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I. INTRODUCTION 
The present paper is concerned with the influence 

of space charge forces upon the azimuthal stability 
of circulating ion beams. The problem treated is the 
one dimensional azimuthal motion of circulating 
beams with distribution in momentum and coordinate 
differing only slightly from certain stationary distributions. 

A solution of the problem is most readily obtained 
for distributions characterized by a density in two 
dimensional phase space that is uniform within sharp 
boundaries and zero elsewhere, and consequently 
this special case is analyzed in detail and illustrated 
by numerical examples. This analysis is supplemented 
by results drawn from a general treatment of arbitrary 
distributions (which will be published in full elsewhere) 
in order to extend the discussion to two or more intersecting 
beams of relativistic ions. 
In developing a small amplitude theory of stability 

we first find a stationary distribution and then ask 
whether a small perturbation of this distribution leads 
to bounded oscillation or to growth : the first we call 
stable and the second unstable. It is of course, 
impossible to say from such analysis based on small 
amplitude approximations how the perturbation 
continues to grow after it becomes large, or even 
whether it decays again after reaching some finite 
amplitude, and the characterization "unstable" must 
therefore be understood to mean "initially unstable 
in small amplitude approximation". 

II. QUALITATIVE ARGUMENTS FOR A SINGLE 
CIRCULATING BEAM 
The simplest possible stationary distribution is a 

uniform ring of circulating monoenergetic ions. 
From linearized wave equations obtained by hydrodynamic 

analysis1,2) it is easy to see that small 
density perturbations in such a ring are either oscillatory 
or growing depending upon whether the ions are 
below or above transition energy. The instability 
above transition derives from the fact that a force 
acting on an ion in the direction of motion so as to 
increase its energy thereby decreases its revolution 
frequency; in angular coordinate θ the acceleration 
is in a direction opposite to the direction of applied 
torque. Thus, electrostatic force away from regions 
of greater charge density produces acceleration toward 
such regions. Since this behavior leads in the wave 
equation describing the motion of the perturbation 
to a negative inertia term, we refer to the instability 
as the negative mass instability. 
The stability properties of circulating rings of 

interacting particles were first analyzed by Maxwell3) 
in his famous essay on the stability of Saturn's rings. 
In this case also the individual particles have a negative 
angular inertia, but as their mutual interactions are 
attractive, a single ring is stable (providing that the 
mass of the ring is small enough compared to the 
mass of Saturn) and instabilities may arise only from 
the interaction of adjacent rings. 
A distribution of particles with some spread in 

energy cannot be dealt with in the same way as mono-
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energetic ions because it is impossible to find a coordinate 
system in which all particles are initially at 
rest. It is clear, however, that the spread of revolution 
frequencies associated with energy spread results 
in a mixing that tends to destroy density perturbations; 
and we are consequently led to believe that a 
circulating ring of particles will be made less unstable, 
if not absolutely stable by an energy spread. We can 
even foresee that the stabilizing effect will be at least 
approximately independent of the wavelength of the 
perturbation, because the characteristic time for 
growth increases with wavelength and the "mixing 
time" with a given energy spread likewise increases 
with wavelength; ratio of growth time to mixing 
time tends to be invariant. These qualitative arguments 
are confirmed by the more quantitative analysis 
below. 
III. PHASE SPACE REPRESENTATION 
Any assembly of ions may be represented by a 

set of representative points in an appropriate phase 
space (μ—space). In the absence of interactions the 
motion of phase points is described by canonical 
equations derived from the single particle Hamiltonian, 
and this motion preserves phase density by Louiville's 
theorem4,5). The system of present interest is 
an assembly of interacting particles; but to the 
extent that short-range interactions are negligible, 
to the extent that the interactions are dominated by 
the collective Coulomb field, the interactions are 
simply equivalent to additional external field and their 
effect upon the particle motion is accounted for by 
addition of a collective potential term to the single 
particle Hamiltonian6). Thus with interactions that 
are only of long-range character phase density is 
preserved, and motion in two dimensional W—Ø  
phase space of a general distribution Ψ (W, Ø, t) 
satisfies the Liouville equation 

dΨ = ∂Ψ W+ ∂Ψ Φ+ ∂Ψ =0. (1) dt = ∂W W+ ∂Ø Φ+ ∂t =0. (1) 
(This is the same as the reduced, i.e. collision-free, 
Boltzmann equation if, as in the present problem, the 
only velecity-dependent forces are electromagnetic. 
It is here more convenient, however, to begin with the 
Liouville equation since the equations of motion are 
already written in canonical coordinates.) The values 
of W and Ø are to be obtained from the time-depend-

ent Hamiltonian (cf. Eq. (6) of the paper by Nielsen 
and Sessler 5)) 
H(W,Ø,t) = πh(f df ) W2+eV(t) cos Ø+WsØ+ H(W,Ø,t) = πh(f dE ) W

2+eV(t) cos Ø+WsØ+ 
+2πeh U(Ø,t), (2) 

where U (Ø,t) describes the collective Coulomb field, 
V(t) is the amplitude of an applied RF voltage, 
h is the harmonic number, and the subscript s refers 
to an energy Es (t) at which the frequency f(Es) is synchronous with the RF. The cannonical momentum W is 

w = E-Es (3) w = fs (3) 
A distribution is stationary if grad Ψ. V = 0, 

V being the phase velocity vector at any point. 
If the distribution Ψ (W,Ø,t) is specialized to a 

uniform phase density σ between two boundaries 
W1 (Ø,t) and W2 (Ø, t), the Liouville equation for Ψ may be replaced by two coupled partial differential 
equations giving W1 and W2 as functions of the two variables Ø and t. These equations can be obtained 
from Eq. (1) by development into a series of equations 
in successive moments of W and suitable transformations 
of variables 7), but it is simpler and perhaps 
more instructive to deal (as in the paper by Nielsen l)) 
directly with the phase boundary motion. Evidently the 
behavior of the assembly represented by the uniform 
density between boundaries is completely determined 
by the boundary motion, since the distribution is 
unaltered by any motion of phase points within the 
boundaries. 

IV. BOUNDARY EQUATIONS 
Boundary motion is determined by the velocity of 

the phase points defining the boundary; in particular 
there is no boundary motion and the distribution is 
stationary if the boundaries lie along phase trajectories, 
and in general 

dW(Ø,t) = ∂W(Ø,t) dØ + ∂W(Ø,t (4) dt = ∂Ø dt + ∂t (4) 
for any curve W (Ø,t). Let W (Ø,t) be a boundary, 
for example W2 (Ø,t), so that this equation describes the boundary motion; then for a point (W2,Ø) on the boundary 
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dW2 = -∂Η(W,Ø,t ]w2,Ø, dt = - ∂Ø ]w2,Ø, 
dØ = ∂Η(W,Ø,t) ] W2,Ø, (5) dt = ∂W ] W2,Ø, (5) 

and similarly lor the boundary curve W1 (Ø,t). 
The meaning of Eq. (4) is shown geometrically in 

Fig. 1 which is drawn to represent a single region 
bounded by W1 and W2. Time rate of change of 
boundary position ∂W2(Ø,t) ∂t is the difference between the W component of phase velocity and the Ø component 
multiplied by the boundary slope ∂W2(Ø,t) . 

∂Ø 
. 

