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. INTRODUCTION

The present paper is concerned with the influence
of space charge forces upon the azimuthal stability
of circulating ion beams. The problem treated is the
one dimensional azimuthal motion of circulating
beams with distribution in momentum and coordinate
differing only slightly from certain stationary dis-
tributions.

A solution of the problem is most readily obtained
for distributions characterized by a density in two
dimensional phase space that is uniform within sharp
boundaries and zero elsewhere, and consequently
this special case is analyzed in detail and illustrated
by numerical examples. This analysis is supplemented
by results drawn from a general treatment of arbitrary
distributions (which will be published in full elsewhere)
in order to extend the discussion to two or more inter-
secting beams of relativistic ions.

In developing a small amplitude theory of stability
we first find a stationary distribution and then ask
whether a small perturbation of this distribution leads
to bounded oscillation or to growth : the first we call
stable and the second unstable. It is of course,
impossible to say from such analysis based on small
amplitude approximations how the perturbation
continues to grow after it becomes large, or even
whether it decays again after reaching some finite
amplitude, and the characterization “ unstable ” must
therefore be understood to mean “initially unstable
in small amplitude approximation .

(*) The Ohio State University, Colombus, Ohio.
(**) On leave from the University of Wisconsin.
(***) Supported by the United States Atomic Energy Commission.

Il. QUALITATIVE ARGUMENTS FOR A SINGLE
CIRCULATING BEAM

The simplest possible stationary distribution is a
uniform ring of circulating monoenergetic ions.
From linearized wave equations obtained by hydro-
dynamic analysis 2 it is easy to see that small
density perturbations in such a ring are either oscilla-
tory or growing depending upon whether the ions are
below or above transition energy. The instability
above transition derives from the fact that a force
acting on an ion in the direction of motion so as to
increase its energy thereby decreases its revolution
frequency; in angular coordinate 6 the acceleration
is in a direction opposite to the direction of applied
torque. Thus, electrostatic force away from regions
of greater charge density produces acceleration toward
such regions. Since this behavior leads in the wave
equation describing the motion of the perturbation
to a negative inertia term, we refer to the instability
as the negative mass instability.

The stability properties of circulating rings of
interacting particles were first analyzed by Maxwell *
in his famous essay on the stability of Saturn’s rings.
In this case also the individual particles have a negative
angular inertia, but as their mutual interactions are
attractive, a single ring is stable (providing that the
mass of the ring is small enough compared to the
mass of Saturn) and instabilities may arise only from
the interaction of adjacent rings.

A distribution of particles with some spread in
energy cannot be dealt with in the same way as mono-
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energetic ions because it is impossible to find a coor-
dinate system in which all particles are initially at
rest. It is clear, however, that the spread of revolu-
tion frequencies associated with energy spread results
in a mixing that tends to destroy density perturba-
tions; and we are consequently led to believe that a
circulating ring of particles will be made less unstable,
if not absolutely stable by an energy spread. We can
even foresee that the stabilizing effect will be at least
approximately independent of the wavelength of the
perturbation, because the characteristic time for
growth increases with wavelength and the “ mixing
time ” with a given energy spread likewise increases
with wavelength; ratio of growth time to mixing
time tends to be invariant. These qualitative argu-
ments are confirmed by the more quantitative analysis
below.

lll. PHASE SPACE REPRESENTATION

Any assembly of ions may be represented by a
set of representative points in an appropriate phase
space (p—space). In the absence of interactions the
motion of phase points is described by canonical
equations derived from the single particle Hamiltonian,
and this motion preserves phase density by Louiville’s
theorem* . The system of present interest is
an assembly of interacting particles; but to the
extent that short-range interactions are negligible,
to the extent that the interactions are dominated by
the collective Coulomb field, the interactions are
simply equivalent to additional external field and their
effect upon the particle motion is accounted for by
addition of a collective potential term to the single
particle Hamiltonian®. Thus with interactions that
are only of long-range character phase density is
preserved, and motion in two dimensional W—¢
phase space of a general distribution ¥ (W, ¢, 1)
satisfies the Liouville equation

dy A oy Y oy 0 .

dt oW +6¢¢+01_ ' W
(This is the same as the reduced, i.e. collision-free,
Boltzmann equation if, as in the present problem, the
only velccity-dependent forces are electromagnetic.
It is here more convenient, however, to begin with the
Liouville equation since the equations of motion are
already written in canonical coordinates.) The values
of Wand qS are to be obtained from the time-depend-

ent Hamiltonian (cf. Eq. (6) of the paper by Nielsen
and Sessler *)

H(W,p,0) = nh( f%) W2+eV(t) cos p+ W.d+
| +2neh Uyt), (2

where U (¢, t) describes the collective Coulomb field,
V(¢) is the amplitude of an applied RF voltage,
h is the harmonic number, and the subscript s refers
to an energy E, (1) at which the frequency f(E,) is
synchronous with the RF. The cannonical momen-
tum W is

E-E,

s

A distribution is stationary if grad ¥. V =0,
V being the phase velocity vector at any point.

W =

©))

If the distribution ¥ (W, ¢, 1) is specialized to a
pniform phase density ¢ between two boundaries
Wi (¢, t) and W, (¢, t), the Liouville equation for ¥
may be replaced by two coupled partial differential
equations giving W, and W, as functions of the two
variables ¢ and t. These equations can be obtained
from Eq. (1) by development into a series of equations
in successive moments of W and suitable transforma-
tions of variables 7, but it is simpler and perhaps
more instructive to deal (as in the paper by Nielsen *?)
directly with the phase boundary motion. Evidently the
behavior of the assembly represented by the uniform
density between boundaries is completely determined
by the boundary motion, since the distribution is
unaltered by any motion of phase points within the
boundaries.

