UNIVERSITE DE GENEVE FACULTE DES SCIENCES
Département de physique théorique Mme Professeur R. DURRER

Cosmic Microwave Background Anisotropies:

Beyond Standard Parameters

THESE

présentée a la Faculté des sciences de I'Université de Geneve

pour obtenir le grade de Docteur es sciences, mention physique
par

Roberto TROTTA
de
Italie

These N¢ 3534

GENEVE
Atelier de reproduction de la Section de physique
2004






To FElisa

nobody,not even the rain,has such small hands

E. E. CUMMINGS






Acknowledgments

It is a pleasure to thank the people who have contributed to the realization of this work and
who have accompanied me along the way. During these three years, I have enjoyed working
with and learning from all the members of the Geneva Cosmology Group and of the group
of Michele Maggiore. I have had the chance to collaborate with several people, to whom
I would like to express my appreciation: Pedro P. Avelino, Rachel Bean, Rebecca Bowen,
Ruth Durrer, Steen H. Hansen, Carlos J. A. Martins, Alessandro Melchiorri, Alain Riazuelo,
Graga Rocha, Joseph Silk and Pedro T. P. Viana.

Ruth Durrer has been a wonderful supervisor, never counting the hours she spent on my
questions, constantly stimulating my interests while allowing me to pursue my research in
all freedom. I thank her for her teaching and for her example. The help of Alain Riazuelo
was precious during my first year and gave me a swift start into real research work. I am
grateful to Alessandro Melchiorri for involving me in many collaborations which constitute a
major part of this thesis. I enjoyed having various interesting and promising discussion with
Filippo Vernizzi, Martin Kunz and Céline Boehm, which I am sure one day we will be able to
finalize. Sam Leach is guilty to have converted me to the Bayesian school during many restless
and humorous discussions. I am indebted to Christophe Ringeval and Thierry Baertschiger
for their help in solving my various computer problems, and to Andreas Malaspinas for his
Sisyphus work of troubleshooting our computer network. I shall join my thanks to the ones of
the cosmology community to Anthony Lewis for developing, supporting and making publicly
available the CAMB and cosMoOMC codes. I would like to express my gratitude to Prof. Silk,
Prof. Courvoisier and Dr. Ferreira for accepting to be part of the jury.

The European Network CMBNet and the Schmidheiny Foundation have provided gener-
ous support for some of the collaborations I was involved with, in the form of travel grants.
I am indebted to Oxford Astrophysics and to Prof. Silk for their kind hospitality in many
occasions, and to Profs. Spergel and Kosowsky and to Princeton University for financial
support of my visit.

But there is not only science, even to the life of a PhD student. My time in Geneva
would not have been the same without the friendship of Timon “Lincoln” Boehm: I wish him
all the best on his new path. I have had the pleasure of sharing many refreshing moments
with Stefano Foffa, Marj Tonini, Yasmin Friedmann, Simone Lelli, Anna Rissone, Martin
Zimmermann, Davide “Dutturi” Lazzati. To my parents, my affectionate thoughts for their
encouraging presence. To Elisa, my fiancée, my deepest gratitude for having been at my side
in all marvellous and all difficult moments, and for the ones which are still to come.

This work was much improved both in form and contents by the careful reading of
Christophe Ringeval and Elisa Cunial (for the french part), Sam Leach and Ruth Durrer
for the English part. I thank them for their time and competence. 1 alone bear the respon-
sibility for any mistake which might still be present.






Contents

Résumé 1
Introduction . . . . . . . . .. 1

Le rayonnement cosmologique de fond diffus . . . . ... ... ... ... ... 2

Au-dela des parametres standards . . . ... ... 5

Tests du paradigme adiabatique . . . . . . . . ... ... ... ... ... ... 9
Overview and conclusions 13
Towards a cosmological standard model . . . . . . ... .. .. ... ..... 13

Testing the concordance model with the CMB . . . . . .. .. ... ... ... 15
Outlook and conclusion . . . . . . . . . ... ... .. 18

I BASICS 21
1 Introduction 23
1.1 Notation and conventions . . . . . . . . . . . . . .. ... 23
1.2 Friedmann-Robertson-Walker cosmology . . . . . . ... .. ... ... .... 24
1.2.1 Einstein equations . . . . . . ... .. Lo o 24

1.2.2  Boltzmann equation . . . . . . . . ... L L o 28

1.3 Cosmological observations . . . . . . . . .. .. L L L oo 29
1.3.1 Big-Bang Nucleosynthesis . . . . . . ... ... ... ... ....... 31

1.3.2 Matter distribution . . . . . . . . ... ... 31

1.3.3 Typelasupernovee . . . . . . . . . .. . o 33

2 Cosmological perturbation theory 35
2.1 Perturbation variables . . . . . . .. ..o 35
2.1.1 Metric perturbations . . . . . . ... L Lo Lo 35

2.1.2  Perturbations of the energy-momentum tensor . . .. ... ... ... 36

2.1.3 Gauge transformations . . . . . .. ... oL 37

2.1.4 Gauge invariance . . . . . . . ... Lo 39

2.1.5 Multiple fluids . . . . . .. .. Lo 41

2.1.6 Entropy perturbations . . . . . . .. ... L o oL 42

2.2 Perturbation equations . . . . . . .. ... 43
2.2.1 Einstein equations . . . . ... ... Lo Lo Lo o 43

2.2.2  Conservation equations . . . . . . .. .. ... . 45

vil



viii

Contents

2.2.3 The Bardeen equation . . . . . ... ... ... ... ...
2.2.4  Collisionless Boltzmann equation . . . . . . ... ... ..
2.2.5 Thomson scattering . . . . .. ... ... ... .. ....
2.2.5.1 Stokes parameters . . . .. ... .. ... ..
2.2.5.2  Scattering cross section . . . . .. ... ... ..
2.2.5.3 Temperature hierarchy . . ... ... ... ...
2.2.5.4 Polarization hierarchy . . . . . . .. .. .. ...
2.2.5.5 E and B polarization . .. ... ... ... ...

II COSMIC MICROWAVE BACKGROUND

3 Fundamental equations

3.1
3.2

3.3

3.4

3.5
3.6

One perfect fluid . . . . . . . . ... oo o
Cold dark matter and radiation . . . . . ... . ... ... ....
3.2.1 Adiabatic and isocurvature modes . . . . . ... .. ...
3.2.2 Acoustic oscillations . . . . .. ... L.

Neutrinos and initial conditions . . . . . . . . . . . ... .. ...

3.3.1 Evolution equations for a three components model

3.3.2 Neutrino entropy mode . . . . . . .. ... Lo

3.3.3 Neutrino velocity mode . . . . .. .. .. ... ... ...

3.3.4 The divergent nature of the anisotropic stress mode

Theroleof baryons . . . . . . . . . ... ... ... . .......
Damping . . . . . .. o
Observable quantities . . . . . .. .. ... ... .. ..
3.6.1 Temperature fluctuations . . . ... ... ... ... ...
3.6.2 Angular power spectra . . . . . . ... ...
3.6.3 Matter power spectrum . . . . .. ... ... ... ...

4 Parameter dependence

4.1

4.2
4.3

Standard parameters . . . . . . . . ... ...
4.1.1 Largescales . . . . . . . . . ...
4.1.2 Acousticregion . . . . . ... ...
4.1.2.1 Peak locations . . ... .. ... ... ... ...
4.1.2.2 Baryon signature . . . . . ... ...
4.1.2.3 Early [ISWeffect . . . .. ... ... ... ....
4.1.3 Damping tail . . . . ... ... oo o
4.1.3.1 Recombination . . . . . .. ...
4.1.3.2 Reionization . . ... ... ... .........
Normal parameters . . . . . . . . . . . . ...
General initial conditions . . . . . .. .. ...
4.3.1 Angular power spectra for all modes . . . . ... ... ..

4.3.2 Modes superposition . . . . .. ..o



Contents ix
III PARAMETER EXTRACTION 109
5 Statistics and data analysis 111
5.1 Elements of probability and statistics . . . . . . . . ... ... o0 111
5.1.1 Some concepts of probability theory . . . . . ... ... ... ... .. 111

5.1.2 The origin of cosmic variance . . . . . . . . . . ... ... ... ... 113

5.1.3 The principle of Maximum Likelihood . . . . ... .. .. ... .... 114

5.1.4 Orthodox probabilities — Confidence intervals . . . . . . . . ... ... 115

5.1.5  Statistical inference — Likelihood intervals . . . . . . . ... ... ... 117

5.1.6 Gridding method . . . . . . . ... oo 122

5.1.7 Markov chain Monte Carlo . . . .. ... ... ... ... ....... 124

5.2  Fisher matrix forecasts . . . . . . . . ... 128
5.2.1 Experimental parameters . . . . . .. ... ... oL 128

5.2.2  Generalizations . . . . . . . . . ... e 129

5.2.3 Accuracy iSSues . . . . . . . ... 130

5.3 CMB observations: a brief historical account . . . . ... ... ... ... .. 131

6 Beyond standard parameters 135
6.1 Extra relativistic particles . . . . . . . ... oo 135
6.1.1 Motivation . . . . . . . . . 136

6.1.2 Effective number of relativistic species . . . . . . . .. ... ... ... 136

6.1.3 CMB theory and degeneracies . . . . . . . . ... ... ... ..., 138

6.1.4 Pre-WMAP constraints from CMB and other data-sets . . . ... .. 140

6.1.5 Fisher matrix forecast . . . . . . ... ... ... ... ... ...... 143

6.2 The primordial helium fraction . . . . . . . . . . ... ... ... .. 148
6.2.1 Motivation . . . . . . . . . 148

6.2.2 The impact of helium on the CMB: ionization history revisited . . . . 149

6.2.3 Astrophysical measurements and BBN predictions . . . . .. ... .. 153

6.2.4 WMAP Monte Carlo analysis . . . . . ... ... .. ... ....... 155

6.2.5 Potential of future CMB observations . . . ... ... ... ...... 159

6.3 Time variations of the fine-structure constant . . . . . . . .. ... ... ... 164
6.3.1 Motivation . . . . .. .. 164

6.3.2 The observational status . . . . . . . ... ... Lo oL 165

6.3.3 Effects of a on the ionization history . . . . . . .. ... ... ... .. 167

6.3.4 The role of reionization . . . . . .. ... ... ... ... ... 168

6.3.5 CMB constraints on « from WMAP alone . . . . . ... ... .. ... 170

6.3.6 Fisher matrix forecasts and degeneracies . . . . . . . .. .. ... ... 172

7 Testing the paradigm of adiabaticity 185
7.1 Introductory survey . . . . . . . . . 185
7.2 Precision cosmology and general initial conditions . . . . . . . ... ... ... 187
7.2.1 Pre-WMAP data analysis . . . . .. ... ... ... ... ...... 187

7.2.2 How important is the assumption of adiabaticity? . . . ... .. ... 190

7.3 The cosmological constant problem . . . . . . ... ... ... .. ... ... 192
7.3.1 Does structure formation need a cosmological constant? . . . . . . .. 192



X Contents

7.3.2 CMB and large scale structure data analysis . . . .. ... ... ... 193

7.3.3 Adiabatic perturbations . . . . . .. ... ... L. 194

7.3.4 Mixed adiabatic and isocurvature perturbations . . . . . . ... .. .. 196

7.3.5 Do isocurvature perturbations mitigate the A problem? . . .. .. .. 200

7.4 Precision cosmology independent of initial conditions . . . . . . . . ... ... 203
Publication list 205

Bibliography 207



List of Figures

R.1

R.2

R.3

R.4

1.1

2.1

3.1

4.1
4.2
4.3
4.4

4.5

4.6
4.7

4.8
4.9
4.10

5.1
5.2

5.3

6.1

Illustration de la dépendance des spectres de puissance des conditions initiales
et de la distance angulaire. . . . . . . . ... .. Lo 4
L’effet de la fraction d’hélium sur le spectre de puissance et les contraintes
obtenues avec le fond diffus. . . . . . .. ... ... o oL 7
Effet d’une variation temporelle de la constante de structure fine sur les
spectres de puissance du fond diffus et contraintes observationelles sur la va-

leur de cette constante a I’époque de le recombinaison. . . . . . .. .. .. .. 9
Détermination des parametres cosmologiques indépendamment des conditions

initiales et mesure de la contribution des modes isocourbures. . . . . . . . .. 11
Mlustration of the determination of (£2,,, ) using supernovae data. . . . . . 34
Geometry of the the Thomson scattering process. . . . . . . . . .. ... ... 51
CMB transfer functions for adiabatic and isocurvature initial conditions. . . . 84
Mlustration of the geometrical degeneracy. . . . . . . . . . ... ... ... .. 96
Individual contributions to the adiabatic temperature spectrum. . . . . . .. 97
Impact of the shift parameter on the temperature and polarization spectra. . 101
Impact of a change in the epoch of equality on the temperature and polariza-

tion spectra. . . . . . ... 102
Impact of the energy density in the cosmological constant on the CMB tem-

perature and polarization spectra. . . . . . .. ... Lo 102
Impact of the baryon density on the temperature and polarization spectra. . 103
Impact of a degenerate combination of the normalization and the reionization

optical depth on the temperature and polarization spectra. . . . . .. .. .. 104
Impact of the scalar spectral index on the temperature and polarization spectra.104
Temperature and polarization spectra for general initial conditions (I). . . . . 106
Temperature and polarization spectra for general initial conditions (II). . . . 107
Ilustration of the burn-in period for Monte Carlo Markov chains. . . . . . . . 127
The small scale temperature spectrum observed by the CBI and ACBAR

experiments. . . . . ... 132
A compilation of pre-WMAP CMB temperature anisotropy data compared

with the WMAP temperature power spectrum. . . . . . . .. ... ... ... 133
CMB degeneracies including wyel- -« -« v« v oo oo e 139

xi



xii

List of Figures

6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10
6.11

6.12
6.13
6.14
6.15

6.16

6.17
6.18

6.19
6.20
6.21
6.22
6.23
6.24

6.25

7.1
7.2

7.3
7.4

7.5

7.6
7.7

The shift parameter as a function of the effective number of relativistic species.140
Two-dimensional likelihood plots for w,e and other parameters. . . . . . . . . 141
Likelihood probability distribution function for the redshift of equality. . . . 142
Derivatives of Cy with respect to the 9 parameters of the Fisher matrix analysis.147
Tonization history for different values of the helium fraction. . . . . . . . . .. 150
Temperature and polarization power spectra for different values of the helium

mass fraction. . . . . . . .. L 152
Comparison between current astrophysical errors on the helium fraction and

the CMB potential. . . . . .. .. ... 154
Likelihood distribution for the helium mass fraction from CMB data only. . . 156
Joint likelihood intervals in the (wp, Yp)-plane from CMB data alone. . . . . . 158
Joint likelihood contours in the (Y}, 2. )-plane and (Y}, 7y )-plane from CMB

data alone. . . . . . ... 159
Scatter plot in the wp —ng plane. . . . . . .. .. L Lo 160
FMA forecast for the expected errors on the helium fraction. . . ... .. .. 163
Degeneracy between the shift parameter and the fine-structure constant. . . . 168
Tonization fraction and visibility function for different values of the fine-structure
constant at the epoch of decoupling. . . . . ... ... ... ... ... 169
Impact of variations of the fine-structure constant and of the reionization

optical depth on the CMB spectra. . . . . . ... .. .. ... .. ... .... 170
Effect of variations of the fine-structure constant on the CMB power spectra. 171

Likelihood distribution function for variations in the fine-structure constant
from CMB alone. . . . . . . . . . . . . e 172
Likelihood contour plot in the agec/g — Tre Plane. . . . . . . . ... ... .. 173
Likelihood contour plot in the agec/ag — dng/dInk plane. . . . . . . ... .. 174
Fisher matrix forecasts for Planck for all couples of standard parameters. . . 179
Fisher matrix forecasts for an ideal CMB experiment for all couples of standard
parameters. . . . . ... .o e e e e e e e e e 180
Fisher matrix forecasts for Planck including variations in the fine-structure
constant. . . ... L oL e e 182
Fisher matrix forecasts for an ideal CMB experiment including variations in
the fine-structure constant. . . . . . . . ... ... ... L. 183
Forecasts in the agec/co — Te Plane. . . . . .. oo o Lo 184
Best-fit models for purely adiabatic and mixed initial conditions. . . . . . .. 189
Likelihood contours for purely adiabatic and mixed isocurvature models and
isocurvature content of the best fit general isocurvature models. . . . . . . . . 190
Bayesian and frequentist likelihood contours in the (24, k) plane. . . . . . . . 195
Best fit of CMB and 2dF data compatible with Q24 = 0 for purely adiabatic
models. . . . e 197
Bayesian and frequentist likelihood contours in the (24, h) plane for general
isocurvature models. . . . . . ... 198
Dark matter power spectra for adiabatic and isocurvaure initial conditions. . 199

Concordance model fit with general isocurvature initial conditions and 2dF
dataonly. . . . . . . L 200



List of Figures xiii

7.8 Best fit with mixed isocurvature models and Qy =0. . . . . . . ... . . ... 201
7.9 Isocurvature content of the best fit models. . . . . . ... ... ... ..... 202
7.10 Forecast for initial conditions independent determination of normal parameters.203






List of Tables

1.1 Parameters of present-day “ACDM cosmological concordance model”. . . . . .

5.1 Chi-square difference for one- and two-dimensional marginalized likelihood plots.123

6.1 20 likelihood intervals on the effective energy density of relativistic particles
from pre-WMAP data. . . . . . . . ...
6.2 Experimental parameters used in the Fisher matrix analysis. . . . . ... ..
6.3 Fisher matrix forecasts for the errors on the energy density in relativistic
particles. . . . . . L L e e
6.4 Fiducial model for the Fisher matrix analysis. . . . . . . .. .. .. ... ...
6.5 Fisher matrix forecasts and comparison with present-day results for the helium
mass fraction. . . . . ... oL
6.6 Experimental parameters for the Fisher matrix analysis. . . . . . . .. .. ..
6.7 Forecasts for the WMAP four year mission including reionization. . . . . . .
6.8 Forecasts for the WMAP four year mission including fine-structure constant
variations and reionization. . . . . . .. ... oL Lo oL
6.9 Fisher matrix forecast for the Planck satellite and and ideal experiment. . . .
6.10 Fisher matrix forecast for the Planck satellite and and ideal experiment in-
cluding variations of the fine-structure constant. . . . .. ... ... ... ..

7.1 Likelihood (Bayesian) and confidence (frequentist) intervals for 25 alone.

XV






Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo
e sanza cura aver d’alcun riposo
salimmo su, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta 'l ciel, per un pertugio tondo;
e quindi uscimmo a riveder le stelle.

DANTE, La divina commedia
Inferno XXXIV, 133-139.






Résumé

Introduction

Un des piliers les plus importants pour le développement de la cosmologie moderne est le
rayonnement diffus cosmologique. Ce dernier est constitué de photons produits en équilibre
thermique durant la phase chaude, apres I’explosion primordiale (le Big-Bang). Du fait de
I’expansion et du refroidissement de 1'univers, des que la temperature est descendue au
dessous de ~ 0.25 eV, les électrons se sont combinés avec les protons et les neutrons, formant
principalement de I’hydrogene et de I’helium. Ce proces, qui remonte a 300’000 ans seulement
apres le Big-Bang, est appelé « recombinaison ». Des lors, les photons du rayonnement de
fond diffus ce sont propagés quasiment librement jusqu’a nous, tout en réduisant leur énergie
du fait de I’expansion de 1'univers.

L’origine cosmologique du rayonnement diffus est confirmée par ses caractéristiques par-
ticulieres : il est trés homogene et isotrope, avec une distribution spectrale de corps noir et
une temperature de 2.728 K. Si ce rayonnement intéresse les cosmologues, c¢’est que l'on y a
observé la présence de petites fluctuations de temperature (« anisotropies ») a hauteur d’une
partie pour 100’000. Celles-ci seraient la conséquence de perturbations quantiques primor-
diales qui ont constitué la base du développement des structures a grande échelle de I'univers.
En simplifiant, on pourrait affirmer que les anisotropies dans le fond diffus représentent un
instantané de I'univers tel qu’il était au moment ou les photons se sont découplés des élec-
trons (ce qu’on appelle le « découplage » ou, quand on s’interesse a la dependence spatiale
des fluctuations, la « surface de dernieére diffusion »). La distribution statistique des fluctua-
tions de temperature que I’on mesure aujourd’hui, contient différentes signatures qui sont en
relation, d’une part avec les conditions initiales de I’univers primordial et, d’autre part, avec
le contenu de matiere-énergie de I'univers actuel. En comparant les modeles théoriques avec
les observations, on peut placer des contraintes sur la valeur des parametres cosmologiques
et étudier la physique de 'univers primordial a des énergies qui ne seront jamais produites
par les accélérateurs de particules. Cette démarche est possible depuis 1992, quand le satel-
lite COBE mesura pour la premiere fois les anisotropies dans le rayonnement diffus (Smoot
et al., 1992). Aujourd’hui, des données de tres haute qualité ont été recueillies par différents
groupes, et particulierement par le satellite WMAP (Bennett et al., 2003). On s’attend a des
autres améliorations dans les prochaines années, notamment grace a 1’observation de la po-
larisation du fond cosmique. Plusieurs observations indépendantes semblent aujourd’hui étre
expliquées par un univers avec des sections spatiales plates, qui contient environ 5% de ba-
ryons, 25% de matieére noire non-baryonique, et dont le restant, 70%, est constitué d’énergie
sombre, éventuellement sous la forme d’une constante cosmologique. Les conditions initiales



2 Résumé

sont en grande partie adiabatiques, méme s’il n’est pas possible d’exclure des contributions
de type isocourbure. Le spectre des fluctuations est proche de l'invariance d’échelle et 1'on
sait que 'univers a été réionisé a un redshift compris entre 7 et 20.

Cette these comporte trois parties. Dans la premiere partie, nous introduisons des élé-
ments de cosmologie standard, ainsi que la théorie linéaire des perturbations, dans le cadre
d’un formalisme invariant de jauge. Nous dérivons ensuite I’équation de Boltzmann, qui dé-
crit ’évolution des perturbations d’une composante relativiste et nous discutons le terme de
collision du a la diffusion de Thomson entre photons et électrons. La génération et I’évolution
d’une composante polarisée sont également présentées. La deuxiéme partie est une application
de ces résultats au rayonnement diffus cosmique. En premier lieu, différents approximations
analytiques permettent de comprendre les mécanismes physiques qui génerent les fluctua-
tions de temperature sur différentes échelles. En deuxieme lieu, la dépendance quantitative
des parametres cosmologiques et des conditions initiales est explorée en détail a ’aide de
techniques numériques. La troisieme partie porte sur la comparaison entre les observations
et quelques modeéles qui incluent des parametres non-standards. Apres une introduction des
techniques statistiques utilisées, nous poursuivons, dans les chapitres 6 et 7 deux lignes de
recherche : la premiere s’occupe de la possibilité de détecter ou contraindre, par le rayonne-
ment de fond, des phénomenes physiques au-dela du modele standard ; la deuxiéme porte sur
I'influence des conditions initiales sur le rayonnement cosmique, ainsi que 1’étude des consé-
quences phénoménologiques de I'existence de perturbations de type isocourbure. Les résultats
originaux de ces recherches ont été publiés dans neuf articles, en collaboration avec divers
chercheurs : Pedro P. Avelino, Rachel Bean, Rebecca Bowen, Ruth Durrer, Steen H. Hansen,
Carlos J. A. Martins, Alessandro Melchiorri, Alain Riazuelo, Graca Rocha, Joseph Silk et
Pedro T. P. Viana.