To obtain a distribution that is stationary in the 
absence of space charge effects we may omit the term 
Ws from the Hamiltonian, thus insuring that f df is f dE is 
a constant (except for a presumably negligible variation 
over the energy interval of the distribution) and 
we may make V constant. The canonical equations 
then become 

W = eV sin Ø—2πeh ∂U(Ø,t) W = eV sin Ø—2πeh ∂Ø 
≡ L(Ø,t), 

Ø = 2πh (f df ) s
w Ø = 2πh (f dE ) s
w 

≡ MW. (6) 
With W and Ø thus evaluated, Eq. (4) leads to the 
two boundary equations, 

∂W1 -L(Ø,t)+MW1 ∂W1 = 0, ∂t -L(Ø,t)+MW1 ∂Ø = 0, 
∂W2 -L(Ø,t)+MW2 ∂W2 = 0. (7) ∂t -L(Ø,t)+MW2 ∂Ø = 0. (7) 

Fig. 1 Geometrical meaning of equations of motion for phase boundaries. 

These are coupled by the term L which contains the 
collective field and is therefore a function of both 
W1 and W2. 
In general the collective field involves an integral 

over Ø and these are coupled integro-differential 
equations; but if the radio-frequency field is small 
enough so that the functions W are continuous with 
finite first derivatives it is possible even above transition 
energy to use (as in the paper by Nielsen and 
Sessler 5)) the approximation that the collective 
potential is simply proportional to the linear charge 
density at every point. Then 

υ(Ø,t) = 
hπ 
Κ(Ø'-Ø)λ(Ø',t)dØ' υ(Ø,t) = ∫ Κ(Ø'-Ø)λ(Ø',t)dØ' υ(Ø,t) = 

-hπ 
Κ(Ø'-Ø)λ(Ø',t)dØ' 

= goλ(Ø,t), (8) 
where, for a tube of charge of radius a midway between 
two parallel grounded conducting planes, separated 
a distance G5), 

go = 1+2 1n(2G/πa). (9) 
The above restriction on W insures that the boundaries 
are single-valued functions of Ø, in which case the 
charge per unit length is 

λ(Ø,t) = eσh (W2-W1). (10) λ(Ø,t) = R (W2-W1). (10) 
Up to this point no account has been taken of the 

fact that the ions may be moving at nearly the speed 
of light. Although it will be recalled5) that W and Ø  
are defined in terms of a rotating coordinate system, 
it must be noted that coordinates in this rotating 
system differ from those in the laboratory system only 
by a shift of origin. The transformation is a Galilean 
transformation and description in W, Ø coordinates is, 
from a relativistic point of view, description in laboratory 
coordinates. 
The simplest way to see how to correct self fields for 

relativistics effects is to observe that two charges moving 
with linear speed υ and separated by distance d in the 
laboratory system are separated d/[1—υ2/c2]1/2 ≡ γd 
in their own coordinate system. It follows that the 
force between them is 1/γ2 less than between similar 
charges at rest in the laboratory system and separated 
the same laboratory distance d. Longitudinal ε 
being relativistically invariant, the mutual longitudinal 
interaction of the moving charges is decreased by 
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1/γ2 in both the moving and the laboratory W, Ø  
coordinates. Total self field is merely the sum of 
the fields of all charges, including image charges in 
the conducting walls enclosing the beam, and consequently 
the relativistic value of self field is obtained 
by use of the same 1/γ2 factor. 
This argument applies to the collective field of a 

circulating ion beam, only if the orbit radius of 
curvature is large enough so that an instantaneous 
Lorentz transformation is a good approximation, only 
if the distance between beam and walls is small enough 
as compared with the orbit radius and only if the ion 
velocity spread and time rate of change of the distribution 
(perturbation wave velocity relative to the beam) 
are small as compared with the mean ion velocity. 
Rigorous analysis confirms the 1/γ2 correction within 
these limitations. We therefore write for a relativistic beam 

L(Ø,t) = eV sin Ø — 2πe2σgoh2 ∂ (W2-W1) L(Ø,t) = eV sin Ø — γ2R ∂Ø (W2-W1) 

≡ eV sin Ø—Κ ∂ (W2-W1). (11) ≡ eV sin Ø—Κ ∂Ø (W2-W1). (11) 
It is instructive to describe the behavior of the 

distribution representing a single circulating beam 
by means of variables 

≡ w2+w1 , (12) ≡ 2 , (12) 
which satisfy the equations 

∂∆ +M ∂ (∆) = 0, ∂t +M ∂Ø (∆) = 0, 
∂ +k ∂Δ + Μ ∂ (2+ Δ

2 
) = eV sin Ø. (13) ∂t +k ∂Ø + 2 ∂Ø (

2+ 4 ) = eV sin Ø. (13) 

From the first of these we can derive certain general 
symmetry properties: 
1. If = 0 at all time and all Ø, ∂Δ/∂t = 0 at all 

time and all Ø: All permanently symmetrical 
distributions are stationary. 

2. If ∂Δ/∂t = 0 and ∂/∂t = 0 at all time and 
all Ø, Δ = const., whence if (by choice of 
coordinates) = 0 at some Ø it is zero at all 
time and all Ø: All stationary distributions 
are permanently symmetrical. 

3. Conversely, all unsymmetrical distributions are 
non-stationary and all non-stationary distributions 
are (or become) unsymmetrical. 

If = 0 and ∂/∂t = 0, integration of the second 
of Eqs. (10) gives the stationary solution obtained 
earlier for beams below transition (Symon and Sessler40), 
Eq. (18) with Ws = 0) and valid also above transition within the limits set by the potential approximation. 

V. SINGLE BEAM 
The behavior of the single beam can be determined 

from the solution of boundary Eqs. (7) or alternatively 
from Eqs. (13). In the latter case it is sufficient to 
find the solution for ∆, which by Eq. (10) is proportional 
to linear charge density λ, since it turns out 
that the condition for stability of ∆ is the same as 
the condition for stability of W1 and W2 obtained by solution of the boundary equations. 
Let ∆0 be the stationary value of ∆ satisfying the 

second of Eqs. (13) with = 0 and ∂/∂t = 0, i.e. 

Κ ∂∆0 + M ∂ (∆02)-eV sin Ø = 0. (14) Κ ∂Ø + 8 ∂Ø (∆0
2)-eV sin Ø = 0. (14) 

For small amplitude perturbations from this stationary 
solution, 

∂Δ Δ ∂ and 2 ∆2, (15) ∂t Δ ∂t and
 2 ∆2, (15) 

(since is initially small or zero while Δ is initially 
finite and remains so), and elimination of from 
Eqs. (13) then yields the linearized equation in Δ —∆0: 
∂2 (Δ-Δ0) = ∂t2 (Δ-Δ0) = 

= ΜΔ0Κ ∂
2(Δ-Δ0) +¼Μ2Δ0 ∂

2 
[Δ0(Δ-Δ)0].(16) = ΜΔ0Κ ∂t2 +¼Μ2Δ0 ∂Ø2 [Δ0(Δ-Δ)0].(16) 

Consideration will be limited to the circulating 
beam in the absence of radio-frequency; (we then 
set h = 1 and the phase coordinate Ø becomes the 
space angle). The stationary distribution then reduces 
to ∆0 = const., and Eq. (16) reduces to the wave equation with the solution 