IV. BOUNDARY EQUATIONS

Boundary motion is determined by the velocity of
the phase points defining the boundary; in particular
there is no boundary motion and the distribution is
stationary if the boundaries lie along phase trajectories,
and in general

AW (p,t) oW(g,t)dod W(g,t) 4

i e ' ot @

for any curve W (¢, ). Let W (¢, t) be a boundary,

for example W, (¢, t), so that this equation describes

the boundafy motion; then for a point (W,, ¢) on
the boundary
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dWZ _ aH(Wsd)st)J
Wa, ¢ ’

dt o
d¢ OH(W,$.1)
dt oW Wod (5)

and similarly for the boundary curve W, (¢, t).

The meaning of Eq. (4) is shown geometrically in
Fig. 1 which is drawn to represent a single region
bounded by W, and W,. Time rate of change of

oW, (o,t )
boundary position —% is the difference between
t

the W component of phase velocity and the ¢ com-
OWy(¢:1)
d¢

To obtain a distribution that is stationary in the
absence of space charge effects we may omit the term

ponent multiplied by the boundary slope

. af .
W, from the Hamiltonian, thus insuring that f d_JE‘ is

a constant (except for a presumably negligible varia-
tion over the energy interval of the distribution) and
we may make V constant. The canonical equations
then become

W = eVsin ¢—2nehw
o9
= L(¢.1),
¢ =2nh ( f%)sw
=MW, 6)

With W and ¢ thus evaluated, Eq. (4) leads to the
two boundary equations,

ow, ow,
——L(¢p,) +MW,—— =0,
o LGn MW

W, oW,
—L(p )+ MW,—2=0. 7
5 ~L@D+ 3% @]

" /\/

0 P— 2n

Fig. 1 Geometrical meaning of equations of motion for phase
boundaries.

These are coupled by the term L which contains the
collective field and is therefore a function of both
W, and W,.

In general the collective field involves an integral
over ¢ and these are coupled integro-differential
equations; but if the radio-frequency field is small
enough so that the functions W are continuous with
finite first derivatives it is possible even above transi-
tion energy to use (as in the paper by Nielsen and
Sessler ) the approximation that the collective
potential is simply proportional to the linear charge
density at every point. Then

hr

U(¢.1) = f K(¢'— )¢, 1)de’

—hn
= g0)'(¢’t) > (8)

where, for a tube of charge of radius @ midway between
two parallel grounded conducting planes, separated
a distance G ¥,

go = 142 In 2G/na) . )

The above restriction on W insures that the boundaries
are single-valued functions of ¢, in which case the
charge per unit length is

ech .
Ap,0) = —R-(Wz— wy) . (10)

Up to this point no account has been taken of the
fact that the ions may be moving at nearly the speed
of light. Although it will be recalled * that W and ¢
are defined in terms of a rotating coordinate system,
it must be noted that coordinates in this rotating
system differ from those in the laboratory system only
by a shift of origin. The transformation is a Galilean
transformation and description in W, ¢ coordinates is,
from a relativistic point of view, description in labora-
tory coordinates.

The simplest way to see how to correct self fields for
relativistics effects is to observe that two charges moving
with linear speed v and separated by distance d in the
laboratory system are separated d/[1—v?/c*]"/? = yd
in their own coordinate system. 1t follows that the
force between them is 1/y* less than between similar
charges at rest in the laboratory system and separated
the same laboratory distance d. Longitudinal ¢
being relativistically invariant, the mutual longitudinal
interaction of the moving charges is decreased by
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1/y? in both the moving and the laboratory W, ¢
coordinates. Total self field is merely the sum of
the fields of all charges, including image charges in
the conducting walls enclosing the beam, and con-
sequently the relativistic value of self field is obtained
by use of the same 1/y* factor.

This argument applies to the collective field of a
circulating ion beam, only if the orbit radius of
curvature is large enough so that an instantaneous
Lorentz transformation is a good approximation, only
if the distance between beam and walls is small enough
as compared with the orbit radius and only if the ion
velocity spread and time rate of change of the distribu-
tion (perturbation wave velocity relative to the beam)
are small as compared with the mean ion velocity.
Rigorous analysis confirms the 1/y> correction within
these limitations. We therefore write for a relativ-
istic beam

2ne’ogoh® 0

L{¢,t) =eVsin ¢ — 2R ﬁ(WZ_ W)
7
= ¢Vsin ¢—K%(W2~Wl). ()

It is instructive to describe the behavior of the
distribution representing a single circulating beam
by means of variables

A =W,—W,,
W+ W
w 2 1

; (12)

which satisfy the equations

6A+M 0 (W4) =0
ot 09 o

aiv’+ kA MO V_V2+A2 Vsing. (13)
—+ K—+—— — |=eVsing¢.
ot 0 20¢ 4

From the first of these we can derive certain general
symmetry properties :

1. I W =0 atall time and all ¢, 84/0t =0 at all
time and all ¢ : All permanently symmetrical
distributions are stationary.

2. If dA4/6t =0 and dW/dt =0 at all time and
all ¢, WA = const., whence if (by choice of
coordinates) W = 0 at some ¢ it is zero at all
time and all ¢ : All stationary distributions
are permanently symmetrical.

3. Conversely, all unsymmetrical distributions are
non-stationary and all non-stationary distribu-
tions are (or become) unsymmetrical.

If W = 0 and 6W/6t = 0, integration of the second
of Eqgs. (10) gives the stationary solution obtained
earlier for beams below transition (Symon and Sessler®,
Eq. (18) with W, = 0) and valid also above transition
within the limits set by the potential approximation.

V. SINGLE BEAM

The behavior of the single beam can be determined
from the solution of boundary Egs. (7) or alternatively
from Eqs. (13). In the latter case it is sufficient to
find the solution for 4, which by Eq. (10) is propor-
tional to linear charge density 2, since it turns out
that the condition for stability of 4 is the same as
the condition for stability of W, and W, obtained
by solution of the boundary equations.