Le rayonnement cosmologique de fond diffus

On décrit 'univers primordial comme un mélange & quatre composantes, a savoir des
photons, des neutrinos de masse nulle, des baryons et de la matiére noire froide (CDM). A
une temperature T 2,0.25 eV, les photons sont étroitement couplés aux baryons grace a leur
diffusion de Thomson avec des électrons, et forment un plasma. Les fluctuations de densité
dans ce plasma augmentent sous l’effet de la gravitation, mais la compression qui en résulte
est contrebalancée par la pression de radiation des photons : des oscillations harmoniques
apparaissent. Dans un modele simplifié, comprenant photons et matiere noire — mais ou ’on
néglige leffet dynamique des baryons — ’équation d’évolution du contraste de temperature
des photons dans la jauge Newtonienne, AT/T = O, se réduit a celle d’un simple oscillateur
harmonique forcé :

k2 k2

ou le potentiel gravitationel ¥ joue le role de force d’entrainement. Puisque le potentiel est

v, (R.1)

approximativement constant pour les temps qui nous intéressent, la solution générale est
© = Acos(kn/V3) + Bsin(kn/V3) — ¥, (R.2)

n étant le temps conforme et k le vecteur d’onde. Les conditions initiales déterminent le
mode, sinus ou cosinus, qui est excité. Les conditions dites « adiabatiques » correspondent
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a des fluctuations initiales avec la méme dépendance spatiale dans toutes les composantes
et excitent le cosinus. Les conditions de type « isocourbure » entrainent par contre des
perturbations de ’entropie entre I'une des composantes et les photons. Le mode sinus est
excité par une perturbation initiale dans I'’entropie de la matiére noire.

Quand la temperature descend au dessous de 0.25 eV, les électrons libres sont capturés
par les protons (recombinaison de I’hydrogene), l'univers devient transparent et les photons
peuvent se propager librement le long de géodésiques. Les fluctuations de densité du plasma
et les irrégularités dans le potentiel gravitationnel au moment de la derniere diffusion, res-
tent figées sous forme de perturbations dans la temperature des photons du rayonnement
cosmique. Dans la limite d’une recombinaison instantanée, le contraste de temperature ac-
tuel dans le rayonnement cosmologique diffus (CMB) se compose de trois termes, qui dans
I’espace de Fourier ont la forme suivante :

70 . X
@|770 = ®|rec —ik - nvb‘rec + / dn(\ll + ‘I)) s (RB)

ou 7 est le temps conforme, 79 sa valeur actuelle et 7y la valeur a ’époque de la recom-
binaison. Le premier terme représente les fluctuations de temperature sur la surface de la
derniere diffusion (« effet Sachs-Wolfe ordinaire »). Le deuxieme terme correspond & effet
Doppler di au mouvement relatif du plasma par rapport a I'observateur. Le dernier terme
résulte de la dépendance temporelle des potentiels gravitationnels ¥ et ® tout au long du
chemin parcouru par les photons (« effet Sachs-Wolfe intégré »).

Le contraste de temperature sur la sphere céleste en direction n peut étre développé en
harmoniques sphériques,

o) V4
O=> Y amYin(n). (R.4)

£=0 m=—¢

La fonction de correlation entre deux directions n et n’ telles que n - n’ = cos ¥ s’écrit alors

C(9) = % S @0+ 1)CPn - n), (R.5)
V4

ou nous avons introduit le spectre de puissance Cp, défini comme
<a€m : az/m/> = 5@[’5mm’cﬂ 5 (R6)

ou Py sont les polynémes de Legendre. Si les fluctuation suivent une distribution Gaussienne,
le spectre de puissance contient la totalité de I'information statistique. Le spectre de puis-
sance est dominé par des effets différents sur des échelles angulaires différentes. A grande
échelle (c’est-a-dire pour 2 < ¢ <20), on observe un plateau qui dépend du spectre des fluc-
tuations primordiales. Une contribution de I’effet Sachs-Wolfe peut se rajouter si la constante
cosmologique ou la courbure de 'univers sont différentes de zéro. Pour une séparation angu-
laire 9 $1° ou £ 2200, on retrouve une série de pics qui correspondent aux oscillations de
Olrec dans (R.3), ce qui suit de équation (R.2) évaluée au moment de la recombinaison. A
une échelle encore plus petite, ¥ < 0.2°, le spectre s’efface de facon exponentielle a cause du
couplage imparfait entre photons et baryons. Cet effet est connu sous le nom d’ « atténuation
de Silk ».
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F1G. R.1 — Spectres de puissance de la temperature (en haut) et de la polarisation (en bas).
A gauche, pour les méme valeurs des parametres cosmologiques mais avec conditions initiales
adiabatiques (ad) ou isocourbure CDM (ci). A droite, pour des conditions initiales adiaba-
tiques mais pour des valeurs différentes de la distance angulaire de la surface de derniere
diffusion. Les spectres de puissance sont sensibles aux conditions initiales aussi bien qu’aux
parametres cosmologiques.

La section efficace de la diffusion de Thomson dépend de 1’état de polarisation des pho-
tons. Une distribution quadrupolaire de la temperature lors de la recombinaison, génere une
polarisation linéaire dans le fond diffus d’environ 10% d’amplitude par rapport & la tempera-
ture. Le spectre de puissance de la composante polarisée est défini de fagon analogue a celui
de la temperature et il contient de l'information complémentaire. La polarisation du fond
diffus a été récemment observée (Kovac et al., 2002).

La position et la hauteur relative des pics dans les spectres de temperature et de polari-
sation, sont déterminées par quatre quantités observables et par les conditions initiales. Les
quatre quantités sont : la distance angulaire de I’horizon du son évaluée au moment de la
recombinaison, I’époque d’égalité entre matiere et radiation, la densité baryonique et 1’échelle
d’atténuation (Hu & Dodelson, 2002). Elles sont aussi appelées « paramétres normaux », car
elles ont un effet presque orthogonal sur les spectres (Kosowsky et al., 2002). Les conditions
initiales, quant & elles, déterminent la phase des oscillations (sinus ou cosinus) et donc la
position du premier pic. En outre, le spectre des fluctuations primordiales controéle la pente
générale du spectre de puissance. La Figure R.1 montre, & gauche, les spectres de temperature
et polarisation en fonction d’un différent choix de conditions initiales, et a droite, le spectre
adiabatique pour des valeurs différentes de la distance angulaire de la surface de derniere
diffusion. A partir des observations, on reconstruit avec précision la valeur des parametres
normaux, si I’on considere les conditions initiales les plus simples, a savoir de type adiaba-
tique. La tache se complique lorsqu’on essaie de déterminer en méme temps les parametres
cosmologiques et les conditions initiales, car d’importantes dégénérescences dans I’espace des
conditions initiales sont présentes.
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Au-dela des parametres standards

Le rayonnement diffus cosmologique est un excellent instrument pour tester notre para-
digme cosmologique. D’abord parce que sa description est basée sur la théorie de la Relativité
Générale et sur ses perturbations linéaires, que nous maitrisons bien. Deuxiémement, les ré-
centes données sont d’une telle qualité qu’elles nous permettent d’observer des effets tres
subtils, dont on n’espérait pas voir les conséquences il y a seulement quelques années.

Par la suite, 2x est le parametre de densité d’énergie de la composante X aujourd’hui,
exprimé en unités de la densité critique p..;, ~ 1.88-10729 B2 g/ cm®. Le parameétre d’"Hubble
actuel s’écrit Hy = 100 h km s~! Mpc™!. La densité d’énergie py s’exprime alors comme
px(no) = wx 1.88 - 10729 g/cmg, oll nous avons introduit wxy = Qxh? et 1y est la valeur

actuelle du temps conforme.

Le contenu de 'univers en énergies relativistes

Dans le § 6.1 nous nous occupons de l’energie relativiste contenue dans l'univers. Nous
décrivons le nombre d’espéces relativistes par le nombre équivalent de familles de neutrinos
sans masse, Neg (Bowen et al., 2002). Dans le modele standard de la physique des parti-
cules, Nog = 3. Toutefois, il existe plusieurs mécanismes qui pourraient donner Nog # 3 en
cosmologie. En particulier, il est important de remarquer que aussi bien la théorie de la nu-
cléosynthese que le rayonnement diffus, mesurent ’énergie totale sous la forme de particules
relativistes a travers 'effet que celle-ci a sur I’expansion cosmique. De ce fait, la nucléosyn-
these et le rayonnement diffus, n’évaluent pas seulement les neutrinos actifs. Ces mesures se
réferent a deux différents moments de I’histoire cosmique : la nucléosynthese, & un redshift
2z ~ 109, et le CMB, & z ~ 1100. Il se pourrait donc que le résultat obtenu avec le CMB
differe de celui ressorti de la comparaison entre les prédictions de la nucléosynthése et les ob-
servations des éléments légers. Ce dernier donne Neg < 3.20 (avec 95% de confiance) (Burles
et al., 1999).

En ce qui concerne le rayonnement diffus, on écrit donc la densité d’énergie en particules
relativistes sous la forme

Wrel = 4.13-107°(1 4+ 0.135 - ANcuB) - (R.7)

On dénote par ANcyp la différence entre le nombre effectif de neutrinos relativistes et le
nombre standard, c’est-a-dire Neg = 3 + ANcmp. La quantité ANcyp peut étre aussi bien
positive que négative, ce dernier cas se retrouvant par exemple si les neutrinos ont un po-
tentiel chimique non-nul (Kang & Steigman, 1992). Nous montrons que le parametre wye est
presque dégénéré avec la densité d’énergie en matiére wy,, et cela du moment que le CMB
mesure 1'époque d’égalité entre matiere et radiation, zg = Wi /Wrel, Plutdt que les deux
termes séparément. En plus, 'utilisation de w,¢ en tant que parametre non-standard dans
I’analyse des données du rayonnement diffus, comporte une dégradation des contraintes sur
d’autres parametres et précisément la courbure de I'univers et l'indice spectral des fluctua-
tions. Nous dérivons ensuite des limites sur Neg a partir d’'une compilation des observations

du rayonnement diffus effectuées avant WMAP pour obtenir

0.04 < Nog < 13.37  (20). (R.8)
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Ces limites peuvent étre améliorées si I'on inclut des informations supplémentaires, qui dé-
coulent d’observations de supernove ou de la distribution des structures a grande échelle.
En particulier, la limite supérieure devient Ng < 6.5 en utilisant les résultats des supernovae
et Neg < 9.6 si 'on rajoute au CMB des observations du spectre de puissance de la matiere.
Méme si ces contraintes sont beaucoup moins fortes que celles obtenues par la nucléosynthese,
elles sont néanmoins importantes car totalement indépendantes.

Il est possible de formuler des prédictions détaillées sur les résultats de futures observations
avec une technique statistique appelée analyse de la matrice de Fisher. Nous avons formulé
de cette facon des prédictions pour le satellite WMAP, qui ont été ensuite confirmées par
I'analyse des données. Comme prévu, la meilleure précision des observations sur une échelle
plus petite a permis de réduire les dégénérescences, en donnant ANcyp = 3.4 (1o) (Crotty
et al., 2003b). Nous avons également appliqué cette méthode au satellite Planck, qui devrait
étre lancé en 2007 (Planck Website, 2004). La conclusion est que Planck sera capable de
déterminer le contenu d’énergie en particules relativistes avec une précision ANeg =~ 0.24
(1o), donc en améliorant les contraintes actuelles d’un facteur 13.

La quantité d’helium primordial et son effet sur le rayonnement cosmique

La nucléosynthese primordiale prédit ’'abondance des éléments légers D, 3He, “He et "Li
en fonction de deux parametres seulement, a savoir la densité de baryons et la densité de
particules relativistes. Si ’on suit le modele standard de la physique des particules, avec
Neg = 3, il s’en suit que la densité de baryons détermine les abondances des quatre élé-
ments légers. Les observations de la présence de ces éléments sont partiellement en désaccord
entre elles. On retrouve en particulier des valeurs différentes de la fraction de “He suivant le
groupe de chercheurs qui a effectué I’observation. Si le désaccord entre certaines mesures de
la fraction d’hélium et les observations du deuterium était confirmé, cela serait une indica-
tion certaine de nouveaux mécanismes physiques a l'oeuvre durant la nucléosynthese. Cette
hypothese ne peut étre vérifiée qu’en disposant d’une mesure indépendante de la fraction
d’hélium, car les différences entre les observations astrophysiques pourraient étre dues a des
erreurs systématiques.

Dans le § 6.2 nous nous intéressons a la possibilité d’utiliser le fond diffus pour mesurer
indépendamment la fraction primordiale d’*He, c’est-a-dire la quantité Y, = 4npe/np (Trotta
& Hansen, 2004). Ici, ny. dénote la densité du nombre d’atomes de *He et ny, celle de baryons.
Une simple estimation montre que 1'on s’attend que Y}, ~ 0.25. L’effet de Y}, sur les spectres
de puissance du CMB se produit a travers des modifications de I’histoire de l'ionisation de
I'univers. En particulier, avant la recombinaison de I’hydrogene, la valeur de Y, controlait la
densité d’électrons libres dans le régime de couplage fort. Si on suppose que la valeur de Y,
était plus petite, on trouve alors qu’il y avait moins d’électrons libres. De ce fait, le couplage
était moins efficace et I’on observe une réduction de la puissance a petite échelle. Cet effet
est toutefois tres petit, cf. le panneau a gauche de la Figure R.2. L’analyse des données de
WMAP, combinées avec d’autres mesures a plus petites échelles, ne donne qu’'une détection
marginale, a savoir 0.160 < Y, < 0.501 (68% de confiance), cf. le panneau a droite de la
Figure R.2. Il faut remarquer que les différences entre les mesures astrophysiques de Y), sont
au plus de l'ordre AY),, ~ 0.02, donc le fond diffus est actuellement beaucoup moins précis.
Nous estimons toutefois que le satellite Planck pourra réduire 'incertitude a 5%, c’est-a-dire
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Fic. R.2 - A gauche, on montre 'effet de la fraction d’hélium sur le spectre de puissance de
la temperature. A droite, la courbe de la probabilité marginalisée pour la fraction d’hélium
Y, (en noir, ligne continue), obtenue a partir des données sur le fond diffus. L’effet étant
tres petit, on ne retrouve qu’une détection marginale. La théorie de la nucléosynthese et les
observations d’astrophysique donnent Y, ~ 0.24.

AY,, ~ 0.01, ce qui serait a peine suffisant pour discriminer les résultats astrophysiques qui
donnent une petite fraction d’hélium, Y, ~ 0.23 (Olive et al., 1997), et ceux qui donnent
une fraction plus importante, Y, ~ 0.25 (Kirkman et al., 2003). Nous montrons que la limite
fondamentale & la précision qu’on peut atteindre avec le CMB est de AY), ~ 0.0036.

Une question importante porte sur les dégénérescences entre Y}, et d’autres parametres cos-
mologiques. En particulier, on s’attend a ce que la fraction d’hélium et la densité de baryons
soient corrélées entre elles. Il est donc potentiellement important de considérer 'incertitude
actuelle sur la valeur de Y, dans les analyses du fond diffus, afin d’estimer correctement
I’erreur sur la densité de baryons. Nous trouvons que cette corrélation n’a pas d’influence sur

les données actuelles, mais qu’elle devra étre inclue dans ’analyse des données du satellite
Planck.

Variations dans le temps de la constante de structure fine

La théorie des supercordes est formulée dans un espace a dix dimensions, qui peut étre
compactifié et réduit a quatre dimensions. Une des conséquences de cette manipulation est
que les constantes fondamentales en dix dimensions acquierent une dépendance spatiale et
temporelle dans notre univers a quatre dimensions. La cosmologie offre la possibilité d’obser-
ver de telles variations, et méme — en principe — de falsifier la théorie des cordes. Beaucoup
d’efforts ont été fournis ces dernieres années, pour étudier les variations dans le temps de la
constante de structure fine, o = €2 /(hc). Plusieurs méthodes ont été appliquées et le résultat
le plus intéressant est probablement celui de Webb et al. (2001) qui ont comparé les spectres
de transition atomique de quasars lointains avec ceux mesurés en laboratoire. Ils concluent
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que (cf aussi Murphy et al., 2001a,b,c)

A
29 (L07240.18)x107°, 2~ 05— 3.5. (R.9)

Ceci montre qu’avec plus de 40 de confiance, « était plus petite dans le passé. Une autre
indication vient de I’analyse du réacteur naturel d’Oklo. Dans ce cas, il est toutefois difficile
de discriminer entre deux différents solutions, qui menent I'une & un résultat nul, I'autre
a une détection d’une valeur de o qui a z ~ 0.1 était plus grande qu’aujourd’hui (Fujii,
2002). Dans beaucoup de modeles, la variation temporelle de a est déterminé par un champ
scalaire, et dans ce cas «(t) doit étre une fonction monotoniquement croissante dans le temps
(Damour & Nordtvedt, 1993). L’observation d’une constante de structure fine qui était plus
grande dans le passé pourrait donc falsifier ces modeles, et serait I'indication d’un nouveau
mécanisme physique inconnu a ’heure actuelle.

Dans ce cas aussi, le rayonnement diffus s’offre come possibilité indépendante de tester
ces résultats, en mesurant la valeur de v & I’époque de la recombinaison, ayec = a(z ~ 1100).
Nous présentons dans le § 6.3 les dernier résultats d’une ample collaboration que nous avons
menée avec des chercheurs de Paris, Porto, Oxford, Princeton et Rome (Martins et al., 2002,
2004; Rocha et al., 2004). Nous expliquons comment la valeur de aye. influence ’histoire de
I'ionisation de 'univers, et donc le spectre de puissance du CMB. Les deux effets principaux
sont le déplacement de I’'époque de la recombinaison et le changement de 1'épaisseur de la
surface de derniere diffusion. Ces modifications sont une conséquence du fait que 1’énergie
de liaison de I’hydrogene est proportionnelle & o?. Le spectre de la temperature présente
donc une réduction de la puissance a petite échelle et un déplacement des pics vers les
petits multipoles si ayec/ap < 1, olt oy dénote la valeur de la constante de structure fine
aujourd’hui. Ces effets sont montrés dans le panneau a gauche de la Figure R.3. La valeur de
Qrec €St partiellement dégénérée avec la distance angulaire de la surface de derniere diffusion,
et l'indice spectral ng.

En n’utilisant que les données de WMAP, nous obtenons les contraintes

0.94 < aec/ap < 1.01  (95% de confiance). (R.10)

Bien que la précision du CMB soit beaucoup moins grande que celle atteinte avec les lignes
de transition des quasars, il est important de remarquer que le CMB est sensible a des
époques tres antérieures, z ~ 1100. On peut s’attendre a ce que des variations éventuelles de
« soient plus importantes a ce moment-la que pour les époques observées grace aux spectres
de quasars, c’est-a-dire z ~ 2 — 3. Nous nous intéressons aussi au role de la réionisation.
Nous montrons que 'existence d’une époque de réionisation précoce, telle que I'indiquent les
données de WMAP, est utile pour augmenter la précision sur ayec, si I’'on suppose que la
réionisation se complete sur une courte échelle de temps (réionisation soudaine).

Nous fournissons des prédictions détaillées concernant la précision des futures observations
pour tous les parametres cosmiques standards et . Par sa nature, le spectre de polarisation
peut donner de meilleures contraintes que celui de la temperature, et donc des observations
particulierement pointues de la polarisation seront tres utiles. Le satellite Planck doublera
la précision de WMAP pour la majorité des parametres et réduira ainsi lerreur sur agec
d’un facteur cing par rapport & aujourd’hui, en obtenant Acyec ~ 0.3%. Si Planck rejoindra
pratiquement la limite de la variance cosmique pour la temperature, il n’en sera pas de
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Fic. R.3- A gauche, effet d’une variation temporelle de la valeur de la constante de structure
fine a I’époque de le recombinaison, aye.. En haut le spectre de puissance de la temperature, en
bas celui de la polarisation. On remarque une modification de la suppression a petite échelle et
un déplacement horizontal de la structure des pics. A droite, les contraintes observationelles
SUr auec/p obtenues des données de WMAP.

méme pour la polarisation. En effet, une éventuelle mission ayant une incertitude concernant
la polarisation pres de la variance cosmique, pourrait encore améliorer la performance de
Planck d’un facteur deux ou trois sur la plupart des parametres, y compris quec-

Tests du paradigme adiabatique

La position du premier pic des oscillations acoustiques — qui se trouve a ¢ = 220.1 +
0.8 (Page et al., 2003) — indique que les conditions initiales sont dominées par le mode
adiabatique. Déja les données de BOOMERanG et MAXIMA avaient permis d’exclure des
fluctuations purement isocourbure CDM (Enqvist et al., 2000). Cela ne signifie pas pour
autant que des contributions isocourbure ne soient pas présentes. En effet, il n’y pas de
raison fondamentale pour croire que 'univers primordial soit décrit par un seul degré de
liberté, a savoir un champ inflationnaire unique. Il existe plusieurs scénarios possibles, ou
par example la présence d’un deuxiéme champ inflationnaire produit une mixture corrélée
de perturbations adiabatiques et isocourbure (Langlois, 1999). Le mécanisme du curvaton
(Lyth & Wands, 2002; Moroi & Takahashi, 2001; Enqvist & Sloth, 2002; Lyth et al., 2003),
est également a méme de générer un mode adiabatique dominant, mais il le fait avec une
contribution plus ou moins accentuée d’un mode isocourbure (Lyth et al., 2003). D’un point
de vue phénoménologique, on peut donc se demander quelles sont les conditions initiales les
plus générales et quelles sont les perspectives de les déterminer en utilisant le fond diffus.