Δ(Ø,t) = F(Ø+Ωt). (17) 
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The angular velocity (relative to the circulating beam) 
is 

Ω = ±[ΜΔ0(κ+¼ΜΔ0)]1/2, (18) 
and is real, giving propagating waves when 

MΔ0K+¼M2Δ02>0. (19) 
This is always true below transition, while above 
transition M is negative and the criterion for stable 
waves is, if we substitute for Μ, Κ from Eqs. (6), 
(10) and (11) 

( 
ΔΕ )2=Δ02> 4eg0λ0 (20) ( f )

2=Δ02> 
-f df γ2 

(20) ( f )
2=Δ02> 

-f dE γ2 
(20) 

It follows that for a given charge density λ0 in a beam above transition, one can always find an energy 
spread great enough to make Ω real and small perturbations 
of arbitrary wavelength oscillatory. 
When condition (20) is not satisfied, Ω becomes 

imaginary, and it is convenient to resolve the wave 
(17) into sinusoidal components with the dependence 

e±in(Ø-ωt). (21) 
With Ω imaginary, the wave travels with the beam and 
contains damped and anti-damped components which 
grow exponentially at a rate which in the limit of a 
monoenergetic beam is 

n1m(Ω)= 2πn [eg0λ0f df 
|]1/2. (22) n1m(Ω)= γ [eg0λ0f dE |]1/2. (22) 

It is convenient to write these results in dimensionless 
form in terms of the Budker parameter 8) 

ν= Ν · e
2 

, (23) ν= 2πR · m0c2 , (23) 
where N is the total number of particles. 
Then, 

Δ0Κ= Ne2g0 = 2πνg0m0c2 . (24) Δ0Κ= γ2R 
= 

γ2 . (24) 
In the relativistic limit when E2 E02 

df = -f , (25) dE = (k+1)E , (25) 
so that the stability criterion becomes 

ΔΕ 
> 
4(k+1)νg0 ]1/2, (26) E0 > γ ]1/2, (26) 

and Ω in units of particle angular velocity ω = 2πf is 
Ω 
=[ 

νg ]1/2. (27) ω =[ (k+1)γ3 ]
1/2. (27) 

As a numerical example we may consider an 
accelerator (the MURA 40 MeV two-way electron 
accelerator) in which 3×1011 electrons are injected 
(to give approximately 1 ampere circulating current) 
and accelerated by betatron action to 2 MeV. They 
are then above transition energy although not far 
enough to make the approximation used above for 
df/dE very good) and we use 

Ν =3×1011 
R = 156 cm 
e2 = 2.82×10-13 cm m0c2 = 2.82×10

-13 cm 
E0 =0.51 MeV 

g0 =2.5 
k =9.3 
γ =5 
ν =0.86×10-4 
These numbers put into Eq. (26) and Eq. (27) give 

ΔΕ > 4.7×10-2, ΔΕ > 24 keV for stability E0 > 4.7×10
-2, ΔΕ > 24 keV for stability 

and Ω/ω = 5.7×10-4. 
Since the energy spread at injection and at 2 MeV is 

of the order of 1 keV, growth of azimuthal inhomogeneities 
is to be anticipated. If we let n = 1, and 
ω = 2π×30 Mc, growth by the factor e occurs in 
about 8 μsec at the slowest; and if n = 100 the rate 
is 100 times faster. An evaluation of growth rate 
made with an expression for potential more accurate 
at short wavelength than that used here has shown 
(Nielsen and Sessler7)) that the growth rate approaches 
a limiting value as n increases. In this accelerator 
the limiting value is of the order of that obtained from 
Eq. (27) with n = 100. 
We may consider also the same accelerator with 

100 injected pulses "stacked" in a circulating beam at 
40 MeV. The value of ν is then 76 times greater, 
and γ is 16 times greater, increasing the required ΔΕ 
by a factor of 4.8 to 53 keV. Since the total ΔΕ will 
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then be at least 100 times the ΔΕ of each pulse, it 
will exceed the spread required for stability. (But 
individual pulses will remain unstable at 40 MeV.) 
It must be borne in mind that these computations 

refer only to circulating beams in the absence of radiofrequency 
voltages. The stability problem with radiofrequency 
present has not yet been solved. 
In principle it is possible to extend the boundary 

equation analysis to distributions denned by more 
than two boundaries and with more than one value 
of phase density. This has been done for two separate 
interacting distributions described by a coupled set 
of four boundary equations1). A dispersion relation 
results, which is the same as will be obtained later 
by a more general method. Since it is not clear, 
however, that this simple procedure can be extended 
correctly to two interacting relativistic beams we shall 
here discuss multiple beams only in the context of 
the more general method outlined in the next section. 
VI. SOLUTION OF THE RELATIVISTIC 

BOLTZMANN EQUATION 
We now develop a completely relativistic treatment 

of the linearized longitudinal Boltzmann equation for 
the special case when no external forces act except 
the static focusing and guiding forces in the accelerator, 
and when the cross-sectional distribution is uniform 
azimuthally. We further generalize the preceding 
treatment by allowing a non-uniform density 
function Ψ. Fig. 2 illustrates the geometry we wish 
to consider. The beam is contained in a conducting 
donut with conducting walls of arbitrary cross-section, 
uniform in azimuth. The cross-sectional distribution 
of particles in the beam is assumed to be a known 
function Q (x, y) of the cross-sectional coordinates, 
also independent of azimuth. In all examples, we 
shall take the geometry shown in Fig. 2, i.e. a beam 
uniform inside a circular cylinder of radius A midway 
between conducting planes of separation G. We will 
neglect betatron oscillations except insofar as they 
contribute to the cross sectional distribution 
Q (x,y). We will assume also for simplicity that Q 
is independent of W. This latter assumption is not 
essential to our treatment, and is valid when the beam 
cross section is predominantly due to betatron oscillations. 
Likewise, we shall for the moment neglect the 
dependence of R on W. Instead of the coordinate Ø  
used earlier which is measured from an origin rotating 

Fig. 2 Beam geometry. 

with the beam, we use an angular coordinate θ measured 
from a fixed origin. The properties of the guide 
field insofar as we shall need them are specified by 
giving the angular velocity ω(W) = 2πf of the ions 
as a function of their energy coordinate W. The 
radius of curvature of the orbit will be assumed to be 
large in comparison with the cross-sectional dimensions 
of the beam, and with at least the minimum cross 
sectional dimension of the vacuum chamber. We 
may then treat x,y, Rθ as rectangular coordinates 
in calculating the electric field due to the beam. This 
is a legitimate approximation for our problem with 
one exception which we shall note later. 
The Boltzmann equation is just Eq. (1) with Ø  

replaced by θ, and where 
= ω(W), (28) 
= /f=2πeR, (29) 

where , is the longitudinal electric field averaged over 
the beam cross section, and we now take 

W= dE , (30) W= f(E) , (30) 
so that we are no longer restricted to a small range 
of W. Note that f, and hence W (and ω) have opposite 
signs for beams travelling in opposite directions. We 
may therefore encompass the case of any number of 
constituent beams travelling with various energies in 
either direction simply by taking the appropriate 
distribution Ψ (W). 
The azimuthal field is determied from Maxwell's 

equations, and satisfies in a rectangular coordinate 
system x,y, Rθ, 

2ε+ 1 ∂
2ε - 1 ∂

2ε = Απ ∂ρ + 4π ∂ , (31) 2ε+ R2 ∂θ2 -c2 ∂t2 = R ∂θ + c2 dt , (31) 
where 

ν2= ∂
2 
+ ∂2 (32) ν2= ∂x2 + ∂y2 (32) 
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There will be a boundary condition, ε = 0, at the 
walls of the vacuum chamber. Let Q (x,y) be 
normalized so that 

