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Abstract

In this thesis we develop GLAC, a C++ code capable of generating pure SU(3) Yang-Mills
gauge configurations and applying gradient flow. Using GLAC we generate five main
ensembles with 5 = 6.0, 6.1, 6.2, and § = 6.45. Four of the ensembles, A, B, C', and
Dy, are taken to be of approximately equal volumes, with an additional ensemble D,
for § = 6.45 with a smaller volume. Using the energy tfc (E) we perform a continuum
extrapolation yielding a reference scale tgcont/m5 = 0.11087(50) and wg cons = 0.1695(5)
fm. When investigating the topological susceptibility we are able to perform a similar
continuum extrapolation to retrieve X;;l f/ ‘= 0.179(10) GeV for the ensembles A, B, C, and

D,, and X;{Ll = 0.186(6) GeV for the ensembles A, B, C, and D;. Using the Witten-
Veneziano formula we extract respectively Ny = 3.75(29) and N; = 3.21(25), close to the
expected Ny = 3 number of flavors for the n’-meson. We also look into the fourth cumulant
of the topological charge, as well as the glueball mass for the pseudoscalar state 0~ 7.
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Chapter 1

Introduction

Our understanding of particle physics as it stands today is largely governed by the Standard
Model of physics. The Standard Model(hereby abbreviated by SM), saw it’s final form
in the 1970s, once the electroweak forces were brought together with the strong nuclear
force. Although the SM is not unifying the electroweak and strong nuclear force under a
common symmetry in a similar manner that was possible to do for the weak nuclear force
and electromagnetic nuclear force, the SM describes interactions between them, and has
given rise to some of the best predictions physics has to offer such as the W and Z bosons,
gluons and quarks.

The standard model is not without its faults, as it fails to explain phenomena such as
gravity, the matter-antimatter asymmetry and many more. When the goal is to understand
nature, we must ask ourselves if the SM is the correct theory. It is in this endeavor the
study of the strong nuclear force, popularly called Quantum Chromo Dynamics or just
QCD, comes into play. QCD is the theory of the strong force of quarks and gluons, which
is the fundamental building blocks of hadrons i.e. protons and neutrons. As it turns out,
QCD is highly non-trivial in the low-energy limit due to phenomena such as asymptotic
freedom. Due to asymptotic freedom, we have that the theory is perturbative only in the
high-energy regime, excluding the possibility for analytical results in the low-energy regime.
This is problematic as much of the relevant physics can be found in the non-perturbative
low energy regime.

Case and point being the binding energy for a nucleus. For the one down quark and
two up quarks in a proton we have

My # My + My, + My,

936 MeV # 3 MeV + 3 MeV + 6 MeV.

We are immediately made aware of the embarrassingly large amount of over 900 MeV that
is missing. From this, we infer that a large amount of energy must be stowed away in the
binding energy between the quarks through the gluons.

QCD also contains other phenomena such as color confinement in which we see no free
quarks. Further, QCD is a highly nonlinear theory with three- and four-gluon vertices
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which complicates the analytical investigation. A possible way out appeared almost imme-
diately after QCD saw the light of day by Kenneth G. Wilson [76]. In what allegedly was
just a pastime project during the summer, Wilson invented the field of physics now known
as lattice QCD. Lattice QCD can be in its most basic form be described as an attempt to
check if QCD is the correct theory of the strong force. One of the hopes is that lattice
QCD will help bridge the gap between nuclear physics, effective field theories, and QCD.

The initial celebration of lattice QCD was quickly dampened once one realized the
intense computational resources needed in order to obtain good results. Wilson himself
said in 1989 that we would need a 10® increase in computing power as well as algorithmical
advantages [77]. It is only during the last couple decades the computational power required
for lattice QCD has expanded to point of true viability.

Wilson’s idea of lattice QCD(abbreviated as LQCD) is to discretize Euclidean space-
time such that the fermion fields are defined at the lattice points, and the gluon fields
are defined as links between the lattice points. The lattice will then be of the shape of
a Euclidean hypercube(a cube in four dimensions) of a finite lattice spacing. From this,
one can build correlators and observables to be studied. In this thesis, a pure SU(3)
Yang-Mills theory will be studied. All fermion contributions will be left out, such that we
are only studying the gluon dynamics. Even though we are not including the effects of
the fermions, we can still study important phenomena such as the running coupling and
topological effects such as instantons.

The primary goal of this thesis has been to develop a pure Yang-Mills lattice code from
the bottom up and retrieve usable results in lattice gauge theory. We have created a code
capable of generating gauge field configurations and applying gradient flow on them, while
also being able to be scalable enough for running on high-performance computing clusters.
Particular to this thesis, we chose to focus on topological quantities. In this thesis we
will present results on the topological charge and related quantities, such as topological
susceptibility, the fourth cumulant, as well as the glueball 0~ state. Comparisons between
other papers are made, and we hope to shed some light on a few peculiarities of these
quantities.

The next chapter, chapter [2, will deal with Quantum Chromodynamics. The chapter
will serve as an introduction to the standard model, then move on to QCD where we will
cover some of the experimental proofs of QCD, symmetries in QCD, the topology of a
SU(3) gauge theory, and other topics relevant to this thesis.

Chapter [3|will deal with lattice QCD and attempt to provide an intuitive understanding
of LQCD, starting with the path integral in quantum mechanics and working our way up
to topics such as the gradient flow and basic lattice observables.

After that, chapter [4] will cover numerical details related to LQCD such as the Metropo-
lis algorithm and Runge Kutta 3 applied as a Lie group integrator.

In chapter [5| we will present the code developed for this thesis, as well as a few bench-
marks for the code.

Chapter [6] will begin with presenting the scale setting ¢, and wy, before moving on
to topological quantities such as the charge, susceptibility and fourth cumulant. We will
also take a look at the topological charge correlator and pseudoscalar glueball state, before



finally ending with chapter [7|- the conclusion and future outlooks.

At the very end, an extensive appendix is included, covering all from notational con-
ventions to statistics to Lie groups to some of the more cumbersome calculations related
to this thesis.

As is customary, we begin by going through the theory and required background for
looking at and understanding the results obtained - QCD.






Chapter 2

Quantum Chromodynamics

In order to understand lattice QCD, we need to get a grip on the context in which it
appears. It follows that in order to start this journey, we are required to look at QCD.
We will begin by delving into the Standard Model and from that QCD. This will lead us
to look into the interactions and many of the idiosyncrasies of QCD. We will go through
asymptotic freedom, quark confinement, and experimental proof, before specifying the
QCD path integral and the symmetries which appear in relation to QCD. We will make a
distinction between QCD and pure SU(3) Yang-Mills theory, for then to cover the topic of
topology in relation to a Yang-Mills SU(3) theory.

2.1 The Standard Model

As previously mentioned, the SM is a quantum field theory combining the weak nuclear
force, the strong nuclear force, and the electromagnetic force under a single equation, and
is responsible for most of the modern day understanding of particle physics. The SM is a
local gauge symmetry of

SU(S)C X SU(Z)L X U(l)y, (21)

where SU(3)¢ is the color symmetry of the strong force, SU(2),, is the weak isospin gauge
symmetry, and U(1)y is the hypercharge gauge symmetry. From these symmetries, we
have the SM Lagrangian,

Lsv = _;lF“VFMV + i Di + hoc. — hiyi6 + hoe. + | Do — V(o) (2.2)

where the first term contains the gauge fields, the next two terms gives rise to the fermion
propagators as well as their interaction with the gauge fields. The next two terms after that
are the Yukawa couplings, which is responsible for fermions interacting with the Higgs field
and subsequently resulting in their masses. The next term contains the Higgs propagator
and the interaction between the Higgs field and gauge fields. The final term is the Higgs
potential which is responsible for the spontaneous symmetry breaking.

bt
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Now, the SM Lagrangian in eq. (2.2)) on the preceding page is a slight misdirection, as
each and every term is far more complex than it looks. Expanding the field tensor }LF M
gives us

1 1 1
Lsn C =7 By B — S, W — StnG, G (2.3)

The first two components of this equation go under the electroweak sector, while the latter
goes under the QCD sector. The trace indicates a summation over the group generators.
For instance, the gluon field strength tensor becomes —%trGWG“” = —}lGZVGaW where
the eight gluon fields enumerated by a is traced.

The Lagrangian can be expanded further, and if we break the electroweak symmetries
SU(2), x U(1)y we end up with the fundamental particles as seen in fig. 2.1 As we can
see, there are three generations of leptons and quarks, the gauge bosons of W=, the Z, the
photon v and eight gluons g.

1 st 2 nd 3Td generation Goldstone outside
standard matter unstable matter force carriers bosons standard model

/('73“ v ) 128Gy ) (1732 Gev o) N 1251 CaV.
23 54 %, 7.2 Ge ‘?/% &— charge 2@
\ <— colors z
- U C
Z; o
» up v charm 4 top ol <— spin £
B 0 N / /U J =
e &
T 5 g
Q VY =
=] H;v- (18 Mev «;/—n/? (05 Mev @/4/} 4.7 GeV «p/n/? X S
S % % % “ g =
=) = 8
E S A
g g
= 5
=
down o strange A bottom {3 gluon . %=
& / \ / J / e
g
- R = £
( 511 keV' 4\ ( 105.7 MeV. 4\ ( 1L.777 GeV 71\ ,2 g
2
o] -~
= 2 %3
T (& T 2 :
= @ =,
< % g g
< =8
o D electron v muon 4 tau 4 photon L = 3
=8y \_ AN ZJ J Y, 4 g
7 & B
—_— — —_ = =3
'-CJD g ( <2eV h ( < 190 keV. A ( < 18.2 MeV ) 80.4 GeV +1 91.2 GeV' % I N\ g
8' 7] % | @
B 1 1% v + z|! 1
= e 2 T Z {2
211
e neutrino £ Ju neutrino 4 ~ neutrino 4 . . graviton I
\ J J . J / -
12 fermions 5 bosons
(+12 anti-fermions) (+1 opposite charge W)

increasing mass —

Figure 2.1: The standard model, as given under the gauge symmetries of
eq. (2.1) on the previous page. Figure created by Carsten Burgard and posted
here with his permission. Retrieved from http://www.texample.net.

Since we will hone in on the QCD sector, it is worth noting a few features of the quarks.
The first being their masses and how the up v and down d quarks are of roughly the same,


http://www.texample.net

Section 2.3 The QCD Lagrangian 7

small mass. We then have the quark masses in increasing order strange s, charm ¢, bottom
b and top t. Their electric charges are fractional, with u, ¢, t having +2/3 and d, s, b having
—1/3. We will refer to the number of quark flavors as Ny.

After expanding the Lagrangian in eq. on page || and invoking the Higgs mech-
anism, it will be possible to extract the QCD SeCtOIEL which is what we are interested
in.

2.2 The QCD Lagrangian

As already discussed, QCD is the theory governing the strong force of quarks and gluons,
and exhibits a SU(3)¢ gauge symmetry. The Lagrangian in Minkowski space is given as

Lao qom, (2.4)

Ny
Lqcp = Z@(f) (le _ m(f)) w(f) ~ G
f=1

where the first term is the kinetic term running over all of the Ny quark flavors: up, down,
charm, strange, bottom, top. We have so far omitted labeling the quark spinors ¥f) with
spinor indices v and color indices c. Including these gives, w((j?. The bar in ¢ is a shorthand
for 1) = tyy. 1D is the covariant derivative and is given as

D=Dn"= (8;L — z'gst“AZ) ~H, (2.5)

where t* are the generators of the Lie algebra of SU(3)¢ known as the Gell-Mann matrices,
and g is the strong coupling. See appendix [B| on page for more details on the SU(3)
Lie group. The spinor fields ¢ transform under a local SU(3)s gauge transformation
V(z) = e @ a5

() = (x) =V (2)(x). (2.6)

Since the covariant derivative D, is required to be invariant under a gauge transformation,
the gauge field A}, must have a finite transformation,

A2(2)t = A" (2)1* = V(x) (AZ(w)t“ + g%a“) Vi(z), (2.7)

The last part of QCD Lagrangian in eq. (2.4]) contains the kinetic term of the gluons,
with the field strength tensor(or curvature) defined as

G = Ot"Aj, — &,t“AZ + igst“f“bcAZAi, (2.8)
and follows from the commutator
[D#, D, = —19sG . (2.9)

For more details on the Lie group generators see appendix [B] on page [139

L Any introductory textbook in quantum field theory will go through such mechanics, see Peskin and
Schroeder [51], Willenbrock [75] or Weinberg [74] for some hands-on examples.
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2.3 Interactions of QCD

From the QCD Lagrangian in eq. (2.4]) on the preceding page, one can extract the Feynman
rules for strong interactions. We start by writing the quark propagator,

- sab Saf8
ca g _ 070 (2.10)
p—mi)’
where «, £ is the Dirac indices, f = 1,2,...,6 is the fermion flavor index and a,b=1,2,3

is the color indices. The p = 4#p,, is the momentum of the fermion. The gluon propagator
is given as

—Zg v ca
a, b 9998 b, v = k_zﬂ(g b (2.11)

where g, is the metric tensor.

The interaction between gluons and fermions is given by
a, [ = gy, (2.12)

where g, is the strong coupling.

Some of perhaps the most interesting features of a Yang-Mills theory - which QCD
builds upon, is the self-interactions of the gauge fields. The first being the three gluon
vertex,

G P

s
q

—_—

@ H = g /"9 (k= p)* + ¢ (p — " + g™ (q — k)], (2.13)
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and second the four gluon vertex,

a, [ b,v
—ig2[f " f (9" g — g g™")
= (G~ g9 (2.14)
+ fadefbce (guugpa o gupguo)]
C, p d,o

These two self-interaction terms of the gluon complicate matters, in the sense that the
entire theory becomes highly non-linear.

Since we are dealing with a Yang-Mills theory, this theory also contains Faddev-Poppov
ghosts which is needed in order to get rid of unphysical degrees of freedom [51 see ch. 16.2].
These will be skipped as they are not relevant to this thesis, and is usually ignored in lattice
QCD calculations in general.

Having now covered the Feynman rules, we now need to look into two defining features
of QCD. Namely, asymptotic freedom and quark confinement.

2.4 Asymptotic freedom

The asymptotic freedom of QCD is the phenomena in which the running coupling decreases
in strength as the energy increases. This runs contrary to what is known for the electro-
magnetic and weak nuclear force, and as a consequence perturbation theory is only allowed
in the high energy limit [51, chapter 17.1]. For instance, in QED the coupling will decrease
at shorter distances, while in QCD it is reversed(see fig. on the next page).

An expression for the running coupling as(Q?) is realized by renormalization in the
high-energy limit of perturbation theory. The one-loop solution for the running coupling
for some energy scale Q2 in the UV can be expressed as [16]

7T2

~ Boln(Q?/A2)’

where [y is obtained from a perturbative series and A is the scale parameter. Both the
Bo and A changes depending on the theory we are in and the number of flavors, and we
usually denote A as Aqcep or Aywm, depending on if we are in QCD or pure gauge Yang-Mills
theory.

ag(Q?) (2.15)

2.5 Quark confinement

One fundamental trait of QCD is that all observable hadrons are colorless. There are as
of today no theoretical proof of color confinement, but all experimental data points to this
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April 2016

T decays (N3LO)
DIS jets (NLO)
Heavy Quarkonia (NLO)
e'e jets & shapes (res. NNLO) |
e.w. precision fits (N3LO)
pp —> jets (NLO)

pp —> tt (NNLO)

a(Q?)

0.3

4 <« © O O P> «

0.2

0.1}

QCD ag(M,) = 0.1181 +0.0011
I l(l)() 1000

" Q[Gev]

Figure 2.2: The asymptotic freedom of the strong coupling as(Q?) with
Q? being momentum. As discussed in section on the preceding page,
we can observe that contrary to QED, which has a coupling that increases in
strength, we now have that for high energies, the QCD coupling becomes weak.
The implication is profound, suggests that our method of probing low-energy
QCD cannot be done analytically through perturbation theory but through
numerical studies such as lattice QCD or effective field theories(e.g. chiral
perturbation theory). Figure retrieved from Tanabashi et al. [68, chapter 9.

being the case [68]. There are eight gluons in the SU(3)¢ symmetry forming a color octet
in the adjoint representation(there is no singlet, since one can only write out eight matrices
that fulfills this requirement), and none of these are colorless.

A common example of how confinement works, is to visualize a meson(a quark and
antiquark in a bound state) which we try to pull apart. As we pull them apart the binding
energy increases and a tube of gauge fields forms between them. Once they break free,
there will have been generated so much potential energy that a quark-antiquark pair is
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Figure 2.3: The confinement of quarks, here illustrated by a meson. As we
try to pull the quarks gg apart, the potential energy between them increases
until we spontaneously create a new pair of quarks QQ, that results in two
new mesons, ¢Q and Qg.

created and the two new quarks now form two new mesons with the two quarks we just
pulled apart. This can be seen illustrated in fig. There exist no theoretical proof for
this as of today, but it is an observed fact one can never observe free quarks. Understanding
this phenomenon is one of the avenues of investigation in lattice QCD.

2.6 Experimental proof of QCD

An outsider might worry that since it appears to be impossible to observe free quarks and
gluons, QCD is a theory that spontanecously leaped into existence to generate funds and
please the minds of physicists. Luckily - this is not the case. The asymptotic freedom
which we have already seen in fig. on the preceding page, is one of the experimental
pieces of evidence for QCD. There are also several other lines of evidence for QCD.
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In particle accelerators there are phenomenas called jets, which are cones of hadrons
and other particles originating from the creation of quarks and gluons. Due to confinement,
we know that quarks and gluons cannot exist separately, such that they will spontaneously
pair up with quarks created by the vacuum in order to remain colorless. The jets that
is produced by these events can be differentiated depending on the origin of production,
leading to an argument for the existence of quarks and gluons.

From deep inelastic scattering experiments, the form factors reveal that the proton has
a inner structure [53]. This leads to the argument that the fundamental building blocks of
nature is not protons and neutrons, but rather quarks.

The cross section for the decay my — 77 is shown to quadratically depend on the
number of colors N, leading to strong experimental confirmation of there existing colors
in nature?

Another piece of strong evidence comes from looking at electrons decaying into hadrons
and muons. The reaction R is defined as the cross section fraction of electron-positron
annihilating into hadrons, and electron-positron annihilating into muons,

R= olefe” — hadrons). (2.16)
olete” — ptpu~)

We have that the first reaction is given by

o(ete” — hadrons) = o - 3 - Z Q?, (2.17)
f

with oy being the QED cross section for ete™ — putu~. The factor 3 in front comes from
the fact that there are three colors for each flavor. Factoring out g = o(ete™ — utu™)
from the ratio, we get the fraction

R=3> Q7 (2.18)
f

Since it is kinematically forbidden to create quark pairs ¢ with energies(and thus masses)
larger than E(energy we put into the system), we will have that certain reactions become
available to us for increasing energies. The first reaction will only include muons and the
up and down quarks. Later, we will have reactions including the charm and tau, then
bottom and finally the top quark. The ratio in eq. should thus increase as more
quarks come into play as the energy increases. For example, for u, d and s the ratio R in

eq. (2.18) becomes
9 9 9 2\ 1\? 1\?
R=3[Q;+Q.+Q =3 [<§> + (_g) 4 (_5) ] =2, (2.19)

where (04, ., and Q)4 are the fractional charges of the quarks.

2See Donoghue et al. [I7, chapter VI-5] for a calculation of the cross section.
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If we crank up the energy to include the c-quark we get R = 3.33, and cranking up
further yields the b-quark with R = 3.67. If we were to include the top quark ¢ as well,
we would get R = 5. However, since the top quark is too heavy to form bound states, it
is absent from data(and mostly irrelevant in lattice QCD as a whole) and we can safely
ignore it.

& 12
8 .
) * o W&* h
4 * $ | ’ f.# ”"0 .‘8’" , .
i
2 r u+\d+ s+c+b
’ 0 10 20 30 40 50 60 70

E[GeV]

Figure 2.4: The R cross section as given from eq. on the preceding
page, with an plotted overlay of corresponding R-values for different number
of quarks. Data retrieved from Tanabashi et al. [68, chapter 9] and has been
compiled into a figure.

This behavior can be seen in fig. 2.4 As is clearly visible, the line is not perfect, which
has to do with resonances at certain peaks, and that the quarks are virtual, such that they
are not in their final state. One important takeaway from fig. [2.4] is that the factor 3 in
the reaction ratio in eq. on the facing page gives meaning to the result. As in that in
without it, the prediction would be wildly off. This indicates that color is a fundamental
symmetry, even though it is not directly observable.
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2.7 The QCD Path Integral

Having motivated the existence of QCD, it is time to introduce the main tool and method
of exploring quantum field theories and eventually lattice QCD - the path integral. In the
next chapter, chapter [3, we will cover how the path integral can be discretized, as well as
give a slightly more hands-on introduction to path integrals in general. As is customary
and necessary when working lattice QCD and many of the topics are about to cover, we will
perform a Wick rotation, in which we let time become imaginary such that we get what is
called Fuclidean space(see appendix on page . This is essential to how we are able
to calculate anything in lattice QCD. Since we now will be working Euclidean space unless
stated otherwise, we will be using lowered tensors as contravariant and covariant tensors
are equal in Euclidean space. With this in mind, the path integral for any expectation
value O in Minkowski space is

(0) = [ PADIDYOLW, b, AjsE wisi v, (2.20)

where we labeled the action in Minkowski space as S™. Applying the Wick transformation
seen in eq. ((A.4) on page in appendix such that Aqg — 1Ay, dt — —idt, yields

(0) = % / DADYDYO), 1, Ao 5elAI=Srlv-v.4] (2.21)

Notice we have dropped any notational indication on the action that we are in Euclidean
space, as that will be the default from now on.
We see that integration measures in the path integral from eq. (2.21)) is given as

DA = [] dAi(x), (2.22)
m,a,x

Dy = [[ dvi (@), (2.23)
B.e,z, f

D)= [] ¥ (x), (2.24)
a,c,x, f

where a = 1,2, 3,4 is the Dirac indices for the fermion spinors, a,c = 1,2, 3 is the color
indices, p = 1,2,3,4 is the Lorentz indices for Euclidean space(hence no = 0) and f is
the fermion flavor.

We have also split the QCD action into its fermion- and gluon-sector, Sqcp = SF + Se-
The partition function Z in eq. is given as

7 = / DADYDype SclA-Srlvd.Al (2.25)

The action of a Lagrangian is given as S = [ d*£, which for the gluonic action(or gauge
action) becomes

SelA] = % / Q' tr (GG (2.26)
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and for the fermionic action

Selnd Al = Y [ i) (00, + A, (@) + ) (o)
fZI (2.27)

Ny
=Y / Ao (@) ((v)as(0cady + 1A (2)ea) + mDas6.0) V) ().
f=1

The flavor-, spinor- and color-indices will be assumed implicitly, with latter given as ma-
trix/vector notation in future discussions.

Worth noting is that the fermion fields v is Grassmann valued fields. This means we
can integrate out their contributions in the shape of determinantsﬂ such that the partition
function becomes

Z = / DAe %A T det[DV)] (2.28)
!

where det [D(f )} is the fermion determinant for a given flavor f.
Before moving on, we can introduce the two-point correlator,

(0:)01(0)) = / DADGDYO [, §, A|O: [, ), Ao~ el Srlbod] (2.29)

The O; and O, are operators taken at some specific time, in which the operator Oy usually
is at some Euclidean time t and is called the sink and O; at Euclidean time ¢ = 0 called
the source. How the path integral and the two-point correlator is applied to lattice QCD
will be explained in chapter [3

2.8 Additional symmetries of QCD

As discussed earlier, the rules of the game in QCD is governed by the local gauge symmetry
SU(3)¢. In addition to this, follow a series of ”accidental” symmetries, which has several
important consequences. These symmetries are global, contrary to the local SU(3)¢s color
symmetry. The most important and relevant for this thesis is the global chiral symmetries
for Ny flavors for a massless fermion Lagrangian.

2.8.1 Chiral symmetries

The axial symmetry of QCD is an approximate symmetry. If we assume that we are
working in the chiral limit - that is letting the quark masses m; — 0. Ignoring the gauge

3See [24] [51] or any standard quantum field theory book for details on how this procedure is done.
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fields for now gives us the Lagrangian

Ny

L, A) = I pylD, (2.30)
f=1

with ) defined as in eq. (2.5 on page , and f being quark flavor.
In order to illustrate chiral symmetry breaking we consider a single flavor in the
fermionic section of the QCD Lagrangian in eq. (2.4) on page m We check if the QCD

Lagrangian is invariant under a chiral rotation,
Yo =, o = (2:31)

By investigation of this property(see appendix on page for an explicit calculation
of eq. (2.32) and eq. (2.33)) it turns out that we can decouple the fermionic section into
right- and left-handed components,

L, P, A) = YplPr + P Dy, (2.32)

which obeys the chiral symmetry in eq. (2.31)). That is, as long as we have no mass term.
Including a mass term gives us

mp = m (Yribr + Vrr) (2.33)

which breaks chiral symmetry. It is important to stress that this example is only for one
flavor, as we in full QCD have that 75 is anomalous.