Pour un univers qui contient des photons, des neutrinos sans masse, de la matiere noire
froide et des baryons, on retrouve cing solutions aux équations d’Einstein, qui donnent des
fluctuations croissantes dans le temps (Bucher et al., 2000). Comme nous le montrons dans
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les § 3.2 et § 3.3, ces cinq modes correspondent aux conditions initiales adiabatiques, iso-
courbure CDM, isocourbure baryons, entropie neutrino et vitesse neutrino. Les modes iso-
courbure baryons et entropie neutrino sont analogues au mode isocourbure CDM, sauf que
la perturbation d’entropie concerne les baryons et les neutrinos, respectivement. Le mode
vitesse neutrino est caractérisé par ’absence de fluctuations dans les contrastes de densité
des composantes et par une perturbation relative du flux de neutrinos par rapport aux pho-
tons. Dans la littérature, on appelle collectivement « modes isocourbure » tous les modes
non-adiabatiques, méme si tous n’ont pas une perturbation de la courbure nulle au début
de leur évolution. Le mode isocourbure baryons étant égal au mode isocourbure CDM, a
une constante multiplicative pres, on ne peut considérer que quatre modes. Le spectre de
puissance le plus général est alors donné par la superposition de ces quatre modes et de
leurs corrélateurs. Méme si ’on suppose que tous les modes ont le méme indice spectral, la
description des conditions initiales générales requiert désormais dix parametres, a savoir les
amplitudes des quatre modes, ainsi que celles des six corrélateurs possibles.

Si on admet la possibilité de la présence de modes isocourbures, deux questions se posent
naturellement. La premiere concerne les contraintes qu’il est possible de placer sur les contri-
butions non-adiabatiques. La deuxieme porte sur ’estimation des parametres cosmologiques,
indépendamment des conditions initiales. Pour répondre a cette deuxieme question, on ana-
lyse les données du fond diffus, en marginalisant les conditions initiales générales. De cette
fagon, on peut vérifier 'importance de la supposition selon laquelle les fluctuations seraient,
a priori, purement adiabatiques, ce que I'on appelle « le paradigme adiabatique ».

Nous examinons dans le § 7.2 le cas de la densité baryonique et du parametre de Hubble.
Nous trouvons qu’il n’est quasiment plus possible de mesurer ces deux parametres avec
les données antérieures a WMAP si 'on rajoute les modes isocourbure aux conditions ini-
tiales (cf. Figure R.4, panneau de gauche). En méme temps, il est treés difficile de placer
des contraintes sur les contributions non-adiabatiques (Figure R.4, panneau de droite). Les
conditions initiales générales, ont été introduites dans I’analyse des données du rayonnement
de fond pour la premiere fois dans Trotta et al. (2001). Des travaux plus récents (Crotty
et al., 2003a; Bucher et al., 2004) parviennent a des conclusions qualitativement similaires.
Ceci montre que la supposition de ’adiabaticité des conditions initiales joue un roéle fonda-
mental dans I'estimation des parametres cosmologiques. On ne peut donc pas encore parler
de « cosmologie de précision » en dehors d’un modele spécifique pour la réalisation des
conditions initiales.

En vue de ce résultat, il est intéressant de se demander si la présence de modes iso-
courbures a une influence sur la détermination de la constante cosmologique dans les don-
nées du rayonnement diffus. La présence d’une constante cosmologique A reste un des plus
grands mysteres de la cosmologie contemporaine. Sa nature démeure inconnue et il n’y a
pas d’explication satisfaisante au motif pour lequel de nombreuses observations indiquent
Qp ~ 0.7, alors que 1’échelle de brisure de la super-symétrie donnerait une estimation de
I'ordre Q5 ~ 108, Le fond diffus & lui seul ne peut pas déterminer Q5 & cause d’'une dégé-
nérescence géométrique (Efstathiou & Bond, 1999). Comme nous I'avons déja expliqué, la
position du premier pic indique toutefois que Q24 + €, ~ 1. La combinaison de ce résultat
avec les observations des supernovae (Perlmutter et al., 1999; Tonry et al., 2003), des struc-
tures a grandes échelles (Tegmark et al., 2004b) et/ou des lentilles gravitationelles (Contaldi
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Fic. R4 - A gauche : régions de probabilité pour la densité baryonique wy et le parametre
de Hubble h en supposant des conditions initiales purement adiabatiques (petits contours),
et en marginalisant les conditions initiales générales (larges contours). La supposition de
I’adiabaticité est essentielle pour obtenir une mesure précise des parametres cosmologiques.
A droite : contribution de modes isocourbures aux modéles qui ajustent mieux les données,
ou une valeur proche de 0 indique la pure adiabaticité.

et al., 2003) permet de retrouver Qy ~ 0.7,€,, ~ 0.3. Nous avons mis a l’épreuve cette
conclusion de deux fagon différentes dans Trotta et al. (2003). Ceci est explicité dans le § 7.3,
ou nous avons considéré des conditions initiales générales et utilisé une approche statistique
basée sur la notion de fréquence. Cette derniere donne des intervalles de confiance plus rigou-
reux par rapport a ’approche Bayesienne, qui est normalement utilisée. Dans notre analyse
admettant les modes isocourbures, nous utilisons aussi le spectre de puissance de la matiere,
qui est comparé aux données du catalogue 2dF Galaxy Redshift Survey. Nous arrivons a la
conclusion que méme en présence de modes isocourbure, les données du CMB avant WMAP
combinées avec 2dF sont difficilement explicables avec un univers du type Einstein—de Sitter,
c’est-a~dire 2y = 0,8, = 1. En particulier, la statistique fréquentiste n’exclue 24 = 0 qu’au
niveau de 20, mais cela seulement dans le cas ot ’on accepte une petite valeur pour le para-
metre d’Hubble, a savoir de 'ordre de h ~ 0.5. Or, cela serait décidément en contradiction
avec la valeur trouvée par le Hubble Space Telescope, c’est-a-dire h = 0.72+0.08 (Freedman
et al., 2001).

Si — comme nous ’avons montré — aujourd’hui il n’est pas encore possible d’estimer avec
précision les parametres cosmologiques sans formuler de fortes suppositions sur la nature des
conditions initiales, il n’en sera pas de méme avec les futures observations du rayonnement
diffus. En particulier, la polarisation du fond diffus est d’une importance cruciale pour mieux
déterminer les conditions initiales (Bucher et al., 2001). Dans le § 7.4 nous discutons la
précision que le satellite WMAP obtiendra sur les quantités directement mesurables avec le
CMB, apres quatre ans d’observations. Nous comparons les prédictions, en supposant des
conditions initiales adiabatiques, au cas ou les parametres sont estimés indépendamment
des conditions initiales. Dans ce dernier cas, nous trouvons que WMAP aura une précision
de l'orde 10 — 30% (1o) sur la plupart des parametres. Nous nous intéressons aussi au
satellite Planck, qui aura une résolution bien meilleure pour le spectre de polarisation. Cela
lui permettra d’obtenir des erreurs sur les parametres de lordre de 1 — 2%, sans aucune
hypothese sur la nature des conditions initiales (Trotta & Durrer, 2004).






Overview and conclusions

Towards a cosmological standard model

The study of cosmic microwave background anisotropies is one of the pillars of modern cos-
mology. The cosmic microwave background (hereafter CMB) consists of photons left over by
the hot phase after the Big-Bang and is very homogeneous and isotropic. Its existence was
predicted by Gamov (1946), and accidentally discovered only much later by Penzias and Wil-
son (Penzias & Wilson, 1965), but it was only in 1992 that the COBE satellite (Smoot et al.,
1992) detected the presence of tiny temperature fluctuations (1 part in 100°000), which are
thought to have been generated by quantum fluctuations in the very early universe. The ob-
servational study of these temperature fluctuations, known as anisotropies, has been a great
technological achievement. Over the last ten years, there has been a spectacular advancement
in the accuracy of measurements, using ground-based, balloon-born and orbital instruments.
The WMAP satellite (Bennett et al., 2003) has recently measured the anisotropies with a
precision which, on certain scales, is close to a fundamental statistical limit, called “cosmic
variance”.

The importance of such a wealth of data for theoretical cosmology cannot be overstated.
In a few seconds on a desktop computer, it is nowadays possible to produce accurate nu-
merical predictions of the statistical distribution of the anisotropies on the sky for any cos-
mological model of interest, i.e. of the CMB angular power spectrum. If the primordial
fluctuations are Gaussian distributed, then the power spectrum encodes all of the statisti-
cal information: its computation is based on linear perturbation theory and the underlying
physics is well understood. The detailed shape of the power spectrum carries characteris-
tic signatures depending on the value of the late Universe cosmological parameters and on
the initial conditions for the perturbations. By “late Universe cosmological parameters” we
mean the quantities controlling the expansion history of the Universe, i.e. its matter budget,
complemented by some description of the reionization history. In the former category, an
incomplete list would include the Hubble parameter, the energy density in baryons, cold dark
matter and dark energy, the dark energy equation of state parameter (possibly including a
description of its time evolution), the neutrino masses and the number of massless families
plus the density parameters and effective equation of state of any other exotic form of matter
one might wish to include; specifying how the Universe was reionized in the context of stellar
evolution theory might require three or four additional parameters, which however usually
reduce to the optical depth to reionization or equivalently to the redshift of reionization, as
far as the CMB is concerned. Specifying the initial conditions requires the value of “pri-
mordial parameters” for the amplitudes of the primordial fluctuations in each of the matter
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components and their scale dependence.

The fact that CMB anisotropies are sensitive both to the late Universe cosmological pa-
rameters and to primordial parameters means that CMB observations only constrain a (de-
generate) combination of both: until now, disentangling the former required rather strong
assumptions about the nature of initial conditions. Some guidance is offered by the inflation-
ary paradigm: in its simplest incarnation, the decay of the inflaton field produces adiabatic
initial conditions, in which there is no fluctuation in the relative number density of the
species, hence no entropy perturbations (“adiabatic”). The presence of entropy fluctuations
can excite up to four other non-decaying modes for the perturbations. Those are collectively
termed “isocurvature”, because in three cases the total matter density is unperturbed and
hence there is no curvature perturbation in the spatial sections either. The observation of
the first acoustic peak in the CMB power spectrum (Page et al., 2003) at ¢ = 220.1 + 0.8
has substantially confirmed the predominance of the adiabatic mode. However, a subdom-
inant isocurvature contribution to the prevalent adiabatic mode cannot be excluded: after
all, there is no compelling reason why the physics of the early universe should boil down to
only one degree of freedom.

Even though in principle the number of late Universe parameters can be very large, easily
exceeding a dozen, only an handful of them seems to be required by the currently available
observational evidence (Spergel et al., 2003; Tegmark et al., 2004b; Liddle, 2004):

e the Hubble parameter h ~ 0.7;

the density parameter for baryons €2 ~ 0.05;

the density parameter for cold dark matter (CDM) Q¢gm ~ 0.25;

the density parameter for a cosmological constant 2 ~ 0.7;

the optical depth to reionization 7, ~ 0.15.

Summed together, Qcqm + 2, +Q24 ~ 1 imply a flat Universe. The crucial point is that for the
CMB these results only hold once we make the rather strong assumption of purely adiabatic
initial conditions. In that case, the primordial parameters reduce to the spectral index for the
fluctuations, ng ~ 1, and an overall adiabatic amplitude App. These two quantities together
with the above five late Universe parameters are what we call “standard CMB parameters”,
because they build the basis of the “concordance model” of present-day cosmology'.

By combining CMB data with other cosmological and astrophysical measurements — such
as galaxy distribution statistics, supernovee luminosity distance measurements, gravitational
lensing statistics, Lyman a absorption lines, local determination of the Hubble parameter,
light elements abundance — we have reached an unprecedented precision in determining the
standard cosmological parameters, which are now known with an accuracy of a few percent.
This is even more astonishing if we think that only ten years ago it was only possible for most
parameters to estimate their order of magnitude. Most importantly, various independent

"We do not discuss the possibility of gravitational waves, which are indeed predicted by any inflationary
scenario; presently there are merely upper limits to their contribution, which could be small enough to be
very difficult to detect in the CMB. Our discussion here and in the following focuses on the scalar sector
only.
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observations — which probe very different epochs of the cosmic history and are based on
totally different physical processes — seem to be converging to the same answer.

We are now in a position where we can move on from parameter fitting to model testing:
in other words, in order to establish a “cosmological standard model” we need to assess the
consistency and completeness of our theoretical framework. In order to be sure that we can
trust the error-bars on the standard parameters beyond the quoted statistical error, we have
to confront ourselves with the question of possible systematic errors in the measurements on
one side, and of hidden flaws in our theoretical interpretation of the data on the other. Given
the intrinsic difficulty of many cosmological observations, an assessment of systematic errors
for a certain data-set can come from the combination with other, independent measurements
of the same quantity. Discrepancies in the results will indicate a flaw in the underlying
theory, or in the data, or in both. This is one of the reasons why the comparison of many
data-sets is so important, the other being that often the combined data have a superior
constraining power due to the breaking of degenerate directions in parameter space. From
the point of view of model-building, it is now becoming possible to relax some assumptions
which were before necessary in order to extract from the data any information at all, and
thereby check whether our results are robust or else whether they critically depend on our
prejudices. If it is found that our conclusions depend strongly on the underlying model
assumptions, then we need to critically review our theoretical paradigm and open our mind
to alternative explicative models.

Testing the concordance model with the CMB

The CMB is an excellent testing ground to carry out this program: our theoretical under-
standing is based on General Relativity and linear perturbation theory, which suffices to
describe almost all of the relevant physical processes. This makes us confident that we un-
derstand quite well CMB anisotropies, and we can exploit them to go beyond the standard
cosmological parameters in two different ways: the first path leads directly to the primordial
Universe, via the dependence of the CMB on the nature of initial conditions; the second
approach makes use of the high quality of recent CMB data to look for effects which were
previously ignored because thought to be irrelevant, but which are now within the constrain-
ing power of the observations. In both cases, the microwave background plays the role of a
Universe-sized laboratory for the study of fundamental physics which is often unaccessible
to any particle physics laboratory. This work pursues both those aspects, as we detail in the
following.

In the first part, we introduce in Chapter 1 the homogeneous and isotropic Friedmann-
Robertson-Walker universe, which is the background on which perturbation theory is built,
and we briefly present a few other observations which we later compare and combine with
the CMB. We then give the derivation of all the relevant perturbation equations needed to
describe the CMB in Chapter 2. Those are applied to the temperature fluctuations in the
cosmic photons in the second part: in Chapter 3 we obtain under various approximations
analytical expressions for the growth of perturbations in an Universe containing photons,
cold dark matter, massless neutrinos, baryons and a cosmological constant; in Chapter 4 we
present a thorough account of the main features of the CMB temperature and polarization
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angular power spectra. In particular, we are concerned with characteristic signatures on the
angular power spectra of the standard cosmological parameters, which constitute the basis
for their determination using CMB data. We also introduce the most general type of initial
conditions, which consist of one adiabatic and four isocurvature modes. The third part fo-
cuses on the interplay between theoretical modelling and observational data. The comparison
of theoretical models with actual data needs some basis in probability theory and statistics,
which we give in Chapter 5, emphasizing their application to the problem of parameter esti-
mation from CMB observations. The last two chapters contain most of the original research
work, which is developed along the two lines sketched above: Chapter 6 deals with the obser-
vational consequences and constraints when we add to the standard cosmological parameters
new quantities describing possible departures from known physics, while Chapter 7 explores
the consequences of relaxing the fundamental assumption of adiabaticity.

In § 6.1 we focus on the effective number of massless neutrino families, Nog (Bowen
et al., 2002). Although in the standard model of particle physics Neg = 3, there are several
mechanism which would give Neg # 3 as measured by the two cosmological probes we discuss,
namely Big-Bang Nucleosynthesis (BBN) combined with observations of the light elements
abundances, and CMB. This is because both of them are sensitive not only to the number of
weakly interacting neutrinos, but rather to the total energy density of relativistic particles
which sets the expansion rate at early times, and therefore can constrain e.g. the existence
of sterile neutrinos unobservable in Z-decay experiments. Using pre-WMAP CMB data
alone, we obtain fairly broad bounds on Ngg, 0.04 < Neg < 13.37 with 20 likelihood content,
which are reduced by including prior information coming from supernova luminosity distance
measurements and large scale structure observations. We show that Neg, or equivalently
Wrel = Qreh?, the energy density parameter in relativistic particles, is nearly degenerate with
the amount of energy in matter, w,, = Q,,h%, and that its inclusion in CMB parameter
estimation also affects the constraints on other parameters such as the curvature or the
scalar spectral index of primordial fluctuations. However, even though this degeneracy has
the effect of limiting the accuracy of parameter estimation from the WMAP satellite, we
find that it can be broken by measurements on smaller scales such as those provided by the
Planck satellite mission. We forecast that Planck will be able to constrain Neg within 0.24
(1o).

The primordial “He mass fraction, Y, is predicted by BBN along with the abundances of
the other light elements as a function of two free parameters, namely the baryon density wy
and the relativistic energy density wye. If we fix Nog = 3 and thereby wye as motivated by
the particle physics standard model, then in standard BBN the abundances of D, *He, *He
and “Li depend on the baryon density alone: comparison with the observed values in astro-
physical systems indicates a slight discrepancy, which however presently cannot clearly be
ascribed to systematical errors or to deviations from the standard BBN scenario. We explore
in § 6.2 the potentiality of using the CMB as a totally independent way of measuring Y), via
its impact on the reionization history, thereby possibly allowing to discriminate between the
various hypothesis (Trotta & Hansen, 2004). We find that WMAP data give only a marginal
detection, 0.160 < Y}, < 0.501 at 68% likelihood content. We estimate that the Planck satel-
lite will determine the helium mass fraction within 5% (or AY, ~ 0.01), which however will
only allow a marginal discrimination between different astrophysical measurements. Equally
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important, we identify degeneracies between Y}, and other cosmological parameters, most
notably the baryon abundance, the redshift and optical depth of reionization and the spec-
tral index; we conclude that even though present-day CMB data accuracy does not require
the inclusion of Y), as a free parameter, the uncertainty of the helium fraction will have to
be taken into account in order to correctly estimate the errors on the baryon density from
Planck.

The search for observational evidence for time or space variations of the “fundamental”
constants that can be measured in our four-dimensional world is an extremely exciting area of
current research, with several independent claims of detections in different contexts emerging
in the last few years, together with other improved constraints. Most efforts have been
concentrating on the fine-structure constant, a;, both due to its obviously fundamental role
and to the availability of a series of independent methods of measurement. Of particular
interest is the result of Webb and collaborators, who claim a 40 detection of a fine-structure
constant that was smaller in the past (Murphy et al., 2003; Webb et al., 2003). Noteworthy
among the possibilities of independently check those results is the CMB, which probes agec,
the value of a at decoupling, z ~ 1100 (Martins et al., 2002, 2004; Rocha et al., 2004). As we
show in § 6.3, by analyzing the first year WMAP data for time-variations of o we obtain the
constrain 0.95 < agec/ap < 1.02 with 95% likelihood content, where ag denotes the present
value. We clarify the issue of degeneracies between o and other standard parameters, and
give exhaustive forecasts of the expected performance of the full four year WMAP data, of
the Planck satellite and of an ideal CMB experiment. We emphasize the role of polarization
measurements to lift flat directions (i.e., degeneracies) in parameter space, and discuss the
role of reionization in the determination of agec.

In Chapter 7 we relax the assumption of adiabaticity by allowing for the most general
initial conditions (Bucher et al., 2000) and we investigate two complementary aspects: the
first is the degradation in the accuracy of the late Universe standard parameters as a con-
sequence of the introduction of new degrees of freedom in the primordial Universe (Trotta
et al., 2001); the second is the robustness of the measurement of a non-zero cosmological
constant, 5 # 0, when different statistical approaches (frequentist rather then Bayesian)
are applied to the data, or when general isocurvature modes are included in the analysis
(Trotta et al., 2003). We also explicitly test the paradigm of adiabaticity by using CMB
observations to put constraints on the isocurvature contribution.

For the first point, the results in § 7.2 demonstrate that the determination of the Hub-
ble parameter and the baryon density from pre-WMAP CMB data is essentially impossible
without strong assumptions about the nature of initial conditions. Conversely, it becomes
very difficult to put limits on the type of the initial conditions without using external, non-
CMB priors on the late Universe parameters. Indeed, the CMB is perhaps the most effective
way to directly probe the very early Universe, and thereby constrain or falsify the mod-
els for the generation of perturbations. It is therefore very important to extract the most
information about the conditions in the early Universe. Adding polarization information
greatly enhances the power of the CMB to simultaneously constrain the late Universe pa-
rameters and the primordial ones: we show in § 7.4 that the full four year WMAP data
will measure orthogonal combinations of the late Universe parameters with an accuracy of
the order 10% — 30% for most parameters even in the general initial conditions case. The
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Planck mission will have a better polarization resolution and will be able to do precision
cosmology almost independently on the type of initial conditions (Trotta & Durrer, 2004).
As for the possibility of mitigating the cosmological constant problem by introducing isocur-
vature modes, our findings in § 7.3 indicate that 2 # 0, as obtained from a combination
of CMB and large scale structure data, is indeed robust even in the presence of isocurva-
ture contributions. The more conservative frequentist statistics — as compared to the usual
Bayesian approach — excludes Q25 = 0 only at the 20 confidence level for pre-WMAP CMB
data combined with the 2dF Galaxy Redshift Survey, but this only if we admit a rather low
value for the Hubble constant, h ~ 0.5, which would be in contradiction with the result of
the Hubble Space Telescope, h = 0.72 & 0.08 (Freedman et al., 2001).

Outlook and conclusion

The CMB has become a well established tool for the study of our Universe, and an un-
avoidable testing ground for any theoretical model. The ever improving quality of the data
permits on one side to look for new physics in the early Universe, as shown in our study of
time variations of «, on the presence of extra relativistic particles and on the existence of
non-adiabatic modes; on the other hand, it also requires an upgrade of our modelling, so to
properly treat subtle effects such as the uncertainty coming from our unprecise knowledge
of the primordial Helium fraction, or from our ignorance on the correct model for the gen-
eration of fluctuations. For this reasons, it is important to look ahead, to the goals for the
next generation of experiments, and to their potential to constrain or falsify the theoretical
models.

More than ever, the central issue is becoming how to efficiently and reliably extract
the most information from upcoming high-quality data: there are about 2000 observable
independent multipoles for each of the three angular power spectra, namely temperature,
E-polarization and temperature-polarization cross-correlation, which however are highly re-
dundant due to the smooth oscillatory nature of the spectra. The amount of information
which can be extracted is much less, and can be condensed in maybe a dozen of well-chosen
parameters. The best choice for those quantities is the one which takes into account the
physics and selects orthogonal directions in parameters space on the basis of fundamental
degeneracies. This idea has been a leitmotiv of the works presented here, and there is prob-
ably still space to apply it further, especially in connection with the primordial parameters.