∫ ∫ Q dS = 1, (33) ∫ 
s 
Q dS = 1, (33) 

where S is the cross-section of the chamber. The 
charge and azimuthal current densities are then 

ρ(x,y,Rθ,t) = eQ(x,y)∫R-1ψ(W,θ,t) dW, (34) 
j(x,y,Rθ,t) = eQ(x,y)∫ωΨ(W,θ,t) dW, (35) 

and 
(θ,t) = ∫∫ εQ dS. (36) 

An obvious solution of Eqs. (1) and (31) is 
ψ = ψ0(W), ε = 0. (37) 

We will call this stationary, azimuthally uniform 
solution the unperturbed solution, where Ψ0 (W) is 
some given distribution in energy of the beam. We 
now set 

Ψ(W,θ,t) = Ψ0(W)+Ψ(W,θ,t), (38) 
where ψ represents a small perturbation. The 
electric field ε is then also small, and if we neglect 
second order terms and use Eqs. (28), (29), (34), and 
(35), Eqs. (1) and (31) become 

∂ψ +ω ∂ψ +2πeR ∂Ψ
0 
= 0, (39) ∂t +ω ∂θ +2πeR ∂W = 0, (39) 

V2ε+ 1 ∂
2ε - 1 ∂2ε = 4πeQ ∫[ 1 ∂ψ + ω ∂ψ 

]dW. (40) 
V2ε+ R2 ∂θ2 

-
c2 ∂t2 = 4πeQ ∫[ R2 ∂θ + c2 ∂t ]dW. (40) 

In order to solve these equations, we first make a 
Fourier transform to eliminate the variable θ, taking 
advantage of the uniformity in azimuth. For any 
function G (θ), we define a Fourier transform GF(n) by 

G(θ) = ∞ GF(n)einθ, G(θ) = Σ GF(n)einθ, G(θ) = 
n=—∞ 

GF(n)einθ, 

GL(n) = 1 
2π 
G(θ)e-inθ δθ. (41) GL(n) = 1 ∫ G(θ)e

-inθ δθ. (41) GL(n) = 2π ∫ G(θ)e
-inθ δθ. (41) GL(n) = 2π 

0 
G(θ)e-inθ δθ. (41) 

We next eliminate the time dependence by taking a 
Laplace transform of these equations. For any 

function G (t), we define the Laplace transform 
GL (P) by 

GL(P) = 
∞ G(t)e-ptdt, GL(P) = ∫ G(t)e-ptdt, GL(P) = 
0 
G(t)e-ptdt, 

G(t) = 1 
ζ+iα 
GE(p)ept dp, (42) G(t) = 1 ∫ GE(p)e

pt dp, (42) G(t) = 2πi ∫ GE(p)e
pt dp, (42) G(t) = 2πi 

ζ-i∞ 
GE(p)ept dp, (42) 

where the integral over p is to be taken along a Bromwich 
line lying to the right of all singularities of GL (p). The transform of a time derivative is 

GL = pGL(p)-G(0). (43) 
The Fourier-Laplace transforms of Eqs. (39) and 
(40) are 
(p + inω)ψFL + 2πeR ∂Ψ

0 
FL = ψF(W,n,0) = ψF0, (44) (p + inω)ψFL + 2πeR ∂W FL = ψF(W,n,0) = ψF0, (44) 

2εFL- 1 ( 
Ρ2 + n2)εFL = 2εFL-R2 ( ω02 + n

2)εFL = 

= 4πeQ ∫(in+ 
ωp )ψFLdW + AF0, (45) = R2 ∫(in+ ω02 )

ψFLdW + AF0, (45) 
where 
AF0(n,p,x,y) = -1 (pεF0+F0)-4πeQ ∫ 

ω 
ψF0dW, (46) 

AF0(n,p,x,y) = -c2 (pεF0+F0)- R2 ∫ c2 ψF0dW, (46) 
and ω0 = c/R (47) 
is the angular velocity of a particle at the speed of 
light on a circle of radius R. Note that the initial 
conditions are explicitly introduced into the solution 
by this method. 
Let gj(x,y), —kj/R2 be the eigenfunctions and eigenvalues of the operator 2 in the region bounded 

by the vacuum tank, and subject to the appropriate 
boundary condition on the walls (i.e., g = 0) 

2gj = -Kj gj. (48) 2gj = -R2 gj. (48) 
These functions are normalized so that 

∫ ∫ gjgdS = δ (49) ∫ 
s 
gjgdS = δ (49) 

Let us first find the solution ε of Eq .(45) for an 
empty tank (ψ = 0). We may expand 
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F0+PεF0 = Σ xj0(n,p)gj(x,y), (50) F0+PεF0 = 
j 
xj0(n,p)gj(x,y), (50) 

and 
εFL = Σ ajgj(x,y). (51) εFL = j 

ajgj(x,y). (51) 
We substitute in Eq. (45), using Eq. (48), and solve for 

aj = xj0 . (52) aj = ω02kj+ω02n2+p2 . (52) 
We substitute in Eq. (51) and invert the Laplace 
transform 

εF = Σ gj 
ζ+i∞ Xj0eptdp . (53) εF = Σ gj ∫ 

Xj0eptdp . (53) εF = Σ 2πi ∫ ω02kj+ω02n2+p2 . (53) εF = 
j 2πi ∫ ω0

2kj+ω02n2+p2 . (53) εF = 
j 2πi ζ-i∞ 

ω02kj+ω02n2+p2 . (53) 

The integral is easily evaluated by contour integration, 
and we have finally for the part of the field with wave 
number n 
εFeinθ = Σ gj(x,y)Xj0(n,iΩj) [e

i(nθ+Ω
j
t)_ei(nθ-Ωjt)] (54) εFeinθ = Σ 2iΩj 

[ei(nθ+Ωjt)_ei(nθ-Ωjt)] (54) εFeinθ = 
j 2iΩj 

[ei(nθ+Ωjt)_ei(nθ-Ωjt)] (54) 

where 
Ωj = ω0[Kj+n2]1/2. (55) 

We see that Kj and gj(x,y) determine the normal modes of propagation of electromagnetic waves in 
the vacuum tank. There are two normal modes for 
each n and each eigenfunction gj which propagate with angular velocity 

ωj = ± Ωj = ±ω0[1 + kj ]1/2. (56) ωj = ± n = ±ω0[1 + n2 ]
1/2. (56) 