When including N flavors, the Lagrangian is invariant under vector transformations.
If we add up all of the symmetries for Ny flavors, we get a U(Ny), x U(Ny)g global chiral
symmetry. Since U(N) = SU(N) x U(1), this can be composed into

U(Nf) x U(Np)g = SUN;)L x SUN)g x U(1)y x U(1)4, (2.34)

where the symmetry group SU(Ny), x SU(Ny)r = SU(Ny)y x SU(Ny)a spontaneously
breaks to SU(Ny)y. Assuming Ny = 3(the three lightest quark masses), we have that
the breaking of the SU(3) 4 leads to the eight pseudoscalar mesons(approximate Goldstone
bosons). The SU(3)y is a vector symmetryﬁ that is softly broken, leading to approximate
symmetries of isospin and strangeness. The U(1)y symmetry holds, and corresponds the
conservation of baryon numbers. One would expect that the remaining axial U(1) 4 symme-
try to be broken spontaneously in the chiral limit. Estimations by Weinberg [73] indicated
that the mass of this isosinglet pseudoscalar Goldstone boson should have a mass less that
V/3m, with m, being the mass of a pion. The two candidates available was 7(549) and
7'(985), where the former is already explained for by the octet, but the latter has a mass
too high for the bound. This discrepancy is known as the U(1) 4 problem, and was eventu-
ally solved as it turned out to be violated by the axial anomaly. The axial anomaly leads
to a change in the integration measure due to effects of the QCD vacuum [66), [67].

4The Noether current of the vector symmetry is a vector current, and it does not distinguish between
handedness.
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2.9 From QCD to pure Yang-Mills SU(3) theory

Since this thesis will be focusing on a pure Yang-Mills SU(3) lattice simulation, it is ap-
propriate to make it formal what this entails. We will effectively neglect any quark con-
tributions in the Lagrangian, such that the theory we are left with then is a fermion free
theory describing gluon dynamics. The action and Lagrangian describing pure Yang-Mills
gauge theory becomes

SYM[A] = /d4l’£YM = /d4$iGzyGauy, (235)

where a is a trace of the color indices. The Feynman rules for pure gluon interactions and
dynamics remain the same. There is still a plethora of theory relevant to QCD that can
be explored in this approximation, e.g. the topology of the gauge fields and the coupling

aYM(QZ)-

2.10 The topology of a SU(3) gauge theory

Investigating the topology of gauge theories can provide a deep and profound insight into
the theory we are investigating. In the context of QCD, we wish to investigate how topology
is related to the QCD vacuum. It turns out that configurationd’] of the gauge field can
be classified based on their topological properties. These properties, such as their winding
number, provides a classification of the gauge fields. Configurations of the gauge field have
local minimums of the action S, which in Euclidean spacetime are known as instantons.
Further, these instantons leads to the introduction of a possible C'P-violating 6 term, and
lifts the vacua to new states that are a linear combination of old states shifted by a phase
6.

In order to better appreciate the results presented in this thesis and properly understand
instantons and the #-vacuum, we need to build an adequate understanding of the basics of
topology.

2.10.1 A brief introduction to topology

Topology is the study of general properties of mathematical objects or spaces. Since the
theory we are exploring is a global SU(3) gauge symmetry, we are dealing with a manifold.
A manifold .# is a topological space that locally looks like R™ Euclidean space [49]. What
we are interested in is how we can classify different topological spaces. A topological space
is a set of points that together with a set of neighborhoods for each point, satisfies a set of
axioms relating points and neighborhoods.

Two topological spaces is equal, if they can be continuously deformed into each other
leaving their properties invariant under such a transformation. We then call the objects

A configuration is simply a given alignment or state(not in the quantum mechanical sense) of a field.
In LQCD we generate configurations, or simply a 4D hypercube cube of oriented SU(3) matrices.
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homeomorphic. The visually pleasing example of this is imagining a mug or a cup, and a
donut(torus). We can transform the mug into a torus and correspondingly the other way
around, without losing the hole in neither, making them homeomorphic to each other.

We can now further classify objects of into equivalence classes of the same homotopy
group 7y (), with k being the dimension. Such a mapping can, for instance, be of a
simple circle or 1-sphere S!, leading to a non-trivial homotopy 7;(S'). Given a function
f which parametrizes f : S* — S' we have that there exist a denumerable(one-to-one)
number of classes which can be labeled by a natural number, an integer v € 7Z, which
counts how many times the mapping f wrap around the circle. We call this number v
the winding number. In fig. we see an example of such a mapping of four circles with
winding numbers v = —1, 0, +1, +2.

Two mappings, f and g, are homotopic to each other if they can be continuously
deformed into each other without leaving their equivalence class. The set of the classes in
such a manifold .# forms a homotopy group 7 (A#).

Q-

(a) v=+1 (b) v=—1 () v=0 (d) v = +2

Figure 2.5: An illustration of how one can view the winding number given
a function f that parametrizes a path around a circle S'. Given that it starts
and ends at the same point, we have that the number of times it wraps around
the circle gives us the winding number. The figure is taken from [21] p. 32].

A similar example can be given by viewing a vector field and imagining taking a path
around such a vector field. From fig. on the facing page, we see that the winding
number tells us the number of times a vector rotates on the boundary rotates. From
Stokes theorem, we can think of the winding number as something that counts the number
of field vortices inside the boundary [27].

In general, for a gauge group G, the set of classes of a topologically distinct mapping
S4=1 5 G where S9! is the sphere of dimension d— 1, is known as 74_1(G). For all simple
Lie groups G| m3(G) = Z, this includes SU(3) as seen in [74]. The 73 indicates the group
we are mapping from - in this case S3. The winding number v goes under many different
names, topological charge, Pontryagin number, winding number, and instanton number.
For how the winding number can provide us insight into the structure of the gauge fields,
we will have to introduce instantons and the concept of topological charge, ). We have
that two field configurations belong to the same homotopy class if they can be continuously
deformed into each other, leaving their properties invariant under this transformation(i.e.
not passing through a forbidden region where the action S is infinite).

6By simple Lie group, we mean a compact, non-Abelian, connected Lie Group G, e.g. SU(3) [49].
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aut Ny’ N

(a) v=+1 (b) v=-1 (c)v=0 (d) v=+42
Figure 2.6: The winding number illustrated by the number of rotations a

vector field makes on some boundary The initial orientation of the vectors is
arbitrary, as only the rotation is counted. The figure is taken from [27] [36].

2.10.2 Instantons

Instantons can be viewed as local minimums of the action in Euclidean space, as they by
definition are localized finite action solutions to the classical Euclidean equations of motion
[21], 136, [49], 541, 58, 69, [70],

D,G,, = 0. (2.36)

Further, they can be viewed as pseudoparticles in Euclidean time [2], as they induce exci-
tations to the vacuum.

To understand how instantons arise, let us recall the Fuclidean Yang-Mills path integral
in eq. (2.21)) on page |14 and write out the Euclidean action Sg[A4],

1

SclA] = %/d‘lxtr[GW(x)GW(x)] =1 /d%(}’zy(x)Gzy(x). (2.37)

In order for Sg[A] to be finite the gauge fields must approach pure gauge at |z| — oo,

|z| =00

itoAa, = V(2)10,V (), (2.38)
with V(z) € SU(3) as a group element of SU(3) and Z as a directional dependent element
of gauge group SU(3).

If we now rewrite the action in eq. ([2.37)) using the identity as listed in appendix

we get
1 4 a a 1 a ~a \2
S = Z_l d*zx :EG;WG/W + i(G/W + G,uu) . (239)

From this we can get a lower bound on the field strength tensor [6], by requiring it to be
self dual or anti-self dual(see eq. (B.33)) on page [146])),

1 ~
S > + / d'zGe,Ge,. (2.40)
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One can show that this equals the topological charge [74],
872
st = ol (241)
9s

The 1/¢? factor comes from the convention of letting A, and thus F),, carry and extra 1/g;
factor. We will come back to this in chapter [3]

When inserting the self dual tensor from eq. on page in the action in eq.
on the previous page and using that the right-hand side equals eq. , the topological
charge is given as

872 1
é;ngww/&ﬂ%G%, (2.42)
S
which becomes
9?9 4
Q= 612 /d :z;ew,o.szngp. (2.43)

We can rewrite this equation in terms of the topological charge density ¢(x),

Q= /d4a:q(a:), (2.44)

where

2
9gs
1) = 525t (G (2) G ()] (2.45)
Every instanton contributes to one unit of topological charge, while anti-instantons con-
tribute to one unit of negative topological charge. This can also be seen by virtue of the
index theorem [21],

Q =n_ —ny, (2.46)

where n_ and n, corresponds to left- and right-handed zero modes of the Dirac operator
D.

The introduction of instantons provides a solution to the U(1) 4 problem, as they change
the integration measure for quark fields when undergoing a global, chiral U(1) transforma-
tion. This invariance is referred to as the chiral anomaly, as it is the anomaly that breaks
the Uy (1) symmetry.

2.10.3 #-vacuum

Because of tunneling between topological sectors, we have that the vacuum becomes a
linear combination of all vacua [5§],

vac) = [6) = Y " e™’|n). (2.47)
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The #-term can be derived from either Gauss’ law or from cluster decomposition [211 [74].
This ground state redefinition will lead to a modification of the integration measure. To
illustrate this we can imagine us to take the expectation value of some observable O. In
order to account for instantons and tunneling between topological sectors, we add some
weighting factor w(Q) to the expectation value, summing up all contributions from the
topological charge in the Euclidean spacetime volume 2. This gives us

Y =00 W f prwDAQow b, Ao~ S
ZQZ,OO Q) [ DYDYDAge5¥:0-4la )

(O)a = (00]0)q = (2.48)

where S[i), 1), A]q is taken over the entire the Euclidean spacetime volume 2.

We can now split the Euclidean spacetime volume into two sectors, 2 = €2y + ), with
)1 containing the observable O. This splits the contribution of the topological charge from
the gauge field into Q) = Q1 + Q)2 as well, giving us two quantities that not necessarily are
integer Valuedﬂ. The action will also split into S[i), ), Alg = S[, ), Alg, + S[, ¥, Alg,. If
we now take a look at the integral measure, we can try to decompose it into one section
for 21 and one for €29.

Consider a path integral measure where we use that 0 = Q; + s,

D = H/dgb H/dgbxl H/d¢x2

zeN 1€ z2€802

_ / Do) / D), (2.49)

Following closely what is done in [21], we have that since only the gluon gauge fields affect
the integral measure, we get
/ DAY

/ DAY =
=D, ( /DA Ql)/DA 5QQ1+Q2)7 (2.50)
Q1,Q2=—

Q=—00

OO

/ DAQ2 0Q.Q1+Q2

Q——OO Ql —o0 Q2=—0c0

where we use that the path integral measure is equal to the decomposition into two path
integral measures, as long as we only count their overall contribution to the first sum once
using the Kronecker delta. Applying the Kronecker delta on the first sum, we end up with

o0

> w(@Qi+ Q) / DASY / DAS?. (2.51)

Q1,Q2=—00

"Since @ is defined at the boundary of €2, this is the case. When considering the entire spacetime
volume, @ should be integer valued [54].
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Cluster decompositionﬂ now enters the picture, and allows us to make the following as-
sumption given that the two events are spatially separated in €2; and €2, from initial to a
final state at all times,

w(@Q1 + Q2) = w(Q1)w(Q2)- (2.52)
By demanding this, we get that the only choice for w(Q) is to be an exponential,
w(Q) = @, (2.53)

Inserting this into eq. (2.48) on the previous page leads to a change in the integration
measure,

. 2 5 B
DYDYDA — exp (-% / d:zc4trGu,,GW> DYDYDA. (2.54)
T

Changing the integration measure gives rise to the axial anomaly current,
Oyt (x) = 2Nq(x). (2.55)

The inclusion of the weighting factor in eq. (2.53)) in the integration measure is equiv-
alent with adding a 6-term to the QCD Lagrangian in eq. (2.4) on page ,

093 = .
Ly= _647r2trG’WGW = —i6Q). (2.56)

As it turns out, this term is C'P-violating. If it exists, it should be observable through the
EDM (electric dipole moment) of the neutron,

_ m2 _
dy, ~ fe—2" =~ 0 x 10~ "% cm. (2.57)
my
The current upper limit on experiments is d, < 3 x 1072%¢ cm(90 % C.L.). This puts the
f-value at [59],

6<1071 (2.58)

where the bar indicates that it contains a C' P-violating phase from weak interaction. Sim-
ilar results from lattice QCD have recently been presented by Dragos et al. [I8] that puts
the neutron EDM at 0] < 1.61(51) x 1071,

In principle, the 6 term could have any value between 0 and 27. The mechanism behind
why the 6 term is this small and close to zero remains unknown, and is referred to as the
strong C'P problem. One of the proposed solutions to this problem suggest that we promote
0 to a dynamic variable, thus becoming a field Peccei and Quinn [50] and leading to the
introduction of particles called azions. If the strong C'P problem is solved, it could provide
a clue to why there is so much matter and so little anti-matter in the universe.

8Cluster decomposition can be summed up as following: given that at initial time two sufficiently spaced
subsystems can be factorized and they remain spatially separated through at all time, then the final state
can also be factorized [63]. For a more accessible approach to this topic, please see [I].
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2.10.4 Witten-Veneziano formula

Witten and Veneziano resolved the issue of the large 1’ mass [71], [78], by showing that in
the limit of a large number of colors N, — oo and to leading order of O(1/N.), the chiral
anomaly vanishes, so that the symmetry U4 (1) is restored. This gave rise to the formula
connecting the ' mass and the topological susceptibility [15], 25, [71], [72] [78],

ON
my, = f_Qthop, (2.59)

with Ny being the number of flavors, f; is the pion decay constant given at fr ~ 92
MeV and x;op is the topological susceptibility. Equation is accurate up to O (1/N?2).
Recalling the topological charge in eq. on page [20|and the topological charge density
from eq. on page , the topological susceptibility takes the shape as

Xiop = / a(q(2)q(0)), (2.60)

where ¢(z) is the topological charge density in the two point correlator (g(x)q(0)).

One interesting aspect to note is that the r.h.s and L.h.s. of the WV-formula in eq.
represent separate theories. That is, xtop is taken in pure gauge Yang-Mills theory, while
the right-hand side is taken in full QCD.

2.10.5 The glueball and topological charge correlators

Having briefly touched upon the two-point correlator for the topological charge in the
previous section, it is worth introducing the glueball. Glueballs are gluons in bound,
massive, colorless states. In pure Yang-Mills gauge theory, we can have stable glueball
states, while in full QCD theory we will have mixing with quark states, making it a difficult
phenomenon to explore. The gluonic currents with quantum numbers J¢ for the lowest
glueball states is given as [58, p. 88|

S=0"": js=(G%,)% (2.61)
_ .1 a v
P=0": jp= §eﬂypaGWGpg, (2.62)
. 1 a a a
T=2": Jr = Z(Gm/)2 - M0aY0ar (263)

The state of interest to use will be the P = 0~ state, which can be investigated using the
correlation function

C(r) = (q(z)q(y)), with r =]z -yl (2.64)

where the ¢(x) is the topological charge.
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Lattice QCD

Figure 3.1: A visualization of the topological charge density in eq. on
page for a 323 x 64 lattice with = 6.2 and flow time \/ST = 0.54 fm.
The image was created by LatViz, a program created in a joint collaboration
between Giovanni Pederiva and the author, Mathias M. Vege. The code for
LatViz is available at GitHub: https://github.com/hmvege/LatViz.
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Lattice QCD saw its light of day in 1974, in the seminal paper by Kenneth G. Wilson [76].
In his paper, Wilson showed how one could discretize a Euclidean spacetime on a lattice
and maintain gauge invariance, albeit giving up Lorentz- and rotational invariance. By
Wilson’s method of discretizing spacetime we are introduced to lattice QCD and allowed
to explore non-perturbative aspects of QCD. The introduction of a lattice also serves as
UV cutoff proportional to the inverse lattice spacing. As a motivating example, let us
begin by introducing the path integral in the context of quantum mechanics.

3.1 A motivational example in quantum mechanics

Having already introduced the path integral in eq. (2.21) on page in section , it
is time to show how it can be applied to lattice QCD. We begin by introducing it in a

context of quantum mechanics. To goal here is not to derive the path integral, but to give
an intuitive idea for how one can discretize a path integral into something which can be
calculated numerically[l]

In the following discussion, we are working in Euclidean time, as a Wick rotation has
been performed. For details on Wick rotation, see appendix on page for details.

3.1.1 The Euclidean quantum mechanical correlator

We start by considering a general Hamiltonian in quantum mechanics,

P
=L 17@), (3.1)

2m

where p is the momentum operator, m is some mass and V(:z:) is a potential. We then
apply the Hamiltonian on a ket in some state |n),

Hn) = E,|n). (3.2)
Since F, are eigenvalues of the Hamiltonian, ordered, and real numbers we have

Ey<E <BE,.... (3.3)

Given that the basis |n) of H is an orthonormal one, we get

Z (n| o TH In) = Ze_TE”(n In) = Ze_TE” x 1

= TBo f ooTEr 4 o=TE2

which is a sum over the energy spectrum.

'Most textbooks on quantum field theory(and usually books on advanced quantum mechanics) contain
some introduction on path integrals, and thus there are many good to chose from [24] 34 [37, 511 [60].
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The next step is to evaluate two observables at time ¢; = 0 and ty = t such that
T=t;—t,

o ~ 1 o o
(0:0010)), = 23 (m]e =0 00”0 m) (35)
1 7 A -

— 70 > <m| e—(T—t)HO2 ; |n> <n| e—tHO1 |m> (3.6)
1 . .

_ —(T—t)Em —tEp,

Sz (m| Os |n) e~ (n| O |m) (3.7)

)

zm n <m| OQ |n> <n| Ol |m> eftEne*(Tft)Em
- e TE o TEr 4 o=TE2 | ) (38)

where we inserted a complete set of states in eq. (3.6). We can now divide by the ground
state e T%0 such that AE, = E,, — Ej,

Zm,n (m] 02 In) (n| Ol |m) e tAEn o—(T—t)AEn

(0:001(0)) = . (3.9)

T 1+ e TAEL 4 o=TAEy

We can now let T"— oo and relabel by convention AF,, — E,,

G(t) = lim <0}(t>01(0)>T =" 0[Oz n) (n] Oy |0) &P, (3.10)

T—t)AEy, T—t

where the exponential e~ became e~ (T=9*0 leaving us with m as the only state
which survives due to being the ground state m = 0. We now have an expression for the
correlator, G(t). We can write out the sum as

G(t) = Age ™0 (1+ O(e"21)) (3.11)

where Ag is a constant. There now is a real danger of confusion as we have re-introduced
AFEy, only this time as the difference between E, and E; as the first excited state. One
quick observation to take home, is that we can only investigate energy differences.
Picking up from eq. and we assume that E; > F, such that if we take the
correlator at two different points ¢ and ¢ + a where a is simply one step length forward,

G(t) . Aoe_tAEl B
log (G(t n a)) = log (W = aAFE,, (3.12)

we have an expression for extracting the first energy level. While this technique is crude
and limited in scope, it serves as a simple gateway to how one can extract masses and
energy levels from correlators.



28 Lattice QCD Chapter 3

3.1.2 The path integral in quantum mechanics

The next step now is to connect the quantum mechanical propagator in eq. on the
previous page with the path integral. In order to build an intuitive understanding of the
path integral, we imagine that we are drawing all possible paths a particle can take from
an initial position (z;,¢;) to final position (xf,tf). We then find the action S[z(t)] for each
of these paths and use that as a weight. Summing all of the contributions gives us the
propagator U(xy,ts;x;,t;) that describes the most likely path a particle will take,

Ulwy,tp;ai,t;) = Z e (Phase), (3.13)

all paths

Instead of writing this as a sum over all paths, we can rewrite this in terms of an integral,
Ul g ) = / Dar(t)e Sl (3.14)
The z(t) describes the path for ¢t =¢; — t, and x(t;) = x; and x(ty) = xp with T = t; — t,.

The action in eq. (3.14)) is given as

Sla] = /OTdt [%j;(t)? +V(m(t))] . (3.15)

As it turns out eq. (3.13) is equal to the quantum mechanical propagator in position
space[51], [60],

(zg| o TH |z;) = /Da:(t)e_sm. (3.16)

Given that we start and end at equal times, i.e. x; = xf, we have that eq. (3.16) is equal to
the partition function Z. Using this, the quantum mechanical propagator can be written
as

(a(ta)a(t) = % / Da(t)e= S a(t)a(h). (3.17)

In order to extract the energies from this expression as we did in the preceding section
with eq. (3.11]) on the previous page, we set x; = x and start discretizing the action.

Sla] = / ALz (t), i(1)]
= eth:; (% (@)2 + V(xj)> , (3.18)

where € = T/Nr and is equal eq. (3.15) up to O(e). We used a simple forward Euler

approximation to the time derivative, . To reduce the discretization error, we can for
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instance instead use a symmetric derivative such as # = (xj41 — x;_1)/2¢ such that the
discretization error becomes O(€?).
Discretizing the path from ¢; = ¢ to t; = ¢, changes the path integral measure to

Npr—1

/Dx(t) — J];[O /dxj, (3.19)

such that the final path integral propagator to solve becomes,
) . (3.20)

NT_1 NT—I 2
. 1 1 —
(x| e~ |z) = 7 H /dxj exp <e Z [% (%) + V(z;)
=0 =0
A _ _ _ A

X

Lo LN

to t1  ta 13 IN—2 tn—1 1IN

Figure 3.2: An example of the discretized path integral, going from time tg
to tn,, where the end points is taken to be equal, zo = zx,. We integrate
over all of space at each time t; finding the most likely position at a given
time.

A pictorial view of the path integral in eq. (3.20) can be seen in fig. 3.2l In this
perspective, we only need to sample the path some N times at every time step, which can
be done numericallyf]

2A quick implementation where we solve the quantum mechanical harmonic oscillator using
the Metropolis algorithm can be found at the authors GitHub page https://github.com/hmvege/
(QMPathIntegralSolver.


https://github.com/hmvege/QMPathIntegralSolver
https://github.com/hmvege/QMPathIntegralSolver
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To extract energies we use that the right hand side of eq. (3.17) on page [28 equals

((8)2(0)) = % / da (x| e~ T 5ot 5 | )

e (B de T | )
S e TEn :
Through an equivalent procedure as in the preceding section, we can extract the energy

AFE;. We assume that the ground state will dominate, and by looking at different positions
t in z(t), we get

(3.21)

G(t)
G(t) = (x(t)z(0)) "3 aAE, = log | =—— | . 3.22
(1) = (@(2(0)) 3 adFy = log (322)
Having reduced the path integral to a study of numerical integration, we are ready to
move on the lattice QCD.

3.2 From QCD to LQCD: building a lattice field the-
ory

Having shown how one can discretize a path integral in quantum mechanics, we are ready
to scale up to the QCD path integral. While the discretization itself is more or less
analogous to that of quantum mechanics, our point of attack will be in maintaining local
gauge invariance as most of the prominent features of QCD are all bound up in the gauge
invariance.

We begin by defining our spacetime to be a four-dimensional lattice, A,

A ={n= (ny,n2,n3,n4)|n1,n2,n3=0,....N—1;n4=0,...,Np — 1}, (3.23)

where n = (ny, ng, n3, ny) defines a point on the lattice, N is the number of spatial points
and N7 is the number of temporal points. The size of the lattice in terms of lattice sites
is then given by

|A| = N® x Np. (3.24)

Recalling the fermion fields we introduced in the previous chapter, we define fermions to
live on the lattice points,

b(n), P(n), n €A, (3.25)

where the physical position x can be recovered by multiplying n with the lattice spacing
a, * = an. The determination of the lattice spacing will be made explicit in section [3.6]

Before we begin in earnest, we will also state that we are performing a field redefinition
of absorbing the gg into the gauge fields A,,,

gSA,u — A'u. (326)
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We shall see that part of this motivation is that it makes gg explicit in the lattice gauge
action, which is useful when performing lattice calculations. It is also worth noting that
gs is the bare coupling, i.e. it has not been renormalized.

3.2.1 Deriving lattice action: First attempt
We begin by recalling the expression of the fermionic action in eq. (2.27) on page

Se[, ), A] = /d%@/}(%@u +iA, +m), (3.27)

where we have omitted the flavor-, spinor- and color-indices f, o and ¢. We then split the
fermion action into an interacting part and a non-interacting part,

S, Al = /d%l/_)(’y#a# +m)y + /d%ﬂ_)(iA#)@/)
= Sp + S (3.28)
From this we discretise the fermion derivative with the symmetric derivative,

Y(n+f) —(n— i)
2a '

Autp(x) = (3.29)

where a is the lattice spacing, and fi is a directional indexE|. The non-interacting fermion
action in eq. (3.28)) becomes

SaYadade NZ (Zv “"‘me(m)

n1=0 mn9o=0 mn3=0

— 'Y i (Z ﬂ w(” - m;b(n)) | (3.30)

neA

We are now ready to try to enforce gauge invariance. We can now attempt to apply the
same gauge transformation as we performed in eq. on page m to see if eq. (3.30))
preserves gauge invariance. Let us define Q(n) € SU(3), as opposite to V(z) € SU(3)
which we used for a non-discretized gauge transformation. The fields thus transform as

¥(n) = ¥'(n) = An)y(n), d(n) = ¥'(n) = (An)p(n)o =)' (n).  (3.31)

If we now look back at the fermion derivative in eq. we see that it is defined at
neighboring points to n. In order for the non-interacting fermion action in eq. to be
gauge invariant, all the terms in the lattice action must be invariant. While the mass term
is trivially invariant,

mp(n)y(n) — my' (n)y' (n) = m(n)Q (n)Qn)y(n) = mp(n)y(n), (3.32)

30ne could think of i as a unit lattice vector of length a.
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this is not the case for the discretized derivative,

D(n)(n+ i) = V()Y (n+ i) = () (n)Qn + f)v(n + f),
g S

P(n)(n — 1) = ' ()Y (n — 1) = P(n)

is we clearly do not retain gauge invariance.

