n)/a*/(};l)a({)/a ’ /))‘«rs)tr’s ) ( /|
p)\v
(E, — Ej)(Ey — Ej)

Jof'#n parsv
q'r's'’

+006). (B6)

There is a total of eight terms that arise when we expand the above products. Let us consider the first case that emerges in
the expectation value of the trace of the previous result. Here, we invoke the fact that the eigenvectors are sampled from a
unitary 2-design, which means that any quantity that is at most quadratic in the probability will have an expectation value
that coincides with the Haar average. A final point to note is that as a consequence of unitary invariance and the discussion
contained in Ref. [38, Appendix A], the expectation value of the product of any two terms is zero unless all of their indices
match. Further, up to relative errors that are O(1/D), the expectation values of the coefficients are independent of each
other. This implies that if Tr(/;) = 0, then

(qu)oz;‘g(’)oc(”)oc*(”)oc(/)/a:g)oz’(f?,a*(")k Ay

vg
Z Z (Ew— Ej)(Ey — Ejr)

Jo'#n parsy
q'r's'’

E(ld) ) E(o ) Ea?, IZ>E<I%EZ3'2)A”M)

- O[( 2 2 (En — E;)(E, — Ejr)

JJ'#n paq’

E(logy ) E(o 2 P) E(la ) 1P) Eleg, | Wzﬂ)

+<ZZ (En — Ej)(E, — Ej»)

JiJ'#n pqv
E(Ia(”)l“)E(lapql )E(Iapq I )Af,q
_|_
(T e )]
JJ'#n P4

3

- Lo
=0 (; - ) ((Tr(hi)[Tr(hh)]2 + D, + l)Tr(sz))]
J

I U\ [ Te(hy)? )

_O_D_<ZE E) (Tr(h) +Dv>Tr(Hk):|

_ D, 1\ ( Tr(h)? )

—0_§<§En_5,> (D Tr(h) 1) ”H"”“’]‘ ®7

Now, under the assumption that

2
1
E <Ip?
(Z E, — E; ) B j
J#n ;
it follows that this term is asymptotically bounded above by O(I'?||H||%,/Dy). 1t is straightforward to verify that the same

bound holds for all remaining four products in the expansion.
It then follows from Egs. (B2) and (B7) that

E(Tr[(Ogpi ® I1) p(0)] — Tr[(Oopi ® I
|96, (I T (Outy ® In)p 61| = el,clino (ITr[(Opj ® In) p( /gk] [ (Oob; ® 1) 1)

D Tl'(hh)2
O | 100 llooT" | Hill oo Dy (D Te() + 1) (B8)
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The claim that this bound on the derivative holds with
high probability over the ensemble is then a direct conse-
quence of Markov’s inequality. |

APPENDIX C: NUMERICAL EXPERIMENTS:
VARIANCE OF THE GRADIENT VECTOR

In Fig. 5, we include some numerical experiments
detailing the overall decay in variance of the co norm of the
gradient vector as we increase the number of hidden units
of the unitary model and the quantum Boltzmann machine.
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