For a straight waveguide, the normal modes propagate 
with velocities greater than c, hence Kj would always be positive. For a waveguide bent in a circle, however, 

it is not clear that the angular velocity is necessarily 
greater than ω0 = c/R. Note that R is presumably the mean radius of the beam, which may lie 
anywhere in the vacuum tank, whereas ωj depends only on the vacuum tank and not on where the beam 
is. Indeed, it appears that, for a circular chamber of 
rectangular cross section at any rate, there are always 
modes that propagate with ωj < ω0 for any R inside the chamber. (D. L. Judd and V. K. Neil, private 
communication.) This point is very important, 
because as we shall see later, if some ωj is smaller than ω0, the electromagnetic modes can become unstable. For this reason, the eigenvalues Kj, should be calculated taking proper account of the curvature 

of the vacuum tank; this is the exception noted earlier 
to the statement that the electric field can be calculated 
as if the tank were straight. We should perhaps 
redefine Kj more precisely as the value given by Eq. (56) where ωj is the exact angular velocity of propagation of the wave when proper account is 
taken of the curvature of the vacuum tank: 

Kj = n2( 
ωj2R2 )-1. (57) Kj = n2( c2 )-1. (57) 

In order to solve Eq. (45), let us consider the equation 
2u-A u = Β Q(x,y), (58) 2u-R2 u = R2 Q(x,y), (58) 

where A, B are independent of x, y. We expand 
Q(x,y) = Σ Qjgj(x,y), (59) Q(x,y) = 

j 
Qjgj(x,y), (59) 

where 
Qj = ∫ ∫ gjQ dS = j. (60) Qj = ∫ 

s 
gjQ dS = j. (60) 

If we set 
u(x,y) = Σ ajgj(x,y), (61) u(x,y) = 

j 
ajgj(x,y), (61) 

then we get, after substitution in Eq. (58), 
aj = - Bgj , (62) aj = -Kj+A , (62) 

so that 
u = — ∑ Bgjgj , (63) u = — ∑ Kj+A , (63) u = — 

j Kj+A 
, (63) 

and 
= — Σ B . (64) = — Σ Kj+A . (64) = — 

j Kj+A 
. (64) 

Combining this result with the previous solution for 
an empty tank, we have, for the solution of Eq. (45), 

FL = -eI g(n,p)-c2 Σ Aj0 , (65) FL = -c2 g(n,p)-c
2 Σ n2ωj2+p2 , (65) FL = -c2 g(n,p)-c
2 

j n
2ωj2+p2 , (65) 

where 
I = ∫[inω02+ωp]ψFL dW, (66) 

g(n,p) = 4πc2 Σ gj-2 , (67) g(n,p) = 4πc2 Σ n2ωj2+p2 , (67) g(n,p) = 4πc2 
j n

2ωj2+p2 , (67) 
Aj0(n,p)=∫ ∫ AF0(n,p,x,y)gj(x,y) dS. (68) Aj0(n,p)=∫ 

s 
AF0(n,p,x,y)gj(x,y) dS. (68) 
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We substitute in Eq. (36): 
(p+inω)ψFL-2πe

2IRg ∂Ψ0 (p+inω)ψFL- c2 ∂W 
= ψF0+2πec2R ∂Ψ

0 
Σ Aj0 = F0(n,p,W). (69) = ψF0+2πec2R dW Σ n2ωj2+p2 = F0(n,p,W). (69) = ψF0+2πec2R dW j n

2ωj2+p2 = F0(n,p,W). (69) 
We can now see how to modify this solution to take 

into account the dependence of R on W. We must 
solve Eq. (40) for δε due to each component ψdW 
of beam separately. The solution proceeds as above. 
Note that ω0 given by Eq. (47) now depends on W. We arrive at an equation like (65) in which the integrals 
over W in I and AF0 are replaced by their integrands. We now sum over all beam components ψdW and 
arrive exactly at Eq. (65), since only the integrands 
in I, AF0 are functions of R or W. Note that ωj depends on n, but not on W, since it refers to the 
propagation of waves in the empty donut. If we 
were to take account of the dependence of Q (x,y) 
on W, then j depends on W, and g (n,p) would have to be included in the integral I. The dependence of 
R (or ω0) on W is not a trivial matter, since we shall see later that cancellations may occur in integrands 
like that in Eq. (66) which could make small variations 
in ω0 important. 
To solve Eq. (69), we multiply by 

(inω02+ωp)/(p+inω) 
and integrate over W, to obtain 

I = 1 ∫ F0(n,p,W) inω02+ωp dW, (70) I = D(p) ∫ F0(n,p,W) p+inω dW, (70) 
where 
D(n,p) = 1 -2πe

2 
g(n,p)∫R ∂ψ

0 inω02+ωp dW. (71) D(n,p) = 1 -c2 g(n,p)∫R ∂W p+inω dW. (71) 
The solution of Eq. (69) is now 
ψFL(n,p,W) = F0(n,p,W) + 2πe2RgI ∂Ψ0 × ψFL(n,p,W) = p+inω + D(p)(p+inω))c2 ∂W × 

× ∫F0(n,p,W') inω0
2+ω'p dW', (72) × ∫F0(n,p,W') p+inω' dW', (72) 

where ω' = ω ( W'). 
The solution for the perturbation at wave number n  

is now obtained by inverting the Laplace transform: 

ψF(n,W)einθ = 1 
ζ+i∞ 

ψFL(n,p,W)ept+inθ dp. (73) ψF(n,W)einθ = 1 ∫ ψFL(n,p,W)e
pt+inθ dp. (73) ψF(n,W)einθ = 2πi ∫ ψFL(n,p,W)e
pt+inθ dp. (73) ψF(n,W)einθ = 2πi 

ζ-i∞ 
ψFL(n,p,W)ept+inθ dp. (73) 

Without carrying through the details of the integration, 
(which will be presented in a later publication) 
we can see the general character of the result. Since 
ψFL vanishes as 1/p as |p| → ∞, we may close the 
contour in the integral (Eq. (73)) by an infinite semicircle 
from the Bromwich line around the left half 
p-plane. Now ψFL has poles at p = — inω and at the roots pn of the dispersion relation 

D(n,pnl) = 0. (74) 
Examination of Eq. (72) will show that the poles of 
F0 (n,p,W) at p = ± inωj cancel in the two terms on the right (recall Eqs. (69) and (67)) as they should 
since they correspond to normal modes of the empty 
donut. We will show in the next section that D(p) 
has branch cuts along that part of the imaginary 
axis p = — inω (W) corresponding to values of W 
at which ∂Ψ0/∂W ≠ 0, and that no roots of Eq. (74) 
can lie on these cuts. The inversion of the second 
term in Eq. (72) is accomplished by interchanging the 
order of integration over p and W'. (In carrying 
through the details, it becomes necessary to insure 
also that D (p) has no roots pnl = — inω (W) at points where ψF0 (n, W) ≠ 0. Presumably in such 
a case, the linear perturbation theory is inadequate, 
particularly in view of the result quoted above that 
there is no root where ∂Ψ0/∂W ≠ 0.) Hence, when 
we shrink the contour in the integral (73), we are left 
with residues from the poles at p = — inω, and 
p = pnl, an integral over residues from p = — inω', 
and an integral over the branch cuts which becomes 
also an integral over W'. The result has therefore 
the form 
ψF(n,W)einθ = A(n,W)ein(θ-ωt) 

+ ∫dW'B(n,W,W')ein(θ-ω't) 
+ Σ Cl(n)Fl(n,W)einθ+pnlt, (75) + 
l 
Cl(n)Fl(n,W)einθ+pnlt, (75) 

where A, B, C depend on F0 and hence on the initial perturbation, and 
Fl(n,W) = 2πe