Introducing the link variable U,

A remedy for maintaining gauge invariance was suggested in Wilson’s famous paper [70],
section III.A|, which involves the introduction of link variables, U,(n). We define a link
U,(n) as an object connecting two sites on the lattice, see fig.[3.3] The link gauge transform
as

Uu(n) = U, (n) = An)U,(n)Q(n + )T, (3.34)

connecting two points on the lattice.

U,(n) U_(n) = Uj(n — )
I +———t
n n+ [ n—pn n
(a) (b)

Figure 3.3: A link in the positive ji direction fig. |3.3a, and a link in the
negative fi direction fig.

For a link going from n to n — ji, we define
Uou(n) = Unn — i), (3.35)
which transforms as
U-u(n) = UL, (n) = [2(n — Q)U,(n — Q)] = 2m)Up(n — )20 — ). (3.36)

If we now go back to our definition of the fermion derivative in eq. (3.29)) on the previous
page and require the discretized derivative to be a product of the link variable U,(n),

el ) Ul =)

we can try to apply a gauge transformation on the now modified expression and its con-
stituent parts. For the forward derivative we get

Oup(x)

(3.37)

() Uu(n)(n + 1) = ' (n)U(n)y (n + j2)
V(A () Q) U (n)Qn + )1+ f)v(n + )
() Uu(n)(n + 1), (3.38)

n
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and correspondingly for the backwards derivative,

BV (m)(n — 1) = &)U, () (n — )
Q) An)U,(n — @) n — @)1 — @)o(n — f)
Uo(m)b(n — o). (3.39)

With this redefinition of the derivative in eq. on the facing page, our hope is that
we can recover the full fermion action in the continuum Sy = S% + SL. In general, this is
naturally an expectation for every expression on the lattice. In order to investigate this,
we need to properly define what the link U, (n) is.

3.2.2 The Gauge Link
The link variable U,(n) stems from the gauge transporter(or Wilson line) [51, ch. 15][24],

Gla,y) = P exp [z /P dxﬂAm)} | (3.40)

where x and y are to points connected by some path P, while P path orders A, along the
integration path. We have that this object transforms as

G(z,y) = G'(z,y) = V(2)G(z,y)V(z)". (3.41)

From this follows that all objects consisting of closed paths P - called Wilson loops, are
gauge invariant. To retrieve an expression for the link variable, we can start by taking the
gauge transporter from z to x + a and approximate the integral using the trapezoidal rule,

r rt+a
G(z,x +a) = exp z/ d4a:AH(x)]

= exp -z' (zy +a) —x,) % (Au(x + p) + Au(x))}
2
= exp [iaA,(z) + O(a®)], (3.42)

= exp

(24, (2) + ad, Au(z) + Ay + O(a2>)}

where we used that Taylor expanding around z in the gauge field for some a in a direction
v is given as

Au(x + ad) = A,(z) + ad, Au(x) + O(a?), (3.43)

but to leading order O(a?).
Moving on to the lattice, we can take the path from point x = n to point n + [,

G(n,n+ f1) = exp [iaA,(n) + O(a)], (3.44)
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from which we have the link given as
U,(n) = exp[iaA,(n)]. (3.45)
Performing an expansion of the exponential in U_,(n) and U,(n) in terms of a gives us
U,(n) = expliad,(n)] = 1+ iaA,(n) + O(a?)
U_.(n) =U,(n— i)l = exp [—iaAL(n — Q)] =1—iaA,(n— p) + O(a®), (3.46)

where we used that any element of the Lie algebra SU(N) has the property of being
Hermitian, AL(Q?) = Au(z). The expansion of the exponential in eq. (3.46) and the link
definition in eq. (3.45)) will be our primary tools for making sure there is a correspondence
between the lattice expressions and the continuum ones.

Gauge invariant objects on the lattice
We have that fully connected paths P of links
P[U] = Uuo (nU)Um (no + lao) T U;U«k—l(nl + ﬂk—l) = H UH(”)? (347)
n,uEP

transform according to
P[U] — P[U"] = Q(no) P[U]Q(ny)". (3.48)

This is easy to see, since every link transform according to eq. (3.34) on page_. Due
to how we defined the links, if this object connects two fermions on the lattice 1(ng) and
¥(ny) it will be gauge invariant,

V' (no) PIU'JY (n1) = ¥(no) PIUt) (1) (3.49)

Another way of constructing gauge invariant objects os to build closed loops of links. If
we define any closed loop L as

L) =tr | [] U.tn)|, (3.50)

(n,ueLl)

we have that this is gauge invariant since any section will have

U, (e £ p116) Uiy, (1 == fligr) (3.51)
— Qng)U, (nie £ 1) Qn £ f11,) 1 Q(ni £ ) Uy (Meger £ flg1) Q2 npeqr £ firs1)" (3.52)
= Qi) Uy (nie £ fir)Upiy oy (Mgt = i) Q2nr & figegn) T (3.53)

Since we are tracing, the cyclic property of matrix under trace will ensure that the end
points will cancel as well, such that L[U'] = L[U].
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3.2.3 The naive fermion action

Let us begin by performing the much-awaited substitution of the fermion derivative in
eq. (3.37) on page[32] This gives us what is called the naive fermion action,

Sele, U] =a* Y4 (Z% plnt i) = Uop(n)gin = A) +m¢(n)>. (3.54)

2a
neA

While we have shown that the constituent parts of this equation are gauge invariant in

eq. (3.38)) on page , eq. (3.39) on page [33] and in eq. (3.32) on page , we now need to
show that we indeed recover the continuum expression once a — 0. Having just introduced
the link variable properly, this is an easy task to perform. If we insert the Taylor expanded

link variables from eq. (3.46]) on the facing page into the naive fermion action in eq. (3.54]),

Up(n)(n+ ) = U_p(n)(n — j1)

2a
(Lt iaA,(m)i(n + 1) — (1= iad,(n — 2)d(n - )
2a

_Y(n+p) —dn—f) +Z~Au( Jo(n+ i) + Au(n — p)Y(n — f1)

2a 2
_ ki) Y= ) A + A o

2a 2
CIGRTD z_aw(” “H) A m)en) + Oa). (3.55)

In the second to last line we used that one can Taylor expand around n, such that ¢(n4/) =
¥(n) 4+ O(a) and A(n £ i) = A(n) + O(a).

If we now insert eq. (3.55)) into the naive fermion action in eq. (3.54)) and then send
a — 0, we get

Selp, 0, Ul = a4 (Z ”*“ M”"” +iA,(n)v(n) +m¢(n)> +0(a)

neA

(3.56)
20 / A zp (D + m)p, (3.57)

which recovers the continuum action in eq. on page .

Before we move on to see if we can perform a similar link expansion of the gauge action
Sq, it is worth mentioning that the name of the naive fermion action stems the fact that
it gives rise to doublers. These can be seen if one Fourier transforms the naive fermion
action in eq. to momentum space and we get 15 additional mass terms [24].



36 Lattice QCD Chapter 3

3.2.4 The Wilson gauge action

We begin by recalling the pure gauge action of QCD in eq. (2.26]) on page 14| with the field
strength tensor explicitly written out as

1 1
Sg[A] = @ /d4xtrF3V = @ /d4zctr (@NA,, — 8,,AM + i[AH, Ay]) s (358)

where we have a factor 1/g% in front of the integral due to the field redefinition ggA, — A,
Since we now are moving onto the lattice we will denote the lattice field strength tensor
as F},,(n), where n is the lattice site.

To build a lattice gauge action corresponding to eq. , we start with the simplest
possible gauge invariant object we can imagine - a square.

Po(n) = Up(m)Uy (n + i)U_u(n + i + 2)U_ (n + )
= Uu(m)U,(n + @)U (n + 0)TU, (), (3.59)

and is called the plaquette. A pictorial view of how it is built can be seen in fig. 3.4

Ul(n+v) A

n-+v n+p+v
[ < *

Ulln) Y A Un+p)
¢ > '3

Figure 3.4: The plaquette as given by eq. 1|

Our hope is that using the link definition in eq. (3.45) on page ﬂ we can recover
the continuum gauge action. We begin by substituting the terms in the plaquette from

eq. (3.59) by the link definition in eq. (3.45)) on page [34

Puw(n) = Uu(n)U,(n+ @)Uu(n + )T, (n)f

= exp (1aA,(n)) exp (iaA,(n + f1)) exp (—iaA,(n + 1)) exp (—iaA,(n)). (3.60)

The next trick is to use the Baker-Campbell-Hausdorff formula for two matrices A and B,

1
exp Aexp B = exp (A+B+§[A,B]—|—...), (3.61)
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in order to join the exponentials of eq. (3.60)) on the facing page. We get
1
(3.60) = exp (iaAu(n) +iaA,(n+ Q) + 5 [iaA,(n),iaA,(n+ )]+ - )

X exp (—iaA#(n +v) —iaA,(n) + % [—iaA,(n+ D), —iaA,(n)] + - ) :
(3.62)

If we now use that we are only keeping terms less than O(a®) and that the A,(n + ) can
be Taylor expanded as

A, (n+7) = A,(n) + ad,A,(n) + O(a?), (3.63)
which similar to the continuum expression in eq. (3.43) on page , we can join the expo-
nentials in eq. (3.62)) to

2
(3.62)) = exp (iaAu(n) +iaA,(n) +ia®0, A, (n) — % [A,(n), Ay(n)] — iaA,(n)

2

— a9, 4,(n) — ia A, (n) = - [4(n). Au(n)] + T [A(n). A, (n)]

a? a’ a?
+ 5 1A, A+ 5 [Aulo) A,0] + G [A0) Aulo)] + O
(3.64)
which after canceling terms and using [A, B] = —[B, A] reduces to
(3-64) = exp [ia® (0, Au(n) — 9, Au(n) + i [Au(n), Ay(n)])] (3.65)
= exp [ia’F),,(n) + O(a”)] . (3.66
Taylor expanding this expression gives us
4
P =1+ ia*F,,(n) — %ij(n) +O(db). (3.67)
From this we can can observe that taking the real and imaginary parts yields
4
a
Re(P,,) =1— EFEVW) + O(a®), (3.68)
Im(P,,) = a*F,,(n) + O(a®). (3.69)

Since we are only interested in the field strength tensor squared, and we know that the
trace of the field strength tensor yields the gauge action, we can take unity subtracted by
the plaquette as the lattice gauge action,

SelU] = % S°S Retr[1— P (n)] (3.70)

neA p<v

_ “_ZZZ (tr [F2,(n)] + O(a?)), (3.71)
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in which the extra factor 2 in eq. (3.70]) on the previous page comes from using that
Retr(P,,(n)) = Retr(P,.(n)), (3.72)

and thus reducing the plaquettes needed to six. Inserting the plaquette and taking the real

part as in eq. (3.68]) on the preceding page gives us eq. (3.71) on the previous page where
we can see that a — 0 recovers the continuum limit of the gauge action.

Usually, we denote the coupling constant as 3 = 2N, /g%, which gives us a final expres-
sion for the gauge action for N, = 3,

B
SelU] =3 > ) Retr[l = P, (n)], (3.73)
neA p<v
This action is also sometimes called the Wilson gauge action [76], and is the simplest way
of expressing the gauge action.
Improvements to the action

As a final note, it is worth mentioning that the gauge action in eq. (3.73)) can be improved
in several manners, most notable is through the Symanzik improvement program [24] ch.
9]. More details on this will come towards the end of this chapter in section on page

3.3 The LQCD partition function

Having introduced the lattice action S[,, U] for both fermions Sg[t), 1, U] and gluons
Sc|U], it is time to make the path integral on the lattice explicit,

7= / DDy DUe SFlP-UI=56U] (3.74)

where the Haar measure ensure that D(U) is gauge invariant [24] ch. 3.1].

As we already have discussed in chapter 2] on page [ the fermions are Grassmann
valued numbers and we can integrate them out of the partition function and expectancy-
value as determinants, with one determinant for each fermion flavor. The partition function
becomes

Z = / DUe %I T] det [DV], (3.75)
f

where D) is the Dirac operator containing the fermion mass.
The expectation value when including fermion fields is given by

(0) = % / DUe 5Dy DipeSr A VI0[, ), U). (3.76)
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Integrating out the Grassmann-valued fields ¢» and ¢ gives us

(0) = % / DUe5cVIO[U] det DU,
(3.77)
7 = / DUe %V det D[U],

where D[U] is a matrix of 12|A| rows and columns, dependent on the quark flavor f. If we
wish to compute correlators, we will have to take the inverse of the Dirac operator D[U]
as our propagator.

Since we are only interested in pure gauge theory the fermion determinants are set
to one, such that we are essentially overlooking any fermionic loops. This is called the
quenched approrimation. While one can still calculate correlators that include fermions,
the effects of sea quarks or dynamical fermions are neglected(ignoring vacuum fluctuations
of quarks). The quarks used as propagators is called valence quarks. For the two lightest
quarks, u and d, we have that their masses are taken to be approximately equal, thus
reducing the number of determinants needed to compute to one, as they can be taken as
equal]

The integral we are left with after setting the determinants to one in eq. , is an
integral over the gauge fields. For this thesis, all quark effects will be ignored, such that we
essentially have a purely gluonic theory, or pure gauge or Yang-Mills theory. Our goal will

be to generate gauge configurations such that we can use those when sampling expectation
values O[U].

3.4 Correlators and observables

Having briefly introduced fermions on the lattice just to wave them away, we can begin
to look at some of the observables and correlators that will be investigated in this thesis.
When ignoring quarks, the expectation value for O as we saw in eq. (3.77]), becomes

1
()=~ / DU 0],

3.78
Z = / DUe %clV], -

where U indicates all of the links on the lattice and Sg[U] is given by eq. (3.73) on the
preceding page.

4The number of determinants/quarks in the simulation is denoted by N t =mn; +n; +---. Each
standalone number indicates a unique determinant, while the number itself indicates the number of times
we are to include the determinant. E.g. N =24 1+ 1 means we are to take the u/d determinants to be
equal(only need to calculate one determinant and square it), while s and ¢ are unique and each needs to
be calculated explicitly.
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A basic example of an observable is the plaquette observable. Having introduced the
plaquette in eq. (3.59) on page , the plaquette on the lattice is given by

1
pP= MZZRetrPW, (3.79)

neN p<v

where |A| is the total number of lattice points. The final result will be an average of all of
the gauge configurations.

As discussed in chapter 2] on page [5, understanding topology in QCD can give profound
insights into its nature. In this section, we will reintroduce quantities such as topological
charge and susceptibility, only this time as they are defined on the lattice. For this task,
we will rely on an improved lattice field strength tensor, the clover.

3.4.1 The clover field strength tensor

The clover consists of four plaquettes organized in a square, resembling a clover(see fig. [3.5
on the facing page). It has discretization errors of O(a?), and is given as following [3] 61]

Cowr o (U(m)Uy (0 + U (n + 9)U} ()
— U.(n)Ul(n+ o — 0)US(n — 0)U, (n — D)

: g o o . (3.80)
= Up(n = )U(n — i = 0)Upu(n — o = 1)Uy (n — D)
+ UL (0 = )0y (n = @)Uu(n — o+ 2)US (),
from which we construct an anti-Hermitian clover term,
. ' 1
Ch o< —i [ (Cpp(n) — C’L/(n)) - gtr (Cpuw(n) — C/Tw(n))} : (3.81)

The proportionality sign in eq. (3.80) indicates we need to divide by 4 since we have four
plaquettes, while in eq. 1' we pick up a factor % since we are making it anti-Hermitian.
Bringing these factors into a single term, the clover field strength tensor becomes
1 -
clov _
Fe (n) =—C

8a2 M

(3.82)

: clov __ clov
with Flov = —elov,

With the clover in place, we can move on to define all of the relevant gauge observables.

3.4.2 Energy density

While we won'’t go into detail on the energy density(also known as the action density), we
will use it for studying scale setting on the lattice. We will return to the scale setting in

section [3.6.3] on page [53
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Udn—ji+9)  Ultn+0)
® > ® ¢ < ®
Uu(n—ji) § Ul(n) Y 1 Uln) | Ui+ )

U;E(n—,&) Uu(n)

[ < o © > 9

[ < 9 ¢ > 9
UT(n—/l) Uu(n)

Ultn—ji—9) | Un—2) § } Un—) Y Uitn+—9)
® > ® @ < ®

Figure 3.5: The maximal symmetric clover expression for the field strength
tensor from eq. (3.82) on the facing page.

The energy density is given as

2’A‘ Z Z Fclov

neN v
2
w;;(w ” ”)
- 64|A|HGZA;< ) (3.83)

where we in the second line inserted the clover field strength terms from eq. (3.82)) on the
facing page. We get an extra factor 2 from only needing to sum over each clover term once.
The definition we use for the energy density on the lattice is given by eq. (3.83).

3.4.3 Topological charge
The topological charge in eq. (2.44]) on page [20| on the lattice is given as

Q=a") q(n), (3.84)

nen
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with the charge density given by

0(n) = g3t [P (1) Epo (1) (3.9

The gg in the continuum expression in eq. (2.45)) on page 20/ has been absorbed by the field
redefinition from eq. (3.26)) on page Due to the fact that

tr[Fuqua] = tr[FpaFul/] = tr[FapFW] (3.86)
tr[F, Fyp) = tr[FypFu] = tr[FopFyl, (3.87)

the number of tensor index combinations we need to calculate goes from 24 to 3, and ¢(n)
picks up a factor 8. Writing out all of the Levi-Civita combinations and inserting the clover

field strength in eq. (3.80) on page , gives us
1

" 4n?

q(n) tr [F1™ (n) F35™ (n) + Fgy™ (n) Fi™ (n) + Fog™ (n) Fiy™ (n)] (3.88)

The topological charge density is then

q(n) = ﬁtr {@ (001 (n)Cas(n) + Coz(n)Chs(n) + éog(n)éu(n))] (3.89)
11

a(n) = == 5=t (Cor(m)Cia(n) + Con(n)Cra(m) + Coa()Cra(m)) (3.90)

Summing over the lattice gives us the expression for the total topological charge,

Q=a") qn)

neA

= — 5573 2t (Cor(m)Con(m) + Cin(m)Coa) + Cos(m)Crafm)) . (391

neA

Momenta of topological charge

The topological charge posses several interesting properties as discussed in section [2.10
and we can through investigations of the topological charge cumulants achieve some key
insights. For an explicit derivation the cumulants, see appendix [E] on page [I59] The first
cumulant - the average, is given as

(@ =5 > Qi (3.92)

It follows from () being parity odd, that the expectancy value becomes zero. If the average
topological charge is not zero, it may be an indication that we are not sampling the
configuration space correctly.
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Topological susceptibility and the Witten-Veneziano formula

The second cumulant correspond to topological susceptibility which we introduced in sec-

tion [2.10.2/ on page . Using the normalized second cumulamﬂ we have [24]

o = (@) = 75 3 atma(m) = a* 3 a(0)a(m) (399)

n

where the V' = a*|A] is the physical volume of the latticd’] Taking the quartic root of the
susceptibility gives us

1
1/4 1/4
Xtop - V1/4 <Q2> . (394)

Applying this to the Witten-Veneziano formula from eq. (2.59) on page is straight
forward, and can provide insight into the 1" mass or the number of flavors N; involved.

The Fourth Cumulant

While the third cumulant is zero since () = 0, and all the terms that are given in eq. (E.12)

on page contains the first moment, the fourth cumulant in eq. (E.16]) on page is
not zero. The fourth cumulant has been investigated in several papers [13] [19, 26, [72] and

is given as

(@), = % (<Q4> —3 <Q2>2) . (3.95)

From this, we can also measure the ratio R,

_ @Y. _1@)-3@y’

vy Vvooo(@)
which can provide insight into the distribution of ) and whether or not it is Gaussian.
If this ratio is far away from 1, one can rule out the #-behavior predicted by the dilute
instanton gas model. It implies that the fluctuations of the topological charge are quantum
non-perturbative and compatible with being suppressed by 1/N? in the large N, limit [13],
i.,e. QCD can not be described by the dilute instanton gas model.

R (3.96)

3.4.4 Correlators

Correlators in lattice QCD provides an entry point to investigating the masses and excited
states of objects on the lattice. We can take the expression for the quantum mechanical
correlator and instead of time t look at the temporal points on the lattice ¢t = any,

C(ny) = <Og(o,nt)él(o,0)> =301 0s k) (k| Oy [0) 705, (3.97)

5The topological charge is an extensive quantity, which is why we divide by the lattice volume.
61f we wish to convert to physical units, we can use the conversion unit given in eq. 1) on page m
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in which we can extract the ground states similar to eq. (3.12) on page ,
C(ny) = Age "0 4 Aje™™P 4 (3.98)

There exist a small collection of more advanced methods for extracting energy levels. An
example is the variational method, which converts to extraction issue into an eigenvalue
problem [44]. We refer the reader to books such as Gattringer and Lang [24] ch. 6] for an
overview on the different methods available.

The topological charge density correlator

If we take the glueball correlation function in eq. (2.64)) from section [2.10.5] we can extract
an effective mass for the state P = 0=,

— C(n)
ameg = log (C’(nt n 1>> , (3.99)
where C'(n;) is taken to be
C(ni) = (q(n:)q(0)) (3.100)

with g(n;) being the topological charge density from eq. (3.85) on page [42| in Euclidean
time. Note that we have summed ¢(n;) in z, y and z, leaving Euclidean time t. available
to us. Another way of representing this correlator is given as

C(te) = (q(te)a(teo)) , (3.101)

where we use C(t.) as a function of Euclidean time ¢., and the source ¢(t.) is frozen at
some euclidean time t.o. The value t. is t. = an,.

3.5 Gradient flow

A problem with studying gauge configurations is that they contain noise and that several
observables exhibit UV divergencies. An example of this would be the topological suscep-
tibility, which at zero flow time contains a UV divergence [55]. A solution to this problem
is to apply gradient flow. The idea behind gradient flow is to introduce a fifth dimension
or scale, called flow time t; which has dimension two, and let the fields evolve according to
what in the crudest manner can be seen as a ”diffusion” equation. This makes makes the
gauge field into a smooth, renormalized field at ¢; > 0 [40]. Applying gradient flow sepa-
rates the gauge field into topologically distinct sectors, and allows us to sample quantities
of topological charge without having to apply a renormalization procedure.

The flow of the SU(3) gauge fields are denoted by B,,(x,t;) which are Lie algebra valued
gauge fields,

L Bu(w,ty) = DuGupla, ), (3.102)
dt;
D, = 6u + [Bu(x,tf), ] , (3.103)

Guv(xvtf) = auBV(x7tf) - aVBu(xvtf) - i[BM<‘T?tf)>BV<xatf)]a (3.104)
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with the initial condition of eq. (3.102) on the facing page being the fundamental gauge
field,

Bu(x,tf)]i;—0 = Au(z). (3.105)

The - of the covariant derivative refers to the derivative with respect to gauge fields.
We have that eq. (3.102)) on the preceding page is proportional to the gradient of the
action [42],

95¢(B)

d
— Bz ty) ~— 22
u(®:ty) OB, (z,t;)’

3.106
i (3.106)

such that the system will be driven towards the stationary points of the Yang-Mills gauge
action, making the gauge field smoother. This allows us to investigate topological proper-
ties such as instanton effects as they by definition are local minimums of the gauge field.
From eq. on the facing page we see that flow time ¢ is required to have dimension-
ality of —2 since D, and G, ,(z,ts) have respectively dimension +1 and +2, and B,,(z,ty)
has dimension +1.

We will later solve the flow differential equation numerically using Runge-Kutta 3 in
section on page [64, but before that it is worth taking a look at another possibility.
We can attempt to solve the flow differential equation by invoking perturbation theory
and reintroducing the coupling gg into the gauge fields. Then, by expanding B, in an
asymptotic series B, = >, g% B, where B, i|i—o = 01 A,, the leading order coefficient
B, is equivalent with a heat equation with the solution [40]

Bua(nty) = / Ay K, (x — ) Au(y). (3.107)

with K, (x — y) being the heat kernel,

dp* .
Ky, (2) = / @%e’”e‘”’*- (3.108)

)

Completing the square of the exponentials,

22 22

ipz — tfp2 =ipz — tfp2 + - (3.109)
Aty Aty

2

2
V4 z
= RVA? - — 3.110
(Qﬁ—i_z\/_fp) 4tf’ ( )

allows us to rewrite eq. (3.108)) as

2

Ky, (z) =¢ 7 / (37]:;4 exp (2;5 + i\/ﬁp)z. (3.111)
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If we now use the Gaussian integral,

/ dxe_“(ﬁb)?:\/fa (3.112)
oo a

we get that eq. (3.111]) on the previous page becomes

6722/4tf 7T2

(94 12
(2m)* 3

e—z2/4tf

(4mty)>

th(z) =

(3.113)

We recognize eq. (3.113)) to be a Gaussian distribution, such that ¢ = 2¢; is the variance
in four dimensions. The smearing radius is given by the root mean square radius of the

heat kernel [40, p. 4],
1/2
52027 /Aty
(2) = (/ d4zW> (3.114)

1 4.2 —22/4t V2
= m d*zz% f s (3115)
Ly

where 2% = 27 + 22 + 22 4 22. Using the Gaussian integral listed earlier in eq. (3.112)) with
b=0 and

o0 1
/ dzz?e " = 5 % (3.116)
we get when we set a = 1/4ty,
2 [ 1 2 2 2 2 fa<22+22+z2+22) 12
(22) = /) dzidzadzgdzy (27 + 25 + 25 + z7) e AT TETE (3.117)
T

_ (%)24@\/;( §)3> " (3.118)

- |2 (9)2 ﬂ v (3.119)

) @
— /8. (3.120)

This is our flow smearing radius \/g , which we will use to measure the how far we have
let the gradient flow run. If we let the flow run long enough, the smearing \/@ will at
some point be larger than the lattice itself. This will result in unphysical results, and is
something we will avoid.