Let 4, be the stationary value of 4 satisfying the
second of Eqgs. (13) with W = 0 and dW /ot = 0, i.e.

g M 0 (4o%)—eVsin ¢ = 0 14)
_—t —eV sin =40.
op 8 op ° (

For small amplitude perturbations from this stationary
solution,
W6A<A6Wa d w* < 4? 15
— € A— an £
ot ot ’ {13)
(since W is initially small or zero while 4 is Initially
finite and remains so), and elimination of W {rom
Eqgs. (13) then yields the linearized equation in 4—A4, :

62

5;5(4—40)=
= M4 Kaz(A—A") M24 il Ao(d—4 16
= M4, T*—% oé?[ old—A4)] . (16)

Consideration will be limited to the circulating
beam in the absence of radio-frequency; (we then
set # =1 and the phase coordinate ¢ becomes the
space angle). The stationary distribution then reduces
to 4, = const., and Eq. (16) reduces to the wave
equation with the solution

A(¢,1) = F(¢p+ Q1) . a7
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The angular velocity (relative to the circulating beam)
is

1/2
Q= -_I-I:MAO(K+%MA0>:| , (18)

and is real, giving propagating waves when
MA,K+iM?*42>0. 19)

This is always true below transition, while above
transition M is negative and the criterion for stable
waves 1s, if we substitute for M, K from Eqgs. (6),
(10) and (11)

<@)2 . L 20)
f _fdf 2
dE’

It follows that for a given charge density 4, in a
beam above transition, one can always find an energy
spread great enough to make Q real and small perturb-
ations of arbitrary wavelength oscillatory.

When condition (20) is not satisfied, 2 becomes
imaginary, and it is convenient to resolve the wave
(17) into sinusoidal components with the dependence

e:tin(¢—wr)‘ (21)

With Q imaginary, the wave travels with the beam and
contains damped and anti-damped components which
grow exponentially at a rate which in the limit of a
monoenergetic beam is
1/2
] . 22)

It is convenient to write these results in dimensionless
form in terms of the Budker parameter ®

N &

daf

I(Q)_Znn oS
ni,, = y €800, JE

=——, 23
Y 27R myc? (23)
where N is the total number of particles.
Then,
Neé? 2nvgomoc?
AoK = 2g0= gozo . (24)
PR ?
In the relativistic limit when E* » E2
d -
—f = —L , (25)
dE (k+1E
so that the stability criterion becomes
AE [4k+1 1z
<. [———( )vg°] , (26)
E, Y

and € in units of particle angular velocity w = 2xnf is

Q_ [i__]’ @
o k+1y*]

As a numerical example we may consider an
accelerator (the MURA 40 MeV two-way electron
accelerator) in which 3x10!! electrons are injected
(to give approximately 1 ampere circulating current)
and accelerated by betatron action to 2 MeV. They
are then above transition energy although not far
enough to make the approximation used above for
df/dE very good) and we use

N =3x10"
R =156 cm

e2

> =2.82x10"" cm

moc
E; =0.51 MeV
go =25
k =9.3
y =35
y =0.86x10"*

These numbers put into Eq. (26) and Eq. (27) give

AE ,
—>47x1072,
E

o]
and Qo = 5.7x107*.

AE > 24 keV for stability

Since the energy spread at injection and at 2 MeV is
of the order of 1 keV, growth of azimuthal inhomo-
geneities is to be anticipated. If we let n = 1, and
w = 27nX30 Mc, growth by the factor e occurs in
about 8 usec at the slowest; and if n = 100 the rate
is 100 times faster. An evaluation of growth rate
made with an expression for potential more accurate
at short wavelength than that used here has shown
(Nielsen and Sessler ) that the growth rate approaches
a limiting value as n increases. In this accelerator
the limiting value is of the order of that obtained from
Eq. (27) with n = 100.

We may consider also the same accelerator with
100 injected pulses * stacked ™ in a circulating beam at
40 MeV. The value of v is then 76 times greater,
and y is 16 times greater, increasing the required 4E
by a factor of 4.8 to 53 keV. Since the total 4E will
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then be at least 100 times the AE of each pulse, it
will exceed the spread required for stability. (But
individual pulses will remain unstable at 40 MeV.)

It must be borne in mind that these computations
refer only to circulating beams in the absence of radio-
frequency voltages. The stability problem with radio-
frequency present has not yet been solved.

In principle it is possible to extend the boundary
equation analysis to distributions defined by more
than two boundaries and with more than one value
of phase density. This has been done for two separate
interacting distributions described by a coupled set
of four boundary equations >, A dispersion relation
results, which is the same as will be obtained later
by a more general method. Since it is not clear,
however, that this simple procedure can be extended
correctly to two interacting relativistic beams we shall
here discuss multiple beams only in the context of
the more general method outlined in the next section.

VI. SOLUTION OF THE RELATIVISTIC
BOLTZMANN EQUATION

We now develop a completely relativistic treatment
of the linearized longitudinal Boltzmann equation for
the special case when no external forces act except
the static focusing and guiding forces in the accelerator,
and when the cross-sectional distribution is uniform
azimuthally. We further generalize the preced-
ing treatment by allowing a non-uniform density
function ¥. Fig. 2 illustrates the geometry we wish
to consider. The beam is contained in a conducting
donut with conducting walls of arbitrary cross-section,
uniform in azimuth. The cross-sectional distribution
of particles in the beam is assumed to be a known
function Q (x,y) of the cross-sectional coordinates,
also independent of azimuth. In all examples, we
shall take the geometry shown in Fig. 2, i.e. a beam
uniform inside a circular cylinder of radius A midway
between conducting planes of separation G. We will
neglect betatron oscillations except insofar as they
contribute to the cross sectional distribution
Q (x,y). We will assume also for simplicity that ¢
is independent of W. This latter assumption is not
essential to our treatment, and is valid when the beam
cross section is predominantly due to betatron oscilla-
tions. Likewise, we shall for the moment neglect the
dependence of R on W. Instead of the coordinate ¢
used earlier which is measured from an origin rotating

Fig.2 Beam geometry.