2 g(n,p) R ∂Ψ
0 

(76) Fl(n,W) = c2 D'(n,pnl)(pnl+inω) R ∂W' (76) 

D'(n,pnl) = lim D(n,p) . (77) D'(n,pnl) = lim P-Pnl . (77) D'(n,pnl) = 
p→pln P-Pnl 

. (77) 
The first term in Eq. (75) represents a perturbation 

in each component of beam at energy W which moves 
with the same angular velocity ω (W) as the beam. 

file:////idW
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If there were no interaction between beam particles, 
this would be the only term, with 

A(n,W)=ψF0(n,W); 

that is the initial perturbation is simply carried 
around by the motion of the beam. When the 
particles interact, the second term appears, which 
represents a disturbance in the component W moving 
with the angular velocities ω' of the other compo­
nents W'. The first two terms we will call the stream­
ing disturbance. For each component W' of the 
beam, there is a streaming disturbance which moves 
with angular velocity ω', and which consists of a 
perturbation in the component W' which streams 
around with that component (first term) together 
with a co-moving disturbance in all other components 
W due to the interaction between components (second 
term). It is clear that the streaming motion cannot 
give rise to any instabilities. In fact it is easy to 
show that in general a continuous superposition of 
waves of different angular velocities as in the second 
term of Eq. (75) will damp out in the course of time 
at a rate and with a time dependence depending on 
the nature of the function B(n,W,W'). If Β is 
analytic in ω', as it cannot be for a physically realiz­
able case, the damping is exponential (Landau 
damping)9). 

The various terms in the sum over l in Eq. (75) 
we call normal modes of propagation. A normal 
mode has a characteristic (and discrete) time depend­
ence pnl and a characteristic W dependence Fl (n, W), 
which depend on n and on the properties of the 
unperturbed beam, but do not depend on the nature 
of the initial perturbation. Only the amplitude (and 
phase) Cl (n) depends on the initial perturbation. 
If pnl has a positive real part, the corresponding normal 
mode is anti-damped, and the beam is unstable. 
Hence the question whether the beam is stable may 
be answered by a study of the roots of the dispersion 
relation (74). 

VII. THE DISPERSION RELATION 

In discussing the dispersion relation (74), it is 
convenient to introduce, in place of pnl the angular 
velocity ωnl of the normal mode: 

pnl = - inωnl. (78) 

The dispersion relation (63) then becomes 

D(ωnl)=1-
2πe2 g(n,ωnl)∫ R 

∂ψ° ω0
2-ωωnl dW = 0. 

(79) 
D(ωnl)=1- c2 g(n,ωnl)∫ R ∂W ω - ω n l 

dW = 0. 
(79) 

The integral is to be evaluated for pnl lying to the right 
of all singularities in the p-plane, i.e. for ωnl lying 
above all singularities in the complex ωnl-plane, and 
continued analytically to other parts of the ωnl-plane, 
going out around all singularities on the real axis. 
We will remove the factor R from the integrand in 

Eq. (79) since the slight dependence of R on W may 
be neglected. The integral can then be simplified by 
adding a term ωη1∂Ψ°/∂W to the integrand, which 
does not affect its value. We then have 

D(ωnl) = 1-
2πe2R 

g(n,ωnl) 
ω02-ωnl ∂Ψ° d W = 0 . 

(80) 
D(ωnl) = 1- c2 g(n,ωnl) ω-ωnl ∂W d W = 0 . 

(80) 
Since ω0 is the angular velocity of a particle of speed c 
at radius R, and since we shall find that ωnl is near 
the angular velocity of the beam, the factor ω02 — ωnl  
will be small in the relativistic case. The dependence 
of ω0 on R, and hence W, may therefore be important. 
We will for convenience remove the factor ω02 — ωnl2 
from the integrand with the understanding that ω02 is 
to be given a suitable average value, presumably the 
value corresponding to the value οf W Which makes 
the major contribution to the integral in Eq. (80). 
This value may be somewhat different for different 
roots ωnl. We can then write the dispersion relation 

D(ωnl) = 1-
2πe2 g(n,ωnl) 

1 ∂Ψ° dW = 0, (81) D(ωnl) = 1- Rγnl2 
g(n,ωnl) ω-ωnl ∂W 

dW = 0, (81) 

where 
γnl = [1-ωnl2/ω02]-½ (82) 

is just (1 - νnl2/c2)-½ where νnl - Rωnl is the velo­
city of wave propagation around a circle of radius R. 
The factor g(n,ωnl) defined by Eq. (67) can be 

rewritten, utilizing Eq. (57) to bring out its behavior 
in the long or short wavelength limits as follows: 

g(n,ωnl) = 2πR2Σ gj-2 • (83) g(n,ωnl) = 2πR2Σ 
K j + n2/γ2nl 

• (83) 
j K j + n2/γ2nl 

• (83) 

In the limit of very short wavelengths, this becomes 

g∞ 
2πR2γ2nl Σgj-2, (n 

R 
γnl), (84) g∞ n2 Σgj-2, (n a γnl), (84) g∞ n2 j a γnl), (84) 
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since is very small for Kj R2/a2. The relativistic 
factor γ2nl cancels out in the dispersion relation (81), 
as we might expect in this case, except insofar as it 
determines for what n the short-wavelength approxi­
mation is valid. For long wavelengths, g reduces to 
a constant, independent of n or γnl: 

g go = 2πR2 Σ gj
-2 

• (85) g go = 2πR2 Σ 
K j 

• (85) g go = 2πR2 
j K j 

• (85) 

If we follow through the solution of Eq. (40) in the 
tatic cases 

( 
∂ε 

= 
∂ψ = 0 ) , we obtain the first term 

( ∂t = ∂t = 0 ) , we obtain the first term 

in Eq. (65) with p = 0, so that the field component 
of order n is 

= -eg0 ∫ ineinθψF dW. (86) = - R2 ∫ ineinθψF dW. (86) 
Hence 

= -
eg0 ∂ ∫ψ(W,θ)dW. (87) = - R2 ∂θ ∫ψ(W,θ)dW. (87) 

We see that the definition (85) of g0 agrees with the 
previous definition (Eq. (8)). (Formula (9) gives not 
, but ε at the center of the beam, but the difference 

is not important in most cases.) 

We now note that all quantities in the expression 
(79) or (81) for D(ωnl) (except ωnl itself) are real. 
Moreover, if ∂ψ°/∂W = 0 except over a finite segment 
of the.ω(W)-axis, as will be true in all practical 
applications (since |ω|<ω0 in any case), then the 
result of analytic continuation of the integral on 
a path around the line of singularities where 
∂ψ°/∂W ≠ 0, to a point ωnl below the real axis, 
will be the same as if the integral is evaluated directly 
at that point. The dispersion relation (79) or (81) is 
therefore invariant under the transformation i→ -i, 
and complex roots for ωnl can only occur in complex 
conjugate pairs, one corresponding to damped and 
the other to anti-damped waves(*). 