Section 3.5 Gradient flow 47

As it turns out, gauge correlation functions at ¢y > 0 are finite at all Euclidean distances,
such that no renormalization except for the gauge coupling(and quark masses) is required
[42].

On the lattice the flow equation from eq. (3.102)) on page [44| becomes

‘./tf (ZE,,u) = _g?g {ax,uSG[V;ff}} V;ff ($, :u)’ Wf (l‘7#‘)|t.f:0 = U($’ :u)’ (3'121)

where Vi, (7, ) is the flow field associated with the fundamental gauge field U, (z). 0.,
is the su(3) differential operator, acting on the action. Our goal will be to integrate
this function. To do so, several ingredients are needed. We need to set up a numerical
integration scheme of choice - in our case, this will be the Runge-Kutta 3 method which
will be discussed in the next chapter. Another important component is the derivative of
the gauge action.

It should be mentioned that it is also possible to flow quarks on the lattice, but since we
are dealing with a pure gauge theory we will simply refer the reader to [41] for a treatment
of this topic.

3.5.1 The action derivative

In eq. (3.121)) we are to take derivative of the gauge action using the su(3) valued differential
operator. We start with defining the differential operator acting on some function f(U) of
the gauge field U,

0, (U) = 1902, (D), (3.122)

with the algebra-valued differential operator being

d < . te it (y,v) = (z,p),
a = —f(e* th X = 12
0, (U) = L ()|, with X(y0) {0 L (3123)
For notation we will use x, y instead of n, m for lattice locations.
Taking the derivative of Sg[U] yields
d
QWSG[U] = t“@gvuSG[U] = &SG [GSXU} |8:0 (3.124)
__ 1a d ﬁ sX ANTTT 77t
=02 0233 Retr (1- XU )Usly + @)Uy + AU} () )
y a<p s=0
(3.125)
o ] . ;
=t 3 Z Z Retr (—Xe YUa(y)Us(y + &)Ul (y + B)Ug(y)) (3.126)
Yy a<fp s=0
aﬁ A 2
=23 Retr (=X Ua)Usly + 0L+ BULW) ) (3.127)

y a<p
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Since X leaves all terms different than (z, u) as zero, we are only left with the two links
at y.

(3.127) = —tag Z Retr (t“Uu(m)Uy(x + /fL)U;(x + 0\ Ul (2)

+ Unlw = DUz = 7+ ) (V@) Uf (@ = 9) ).

We can now use that Retr(P,,) = Retr(P},), tr(A + B) = trA + trB and the cyclic
property of the trace tr(ABCD) = tr(DABC) = --- = tr(BCDA) on the last part of the

sum in eq. (3.128),
Retr(U,(z — 0)U, (x — 0+ 1) (t°U,(2)) Ul (z — 9))

:mm(BMw—mmu—ﬁ+M@%u@f@@—ﬁW)

= Retr (Ul(z — 0)t"U,(2)U, (z — 0 + 1) U, (z — D))
=Retr (t*U,(2)U,(z — 0+ p)'U,(z — 2)TUl(z — 1)) . (3.129)

By inserting eq. (3.129)) into eq. (3.128)), we can pull out t*U,(x),

8 R R
Op uSc|U] = —t"= Retr|t*U,(z)(U,(x UII T+ U,j x
wSalU] 3;# [tU(2) (U (2 + @)Uz + ) U (x) (3130)

+U,(x — 0+ 2)'U,(z — 2)T U (z — D))].

To further clean this up, we can define the two plaquette-segments as a staple, such that
the combined parts become a rectangle which we label as X, (z),

Dy uScU] = —t“§ > Retr [t'U, () X0 (2)] | (3.131)
v
Xow(@) = Uy(x + Ul (x + D)US(2) + Uy (x — 0+ ()T U (2 — 2)'US(x — 9).  (3.132)

An schematic view of the staple can be seen in fig. [3.6] on the next page.

The next step is to get rid of the generators t* in eq. . We can now either make
an explicit calculation using the generators ¢t* with symbolic manipulation softwareﬂ or we
can try to rewrite the expression even further.

We can start by making the matrix Y),(z,t7) = U,(2)X,(z) real,

—g5 {0:SclVi, ]} =2 " Retr {t"Y, (v, 1)} (3.133)

=2 {t“; (Ya(, ty) = Y (x, tf))} : (3.134)

"The class WilsonExplicitDer does this explicitly, and has shown to be about 5% faster than the
ordinary method in eq. (3.138) on the next page.
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Figure 3.6: The two staples in X, (n) from eq. (3.132) on the facing page
used in the action derivative in eq. (3.131)) on the preceding page.

where we used that writing a complex matrix A as A = —%(B — B') ensures that we are
only selecting the real components. We have that a 3 x 3 matrix A can be written as [4]

A=agl +a't, with ap= gtrA, a' = 2tr(t'A), (3.135)

which can be rearranged to

1 1

tr(t' At = §A - gtrA. (3.136)
Using eq. for the trace in eq. on the preceding page gives us
—g5 {00uSclVi, ]} = =i Y totr [t* (YV(z, ty) — V(2. 1)) (3.137)
, “1 1
= (5 (Yu(z) = Y](2)) - gtr (Y (z) — YJ(:L‘))) , (3.138)

which is our final expression for the pure gauge action derivative.

3.5.2 Gradient flow and topological charge

A useful aspect of the topological charge is that it is independent of flow time [13]. To see
this, we begin by restating the topological charge density in terms of G,

1
q= @Euupotr [G;U/Gpcr] ) (3139)
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for which we perform a small variation on B,,. We get

dq €uvpo LT [0G 1 G o] + 11 [G 0G0 } (3.140)

- 3272

Moving the indices of the Levi-Civita, we have €,,,0 = €pou, Which remains positive due
to an even number of permutations. Also interchanging u <+ p and v <+ ¢ and using the
cyclicity of the trace,

tr[ABC] = tr|[CAB] = tr[BC A], (3.141)

we get

1
5(] = WGuypatr[Guy5Gpo-]- (3142)

If we now look at the variation of the field strength tensor,

3G, = 6 (9B, — 0,B, — i[B,, B,))
= 0,0B, — 8,0B,, — i ([0B,., B,) + By, 6 B,))
— 0,08, — 0,68, — i ([B,,0B,] — [B,,0B,)).

We can insert this into eq. (3.142)),

1 .
dq = W{ €pot1(G 0,0 B, — i[B,, 0 B,]) (3.143)
+ €upott(Gw0s0B, — i[By,6B,)) }, (3.144)
and then use €,,,0 = —€0p and p < o,
1 .
0q = @ewm{tr (G,,,0,0B,) — itr (G B,, 6 B,]) } (3.145)

We can now use the Jacobi identity(or Bianchi identity),
E,quJDpGW/ = 07 (3146)

which is valid for all p. Inserting the definition of the covariant derivative from eq. (3.103))
on page [44]

€uvpo (0Gw — i[B,, Gpl) = 0, (3.147)
we get

€uvpoe G = i€upo [ By, G- (3.148)
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Before using eq. (3.148)) on the facing page, we must reorganize the last term in eq. (3.145))

on the preceding page. We use that a matrix commutator can be written as

[A, BC| = [A, B]C + B[A, C]. (3.149)
Tracing both sides and using that the trace of a commutator is zero, we are left with
[A, B|C = —B[A, (], (3.150)
which we can insert into the last term of eq. on the facing page,
8q = #ewpa{tr (Gu0,0B,) + itr ([By, G]0B,) }. (3.151)
Applying eq. on the preceding page on eq. yields
1

60 = &5 {17 (Cus0y0 Bl + ot (0,G00B,] }

1
=0p (@ewmtr [GWéBU])
= 0,1, (3.152)

If we now consider the variation from the gradient flow on the gauge field and on the charge
density,

OB, = 8,B,6t, 6q = 0,qdt, (3.153)

the change in 0,q is equivalent with what we have found,
1
0rqot = @ewwtr (G0 B0t

1
= @Euypo'tr [GuVD)\G)\U] 5t
it (3.154)

where we in the second to the last term used the flow equation from eq. (4.27)) on page
This gives us 0,q = 0,w,. From this follows that the topological charge

Q= / dzq, (3.155)
can now be written as a gradient of the fields,
0,Q = / d'0,q = / d*z0,w,. (3.156)

Given that the Yang-Mills action has to vanish at the border when tending to infinity, the
change in topological charge in flow time must be zero,

9,Q = 0. (3.157)

This fact allows us to explore the gauge fields certain that they will retain their topological
properties, such as their winding numbers.
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3.6 Scale setting: connecting with the real world

Since all observables are given in units of Ac and the action is dimensionless, we need to
relate them to physical quantities in order for them to make any sense. Take for instance
the dimensionless quantity ameg, where a is the lattice spacing and meg is some effective
mass. In order to connect the mass to actual physics, we must first connect the lattice
spacing a to a physical unit. In non-quenched calculations this is usually done through
physical pion masses. Since we are working in pure gauge, we will instead look at some
quenched approaches and how one can relate a to the gauge coupling 5.

3.6.1 The Sommer parameter

One way of connecting the lattice spacing a to the gauge coupling is through a physical
distance rg, the Sommer parameter [28,62]. The Sommer parameter is taken to be approx-
imately ro ~ 0.5 fm, which is what we will take it to be for this thesis. In order to find the
Sommer parameter exactly, one needs to calculate the static quark potential through the
briefly mentioned Wilson loops. Given the vacuum the expectation value for the Wilson
loop

1
(We) = - / DUe % tr : (3.158)

[1o

leC

we take a contour C of size n, x n;, forming a rectangle. This potential corresponds to the
force between two static quarks [24] ch. 3.4] and can be expanded and rewritten as

(We) = Cexp(—tV(r)), (3.159)
with 7 = na and t = nya. V(r) is what is called the static quark potential, and C' is some
proportionality constant. Extracting V' (r), we will parametrize the potential as

B
Vir)=A+—+or. (3.160)
r
We can connect V' (r) with experimental data of the static force at F(r = ry),
F(ro)rs = 1.65, (3.161)

which corresponds to rg ~ 0.5 fm. Connecting the static force with the static potential is
done by simply taking the derivative of V'(r),

F(r)= %V(T) = —T—BQ + 0. (3.162)

Since the lattice spacing a is unknown, we extract aV'(an) and perform a fit on

B
aV(an) = Aa + — + oa’n. (3.163)
n



Section 3.6 Scale setting: connecting with the real world 53

When combined with experimental results for the static force in eq. (3.161)) on the facing
page we have that

F(ro)rs = =B + org, (3.164)
which suggests that

ro = 1/ (1.65 + B)o. (3.165)
In lattice units this is

0 /1.6 + B
o= P (3.166)
In order to determine rg, we first have to perform a fit for the static quark potential. We
perform several Wilson loops at varying length r = an, and then extract aV (an) based on
eq. (3.159)) on the preceding page.

If we wish to determine a from the static quark potential, we first determine B and
oa®. Then we calculate X = ry/a from eq. . The lattice spacing is then simply
a=0.5/X fm.

3.6.2 Calculating the lattice spacing for pure gauge theories

When the lattice spacing a becomes small, the coupling 3 increases. For the gauge action
in eq. (3.73) on page a scale has been determined [28]. Given that § is between
5.7 < <6.92, the S-dependency on a was found to be

a = roexp (—1.6804 — 1.7331(3 — 6) + 0.7849(8 — 6)* — 0.4428(3 — 6)*) . (3.167)

The paper by Guagnelli et al. [28] they determine the uncertainty of this lattice spacing as

0.3% for Piow = 5.7, growing linearly to 0.6% for Shign = 6.57. Thus, an estimation of the
error in a can be parametrized as

(0.6 —0.3) 0.3

= s on = —

100(Bigh — Brow)” 100

0.(B) = ala1 8+ ap), o — a1 B1ow- (3.168)

3.6.3 Setting scale with gradient flow

Using gradient flow, new options for setting the scale is possible [40]. Since t} (E(t)) is a
dimensionless quantity, proportional to the gauge coupling, we can define a reference scale
to as

{t} (E(t)>}tf:to =0.3. (3.169)
The energy is given from eq. on page After finding t, for different lattice spacing
a, one can perform a simple extrapolation for \/8tq/rq versus ty/a? to the continuum, a = 0.
The benefit of using the ¢y reference scale versus the ry reference scale is that we require
far fewer configurations for good statistics and it involves no complicated fitting procedure.
Further, we get (E(t)) more of less for free if we calculate the topological charge since we
have already calculated the leafs of the clover.
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The wy reference scale

There is also the wy scale first described in [5]. The wy scale is defined through the
derivative of t7 (E(t)),

W (t)| ez = 0.3, (3.170)

where
W(t) = tfd% {t3 (E)}. (3.171)

The benefit of the wy scale is that W (t) incorporates information of smaller scales around
O(1//Tf), while t7 (E(t)) captures information for scales larger than O(1//fy). This can
be highly useful since at small flow times ¢t ~ a? we are subject to discretization effects of
the lattice [5].

There is also the advantage for both ¢y and wy that they appear to not require any
renormalization [40].

3.7 Recovering the continuum limit

The results obtained are non-perturbative and exact for a given lattice spacing a in the
limit of Nyic — oo down to an error O(a?) for the Wilson gauge action and observable.
When extrapolating to the continuum, we will have no error in the lattice spacing a,
but the errors of each of the values we use to extrapolate will have O(a™) errors. These
errors depend on the action and the observable and will give contributions to the overall
uncertainty in the extrapolation. To determine the leading contributions to the error we
need to perform a Symanzik analysis, which allows us to identify different contributions
and add counter terms to promptly remove them [64] [65]. Performing a Symanzik analysis
will help us determine if our leading order stems from the classical Taylor expansion and
discretization or if they are quantum contributions. Typically, we have O(a) discretization
effects for fermions and O(a?) for gauge fields [24, ch. 9]. We know that from the Taylor
expansion, we have a O(a?) error contribution. Removing this error contribution could
improve the overall error as the Taylor expansion may contribute more than other sources
of error, even if they too are of order O(a?). When introducing corrections one will need
to take into account both quantum corrections as well as classical corrections. An example
of an improved gauge action is the Liischer-Weisz action [38] that removes an O(a?) effect
and adds a first-order loop correction.

As mentioned previously, when we are calculating expectation values on the lattice one
is only calculating that value as it occurs for a given lattice spacing a. In order to properly
study the real world value, we need to extrapolate to the continuum a — 0. This process
usually involves making a linear fit in a? and setting @ = 0. The details surrounding a
linear fit is covered in appendix on page In order to perform the continuum
extrapolation, we will need results for several different lattice spacings a. However, the
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finer spacing a means a smaller overall volume. To remedy this we increase the number of
lattice points, which drives the computational cost up.

A final consideration to make when extrapolation to the continuum, is at which flow
time we chose to extrapolate from. The rule of thumb is that we wish to extrapolate at a
point where we have no discretization effects, i.e. the values have plateaued. We also seek
to extrapolate from a point where we have a smearing radius \/% of hadronic scales. This
is typically around 0.4 — 0.5 and onwards. One can also extrapolate from the reference
scale ty or wy.






Chapter 4

Numerical and algorithmical detalils

So far we have covered QCD and how it translates to the lattice, without specifying how
one actually generates gauge configurations or flow the configurations. This is a strenuous
task with several numerical and programming challenges. The main challenge is generating
independent gauge configurations utilizing a Markov Chain Monte Carlo method(MCMC),
such that the configurations remain uncorrelated with each other throughout the Monte
Carlo history. For this we can choose between several algorithms, the most famous(and
easiest to implement) is perhaps the Metropolis-Hastings algorithm. Other noteworthy
choices are the much used hybrid Monte Carlo(HMC) method, heat bath, overrelaxation
and microcanonical methods [24].
Statistical details on data analysis can be seen in appendix [D] on page [149

4.1 The Metropolis-Hastings algorithm

Our MCMC method of choice for creating configurations of the gauge field is to use the
Metropolis-Hastings algorithm [29] [45]. Given a probability distribution function(PDF)
Pi(") for state ¢ at time step n, we seek to end up at a final distribution p; as n — oo
from which we can sample gauge configurations. To achieve this goal we wish to apply the
Metropolis-Hastings algorithm which relies on two fundamental premises,

1. Existence of a stationary distribution. There must exist a stationary distribu-
tion p;. This is often summarized by the detailed balance condition which requires a
process to be reversible.

2. Uniqueness of stationary position. The stationary distribution p; must be
unique. This is true as long as the Markov chain is ergodic, that is that in the
space of every possible state, we are always able to visit or revisit a state in a finite
number of steps.

In order to define the probability of going from a time step n—1 to n, we have to introduce
the transitioning probability 7;_,; and the probability of accepting a proposed move A;_,;.

o7
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Our goal is to find p; as P/"7> — p,. The probability Pi(") for a given state ¢ at time n is
Pi(n) = Z [Pj(nil)TjﬁiAjﬁ\i + Pi(nil)Tiaj(l - Ai%j)} ) (4'1)

J
where the first part is the probability of going from a state 7 to ¢, and the latter part is

from starting at state ¢ and not transitioning to a state j. We can rewrite this as

7 7

J
- Z Pj(nil)TjHiAj%i - Pi(nil)Tiﬁinﬁ\j] + Z Pi(nil)Tz’%j
i J

- Z PJ'(nil)TjHiAj%i - Pi(nil)Tiﬁinﬁ\j] + Pz‘(nil)? <4'2)
Tt

where we in the last line used that the total transitioning probability from ¢ — j is
Zj T;—.; = 1. If we now let P"7> — p;, we get

P = Z [pjTj_>iAj—>i - piTi—>in—>j] + pi

J

0= Z 0T Aji — piTin; Ais]

J

which applies for the system as a whole when n — co. Since we want to find the probability
for a single state we look at

piTjsiAjsi — pilisjAis; =0
= PiliAji = pilisjAisy. (4.3)
Rearranging the terms in eq. (4.3) and we get

Aisj _ pjTj—n” (4.4)
Ajsi pilis;
which is called detailed balance. Detailed balance tells us that the probability of accepting
any new move is proportional to the probability of generating a state ¢ or j and transitioning
from a state j or 7.
Since we now want to maximize the chance of accepting a new configuration, we write
the probability A;_,; as a choice between

A;,; = min <1, pp—jg:;) ) (4.5)
Since a probability can never be larger than 1, we choose 1 if p;T;,; < p;Tj_,; else we
choose 2];—]:] Equation is called the Metropolis choice. The advantage now is that
we only need to find an expression for ILJ:;

The Metropolis-Hastings algorithm so far is summed up in algorithm [1] on the next
page.
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Algorithm 1 The basic Metropolis algorithm, as applied to a general system generating
Nyie Monte Carlo samples.

1: repeat

2 Randomly generate a candidate state j with probability 7;_.;.

3 Calculate A;_,; given by eq. on the facing page.

4: Generate random number r from a uniform distribution, u € [0, 1].
5: if u < A;,; then

6 Accept new state j.

7 else if u > A;_,; then

8 Reject new state j and retain the old state 1.

9: end if

10: until Ny samples are generated.

4.1.1 Applying the Metropolis-Hastings algorithm to LQCD

The next step now is to figure out p; and Tj_,; as applied to lattice QCD. Recalling the
QCD expectation value from eq. (3.78) on page [39 we can define a PDF as

e SlWipy

WPU) = T pire-smr

(4.6)
Discretized, we have that the partition function becomes an average over Ny Monte Carlo
samples,

Nmce
1

(0)= lim — > O[], (4.7)

Nyc—roo NMC -

where U; are random configurations of the lattice. Discretizing the PDF to a single sample,

e_S[Ui] 1
= —¢

_ —S[U;]
[ DUe-sV Z

P[U;] = pi, (4.8)

allows us to insert p; into the Metropolis choice in eq. (4.5 on the facing page,

eS[Uj]j—jj_)i>

e (49)

Ai%j = min (1,

Assuming that the transitioning probability is fully symmetric, so that our algorithm be-
comes the standard Metropolis algorithm, 7}_,; = T;_,;, the acceptance probability becomes
Ai; =min (1,e2%), (4.10)

where AS = S[U;| — S[U;]. Since we now have an expression for the acceptance probability
A;;, we only need to find what AS is.
From now on, we denote a candidate link as U’ instead of Uj.
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4.1.2 Finding the change in action AS

Recalling the lattice gauge action in eq. (3.73)) on page , we can write out every plaquette
associated with a link U,(n). A plaquette can be oriented in six directions around a link
variable U, (n). Without summing over x and v, the two plaquettes in the plane becomes

Po(n) + By(n) = Up(m)U, (n + @)U (n + 2)US (n)

o R . (4.11)
+ U, (n)Ul(n+ f1 — IJ)UZ(TZ —0)U,(n—7)
= Uu(n) [U,(n+ @)U (n + 2)Uf (n) (4.12)
+Ul(n+ p—0)Ul(n—0)U,(n — 0)] '
= Uu(n) Xy (n), (4.13)
which allows us to rewrite the action to
SelU] = § SOS Retr 1 - U (1) X ()] (4.14)

neN pu#v

If we use the staple definition(see fig. on page of the gauge action when taking the
difference in action between U (n) and U,(n), all terms except those involved directly in
the candidate link dies,

AS = —gRetr (U (n) = Uu(n)) X,u(n)], (4.15)

with X, (n) being the sum of the 6 staples oriented around U, (n),

Xu(n) = Xu(n). (4.16)

HFEV

4.1.3 Generating a candidate link

In the Metropolis algorithm [1| on the previous page an essential step is generating a can-
didate configuration. We will generate a candidate link U},(n) to use when comparing the
change in action. The way a candidate is suggested is to suggest one similar to the old
one, which is done by rotating the existing link by a random SU(3) matrix X,

U,(n) = XUy,(n). (4.17)
Since we want to suggest an update U (n) that is not too dissimilar to the old one U, (n),

we start by presenting a method of generating random SU(3) matrices close to unity. A
method that generates general SU(3) matrices is presented in appendix [C|on page m
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Generating a random matrix near unity, RST

We start by generating three SU(2) matrices populated with four random numbers each,
in an interval r; € (—3, 1), for embedding in three SU(3) matrices [8]. Then, the SU(2)
matrix is given by

X = 5mdi, xo = sign(ro)Vv'1 — g, (4.18)

x|

where e,,4 is a parameter that controls the spread of the update matrix X around 1. For
populating the SU(2) matrices r, s,t we get

r, st = <x° xl) . (4.19)

T2 I3

The SU(2) matrices r, s,t are then embedded in the 3 x 3 matrices,

11 T2 0 S11 0 S12 1 0 0
R = To1 T22 0 s S = 0 1 0 s T = 0 tll tlg s (4.20)
0 0 1 S21 0 S99 0 t21 t22

which yields the final update matrix
X = RST. (4.21)

The matrix X is now close to unity. In order to ensure that we have an equal probability
of choosing the inverse, we test with a random number if we have to invert the matrix X.
A summary of the matrix generation algorithm can be seen in algorithm [2] on the next

page.

4.1.4 Initial conditions

When applying the Metropolis algorithm on some system, one usually have two options
for the initial configuration - hot where all the elements are randomly oriented, and cold
where all elements are set to unity. We will differentiate between to options for hot ini-
tial configuration, one where we use the RST method for generating matrices close to
unity (see section , and one where we use a random initial configuration as described
in appendix [C] on page [147] In summary, we have three possible choices for the initial
conditions,

e Cold start. Start with all links set to unity.

e Hot start. Start with matrices set to fully random SU(3) matrices, as given in

appendix [C] on page [147]

e Hot RST start. Start with links as random SU(3) matrices close to unity, as given

in section . 1.31
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Algorithm 2 Algorithm for generating a SU(3) matrix close to unity. Takes only €,,q as
an input that controls the spread of the matrix.

1: procedure GENERATERSTMATRIX (€11q)
for SU(2) matrix r, s, t do
Generate 4 random numbers r, ry from a uniform (—1/2,1/2) distribution.
Find x, zg according to eq. on the preceding page.
Populate the SU(2) matrix according to eq. on the previous page.
Embed the SU(2) matrix in their corresponding SU(3) matrix from eq.
on the preceding page.

N

7: end for

8 Generate a random number v from a uniform distribution (—1/2,1/2).
: if © < 0.5 then

10: return X = RST.

11: else

12: return X = (RST)™".

13: end if

14: end procedure

4.1.5 Algorithm for generating and flowing gauge configurations

The full algorithm for generating gauge configurations is summarized in algorithm [3| on
the next page. We start by initializing the lattice at either unity or with random valued
SU(3) matrices. Then, we need to thermalize the lattice. That is, we skip Niperm Steps,
since at the beginning we have not yet reached a stationary point from which we can start
sampling.

In order to minimize autocorrelationE] between the different configurations, we will let
the system evolve a number of steps in between every sampling in order to allow it to
sufficiently change a previous configuration. We denote the number of so-called correlation
updates as Neop. 1.e. we perform N, sweeps on the lattice before we sample it.