with the beam, we use an angular coordinate 6 measur-
ed from a fixed origin. The properties of the guide
field insofar as we shall need them are specified by
giving the angular velocity w(W)=2xnf of the ions
as a function of their energy coordinate W. The
radius of curvature of the orbit will be assumed to be
large in comparison with the cross-sectional dimen-
sions of the beam, and with at least the minimum cross
sectional dimension of the vacuum chamber. We
may then treat x,y, RO as rectangular coordinates
in calculating the electric field due to the beam. This
is a legitimate approximation for our problem with
one exception which we shall note later,

The Boltzmann equation is just Eq. (1) with ¢
replaced by 6, and where

0 = o(W), (28)
W =E|f=2neRE, (29)

where € is the longitudinal electric field averaged over
the beam cross section, and we now take
dE
W=|—7:,
J(E)
so that we are no longer restricted to a small range
of W. Ncte thatf, and hence W (and w) have opposite
signs for beams travelling in opposite directions. We
may therefore encompass the case of any number of
constituent beams travelling with various energies in
either direction simply by taking the appropriate
distribution ¥ (W).
The azimuthal field € is determied from Maxwell’s
equations, and satisfies in a rectangular coordinate
system x, y, R6,

1 2 1%

(30)

4n dp 4ndj

ViE€+—S——— =——t——, 31
€ R%06% c¢*or* RO 2ot (3
where
32 62
Ve —S+—. 32
x> ayz (32)
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There will be a boundary condition, € = 0, at the
walls of the vacuum chamber. Let @ (x,y) be
normalized so that

f/'Q ds =1, (33)

where S is the cross-section of the chamber. The
charge and azimuthal current densities are then

p(x,y,R0,1) = eQ(x,y) f R™UP(W0.0) dW,  (34)

J(%,9,R0.0) = eQ(x.y) [ @¥(W0.0) dW, (35

and

&o.n=[[€gas. (36)

An obvious solution of Egs. (1) and (31) is
£=0. 37

We will call this stationary, azimuthally uniform
solution the unperturbed solution, where ¥° (W) is
some given distribution in energy of the beam. We
now set

¥ = Y(W),

Y(W.0,0) = Y(W)+¥(W,0,1) , (3%)

where ¥ represents a small perturbation. The
electric field € is then also small, and if we nsglect
second order terms and use Eqs. (28), (29), (34), and
(35), Egs. (1) and (31) become
oy oy oY’

ad +2neR
o o TRy

2
V28+—i£———1—§—4neQJ [1 Al wal//ildW

=0, (39

R? ao 2 ot
(40)

In order to solve these equations, we first make a
Fourier transform to eliminate the variable 8, taking
advantage of the uniformity in azimuth. For any
function G (6), we define a Fourier transform Gg(n) by

GO) = 3 Ge(n)e™,

n=-oG

Gi(n) = %f G(B)e " 50 . (41)
(1]

We next eliminate the time dependence by taking a
Laplace transform of these equations. For any

function G (), we define the Laplace transform
G, (p) by
Gu(p) = [ G(e™™dr
0
{+ia
1
G(1) = f Gg(p)e™ dp , (42)
7Cl
{—ilw

where the-integral over p is to be taken along a Brom-
wich line lying to the right of all singularities of G, (p).
The transform of a time derivative is

GL = pG(p)—G(0) . (43)
The Fourier-Laplace transforms of Eqs. (39) and
(40) are
(P+mw)¢FL+27!€R en =yYr(W,n,0) =g, (44)

1 /p?
Vier,— R ( 2+n>8n—

4neQ (

>‘//FLdW+AF0 , (45)

where
47eQ [ @
AFo(n,P,x,Y) 2(p8F0+8F0)__R— J 'C_zl/lFOdW,
(46)
and
wo = ¢/R 47)

is the angular velocity of a particle at the speed of
light on a circle of radius R. Note that the initial
conditions are explicitly introduced into the solution
by this method.

Let g;(x,»), —K;/R* be the eigenfunctions and
eigenvalues of the operator V? in the region bounded
by the vacuum tank, and subject to the appropriate
boundary condition on the walls (i.e., g = 0)

K; .
Vzgj = _R_;gj . (48)

These functions are normalized so that
[[ e85 =5, (49)

Let us first find the solution € of Eq .(45) for an
empty tank (¥ = 0). We may expand
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81-'0 +P8Fo = Z X jo("a[’)g j(xay) s (50)
7
and
EFL = Z ajgj(xay) - (51)
J
We substitute in Eq. (45), using Eq. (48), and solve for

X}O
woK +win?+p?

a;= (52)
We substitute in Eq. (51) and invert the Laplace
transform

{+iw

X,,e"dp
S
i

w%Kj+w‘2)n2+p2

{—iow

(53)

The integral is easily evaluated by contour integration,
and we have finally for the part of the field with wave
number n

. o)X (i) o
Epe™ = Z gi(x y)2i§120(" l J)[el(n0+ﬂjt) _ it Qit)] (54)
J J
where
Q; = o[ K;+n"]'". (5%

We see that K; and g;(x, y) determine the normal
modes of propagation of electromagnetic waves in
the vacuum tank. There are two normal modes for
each n and each eigenfunction g; which propagate
with angular velocity

Q; K2
wy=+—= iwo[1+-—2’] . (56)
n n
For a straight waveguide, the normal modes propagate
with velocities greater than c, hence K; would always
be positive. For a waveguide bent in a circle, how-
ever, it is not clear that the angular velocity is necessa-
rily greater than w, = ¢/R. Note that R is presum-
ably the mean radius of the beam, which may lie
anywhere in the vacuum tank, whereas ; depends
only on the vacuum tank and not on where the beam
is. Indeed, it appears that, for a circular chamber of
rectangular cross section at any rate, there are always
modes that propagate with ; < w, for any R inside
the chamber. (D. L. Judd and V. K. Neil, private
communication.) This point is very important,
because as we shall see later, if some w; is smaller
than w,, the electromagnetic modes can become
unstable. For this reason, the eigenvalues K;, should
be calculated taking proper account of the curvature

of the vacuum tank; this is the exception noted earlier
to the statement that the electric field can be calculated
as if the tank were straight. We should perhaps
redefine K; more precisely as the value given by
Eq. (56) where w; is the exact angular velocity of
propagation of the wave when proper account is
taken of the curvature of the vacuum tank :

wR
K—n ( >—1. (57

C

In order to solve Eq. (45), let us consider the equation
2 B
Viu——u= PQ(x,y) , (58)

where A, B are independent of x, y. We expand

0(x,y) =Y Q;g,(x.y) . (59)
where J

0,=[[e0ds=%¢,. (60)
If we set s

u(x,y) = ; a;g/(x.y) , (61)

then we get, after substitution in Eq. (58),

Bz,
ay= -l (62)
K;+A
so that )
.nggj
= -y B8 63
! Z-I<,.+A 63)
and
_ Bg?
= - . 64
! Z-K,.+A ©4)