Despite this encouraging picture, there are still open challenges for our understanding of
the Universe: the nature of dark energy and dark matter, the details of the initial conditions
and the epoch of reionization, for example. The CMB will provide key advancements on all
these issues over the next years. The polarization of the anisotropies has been detected by
the experiments DASI (Kovac et al., 2002) and WMAP and will be precisely mapped by the
forthcoming experiments PolarBear, Bicep, SPOrt, AMiBA and QUEST, opening up a new
line of research and allowing to reconstruct the cosmological parameters with still higher
precision. This process will culminate with the European Space Agency satellite Planck
(Planck Website, 2004), which starting in 2007 will observe the temperature spectrum with
the ultimate possible precision and provide accurate mapping of the polarization as well. In
view of this wealth of data, and in order to fully exploit its potential, it is of fundamental
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importance that theoretical research on the subject advances accordingly. There is a need of
more powerful and efficient computational and statistical techniques which can handle the
considerably larger amount of data expected. Also, our theoretical understanding of model-
building has to be refined and in particular we need to further develop the interdisciplinary
link between models coming from high energy physics, string theory, astrophysics and their
observational signature on the CMB. This approach will strengthen the role of the CMB as a
universe-size laboratory for investigating the most elusive domains of fundamental physics.
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Chapter 1

Introduction

1.1 Notation and conventions
We begin by introducing the notation and conventions which are used throughout this work.
e The metric signature is — + +—+.

e The spacetime metric is denoted by g,,, where the spacetime coordinate are z#,p =
0,1,2,3. Greek indexes always run from 0 to 3.

e The 3-space of constant curvature has metric v;;. Latin indexes always run from 1 to
3.

e When we discuss perturbations, the background, unperturbed quantities are denoted by
an overline. Therefore for instance p = p+ dp, where p denotes the background energy
density and p the perturbed (background plus linear perturbation) energy density.

e The overdot “ * ” denotes the derivative with respect to conformal time, 7.
e Bold character denote the ¢ = 1,2, 3 components of the corresponding 4-vector.

e Unless otherwise stated we use natural units, in which the speed of light, the Boltzmann
constant and the Planck constant are unity, c = kg = h = 1.

e The Hubble parameter today is written as Hy = 100 h km s~! Mpc ™.

e The symbol Qx denotes the density parameter in the component X (where X can stand
for baryons, photons, cold dark matter, etc.), expressed in units of the critical energy
density. In general, Qx = Qx(n), but whenever we omit the explicit time dependence,
it is understood that the quantity is evaluated today, i.e. Qx = Qx(no), where g is
the present value of conformal time.

e The critical energy density today is pe(10) ~ 1.88 - 10729 B2 g/ cm®, and the present
energy density of component X is written px(n9) = wx 1.88-1072% g/ cm®, where we
have defined wx = Qx(no)h?.
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1.2 Friedmann-Robertson-Walker cosmology

In this section, we briefly review the standard treatment of an homogeneous and isotropic
universe. We present the background Einstein and conservation equations for perfect fluids,
along with the unperturbed Boltzmann equation describing relativistic particles.

1.2.1 Einstein equations

The cosmic microwave background is homogeneous and isotropic to better than one part
in 100°000. This justifies the assumption that the universe, on large enough scale, can be
treated as being homogeneous and isotropic. We then consider a 4-dimensional manifold
M endowed with a metric g,,, so that constant-time hypersurfaces are constant-curvature,
maximally symmetric 3-spaces. The Friedmann-Robertson-Walker (FRW) metric reads

gudrtda” = —dt* + a(t)y;;da’da’ (1.1)
with the 3-space metric of curvature K = {0,+1,—1} given by
vijda'da? = dr? + x2(r)(d6? + sin(0)2de?) . (1.2)

Here the scale factor a(t) depends only on time, and

r for K = 0 (flat universe)
x(r) = sin(r) for K = +1 (closed universe) . (1.3)
sinh(r) for K = —1 (open universe)

We will mostly work in conformal time 7, defined through dn = a~!(t)dt, so that the
FRW metric reads
gudrtdz” = a(n)(—dn? + v;;da’da?) . (1.4)

Following the assumptions of homogeneity and isotropy, the background energy-momentum
tensor, 7T},,, is bound to be of the perfect fluid form

T = (p+ Plupuy + Py , (1.5)

where p, P are functions of the conformal time 7 only, and represent the fluid energy density
and pressure, respectively. The fluid 4-velocity is the timelike 4-vector u, with

1
ut = <a,0,0,0) and uyut = —1. (1.6)

We suppose that the equation of state of the fluid is of the form

where the enthalpy w(p) depends only on the local energy density. In many cases of interest,
the enthalpy is simply a constant, in which case it is termed equation of state parameter: for
cold, non-relativistic, pressureless matter w,, = 0 (dust), for relativistic particles w, = 1/3
(radiation) and wp = —1 for a cosmological constant (vacuum energy). The energy density
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of a cosmological constant is contained in T, and is of the form py = A/(87G). Another
relevant quantity is the adiabatic sound speed of the fluid, defined as

E=P/p. (1.8)
The Einstein equations
G = 8nGTy, (1.9)

with the FRW metric (1.4) and the energy-momentum tensor (1.5) yield the two Friedmann
equations. The first Friedmann equation is a first order differential equation for the conformal
Hubble parameter H(n) = a/a

- 4G
- f%aQ(erBP). (1.10)
The second one is a constraint equation,
87G
H2+ K = %cﬁp. (1.11)

An evolution equation for the fluid energy density follows from the 0 component of the
energy-momentum conservation equation, V,T*" = 0:

p+3H(p+P)=0, (1.12)

supplemented with the fluid equation of state, Eq. (1.7). If the universe contains (or is
dominated by) only one fluid with w = const, it follows from Eq. (1.12) that its energy
density behaves as

poca30Fw) (1.13)

hence from Eq. (1.10) the scale factor of a flat universe (K = 0) is

‘ 24 1T o 13 (1.14)
= orw# —1/3. .
1+ 3w77

with A% = 877G/3pa3(1+w) = const. In particular, in the radiation dominated universe

(w = 1/3) we have a o 1, while in the matter dominated universe (w ~ 0) a o 7.

In the standard cosmological picture, the universe contains non-relativistic, pressureless
matter (baryons and cold dark matter), photons, massless neutrinos and a vacuum energy
component. In this case, the stress-energy tensor is the sum of the fluid components

T =T (1.15)

The Friedmann equations (1.10, 1.11) apply to the total energy density and pressure, which
are just the sum of the contributions from each fluid. The energy conservation equation,
Eq. (1.12), still applies to the total variables, while in general for each component we have

VI = QY (1.16)

)

where the 4 vector QL describe the energy-momentum transfer from the component . The
conservation of total energy requires

dQi=o0. (1.17)
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In the general case, the Friedmann equations have to be solved numerically. However, we
can easily write down solutions of simple cases. From Eq. (1.13) it follows that for radiation

pr o< a~* while for matter p,, o a3.

Physically, the energy density of matter is diluted
by the growth of the physical volume of the 3-space, while for radiation an extra a~! factor
comes in from the redshifting of the particles energy. Hence, since a is growing, at early
enough time the universe is radiation dominated. The equality time is defined as the time at
which the two contributions are equal, i.e. p, = py,, after which the universe becomes matter
dominated. Therefore

Qo _ Pl 3.1073, (1.18)
ap Pm no

or in terms of the redshift z = ap/a — 1 we have
Zeq ~= 3000 . (1.19)

The subscript 0 indicates that the quantity is evaluated today. The numerical estimate
comes from the measurement of the present day radiation density in the cosmic microwave
background, which together with the assumption of three massless neutrino families yields

4
pr=7.94-107% <27;C§\;BK> g/cm®. (1.20)
The matter content of the Universe is obtained from the combination of CMB, large scale
structure and supernovae type IA measurements. We shall see in § 4.2 that the CMB itself
is a good probe to determine the redshift of equality.

Since for a cosmological constant wy = —1, pp = const, its contribution is negligible in
the early universe, and indeed for a redshift

0 3
z > <m> —1~05. (1.21)
Qp

However, if A # 0, the late universe will be dominated by the vacuum energy term. In that
case, a(t) « exp [(A/3)1/2t] and the expansion becomes exponential (in physical time).
It is customary to introduce the critical energy density as the energy density for which

the universe is flat

3H?
pcrit = 87TG(Z2 . (122)

We also define the Hubble parameter Hy = H/ay and the fudge factor h
Ho=100h km s~! Mpc™!. (1.23)
The critical energy density today then evaluates to
Perc(0) ~ 1.88 - 1072 b2 g/cm? . (1.24)

At all times, the density parameters 2x give the contribution of the component X in units
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of the critical energy density:

0= (1.25)
pcrit
Qi (n) = 577 , (1.26)
PA A
W)= =g (1.27)
—3K
Qc(n) = 87Ga2pe (1.28)

By definition the sum of the density parameters has to be unity
Qe (1) + Qn(n) + Qa(n) + Qxc(n) = 1. (1.29)

The physical energy density of the component X is then given by

px (1) = Qx (1) pein(n) , (1.30)

and in particular when evaluating this quantity at the present time we define wy = Qx (19)h>
and write
px(no) = wx 1.88- 1072 g/em®. (1.31)

The definition (1.28) expresses the energy density due to the curvature of the spatial
sections for I = 41. Since Qx o« H™2 o 72, the curvature is always negligible in the
early universe. Various cosmological observations indicate that today x ~ 0. However,
if the universe is not exactly flat, this would imply that at Planck time |Qx| ~ O(10769).
The smallness of this number is the essence of the “flatness problem”. The inflationary
mechanism indeed naturally provides a solution for this fine tuning problem: as the universe
inflates quasi-exponentially, its curvature is driven to 0.

A key quantity is the angular diameter distance D4(z): consider an object of physical
length d sitting at a redshift z; (corresponding to conformal time 7; and radial distance 1),
which is observed at our present position (zgp = 0,79 = 0) under an angle §. Then the angular
diameter distance is defined as

SSIESH

Da(m) = 5 = alm)x(no —m), (1.32)

where in the second equality we have used d = Aa(n;), with A the comoving length of the
object, and 6 = A/x(r1), noting that r1 = n9 — 1 since light travels on null geodesics. We
can now integrate Eq. (1.11) to find

1 ao da
A??Eno—m:H 2/ 5 ESPR (1.33)
04y Jay a a a
[Qr+Qm+QK2+QA4
ap ag Qg

This equation is more conveniently written in redshift space

1 /Zl dz
Hoao Jo  [Qp(1+ 2)% + Qo (14 2)3 + Qc(1 + 2)2 + Qa2

An (1.34)

Recall that the quantities Qx above are evaluated at the present time. So if we know the
physical length of an object at a given redshift, and we measure the angle subtended by
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it on the sky, we are in principle able to extract the value of the cosmological parameters
using Eq. (1.34). The CMB provides exactly such a standard rod on the sky: the acoustic
oscillations of the photon fluid just before recombination have a characteristic length scale,
which shows up as the first peak in the angular power spectrum, see § 4.1.2. The redshift
of recombination is also known with good accuracy, hence the CMB measures with high
precision the angular diameter distance to the last scattering surface. This piece of informa-
tion alone is however insufficient to reconstruct completely the matter-energy content of the
Universe: this problem is known as geometrical degeneracy, and it is explained in § 4.1.2.

1.2.2 Boltzmann equation

At early time, the energy density of the universe is dominated by the relativistic species,
and to leading order we can neglect in the contribution of non-relativistic components to
the total energy. As long as photons are in local thermodynamical equilibrium, the photon
temperature T is related to the energy density of radiation by

™
pr = %g*T , (1.35)
where g, counts the total number of relativistic degrees of freedom
T Ty
gx = Eb:ng4 +§f:ng4 (1.36)

and b and f run over the bosonic and fermionic species respectively. The factors Tp and
Ty take into account possible temperature differences between the photons and the other
relativistic particles. From Eq. (1.35) and p, o< a=* it follows that while the photons are in
thermodynamical equilibrium, 7" < 1/a.

For T' > 4000K =~ 0.4eV hydrogen nuclei are ionized, and photons are coupled to baryons
via non-relativistic Thomson scattering off free electrons, see § 2.2.5. As the temperature
drops below 0.30eV, corresponding to zge. &~ 1100, almost all the hydrogen nuclei quickly
recombine, the mean free path of photons becomes larger than the Hubble length 1/H: the
universe becomes transparent. This event is called last scattering or decoupling.

After recombination, the photon distribution function

B — 1
T B) = B =1

evolves according to the collisionless Boltzmann equation, which can be derived by requiring

(1.37)

that the total derivative of f with respect to the affine parameter A\ vanishes

df _

=0. 1.38
In general f = f(n,z', E,n'), where the momentum 4-vector p* = (p®, p) is written as
E
" =—(1,n), (1.39)
a
with
. ) B
pl = Mnlv pO = = Mv (140)
a a a

Vo' = |pl, n'nly;=1. (1.41)
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From Eq. (1.38) we have

of of ,  Of .  Of
- nt+ ——F .
o Tor” ToE" o

n'=0. (1.42)

Because of isotropy, df/dn' = 0, while homogeneity implies df/0x" = 0. Using the 0
component of the geodesics equation

dp®
— 4+ T9 p"p" =0 1.43
d)\ + p,l/p p ) ( )
which in the FRW universe reads
E+HE=0 (1.44)
we obtain from Eq. (1.42) the background Boltzmann equation
of of
— —HE—==0. 1.45
on oF ( )

This equation is satisfied by any f of the form f = f(aFE). We conclude that after decoupling
the energy of the cosmic photons is redshifted by the expansion as F o« a~!. The black
body distribution, Eq. (1.37), retains its spectrum. The spectrum of the cosmic microwave
background photons has been measured very accurately by the FIRAS spectrometer onboard
the COBE satellite (Fixsen et al., 1996), and was found to be exceedingly close to thermal.
Deviations from a perfect black body spectrum can be measured by the Comptonization
parameter y, the chemical potential ;1 and the parameter Yy, describing contamination by
free-free emission. The 95% confidence limits on those parameters are

luf<9-107°, |y <1.2-107°, |Y;4| <1.9-107°. (1.46)

After decoupling, T is no longer a temperature in the thermodynamical sense, rather a

parameter in the distribution function, which drops as T oc a~!.

1.3 Cosmological observations

It is only in comparatively recent times that cosmology has become a data driven science,
in which theoretical hypothesis can be falsified or validated against observational data. It is
amazing that only 15 years ago the total energy density of the universe was known with order-
of-magnitude accuracy only. Nowadays, most cosmological parameters are constrained within
a few percent. The discovery and accurate mapping of CMB fluctuations has constituted a
major pillar in this evolution and represents a fundamental cornerstone of modern cosmology,
see § 5.3 for an overview.

It is nevertheless of equal importance that many other cosmological probes have been
developed in parallel, and this for at least two good reasons. Firstly, all observation suffers
in one form or in another from the degeneracy problem: only a certain combination of cos-
mological parameters can be measured accurately. Since degeneracy directions are different
for different observations, combining two or more measurements leads to tighter constrains
on the parameters we are interested in. The second reason is that cosmologically relevant
measurements are intrinsically difficult. One obvious obstacle is that there is only one uni-
verse for which the experimental conditions cannot be manipulated at will. Very often the
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Quantity Value Observations
Baryon density wp 0.024 CMB, BBN, light elements abundance
Cold dark matter density weqm 0.116 CMB+LSS+SN, clusters
A density WA 0.378 CMB+LSS+SN+weak lensing
Hubble constant h 0.72 HST, SZ, strong lensing
Optical depth Tre 0.17 CMB
Spectral index Ng 1.00 CMB, LSS, Lyman-a, clusters
Baryons 9 0.046
Cold dark matter Qeam  0.224
Cosmological constant Qa 0.73
Radiation Qag 7.95-107° CMB
Massless v families N, 3.04 CMB+LSS
Curvature Qx 0.00 CMB+LSS+SN+weak lensing
‘ Initial conditions purely adiabatic CMB ‘

Table 1.1: Parameters of today’s “ACDM cosmological concordance model”, which is in good
agreement with most of the current observational evidence coming from CMB (Spergel et al.,
2003), large scale structures (LSS) (Tegmark et al., 2004b), Big-Bang Nucleosynthesis (BBN)
(Fields & Sarkar, 2004), supernovee type la (SN) (Tonry et al., 2003), strong (Kochanek
& Schechter, 2004) and weak lensing (Contaldi et al., 2003), Lyman-a absorption systems
(Seljak et al., 2003a) and galaxy clusters (Bahcall et al., 2003) observations.

interesting physics is hidden behind foreground emissions, poor statistical sampling, faint
signals and non-linearities. It is common to try and extract cosmological information by us-
ing objects whose physical properties are poorly understood, and in general systematics are
very difficult to assess in cosmology. Hence a cosmological measurement is usually considered
as valid only if confirmed by one or more independent pieces of evidence.

The so-called ACDM concordance model is strongly supported by several independent
observational data. It is generally accepted that our universe is very close to flat (Qx ~
0); that it is dominated by “dark energy” (a =~ 0.7), perhaps in form of vacuum energy,
or quintessence or a tracking scalar field; that around 25% is non-interacting cold dark
matter, and that only the remaining 5% is constituted of baryons. If the three neutrino
families of the Standard Model of particle physics are not massless (as the large mixing angle
solution to the solar neutrino problem seems to suggest), than their mass is bounded from
above to be m, SO(1)eV. Structure formation proceeded by gravitational instability from
quantum fluctuations stretched to super-horizon scale by a period of superluminal expansion
(inflation). The simplest inflationary model, in which inflation is driven by one single slow-
rolling scalar field, successfully predicts the absence of non-Gaussianity, the (predominantly)
adiabatic nature of the fluctuations and the almost scale invariant spectral index (ns ~ 1) for
the perturbations. The age of the universe, around 13 Gyrs, easily accommodates the oldest
observed objects. For definiteness, in Table 1.1 we give the parameters of what we believe
is a currently widely accepted “concordance model”, to which we will refer throughout this
work for illustrative and comparative purposes.

Apart from CMB anisotropies, which we will discuss in depth in the rest of this work, we
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briefly present some of the pieces of observational evidence which corroborate the (presently)
standard ACDM scenario.

1.3.1 Big-Bang Nucleosynthesis

Big-Bang Nucleosynthesis is based on the Standard Model of particle physics, and gives
predictions for the abundance of light elements D, He, *He and "Li synthesized in the early
Universe, which are in good overall agreement with the observed abundances, see Olive et al.
(2000) for a review and Fields & Sarkar (2004) for more recent results.

Below a temperature 7' ~ 1 MeV the neutron-proton conversion rate falls below the
expansion rate, and the neutron to proton ratio freezes out at the value n/p = exp (—Q/T) ~
1/6, where @@ = 1.293 MeV is the neutron-proton mass difference. The light elements
production starts slightly afterwards, at a temperature T' ~ 0.1 MeV, which is well below
the binding energy of deuterium, Bp = 2.23 MeV because photo-dissociation prevents the
formation of deuterium and other nuclei until then. By this time, #-decay has further reduced
the neutron-to-proton ratio to n/p ~ 1/7. The surviving neutrons end up almost completely
in “He, while the abundance of the other elements is sensitively dependent on the nuclear
reactions rates, which in turn depend on the baryon density, usually expressed with respect
to the photon density by defining the parameter 71 as

Mo = Zi x 1010 & 274 - wy(no) | (1.47)
where 1) is the conformal time today. A simple counting argument, see Eq. (6.16, page 148),
yields that the primordial *He mass fraction is about 25%, while the number densities of the
other elements relative to hydrogen turn out to be of the order D/H ~ 3He/H ~ 10~ and
"Li/H ~ 10710 . The predictions are very reliable and accurate, with a residual numerical
uncertainty which depends on the experimentally determined reaction rates; interestingly, it
turns out that most of this uncertainty is associated with our only approximative knowledge
of the neutron lifetime (Cuoco et al., 2003). The other free parameter of BBN is the radiation
density in the early Universe, which sets the Hubble expansion rate and therefore determines
the freeze-out temperature for the weak reactions and is usually parameterized with the
equivalent number of (massless) neutrino families. We comment on the possibility of a non-
standard number of neutrino families and discuss BBN-related issues in § 6.1.2.

In summary, agreement between the abundance of the light elements as inferred from
astrophysical measurement and the corresponding prediction of BBN is a powerful tool to
verify the Standard Model of particle physics. In § 6.2.3 we present in detail the determination
of light elements, discuss the slight discrepancies between them and the BBN predictions and
give some possible interpretations. However, the overall agreement is satisfactory, and (for a
standard number of neutrino families) the light elements abundances can be explained by a
baryon density compatible with the one independently inferred from CMB, namely 719 ~ 5.5
or wp ~ 0.02.

1.3.2 Matter distribution

Structure formation proceeds from small inhomogeneities in the matter distribution which
grow by gravitational instability, eventually giving rise to the large scale structures like
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galaxies and clusters observed today. From the determination of the statistical distribution
of matter one tries to reconstruct the properties of the primeval fluctuations, and to validate
the structure formation model.

In § 3.6.3 we introduce the linear matter power spectrum P,,(k), which represents the
Fourier transform of the 2-point correlation function for the matter density contrast. Obser-
vations of the distribution of galaxies out to a redshift z ~ 0.1 probe the galaxy-galaxy power
spectrum, P,4; the Sloan Digital Sky Survey, for example, currently contains approximately
2 x 10° galaxies (Tegmark et al., 2004a), and upon completion will achieve 10° galaxies.
The problem is then to relate Pyq(k), which probes the luminous matter distribution, with
the underlying P,,(k) describing (mostly) the dark matter distribution. This is the issue
of bias, introduced by Kaiser to explain the different amplitudes of the correlation function
for galaxies and for clusters (Kaiser, 1984, 1987): the basic idea is that galaxies represent
peaks of the matter distribution, and therefore our observations of Py, actually select only
the regions of the underlying matter distribution above some threshold. This concept has
been extended to various kinds of bias: luminosity-dependent, morphology-dependent, color-
dependent bias, scale-dependent bias, anti-bias, and others. The simplest form is to assume
a scale-independent bias, which seems to be justified on large (linear) scales, setting

P,y (k) = b*P,,(k) for k < knr, ~ 0.3 hMpc™* (1.48)

with the bias parameter b which is just an unknown constant factor (see however e.g. Durrer
et al., 2003a for a critical discussion). In practice, this prescription amounts to introducing
a free parameter which controls the amplitude of the matter power spectrum. There are
methods which allow to determine the bias from the higher-order n-point function of the
distribution: for instance Verde et al. (2002) found b = 1.04 £0.11 from the data of the 2dF
Galaxy Redshift survey (Colless et al., 2001), which plans to measure 2.5 x 10° galaxies.

One can also consider the distribution of galaxy clusters as a function of redshift, which in
principle one should be able to predict by using hydro-dynamical simulations. Comparison
with the observed distribution would then allow to constrain the cosmological parameters.
This simple sounding program is in practice complicated by the need of accurately simulating
all the relevant physics, and despite the great amount of computational power nowadays
available, recent works in the field still involve many approximations. As a result, cluster
data mainly constrain a combination of the matter power spectrum at clusters scales and
the value of Q,,, see e.g. Bahcall et al. (2003).

Another way to probe the mass distribution is offered by the Lyman « forest, the absorp-
tion lines in the spectra of distant quasars produced by the neutral hydrogen in regions of
overdense intergalactic gas along the line of sight at a redshift 2—4 (Croft et al., 2002). Since
the overdensities probed at these redshifts are still close to the linear regime, one hopes to
be able to connect the observations to the matter power spectrum by modelling numerically
the relevant physics (Mandelbaum et al., 2003; Seljak et al., 2003a).