As a final trick in order to reduce the autocorrelation, we can utilize the fact we have
an expression for the staple in eq. on page , that only needs to be calculated once
at a given link. With the staple, we can run several local updates on that exact link. We
denote the number of updates we perform on a single link as V.

The total number of Monte Carlo samples we generate is denoted as Nyc. The total
number of sweeps on the lattice is Nyic X Neorr + Ninerm- We define one sweep as having
iterated through all the links on the lattice performing NV, updates on each link, U,(n).

If one wishes to flow gauge configurations as well, one does this Ny.,, times.

1See appendix on page for the details on autocorrelation.
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Algorithm 3 The full algorithm for generating (and if needed, flowing) gauge configura-
tions.
Initialize random number generators with €,,q4.

—_

2: Initialize lattice size, N, Nr.

3: Initialize other parameters, Nyc, Ninerms Neorrs Nup-

4: Initialize Npoy, and €y if desired.

5: Give the lattice in initial condition of either cold, random hot, or RST-random hot.
6: for iiperm in Niperm thermalization steps do

7 Perform a full sweep of the lattice, and update each link N, times.

8: end for

9: for iy in Ny do

10: for i.o in Neopr do

11: Perform a full sweep of the lattice, and update each link N, times.

12: end for

13: Sample observables on the lattice, and store them in memory.

14: Write field configuration to file.

15: Perform Ny, updates on the lattice if that is desired. Observables from the flow

will be written to file after the flowing is complete.
16: end for
17: Write all observable data to file.

4.1.6 Boundary conditions

An important, but so far overlooked topic is that of boundary conditions. Say we are at an
edge of the lattice, and the action S[U] or observable O[U] is requiring the U, (n + 1) link.
The standard operating procedure is then to implement periodic boundary conditions. If
we write the full position of the link variable as n = (n1, nq, ng, ny) the periodic boundary
conditions become

Uu(Na 7’@,713,714) = (
U,u,(nhNa n37n4> - Uu(n1707n37n4)7
Up<n17n27N7 ?7/4) = (

(

Uu(ni,n2,n3, Nr) = U,(n1,n2,n3,0).

Uu 07 na, N3, TL4),

4.22
U/L n17n2707n4)7 ( )

4.1.7 Critical slowdown

Once we start generating configurations, we will discover that as the lattice spacing de-
creases, the autocorrelation increases. This is a well-known phenomena called called critical
slowdown [14],[57]. As mentioned in the QCD chapter 2| on page , two configurations are
equal if they can be continuously transformed into one another, which is possible given
they have the same topological charge. If the charges are different this is not possible, as
we would require an infinite amount of energy in the continuum to go from one instanton
sector to another. Thus, as we shrink the lattice spacing a, the energy required to overcome
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the potential barrier increases as well, making it difficult for the algorithm to change from
one configuration to a new one that is independent from the previous one.

Once we start presenting our results in chapter [6] on page we will see that the
ensembles for 8 = 6.45, i.e. the smallest lattice spacing, is far less random and appear to
change more slowly in Monte Carlo time than those with larger lattice spacing. Due to
critical slowdown, we will in the next chapter[5|on page [67]1ook into methods for decreasing
autocorrelation.

4.2 Integrating gradient flow with Runge-Kutta of
third order

Runge-Kutta methods provide us with a framework of introducing high-order methods by
allowing us to evaluate several derivatives at a given step. The method is considered first
introduced by Runge [56] and later refined by Kutta [32] into its modern shape.

Given a differential equation on the form

y<tn) = f(tmyn)7 with y(tO) = Yo, (423)

where f is some function of y and ¢, we can write the general numerical solver for Runge-
Kutta as

Y(tns1) = y(ta) +€ > biks, (4.24)
=1

with
kl - f(tn7y(tn))7
ky = f(tn + €co, y(t,) + €ank),

ks = f(tn + €c3, y(tn) + €agiky + easks),
(4.25)

s—1
kis = f <tn + €cq, y(tn) + Eza'sjkj) :
j=1

Where s is the number of stages, which dictates the number of intermediate steps k; we
include and define the number of coefficients a;;, ¢;, and b; that we will have to choose.
These can also be represented in Butcher tableauz’ [7], whose values can be found by Taylor
expanding around ¢y and the k; values by using y(t,.1) = y(to + €). If we rewrite

. dy(?)

e T fy(t),t) = f, (4.26)
we can perform second order derivatives y” = f; + f,f. This process can be continued
for higher order derivatives. All that remains to do is to compare the Taylor terms of the
Runge-Kutta solution from eq. (4.24)) with the terms from the Taylor expansion of y(ty+¢€),
and we have the coefficients for the RK-method we are going to use.
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4.2.1 Integrating the flow
We want to apply the Runge-Kutta 3 method in order to solve the flow equation in

eq. (3.121)) on page ,

Vi, = Z(Vi)Vi,. (4.27)
where V;, € SU(3) and Z(V;,) € su(3).

Crouch and Grossman [12] and Munthe-Kaas [48] have looked into structure preserving
Runge-Kutta methods for evolving differential equations on Lie groups. Based on their
work, Celledoni et al. [9] found a method that has the advantage that requiring the com-
putation of far fewer exponentials and commutators. Their general solution can be written
as shown in algorithm |4] The coefficients associated with the Runge-Kutta method for Lie

Algorithm 4 Runge-Kutta for Lie groups SU(NN) as given by Celledoni et al. [9]. p is here
the initial configuration of the lattice, while J counts the number of exponentials of each
stage and is typically r — 1. E; = e;(y) - y where e; is the basis for the Lie algebra su(NV).

1: forr = 1:s do

2: Y, =exp (3, of ) -+ -exp (X, aF Fy) p.
3: Fr = EFYT = hZz fZ(Y;)Ez

4: end for

= exp (S B5F) - exp (S5 F) o (S0 80 p

ot

groups in algorithm [4] can be determined in a similar fashion to the regular Runge-Kutta
seen at the beginning of section on the preceding page, but is slightly trickier.

We will utilize coefficients presented by Liischer [40] for Runge-Kutta of third order.
The integration step size is denoted by €y, such that the flow time will be given by ¢ty = i€
with iy =1,2,3,..., and we use that Y, = W, and F, = Z,. For a single time step €y, the
integration is then given by

WO = ‘/tfa

1
W1 = exXp |:ZZO:| W(),

8 17 (4.28)
Wy = exp {§Z1 - %Zo] Wi,
3 8 17
Vijte, = €Xp {4—122 - §Z1 + %Zo} W,
with
Zi=e; Z(Wh), i=0,1,2. (4.29)

The global error for Runge-Kutta 3 goes as O(e?).
A method for exponentiating Hermitian matrices can be found in appendix on
page together with an analysis of its error and performance.
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4.2.2 Dealing with systematic uncertainties

We have a few potential sources of systematic uncertainties. An obvious contribution to a
systematic error is from the Runge-Kutta 3 integration scheme, which we will investigate
in the next chapter. As we will see, this error is of order O(ejﬁ) is small enough to be
considered negligible.

Another source for systematic uncertainties can come from how we extract masses
and perform certain linear fits. If we are fitting in a given region and with a variable fit
range, we can estimate the systematic error from taking the width of the distribution. The
distribution will be generated from bootstrapped samples.



Chapter 5

A new code for generating SU(3)
Yang-Mills gauge fields

One of the challenges with developing a program for generating pure gauge configurations
is the sheer size of a configuration. A lattice A consists of N® x Ny lattice points, with
each point having four SU(3) matrices associated to them. Since a single SU(3) matrix is
a 3 X 3 matrix consisting of nine complex numbers or 18 real numbers. The total number
of real numbers needed for a single configuration thus becomes

N3 x Np x _4 x 9 X 2 = T72N°Nr, (5.1)

Spatial Temporal Links SU(3) matrix C-numbers

which translates to 8 x 72N3Np bytes. This requires us to have an efficient method of
writing gauge configurations to file, as well as having enough storage space if we wish to
store the configuration more permanently.

The size of the lattice is also informing on the computational complexity. With this
many points, efficiency is an absolute requirement and something which must be paid close
attention to in the development of any lattice QCD code.

5.1 Developing a program for generating Yang-Mills
gauge fields

A major point of this thesis has been to create a code capable of generating and flowing
gauge configuration from scratch. Another important requirement for this code was that
it had to be able to run on a High-Performance Computing cluster, i.e. be able to run in
parallel in an efficient manner. The code we developed ended up being on around 15000
lines, excluding any whitespace or comments. We chose the arbitrary name of GLAC, short
for Gluon Actionl

!The full program can be seen on GitHub https://github.com/hmvege/GLAC, together with guides
for setup and running the code.
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5.1.1 A guide to GLAC

The program was structured such that it takes in a .json parameter file specifying all
relevant settings, then it sets up the lattice and the correct geometry, and initiates the
gauge configuration generation and/or gradient flow. The program allows one to generate
configurations and then flow them, or load a folder of configurations and then flow them,
or continue generating configurations (and/or flow) from a specified configuration. The
latter to avoid re-thermalizing and breaking the ergodicity of the Markov chain.

Another goal of GLAC was to have a code that was easily extendable in order to add
new actions or observables, requiring the user to simply inherit a base action or base
observable class, and only needing to define a minimal amount of class methods.

During development, we chose to make it so that the main user interaction went through
a Python programP] which generated a configuration file based on a simpler configuration
file. In retrospect, this may seem like a bad idea and a convoluted way of doing things. The
reasoning behind this choice was to have a user-friendly interface, so that elements such
as the lattice parallelization geometry setup where not required to be specified in detail
and default parameters would be automatically passed. While also generating a .json
configuration to be passed on to GLAC, createJobs.py also submits jobs to either Slurm
or Torque in the appropriate format. Another useful aspect of running everything through
a Python script is that we could implement a command line argument interface, helping
the setup process significantly.

In fig. on the next page we see an overview of the program structure of GLAC.
The top row of red boxes consists of external libraries, which in this case is a .json
readelﬂ and MPI [22]. The second row consists of two orange boxes each containing classes
and methods of similar functionality. The box on the left contains methods that do not
depend on external libraries such as a SU(3) matrix class for performing matrix operations,
while the box to the right contains methods such as communication between processors,
parameters, input, and storage, that do rely on the external libraries. The third row of
yellow boxes consists of methods that rely on all of the previous modules and libraries. I.e.
observables, gauge actions, flow, input/output and a class for Lattice objects. The next
row of green boxes contains most notably the System class, which controls the program
flow, and implements all of the preceding methods. It also contains modules for unit testing
and performance testing, as those are standalone methods utilizing previous parts and are
independent of the System method. Finally, GLAC is the program which combines the
previous rows into one package of accessibility.

5.1.2 Parallelization

One major challenge that has already been alluded to, is parallelization. Due to the
sheer size of the lattices, parallelization of the lattice calculations was a non-negotiable
requirement, as there simply is not enough memory when running on a single processor

2See the createJobs.py Python 3 program.
3See https://github.com/nlohmann/json.
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json.hpp MPI

Namespace Parallel: :,

SU3, SU2, complex, functions.h . ) .
NeighbourList, Config, Parameters

Observables, Random . Flow, SU(3) _ namespace
gauge SU(3) matrix exponen- Lattice s -
actions generators tiation .

System Unit tests Performance tests
GLAC

Figure 5.1: The program structure of GLAC. The top row of red boxes
consists of external libraries, the second orange row contains methods that
are either standalone or depend on external libraries. The next row of yellow
boxes contains a method that relies on the previous method, forming more
complex methods. The green boxes in the next row contain methods that
compile the previous methods into a more overarching framework, while the
last one is GLAC itself.
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for the largest lattices. The solution is to divide the lattice into sub-lattices. This imposes
a 4D geometry on the cores which have to be implemented in order for us to share links
with the correct processor.

A goal of any attempt in parallelization is to have as minimal communication as possi-
ble. Further, when forced to communicate we wish to share as much as possible. Since we
were working in C++ and we are required to communicate between nodes(one node consists
of many threads with shared memory), we landed on using OpenMPI, short for Message
Passing Interface [22, 23] for parallelization.
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Figure 5.2: An illustration of the lattice shift. The links U, of the lattice
are copied over to a temporary lattice shifted in direction . The face that is
shifted over to an adjacent sub-lattice is shared through a non-blocking MPI
call, while we copy the links to the temporary lattice.

The guiding principles of parallelization led us down several avenues, with the first and
simplest approach being the single link sharing. That is, we performed a MPI call sharing
the single SU(3) matrix between the threads. This approach was used when generating
gauge configurations since we were updating every single link many times over and only
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required to communicate every NV, updates.

As the name implies, single link sharing is rather inefficient since we only share a single
link and not for instance an entire face of the hypercube. One attempt to remedy some of
this inefficiency was to include buffer zones - or halos. That is, the lattice was padded with
an extra layer of points at each face of the hypercube. The hope of this approach was that
we could perform one large and efficient MPI call before each lattice sweep, but we quickly
realized that this was not feasible as when calculating a staple X,(n) from eq. on
page 60| we would update the corners and edges of the lattice. Since the corners and edges
change during a lattice sweep, the halo would have to be shared after each update, making
it too often to offer any improvement in parallelization.

With the halos approach laid to waste, we decided on implementing lattice shifts. A
lattice shift works by copying the entire lattice but shifted in one direction ji. Since we
are shifting the lattice in one direction ji, we have that a face of the lattice will move into
the domain of another processor. We then exchange the face of the lattice that has been
shifted. A pictorial view of the shift can be seen in fig. on the preceding page.

For example, take the plaquette observable in eq. on page |36/ where we can have
two links which are shifted, U, (n + i) and Uf(n + ). For the first link, U,(n + f1) we
will share the face of n = N + i with adjacent processor in direction ji, and retrieve
corresponding n = N + [i for n = 0. The advantage of this method is two-fold: we share a
lot of links at once, and it allows for simplified syntax when sharing. As an example, the
plaquette code is written as,

void Plaquette::calculate (Lattice <SU3> *lattice ,
unsigned int iObs) {
Lattice <SU3> m_temp;
m,temp.allocate(lattice.m,dim);
double tempObservable = 0;

for (int mu = 0; mu < 4; mu++) {
for (int nu = mu+l; nu < 4; nu++) {
m_temp = lattice [mu];

m_temp *= shift(lattice [nul],FORWARDS,mu) ;
m_temp *=

inv(shift(lattice [mul],FORWARDS, nu)) ;
m_temp *= inv (lattice [nul);
tempObservable += sumRealTrace(m_temp) ;

}
tempObservable *= 1/(16*xm _latticeSize);
(*m_observable) [iObs] = tempObservable;

This code snippet is quite close to the actual equation for the plaquette in eq. (3.79) on
page We pass in a pointer, lattice consisting of 4 Lattice objects, one for each
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dimension, to the plaquette function. This expression is almost written exactly as it
is stated in eq. on page , and we see that the shift-operator takes a lattice,
shift direction(FORWARDS or BACKWARDS), and the direction index nu. The function inv
simply refers to us taking the inverse of the lattice. Having Lattice objects allows us to
overload operators and abstract the code. Since loops over the dimensions can be hidden
by overloading, we are interfacing much closer with the actual equations we wish to work
with.

Lattice shifts do not make sense when generating gauge configurations, as we are up-
dating every single link and we share a lot of unused links with lattice shifts. However,
when calculating observables or flowing, this is the method of choice.

5.1.3 Scaling

An import issue when discussing any parallel program is scaling. The primary concern for
a parallel program is the communication overhead between nodes. If there is negligible
communication between nodes, we will have perfect scaling. In the case of there being
communication between nodes and the communication increases for the system size, we
will at some point see a plateau for the optimal number of cores we can use. There exist
several different approaches to measure the parallel scaling of a programﬂ, the most obvious
one is the speedup, efficiency, strong scaling, and weak scaling. Since we are dealing with
high-performance computing, we will look specifically at strong scaling, weak scaling, and
speedup.

We expect the speedup and scaling of a program to plateau given an increase in the
number cores, as the increased communication will outweigh any performance gains. The
scaling tests performed in this section where all performed on the Abel cluster.

Strong scaling

Strong scaling is defined as having a fized problem and a variable N, cores. The strong
scaling of GLAC can be seen in fig. 5.3 on the next page. We performed the strong scaling
with a fixed total lattice size of N = 16 and Ny = 32, since these is pure multiples of two
which allows for ease in parallelization.

Weak scaling

Weak scaling is defined as having a fized problem per processor and a wvariable N, cores.
The weak scaling of GLAC can be seen in fig. [5.4] on page We performed the weak
scaling test with a fixed sub-lattice size of 4*.
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cores goes from N, = 2 to N, = 2048. The lattice size was N3 x Np = 163 x 32.
The flow scaling loaded and flowed a single configuration with Ngow = 1000
flow steps, the 10 scaling wrote ten configurations to file and the configuration
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gure 5.5: The speedup of the configuration generation, flowing, and IO.

The speedup is calculated by dividing the run time of each N, run, with the run
time of the run with the least number of processors, N,, = 8. The parameters

of

the speedup is identical to those in fig. [5.3on page [73]for the strong scaling.
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Speedup
The speedup of the program is defined as

t 0
S(p) = —tN , (5.2)
Np

where ty, , is the timed run with the least threads, while ¢, is all of the other times. Setting
N,, = 8, we get what that is seen in fig. on the previous page, where it appears we are
plateauing around N, = 256 cores for IO, N, = 512 for flowing, while for configuration

generation we appear to still be gaining improvements in speed by adding more cores.

5.2 Thermalization

Since we have three options of lattice initialization, cold start, random hot start and random
hot start with matrices close to unity (see section on page , runs was made into
investigating effects of these initializations. The setup for these runs was = 6.0 and a
lattice size of N = 24 and Ny = 48

In fig. on the next page we see how topological charge evolves for the first 10* Monte
Carlo updates. What we see is that there is really not much of an evolution in terms of
the value of (). This makes somewhat sense considering the expectation value for (Q) is
zero. However, for the energy, we see in fig. on page [78| that the cold start actually
approaches the stabilized value somewhat quicker. This is confirmed when plotting the
relative difference |E — (E) |/ (E) in fig. on page

Our goal is not to optimize the thermalization time, but to assure ourselves that we
spend enough time thermalizing the system so that it is safe to begin sampling. We
use a minimum of Niperm = 2 X 10% thermalization updates. Although we only tested
this for B = 6.0, we assume that 2 x 10* updates are enough Monte Carlo updates for
thermalization, even though larger lattices and smaller lattice spacings may need longer
time thermalizing given the increase in autocorrelations caused by critical slowdown.

5.3 Random matrix generation step size

Different €,,q was tested in order to judge the effects of different step sizes when generating
random matrices close to unity. The different €,,q we tested for can be seen in table on
page [B1]

In fig. [5.9 on page [80] we see how the 7, for topological charge behave for different
€ma at flow time ¢/ a’> = 4.0. What we see is that for €, = 0.24 the autocorrelation
appears to be at an absolute minimum. An exploration into several €.,q between 0.2-0.3

4See Xavier and Iyengar [80, chap. 1.6]

5After the scaling tests had been performed, an improvement were found for the 10, which lead to a
factor ten in performance. The scaling results shown here should thus be taken merely as suggestive for
the 10 performence.
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flow steps.
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Table 5.1: Different e,,q SU(3) matrix generation update lengths.

€mda 0.05 0.10 0.20 0.24 0.30 0.40 0.60

could be done in order to determine exactly what €,,q that minimize the autocorrelation,
but for this thesis we will settle on using €., = 0.24 since that appears to minimize the
autocorrelation from the tested values.

5.4 Flow step size

An investigation into different flow integration step sizes was performed in order to verify
the choice of ey = 0.01 and €; = 0.02. The different €, investigated can be seen in table
The tests for different e-sizes were all run for a single lattice configuration of size N = 24
and Ny =48, and § = 6.0.

Table 5.2: Different flow integration steps €y tested for the numerical Runge-
Kutta 3 integrator.

e; 0.001 0.005 0.007 0.009 0.01 0.02 0.03 0.05 0.1 0.5

In fig. [5.10] on the next page we see how the flow behaves for different flow steps. It is
worth noticing that ey = 0.5 completely misses the integration path, which tells us we are
outside of Runge-Kutta 3’s stability region.

The reason for the sparsity of points seen in fig. [5.11| on page has to do with the
constraint of only selecting points that are close to each other in order to compare relatively
equal values of €;. This could have been partly remedied if we let the flow run significantly
longer for the smallest ;.

For this thesis, we will be using e; = 0.01 and e; = 0.02. Inspecting fig. on page [83]
and the absolute difference between the smallest flow time step tested ey = 0.001 and the
rest listed in table [5.2] we see that there is at most one order of magnitude in difference
between €; = 0.01 and € = 0.02. Since the difference between the smallest step size
er = 0.001 and €5 = 0.01 and €5 = 0.02 is already small, we will consider it negligible for
the rest of the thesis.

5.5 Minimizing the autocorrelation

An overarching goal when generating configurations is always to minimize the autocorre-
lation. As we will see in the next chapter on results, some quantities such as topological
charge tend to be far more autocorrelated than other observables, i.e. the energy or the
plaquette. The tools at our disposal for reducing autocorrelations is currently that we can
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increase the number of correlation updates, N, and the number of single link updates
Nyp. The cost, however, is computational time.

An investigation has been made into combining different values of Neo,r € [200, 400, 600]
and Ny, € [10, 20, 30] on a lattice of size N = 16 and Ny = 32 with § = 6.0. For each of the
nine possible combinations, we generated 200 configurations and flowed them Ngo, = 250
steps with €; = 0.01.

In fig. on page [84] we see how the integrated autocorrelation time behaves in flow
time for the topological charge. Inferring from this plot, we see that the autocorrelation
seems to decrease the strongest when we increase the number of single link updates and be
at an absolute minimum when the number of correlation steps is increased to Ny = 600
together with N, = 30.

From fig. on the preceding page we see the behavior for the same set of N, and
Ny as we saw in fig. on page [84, but instead looking at the total computational
time for generating 200 gauge configurations and flowing them Ngo, = 250 steps. What is
immediately clear is that N, costs less computational time than full lattice sweeps such as
Neorr. For this thesis we chose the standard of Neo, = 600 and N, = 30 when generating
gauge configurations(except for the smallest lattice spacings). Were we to recommend ways
of reducing autocorrelation, increasing the number of single link lattice updates would be
it, due to its relatively small impact on CPU time.

5.6 Verifications of the code

As with all code going into production, three types of tests should be implemented,

e Unit testing. Testing single functions, such as SU(3) matrix multiplication, inver-
sion and so on, in order to verify that it returns the correct results. In GLAC all of
the operations of the SU(2)- and SU(3)-objects are unit tested.

e Integration testing. Testing combinations and groups of functions. Ensuring that
they work together as intended. In GLAC we test composite elements such as the
Lattice objects and the lattice shifts.

e Validation testing. Testing that the software returns the desired results based on
its specifications. This would be to have actual results we can compare with, such
as the output of a similar program or checking that the lattice is gauge invariant.
The latter can also be seen as an integration testing, since it including SU(3) matrix
objects as well as Lattice objects.

An important part of the validation testing was comparing the output of the topological
charge observables with that of FlowOps, which is another lattice QCD code based on
Chroma [20], when flowing the same gauge configuration. We reproduced the output of
FlowOps down to machine precision, which tellls us that our implementation is correctf]

6The exact results can be found on the GitHub address of GLAC, https://github.com/hmvege/GLAC.
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As of today[] and at the time of generating and flowing the gauge configurations, all of
the unit tests, integration tests, and validation tests were passed.

5.7 Future developments and improvements

The code developed for this thesis still has a lot of potential for continued development.
Several paths and branches are available for us to expand in. For instance would I have
liked to implement many more types of field strength tensors, such as O(a*) and O(a%)
improved clovers as well as improved gauge action. Further, adding fermions seems like a
natural extension once this is done. Once fermions are added, usage of GPUs to find the
fermion determinants and matrix inverses could also be implemented.

Another addition could be to make the code general to SU(/N). This would require
changing the methods directly involving SU(N) matrices such as the random matrix gen-
eration, but should otherwise not be too difficult to generalize.

5.7.1 Improvements to code

As mentioned, interfacing with GLAC is done through a Python Scriptﬁ. This is perhaps
something which could be streamlined, such that we for instance would not require multiple
. json files(one for createJobs.py and one for GLAC), but a single one that is updated
by createJobs.py instead.

Another improvement would be to try and avoid allocating temporary faces when using
the shift method as seen in fig. on page [70] This could be done by defining the faces
that is shared as static objects, only requiring them to be initialized at program start. This
could increase the performance of lattice shifts, as we would not have to resize the vector
containers for the buffers for every shift call.

When we developed this code using fairly common MPI functionalities. An improve-
ment would be to utilize the capabilities of MPI 3.0, such as local node memory. If we
then optimized the lattice geometry such that the threads on each node where neighboring
in the hypercube, we could save some time on communication. While on the subject of
MPI, we could also switch to using the MPI functionality for setting up a processor grid,
thus taking care of the communication structure and removing a possible source of future
errors.

Finally, better optimization for SIMD(Single Instruction, Multiple Data) and the cache
could be implemented, since we currently did not write the program with this in mind. It
should be noted that a few improvements were added for this during the later stages of
development, and there might not be that many optimizations available to us.