Combining this result with the previous solution for
an empty tank, we have, for the solution of Eq. (45),

EFL = —i_ig(",l’) Z n? 2+p ’ (65)
where
I=/[inw§+a)p]¢u aw, (66)
2 g
g(n,p) = 4nc Z _260_+P— (67)

Ajo(n.p) = [ [ Aro(n.px.9)efx.y) dS . (68)
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We substitute in Eq. (36):

2ne*IRg 0¥
+i —_
(p+inwlWg T

W A
= F (n,p,W). (69
6W%n2w§-+p2 olmp. W) . (69)

= Ypo+2mec’R

We can now see how to modify this solution to take
into account the dependence of R on W. We must
solve Eq. (40) for 6€ due to each component ydW
of beam separately. The solution proceeds as above.
Note that w, given by Eq. (47) now depends on W.
We arrive at an equation like (65) in which the integrals
over Win / and A, are replaced by their integrands.
We now sum over all beam components ydW and
arrive exactly at Eq. (65), since only the integrands
in I, Ap, are functions of R or W. Note that w;
depends on », but not on W, since it refers to the
propagation of waves in the empty donut. If we
were to take account of the dependence of Q (x, »)
on W, then g; depends on W, and g (n, p) would have
to be included in the integral . The dependence of
R (or wy) on W is not a trivial matter, since we shall
see later that cancellations may occur in integrands
like that in Eq. (66) which could make small varia-
tions in w, important.

To solve Eq. (69), we multiply by
(inwi +wp)/(p+ inw)
and integrate over W, to obtain

1 ) inwi+w
I= —j Folnp Wy —""2F qw,  (10)
D(p) p+inw
where
2ne? OV inwi+w
D(np)=1--5 g(n,p)f R 0R gy (1)
c oW p+inw

The solution of Eq. (69) is now

2ne*Rgl  o¥°

FO(n’paW) =«
D(pXp+ inw)c® oW

p+inw

l/’F‘L(”l’p’ W) =

. 2 '
inwy+w
x f Fo(n,p, W)L gy (1)

p+inw’
where o' = w (W’).

The solution for the perturbation at wave number n
is now obtained by inverting the Laplace transform :
{+iow

. i .
wp(n,W)e'""=2—m f YrL(n,p,W)e” " dp . (73)

{—icc

Without carrying through the details of the integra-
tion, (which will be presented in a later publication)
we can see the general character of the result. Since
¥r, vanishes as 1l/p as |p| » oo, we may close the
contour in the integral (Eq. (73)) by an infinite semi-
circle from the Bromwich line around the left half

p-plane. Now 5, has poles at p = —inw and at the
roots p, of the dispersion relation
D(n,pu) =0. (74)

Examination of Eq. (72) will show that the poles of
Fo (n,p, W) at p= + inw; cancel in the two terms
on the right (recall Egs. (69) and (67)) as they should
since they correspond to normal modes of the empty
donut. We will show in the next section that D(p)
has branch cuts along that part of the imaginary
axis p = — inw (W) corresponding to values of W
at which é¥°/gW # 0, and that no roots of Eq. (74)
can lie on these cuts. The inversion of the second
term in Eq. (72) is accomplished by interchanging the
order of integration over p and W'. (In carrying
through the details, it becomes necessary to insure
also that D(p) has no roots p, = —inw (W) at
points where ¥, (n, W) # 0. Presumably in such
a case, the linear perturbation theory is inadequate,
particularly in view of the result quoted above that
there is no root where 6¥°/6W # 0.) Hence, when
we shrink the contour in the integral (73), we are left
with residues from the poles at p = —inw, and
P =DPu, an integral over residues from p = —inw’,
and an integral over the branch cuts which becomes
also an integral over W’'. The result has therefore
the form

Yp(n,W)e™ = A(n,W)e"® 0
R
+Y CAn)F,(n,W)e" P (15)
[}

where 4, B, C depend on F; and hence on the initial
perturbation, and

Fi(nW) = 2ne’ g(n,p) ov’ (76)
m ¢ D'(n,pu)putinw) oW’
D(n,
D(npy) = lim 2P (17)
P pin P - pnl

The first term in Eq. (75) represents a perturbation
in each component of beam at energy W which moves
with the same angular velocity @ (W) as the beam.
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If there were no interaction between beam particles,
this would be the only term, with

A, W) = Ypo(n, W) ;

that is the initial perturbation is simply carried
around by the motion of the beam. When the
particles interact, the second term appears, which
represents a disturbance in the component W moving
with the angular velocities @’ of the other compo-
nents W’. The first two terms we will call the stream-
ing disturbance. For each component W’ of the
beam, there is a streaming disturbance which moves
with angular velocity «’, and which consists of a
perturbation in the component W’ which streams
around with that component (first term) together
with a co-moving disturbance in all other components
W due to theinteraction between components (second
term). It is clear that the streaming motion cannot
give rise to any instabilities. In fact it is easy to
show that in general a continuous superposition of
waves of different angular velocities as in the second
term of Eq. (75) will damp out in the course of time
at a rate and with a time dependence depending on
the nature of the function B, W,W'). If B is
analytic in ®’, as it cannot be for a physically realiz-
able case, the damping is exponential (Landau
damping) ¥.