We next show that Eq. (81) cannot have a (real) 
root at ωnl = ω (W) where ∂Ψ°/∂W ≠ 0. For if 
we let ωnl → ω on the real axis, we have 

∫ 1 ∂Ψ° dW = ∫ ω - ω n l ∂W 
dW = 

= P ∫ 1 ∂Ψ° dW±iπ ∂Ψ°/∂W 
|W = W(ωnl), (88) = P ∫ ω - ω n l ∂W 

dW±iπ ∂ω/∂W |W = W(ωnl), (88) 
where 'Ρ' denotes principal part, and the upper and 
lower signs correspond to whether ωnl → ω from the 
upper or lower half plane. Therefore if ∂Ψ°/∂W ≠ 0,, 
D (ωnl) has a finite imaginary part, and the relation (81) 
cannot be satisfied. In fact, we see from Eq. (88) 
that D (ωnl) has branch cuts along the real axis where 
∂Ψ°/∂W ≠ 0. This implies that there can be no 
stable normal mode propagating with the same 
angular velocity as any part of the beam for which 
∂Ψ°/∂W ≠ 0. This is not surprising, since on phy­
sical grounds one might expect the coupling between 
beam and wave would make such a situation unstable. 

VIII. SINGLE STREAM AND TWO-STREAM CASES 

Let us first consider the problem solved earlier, in 
which we have a single stream Ψ° (W) with uniform 
phase density between fixed limits W1, W 2: 

∂Ψ°(W) = { 
Ν , W1 < W < W2, (89) 

∂Ψ°(W) = { W 2 - W 1 
, W1 < W < W2, (89) 

∂Ψ°(W) = { 
0, otherwise. 

where Ν is the total number of particles. 
We substitute into the dispersion relation (81) to 
obtain in the long wave limit 

1 - k[ 1 
- 1 ] = 0, (90) 1 - k[ ω 1-ω n l 
- ω 2-ω n l 

] = 0, (90) 

where ω1 =ω(W1), ω2 = ω(W2). The solution for 
ωnl is 

(*) This result is a consequence of the way in which we have chosen to shrink the contour in the Lapace inversion integral (73), i.e. so as to leave a loop around the segment on the imaginary p-axis corresponding to values οι p = - ik ω(W) for which 
∂ψ°/∂W ≠ 0. Other ways of shrinking the contour, for example, by leaving loops extending to p = - ∞+iα around all branch points p = ia on the imaginary p-axis, lead to other rules for continuing D(ωnl) into the lower half ωnl-plane, and hence to different normal mode frequencies, as well as to different forms for the second term in Eq. (75). The solutions are of course equivalent, but the separation into streaming disturbances and normal modes of propagation is different. The roots of the dispersion relation corresponding to anti-damped modes lie in the upper half ωnl-plane and are unaffected by this choice; hence questions of stability are unaffected. It appears that the convention adopted here is most convenient for the present purpose both because of the physical significance of the terms in the solution (75) and because of the mathematical convenience in the symmetry of our dispersion relation relative to the upper and lower half ωnl-planes. One consequence of our convention is that the Landau damped modes of propagation, if they exist, are included in the streaming disturbance. 
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ωnl = ½ω1+ω2)±½ω2-ω1) [1 + 4K 
] 1 / 2 , (91) ωnl = ½ω1+ω2)±½ω2-ω1) [1 + ω2 — ω1 
] 1 / 2 , (91) 

where Κ is again defined as in Eq. (11): 

Κ = 2πe2 g0N (92) Κ = ynl2R(W2-W1) 
(92) 

except that ynl is the y for the wave velocity. There 
are two normal modes with angular velocities inde­
pendent of n. If we set 

ω2 — ω1 = 2πƒ dƒ (W2-W1) = M∆ 0, (93) ω2 — ω1 = 2πƒ dE (W2-W1) = M∆ 0, (93) 

then Eq. (91) agrees with Eq. (18), and all the previous 
results for this case then follow. If we replace 
So by g∞ (Eq. (84)), we see that the minimum energy 
spread for stability decreases with increasing n; the 
wave propagation is always stable for large enough n. 
Strictly, we should not have treated y2nl in Eq. (90) as 
a constant. If we take y2nl = 1 —ω2nl/ω02, the number 
of roots is not affected, and the relation is not signi­
ficantly changed except for very large N. Above 
transition, the criterion for stability is less stringent 
when Nc2/(4π2e2Ry2ƒ|dƒ/dE|). 
Above the transition energy, the roots (91) for ωnl 

lie between ω1 and ω2 when the criterion for stability 
is satisfied. The theorem proved earlier shows that 
real roots cannot occur at angular velocities repre­
sented in the beam except where ∂Ψ°/∂W = 0, which 
is true for this special case of constant phase density. 
We therefore investigate the case of a triangular 
distribution where such roots cannot exist: 

Ψ°(W){ 

= 
4N(W-W1) , W1 ≤ W < 

w1 + w2 
, 

Ψ°(W){ 

= ( W 2 - W 1 ) 2 , W1 ≤ W < 2 , 

Ψ°(W){ 
= -

4N(W2-W) 
, 

W1 + W2 ≤ W ≤ W2, 
Ψ°(W){ 

= - (W 1-W 1) 2 , 2 ≤ W ≤ W2, 
Ψ°(W){ 

= 0, otherwise (94) 
where Ν is the total number of particles. The dis­
persion relation is now (we assume dω/dW is constant 
in the range W1 to W2), 

ln ( 
ω1 + ω2 -ωnl)2 

= 0, (95) 1- 4K ln ( 2 -ωnl)2 
= 0, (95) 1-ω 2-ω 1 

ln (ω1-ωnl)(ω2-ωnl) 
= 0, (95) 

where Κ is again defined by Eq. (92). (The logarithm 
is to be taken as real for ωnl outside the range between 
ω1 and ω2, and continued analytically into the upper 
and lower half planes.) The solution is 

ωnl = ½(ω1+ω2)±½(ω2-ω1)[1-e 
ω2-ω1 

]-½ (96) ωnl = ½(ω1+ω2)±½(ω2-ω1)[1-e 4k ]-½ (96) 
Below transition (ω2 > ω1) the solutions are again 
stable and lie outside the region (ω1 ≤ ω ≤ ω2) 
occupied by the beam. For Κ ¼ (ω2 — ω1), Eqs. (96) 
and (91) give the same result, namely that for a 
δ-function distribution. Above transition (ω1 > ω2) 
ωnl is always complex, and hence there is always 
instability. The lapse rate at wave number n is given 
by 

nΙm(ωnl) = ½n(ω1-ω2)[ 
ω1-ω2 

]-1/2. (97) nΙm(ωnl) = ½n(ω1-ω2)[ e 4k -1 ]-1/2. (97) 
The limiting energy spread given by the criterion (20) 
which is obtained by setting the exponent equal to 
unity in Eq. (97), now becomes the dividing line 
between very rapid and very slow growth of the instab­
ility. That is. if the exponent is small, then the 
instability is very fast: 

nΙm(ωnl) nK1/2(ω1-ω2)1/2, ω 1—ω 2 1, (98) nΙm(ωnl) nK1/2(ω1-ω2)1/2, 4K 1, (98) 

which agrees with Eq. (22) for a monoenergetic 
beam. If the exponent is large, the lapse rate is very 
small: 

nΙm(ωnl) ½n(ω1-ω2)e-, ω1—ω2 1. (99) 
nΙm(ωnl) ½n(ω1-ω2)e-, 

4K 1. (99) 