7April 12, 2019
8See https://github.com/hmvege/GLAC/createJobs.py on GitHub
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Chapter 6

Results and discussion

While the focal point of this thesis has been on developing a code capable of generating
and flowing gauge configurations, the emphasis when presenting the results will be put on
analyzing the topological charge and its properties. We start by going through the ensem-
bles which have been used in the analysis, before moving on to setting a reference scale
to and wy from the energy. After that, we will go through topological charge, topological
susceptibility, and the fourth cumulant. Finally, we will present results for the topological
charge correlator and we will attempt at extracting the glueball mass for the state 07,

6.1 Production runs

For the main part of the results, five ensembles with different volumes were investigated.
Subsequent supporting ensembles were also created in order to verify code or enlighten
other aspects of the physics.

Table 6.1: The main ensembles made for this thesis. Every configuration
was flown with Ny = 1000 flow steps.

Ensemble B N Nr Negg Neowr Nup €now Config. size[GB|

A 6.0 24 48 1000 600 30 0.01 0.356
B 6.1 28 56 1000 600 30 0.01 0.659
C 6.2 32 64 2000 600 30 0.01 1.125
D, 6.45 32 32 1000 1600 30 0.02 0.563
D, 6.45 48 96 250 1600 30 0.02 2.695

For all of the main ensembles, we used Niperm = 20000 sweeps to thermalize the lattice
in order to make sure we had no contamination from the initial state. Each lattice was
initialized with a hot start consisting of RST random matrices(see algorithm [2/on page ,
with €, = 0.24, consistent with the findings of the €,,q analysis seen in fig. on page

89
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Each of the configurations generated was flown Ng., = 1000 steps. Further details on each
of the ensembles can be seen in table [6.1] on the previous page.

Most of the ensembles were generated on the Abel supercomputer at the University of
Oslo. The Dy ensemble was generated on the Laconia supercomputer at Michigan State
University.

As we will see when investigating quantities such as the topological susceptibility, the
D5 ensemble will somewhat diverge compared to what we would expect from ensemble A,
B, and C. Due to this observation, the D; ensemble with 3 = 6.45 and the lattice size 32*
was generated in order to illuminate some of the D, idiosyncrasies and see if what we were

experiencing was just a sampling and low statistics issue. This ensemble was generated on
Abel.

Table 6.2: Supporting ensembles made on Smaug. All ensembles were flown
Niow = 1000 steps with eqow = 0.01.

Ensemble N Ny Neg Neor Nup a[fm] L [fm]

E 8 16 8135 600 30 0.0931(4) 0.745(3)
F 12 24 1341 200 20 0.0931(4) 1.118(5)
G 16 32 2000 400 20 0.0790(3) 1.265(6)

In addition to the ensembles listed in table|6.1|on the preceding page, several supporting
ensembles were created on the Smaug cluster, available to M.Sc. students at Computational
Physics at the University of Oslo. These can be seen in table 6.2} For the smallest lattices,
we are flowing beyond their lattice volumes which we have to keep in mind when analyzing
their data. The smallest lattice 8% x 16 has a side length of L = 0.75 fm, and since we are
flowing Ngow = 1000 steps using a step length €go, = 0.01, we will smear with a maximal
radius of |/8tfmax = 0.83 fm which is well beyond L = 0.75 fm. For all of the other
ensembles in this thesis, the lattice size is larger than the flow radius.

When sampling the ensembles, we exclusively used the clover field strength tensor from

eq. (3-80) on page [40} in both the energy in eq. (3.83) on page [{1]and the topological charge
definition in eq. (3.85)) on page

6.2 Setting a reference scale

As mentioned in chapter [3] on page [25] we need to introduce a reference scale in order
to compare our results with the physical world. We will start by looking at the t, flow
reference scale, which is retrieved from the energy at some flow time ¢(see eq. (3.169) on
page .

After finding ¢y, we will look at the flow time derivative of the energy W (t;) from
eq. (3.171)) on page b4l and the associated reference scale wg(see eq. (3.170) on page .
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6.2.1 The energy
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Figure 6.1: The energy results as given by eq. (3.83) on page [41|for table

on page @

As a warm-up, let us inspect fig. for the energy from eq. (3.83)) on page 41| and how
it evolves in flow time t;. A line has been drawn at t3 {(E)} |;,—, = 0.3, and we have

zoomed in to see the behavior around the intersection between (E) and this line.

When the flow smearing exceeds the lattice spacing, such that \/% Ja > 1, the dis-
cretization effects will be less visible. This can be seen if we compare ensemble A with
ensemble D in fig. [6.1 where we see that it takes longer for A to be smeared so that we
no longer have any discretization effects compared to Ds.

In order to exactly select the flow time ¢y of ¢ (E) that intersects 0.3, we performed a
linear fit using the procedure seen in appendix on page for Nps = 500 bootstrap
samples. For each of the fitted bootstrap samples we invert and select the exact value that
intersects 0.3, and finally take the mean to get an estimate for ¢5. From the estimated
to-values seen in table [6.3|on the next page. Using only ensembles with matching volumes,
ie. A, B, C'and Dy, we perform a continuum extrapolation which can be seen in fig.[6.2| on
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Table 6.3: Extrapolation results for tg, where we retrieved the exact point of
intersection between t?c (E) and 0.3 using Nps = 500 bootstrap fits. Extrapo-

lating to the continuum gives us t cont /73 = 0.11087(50).

Ensemble to[fm?]  to/a® to/m2 L/a L [fm] a [fm]
A 0.02780(2) 3.20(3)  0.11121(9) 24  2.235(9) 0.0931(4)
B 0.02769(2) 4.43(4) 0.11075(10) 28 2.214(10) 0.0791(3)
C 0.02775(2) 6.01(6) 0.11099(8) 32  2.17(1) 0.0679(3)
D, 0.02779(5) 12.2(1)  0.1112(2) 32  1.530(9) 0.0478(3)
D, 0.02794(9) 12.2(1)  0.1117(3) 48  2.29(1) 0.0478(3)
0.97 ,
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Figure 6.2: The continuum extrapolation a — 0 for tg of the four ensembles

A, B, C, and Dy seen in table on page
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page[92] Again, we use the method for line fitting presented in appendix on page [I156
The resulting ¢y is then

tO,cont

5— = 0.11087(50). (6.1)
To

Comparing our continuum extrapolation seen in fig. [6.2] on page we see we have a good

match with that presented by Liischer [40].

Removing ensemble A from the continuum extrapolation in fig. [6.2] on page [92 gave us

tO,COl’lt o
35— =

; 0.1115(3), (6.2)

and a far better continuum fit with x?/d.o.f. = 0.41. The extrapolation can be seen in
fig. [6.3] on the preceding page.
Performing the same analysis, only with D; instead of Dy gives us

tO cont
—— =10.111 .
2 0 9(6), (6.3)

with a x?/d.o.f. = 0.88.

Measuring autocorrelation in the energy

The integrated autocorrelation 7y, for the main ensembles can be seen in fig. [6.4] on the
next page. The sudden shifts in the 7, is due to the automatic windowing procedure
cutoff criteria for changing. See algorithm [§| on page for details on how this procedure
is done.

When later comparing with the autocorrelation for the topological charge and suscep-
tibility we will see that 7y, in fig. [6.4] on the next page comparatively low to that of other
quantities.

6.2.2 The energy derivative

From the energy flow time derivative W (ty) in eq. (3.171)) on page , we can define a
scale wy similar to that of ¢;. The derivative W (¢;) can be seen in fig. on page
where we have visibly more pronounced discretization effects for small flow times. When
implementing the numerical derivative for E(t;), we used a symmetric definition for the
derivative discretization.

We extract the wy-values in the same manner as we did for the to-values. The different
extracted wy for each of the ensembles can be seen in table on the facing page, and
a continuum extrapolation of these(only including the ensembles of similar volume, thus
excluding D;) can be seen in fig. on page The extrapolation is performed using the
fitting procedure given in appendix on page [L56] The resulting wy was found to be

Wocont = 0.1695(5) fm. (6.4)
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Figure 6.4: The autocorrelation of the energy, calculated using the method
presented in appendix [D.3.3] on page [I53] A value of 7y, = 0.5 indicates that

we have zero autocorrelation.

Table 6.4: Extrapolation results for wg, where we retrieved the exact point
of intersection between ¢;W (ty) and 0.3 using Nps = 500 bootstrap fits. Ex-
trapolating to the continuum for the ensembles A, B, C' and D, gives us

Wo,cont = 01695(5) fm.

Ensemble wo[fm)] wo/a Lja L [fm] a [fm]
A 0.16787(9) 1.802(7) 24  2.235(9) 0.0931(4)
B 0.16796(9) 2.124(9) 28 2.214(10) 0.0791(3)
C 0.16860(6) 2.48(1) 32 2.17(1) 0.0679(3)
D 0.1700(3)  3.55(2) 32 1.530(9) 0.0478(3)
Ds 0.1603(2) 3.54(2) 48  2.20(1) 0.0478(3)
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Figure 6.5: The energy derivative W (ts) as given by eq. (3.171)) on page
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Figure 6.6: An extrapolation of wg to the continuum using ensemble A, B,
C, and Ds.
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As in a similar fashion for ¢, we remove the A ensemble from the continuum extrapo-

lation in fig. [6.6] on page [97] This gives us
Wo,cont = 0.1702(3) fm, (6.5)

and x?/d.o.f. = 0.53. This extrapolation can be seen in fig. on the facing page.
As before, we perform the same analysis only with D; instead of Dy. This gives us

Wocont = 0.1706(6) fm, (6.6)

and x?/d.o.f. = 0.86.

The extrapolated value for wg seem to have a weak dependence on fermions, as our
results is comparable to that presented by Borsanyi et al. [5] which included dynamical
fermions, with wp cont = 0.1755(18)(04) fm.

6.3 Topological charge

In the continuum we expect the topological charge to take on discrete numbers. On the
lattice, this will not be the case, as many of the topological properties which we seek to
explore is suppressed at t¢/a* = 0. The topological charge will contain cut-off effects and
for the topological susceptibility we even have a UV divergence at zero flow time [55].
Further, these effects will be more pronounced for the lattices with smaller lattice spacings
as these are closer to the continuum. In order to remedy these issues, we seek to apply
gradient flow.

6.3.1 Smearing effects on small lattices

The number of zero-modes available to the topological charge is highly dependent on the
size of the lattice. With a set of supporting runs listed in table [6.2] on page [90} this effect
was investigated in fig. on the following page. For the smallest ensemble E, with a
lattice of size 8 x 16, we only have Q € [—1,0,1]. For the larger lattices F and G, the
number of () available rapidly increases.

Focusing on ensemble G' with the 163 x 32 lattice, we can in fig. on page inspect
how the flow smears the topological charge such that topological features become more
prominent for increasing flow time. The reason for the topological charge not taking on
exact integers as one would expect from theory is due to the fact that we have a finite
lattice spacing and a chirality breaking action.

6.3.2 Topological charge evolved in flow time

In fig. on page we see (()) evolved in flow time ¢; for the main ensembles seen
in table on page 89 Assuringly, we see that for ensemble A, B, C' and D, the topo-
logical charge is compatible with zero within one standard deviation. These results have
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Figure 6.8: Histograms for the topological charge for the ensembles seen in

table on page [90| at t;/a® = 0.25 fm.
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Figure 6.9: Histograms for the topological charge for ensemble G with a
lattice of size N3 x Ny = 163 x 32 with 3 = 6.1, taken at different flow times
ty/a® =0.0, 1.0, 4.0 fm.
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Figure 6.10: Topological charge @ as evolved in flow time for the five ensem-
bles seen in table [6.1] on page Nps = 500 bootstraps have been performed
on each ensemble, corrected for autocorrelations with o = v/27int00.
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been corrected for by the integrated autocorrelation time 73, as in equation eq. on
page and bootstrapped 500 times.

Inspecting fig. on the preceding page, we notice that the ensemble D; is not cen-
tered at zero, but compatible within two standard deviations. While this is not necessarily
a tremendous problem, it indicates the need for large statistics and good methods of esti-
mating the error. As we shall see, this ensemble is also highly autocorrelated.

Using the ability to store the charge of the lattice at every point in the hypercube in
GLAC, we have flown a configuration with 3 = 6.2 and 323 x 64 ensemble and generated
a visualization using LatViz seen in fig. on the following page. The frames of the
configuration are taken at the Euclidean time ny/a® = 21 and at flow times t;/a* =
0.0,2.0,4.0,6.0. The visualization allows for an intuitive understanding of gradient flow,
as we see that the smearing leaves only the most prominent features of a configuration
intact.

6.3.3 Autocorrelation for topological charge

The integrated autocorrelation 7, can be seen in fig. [6.12] on page [I05] We immediately
see that the topological charge is quantity far more prone to exhibiting autocorrelations
than the energy if we compare with fig. [6.4] on page |95 Considering we will mainly be
investigating the topological charge and aspects thereof, correct error estimations in the
face of highly correlated data becomes paramount.

6.3.4 Monte Carlo history for topological charge

With the results for the autocorrelation for the topological charge in mind, we can take
a look at the Monte Carlo history at two flow times. In fig. on page [106] and in
fig. @ on page u we see the Monte Carlo history for flow tlme \/% = 0.0 fm and
\/_tf = 0.6 fm. When comparing fig. on page u 7| with fig. on page @ we see
a sharp increase in correlations, as the Monte Carlo history of ) show a clear trend in the
data. This is particularly visible for the ensembles D, and D,, reinforcing what we already
known from previous sections.

Before investigating the topological susceptibility, it is worth inspecting the autocorre-
lation in fig. on page [105] and in particular for D; and Dy. We see that for D; the
autocorrelation is significantly higher than that of Dy, something which contrasts the errors
on the charge seen in fig. on the facing page. The error bands of the charge in fig.
on the preceding page have been corrected by the autocorrelation, so in order to better
understand why the errors on D, is far higher than that of D;, we need to take a look at
table on page m Here we have the value of the charge (@)) without any bootstrap
sampling and autocorrelation correction. We see that for D, the error is almost five times
larger than that of D at \/% = 0.6 fm. As we see in the column for the autocorrelation
correction factor /27, in table on page , the D; and D, at \/% = 0.6 fm have
respectively /27, = 6.49(1.19) and /273, = 4.72(1.05), something which is not sufficient
to offset the inherent error of the D, set.
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(b) t7/a? = 2.0, Q = —8.9930.

(a) ty/a® =0, Q = 4.8201.

(c) ty/a? = 4.0, Q = —8.9991. (d) t7/a2 = 6.0, Q = —9.0002.

Figure 6.11: Stills from a LatViz animation, presenting the smearing of a
configuration for a 3 = 6.2 with size 323 x 64 ensemble. The configuration was
flowed from t¢/ a’>=0.0tot ¢/ a®? = 6.0. The gauge configuration used for this

visualization was provided Giovanni Pederiva.
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Figure 6.12: The integrated autocorrelation i, for topological charge for
the five ensembles seen in table on page

o

Table 6.5: The topological charge for the ensembles seen in table on
page at flow time \/% = 0.6 fm. The third column has had its error
corrected by /7ing. Extra precision is left in some values for making the
comparison between non-corrected and corrected values. None of the results
have been bootstrapped. A value of \/7in; = 1 would indicate that the ensemble
contain no autocorrelation.

Ensemble (@) (Q), corrected /Tint
A —0.06(20) —0.06(27)  1.335(80)
B —0.08(20) —0.08(33)  1.68(13)
C 0.09(13) 0.09(35)  2.62(20)
Dy —0.84(7) —0.84(45)  6.49(1.19)
D, —0.14(33)  —0.14(1.57) 4.72(1.05)
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Figure 6.13: The Monte Carlo history for the five ensembles seen in table

on page 89| at /8t = 0.0 fm.
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Figure 6.14: The Monte Carlo history for the five ensembles seen in table

on page at /8ty = 0.6 fm.
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It is also likely that the autocorrelation for Dy should be higher, due to the D; dataset
being of the same [-value and a longer Markov-chain. A long Markov chain would increase
the autocorrelation and thus give a better estimate of the error, with the increased statistics
leading to more precise results in general.

Topological charge for different intervals in Monte Carlo time.

Table 6.6: The intervals the topological charge is split into in fig. on the
facing page for all of our main ensembles seen in table on page

Ensemble MC Intervals
A [000 — 250], [250 — 500], [500 — 750], [750 — 1000]
B [000 — 250], [250 — 500], [500 — 750], [750 — 1000]
C [000 — 500], [500 — 1000], [1000 — 1500], [1500 — 2000]
D, [000 — 250], [250 — 500], [500 — 750], [750 — 1000]
D, (000 — 062], [062 — 124], [124 — 186], [186 — 248]

To highlight some of the troubles when working with small ensembles, we can take a
look at the topological charge @) at four different intervals in Monte Carlo time, as seen
in table [6.60l The resulting charge seen in fig. [6.15] on the next page shows us that had
we only had, say the 500 first configurations of the C' ensemble, we would have gotten an
average charge of around (Q)) ~ 1.5. This leads us to believe that with better statistics we
would have a centering of the charge for the D; ensemble.

6.4 Topological susceptibility

The topological susceptibility for the ensembles listed in table on page |89 can be seen in
fig. on page [110} The integrated autocorrelation can be seen in fig. on page (111

As discussed in [13], the topological susceptibility appears to only depend on the volume
up to L ~ 1.2 fm to L ~ 1.4 fm, and after that, the results are size independent. Thus, as
long as we have a lattice of volume larger than L =~ 1.4 fm we should get results which are
accurate.

Later on in fig. [6.16| on page [L10| we see that the D, ensemble is quite dissimilar from
the other ensembles at flow times larger than \/% > 0.15. Due to this difference, we
generated the D; ensemble with the same § = 6.45 as Ds, but with a different volume
of N3 x Nr = 32%. Since the side of ensemble D; is L = 1.530(9) fm, it should be
unproblematic to use.

In fig.|6.16|on page|110|we see that the topological susceptibility is increasingly divergent
for smaller lattice spacings at flow time \/8_tf = 0. This effect is particularly apparent for
the Dy and D, ensembles. As mentioned earlier, this is due to the topological susceptibility
having a UV divergence at t; = 0 fm [55], which becomes more pronounced for smaller
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lattice spacings a as they approach the continuum. While topological charge itself do not
contain any divergences(but do need renormalization at zeroth flow time), it will become
divergence once we have two charges at the same point.

Table 6.7: The topological susceptibility for the ensembles seen in table|6.1]on
page 89| together with the correction factor from the integrated autocorrelation
time seen in eq. on page ﬂ The second column have not had its
results corrected by +/27iy. None of the results have been analyzed with

bootstrapping.
Ensemble X;,{Zl [GeV] Xif/4 [GeV], corrected V2 Tint
A 0.1877(23) 0.1877(24)  1.028(46)
B 0.1880(21) 0.1880(29)  1.346(81)
C 0.1853(14) 0.1853(24) 1.762(104)
D 0.1971(22) 0.1971(101)  4.523(675)
D, 0.1656(33) 0.1656(86)  2.624(441)

From the error estimation in the topological charge in fig.|6.10]on page[102] our intuition
would tell us that the Dy ensemble would contain far larger error bars than that of D.
However, as seen in fig. [6.16| on page this is clearly not the case for the topological
susceptibility. In fact the D; ensemble contains larger errors than the Dy ensemble. If we
take a look at table [6.7] we see that the errors are roughly on the same order, but that
the integrated autocorrelation is far higher for the D; ensemble. This is similar to the
autocorrelation we observed for the topological charge in fig. [6.12] on page [105] Another
contribution to the large error in D; is its small lattice size. Since we are dividing by
the volume V in the definition of the topological susceptibility in eq. on page a
smaller volume V' will lead to a greater error.

6.4.1 Continuum extrapolation

When extrapolating X: }{4 to the continuum, we use the same procedure as discussed for
extracting the reference scales ty and wy, except we do not need to find the inverse point.
We perform linear fits on the bootstrap samples around the extraction point and extract
the exact Xi f/ Yatt fextrap fOI €ach of the fits. We then use the mean and standard deviation
from the bootstrap samples in the continuum extrapolation. Performing a continuum
extrapolation for the ensembles seen in table on page [89 while excluding Dy, gives us

xilt ({(Q%) = 0.179(10) GeV. (6.7)

This continuum extrapolation can be seen in fig. [6.18| on the next page. If we instead
perform a continuum extrapolation excluding the D, ensemble, we get

Xt/ ((@%)) = 0.186(6) GeV, (6.8)
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Figure 6.18: A continuum extrarolation of the topological susceptibility
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Figure 6.19: A continuum extrarolation of the topological susceptibility
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where the extrapolation can be seen in fig. on the facing page. The point for ex-
trapolation were chosen such that we have few discretization effects and the topological
susceptibility have plateaued. Incidentally, the extrapolation point chosen is at a hadronic
scale of flow time \/8_tf = 0.6 fm.

Another approach is to extrapolate from the reference time scale, ty or wg. This can
either be the continuum scale of ¢y and wg, or the individual reference scales. Results
using different extrapolation points can with the ensembles A, B, C' and D; can be seen in
table on page [125, and in table on page [126, we see the continuum extrapolations
with for the ensembles A, B, C' and Ds.

Using a time series bootstrap as described in appendix on page |156 we achieved
results similar to those of regular bootstrap that was corrected by 1/27i,.. These results
can be seen in table on page [127], table on page [128

The reason for investigating an alternate ensemble D; of g = 6.45 is now clear. If we
inspect the Dy ensemble in fig. on page|110} it is easy to suspect there to be something
incorrect in the calculation of the D, ensemble. However, considering the D; ensemble in
fig. on page [L10] we see that the reason for this off-shoot by the D, ensemble is most
likely just due to low statistics, as the Dy ensemble carries none of the same idiosyncrasies.

An added bonus of using the A, B, C', and D; ensembles for the continuum extrapola-
tion is that the fit is better with x?/d.o.f. = 0.82 versus x?/d.o.f. = 2.38 for A, B, C, and
DQ.

6.4.2 Topological susceptibility with one charge fixed

To investigate the independence of the susceptibility in regards to the charge and flow time
different from zero, we take a look at the topological susceptibility with one charge frozen
at a selected flow time. We write this as

il ((Qe,Quy0)) (6.9)

where )y, , indicates that the charge is set to flow tlme 0. The result of freezing a charge
at tro/a® € [0.0,0.2,0.4,0.6] can be seen in fig. on the following page. We see that
with the exception of zero flow time, we have that the topological susceptibility appears to
be independent of the flow time. As we mentioned earlier, the topological charge becomes
divergent once two charges is located at the same Euclidean time at zero flow time ¢y = 0.
The differing topological susceptibility with for Q;, /.2—00 can thus be understood due to
the fact that one charge is taken at t; = 0, giving us a UV divergence. In order for the
plot in the upper left corner of fig. on the next page to not be divergent at \/% =0,
we would have to renormalize the charge.

6.4.3 Extracting the number of flavors

Using the Witten-Veneziano relation from eq. (2.59) on page , we can try to extract
the number of flavors N, by using the experimental values for the mass of 1’ and the
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Figure 6.20: The topological susceptibility as given by eq. on the pre-
vious page with one charge set at a flow time \/% € [0.0,0.2,0.4,0.6]. The
figure in the upper left corner with one charge set at /8ty = 0.0 will need to
have its charge renormalized in order give the same result as the others.
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7 decay constant. For this analysis, we use the values of F; = 0.130(5)/v/2 GeV and
my,y = 0.95778(6) GeV [6]].

From the continuum extrapolation seen in fig. [6.18| on page |[113| using the ensembles A,
B, C' and Ds of the topological susceptibility seen in eq. on page we obtain that
the number of flavors to be

N; = 3.75(29). (6.10)

Equivalently, for the continuum extrapolation seen in fig. [6.19 on page[I14]for the ensembles
A, B, C' and D, we get

N; = 3.21(25). (6.11)

which is within one standard deviation of the expected value of Nrp = 3. Considering the
Witten-Veneziano relation bridges two different theories, this is quite remarkable.

6.5 The fourth cumulant

For investigating the fourth cumulant, we will compare with the results presented in Ce
et al. [I3]. The ratio R as given by eq. on page |43|is plotted for all our ensembles
in table on page in fig. on the following page. As mentioned in chapter [3| on
page 25, an R % 1 implies that QCD is more complicated than what is predicted by the
dilute instanton gas model. It is, however, challenging to discern anything of meaning, as
the R-values for each ensemble is highly dissimilar. Investigating table [6.12| on page [129
in conjecture with fig. on the next page this concern is amplified. If anything, we
seem to have a dependence on the number of lattice points. As with the results for the
topological charge and susceptibility, this might just be an artifact of low statistics.

6.5.1 A comparison of the fourth cumulant

In order to investigate our results further, we will compare our results with those presented
by Ce et al. [13]. Their ensembles can be seen in table on page . We had to perform
a normalization of their results as they used a different normalization than what we used,
which can be seen in table [6.14] on page [129|

For comparing our results with those by Ce et al. [13], we look at the ratio between
our results presented in table [6.12] on page divided by those with similar volume seen
in table [6.14] on page [129] The resulting ratios can be seen in table [6.15( on page (130, For
the (Q?) and (Q*) we have a quite good match with our similar-sized results, but this is
not the case for (Q*), and R. With the notable exception of B and D,, there is quite a
disconnect between our results for (Q*) and R and those presented table on page m
The good agreement between (Q?) and (Q*) indicates that this disconnect appears be due
to the particular sensitivity of (Q*), and R. It is likely that higher statistics would have
remedied this issue.
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Figure 6.21: The fourth cumulant ratio R = <Q4> o / <Q2> for the ensembles
seen in table [6.1] on page The results was analyzed using Nps = 500
bootstrap samples, with the error corrected for by /27int.
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6.6 The topological charge correlator
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Figure 6.22: The topological charge correlator for all of the ensembles except
D seen in table[6.1]on page[89] The z-axis contains the sink-source separation,
as the source ¢(0) is placed at t. = 0 fm, and the sink ¢(t.) is taken at ..