The various terms in the sum over [ in Eq. (75)
we call normal modes of propagation. A normal
mode has a characteristic (and discrete) time depend-
ence p,, and a characteristic W dependence F, (n, W),
which depend on » and on the properties of the
unperturbed beam, but do not depend on the nature
of the initial perturbation. Only the amplitude (and
phase) C,(n) depends on the initial perturbation.
If p,, has a positive real part, the corresponding normal
mode is anti-damped, and the beam is unstable.
Hence the question whether the beam is stable may
be answered by a study of the roots of the dispersion
relation (74).

VIl. THE DISPERSION RELATION

In discussing the dispersion relation (74), it is
convenient to introduce, in place of p, the angular
velocity w,; of the normal mode :

Pu = _inwnl . (78)

The dispersion relation (63) then becomes

2
2me

2 g(nswnl) J'R

0¥ wi—ww,
ow O — Wy

¢
(79)
The integral is to be evaluated for p,, lying to the right
of all singularities in the p-plane, i.e. for w, lying
above all singularities in the complex w,,-plane, and
continued analytically to other parts of the w,-plane,
going out around all singularities on the real axis.

We will remove the factor R from the integrand in
Eq. (79) since the slight dependence of R on W may
be neglected. The integral can then be simplified by
adding a term ,0¥°/0W to the integrand, which
does not affect its value. We then have

2me’R 05—k oY’
D(w,) = 1— = gm0 | =" Z_qw=0.
c w—w, oW

(80)

Since w, is the angular velocity of a particle of speed ¢
at radius R, and since we shall find that w,, is near
the angular velocity of the beam, the factor w? —w2
will be small in the relativistic case. The dependence
of w, on R, and hence W, may therefore be important.
We will for convenience remove the factor w2 —w2
from the integrand with the understanding that w} is
to be given a suitable average value, presumably the
value corresponding to the value of W which makes
the major contribution to the integral in Eq. (80).

This value may be somewhat different for different

roots w,. We can then write the dispersion relation
D(wy) =1 2ne’ mon | ——2 aw 0, g1y
Wp) = 1— n, 0, =0,
! R’yil g ! w—w,y, ﬁW
where

Y = [1—opfwd] 1/ (32)
is just (1—v2/c*)~ % where v, = Rw,; is the velo-
city of wave propagation around a circle of radius R.

The factor g (n,w,) defined by Eq. (67) can be
rewritten, utilizing Eq. (57) to bring out its behavior
in the long or short wavelength limits as follows :

—2
g(n w,) = 2nR*Y & (83)

7 K j+”2/'}’nzl '
In the limit of very short wavelengths, this becomes

_ 2nR%*p]
80 = 3
n

S R
- gj s (n > ;‘Ynl) » (84)

J
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since g; is very small for K; > R%*/a®. The relativistic
factor 92 cancels out in the dispersion relation (81),
as we might expect in this case, except insofar as it
determines for what n the short-wavelength approxi-
mation is valid. For long wavelengths, g reduces to
a constant, independent of n or y, :

=2

gig0=2nRzz%. (85)

J J
If we follow through the solution of Eq. (40) in the

. 0 .
tatic cases <6Ltg =—= 0) , we obtain the first term
dJt

in Eq. (65) with p = 0, so that the field component
of order n is

Erel™® = —%”2‘3 J ine™y, dw . (86)

Hence
ego 0

gstatic = an

-— W,0) dw . 87
R% 20 W(W,0) (87)
We see that the definition (85) of g, agrees with the
previous definition (Eq. (8)). (Formula (9) gives not
&, but € at the center of the beam, but the difference
is not important in most cases.)

We now note that all quantities in the expression
(79) or (81) for D (w,) (except w, itself) are real
Moreover, if d¥°/0W = 0 except over a finite segment
of the w (W)-axis, as will be true in all practical
applications (since |w|<w, in any case), then the
result of analytic continuation of the integral on
a path around the line of singularities where
o¥°/0W # 0, to a point w, below the real axis,
will be the same as if the integral is evaluated directly
at that point. The dispersion relation (79) or (81) is
therefore invariant under the transformation i » —i,
and complex roots for w,, can only occur in complex
conjugate pairs, one corresponding to damped and
the other to anti-damped waves .

We next show that Eq. (81) cannot have a (real)
root at w, = o (W) where 0¥°/0W # 0. For if
we let @, — o on the real axis, we have

1 oy’
dW =
W— W,y 5W
owejew

1 vy
=P dWtin
w—w, W 0w[OW \w = wwm) ,

(88)

where * P’ denotes principal part, and the upper and
lower signs correspond to whether w,, — @ from the
upper or lower half plane. Therefore if 0¥°/6W+#0,
D (w,,;) has a finite imaginary part, and the relation (81)
cannot be satisfied. In fact, we see from Eq. (88)
that D (w,;) has branch cuts along the real axis where
oW°/0W # 0. This implies that there can be no
stable normal mode propagating with the same
angular velocity as any part of the beam for which
0W°/oW # 0. This is not surprising, since on phy-
sical grounds one might expect the coupling between
beam and wave would make such a situation unstable.

Vill. SINGLE STREAM AND TWO-STREAM CASES

Let us first consider the problem solved earlier, in
which we have a single stream ¥’ (W) with uniform
phase density between fixed limits W;, W,

N
W,—w,’

0, otherwise.