Weak gravitational lensing is very promising as a tool to constrain cosmological param-
eters, and in particular the matter distribution. It uses the distortion in the images of
distant galaxies induced by inhomogeneities in the intervening matter distribution (Kaiser
& Squires, 1993), and reconstructs with a statistical analysis the so-called “cosmic shear”
(Wittman et al., 2000; Bartelmann & Schneider, 2001). The technique is now rapidly be-
coming mature to help constrain the matter budget (Contaldi et al., 2003).
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One of the most important aspects is that all of the above observations can be combined
to achieve superior constraining power on the CDM model parameters, while testing the
consistency of the theory itself, or the soundness of each data-set. A technique to merge
galaxy surveys, cluster distribution, weak lensing and Lyman « data with the CMB to probe
a larger portion of the matter power spectrum is presented in Tegmark & Zaldarriaga (2002).
There is presently a general agreement that the matter content of the Universe is low, around
Qmn ~ 0.3.

1.3.3 Type Ia supernovae

Supernova (SN) are classified according to their spectrum: the type Ia is characterized by
the absence of hydrogen (the “I”), and by strong silicon features (the “a”). The standard
picture is a progenitor binary system, with a white dwarf which accretes matter from its
companion until it reaches the Chandrasekhar limit, and the gravitational infall triggers a
thermonuclear explosion which we observe as a supernova. At the peak of its brightness, a
SN can easily exceed the luminosity of its host galaxy, making it a promising candidate to
measure distances out to very high (z ~ 1 — 2) redshifts.

Their most important property is the remarkable homogeneity in their spectra, in the
shape of their light-curve and in their peak absolute magnitude, which makes them nearly
“standard candles”. In fact, it was discovered that intrinsically brighter SNIa decline more
slowly than dim ones (Hamuy et al., 1996). By exploiting an empirical correlation between
the shape of the light curve and the intrinsic luminosity, and correcting for extinction effects
via measurements at different wavelengths, it is nevertheless possible to produce a “calibrated
candle”, with a very narrow peak magnitude dispersion (Riess et al., 1996). For a review of
the cosmological applications, see e.g. Filippenko (2004).

The measured apparent magnitude m is related to the absolute magnitude M via the
luminosity distance Dy,

m = M + 5log [HyDr (2, Qpm, Q)] + K (1.49)

where the “K-correction” compensates for the difference in wavelength of the emitted and
received photons due to the expansion, and the luminosity distance of an object at redshift
z is defined in terms of the intrinsic luminosity L and of the measured flux £ as

Dp(z) = <4ig) v . (1.50)

The luminosity distance is related to the angular diameter distance by Dy, (z) = (1+2)2D(2).
Supernovee essentially measure the angular diameter distance over a redshift range of z ~
0.5 — 2, much lower than range probed by the CMB. At such low redshift, the radiation
content is negligible, and with Qx = 1 — €2, — Qx we obtain from (1.32) and (1.34, page 27)

1+2
X

Vi

1 = (1.51)
X < o (14 2)%(1 4 2Qm) — Q2(2 + 2)] ~1/2 dz) ,

V1% Jo

HoDr (21, Qm, Q) =
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Figure 1.1: Tllustration of the determination of (£2,,,{2) using supernove data: the dashed
(solid) curves are lines of constant Dy for the given measured apparent magnitude of a
standard candle at a redshift z = 0.5 (z = 1.0). If the apparent magnitude m can be
measured with accuracy Am = 0.05 combining the two observations gives the dark shaded
allowed region for (€, Q). Figure reprinted from Goobar & Perlmutter (1995).

where the function x is defined in Eq. (1.3, page 24). Notice that magnitude-redshift relation
(1.49) does not depend on the Hubble parameter. Therefore, assuming that we are able to
reliably reconstruct the intrinsic luminosity M, from the measurement of one SN Eq. (1.49)
yields one degeneracy line for the possible values of (£2,,,Q24). By measuring a second
standard candle at zo # z; we are able to determine the intersection of the degenerate
luminosity distance lines in the (€,,,24) plane, and thus to measure separately the matter
and cosmological constant content. When we add the measurements error, both lines widen
to two strips, and we obtain a region of confidence for the two parameters, independently on
the Hubble parameter, see Fig. 1.1.

In practice, of course, a larger number of measurements is necessary, and it turns out
that the approximate combination €2, — 25 is well constrained, as it is intuitively clear from
Fig. 1.1. For instance, Tonry et al. (2003) found

Qp — 1.4, =0.35+0.14 (at 1o). (1.52)

This degeneracy direction is almost orthogonal to the one in inferred from the angular diam-
eter distance at z ~ 1100 measured by the CMB, cf. Fig. 4.1. Combination of supernovee and
CMB data is thus a very effective way to break the angular diameter distance degeneracy and
to constraint the matter and vacuum energy contents separately. As we have seen, observa-
tions of the matter distribution on large scales independently constrain the matter density
parameter: it is a remarkable achievement of modern cosmology that this “cosmic comple-
mentarity” seems to be pointing toward the same value, namely €2, ~ 0.3 and Qj ~ 0.7, see
e.g. Spergel et al. (2003). At the same time, the puzzle of the nature of dark matter and
dark energy remains unsolved, and we offer some further remarks regarding the cosmological
constant in § 7.3.
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Cosmological perturbation theory

In order to understand the physical origin of CMB anisotropies, we are interested in study-
ing the evolution of perturbations in the photon distribution function, by perturbing at
linear order around the “background” solution for the homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) universe of § 1.2. That linear perturbation theory is sufficient to
describe almost all aspects of CMB physics is a consequence of the smallness of the fluctua-
tions.

In § 2.1 we introduce the relevant perturbation variables, discuss the issues of gauge
transformations and gauge invariant formalism, extend the treatment to multiple fluids and
define entropy perturbations. We then present the perturbed Einstein (§ 2.2.1) and conser-
vation equations (§ 2.2.2) for an Universe filled with four different particle species: baryons,
cold dark matter (CDM), photons and massless neutrinos. The Bardeen equation is pre-
sented in § 2.2.3, while § 2.2.4 is devoted to the derivation of the collisionless Boltzmann
equation, which describes massless neutrinos and photons after decoupling. The last section
§ 2.2.5 concerns the Thomson scattering process which couples photons and baryons before
recombination, and explains the origin of CMB polarization.

Cosmological perturbation theory in the four-dimensional FRW universe is a well studied
subject, see e.g. Kodama & Sasaki (1984); Mukhanov et al. (1992); Ma & Bertschinger
(1995); Durrer (1994). More recently, the formalism has been extended to higher-dimensional
manifolds, involving extra dimensions (see e.g. Riazuelo et al., 2002), in view of the recent
interest in string theory motivated braneworlds scenarios.

2.1 Perturbation variables

In this section, background (unperturbed) quantities are denoted by an overline, so that
the perturbed energy density, e.g., is denoted by p = p + dp. The background quantities
depend on time only, while the linear perturbations are functions of time and of the 3-space
coordinate, i.e. dp = dp(n, x).

2.1.1 Metric perturbations

We perturb to linear order the FRW metric of Eq. (1.4, page 24) by setting

gudatdz” = g, datds” + a2h“ydx“dx” (2.1)
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where the perturbation h,,, is given by
hypdatds” = —2Adn? + 2B;dx'dn + 2H;;dz"da? . (2.2)

The perturbation variables A, B;, H;; are arbitrary functions of the 4-coordinate vector
= (n,x).

It is convenient to split them into components which transform irreducibly under the
rotation group SO(3). The vector field B; can thus be written as the sum of a gradient of a
scalar and a divergenceless component (vector)

B;=B;+B", BM'=o0. (2.3)
We split H;; into an isotropic and an anisotropic part
Hij = Cyij + Eij (2.4)

and F;; is further decomposed in irreducible scalar (spin 0), vector (spin 1) and tensor (spin
2) components as

1
_ (v) (v) (t)
Eyj = B+ 5(Ej) + Ep)) + B, (2.5)
where
E|(}')j = Ef;ﬂj =0 (divergenceless), (2.6)
EJ(-t)j =0 (traceless). (2.7)

Note that at this stage we are still working in real space and we do not perform an harmonic
analysis of the perturbation variables (see Kodama & Sasaki, 1984; Durrer, 1994 instead).
At linear order, the different spin components do not mix, and we can treat them separately.

2.1.2 Perturbations of the energy-momentum tensor

The perturbed energy-momentum tensor is obtained by perturbing in Eq. (1.5) the energy
density

p=p+op=p(l+0), with §=dp/p, (2.8)

the pressure
P=P+6P=P(1+my), with 7w, =6P/P, (2.9)

and the space components of the observer’s 4-velocity

u' = du' = U —l(v‘i + %) (2.10)
- a a ’ )
1
u = a4 o6u’ = = (1 - A), (2.11)
a
and the second line follows from the norm of the 4-velocity u#u, = —1.

The perturbation of the energy-momentum tensor is then written as

0T, = (p6 + Pry) Uty + (p + P) (Suptly + 6uyiy) + P (71.Gu + a®hy + a®,) |, (2.12)
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where we have introduced the anisotropic stress perturbation I1,,,, which is a traceless tensor
and orthogonal to the 4-velocity, u#Il,, = 0. It describes off-diagonal, space-space pertur-
bations in the stress-energy tensor, and can be split into a scalar II, a divergenceless vector
HE” and a trace-free tensor part H%), according to:

1_ i 1, Y
i = (ViV; = 3% VeV + 5(11;'; + 1) + 113 (2.13)
The perturbation components of the stress-energy tensor therefore take the form
6T = —po (2.14a)
6T% = (p+ P)(B; —v;), (2.14b)
6Ty = (p+ P)’, (2.14c)
6T"; = P(3'jmp +11') . (2.144d)

2.1.3 Gauge transformations

By choosing the background spacetime manifold and metric to be of the FRW form, we
implicitly assume that for all quantity of interest () we are able to define a spatially averaged
Q, which represents the background, homogeneous and isotropic value of @ on (M, g). Con-
sider now a slightly perturbed manifold, M,.,,, endowed with a coordinate system z*. The
value of Q on M, depends on the choice of the coordinate system, Q... = Q + 6Q(zH).
Along with x*, any other coordinate system which leaves g invariant is admissible, i.e. we
can arbitrarily transform the coordinates by an infinitesimal amount

- oyt =t st (2.15)

thereby obtaining for () in this newly defined coordinates

Qpert(wu) - Qpert (y”) = Qpert(xu) + Eéw(Q) ) (216)
where £ x(Q) is the Lie derivative of Q with respect to the vector field X, see e.g. Straumann
(2004). Such infinitesimal coordinate transformations are called gauge transformations, and
the above result is known as Stewart—Walker Lemma. Fixing the coordinate system on
M,..; is called a gauge choice. Clearly, physical observables are geometrical quantities, and
are therefore independent of the coordinate system in which they are calculated. The form
of the equations, however, can be very different according to the gauge choice. It is often
convenient to fix the gauge in the way which is best suited for the problem at hand.

The gauge transformation Eq. (2.15) can be written in all generality as
620 =T, 62t =L+ LM, (2.17)

By applying the transformation law (2.16) to the perturbed metric (2.1) under a gauge
transformation of the type (2.17), we obtain the following transformation properties for the
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metric variables:

A — A+HT+T, (2.18a)
B — B-T+1L, (2.18b)
C — C+HT, (2.18c¢)
E — E+L, (2.18d)
BMi  _, BWiy L(V)i, (2.18e)
EWMi . Mg i (2.18f)
EWii  _, gpmij (2.18g)

The same procedure applied on the background stress-energy tensor TW and 4-velocity
ut gives for the matter perturbation variables:

b — I-3TH(1+w), (2.19a)
T, — L — 35}‘%(1 +w)HT, (2.19b)
n — I, (2.19¢)

v — v+L, (2.19d)
o - o+ LY, (2.19)
mY - I, (2.19f)
oy — I (2.19g)

In order to completely fix the gauge, we need to specify in Eq. (2.2) the functional
form of two scalar functions, corresponding to a specific choice for (7', L), and one vector,
corresponding to a choice for LM In the following, we briefly summarize some popular
gauge choices.

Longitudinal gauge

Longitudinal gauge (also sometimes called “Newtonian gauge”) is defined by requiring B =
E = B™? =0, so that the perturbed metric element takes the form

ds? = a® [~ (1 +20)dn? + (1 — 2®)F;;dz'da?] | (2.20)

and we have defined the Bardeen potentials ¥ = A and ® = —C (Bardeen, 1980), which
represent the gravitational time dilation and the perturbation to the 3-space curvature,
respectively. From any other gauge, the transformation T = B — E, L = —E and L™ =
—B™Mi leads to the longitudinal gauge.

Flat slicing gauge

This gauge owns its name to the choice £ = C = E™ = 0, which makes the spatial
hypersurfaces unperturbed, and the metric element is

ds® = a® [~ (1 + 2A)dn* + 2B;dz"dn + ;;da’da?] . (2.21)

The coordinate transformation which leads to flat slicing gauge is T'= —C/H, L = —F and
LW — _ i
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Synchronous gauge

In synchronous gauge, constant time hypersurfaces are orthogonal to the 3-space (hence the
name), i.e. (n,z') are Gaussian coordinates. This can be obtained by imposing A = B =
B™? = 0. Thus the metric presents perturbations in the space-space part only, and it is
often written as

ds? = a? [—d772 + (5 + hij)dxidl‘j] , (2.22a)
1_
hij = hw(n,x) + (ViV; — g’yl-jvkvk)%(n,x) ) (2.22b)

The above choice does not fix completely the gauge: in fact, the gauge transformation
which leads to synchronous gauge is

1
a a
L= /(T —B)dn+p (2.23b)

which presents a residual gauge freedom in the four arbitrary integration constants a and
Bt = Bl + W (where S must be divergenceless). The four constants correspond to
different choices of the constant time hypersurface and of the spatial coordinates on it. This
leads to the presence of fictitious “gauge modes” in the perturbation equations, which must
be removed because they are just an artifact of the choice of the coordinate. Despite this
difficulty, synchronous gauge is quite popular in the literature.

Comoving gauge

In the comoving gauge the total bulk velocity vanishes, 6T OZ- = 0, which translates into
the condition B; = v;. In order to completely fix the gauge one further requires £ = 0
and E™? = 0. This is achieved with the transformation T = B —v — E, L = —E and
L™ = —EMi This gauge is the one which resembles most the gauge invariant formalism
(defined below), since for the variables in comoving gauge we have

C=—( seeEq. (2.26)
d=D  see Eq. (2.30)
do = Ay see Eq. (2.37)
v=V  seeEq. (2.31). (2.24)

2.1.4 Gauge invariance

General covariance guarantees that all equations in general relativity can be written in a form
which is independent of the gauge choice (Bardeen, 1980; Kodama & Sasaki, 1984; Durrer,
1994). From (2.16) it follows that for all tensor fields with vanishing or constant background

contribution, so that Lx(Q) =0 VX, we can construct gauge invariant perturbation equa-
tions. Such perturbation variables are invariant under a gauge transformation of the type
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Eq. (2.15). Since we can cast all general relativistic equations in the form @ = 0, it is always
possible to construct gauge invariant perturbation equations (Stewart & Walker, 1974).

This approach has the advantage of leading to equations which are independent of the
coordinate choice, and which are often easier to interpret physically. Furthermore, gauge
independent equations are free from spurious gauge modes. In order to write down the rele-
vant gauge invariant perturbation equations, we make use of the transformation properties
of the metric and matter variables under a change of gauge, Egs. (2.18) and (2.19).

Metric variables

From Eq. (2.18) we can construct the following 4 gauge invariant metric variables:

=-C-H(B-E), (2.25a)
UV=A+HB-E)+(B-E), (2.25b)
0 = BY - BY (2.25¢)
) — @)
HY =E]). (2.25d)

The two scalar variables ® and ® are called Bardeen potentials (Bardeen, 1980). Another
very useful variable is the gauge invariant curvature perturbation , which is defined as

=-C+Hw-B), (2.26)

where v is defined in Eq. (2.10). From the constraint equation (2.50), it follows that for a
flat universe, K = 0, the gauge invariant curvature perturbation is related to the Bardeen

potentials by
H .
(=d+ —(HY + D). 2.27
o (Y + ) (2.27)
There is only one gauge invariant vector perturbation constructed out of metric variables,
Eq. (2.25¢). Tensor variables are automatically gauge invariant, since there is no spin-2

coordinate transformation.

Matter variables

Because of the Stewart-Walker Lemma (2.16), the variables TI, TI{"” and I\ are already
gauge invariant, since the background anisotropic stress vanishes.
From scalar matter variables alone we can construct the gauge invariant variable

CQ

I'=np,— =46, (2.28)
w

which measures the intrinsic non-adiabaticity of the matter content. More precisely, as we
shall see below, I' is related to the entropy production rate. If the pressure is a function of
the local energy density only, P = P(p), then we can write

L
op P
and since by definition dp = § - p, P = m, - P, it follows that I' = 0. In the case of a perfect

(2.29)

fluid, P = wp and T' vanishes. Non-zero contributions to I' arise from the relative entropy
of a mixture of several fluid components, which is discussed in § 2.1.5.



2.1 Perturbation variables 41

The choice of a gauge invariant density contrast is not unique, and requires the use of

metric variables. Meaningful combinations are

D,=0-3(1+wH(B—-F) (longitudinal), (2.30a)
Dy=0+3(14+w)C (flat slicing), (2.30b)
D=0-3(1+w)H(B—v) (comoving). (2.30c)

On super-horizon scales, D, corresponds to the density contrast in the longitudinal gauge;
D, is the density contrast on homogeneous 3-space hypersurfaces (flat slicing); D reduces
to the density contrast in the comoving gauge. The distinction is only important on super-
horizon scales, since on small (sub-horizon) scales, all the above variables reduce to the same
(Durrer, 2001).

The remaining velocity perturbation can be written in gauge invariant form as

V =y — E" (231&)
VO =0 — B (2.31b)

Useful relations between those gauge invariant variables are

Dy=Ds—-31+w)®, (2.32a)
D =D, +3(1 + w)HV , (2.32b)
D =Dy +3(1+w), (2.32c¢)

(=®+HV. (2.32d)

2.1.5 Multiple fluids

The above definitions assume that the universe is filled with, or dominated by, only one
fluid component. In a more realistic modelling, we must account for the presence of several
matter components. We will usually consider four of them, namely photons (subscript ),
massless neutrinos (subscript v), non-interacting cold dark matter (CDM, subscript ¢) and
baryons (subscript b). The subscripts r (radiation) and m (matter) will refer generically
to a relativistic (w, = 1/3) and a non-relativistic, dust-like (w,, = 0) fluid, respectively.
Variables without subscript designate the total perturbation.
If multiple matter components are present, the total perturbation variables are the weighted

sum of the variables for each component:

5= P, (2.33a)
~ P
. 5o+ D,
wi = S Pot Cay (2.33b)
p+P
3 P, .
/=% S (2.33¢c)

[0}

The equation of state and the adiabatic sound speed are defined for each component

(2.34)

we = — and ¢
(63
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and for the mixture we have

w= and ¢ = (2.35)

P
D

<0 -

The transformation properties of the variables for each components are the same as for the
total variables, Eqgs. (2.19). Hence for each matter component we can define gauge invariant
variables as in Egs. (2.28, 2.30, 2.31), yielding for the scalar part:

2

To = Top — %5a, (2.36a)
Vo =va — E, (2.36b)
Dos =00 — 3(1 +wa)H(B — E), (2.36¢)
Doy =60 +3(1 +wo)C, (2.36d)
Do =60 — 3(1 + wa)H(B — va) - (2.36¢)

In the presence of multiple matter components, it is often useful to work with the gauge
invariant density contrast

Ay =00 — 3(1 + wo)H(B —v), (2.37)

which corresponds to the density contrast in the gauge where the total matter is at rest, i.e.
the comoving gauge introduced on page 39. Notice that on the right hand side it appears
the total velocity v, rather then the velocity of the o component as in (2.36e). This new
variable is related to the density contrast in the flat slicing gauge by

Ag = Dyo+3(1+w,) (®+HV) . (2.38)

2.1.6 Entropy perturbations

When more than one component is present, entropy perturbations can arise even for a
mixture of perfect fluids. The total non-adiabaticity of the mixture is given by (2.28), where
the quantities appearing on the right hand side have to be interpreted as total variables.
Using the definitions (2.33), we obtain

PT = PTini + > _Sapalch — c2),= P (Tint + Trel) - (2.39)

We have introduced the total intrinsic entropy perturbation

Py
I‘int = Z ?Fa (240)

«

and the relative entropy perturbation I'.¢, which using the background energy conservation,
Eq. (1.16, page 25), can be recast as

D 1 o 1 7067 (0% 6
PTe = 1 § ( s )( i uiﬂ)p i (Ci - C%) 0 — A . (241)
2a5 (1+w)p 14w, 14wg

Here we have assumed that the components are decoupled from each other, i.e. that Q% = 0
in (1.16, page 25), see (Malik et al., 2003) for a generalization to the case of interacting
fluids.



2.2 Perturbation equations 43

The quantity 'y represents relative entropy perturbations which are produced by the
different dynamical behavior of the matter components with different sound speed. The
entropy perturbation between the components o and [ is defined as

S 55

= — . 2.42
l+wy, 14 wg ( )

Sap

It is easy to see that the entropy perturbations are gauge invariant quantities by substituting
the gauge dependent density contrasts on the right hand side with the gauge invariant density
variables defined in (2.37), obtaining

A, Ap
T l4we, 14w’

Sap (2.43)

In order to clarify the physical meaning of S,g, consider a mixture of radiation and dust-
like matter. We are interested in fluctuations of the number density (per physical volume)
ratio of the two species:

ny on, oy
o — rMm) = - —. 2.44
(22) ) = 2 - 22 (241
Recall that (see e.g. Kolb & Turner, 1990) n, o< s o< T2, with s the radiation entropy per

volume, hence

on, ds 35£ B §5p,~

= = = 2.45
Ny s T 4 py ( )
For matter we have
nm _ Pm (2.46)
Nm Pm ’
and therefore
1) 1) 1) 1)
fr MmO Om g (2.47)

ne Ny (L+w.) (14w

Thus a non vanishing relative entropy perturbation means that there are spatial inhomo-
geneities in the relative number density of the the two fluids, which can be understood as a
spatial variation in the equation of state. The above results are generalized in § 4.3.

2.2 Perturbation equations

In this section, we write down the first order perturbation equations using the gauge invariant
formalism and variables defined above. For completeness, we also give the vector and tensor
equations, but in the rest of this work we will concentrate exclusively on the scalar sector.