In fig. we see the topological charge correlator from eq. @ on page @ with
one charge at t./a = 0 for the ensembles A, B, C' and D,. In fig. @ on the following
page we see the topological charge correlator for the D; ensemble, taken in a separate plot
as the Euclidean length is far shorter than the ensembles. In both cases, the correlator
have been aligned around t./a = 0.

From eq. on page we expect there to be an exponential dampening in the
signal, something which is hard to discern among the noise in both fig. [6.22] and in fig. [6.23
on the next page. An signal would likely be found in the range between 0.6 fm and 1 fm,
given that we had higher statistics.

In fig. |6.24] on page we the smearing effect of gradient flow. The source in t.o/a in
C(ne) = (q(te/a)q(tep/a)) is taken to be at the midpoint in Euclidean time for all of the
ensembles, and we can observe how the gradient flow smears out much of the fluctuations
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Figure 6.23: The topological charge correlator for the D, ensembles seen in
table on page The source ¢(0) is placed at t, = 0 fm and the sink g(t.)
is taken at t..
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Figure 6.24: The topological charge correlator taken the center-most Eu-
clidean time t. for all of the ensembles seen in table on page The
error on the correlator is shown using a band instead of bars in order to avoid
cluttering. A danger with limit statistics is that we might lose any signal of
an exponentially dampened signal which can make any extraction of states
problematic.
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present in the correlator. Another issue with the smearing which we can see in fig. [6.24] is
that we might lose signal of an exponential dampening for any exited states from eq. (6.13)).

6.6.1 The effective mass of the glueball

The next step after investigating the topological charge correlator is to try to extract
excited states. In our case, this would be to try to extract the O~ state(see section [2.10.5
on page . We start by folding the correlator,

{C(0),C(1),C(2),...,C(Nr —1),C(Nr)}

. {C(O), (C(1) + C(Nr — 1)), 2 (C(2) + C(Nr — 2)) ...

2

N | —

(6.12)

(C(Ne/2 — 1)+ C(Nr/2)) }

N | —

such that we get twice the statistics. We now compute the effective mass as given by
eq. (3.99) on page , which can be seen in fig. on the facing page. We see that for
all of the available ensembles, no plateau is reached.

A comparison can still be made by between our results and those seen in table [6.16| on
page [130l In fig. [6.25] on the facing page of the glueball mass we made an overlay of the
mass values from the literature listed in table [6.16]| on page [130

Even though we did not reach and plateau, we can still attempt to extract a mass in
the region t. € [0.3,0.6]. Extrapolating to the continuum, the mass is found to be

Mmer = 1.284(046)(215) GeV, (6.13)

where the systematic uncertainty in the last parenthesis was determined by performing
several plateau fits in the region ¢, € [0.1,0.8] for different interval sizes, and then taking
the width of that distribution to be our systematic error.

The effective mass from eq. is expected to be grossly incorrect, as no plateau
is reached. This is conformed from comparing with the values by other articles seen in
table [6.16] on page (130l The region we would like to explore from 0.6 to 1.0 fm never
experiences any plateau as most of the correlators disappear after around 0.4 fm due to
negative values in the logarithm in eq. . At short Euclidean times we also appear to
have contamination from other states which further complicates the extraction process.

Due to gradient flow, we might smear our lattice to such a degree that the signal is
lost. To investigate this, we have looked at the correlator for four different flow times which
can be seen in fig. [6.26| on page [124] From the effective mass plots in the four figures, we
see that none of them exhibits any proper plateauing and we still lack the statistics for a
glueball mass signal.



Section 6.6 The topological charge correlator 123

4.0

1 1
Chen et al.
Chowdhury et al.
3.5 4 **** Morningstar et al.

E
- B .
3.04 % ¢ 2
- D: . -
F- D ] : -
e e e P T Y R
2.5
2.0 o B ’ :
& ; B o .
[} . . : -
S —~|»- : A I .
1.5 -k T l :
F ety |
1.0 E L o E. O —l T
e e s TR T
I“ﬁf_‘-‘ + E * ]
- i E!
0.5
- - o
0.0 T 1E+
LT JEEL|L
R D= =
—-0.5 .

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
te[fm]

Figure 6.25: The effective mass of the glueball, as extracted from the topo-
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Table 6.9: The topological susceptibility x; ;as extrapolated from different extrapolation flow times ¢ extrap. ,
together with the corresponding Ny. The results are extrapolated using the ensembles seen in the first column.
The description of each of the columns is given in table [6.8]on the preceding page. The data were analyzed
with bootstrapping that was corrected by the integrated autocorrelation, 1/27,;. Note that this tables show a
different set of ensembles than those listed in table Eo: the previous page.

1/4

Ensemble X¢; -variant /\g [fm] Fixed flow time ¢, [fm] x?/d.o.f. Xw [GeV] Npg
A B, C, Dy x"((Q%) /8t = 0.60 2.38  0.179(10) 3.75(29)
Xil (@1, Qr) 0.10 215 0.179(10) 3.78(29)

0.20 2.05 0.179(10) 3.79(29)

0.30 2.29 0.179(10) 3.79(29)

0.40 2.04 0.179(10) 3.79(29)

0.50 212 0.179(10) 3.77(29)

0.60 2.39 0.179(10) 3.79(29)

X (@) /B0 cont = 0.4709 2.48 0.181(11) 3.64(28)

Xil Qe Q) 0.10 2.27  0.180(10) 3.72(29)

0.20 2.19 0.179(10) 3.74(29)

0.30 243 0.179(10) 3.74(29)

0.40 2.15 0.180(10) 3.73(29)

0.50 2.22  0.180(10) 3.72(29)

0.60 2.47  0.179(10) 3.74(29)

X (@) /83 oy = 0.4795 2.42  0.179(10) 3.74(29)

Xil (@1, Qr) 0.10 2.15  0.179(10) 3.79(29)

0.20 2.06 0.179(10) 3.80(29)

0.30 2.31  0.179(10) 3.79(29)

0.40 2.08 0.179(10) 3.77(29)

0.50 2.15 0.179(10) 3.75(29)

0.60 2.42  0.179(10) 3.78(29)

B, C, D, X (@) V/8t; = 0.50 2.02  0.166(24) 5.08(39)
/3t = 0.60 2.05 0.166(24) 5.06(39)
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Table 6.11: The topological susceptibility x:, as extrapolated from different extrapolation flow times ¢ extrap.
together with the corresponding Ny. The ensembles used in the extrapolation is seen in the first column. The
description of the rest of the columns is seen in table [6.8]on page [125] The data were analyzed with a time
series bootstrap.

Ensemble XM M%émimi /8t £.0extrap [fm] Fixed flow time t;o [fm] x?/d.o.f. XM [GeV] Np

A B, C, Dy x,/'((Q%) /3t = 0.60 048  0.183(7) 3.46(27)
1/4

Xt Qe Qu ) 0.10 0.44  0.183(7) 3.49(27)

0.20 045  0.183(7) 3.48(27)

0.30 047  0.182(7) 3.50(27)

0.40 044  0.183(7) 3.48(27)

0.50 045  0.183(7) 3.47(27)

0.60 044  0.183(7) 3.49(27)

V@) /R0.cont = 0.4708 0.53  0.184(7) 3.36(26)
1/4

xXil (@1, Q1) 0.10 0.48  0.183(7) 3.42(26)

0.20 049  0.184(7) 3.42(26)

0.30 0.50  0.183(7) 3.44(26)

0.40 047  0.183(7) 3.42(26)

0.50 047  0.184(7) 3.41(26)

0.60 046  0.183(7) 3.44(26)

Xl (@) /83 cone = 0.4794 049  0.183(7) 3.44(26)

x%@:@:bv 0.10 0.44  0.182(7) 3.49(27)

0.20 046  0.183(7) 3.48(27)

0.30 048  0.183(7) 3.49(27)

0.40 045  0.183(7) 3.47(27)

0.50 046  0.183(7) 3.45(27)

0.60 045  0.183(7) 3.47(27)

B,C,Dy  x/'((Q%) /3t = 0.50 0.38 0.172(17) 4.39(34)

V/8t; = 0.60 0.39  0.173(18) 4.37(34)
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Table 6.12: The fourth cumulant is taken at their individual reference scales
seen in the third column. <Q4> is given by eq. on page and R is
given by eq. - The data were analyzed w1th using a bootstrap analysis
of Nps = 500 samples, with error corrected by the integrated autocorrelation,

V/2Tint.
Ensemble L/a  tg/d? (Q?) QY QY ¢ R
A 224 320(3)  0.78(4) 2.13(27)  0.282(67)  0.359(65)
B 221 443(4)  0.81(5) 1.98(23)  0.036(11)  0.044(11)
C 217 6.01(6)  0.77(4) 1.6(2) —0.174(40) —0.226(64)
D, 153 122(1)  1.00(20) 3.01(1.07)  0.03(12)  0.03(12)
D, 229 12.2(1) 0.497(100)  0.64(20) —0.103(95) —0.21(23)

Table 6.13: Parameters of the ensembles presented by Ce et al. [I3]. The
first column is the ensemble name from the article. The letter indicates the
volume, while the subindex indicates the S value. We see that the ensembles
of similar letters keep approximately the same length L.

Ensemble f L/a L [fm] a [fm] to/a’ to/r2 Negg
P 596 16 1.632 0102  2.7887(2)  0.1113(9) 1 440 000
B, 6.05 14 1218 0.087 3.7960(12) 0.1114(9) 144 000
Ds 17 1.479 3.7825(8)  0.1110(9)
By 6.13 16 1.232 0.077 4.8855(15) 0.1113(10) 144 000
Dy 19 1463 4.8722(11)  0.1110(10)
By 6.21 18  1.224 0.068 6.2191(20) 0.1115(11) 144 000
D, 21 1.428 6.1957(14) 0.1111(11)

Table 6.14: Results as presented by Ce et al. [13], normalized by the lattice

volume.
Ensemble <Q2 > normed <Q4 > normed <Q4 > C normed Rnormed
£ 0.728(1)  1.608(4) 0.016(1) 0.022(1)
B, 0.772(3)  1.873(19) 0.085(4) 0.110(5)
D, 0.770(3)  1.817(17) 0.037(4)  0.048(5)
By 0.760(3)  1.805(17) 0.074(3)  0.097(4)
Ds 0.769(3)  1.801(14) 0.027(1) 0.035(1)
B, 0.776(3)  1.874(18) 0.069(3) 0.089(4)
Dy 0.785(3)  1.891(17) 0.040(4)  0.052(5)
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Table 6.15: A comparison between the results obtained in this thesis on the

fourth cumulant, and by those similar in volume form Ceé et al. [13

table on the preceding page.

results by the ones of in table on the previous page.

| seen in

Ratio indicates that we are dividing our

Article Thesis Ratio((Q?)) Ratio({Q?)) Ratio((Q*)¢) Ratio(R)
F A 1.08(6) 1.34(18) 19.03(5.81)  17.64(4.48)
By A 1.02(5) 1.15(15) 3.60(1.09) 3.54(90)
B 1.04(6) 1.06(11) 0.480(74) 0.46(4)

D, A 1.02(5) 1.19(15) 8. 31(1 99)  8.15(1.56)
B 1.05(6) 1.10(12) 1.1(1) 1.06(3)

B3 B 1.06(6) 1.10(12) 0.550(86) 0. 52(5)
Dj B 1.05(6) 1.11(12) 1.51(23) 1.4(1)
By C 0.99(5) 0.86(8) —2.32(46) —2.35(59)
Dy C 0.98(5) 0.85(8) —3.95(96) —4.05(1.19)
Table 6.16: The glueball mass from the three listed papers, which will be

used when comparing our results to that of existing literature.

Article Mest [GeV]
Chen et al. [10] 2.560(35)(120)
Chowdhury et al. [11] 2.563(34)
Morningstar and Peardon [47] 2.590(40)(130)




Chapter 7

Conclusion and final remarks

The main focus of this thesis has been on developing a code capable of generating and
flowing gauge configurations. Several programming challenges have had to be overcome,
particularly those related to ensuring that the code remains scalable for large systems.

In the scalability analysis of the weak and strong scaling seen in section [5.1.3]on page
we found that for flow and input/ outputﬂ we seemed to reach a plateau in performance
around N, = 512 processors. This was however not the case for the configuration genera-
tion, as that did not appear to plateau in performance. An increased number of processors
when generating should thus be feasible.

Subsequent analysis related to the configuration generation and minimization of auto-
correlation were performed, where different values for single link updates Ny, and correla-
tion lengths N, were investigated. We found that for the integrated autocorrelation in
fig. on page [84 and for the computational time in fig. on page [85] we still have a
lot of room for Ny, > 30 single link updates, as that has a far lesser computational cost
and a larger impact on the autocorrelation compared to increased correlation lengths Neo,.

GLAC has been extensively unit tested and integration tested as well as validation
tested with results from Chroma [20], indicating we have a code which produces the ex-
pected output.

While the goal of this thesis has been to create a code for generating and flowing gauge
configurations, we utilized the code to investigate a selection of gauge observables. Among
the gauge observables we investigated, we focused mostly on the topological charge and
related quantities.

We began by extracting two reference scales. The first being the ty-scale which we
extracted from the energy in fig. on page [01] and extrapolated to the continuum in
fig. on page . Using ensembles A, B, C' and Dy we got the continuum value g cont /75 =
0.11087(50), which agrees well with that found in [40] fig. 3, p. 12].

The same goes for wy, where we got wpcont = 0.1695(5) fm which is comparable to
Wo.cont = 0.1755(18)(04) fm by Borsanyi et al. [5] when considering they included dynamical
fermions in their configurations.

'We remind the reader that improvements to the IO were found late in the process of writing the thesis
which, lead to a factor ten in performance.

131
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When investigating the topological charge seen in fig. [6.10] on page [102] we saw that for
some of the ensembles, the averaged topological charge were not centered at zero, indicating
an uneven sampling of the configuration space. The issue of low statistics is something
which we ran into again for both the topological susceptibility in fig. [6.16| on page [110| and
the fourth cumulant ratio R in fig. [6.21) on page [118] This was particularly apparent for
the Dy ensemble. Using the ensembles A, B, C', and Dy we retrieved a continuum value
of 1/t = 0.179(10) GeV, which through the Witten-Veneziano formula in eq. (2.59)) on
page [23| corresponds to Ny = 3.75(29).

Investigating the integrated autocorrelation of the topological charge in fig. [6.12] on
page , we see that the topological charge for the Dy ensemble has a 7,y = 11.0(4.7) for
the final flow time, telling us that we only have around 22 independent gauge configurations
of the 250 generated. In order to illuminate the details surrounding our sampling, we
generated the ensemble D;. While the D; ensemble is more autocorrelated with 7, =
21.0(7.7) thus only giving us around 48 independent gauge configurations of 1000 generated,
it helped us to determine that our results are most likely due to a short Markov chain.

Relying on the results seen in [I3], which shows that the topological susceptibility be-
comes independent of volume in lattices larger than ~ 1.2—1.4 fermi, we found that extrap-
olating to the continuum with the ensembles A, B, C' and D; yielded X%J{Zl = 0.186(6) GeV
and a corresponding N; = 3.21(25). This corresponds very well with the value of Ny = 3
that we would expect from the r’-meson.

An issue remains regarding the autocorrelation of D; and D,. Since we used the
same Ny, and N, parameters and S-values, we would expect the autocorrelation to be
similar. The reason for them not being similar may be due to having a limited number of
gauge configurations. If this is the case, we might be underestimating the error and may
indeed only have around ten actually independent gauge configurations in the D, ensemble,
assuming a similar integrated autocorrelation 7y, as that to D;. Accounting for this we
might expect the estimated thf/4 for the ensembles A, B, C' and D, to be much closer to
that of ensembles A, B, C' and D;.

Regarding the fourth cumulant, we were able to achieve correspondence between our
results in table on page and those presented by Ce et al. [13] in table on
page , but only for (Q?) and (Q*). Under closer inspection of (Q*), and R it appears
that both are highly susceptible to low statistics and small variations. Thus, the same level
of agreement were not achieved.

Finally, we looked at the correlator C'(n;) = (¢(n:)q(0)), and attempted to extract the
glueball mass for the 0~ state. Extracted at flow time \/% = 0.6 fm, the resulting
mass of meg = 1.284(046)(215) GeV differs significantly from what other papers report in
table |6.16| on page [130] There are several possible explanations available as to why this is
the case. The most obvious one is the available statistics. We see that at large euclidean
times in fig. [6.25| on page the signal is dominated by noise, and we never experience
any true plateau. Take for instance the D, ensemble, where after 0.4 fm, we no longer
have any signal(i.e. we have negative values in the log). A similar problem exist at short
euclidean times, where the signal is contaminated by exited states. It is likely, that higher
statistics for all of the ensembles would have helped separate the different exited states
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and made the plateauing more prominent.

Another possibility which works in conjunction with the available statistics, is that
\/% = 0.6 fm may be extracting the effective mass at a too large flow time. To
investigate this we retrieved the effective mass at four different flow times /8ty €
[0.1,0.2,0.3,0.4,0.6] fm in fig. @ on page In particular, we see that for \/% =0.2
fm we have something which resembles a plateau and that is in the vicinity of the reported
effective masses in the literature table With greater statistics, this is something that
would have been interesting to investigate further.

In the ensembles for the smallest lattice spacing a, our results were affected by critical
slowdown as they exhibited strong autocorrelations(see fig. on page . This can be
seen directly in the Monte Carlo history in fig. on page where we for increasing
B(or decreasing lattice spacing a) see that the ensemble becomes far less random and
appear to change more slowly.

The issue of critical slow down is something which is inherent to all lattice calculation.
The simplest fix is to increase the statistics or try to change the number of N of Ny
updates. One could also test other types of algorithms and try to improve the results in
that way, although critical slowdown is a problem in all algorithms related to configuration
generation. The Metropolis algorithm that we used here, while simple in implementation,
offers us a profound insight into the mechanics of a lattice QCD calculation and serves as
solid stepping stone to more advanced methods. This is particularly true for implementing
fermions, as many of the tools needed have been developed in this thesis.

Implementing the much-celebrated gradient flow has been a significant component of
this thesis and deserves to be mentioned. One of the conclusions we perhaps can draw
is that applying gradient flow on an ensemble of configurations can provide insight into
whether or not one has sampled configuration space properly. Thus, the analysis performed
in this thesis can be applied to other sets of configurations and reveal the goodness of an
ensemble.

7.1 Future prospects and improvements

Having already covered some of the possible code improvements in section on page
we will only reiterate some of the general findings in this section. If we were to quickly
improve our results, the brute force way would be to increase the statistics by generating
more configurations, particularly for ensemble D; and D, for reasons already discussed
in the previous. From inspecting the Monte-Carlo evolution in fig. |6.14] on page [107] we
see how for different blocks in Monte-Carlo time the charge is centered around wildly
different values. Thus, increasing the statistics would help with the aforementioned critical
slowdown.

Looking back over the presented results and in particular comparisons between the set
of ensembles A, B, C', D; and A, B, C, D, it is likely that we, for the most part, are dealing
with low statistics. This is reinforced by having applied gradient flow on a configuration
generated by Chroma [20] and reproducing Chroma’s output down to machine precision.
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A better utilization of the ensembles E, F', and G should also be performed.

In generating new ensembles, we would recommend generating new configurations with
more Ny, link updates in between each sampling to achieve better statistics. As we saw
in the fig. on page |84, what had the largest impact on the autocorrelation appeared
to be an increased number of single link updates. Coincidentally, this has (perhaps unsur-
prisingly) a smaller computational cost compared to increasing the number of correlation
updates Ncor, as we see in fig. [5.13| on page

Another option for reducing the error would be to implement higher order actions and
improved field strength tensors for our gauge observables. Two candidates would be the
Liischer-Weisz action [38] and the O(a*)-improved field strength tensor [3]. Since all of the
framework required for retrieving shifted fields and links are implemented, this would be
one of the most obvious and quickest ways of improving the results, next to increasing the
statistics and the number of single link updates Nyp.

The most tantalizing path to take is perhaps to implement fermions. This would require
the implementation of a Hybrid Monte Carlo(HMC) type of algorithm, as our current type
of Metropolis algorithm is not suitable for fermions. Fortunately, most of the tools can
be reused, but implementations of linear algebra methods and y-matrix arithmetic are
needed in order to be able to calculate fermion determinants and matrices. While it
certainly would take time to fully integrate fermions in the code, the development of this
code, GLAC, serves as a first step towards developing a code capable of solving full QCD
numerically.



Appendix A

Conventions

A.1 Notational conventions

In this thesis, repeated indices indicate summation, i.e. Einstein’s summation convention.
Further, natural units are assumed,

h=c=1. (A.1)

This allows us to express every unit in terms of a single unit,

[length] = [time] = [energy] ' = [mass] *, (A.2)

such that when we say something has unit —1 or +2 we mean in units of energy.
With this, we get that the rest energy of a particle mc? is equal to just m. A useful
unit of conversion is given by

(1 GeV)(hc) = 0.1973 x 10~ m = 0.1973 fm, (A.3)

which yields the useful conversion unit 1 = 197.3 MeVfm. 1 fm is taken to mean one unit
of Fermi, which is 107 meters, while 1 eV is taken to mean one electron volt, which is
the energy acquired by an electron when exposed to 1 Volt.

A.2 Practicals on Wick rotation

A Wick rotation is when we are going from real time in Minkowski space, to imaginary
time in Fuclidean space. With 7 being real time,

T — —it, (A.4)

we get Euclidean space where ¢ is now imaginary time. The choice of —i instead of just ¢
ensures that the propagator e *# is bounded.
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2

Since we x? = x3 — |x|?, we get the following quantities

pol =ips, (PV)?=—(pi+p°)=-p°, dP" =idpsd’p =id’p,

o) = —izy, (M) = (P +x?) = —2?, d*2M = —idaydPr = —id's,
Mo M2 2 2 (A.5)
A=A,
A.3 Gamma matrices
The Minkowski gamma matrices ’yfy with © =0,1,2,3 is given as
{V;JLV[,%]/V[} = 20 X 14. (A.6)

1, simply refers to the identity matrix of size 4 x 4. The subscript 4 assumed and thus be
dropped in further discussions. Note we label the gamma matrices by M, and that this
is not the case in the presentation of QCD chapter [3| on page 25l The metric is given by
g = g" = diag(1,—1,—1,—1). The corresponding Euclidean matrices are constructed
from multiplying the spatial gamma matrices by —i,

7= -t = =iy, = =iy, u= (A7)

The Euclidean commutator becomes

{%,%} = 25uy x 1. (A8)

Just as v = H?:o M the Euclidean chirality operator is given by 75 = Hle Y.

There are several representations available to us, i.e. the Dirac-, chiral- or Majorana-
basis. For lattice QCD, one usually uses the chiral representation in which 75 is diagonal
[24, B1]. The y-matrices are then given as

. 0 —Z'O'Z‘ . 0 12 o 12 0
’YZ—|:ZO_Z O }774—{12 0:|7’Y5—[0 _12:|7 (Ag)

which when explicitly written out becomes

00 0 —i 0 00 —1 0 0 —i 0
o0 —i 0 o 01 0 00 0 i
M=do i 0 o> ™7 lo 10 o> B=1i 0o o ol

i 0 0 0 100 0 0 —i 0 0

0010 10 0 0
000 1 01 0 0

=11 000 7 loo =1 o0 (A-10)
0100 00 0 -1
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From these matrices follows several relations. First off we can note that 72 = 1 and
(75)" = 5. Further, it follows that v, 1s its own inverse for p =1, 2, 3, 4, 5,
Yy = vl = 7;1. (A.11)

We also have that a 7, and 5 anti-commute,

{6} =0, (A.12)

There are several other matrix relations and identities, but these are mostly related to
taking traces and calculating cross sections, thus not as relevant to us.






Appendix B

Lie groups

A brief overview of the basic definitions and properties of the Lie groups of SU(NV), the
special unitary groups, is given here. We will be using the fundamental representation of
the SU(V) groups.

B.1 Representation

The representation of SU(N) is given by complex N x N unitary matrices,
Q=00 =1, (B.1)

with the Hermitian conjugate given as the inverse Qf = ()7 = Q~!, and whose determi-
nant is one, det {2 = 1. Worth noting, is that two elements of the group do not commute,
making it non-Abelian.

Given two elements €2y, {25 obeying eq. and their determinants is 1, we have their
multiplication §2; - should also belong to SU(V). This is the case if their product satisfies
unitarity,

()10, = QAIOTO,Q, = Q10 = 1. (B.2)
1

Further, we have that the associative and the identity element is trivial, together with their
inverse element. Thus, since the elements are closed under multiplication, and the unit
matrix is contained in SU(N), SU(NNV) forms a group.

B.1.1 The Lie algebra and the fundamental representation

The Lie algebra su(N) of SU(N) consist of t* generators for a = 1,2,... N? — 1. This
allows us to represent represent {2 € SU(N) by an exponential sum in the ¢* generators of
SU(N). The generators t* are traceless, complex and hermitian N x N matrices with the
normalization condition of

tr [t*¢"] = %5“. (B.3)
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The structure constants f¢ are defined through
[ta’ tb] — Z'fabctc’

and are anti-symmetric.
An element 2 of the Lie algebra can be written as

N2-1
Q) = exp <z Z w(j)Tj) .
j=1

The w’ are real numbers that parametrize Q.