W, <W<W,, (89)
YoUw)y =

where N is the total number of particies.
We substitute into the dispersion relation (81) to
obtain in the long wave limit

1 1
1- K[ —- :| =0, (90)
W — Wy O3 — Dy

The solution for

where w0y = o(Wy), w, = w(W,).
W, is

(*) This result is a consequence of the way in which we have chosen to shrink the contour in the Lapace inversion integral (73),
ie. so as to leave a loop around the segment on the imaginary p-axis corresponding to values of p = — ik w(W) for which
0W°|d W = 0. Other ways of shrinking the contour, for example, by leaving loops extending to p = — co—+ia around all
branch points p == ia on the imaginary p-axis, lead to other rules for continuing D(wnsi) into the lower half wni-plane, and hence
to different normal mode frequencies, as well as to different forms for the second term in Eq. (75). The solutions are of course
equivalent, but the separation into streaming disturbances and normal modes of propagation is different. The roots of the
dispersion relation corresponding to anti-damped modes lie in the upper half wa-plane and are unaffected by this choice; hence
questions of stability are unaffected. It appears that the convention adopted here is most convenient for the present purpose
both because of the physical significance of the terms in the solution (75) and because of the mathematical convenience in the
symmetry of our dispersion relation relative to the upper and lower half wni-planes. One consequence of our convention is
that the Landau damped modes of propagation, if they exist, are included in the streaming disturbance.



250 Session 3

4K 2
] ., 9D

Wy = Hw; + ;) o, —w1)[1 +
Wy —w,
where K is again defined as in Eq. (11):
2ne* g, N
)’nztR( W, —Wwy) ,
except that y,, is the y for the wave velocity. There
are two normal modes with angular velocities inde-

(92)

pendent of n. If we set
df
Wy —wW = anﬁ(Wz— Wl) = MAO , (93)

then Eq. (91) agrees with Eq. (18), and all the previous
results for this case then follow. If we replace
go by g, (Eq. (84)), we see that the minimum energy
spread for stability decreases with increasing n; the
wave propagation is always stable for large enough n.
Strictly, we should not have treated y,2 in Eq. (90) as
a constant. If we take y2 = 1 —w>/w?, the number
of roots is not affected, and the relation is not signi-
ficantly changed except for very large N. Above
transition, the criterion for stability is less stringent
when N 2 c?/(4n’e’*Ry>*f|df |dE)).

Above the transition energy, the roots (91) for w,,
lie between w, and w, when the criterion for stability
is satisfied. The theorem proved earlier shows that
real roots cannot occur at angular velocities repre-
sented in the beam except where d¥°/éW = 0, which
is true for this special case of constant phase density.
We therefore investigate the case of a triangular
distribution where such roots cannot exist :

AN(W—W, W, + W,
INOW— Wy, ‘2), W, SW< 1+ 2.
(W, —W,) 2
wow AN(W,— W W, + W.
()=_ (W, 2)’ 1 ZSWSWZ,
(W, —Wwy) 2
= 0, otherwise (94)

where N is the total number of particles. The dis-
persion relation is now (we assume dw/dW is constant
in the range W, to W,),

0, + o, 2
4K 7 O
1— ln 4 = 0 ] (95)

W~ (0= w0, —wy,)
where K is again defined by Eq. (92). (The logarithm
is to be taken as real for w,, outside the range between
w, and w,, and continued analytically into the upper
and lower half planes.) The solution is

010~ 1/2
O = Ho, +0) o, —ov,) |:1 —e 4K :I (96)

Below transition (w, > w;) the solutions are again
stable and lie outside the region (w; < w < w,)
occupied by the beam. For K > % (w, —w,), Egs. (96)
and (91) give the same result, namely that for a
J-function distribution. Above transition (v, > ®,)
w,, is always complex, and hence there is always
instability. The lapse rate at wave number » is given
by

i -w2

-1/2
nl(w,) = (o, —w,) [eT - 1] . o)

The limiting energy spread given by the criterion (20)
which is obtained by setting the exponent equal to
unity in Eq. (97), now becomes the dividing line
between very rapid and very slow growth of the instab-
ility. That is, if the exponent is small, then the
instability is very fast :

Wy — Wy

4K

nlm(wnl) = nKl/z(wl —(‘02)1 1z s <1 s (98)

which agrees with Eq. (22) for a monoenergetic

beam. If the exponent is large, the lapse rate is very
small :

S22 Wy,
nIm(wnl) = %n(wl _wz)e 8K s 4K >1. (99)

This residual slow instability may be regarded as due
to the discontinuity in slope at the center of our
distribution, as may indeed be shown by taking a
rectangular distribution with a triangular roof,
whereupon the rapid and slow instabilities become
separated, and the rapid part vanishes when criterion
(20) is satisfied.

Let us now consider the case of two equal and
oppositely directed beams, each with the density
distribution given by Eq. (89), except that W and o
have opposite signs for the two beams. Proceeding
as above, we find

2 2
wi+w;+ K(w,— o
w"zl=|:1 2 2(2 1):|i

+ {[ ]2—0’%0’2‘*‘ Ka)lwz(wz—wl)}llz , (100)

where the square bracket under the square root is the
same as the first term. We get a complex root if
the quantity in curly brackets is negative. This is
the negative mass instability and the criterion for
stability is identical with condition (20) except for an
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1N

always negligible factor (1_§ F) on the right,
V]

where N, is defined below. There remains the case

when the second term is real and greater than the
first, which can only occur below transition. This is
the two-stream instability and the criterion for stability
is, if we neglect the energy spread of the beam
PSR

goedf|dE

Since most intersecting beam machines which have
been proposed operate above the transition energy,
this two-stream instability cannot arise. The number
N, is in any case very large for any reasonable choice
of accelerator parameters. We may estimate its
order of magnitude, since f(£) is nearly always
concave toward the E-axis,

N < Ny = (101)

No < y°R/(e*/mc?). (102)

Of course the case of two beams interpenetrating
uniformly around the accelerator does not occur in
any actual machine, but for, say a two-way accelerator
it might be expected to give a conservative estimate
of the condition for stability. For stability in a single
intersection region in a straight section, one should
presumably take condition (101) with f replaced
by v2r R:

2,5

N<Ny= ﬁ_v‘z—Rz— >

go (e/mc”)
again a criterion which is satisfied in all intersecting
beam devices so far proposed.