2.2.1 Einstein equations

The perturbed Einstein equations
0G,, = 8nGT), (2.48)

are split in their scalar, vector and tensor parts.
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Scalar equations

There are 4 scalar equations for the 4 gauge invariant quantities ®, ¥,V and D:

(A4 3K)® = 4nGa?pD (Poisson), (2.49)

HY + & = 4nGa?p(1 4+ w)V (constraint), (2.50)

d — U = 8rGa’pwll (anisotropic stress), (2.51)

) ) 2

HU + (H? 4+ 2H)U = 47Ga’p (chg + wl + 3wAH> , (2.52)
where , .
H>—H ¢

U=+ —F>o+ —. 2.53

t ety (2.53)

Recall that D, is related to D, V and ® via Egs. (2.32, page 41), and we have assumed
an equation of state of the form (1.7, page 24). Eq. (2.49) is the general relativistic analogue
of the Poisson equation. In order to close this system, we need to specify the matter content
by giving w, ¢2, T and II. For a single perfect fluid, I' = II = 0, hence from the anisotropic
stress equation (2.51) it follows that ¥ = ®.

We shall see below that an evolution equation for II follows e.g. from the kinetic description
provided by the Boltzmann equation, see Eq. (2.127, page 53). For multiple fluids, we will
also rewrite I" in terms of the relative entropy perturbations, as in Eq. (2.41).

Vector equations

The vector part yields a constraint and an evolution equation for V,L»(v> and EEV):

(QIC +AFAH - H2)> 2 = 167G (1 + w)V," (2.54)
NV 4 2HEY = 8rGpa’wIl” . (2.55)
For a perfect fluid, HEV) = 0, the above equations give in a flat universe on large scales

(such that gradients can be neglected)

1
2 =~V o = (2.56)

Therefore in the absence of active seeds, vector perturbations are always decaying on large
scales.
Tensor equation

The tensor part yields an equation describing the gravitational waves. It is the equation of
a forced harmonic oscillator, with a damping term due to the expansion of the universe:

Ej) +2HES + (2K — A)E) = 87Gpa’TLy) . (2.57)

On super-horizon scales and for zero curvature, the term El(;) is negligible. The homoge-
neous equation in the radiation era, when H = n~!, has a decaying solution EZ(;) x n~ ! and
a constant solution, EZ(;) = const. As a mode enters the horizon, the oscillatory behavior
takes over, and the wave propagates with a frequency k% + 2/C and is damped as a~'. In the



2.2 Perturbation equations 45

absence of anisotropic stress and in a flat universe, IC = 0, the general solution of (2.57) for
IT = 0, writing EZ(Jt> = h(x,7n)e;j(x) and going to Fourier space in a flat universe, is given by

h= (kn)' = [Ajg-1(kn) + Bng—1(kn)] , (2.58)

where j,(z) and n,(x) are the Bessel and von Neumann functions of order v, respectively
(see Egs. 3.10, page 60) and a o n?.

2.2.2 Conservation equations

The conservation equations, which follow from the contracted Bianchi identity, offer evolution
equations which are sometimes of a simpler form and are handy to manipulate. From the
perturbed energy conservation equation

§(V,IT") =0 (2.59)
we obtain the following equations for a mixture of non-interacting fluids.

Scalar equations

There are two scalar conservation equations, one for the density contrast and the second for

the velocity perturbation. In terms of Dy, the conservation equations read:
Dygo +3H(c% —wa)Dga = —3HD qwa + (1 4+ we) AV, (2.60)

Wq,

: 2 2
Vo + (1 —3c2)HV, = ¥ + 32 + (ra +ap, .t g(A - 3/C)Ha> . (2.61)
We

1+ w,

Is is sometimes convenient to express the above in terms of the density contrast D,:

. 1
Da — 3waHDg = (A + 3K) [(1 + wa)Va + 2Hwally] + 3 11‘2}“ (H2 + K)(V — V), (2.62)
. ci We 2
Va+HVe =+ Dy + To+ (A + 3K, ) . (2.63)
1+ Wey 1+ We 3

Vector equation

We obtain one evolution equation for the vorticity Qi;) = Ei;) + Vig):

. 1 w
Q0+ HO (1 = 3c3) = 51 +‘;U - ATLY) (2.64)

If the anisotropic stress source term is absent, we can rewrite the above equation as

d
dfn(QE,V(lal’?’ca) =0, (2.65)

hence
O oc gl (2.66)
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2.2.3 The Bardeen equation

It is often convenient to have an evolution equation for the Bardeen potential in terms of the
total matter content. By combining the conservation equation Eq. (2.60) with the Einstein
equations (2.49-2.51) we obtain a second order equation, called the Bardeen equation, for ®:

d+3H(1+ 2D+ [3(0? —w)H? — (143K - CEA] o =gy, (2.67)

where the source term gg is generated by the matter anisotropic stress and entropy pertur-
bation:
9o = 87Ga?P [HH + 20 + 3H2(1 — /w)] + LA + %F] . (2.68)

The above equation can be recast in an evolution equation for the gauge invariant curvature
perturbation, Eq. (2.27). For hydrodynamical matter, i.e. setting II = 0 and for a flat
universe (K = 0) we find

(= H;f v [2A® + SH?wT] . (2.69)

This expression will be used when discussing the evolution of curvature and entropy pertur-

bations.

2.2.4 Collisionless Boltzmann equation

We briefly recall in the following the basics of relativistic kinetic theory, for more details see
e.g. de Groot et al. (1980). Consider the phase space given by the the tangent bundle

T ={(z", p")|a* € M,p" € T,.} (2.70)

where M is the spacetime manifolds and 7, its tangent space at the point x*. For a particle
of mass m, its distribution function f(x*,p") is defined on the mass-shell

Pn(ah) = {p" € Tulpup" = —m?*} (2.71)

The Liouville operator £ is defined on 7, and it gives the evolution of f(z#,p") along the
particle world lines, according to the Boltzmann equation

LIf1=Clf1, (2.72)

which states that the rate of change of f is due to the collision term C'[f]. For the purpose
of studying relativistic particles such as photons and massless neutrinos, we will treat the
case m = 0 only. The hereby derived equations will then be applied to the description
of neutrinos and of photons after recombination. Further details and the general case for
massive particles can be found in e.g. Durrer (1994); Uzan (1998).

We now proceed with perturbing the left hand side of Eq. (2.72). Its background solution
was presented in § 1.2.2, and was shown to be of the form f = f(ap), see Eq. (1.45), where
E?2=p?= pupyg"” . By splitting the distribution function into a background and a perturbed
part,

f(n,2',p,n") = f(n,p) + F(n, 2", p,n") (2.73)

we move to a phase space which differs to linear order from the one of f. Therefore the choice
of F' and its transformation properties depend on the isomorphism relating the “background”
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and the “perturbed” phase space. By an opportune choice of the isomorphism, it can be shown
(Durrer, 1994) that under a gauge transformation F' transforms as

F - F4pd [HT +n'T;] . (2.74)

dp
It follows that the following variable

_ of i
F=F-pg [C’+n (B —BZ)} : (2.75)
is gauge invariant. In terms of F, the collisionless Boltzmann equation reads
oF OF oF oF of
n' —— — Orf nink n'0;( + ® 2.76
o o TPy Gt =Py, MA(T+ )], (2.76)

and ()T j) are the Christoffel symbols of the background 3-space. The above equation is
in mamfestly gauge invariant form, and we notice that spatial variations in the Bardeen
potential act as source for perturbations in the distribution function.

By integrating this equation over the particle energies, we obtain a differential equation
for the brightness perturbation I, defined as

I=1I(n)+ZI(nz'n)= 47‘(‘/ fpidp + 477/ Fpidp. (2.77)
0 0

The brightness represents the energy per unit solid angle as measured by an observer at
position 2. The photon energy is just the monopole of the brightness, i.e.

dQ
o= [T (2.78)

and therefore p, = I. From Eq. (2.76) we obtain

ont
The above can be rewritten in terms of the temperature contrast

0T 17

+ (m +4H — O nink 0 ) T =4I [n'0;(V + ®)] . (2.79)

O(n,z',n') = — 2.80
(n,a*,n') = 7 = 73 (2.80)
and using the background energy conservation equation we obtain

5+ (nid, — O mink 2

This is the Boltzmann equation for relativistic, collisionless particles, which relates gravita-
tional perturbations to temperature fluctuations of their distribution function.

The Boltzmann hierarchy

We now go to Fourier space, and we restrict ourselves to the spatially flat case, K = 0, so
that the eigenfunctions of the Laplacian are just plane waves and (3)F§ x = 0 (an harmonic de-
composition for non-flat spaces can be found e.g. in Vilenkin & Smorodinskii, 1964; Kodama
& Sasaki, 1984), so that for any scalar f

1 1KX
s [ P10 (2.82)

f(n,x) = o)



48 Cosmological perturbation theory

and in general we denote the real space f and its harmonic transform with the same symbol.
Defining = n'k;j/k and k = \/k;k? we obtain from Eq. (2.81)
O + 1uk® = —1uk(V + ®). (2.83)

Assuming that © does not depend explicitly on k;, then the dependence on the photons
momentum direction comes in only via p. In that case © = O(n, k, 1), and we will suppress
the explicit time dependence. We now perform an expansion in Legendre polynomials’

O(u.k) => (20 +1)P0y, (2.84)
J4
1
Ol =5 [ anlu kP, (2.85)

where Py(x) is the Legendre polynomial of order ¢, which satisfy
Po(x) =1, (2.86)

Pi(z) =x, (2.87)

Pr) = §< 2 1), (289)
(L4 1)Pry1(x) =20+ 1)z Py(x) — LPp1 (7). (2.89)

From Eq. (2.83) follows an infinite hierarchy of equations for the moments of the Boltzmann

equation:
Og + kO, =0, (2.90)
O+ 1@1@@0 + %@2 _ —ézk((l) L), (2.91)
O+ — kO, 4 4 1L kO =0 (12 2). (2.92)
20+ 1 20 +

Gradients of the Bardeen potentials act as a source for the first moment. Because of the
recursion relation, each multipole moment ¢ is coupled to the preceding and the following
moment. Therefore, power is transferred to higher moments, and in principle we need to
solve an infinite number of coupled differential equations. Simply truncating the hierarchy by
imposing Oymes = 0 is not an optimal solution, since the error due to the truncation will re-
flect back to lower moments via the coupling. A more effective truncation scheme is discussed
in Ma & Bertschinger (1995). We notice that at early times and super-horizon scales (i.e.
kn < 1) higher moments are suppressed by successive powers of kn, ©, ~ O(0©,_1kn), and
hence the first few moments are sufficient to accurately describe the temperature fluctuation.

Relations with macroscopic quantities

From the definition of the stress-energy tensor (de Groot et al., 1980)

3
T (1) = / C;fpﬂp"ﬂxa,p“) (2.93)

'Different normalizations for the expansion coefficient are commonly used in the literature and their relation
with the one used here is: in Hu & Sugiyama (1995b) O = 2¢(2¢ + 1)©, (notice that in this work the
Bardeen potentials are such that ¥'S = ¥ but &5 = —®); in Ma & Bertschinger (1995) © is denoted by
U and U}'™® = 4*©,, which is the same convention used by Seljak & Zaldarriaga (1996); in Durrer (1994)
O is denoted by M and M, = O,/2.
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and comparing with Eq. (2.14, page 37), we can establish the hydrodynamical gauge invariant
variables as integrals over momenta of the gauge invariant brightness perturbation:

1 [dQ2
Dy=— | —T1 2.94
9= 50 ) An (2.94a)
; 1 dQ
Vi = —/nﬂI, (2.94b)
TR P
i 1 dQ -
I = niT. (2.94c)

Wy Py 4

Rewriting the above in terms of multipole moments of the temperature perturbation, we

have the identities in harmonic space?
1
O = ZDQ’V’ (2.95a)
1
0, = _glkV% (2.95D)
1
O, = —EkQHV. (2.95¢)

Truncating the Boltzmann hierarchy at the third moment by setting ©, = 0 for £ > 3, we

obtain
. 4 9
Dy + 5k, =0, (2.96)
| 1
Vy =4 Dor = —6k2H7 + O+, (2.97)
.8
I, = =V = 0. (2.98)

Unsurprisingly, we recover the two conservation equations of (2.60-2.61, page 45) for
radiation (with w, = c,zy = 1/3 and ' = 0), supplemented with an evolution equation for
IL,. These equations are appropriate for relativistic, collisionless and massless particles such
as neutrinos. At later times, however, higher order moments need to be taken into account.
Photons are scattered by electrons, and to describe their evolution we now turn to the
appropriate collision term.

2.2.5 Thomson scattering

We now consider the case of elastic Thomson scattering between photons and non-relativistic
electrons. We give some elements of the derivation for the collision term for the total photon
intensity, while we just outline the polarization treatment. A detailed derivation can be
found in Kosowsky (1996); Durrer (2001).

Thomson scattering of unpolarized light generates linear polarization if the incident inten-
sity has a quadrupolar anisotropy. In the tight coupling regime, collisions make the photons

2Notice that the monopole of our F corresponds (up to multiplicative constants) to the density perturbation
in the comoving gauge; in the literature the temperature perturbation in Newtonian gauge is often employed
(as in (Hu & Sugiyama, 1995b)), in which case an extra term oc ® appears along with . With the
normalization convention of (Hu & Sugiyama, 1995b), the relation between our monopole and the one in
Newtonian gauge is @9 = O — ®. All other multipoles £ > 0 do not suffer from this ambiguity and are
gauge independent.
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distribution function uniform in the electrons rest frame, and therefore no polarization can
arise. However, during the weak coupling regime just before last scattering, the mean free
path of photons grows and a sizable temperature quadrupole is generated, which acts as a
source for polarization, as we briefly describe in this section. After decoupling, free streaming
conserves the polarization state, which can only be changed by further rescattering due to
reionization, see § 4.1.3.2.

2.2.5.1 Stokes parameters

The polarization state of light is usually described in terms of Stokes parameters, see e.g.
Jackson (1975). The electric field of a plane monochromatic electromagnetic wave propagat-
ing in the z direction is

E(x,t) = Ee'@i=k2) (2.99)
where the complex vector £ describing the polarization state of the wave is given by

ay 6209”

E=| aye |. (2.100)
0

Instead of using the four numbers (az, ay, 05, 6,), it is convenient to introduce the Stokes

parameters
=a+a,, (2.101)
Q=a)—a, (2.102)
U = 2agay cos(0, — 0,), (2.103)
V = 2aza,ysin(0, — 0,) , (2.104)

which can be directly measured with a linear polarizer and a quarter-wave plate. Their phys-
ical interpretation is straightforward: I gives the total intensity, () measures the difference
between x and y polarization, U gives phase information for the two linear polarizations,
and V determines the difference between positive and negative circular polarization. I and
V' are physical observables independent of the coordinate system, but ) and U mix under a
rotation by an angle ¢ of the x — y plane:

Q' = Qcos(2¢) + U sin(2¢) (2.105a)
U' = —Qsin(2¢) + U cos(2¢) , (2.105b)

from which it is easy to derive that the physically observable quantity is the polarization
vector P, lying in the z — y plane, with magnitude (Q? + U?)Y/? and with polar angle
= %tan_l %

Finally, the four stokes parameters are not independent, but satisfy the relation

PP=Q*+U*+ V2. (2.106)
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Figure 2.1: Geometry of the the Thomson scattering process in the rest frame of the electron,
represented by the sphere in the center. A photon beam is incoming from the left and is
scattered off with an angle 6.

2.2.5.2 Scattering cross section

We now consider the scattering process in the rest frame of the electron, with the geometry of
Fig. 2.1. The Thomson scattering cross section for an incident wave with linear polarization
EM into a scattered wave with polarization £°" is

do 3ot

dig _ @,gin . gout,Q, (2'107)

with o7 the Thomson scattering cross section. It is convenient to work with the partial
intensities I, and I, defined as
I14+Q I1—-Q

5 and [, = ——. (2.108)

Iy
2

The incoming wave is unpolarized by assumption, so I'" = I;n = I'™/2, and for the outgoing

wave we find
3o

307 . )
out in out in 2
= — = .1
I; 167TI and I 167rI cos” () (2.109)
or, in terms of the outgoing Stokes parameters
3 .
vt — %Im(l + cos2(0)), (2.110)
3 .
Qo = —1‘;11“ sin?(0) , (2.111)
Ut =0. (2.112)

The value of U°" has been found by recalculating Q in an outgoing basis which has been
rotated by /4. Thomson scattering does not generate circular polarization, so V' = 0 and



52 Cosmological perturbation theory

we will not consider it further. Since from (2.106) there are only three independent Stokes
parameters, and V' = 0 all the time, the description in terms of I and @ is sufficient, and we
wont use U any further.

The total outgoing intensities are obtained by integrating over all incoming directions,
and rotating the result into a common coordinate system using (2.105):

3UT

o = Tor dQ(1 + cos?(9)) '™ (6, ¢) , (2.113)
3 .
Q™ = 127::/d9 sin?(#) cos(2¢)I™(0, ¢) . (2.114)

2.2.5.3 Temperature hierarchy

We are now in the position of deriving the collision term due to Thomson scattering for the
intensity distribution function f, which is of the form
dft  df”
Clfl=——-——. 2.115

=% (2115)
where f+(z#,p") (f~) denotes the distribution of particles within (Az*, Ap’/p°) of (z*,p*)
gained (lost) in the scattering process. According to the hypothesis of molecular chaos
(de Groot et al., 1980), the contribution lost is just proportional to the electron density
times the photon distribution, hence with the definitions (1.40-1.41, page 28)

4/

a (a#,p,n') = 7f(a",p,n"), (2.116)

where
T = aorne (2.117)

is the differential Thomson optical depth, and n. is the free electron density. The contribution
scattered into p’ = pn' is most easily evaluated in the electron’s rest frame, which we denote
by a tilde. After averaging over incoming and summing over outgoing polarization states,

we obtain - -
d dO. -
L) = orn, [ SEiG B e). (2.118)
dt 47
where the angular dependence of the scattered intensity is, from (2.113)
/ 3 "2 3 "ij
w(s,e):Z[l—(s-s) ]:1—&—151-]-6 J (2.119)

with €;; = ;65 — %&j. We now transform into the coordinate system, in which the photon
distribution function f is defined. To first order we have the relations

p=p(1+n(v,—B), (2.120)
fi=n, (2.121)

since aberration appears only at second order. We have used the baryon 3-velocity vz, since
electrons and baryons are electromagnetically coupled and their velocities are the same. Note
that the above transformation assumes v, < 1, i.e. that the electrons are non-relativistic,
consistent with the fact that we consider v, as a perturbation. Splitting the distribution
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function in an isotropic part and a (gauge dependent) perturbation, f = f(n,p) + 6 f(z, p'),
we then compute the energy integrated collision term

4 / p*dpC [f] = aorne [—47%-(@,3 — BYp, +8py — 6I(n) + %n"jafij : (2.122)

and we have introduced the gauge dependent brightness perturbation 61 = 4x [ dpp36 f and
its second moment

Qe
§I;; = / (14751-]-5](5) . (2.123)

The expression Eq. (2.122) can be brought in explicit gauge invariant form by substituting
the gauge dependent variables with the corresponding gauge independent counterparts. After

some manipulations we obtain
A 1 g

where we have used the identity (2.94c, page 49). In view of adding the collision term on
the right hand side of the hierarchy (2.90, page 48), it is convenient to rewrite it in terms of
multipoles of the temperature fluctuation © and transform to Fourier space

47 /p3dpc [f] = —47p, (1kVy +301) P + g@2p2 + Z(Qﬁ +1)0,P| . (2.125)
>3
A few remarks are in order at this point: as a consequence of the conservation of energy in
the elastic collision, non-relativistic Thomson scattering does not contain a monopole, while
the dipole corresponds to a velocity mismatch between photons and baryons, as is apparent
from the first term on the right hand side with 3©1 = —kV/,. The angular dependence of the
scattering generates a quadrupole moment. In the limit of very many collisions, 7 > H, all
multipoles ¢ > 1 are driven to zero, therefore in the strong coupling regime, the photons and
baryons velocity coincide and higher order moments are suppressed: thus the tight-coupled
photons-baryons system can be described as an hydrodynamical fluid in term of the zeroth
and first moments only.
The Boltzmann hierarchy, Eq. (2.90, page 48), supplemented with the above collision
term for photons-electrons Thomson scattering, now becomes:

Oy +1k0; =0, (2.126a)
.1 2 1
01+ glk(@o + & + \I/) + gzk@g = —f(glk% + @1) , (2.126b)
. 2 3 .9
@2 + 52]{@1 + 52%@3 = —TEGQ (2126(3)
S} +Lk® +£+—1k9 =70, ({>3) (2.126d)
ET 9p WO T g WP = TR =0 ‘

Rewriting the above in terms of macroscopic quantities and cutting the hierarchy at £ = 2
gives instead of Eq. (2.96, page 49)

. 4
Dy + 51421/7 =0, (2.127a)
o1 1
Vy = 7 Do + 6k2m —® -0 =—7(V, - V), (2.127Db)
.8 9
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2.2.5.4 Polarization hierarchy

As discussed in § 2.2.5.2, photons scattered at a right angle are are preferentially polarized
along the direction orthogonal to the scattering plane (i.e. in the £2"" direction in Fig. 2.1
when 6 = 7/2). Expanding the incoming intensity in spherical harmonics according to

™0,6)=> > ImYim(8,9), (2.128)
Y4 m

then the resulting Q°", from (2.114) is

3o 27
out — 22\ [ZRe [ 2.12
@ 1\ e f2 (2.129)

which shows that if the incoming photon intensity as a function of direction has a non-zero
component of Yao, associated with an ¢ = 2 quadrupolar moment, then there will be a net
linear polarization of the outgoing distribution.

In analogy with the intensity distribution function f, we denote by f@ = f%(n,p) +
FQ(n,z',p,n') the perturbed distribution function in phase space and by ©% the brightness
perturbation for the Stokes parameter Q,

1 [y fOptdp

o0 = 1do S PP
4 [ F@pidp

(2.130)

Then the collisional Boltzmann equation for the brightness perturbation f< in Fourier space
is (Bond & Efstathiou, 1984; Kosowsky, 1996)

. 1
69 1+ 1kueQ = —7 {@Q +5(1-P) (@2 +0% - @g?)} . (2.131)

Expanding the equation in Legendre polynomials as in Eq. (2.85, page 48), we obtain the
Boltzmann polarization hierarchy:

OF + k0¥ = —g [92 +0¢+ @ﬂ : (2.132)

69 + %m [@g? + 2@?} T (2.133)

69 + %zk@? + gm@? = —% [9@59 — O+ @OQ] , (2.134)

07 + ei kOF | + ;g—:_llzk@?ﬂ _ 00 (123). (2.135)

Polarization effects also feed back into the temperature collision term, modifying the ¢ = 2
equation in the temperature hierarchy (2.126) as follows:

. 9 '
©9 + glk@l + %zk‘@g, = —%0 9@2Q — Oy + @OQ . (2.136)

2.2.5.5 E and B polarization

From the the hierarchy of equations (2.132) it is possible to determine the brightness pertur-
bation for Q today, and define the corresponding power spectrum. However, the approach
using Stokes parameters is limited by the fact that U and @ are not rotationally invariant,
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but are defined with respect to a fixed coordinate system on the sky. Not only the superpo-
sition of different modes is cumbersome because of the behavior of () and U under rotation,
but the coordinate system becomes ambiguous and ill-defined on the whole sky, since it is
impossible to define a rotationally invariant orthogonal basis on the two-sphere.