This residual slow instability may be regarded as due 
to the discontinuity in slope at the center of our 
distribution, as may indeed be shown by taking a 
rectangular distribution with a triangular roof, 
whereupon the rapid and slow instabilities become 
separated, and the rapid part vanishes when criterion 
(20) is satisfied. 
Let us now consider the case of two equal and 

oppositely directed beams, each with the density 
distribution given by Eq. (89), except that W and ω 
have opposite signs for the two beams. Proceeding 
as above, we find 

ωnl2 = 
ω12 + 22 + Κ(ω2 — ω1) ]± ωnl2 = 2 ]± 
± {[]2-ω12ω22 + Κω1ω2(ω2-ω1)}1/2, (100) 

where the square bracket under the square root is the 
same as the first term. We get a complex root if 
the quantity in curly brackets is negative. This is 
the negative mass instability and the criterion for 
stability is identical with condition (20) except for an 
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always negligible factor 
(1-

1 Ν 
) (1- 8 N0 ) 

on the right, 
where N 0 is defined below. There remains the case 
when the second term is real and greater than the 
first, which can only occur below transition. This is 
the two-stream instability and the criterion for stability 
is, if we neglect the energy spread of the beam 

N < N 0 = y2ƒR • (101) N < N 0 = g0e2dƒ/dE 
• (101) 

Since most intersecting beam machines which have 
been proposed operate above the transition energy, 
this two-stream instability cannot arise. The number 
N0 is in any case very large for any reasonable choice 
of accelerator parameters. We may estimate its 
order of magnitude, since ƒ(E) is nearly always 
concave toward the E-axis, 

N0 ≤ γ3R/(e2/mc2). (102) 
Of course the case of two beams interpenetrating 
uniformly around the accelerator does not occur in 
any actual machine, but for, say a two-way accelerator 
it might be expected to give a conservative estimate 
of the condition for stability. For stability in a single 
intersection region in a straight section, one should 
presumably take condition (101) with ƒ replaced 
by ν/2π R: 

N < N 0 = ß
2y5 R , (102) N < N 0 = g0 (e2/mc2) 

, (102) 

again a criterion which is satisfied in all intersecting 
beam devices so far proposed. 
Let us now consider the dispersion relation (81) in 

the region ωnl ω0, where the denominators in g 
may become small. Since ∂Ψ°/∂W = 0 for 
ω(W) > ω0, the integrand in Eq. (81) has no sing­
ularities in this region and we may integrate by 
parts. The dispersion relation then becomes 

8π2e1R(ω02,-ωnl2) Σ 
∫ Ψ° ∂ω dW 8π2e1R(ω02,-ωnl2) Σ n2(ωj2-ωnl2) 
∫ 

(ω-ωnl)2 ∂W dW 8π2e1R(ω02,-ωnl2) 
j n2(ωj2-ωnl2) 

∫ 

(ω-ωnl)2 ∂W dW 

= 1. (103) 
Let us assume first that the beam lies entirely 

below the transition energy, so that ∂ω/∂W > 0 for 
all values of W for which Ψ° (W) ≠ 0, and assume 
that all ωj are greater than ω0. Then, on the real 
ωnl-axis above ω0, the left member of Eq. (103) 
behaves as shown in Fig. 3, where ω1, ω2, ω3, ω4 are 
the values of ωj. In order to be able to count roots, 

Fig. 3 Dispersion relation for ∂ ω / ∂ W > 0 . 

it will be convenient to assume a finite number of 
terms in the sum over j (in this case, four). It is clear 
that to each mode of propagation ωj in the empty 
vacuum tank corresponds a real positive root of the 
dispersion relation (103) somewhat larger than ωj. 
One can of course show in an exactly similar way 
that there is also a real negative root ωnl below - ωj. 
The effect of the beam is to increase the angular 
velocity of the electromagnetic modes of propagation, 
but they remain stable. One can readily see that the 
larger Ψ°, the more ωnl is increased above ωj but 
that it never exceeds ωj+1. Moreover, one can see 
that the modes which propagate in the same sense as 
the beam (ωnl same sign as ω) are affected most. 
In case the beam is all above the transition energy, 

∂ω/∂W < 0, the left member of Eq. (103) behaves 
as shown in Fig. 4. There is again a real root ωnl  
corresponding to each mode ωj of the empty tank, 
only now the roots are reduced in angular velocity. 
We see that in either case, the presence of the beam 
does not make any electromagnetic mode unstable. 

Fig. 4 Dispersion relation for ∂ω/∂WW < 0. 

It is now rather easy to see that if any ωj lie below 
ω0 (as some certainly do), then the above argument 
cannot be carried through, and hence instabilities 
may be associated with the electromagnetic modes. 
So long as no part of the beam has an ω above the 
lowest ωj, a similar argument leads again to stable 
electromagnetic modes if the beam is all above tran­
sition. If part or all of the beam is below transition 
and if part of the beam has ω near enough to ωj 
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(even though still less than ωj), then the electroma­
gnetic modes can become unstable. Calculations in 
a few special examples suggest that instabilities arise 
for reasonable beam intensities only when part of the 
beam is very nearly in resonance with some ωj. The 
importance of determining the modes ωj in a con­
ducting donut is therefore clear. 

IX. INADEQUACIES IN OUR PRESENT KNOW­
LEDGE OF LONGITUDINAL INSTABILITIES. 

We have given an analysis of the stability of cir­
culating ion beams of nearly uniform charge density. 
The approximations made are probably sufficiently 
good for application of the results to beams in most 
strong-focusing accelerators. We have ignored pos­
sible coupling with betatron oscillations, radial and 
axial motions entering the present theory only in 
their influence upon beam cross section. We have 
also ignored the effect of stationary ions of opposite 
sign which may collect around the beam although the 
effect of these on betatron oscillations is known to be 
important10). When the cyclotron radii of the 
stationary ions is small, it is easy to show that they 
have only a static effect and do not play any role in 
the stability of a nearly uniform beam. 
The frequency function f(E) depends slightly on 

the amplitude of betatron oscillations, and this effect 
can be important in the applications we have con­
sidered. It is easy to take this into account in the 
general treatment if we neglect scattering so that the 
betatron oscillations remain constant in amplitude (or 
change adiabatically with E). Then we assign a 
betatron amplitude A to each particle, and include A 

as a parameter in Ψ. It is easy to show that the 
result is that an integration over A occurs in our 
results coincident with each integration over W. 
The result is equivalent to smoothing out and spread­
ing out the function Ψ°(W), so that, for example, 
even a monoenergetic beam may be stable above 
transition if the frequency spread due to betatron 
oscillations is large enough. 
The influence of particle energy loss mechanisms 

upon beam stability, which has been omitted from the 
analysis, is probably negligible except when rate of 
energy loss is large enough to change the energy 
spread during the life of the beam; and the effect 
then appears to be largely interpretable as a conse­
quence of the change in energy spread. 
Experimental confirmation of the predicted instab­

ilities is lacking (except as the existence of Saturn's 
rings may be viewed as a confirmation of the inverse); 
it is hoped that observation of beams in the M U R A 
40 MeV electron accelerator will yield relevant 
information. 
The following questions have as yet only conjectural 

answers: 
1. What occurs when stationary configurations of 

ions confined in radio-frequency buckets are 
subjected to small perturbations? 

2. How do space charge forces influence the capture 
of ions into buckets? (This appears likely to 
be especially important above transition.) 

3. How do growing perturbations develop after 
they have grown too large to be considered 
small? 
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