B.2 Generators of SU(2)

The generators of SU(2) are given by the 2 x 2 matrices,
1

ta = 50a,

2

with o, being the Pauli matrices,

o1 o —i oo
5o T oo BT o -1

The structure constants are given by the anti-symmetric Levi-Civita tensor,

[Ua7 Ub] - fabctc - 22.Eabctc-

B.3 Generators of SU(3)

The generators of the SU(3) group are the 3 x 3 matrices,

0
)\1: 1
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B.4 Exponentiation of a su(3) matrix

In order to be able to calculate anything using gradient flow and the Runge-Kutta method
of third order(see section on page , we need to figure out how one exponentiates the
matrices Z;. The simplest approach would be to make a Taylor expansion and simply add
enough terms, but luckily a better way of SU(3) matrix exponentiation have been found
by Morningstar and Peardon [46]. Given a traceless Hermitian 3 x 3 matrix @,

co = det Q — %tr(Q3), (B.11)
¢ = %tr(QQ), (B.12)
with the max of ¢y given by{|
cmax — 9 (%)3/2, (B.13)
the exponentiation is given by
' = fol + f1Q + f2@°, (B.14)

such that we will have to find fj, f; and f,. We start by defining

1 1
u= \/501 Cos <§9> , (B.15)

w = \/c1 sin (ée) : (B.16)

0 = arccos ( i[;X) . (B.17)
o
From this, we have that f; with j =0, 1,2 is defined as
h;
fi= Rt (B.18)
with
ho = (u* — w?)e®™ + ™™ [8u® cos(w) + 2iu(3u® + w?)&(w)] (B.19)
hy = 2ue®™ — =™ [2u cos(w) — i(3u® — w?)&o(w)] (B.20)
hy = e* — e [cos(w) + 3iuéo(w)] . (B.21)
The function & (w) is given by
sinw) if  |w| > 0.05
So(w) =q v 2 ' (B.22)
1—2w?(1—5w?(1—%)) else

1A max of ¢; is also presented in [46], but it is not needed in order to exponentiate a SU(3) matrix.
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where we in the case of w — 0 and ¢y — ¢ uses a numerically safe approximation to

sin(w) /w.
In the limit of w — 3u — V/3/2 as ¢g — —c®*(i.e. having ¢y < 0), we use the symmetry
of cop = —cp and take the complex conjugate of f;,

fi(=co,e1) = (=1) f;(co, ). (B.23)

All that remains is thus to insert f; into eq. (B.14]) on the preceding page, and we will
have exponentiated the matrix Q).

B.4.1 Analyzing the matrix exponentiation

An analysis was performed in order to determine the error of the matrix exponentiation and
the computational cost. We will use the method described by Morningstar and Peardon
[46] and by Liischer [39, appendix A] compared against regular Taylor expansions.

Timing analysis

We performed a timing analysis where we ran 10° exponentiations for each method. The
results for the Morningstar method, the Liischer method and a few select Taylor expan-
sions(denoted by Taylor(N) with N indicating degree), can be seen in table [B.1]

Table B.1: The time of performing 10® exponentiations with a select method.

Method Timing[seconds]
Morningstar 0.38
Lischer 1.82
Taylor(4) 0.40
Taylor(8) 0.79
Taylor(16) 1.55

The results how much time the Taylor exponentiation takes for different polynomial
degrees and how it compares against the Morningstar method, can both be seen in fig.
on the facing page. At y = 1 a line is drawn, which indicates where N Taylor expansions
become computationally more expensive than the method presented by Morningstar and
Peardon [46].

If the method by Morningstar and Peardon [46] turns out to be equal or more accu-
rate than Taylor expanding of order N = 4, it will be the obvious method of choice for
exponentiating SU(3) matrices.

Accuracy analysis

Similar to the previous section, an analysis of the accuracy has been made investigating
the differences between the Morningstar method and the Taylor expansions at different
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N)/Morningstar

100 3

Taylor(

6 8 10 12 14 16
Taylor polynomial degree N

O_
[N
S

Figure B.1: In the upper figure, we see how the time evolves for different
expansion degrees N. In the bottom figure we see how the Morningstar method
measures up against the time it takes to calculate the Taylor expansion of
degree N. A line at y = 1 marks the point where Taylor expansions become
computationally more expensive than the method presented in [46].

Taylor expansion degrees N. The absolute difference between a Taylor expansion of degree
N and the method by Morningstar and Peardon [46] and a Taylor expansion of degree 16

can be seen in fig. [B.1]

In fig. [B.2] on the following page we found that after a Taylor expansion of degree N =
10, the improvement in accuracy appeared to flatten. This indicates that the numerical
precision of the Taylor expansion is too crude to tell us anything of significance, other than
that we can expect the method by Morningstar to be accurate up to order 10. In order
to implement a stronger analysis, steps to avoid numerical imprecision would have to be
implemented in the Taylor-expansions.
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10—3 u

10—5 .

—>— abs(Liischer — Taylor(N))
—»— abs(Morningstar — Taylor(N))
—@— abs(Taylor(N) — Taylor(16))
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Absolute difference
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Figure B.2: The absolute difference between the norms of the first element
in SU(3) matrix expansion methods by Morningstar and Peardon [46], Liischer
[39, appendix A] and Taylor expansions of degree 16 for different Taylor poly-

nomials of degree N.

B.5 Notes on chirality projectors

Recalling the QCD Lagrangian for a single flavor in eq. (2.30) on page Ny =1in

Euclidean space,

£(¢7 127 A) - 1;7#(8# + ZAu)¢;

(B.24)

we can attempt to split it into left- and right-handed components such that these are

invariant under a chiral symmetry,

= =By, p =) = ahe'®, (B.25)
We write the chiral projectors as
1 1—
Pr = J;%, P = 275. (B.26)
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We can now define left- and right-handed fields by applying the chiral projectors in
eq. (B.26]) on the facing page on the fermion fields in eq. (B.24) on the preceding page,

Yr = Pry, = Pry. (B.27)

Their Hermitian conjugates are given as

Ur = Prp = (Prd) o = TPl = ¥l P = o P;,
Y =V Pp, (B.28)

where we used that P}; = Pg, Pz = P, and the anti-commutation of ~s.

Before we move on, we note that PrP;, = P, Pr = 0 commutes, v,Pr/;, = Pr/rV,, and
that 1 = Pg + Pr. We start with inserting unity in the Lagrangian seen in eq. (B.24)) on
the facing page,

djl%@u + iAu)lw = @(PR + PL)%(au + iAu)<PR + PL)w
= Y Pr,(0, +iA,) Prip + Y Py, (0, + iA,) Prap
+ VP, (0, + iA,) Prip + ¢ Pry,(0, + iA,) Py
= 7,(0, + 1A, PLPrY + ¥y, (0, + iA)Yr
+ Q/SR%b(au +iA)YR + @Z)Vu(au +iA,)PrPry
= V1,0, + iA)VL + YRV (0, + iA) VR (B.29)

Using the aforementioned identities, we have thus split the massless section of the La-
grangian in eq. (B.24)) on the preceding page into left- and right-handed projections. If we
now go to the massive section,

miprp = mp(Pr + Pp) = mip' 1y Prtp + mapT1yg Ppap
= my'(Pr + Pr)roPry + my" (P + Po)yoPry
= mp'o PL PR + mpyo PrPrip + maptyo PLPrap + mapTyo PrPrip
=04+ myPrPr¢Y) + myy P Pri) + 0
= m(YpYr + YrYL), (B.30)

where we see we get a mixing of left- and right-handed fermion fields. Thus we have that
when we are not in the limit of mys — 0, we lose the chiral symmetry.

This can also be seen when trying to transform the fields according to eq. on
the facing page,

m'y = mape Y, (B.31)

where the mass term clearly don’t transform under a chiral rotation.
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B.6 Proof of field strength tensor identity

We wish to show that,

a 1a a 1a 1 a [a
F*F® —4F*F +§(Fu,,q:FW)2. (B.32)

purvs py puvs py
Using that the (anti) dual field strength tensor is defined as

~ 1
F;w = iée,uuapFopa (B33)

we can start with the right hand side of eq. (B.32)),

. _ . | _ 1. -
LR R+ S(Fe F F2)? = +F% FY 4 SF% F 5 - <2F“ o ) Y IFO R (B.34)

puv= uv 2 puv= uv 9T T 9 uv= v 9" m 2

If we now use that the Levi-Civita tensor squares gives €/"??¢,,,, = 4, we get that the last
part of eq. (B.34]) can be rewritten,

1 1
(B3d) = ~F* F* + —F* F* = F* F@ (B.35)

- ) prs opy 9 uv= v [ 21 2]

and we have proved the identity eq. (B.32)).
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Generating random SU(3) matrices

An alternative method to the RST-method of generating SU(3) matrices in section [4.1.3]
on page [61] is given here. While this method does not provide us with matrices close to
unity, it still provides us with an alternate method of generating random SU(3) matrices.
Given three rows in a matrix, u, v and w, we start by populating the first two rows with
random numbers in an interval of r € (—€nq, €na) Where €., determines the spread of the
random numbers. The second row v is then orthogonalized using Gram-Schmitt,

u
Upew = mv

ul (C.1)
View = m where V/ =V — Upew (V : unew)7

with the third row w simply being the cross product of the first two rows. This procedure
is summed up in algorithm [5]

Algorithm 5 Algorithm for generating a random SU(3) matrix. Takes only €,,4 as an
input that controls the spread of the matrix.

1: procedure GENERATERANDOMMATRIX (€,,q)
2: Generate six random complex numbers(in total 12 random numbers) from the uni-
form distribution (—€pnq, €ma), and populate u and v.

Normalize U,ey = ﬁ

Make v orthogonal to u using eq. (C.1).

Take W = Upew X Viyew.

return matrix X = [Unew, View, W|

end procedure
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Statistical analysis

In this section, we will present the most pertinent sections of statistics relevant to this
thesis. One of the issues of lattice QCD is the tremendous computational cost and the
consequentally induced autocorrelation between the gauge configurations for small lattice
spacing a. For the first part, we can partly remedy the issue of having a small dataset by
performing bootstrapping and jackknifing. For the latter, we can find the autocorrelation
to get a better estimate for the error. An automated blocking method such as the one
described in [30] were considered, but due to our small ensembles this path was discarded.

D.1 Bootstrapping

Bootstrapping is one of the first tools we turn to when tackling either a low-statistics
dataset or when attempting to estimate errors of convoluted observablesﬂ

Given a dataset {x,} of N samples, we will create Ny bootstrap samples {Z;}, where
each &; is built from randomly drawing with replacement N samples from {z,} and taking
the mean of these randomly drawn samples. Thus, we are forming a new data set {Z;}.
From this, we get a final estimator

1 Nbs
T) = Zi, D.1
® =52 (D.1)
with the standard deviation
Nbs
Nbs —1 ~ ~ 2
o = ~2TLS (7 — (7)) (D.2)

Nbs

=1

The (...) indicates an average, as per convention.
A quick sketch of bootstrapping can be seen in algorithm [ on the next page.

IThe latter, while not relevant for us, could be estimating errors on linear regression coefficients.
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Algorithm 6 An algorithmic description of bootstrapping a dataset {x,}.

: for i =0: NV, do
With replacement, randomly draw N elements, forming temporary dataset {Z,}.
Take the mean of the new data set, ; = ﬁ nyji T
Add z; to a new dataset of bootstrapped values.

end for

. Compute statistics on the bootstrapped dataset {z;}.

S TR Wy

D.2 Jackknifing

An alternative to bootstrapping is jackknifing. The name stems from the fact that we are
removing every jth element when creating a "new” dataset {Z,} of size N. Each element
in the dataset 7,, is a mean of the N — 1 elements of the original dataset, excluding the
nth element. The final variance of jackknifing is given as

N -1
N

(3 — (2))°. (D.3)

Oz =

The final unbiased estimator is reported as () = (x) — (N — 1)({Z) — (x)), with (Z) given
by

(z) = % > En. (D.4)

An algorithmic implementation of jackknifing can be seen in algorithm

Algorithm 7 An algorithmic description of jackknifing a dataset {z,}.
: for 7 =0: N,y do
Take the mean Z,, of {x,}, excluding the jth element.
Add the mean Z,, to a new dataset, {Z,}.
end for
: Take the mean in eq. and the variance in eq. of the new dataset {Z,}.
: Take the mean of the original dataset, (x).
: Remove the bias by () = (z) — (N — 1)({Z) — (2)), to get the final mean.

D.3 Autocorrelation

Autocorrelation is a measure of correlations within a time series signal. Since we are dealing
with a Monte Carlo time series, we wish to measure if what we are sampling is periodically
self-similar in Monte Carlo time. If this is the case, our statistics may be far worse than
what we are lead to believe due to the periodically repeating signal.
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The method we will utilize is the one presented by Wolff [79], as it is applicable to a wide
range of problems and applicable to propagated signals. We first present an alternative
method by Liischer [39] that is easier to implement for finding the autocorrelation, which
serves as a gateway to the more general method by Wolff [79].

D.3.1 Notational conventions for autocorrelation

Notational conventions for this section will be close to that presented by Wolff [79],
e Observables are denoted by a Greek index, such as «, 3, ....

e Measurements are denoted by Latin letters, ¢, 7, ... with ¢ =1,2,..., N,, where N,
denotes the number of measurements for a replicum.

e Replicums are denoted by » = 1,2,..., R and indicate the number of statistically
independent replica, i.e. sets of measurements. R is the total number of sets of
measurements.

A single measurement of an observable « is denoted by a’", and have a per-replicum

average of
1 &
a, = — al’ D.5
a Nr ZZ:; a ) ( )
with the total average of all replicums given as

G — > Nay,. (D.6)

N=>"N,. (D.7)

The exact statistical mean of « is given as A,.
The autocorrelation function between two observables a and f(these may be equal in
order to investigate self-periodicity) is given as

Tas(t) = ((ag — Aa)(ag™ — Ag)) = Tga(-1), (D.8)

where ¢ is the lag, which is the number of measurements we are measuring correlation
between.
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D.3.2 Single-variable autocorrelation

A method by Liischer [39] of measuring the autocorrelation for a single variable and single
replicum is presented. Given a single observable o = 1 and a single replicum r = 1, we
have that the exact autocorrelation function is given by

L) =T(=t) = ((¢; = a)(ais = a)), (D.9)

where a = (@) is the true mean since a is a stochastic variable. a is given as

| XN
a= — Qs DlO
=N (D.10)

and its variance is given by

;X
o® = ((a; —a)*) = N > T —j). (D.11)
ij=1
This can be rewritten to

0% = 2100, (D.12)

where 02 = T',5(0)/N, and is how we will correct for autocorrelation in results. Ty, is the

integrated autocorrelation time and is given by

o0

Ting = % + Z %. (D.13)
t=1
The autocorrelation from eq. on the previous page can be approximated by
B | N
N(t) = +— 2; (a; — @) (aipe — @) - (D.14)

Substituting p(t) = I'(t)/T(0) one has that the variance becomes

t+A
(50(0)%) = <2 S alk )+ plk 1) — 2p(k)p(1)} (D.15)

k=1

where A is a cutoff, and is usually larger than 100. The reason for this is that after some
lag t the autocorrelation will be dominated by fluctuations, and hence become unreliable.
This expression can be used to determine the integrated autocorrelation time,

Tint =

N | —

+ ) a(t), (D.16)
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where W is chosen to be the first lag ¢t where

p(t) < (p(t)*)

The uncertainty of the integrated autocorrelation is given by the Madras-Sokal formula
[43],

v (D.17)

(72 = 2V

T (D.18)

D.3.3 Propagated autocorrelation

In this section we present a general method by Wolff [79] for calculating the autocorrelation
when it is propagated through a function. Given some function f which propagates a,,

where the double bar is given by eq. on page m,

F = f(aa), (D.19)
such that
F = iiNTf(a’“). (D.20)
N = ¢
We define derivatives of f as
fo = aai. (D.21)

If no analytical evaluation is available, one may use a symmetric numerical approximation

as of O(h?),

= 1 _ _ _ _
fazﬂ[f(al,ag,...,awrha,...)—f(al,ag,...,aa—ha,...)] (D.22)

with the step size given as

ho = . (D.23)

Given some measured data a®", we define the autocorrelation function I', 5 as
o B

R Np—t

alt) = g o O (0 = ) (a7 =) (021

r=1 =1

=i

Given a derived quantity F', the full autocorrelation becomes

Tr(t) =Y fafslas(t), (D.25)
of
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where fa is given by eq. |D on the previous page and evaluated at every «, a,as, .. ..
As a practical side note, in the case we only need to calculate the error propagation of
a single observable, A, we can simply project the error directly on the measurements,

ir LT o
ag = aj = E faay",
a

and we will not have to calculate the full autocorrelation matrix lz“aﬁ (t).
We have that 73, may be estimated as

7:—int,F(W> - = )

where Cp is given by

and vp is given as

The error of Ty (W) is given as

_ _ 4
<§7_'iit,F> = <<7_'int,F(W) - 7'int,F)2> ~ N (W + 1/2 - 7_int,F) 7_iit,F‘

The final error estimate now becomes

L _OW)

Op = s

N

where we have removed the bias in C(W) by a rescaling of

E(W) — () (1 el 1) |

N

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

The next challenge is to find IW. W is defined as the value that minimizes the sum of
absolute errors when looking at C'r(W). For finding W we will use an automatic windowing
procedure, in which Wolff [79] proposed to start from the hypothesis that 7 ~ STy, where

S is a tunable factor. This is stated as a problem where we wish to solve

(D.33)
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for 7. If we assume small 7, we can make an approximation,

= et )

(D.34)

Solving for 7, we will set it to a small positive value if Ty, p < 1/2. Then, for W =1,2,...
we calculate

w__7iv) } , (D.35)

g(W) = exp [wm -0

until g(W) is negative. The corresponding W for this is taken to be our integration
window. The value of S € [1,2] is tuned such that Ty (W) exhibits a plateau. That is,
we integrate the autocorrelation time until we begin exhibiting large statistical luctuations.
The optimal W will then give us the true integrated autocorrelation time Tin p.

The autocorrelation corrected variance is given by

0% = 2100, (D.36)

An algorithm for the automatic windowing procedure can be seen in algorithm

Algorithm 8 An algorithmic description of the automatic windowing procedure for re-
trieving the optimal cut-off W for 7y #(W), using the method presented in [79]. Note that
Tint, (W) 1s a vector given by eq. (D.27) on the facing page.

1: procedure AUTOMATIC WINDOWING(Tipe (W), S, € = 1077)
2: Set up an empty vector 7 to populate.

3. for 7 p(W) in 7y (W) do

4: if 7., (W) < 0.5 then

5: i =€.

6: else _ .
= (los [Fer])
8: end if

9: end for
10: fori=1: length ) do
11: if exp [ } < 0 then
12: W =
13: Break.
14: end if
15: end for

16: Return .
17: end procedure
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D.4 Bootstrapping a time series

Since we have a time series that exhibits autocorrelations, we need to account for these in
the bootstrap in order to properly account for autocorrelation. This can be done by what
is called bootstrap blocking or simply time series bootstrap [33, 52]. The idea behind it
is intuitive. Given a dataset {x,} of N samples, we will as in basic bootstrapping create
Ny bootstrap samples. However, when generating a bootstrap sample we will populate it
with ”chunks” of size b as this will preserve autocorrelations in the sampling. The total
number of these ”chunks” will be & = N/b, and they can be overlapping. The size of the
chunk b is determined from where we get a maximal standard deviation or have that the
autocorrelation I'(t) — 0. An example of this can be seen in fig. on the next page,
where a dashed, gray line has been drawn at where the block size b was found to become
negative. As we can see, the choice of the block size seems to maximize the error to a
reasonable degree.
A quick sketch of bootstrap blocking can be seen in algorithm [0

Algorithm 9 An algorithmic description of bootstrap blocking a dataset {z,}.

1: Find the optimal block size b from the autocorrelation, where b is the index for when
['(t) first becomes negative(see appendix on page .
for i =0: Ny do

Prepare an empty array z of size N.

With replacement, draw k € [0, N — b) random numbers {j}.

for each j in {j} do

Populate {7} with chunks of size i’j =Tj,...,Tjip

end for

Take the mean(or chosen bootstrap statistic) of {Z}, and use that to set all #;. If
7 exceed N, the excess elements will be removed.
9: Add #; to a new dataset of bootstrapped values {Z;}.
10: end for
11: Compute statistics on the bootstrapped dataset {Z;}.

D.5 Line fitting

In order to extrapolate our results to the continuum, a proper method for linear extrap-
olation is needed. We present the line fitting procedure given by Lavagnini and Magno
[35]. In the paper, two methods are presented - one unweighted, and one weighted. We
will settle on presenting the weighted method(although both has been implemented), and
follow the notation used in the paper.

We will try to fit a line to

gjw = bOw + blij, (D37)
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Figure D.1: Standard deviation versus the block size in the time series
bootstrapping. The gray line indicates where the autocorrelation first turns
negative and is where we will choose to set our block size b. In this case, that
was at b = 81. The data presented here consists 500 topological charge samples
at ty/ a®? = 10.0 at 3 = 6.2, generated such that we get strong correlations in
Monte Carlo time. Npg = 10% bootstrap samples were used in order to get a
smooth curve, although far fewer samples should be required.

where ¢;,, is the line we will predict given input points z,;. Assuming that we are going to
fit to ¥, and z,,, we solve for by,

bOw = Yuw — blewa (D38>
where the subscript w symbolizes that we are performing a weighted fit and ,, is given by

— Zn—1 W;Y;
Yo = S, (D.39)
D ie1 Wi
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and 7,, is given by

w n (D.40)
D i1 Wi
by, is given by
blw - Zl:Ll o (:EZ — xw) yia (D41)
Zizl W; (.1'1 xw)Q
and the weights w; is given by
1

where s; = 0;. We denote the error in a term by s.

The next step is now to retrieve the error in by, b1, and the slope, in order to retrieve
the error bands of y;,,, where j indicates a set of we will predict a new line for. The error
in by, is given by

1 72 )
b = " - D.4
“bow (2?1 w; + S LWy — xw)2> (Sy/x)w (D.43)

1=

Next, the error in by, is given by

1 2
2 _ " D.44
where the (s,/,)2 is the error in the slope,
n ~ 2
2 Doica Wi (Ui — iw)
)2 = . D.45
(Sy/ )’LU n — 2 ( )
From this we can calculate the upper and lower limits of ¥,
Uiw = bow + brur; £ (1 — a/2,n — 2) (D.46)

« (s 1 (2 — Tw)’
(sy/a)., (EL T a:w)2> , (D.47)

where t(1 — a/2,n — 2) is the constant of (1 — «/2)100% percentage point of Student’s
t-distribution in a one-sided interval. We will set a = 2 x 0.32, such that we pick up one
standard deviation of the distribution.



Appendix E

Cumulants

A short introduction to cumulants is presented in this section, as it is used in the in-
vestigation of the topological charge. Given a probability distribution P(z), we wish to
describe how some stochastic variable X takes on z. That is, how = behaves in the P(z)
distribution. For this purpose, let us introduce a characteristic function G(k),

G(k) = (e™) = /dxe””P(:z:), (E.1)

with of course [dzP(z) =1. Note that G(0) = 1. We then expand the exponential,

G(k) = / de Z; (is?nx”P(x) S i (E.2)

such that in order to generate the moments of the distribution, we take the nth derivative,

d"G(k)
dkr

=" (2" (E.3)
k=0

To generate the cumulants, we take the log of this expression(note that the first term of
the sum which is 1, dies) and get the cumulants C,,,

In G(k) = f: (”%cn (E.4)

Isolating the cumulants can be done if we take the nth derivative,

_d"InG(k)

Cn = =)' — g

(E.5)

k=0

With this definition in place, let us go ahead and make the first four calculations explicitly.

159
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E.1 First cumulant

The first cumulant n = 1 is given by

C - (—z’)l%d”(’“) e (E.6)

SN—
(oW
5
—
i}
o

where after taking the derivative of the log, one can simply use eq. (E.3) on the preceding
page for the moment. We end up with the first cumulant being the mean of the distribution.

E.2 Second cumulant

The second cumulant n = 1 is given as

wd [d _d 1
Cy = (—1i) T {@ lnG(k)} o ~I {%ln G(k‘)] . (E.7)
1 [d S BNCE
- | [59%)] - cmame® )
= (z)* = (2%) . (E.9)
E.3 Third cumulant
Taking the derivative of eq. gives us the third cumulant,
sd [ 1 Td S B
C3 = (—1) T _G(k)2 [@G(k)] — @@G(k)l kzo (E.10)
1 2 Jd P2 [d d?
| [a59%)] - i (3560 [e69) -
1 d '
aman®||

=2(z)’ — 3 (z) (2?) + ;3> . (E.12)
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E.4 Fourth cumulant

The fourth cumulant is generated from taking the next kth derivative of eq. (E.11|) on the
facing page.

4d4

Ci = (i)' W GR), (B13)
a|l 2 Ja P2 [d d?
= i [ [0 = e (300 [ro)] ;
14
1 d Gl .
—{—w@ (k) .

- o L] e )] [k - s [sco]

- ﬁ EG(!{)} [dd—;G(k)} + ﬁ {;L;G(k)} o

= (%) — 4(®) (&) — 3(2®)* +12(z?) (2)* — 6 (z)" (E.16)

(E.15)
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