The solution is to construct two spin 2 quantities from @) and U, which one then expands
in the appropriate spin-weighted basis on the two-sphere (Zaldarriaga & Seljak, 1997), and
reduces to scalar quantities by acting on them with spin raising and lowering operators. This
manipulations yield two scalar quantities which are rotationally invariant, and therefore well
defined on the whole sky. Furthermore, one can expand these quantities in terms of usual
spherical harmonics and build two linear combinations which behave differently under parity
transformation: the combination labelled E, in analogy with the electric field, is invariant
under a parity change, while the B-type combination changes it sign, analogous to the
magnetic field. Another terminology, sometimes found in the literature, is C' mode for “curl”
(corresponding to the B-type) and G for “gradient* (corresponding to the E-type).

Another advantage of this decomposition is that only the cross-correlation between E-
polarization and temperature is needed, since the cross-correlation between B and E or
T vanishes since B has opposite parity. Furthermore, scalar modes do not generate B
polarization, due to the peculiar p dependence of Thomson scattering, while tensor modes
do. Therefore, the separation of the polarization signal in E' and B modes is useful to separate
scalar from tensor contribution, and to identify foreground contamination or a lensing signal,
which can convert E polarization into B polarization for scalar modes.

We do not give explicit expressions here, which are rather technical and are not needed
in the following, but refer the reader to Zaldarriaga & Seljak (1997) instead. A similar
decomposition, but with a different normalization has been proposed by Kamionkowski et al.
(1997).
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Chapter 3

Fundamental equations

The all sky picture of CMB anisotropy delivered by COBE and more recently and with 30
times more resolution by WMAP can be considered as a fingerprint of the early Universe.
More precisely, it is an accurate reproduction of the fluctuations in the radiation-matter
mixture at the epoch of recombination.

In this section we succinctly explain the origin of this picture, by starting with the be-
havior of scalar perturbations in a Universe containing one perfect fluid, § 3.1; many of
the fundamental features of the anisotropies can be understood in a simple model with a
mixture of radiation and matter which are coupled only gravitationally, as demonstrated
in § 3.2 where the concepts of adiabatic and CDM isocurvature initial conditions are intro-
duced; adding a massless neutrino component yields two new growing modes, the neutrino
entropy/density and velocity isocurvature solutions, derived in § 3.3. Although the results of
those two sections are already known in the literature, the derivation presented in this work
is original. We then refine the picture of acoustic oscillations by including baryons in § 3.4,
and sketch the origin of damping in § 3.5. Finally we derive the line of sight solution for
the observed temperature fluctuations today and introduce the CMB angular power spectra
in § 3.6. The understanding and tools developed in the following will build the basis for
the next chapters, where parameter extraction techniques will be discussed (Chapter 5) and
applications presented (Chapters 6 and 7).

There is a rich literature on the cosmic microwave background but unfortunately an
updated work which encompasses both and introduction to the field and more advanced
material, covering the rapid evolution of the last few years, is presently lacking. Throughout
this and the next chapter we give ample references to the classic and more recent research
papers; as background material, Lineweaver et al. (1997) is a valuable source which presents
an introduction to the CMB theory as well as some observational issues; Durrer (2001) is
built on a gauge invariant formalism similar to the one used here; Partridge (1995) is a
good introductory overview written at the onset of the recent data-driven epoch. A rather
complete review of both theory and data analysis is offered by Hu & Dodelson (2002).

3.1 One perfect fluid

We begin by examining the behavior of scalar perturbations in a flat (C = 0) universe which

contains a single perfect fluid, described by w = ¢2 = const, and I' = I = 0.
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Since the anisotropic stress vanishes, from Eq. (2.51, page 44) it follows ¥ = ®. The
evolution of the perturbations is given by the two conservation equations (2.62-2.63, page
45) supplemented by the Poisson equation (2.49, page 44), which in Fourier space read:

D —3wHD = —(1+w)k?*V, (3.1)
X 2
V+HV =0+ —= D, (3.2)
14+w
— k20 = ;WD. (3.3)

These equations can be combined into a second order equations for the density contrast:

D+ (1 - 3w)yHD — gH2(1 + 2w — 3w?)D 4 kD =0 (3.4)

By defining a new variable = = kn and the parameter v = 2/(1+3w), we obtain the following
equation for D = DzV 2

& 24 [Ci _ ”(’“rl)} D _o, (3.5)

S pitESp =
dz? +acdan + 2 2

For ¢2 # 0 the solution is a linear combination of spherical bessel (j,) and von Neumann
(n,) functions of order v (Abramowitz & Stegun, 1970)

D = C1j,(csz) + Cony(csx) = Zy(csz) . (3.6)

Therefore the general solution of Egs. (3.1) is

D =2*""Z,(csz), (3.7)
V = §l/ Zy(c a:)ﬂsl_” + 2_71/:1:2_”Z (csx) (3.8)
- 2 v\Cs 3V(1—|—1/) v—1\Cs ) .
U= —gl/Qx*”Zy(csm) . (3.9)

The asymptotic behavior of the Bessel and von Neumann functions is
. y . 1
Juox ¥ for csr < 1, Juv x —cos(csx — ) for csz > 1, (3.10a)
x
1
n, oc 2~ for cqr < 1, n, < —sin(csx — ,) for csx > 1. (3.10b)
x

with v, = 7(v + 1)/2. For an expanding universe (z > 0) and v > —1 (i.e. w < —1 or
w > —1/3) n, is divergent at early times, c;x < 1. Therefore we set C2 = 0 and we obtain
the asymptotic solutions (for w > —1/3)

T =T,
D=-g5% for coz < 1 (3.11)
2
KV = —= W
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and
U = Wz~ ) cos(csx + 1)

2 \IIO 1—v

D= —3 27 cos(cst +7,) for csz > 1. (3.12)
—-2)¥

This solution was first discovered by Bardeen (1980). The Bardeen potential is constant on
super-horizon scales, and decays once inside the acoustic horizon. On scales smaller than
the acoustic horizon (csz < 1) density perturbations oscillate: the gravitational attraction is
resisted by the fluid pressure (w # 0) and this sets up acoustic oscillations. The amplitude of
density and velocity fluctuations remains constant inside the horizon in the case of radiation
(v = 1,w = 1/3), while it increases for w > 1/3 or w > —1/3. The behavior of the density
and velocity perturbations on scales larger then the horizon depends on the variable under
consideration. While D, corresponding to the density contrast in the comoving gauge, is
growing, the density contrast in the flat slicing gauge D, remains constant. Therefore there
is no universal criterion to establish the growth of perturbations outside the horizon: the
behavior depends on the chosen gauge. As we go to early times, + — 0, perturbation theory
remains valid as long as it is possible to find a gauge in which the largest perturbation
variable does not diverge. We come back to this point in § 4.3, where we derive the most
general initial conditions.

The case of dust w = ¢ = 0 has a power-law solution on all scales. It suffices to remark

that Eq. (3.5) reduces to

d? 2 d 6
—D+—-—D—-—=D=0 1
da? + xdx 22 ’ (3.13)

whose general solution is D = Ax? + Bx~3. The growing exact solution is therefore
U =,
1 2
D= _6‘1’05‘3 xa  for dust, w = 0. (3.14)
1
KV = g\Ilox x a'/?

Clearly, in a dust universe perturbations always grow on sub-horizon scales, since there is no
) M
pressure to counterbalance the gravitational attraction.

3.2 Cold dark matter and radiation

In this section we investigate the evolution of perturbations in a flat universe containing only
radiation and a pressureless matter component which is decoupled from radiation. Thus the
matter has only a gravitational effect and represents a cold dark matter component. In the
next section we include massless decoupled neutrinos in the picture, while the role of baryons,
which are coupled to photons via Thomson scattering, is investigated in § 3.4.

3.2.1 Adiabatic and isocurvature modes

In this section we use as density variable the density contrast in the total comoving gauge
A,, defined in Eq. (2.37, page 42). We identify the radiation with photons (subscript ),
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and we have w, = c% = 1/3, while for matter w,, = ¢2, = 0. We normalize the scale factor
at the matter-radiation equality, so that
Pm(Geq) = py(Geq) With aeq =1 hence li—m =a. (3.15)
P~y

The total equation of state parameter and sound velocity are therefore

11 4 2L 4
w= - an c, = = .
3a+1 5 344 3a

(3.16)

As long as we are considering times well before decoupling, the photons form a tight coupled
fluid with baryons, since Thomson scattering prevents the generation of anisotropic stress
(and higher multipoles in the Boltzmann hierarchy) in the photons component, IL, = 0, as
we show in § 3.4. Therefore, via the anisotropic stress equation (2.51, page 44), the Bardeen
potentials are equal, ¥ = ®. The Bardeen equation for ® (2.67, page 46) is then

d + 3H(1 + 2D + 3(c? — w)yH?® = ZA® + 3H*uT, (3.17)

where I' = T, is related to the relative entropy perturbation S = S,y = A, — %A7 by
Eq. (2.41, page 42). By using the Poisson equation we can rewrite the above as an equation
for the total density contrast,

H™2D + (1 — 6w +3c2)H D — 3(1 + 8w — 3w? — 6¢2)D =

2 3.18
— <k> [D—3c2(1+w)S] , (3.18)

H

where we have introduced ¢? = ﬁvﬁm(cg —c2)/ (1 +w)p] = a/(3a +4).

The energy conservation equation (2.60, page 45) reads for the radiation and matter
components:

. 4
Dy~ + ngV«, =0 (radiation), (3.19)
Dy +k*Ve=0  (matter). (3.20)

Subtracting (3.20) from (3.19) and using that

D, . D A, A
9, _ 976 — — ﬁ = SO( B (3.21)
14+we 1+wg 1+we 1+wg ’
we obtain
S =k (Vi —V,). (3.22)

In order to find an evolution equation for the entropy S, we derive (3.22) and making use of
the momentum conservation equation (2.63, page 45) after a lengthy manipulation we arrive
at

. . k2 1
—2 1-32AH 1S =(—= — 2
H S+ (1—-3cs)H S <H> {3(1 ) ciS (3.23)

Together, Eqs. (3.18) and (3.23) describe the evolution of adiabatic (curvature) and isocur-
vature (dark matter) perturbations in a flat universe containing only dark matter and radi-
ation.
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We start by considering large scales (k < H) at early times, a — 0. Then the right hand
side of (3.18) and (3.23) is negligible, thus D and S are decoupled. Using the scale factor a
as variable, we obtain an homogeneous system

2

d
a’—D —2D =0
dea d (Large scales, radiation epoch) (3.24)
27 _— =
a daQS +a daS 0

whose general solution consists of four modes,
D = Dya® + Dya~!
S=5+S11Ina

We will call the mode with Dy # 0, D1 = Sy = S1 = 0 the growing adiabatic mode, while the
one with Sy # 0, Dy = Dy = S1 the growing isocurvature mode (notice that for a < 1 the

(3.25)

S1 mode is indeed decaying). As we show below, the isocurvature mode at early times has
vanishing total density contrast, Bardeen potential curvature perturbation, ¢ = 0, hence its
name!.

Consider first the growing adiabatic mode: we can now restore the solution for D in the
source term on the right hand side of Eq. (3.23) to find the solution for S up to second order

in k/H. The Bardeen potential is easily found from the Poisson equation, and the result is

(D = Dya?
_ Do (K ’ 2 4
S = o1 ('H) a” xa
3Dg (Ha?
= o \% ) = const  (adiabatic, radiation epoch). (3.26)
1k
-
kV 57 xa
9D 2
(= _TO (7_2&) = const

Clearly, we recover the behavior already found in the single radiation fluid case for the
potential. We also discover that the entropy perturbation grows as a*, but remains negligible
on large scales, thus the adiabaticity condition S ~ 0 is maintained on large scales.

For the growing isocurvature mode we find, to the same approximation

( So [ k\? 5
= — | = a X a
12 \'H
S =25
So : .
d=——a (isocurvature, radiation epoch). (3.27)
8
So k
EV = —=""a o a?
8 H
(35
\ 16
1The CDM isocurvature mode is sometimes termed “isothermal” in the literature: this comes from the fact
that D = 0 implies ‘%T = f%Am ~ 0 at early times. Intuitively, it takes only a small perturbation in the

radiation component to compensate for a fluctuation in the matter at early times, because the Universe is
radiation dominated.
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We see that there is no generation of entropy on large scales (S = 0), however the isocurvature
condition ¢ =~ 0 is maintained only as long as a < 1. Naively we would expect that, as long
as the scale considered is outside the horizon, the term containing S on the right hand side of
Eq. (3.18) is suppressed as k%/H?2, thus D (hence ®) should not grow significantly. However,
since ® oc H?/k?, effects of magnitude k?/H? in D are significant for ®. This can be seen
more directly by rewriting the right hand side of Eq. (3.17) as —c2k%/H2?® — 2(1 + w)cc2S.
Therefore even on super-horizon scale the term o S act as a source for ® whenever c2¢? is
significantly non-zero. This is the case during the transition from the radiation to the matter
dominated epoch.

Having established the behavior in the early epoch, we now turn our attention to scales
which enter the horizon when the universe is well matter dominated, i.e. to wavelengths such
that

b < g = H(deq) (3.28)

The effects of the radiation-matter transition are easiest to discuss by looking at the behavior
of the curvature perturbation . To this end we rewrite the evolution equation (2.69, page46)

2 k2
= () & 2
3(1+w) (H> +3c.5

as

C. = —C?H . (3.29)

The term o ® on the right hand side is always negligible on super-horizon scales (k/H < 1);
for adiabatic perturbations we also have S = 0, and thus we obtain

¢ = const (adiabatic, all times), (3.30)

the usual conservation law for ¢ in the adiabatic case. For the isocurvature mode (S = Sy =
const) we find by integration

% da 1
(= —350/ —c2c? — —=8y (isocurvature, matter epoch). (3.31)
0 G a—oco 3

The radiation-matter transition generates a curvature perturbation from the initial isocur-
vature one, and this even on super-horizon scales.

Since ¢ = const in the matter era independently on the initial conditions, we can find
the value of the Bardeen potential in the matter epoch simply by integrating the definition
of the curvature perturbation, using that w = const as well. We then obtain the relation
(valid only in the regime where ¢ = const, w = const)

31+ w) _ 543w

="/ C 2 3.32
5+3w<+ “ ’ (3.32)

and we can drop the second term, which is decaying for w > —5/3. Therefore
®(a > aeq) = const = %( (matter epoch, independent of 1C). (3.33)

For the adiabatic mode, ¢ = const in the radiation era as well, therefore we can apply (3.32)
with w ~ const = 1/3, getting

P(a < aeq) = const = 2¢ (radiation epoch, adiabatic). (3.34)
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Let us denote by ®g the value of ® at the moment when the initial conditions for the
perturbations are specified, deep in the radiation era. The adiabatic mode corresponds to
So = 0,y # 0, while the isocurvature mode has Sy # 0, P9 = 0. From (3.33) we know that
® is constant on super-horizon scales in the matter era, independent of the type of initial
conditions; we denote its value by ®yp, and we wish to express it in terms of Sy, ®g. For
adiabatic perturbations, { stays constant through the transition, and therefore combining
(3.33) with (3.34)

dyip ~ 1%(1)0 (adiabatic, large scales). (3.35)

For isocurvature perturbations, the growth of ¢ through the transition gives a non-zero ® in
the matter epoch, from (3.33) and (3.31) :

1
D\ p =~ _ESO (isocurvature, large scales). (3.36)

In conclusion, we can summarize our results in terms of a transfer matrix as

® 9/10 —1/5 P
()0 ) (s)
a>>0eq

It is often useful to use the curvature perturbation as a variable describing the adiabatic
mode, instead of ®. In terms of the initial values of the curvature and entropy perturbations,
(€0, S0), the final values in the matter era are given by a transfer matrix of the form

¢ > = ( oo Hes > < < ) . (3.38)
( S ) s 0 Tss So

From the above analysis, we conclude that for scales k < keq the transfer coefficients are

1
Tee =1, TCS:_g’ Tss=1. (3.39)
For smaller scales, which enter the horizon before the universe is completely matter domi-
nated, the coefficients have to be found numerically.

3.2.2 Acoustic oscillations

We have seen in § 3.1 that perturbations in a fluid of photons oscillate on scales smaller than
the horizon. We now discuss the corresponding behavior in the presence of matter, and link
the phase of the oscillations to the adiabatic or isocurvature initial conditions on large scales.

Neglecting the anisotropic stress, II, = 0, the conservation equations (2.60-2.61, page 45)

for photons read
Dy~ + 362V, =0 (3.40)
V,— 1Dy, =20 (3.41)

where ® can be considered as an external potential determined by the Poisson equation. We
can recast the above in a second order equation for the density perturbation:

Dy~ + k*Dy =20 (3.42)
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Adiabatic initial conditions

Let’s consider Eq. (3.42) deep in the matter era, when the driving force is just a constant
set by the dominating matter contribution in the adiabatic case. Then the general solution
of Eq. (3.42) is

Dy = Cycos(cykn) + Cosin(cykn) — 8% (3.43)
1
kVy = Io. [C1 sin(cykn) — Ca cos(eykn)] (3.44)
Y

For small scales, where all choices of density perturbation are equivalent, we recover the
oscillatory behavior already found in § 3.1. The density perturbations perform harmonic
oscillations around a zero point displaced by a constant factor.

The constants Cy; and Cy are fixed by the initial conditions, adiabatic or isocurvature,
established by matching the above solution on large scales with the results of the previous
section. To this end, we shall use the following relation between D, and A, which follows
from the definitions of the variables:

1Dgr=30p —3S—HV — O, (3.45)

From the momentum conservation equation (2.63, page 45) we obtain for the total velocity
perturbation in the matter era
V+HV =0, (3.46)

with solution
1, 25,
V=Via "+ §H D, (3.47)

The term o a~! is decaying, therefore we retain V ~ %H‘lfb. Inserting this into Eq. (3.45)
and using that in the matter era ® = 9/10®9 — Sp/5 we obtain on large scales, where
Ay~ (E/H)?® < @,

1Dy~ (a > aeq) ~ const = —3d. (3.48)

Thus on large scales and in the matter epoch, D, , is independent of the entropy perturbation,
and is simply related to the primordial Bardeen potential.

The adiabatic mode stays decoupled from the isocurvature mode on super-horizon scales,
therefore we can set the initial conditions for the solution (3.43-3.44) by taking its constant-
time super-horizon limit, i.e. £ — 0, 77 = const > n¢q. This gives, with Sy = 0

1Dgy = 1C1 = 20up (3.49)
and comparing with Eq. (3.48) and using again (3.35) we obtain
C1 = 3®up .- (3.50)

The constant C5 is set by noting that the adiabatic condition S = 0 is preserved on
super-horizon scales, and that, because of energy-momentum conservation for matter and
radiation, this implies

Vy=Vn. (3.51)
Since
4 3a

v (3.52)

V=—"_ —
44 3a 7+4+3a m
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we have that V =~ V,,, for a > acq, and with (3.47) it follows that
Vy=Vy,~ 20K ", (3.53)
Comparing this with the large scale limit of Eq. (3.44),

. Ui . Cosy
1 V,==1C1 —Cy1 3.54
kHO,rl)I:nconst v 4 ! 2 ylir(l) Yy ’ ( )

we see that we need to impose C = 0, otherwise V, would diverge in the large-scale limit
y — 0, and we recover again (3.50) by using H = 2/n:

C1=3Pup and Cp=0. (3.55)
In conclusion, the adiabatic solution is

4
Dy = - k) — 8@
g = g @ eos(eykn) (adiabatic). (3.56)

kV, = ¢, ®sin(c,kn)

Isocurvature initial conditions

As we have seen in the previous section, ® = 0 is no longer maintained in the matter era for
isocurvature initial conditions. It is therefore convenient to solve (3.42) at early times in the
radiation regime, where we know that the driving term on the right hand side is ® « 7 (cf.
Eq. (3.27, page 63)):

3
Dy = C1cos(cykn) + Cy sin(cykn) — k Neq " Som (3.57)
1 . 9
kV, = E [C1 sin(cykn) — Cy cos(cykn)] + 16k Neq 1So. (3.58)

The constants C7 and Cs are determined by looking at the early time limit on super-
horizon scales, n — 0, k = const < keq. From the early-times solution (3.27) we have that
Dy~ — 0 for n — 0, and therefore we need to set C; = 0. The early time limit for Eq. (3.58)
gives

li kVy=——=+ —k™%n S 3.59
17—>0,Ilcr:nconst 7 4C’y + 16 0 ( )

while from the isocurvature solution (3.27) combined with (3.52) we have for a < aeq

lim  kV, =kV o — 0. (3.60)

n—0,k=const
By requiring that the left hand side of (3.59) vanishes we conclude that

3
Co=——k7n S 3.61
2= 1o 0- (3.61)

In conclusion, isocurvature initial conditions excite a sine oscillation in the radiation
density:
3
Dy, = fk 217_150 {\fk: sin(cykn) — 77]
\f (isocurvature). (3.62)
KV, = ——""k2 _150 {\fk cos(cykn) — 1}
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An heuristic argument (Hu & Sugiyama, 1995b) explains why adiabatic initial conditions
excite the cosine mode while isocurvature initial conditions produce the sine mode: at early
times, the potential acting as a driving force on the right hand side of Eq. (3.42) is constant
for adiabatic initial conditions, while it is &< 7 in the isocurvature case. This mimics a cosine
and a sine forcing term, respectively, and thus the corresponding modes get excited. An
approximated analytical solution valid until recombination and through the radiation-matter
transition can be found in Hu & Sugiyama (1995a).

3.3 Neutrinos and initial conditions

In this section we extend the above treatment to include massless neutrinos. They are
described as an additional relativistic component, which is decoupled from the others below
a temperature of a few MeV, and therefore their distribution function obeys the collisionless
Boltzmann equation. We shall see in the following that the anisotropic stress created by free
streaming of neutrinos considerably complicates the simple picture of the previous section.
By including one more component in the mixture, we generally expect two additional
modes to arise, which we will be able to identify with the so-called “neutrino isocurvature
density” (NID) and “neutrino isocurvature velocity” (NIV) modes. In the following, we shall

refer to both of them as to “neutrino isocurvature modes”

, and we will sometimes call the
neutrino density mode “neutrino entropy”, which is a more appropriate definition in our view.
These two modes were first found by Bucher et al. (2000), who solved a formal expansion in
powers of 7 of the Einstein and conservation equations at early times and on large scales (i.e.
for nk — 0) in synchronous gauge, an analysis repeated in the gauge invariant formalism in
Trotta (2001). The approach we propose here offers a more physical understanding and the
approximations we employ could be extended to a refined analytical model of the sub-horizon
structure of the neutrino modes angular power spectra. We explicitly give some details of
the derivation, since to our knowledge this calculation is new.