(102)

Let us now consider the dispersion relation (81) in
the region , = w,, where the denominators in g
may become small. Since d¥°/0W =0 for
w (W) > w,, the integrand in Eq. (81) has no sing-
ularities in this region and we may integrate by

parts. The dispersion relation then becomes
8n2e’R(wa — w; J oo — dw
(@o—au) 2, 2(w e o wn,)z
=1. (103)

Let us assume first that the beam lies entirely
below the transition energy, so that dw/6W > 0 for
all values of W for which ¥° (W) # 0, and assume
that all w; are greater than w,. Then, on the real
w,-axis above w,, the left member of Eq. (103)
behaves as shown in Fig. 3, where w,, w,, w3, w, are
the values of w;. In order to be able to count roots,

ﬁ \ \ \

Fig. 3 Dispersion relation for dw/é W > 0.

it will be convenient to assume a finite number of
terms in the sum over j (in this case, four). It is clear
that to each mode of propagation w; in the empty
vacuum tank corresponds a real positive root of the
dispersion relation (103) somewhat larger than ;.
One can of course show in an exactly similar way
that there is also a real negative root w,, below —w;.
The effect of the beam is to increase the angular
velocity of the electromagnetic modes of propagation,
but they remain stable. . One can readily see-that the
larger ¥°, the more a,, is increased above w;, but
that it never exceeds w;, ;. Moreover, one can see
that the modes which propagate in the same sense as
the beam (w,; same sign as ) are affected most.

In case the beam is all above the transition energy,
dw/oW < 0, the left member of Eq. (103) behaves
as shown in Fig. 4. There is again a real root w,
corresponding to each mode w; of the empty tank,
only now the roots are reduced in angular velocity.
We see that in either case, the presence of the beam
does not make any electromagnetic mode unstable.

. e

Fig. 4 Dispersion relation for éw/0W < 0.

It is now rather easy to see that if any w; lie below
w, (as some certainly do), then the above argument
cannot be carried through, and hence instabilities
may be associated with the electromagnetic modes.
So long as no part of the beam has an w above the
lowest w;, a similar argument leads again to stable
electromagnetic modes if the beam is all above tran-
sition. If part or all of the beam is below transition
and if part of the beam has w near enough to w;
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(even though still less than w;), then the electroma-
gnetic modes can become unstable, Calculations in
a few special examples suggest that instabilities arise
for reasonable beam intensities only when part of the
beam is very nearly in resonance with some w;. The
importance of determining the modes w; in a con-
ducting donut is therefore clear.

IX. INADEQUACIES IN OUR PRESENT KNOW-
LEDGE OF LONGITUD!NAL INSTABILITIES.

We have given an analysis of the stability of cir-
culating ion beams of nearly uniform charge density.
The approximations made are probably sufficiently
good for application of the results to beams in most
strong-focusing accelerators. We have ignored pos-
sible coupling with betatron oscillations, radial and
axial motions entering the present theory only in
their influence upon beam cross section. We have
also ignored the effect of stationary ions of opposite
sign which may collect around the beam although the
effect of these on betatron oscillations is known to be
important '”. When the cyclotron radii of the
stationary ions is small, it is easy to show that they
have only a static effect and do not play any role in
the stability of a nearly uniform beam.

The frequency function f(E) depends slightly on
the amplitude of betatron oscillations, and this effect
can be important in the applications we have con-
sidered. Tt is easy to take this into account in the
general treatment if we neglect scattering so that the
betatron oscillations remain constant in amplitude (or
change adiabatically with E). Then we assign a
betatron amplitude A to each particle, and include A

as a parameter in ¥. It is easy to show that the
result is that an integration over A occurs in our
results coincident with each integration over W.
The result is equivalent to smoothing out and spread-
ing out the function ¥° (W), so that, for example,
even a monoenergetic beam may be stable above
transition if the frequency spread due to betatron
oscillations is large enough.

The influence of particle energy loss mechanisms
upon beam stability, which has been omitted from the
analysis, is probably negligible except when rate of
energy loss is large enough to change the energy
spread during the life of the beam; and the effect
then appears to be largely interpretable as a conse-
quence of the change in energy spread.

Experimental confirmation of the predicted instab-
ilities is lacking (except as the existence of Saturn’s
rings may be viewed as a confirmation of the inverse);
it is hoped that observation of beams in the MURA
40 MeV electron accelerator will yield relevant
information.

The following questions have as yet only conjectural
answers :

1. What occurs when stationary configurations of
ions confined in radio-frequency buckets are
subjected to small perturbations?

2. How do space charge forces influence the capture
of ions into buckets? (This appears likely to
be especially important above transition.)

3. How do growing perturbations develop after
they have grown too large to be considered
small?

LIST OF REFERENCES

Nielsen, C. E. (CERN report in preparation).

BN -

Nielsen, C. E. and Sessler, A. M. On the instability of a coasting beam. MURA (*) 441, January 1, 1959.
Maxwell, J. C. Scientific Papers, Cambridge, University Press, 1890. 1, p. 288. (Adams Prize Essay, 1856.)
Symon, K. R. and Sessler, A. M. Methods of radio-frequency acceleration in fixed field accelerators with applications to high

current and intersecting beam accelerators. CERN Symp. 1956. 1, p. 44-58.
5. Notation of present paper follows more closely Nielsen, C. E. and Sessler, A. M. Longitudinal space charge effects in particle

accelerators. Rev. sci. Instrum., 30, p. 80-9, 1959.

6. Mills, R. L. and Sessler, A. M. Liouville’s theorem for a continuous medium with conservative interactions. MURA (*) 433,

October 8, 1958.

7. Nielsen, C. E. and Sessler, A. M. Longitudinal space charge effects—phase boundary equations and potential kernels.

MURA ® 480. June 26, 1959.

8. Budker, G. J. Relativistic stabilized electron beam. I. Physical principles and theory. CERN Symp. 1956. p. 68-75.
9. Landau, L. On the vibrations of the electronic plasma. J. Phys., USSR, 70, p. 25-34, 1946.
10. Cole, F. T. Typical designs of high energy FFAG accelerators. See p. 82.

(*) See note on reports, p. 696.