We argue in § 3.3.4 that an “anisotropic stress mode”, which is characterized by a non-
vanishing II, at early times, is non-physical, since it leads to incurable divergences in the
perturbation variables.

3.3.1 Evolution equations for a three components model

In the presence of neutrinos, the background radiation energy density is written as
Pr=py+pv=py(1+1), (3.63)

where we have defined the constant r, = (7N, /8)(4/11)*3 ~ 0.68 for N, = 3 neutrino
families. As before, the scale factor is normalized to matter-radiation equality, the conformal
Hubble parameter is
1+n/2  (1+7a)l?
S on+n?2/4 7a

(3.64)

2The term “isocurvature” is somewhat abused for the neutrino density mode, see the remark after Eq. (3.93)
on page 73. We nevertheless employ this terminology for simplicity and consistency with the literature.



3.3 Neutrinos and initial conditions 69

and the cosmological parameters as a function of the scale factor are of the form

r,

Qy(a) = AFrm)ita)’ (3.65)
1

Qy(a) = m, (3.66)

Qm(a) = Ata) (3.67)

We still neglect the dynamical effect of baryons, which to lowest order is unimportant, but
continue to assume that Thomson scattering drives to zero all multipoles £ > 2 in the
Boltzmann hierarchy for photons, which are then described as a relativistic perfect fluid.
Neutrinos become collisionless after neutrino decoupling, therefore the fluid approximation
is insufficient. A neutrino anisotropic stress is generated by free streaming and to lowest
order we cut the Boltzmann hierarchy for neutrinos, Eq. (2.96, page 49), by setting to zero
all moments > 3. The goal is to derive second order evolution equations for the three
relevant and physical quantities: the total density contrast D, the entropy perturbations in
the dark matter, S,,,, and in the neutrinos, S,., supplemented by an evolution equation for
the neutrino anisotropic stress.

The source term in the Bardeen equation is modified in two ways: there is an additional
entropy contribution coming from the neutrino entropy perturbation S,,, and we have to
take into account the anisotropic stress term. This gives for the evolution equation of the
total density contrast D (compare with (3.18, page 62))

H2D+ (1 —6w+3cA)H 1D - 3(1+ 8w —3uw? — 6¢%)D =

5
k 2 Ty
() { [oo-sacn e (s rs0)

2r . 1
- I, — [(1 + 3w) — 3¢2| H°T0, — —k*T0, | ;.
T30+ ta) [H [+ 3w) =32 M 2 } }
(3.68)
Equation (3.23, page 62) acquires extra terms coming from S, reading
.. . . E\? 1 4wr
-2 2\ —1 2 v
Sm~+(1-3 Smy — Sy | = = ——D — Sy — Sy~ | -
" H(1=3c)H { 7 7} <H> [3(1 + w) =m0+ w) (1 + ) 7]
(3.69)

In deriving the above equations we have made use of (2.38, page 42) and (3.22, page 62)
together with the following useful relations:

1 1 4r a

A, = D- v Sy — —— Sy 3.70

477 3(1+w) 34+3a)(1+r,) """ 4+3a ™ (3:70)
dr, 3a

KV, = kV — - V= V) = — (Vi = V). (3.71)

(44 3a)(1+r,) 4+ 3a

We obtain an equation for the neutrino entropy perturbation by deriving the difference of
the momentum conservation equation for neutrinos (Eq. (2.97, page 49) written for v instead
of v) and the momentum conservation for the photon fluid, (3.19, page 62), with the result

k2 et
=S, = (3.72)
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The coupled system (3.68), (3.69) and (3.72) describes the evolution of adiabatic and
entropy perturbations in a mixture of photons, dark matter and radiation, once we specify
IT,. However, on super-horizon scales and for early times, k/H < 1, the anisotropic stress
is unimportant, since from (2.98, page 49) written for v instead than for v, it obeys

d , 8k

which shows that on super-horizon scales there is no generation of anisotropic stress, a result
expected on the grounds of causality arguments. At earlier times, the neutrinos were coupled
to electrons via weak interaction processes, which isotropized the neutrino distribution func-
tion suppressing any appreciable anisotropic stress; hence we can assume that at the time
under consideration (just after neutrino decoupling) there is no anisotropic stress to zeroth
order in powers of a, i.e. I, = O(a) at least.

In the above approximation and for a < 1 we thus obtain the simple system

, d?

——D-2D=

a 12 0,

d? d d
2 _
L Sy + at Sy = a Sy s (3.74)
2 d2
“ @S vy =0,

whose general solution consists of six modes,

D = Dya® + Dia~ !,
Smy = So+ Silna + Nya, (3.75)
S,/y = Ng+ Nya.

We recognize the growing and decaying adiabatic (the Dy and D; terms, respectively) and
isocurvature dark matter (Sy and S; terms, respectively) modes, and we also find two new
non-decaying modes, a constant neutrino entropy mode Ny, and a neutrino velocity mode
Nya (the reason for this terminology is explained below).
In order to go beyond this large scales solution, we need to include the effect of the
anisotropic stress. To this end, we recast Eq. (3.73) by substituting £V, with
aH 1 d 31+r,)a d

kV, =kV — — —S, S| - 3.76
E |1+r,da™"" 4 da™™ ( )

From now on we drop the last term on the right hand side, which is always suppressed by a
power of a except in the dark matter isocurvature case, which we do not investigate further
here. For the total velocity, the constraint equation (2.50, page 44), combined with the the
anisotropic stress equation (2.51, page 44) and the Poisson equation (2.49, page 44) yield, in
the early time a < 1 limit

H (3 3a d Ty o
k:V—? <4D_4daD_ 1+ryk HV> . (3.77)
The evolution equation (3.73) for the anisotropic stress then reads, for a < 1
d 4 r,
o Lpem, 4 2 ey, _bp_bad,  8a dg (3.78)

da 51+7, 5 5da . 5(1+r,)da”""
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In the same limit and in terms of the scale factor a, the equations for D and S,, become
(dropping the last term oc k%I, on the right hand side of (3.68) which is always negligible
compared to the others):

d2 EN? r 2r d
2 p-2D=—(—) —% 5, — =Y |a—FkI, — 211, 3.79
“ 2a H) 30+r)""  31+r) |“da o (379
d2 1/ k)2 1/ k\?
aQESw + § (H) SV = 6 <H> k2HV . (380)

The system of coupled differential equations (3.78), (3.79) and (3.80) is too difficult to solve
analytically. To find an approximate solution valid to leading order in powers of a for early
times, we treat the anisotropic stress iteratively as a perturbation to the large scale solution,
Eq. (3.75), in analogy with the procedure in Hu & Sugiyama (1995a). More specifically, we
use the large scale solution for D and S, as a source on the right hand side of Eq. (3.78)
to determine the anisotropic stress, then we re-insert the solution for II,, on the right hand
side of (3.79) and (3.80) to find self-consistent corrections to the large scale behavior.

As an illustration, let us first consider the adiabatic growing mode, D = Dya?, D; = Sy =

S1 = N4y = N, = 0. In that case, the right hand side of (3.78) is dominated by the terms in
D, giving

d 4 7,

Bl 2y =
ada V+51+'r,,

6
K11, = —5D0a2, (3.81)

which has the particular solution
(3.82)

Notice that, although the above form of II,, o a? is of the same order as the adiabatic solution
D o a?, its contribution on the right hand side of (3.79) cancels out because of the factor
2 in the exponent. Thus it is consistent to have neglected the anisotropic stress in the first
place when deriving the large scale solution.

With the above approximation for II,, from (3.80) we can determine the growth of neu-
trino entropy perturbations in the adiabatic mode, finding to leading order in powers of
a

1 + TV D() k' 2
Zi8<77‘—)‘,—5) <> a2 X a4 < D. (383)

Sy = — H

The growth of the dark matter entropy perturbation is also modified by the coupling to
the neutrino entropy perturbations on the left hand side of (3.69, page 69), but the term
x Sw o a* has the same scaling as the term oc D on the right hand side, and the approximate
solution is

1 1+, E\? 5
SN DI e A 7 oW (3 D. 84
Sma 64{ 3(7ry+5)} O<H> s (384)

In conclusion, the growing adiabatic mode at early times in the presence of neutrinos and
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anisotropic stress has the approximate solution (compare with the solution (3.26, page 63)):

D = Dya*
2
Sy X <f{) a? x a*
O\ 2
Sy X <H) a? x a*
k211, < a®
_ 3 (ka)? Do = @ — const (adiabatic). (3.85)
2\ H
3r,  [(ka\?
‘I’Z‘I)oJrﬁ <7_LZ> = Uy = const
1
kV = 5%‘1)0 x a
9Dy (Ha\?
(= - <k> = const

The Bardeen potentials are no longer equal due to the anisotropic stress, the fractional

correction being

Py — ¥y
0

2 r,
= - ~ 0.1 3.86
T1+r7, ’ (3.86)

of order 10%, in good agreement with Hu & Sugiyama (1995a).

3.3.2 Neutrino entropy mode

Let us now turn our attention to the Ny # 0 mode, with N, = Dy = D1 = Sy = 51 = 0: this
is clearly a neutrino entropy mode, since S, = const for a — 0.

To determine the growth of perturbations in the total density D beyond the large scale
solution D = 0, consider the right hand side of Eq. (3.79): if the anisotropic stress goes at
least as a2, then the part containing IT, cancels (for IT, o< a?) or is subdominant with respect
to the S, term (for I, = O(a®) or higher). In any case, we can neglect the anisotropic
stress term as a source for D with respect to the neutrino entropy perturbation, with the
caveat that at the end of our calculation we have to check that this assumption is satisfied -
indeed, cf. Eq. (3.89). By this argument, we look for a particular solution of

d? kK\? v
2 - D-2D=— () Y N 3.87
which is given by
r k2
D=——" N,;[—2])1 2] ) 3.88
51 +7) g (H) n(a) < a”In(a) ( )

The logarithmic dependence can be neglected if we do not apply this solution over a too
large time range (say, less than a few orders of magnitude), and replaced by the value of
In(a) evaluated at the typical value of the scale factor in the range considered, a., which we
reabsorb in the overall normalization by defining a new constant N = NyIn(ay).
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We can now solve for II,, by inserting the above expression for D in Eq. (3.78, page 70),

and observing that on the right hand side di;” = 0, thus obtaining
e, = (B e (3.89)
v A\H ) 3(Tr, +5) ’ '

which is consistent with our initial assumption for II,.
Finally, the Bardeen potentials follow from the Poisson equation and the anisotropic stress
equation, yielding

ry NG
p—__Yd _ t .
60+ 1) const , (3.90)
2r,
UV=a <1 o 5) = const. (3.91)

The gauge invariant curvature perturbation ¢ is given by (2.27, page 40) and it can be
rewritten as

3 ad r H\?
=2+ -———2 () K1,. 3.92
‘=32 3 2(1+7“,,)<k:) (3.92)

yielding for the neutrino entropy mode

Z/N* v
v <1 - r)> = const. (3.93)

¢= 4 6(Tr,+5

- 1+7r,

This results agree with the power law solution found by Bucher et al. (2000), which they
called “neutrino isocurvature density” mode; we prefer however to term this mode “neutrino
entropy”, since the initial curvature perturbation does not vanish, and indeed is of the same
order as the entropy perturbation.

3.3.3 Neutrino velocity mode

The mode with IV, # 0 has vanishing entropy at early times, since S,, — 0 for a — 0, but
the bulk velocity difference between neutrinos and photons in non-zero,

Sy
kE(V, =V, = _Ty = const (3.94)

hence its name.

From the power-law solution for this mode (see Bucher et al., 2000; Trotta, 2001) we
expect that the anisotropic stress goes to leading order as II,, o a. Indeed, by replacing the
large-scale solution D = 0, S, = N,a on the right hand side of (3.78) we find the particular

solution
8N,
K1, = ———a. 3.95
or, +5° (3.95)
We now use this expression as a source on the right hand side of (3.79) to determine the

corrections to D, and we can ignore the contribution of the term o S, which goes as a’

compared to the part containing II,, which is dominant, being proportional to a. We thus

have to solve )
d 167, N,
2 vivVo
—D —-2D = —
“ da? 3(1 + r,,)(9ry -+ 5) @

(3.96)
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and we find the particular solution

8r, N,
D= . 3.97
3(1+7,)(9r, +5)" (3.97)
As already noticed in Bucher et al. (2000), the Bardeen potentials are decaying
4r, N, H\?
d=— o = -1 3.98
(1+7’,,)(97”V+5)(k> G (3.98)
R (3.99)

but this does not necessarily mean that perturbation theory breaks down for a — 0. In
general, a solution is considered non divergent if it is possible to find a gauge in which all the
perturbation variables do no diverge in the limit a — 0. The synchronous gauge potentials
for the neutrino velocity mode are indeed non-singular at early times (Bucher et al., 2000). In
fact, even though the Bardeen potential diverge, the gauge invariant curvature perturbation
¢ vanishes to leading order. This is most easily seen by making use of Eq. (2.32d, page 41),
finding

C:%(qurq)):(), (3.100)

and thus the velocity mode is indeed an isocurvature mode.
The leading order corrections to Sy, = 0 induced by the neutrino modes can be obtained
as particular solutions to Eq. (3.69, page 69), which for early times reads

d d d EN? 1,
T o Pm T Pmy T 7 Pr i 71 . NPuy - 101
dazs (A [daS 7 daS ’y] <H> 3(1+r,,)S 7 (3-101)

Summarizing, the early time solutions for neutrino entropy (Ng # 0) and neutrino isocurva-

a2

ture velocity (V, # 0) initial conditions are:

Neutrino entropy Neutrino velocity
SV’Y = Nd Sl,fy = Nva
2 *
D:_<k> ULV D= UL a
H) 9(1+7r,) 3(14+7,)(9r, +5)

= — — _ = N
Sy <H> 12(1+7r,) ¢ Sy = alNy
kEV Lk v kEV h ¥ = const (3.102)

=-——Uxa = —U = con :

2H H
k\? NG 8N,

I, = () a4 xa® K, = ———

v <H> 3(7r, +5) " Y 9, 5

N 47, N 2

Cbzmid:const ¢ =— v <H> aocxal

6(1+7,) (1+7r,)9r, +5) \ k

2ry

‘Il:<I><1— 77’1,:—5) = const U=—-

ryN; (1 Ty,

= -] = t =0.

=1 (4 6(7r, + 5)) const ¢
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3.3.4 The divergent nature of the anisotropic stress mode

One could ask whether it would be possible to excite a growing “neutrino anisotropic stress
mode”, characterized by initial conditions D = S,y = Syy = Viy = Vipy = 0 and II, # 0
for @ — 0. Even though highly exotic, such a mode, if it existed, should be included if we
want to consider the most general type of perturbations. We now show that this mode is
divergent in all gauges, and therefore is non-physical, since it would lead to the breakdown
of perturbation theory for a — 0. Alternatively, we can see it as a decaying mode, which
therefore does not need to be considered since it quickly disappears.

Consider the anisotropic stress equation (2.51, page 44) with II, = Il = const on the
right hand side,
Ty

V= T a T

H1, . (3.103)

Since H = n~! to leading order for a < a.,, it follows that ¥ oc 2. The fact that the
Bardeen potential diverges at early times is not by itself sufficient to discard the corre-
sponding mode, as we have seen in the example of the neutrino velocity mode. A necessary
condition, however, is the existence of a gauge in which all of the perturbation variables
constructed out of A, B,C, E,d,v,n;, are non-divergent. For the neutrino velocity mode,
this gauge is the synchronous gauge. Clearly, since ¥ is a gauge invariant variable, by con-
struction it does not change under a gauge transformation but the variables A, B,C, E do,
according to the transformation laws (2.18, page 38). If we expand in a Laurent series around
1 = 0 the definition of ¥, Eq. (2.25b, page 40), and we allow terms 1™ with exponent n > —2,
because of H = 1/n we obtain to leading order

A=Tocn?, (3.104)

In other words, in the radiation dominated universe a metric perturbation of the form A o
n~2 is gauge invariant. This can also be seen directly from the transformation law for
A, Eq. (2.18a, page 38): the part HT + T does not contain terms oc 72 if T is written
as a Laurent series in 7. We conclude that IIy # 0 induces a divergence of A for early
times, which does not disappear in any gauge. One could conceive to combine A with other
diverging variables to construct via cancellation a non-diverging metric variable: this however
would unavoidably produce divergent terms in the matter variables. Therefore a neutrino

anisotropic stress mode is always decaying in all gauges.

In principle, there is a whole hierarchy of modes coming from setting ©% # 0 for £ > 3
as initial conditions in the neutrino Boltzmann hierarchy. As we noticed in § 2.2.4, higher
order moments are coupled to the potentials and to the velocity and density perturbations
by successive powers of k7. By reversing the argument, we see that ©)_; = O (0} /kn)
implies that in the early Universe and on super-horizon scales, kn < 1, choosing 6, = O(1)
for ¢ > 3 would produce divergent behavior in the lower-order multipoles of the hierarchy.
Since for £ > 2 the multipole moments are gauge invariant, it follows that there is no gauge
in which such a mode is growing. In summary, the adiabatic and the general isocurvature
modes presented above constitute the most general type of perturbation.
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3.4 The role of baryons

In this section, we go back to the model of a Universe containing dark matter and photons,
and refine the treatment given in § 3.2 by taking into account the role of baryons in the dy-
namic of the oscillations. For simplicity, we neglect the corrections induced by the neutrinos
anisotropic stress, omitting neutrinos entirely.

Before recombination photons interact with electrons via Thomson scattering (see section
2.2.5). The time-scale for the scattering process is set by the Compton scattering time 771,
which represents the typical time between two collisions. Tight coupling is an expansion in
powers of 77!, assuming that the scattering rate is rapid enough to equilibrate changes in the
photon-baryons fluid, and in this limit moments £ > 2 in the photon distribution function are

suppressed by successive powers of 771,

Therefore to lowest order the photon distribution
function is described by its zeroth and first multipoles only, and we can set IL, = ©y>3 = 0,
which justifies the approximation taken in the previous section. Therefore the truncated

Boltzmann hierarchy (2.127, page 53) gives for photons

. 4
Dy + gkzv =0, (3.105)
. 1
Vy — ZDgﬁ —2® = —aorn.(Vy, = V). (3.106)

To ensure conservation of the total momentum, we need to supplement the conservation
equation for baryons with the Thomson drag force term coming from the scattering process,
obtained as the first moment of the collision term

dQ

dra;
F8 = GUTneP’y/MnjC[f] . (3.107)

The momentum conservation for baryons, Eq. (2.60, page 45), therefore gives
Dyp+ KV, =0 (3.108)
. 1
Vo+HV, — @ = —EaJTne(V}, -V, (3.109)

and we have defined R = 3p,/(4p+), which can easily be estimated

670 Oph?
~ . A1
R <1+z> (0.022> (3.110)

The set of Egs. (3.105-3.106) and (3.108-3.109) describes the evolution of perturbations
for the tight-coupled photon-baryon fluid, while the dark matter component enters via its

influence on the gravitational potential ®. To lowest order in 1/7, collisions force the baryons
and photons velocities to coincide, V., = V}, which via Eq. (3.22, page 62) implies Sb’y =0,
hence the entropy per baryon is conserved.
Equations (3.105, 3.106 and 3.109) can now be combined into the equation of a damped,
forced harmonic oscillator:
d : k2 4 2
i (14 R)Dys | + 5Dy = =52+ R (3.111)
By comparing with Eq. (3.42, page 65), we see that baryons have two effects: they change
the effective mass of the system (factor (1+R) on the left hand side) and they displace the zero
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point of the oscillation by adding to the potential ®. Both modifications are a consequence
of the fact that baryon add to the mass of the system but not to the restoring pressure,
which is still given by the photons alone.

The time dependence of R is of the order of the Hubble time, hence large compared
to the time scale of one oscillation. For illustrative purpose, we can then neglect the time
dependence of R and obtain from Eq. (3.111)

Dy + KDy = =42 + R)CKD, (3.112)

where the sound speed of the coupled fluid is ¢2 = 1/(3(1 + R)). At early times, ¢> — 1/3,
as appropriate for radiation, while at late times ¢2 ~ 0, when the universe is dominated by
matter. The homogeneous solution is still a superposition of sine and cosine oscillations, but
adding the baryons slows down the period by decreasing ¢ with respect to the pure photons
fluid. This is responsible for a shift in the acoustic peak positions and for a larger distance
between the peaks in the CMB power spectrum, see the explanations regarding the role of
the shift parameter on page 101.
The adiabatic solution (3.56) becomes

4
Dy~ = §(1 + R)® cos(cskn) —4(2+ R)P, (3.113)
1 1/2
kV, = (—gR> ® sin(cskn) . (3.114)

The amplitude of the cosine oscillation has increased by a factor (1 + R), and the potential
well has deepened by an extra factor (1 + R/2). This displacement of the zero point of
the oscillations induces a boost (decrease) of the odd (even) peaks in the power spectrum
sometimes denotes as “baryon driving”, which is discussed in § 4.1.2.2 and shown in Fig. 4.6
on page 103. Finally, the amplitude of the velocity oscillation becomes smaller, since it
is suppressed by a factor c; with respect to the density and cs is smaller in the presence
of baryons. This leads to a suppression of the Doppler contribution to the acoustic peak
structure. From Eq. (3.110) we obtain that at the moment of decoupling, zgec ~ 1100, we
have R =~ 0.6.

The solution to (3.111) for time-dependent R can be found in the WKB approxima-
tion (Hu & Sugiyama, 1995a), in which case the qualitative picture sketched above slightly
changes: the sound speed becomes k [ c,dn, while the amplitude of the oscillations grows in

1/

time as c; % This can be seen simply by considering the quantity mwA?, which for an har-
monic oscillator is an adiabatic invariant: since in our case the effective mass m = (1+ R)'/?

decreases in time, it follows that the amplitude A ~ (1 4+ R)~1/4 ~ i/,

3.5 Damping

In the above discussion, we have neglected the fact that recombination takes a finite time
to complete, and the acoustic oscillations are not frozen instantly. This “finite thickness” of
the last scattering surface has a twofold effect: photon diffusion and cancellation. Diffusion
damping arises because of the imperfect coupling between photons and baryons, so that
photons diffuse out of over-dense into under-dense regions and erase fine scale anisotropies;
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cancellation occurs for scales which have the time to oscillate through recombination, so
that the effect of photons that last scattered on a crest of the oscillation is cancelled by
the contribution of the photons coming from a trough. Cancellation produces a power law
damping of the fluctuations (Hu & Sugiyama, 1995a), while diffusion damping is exponential
and is by far the dominant effect, and the one to which we now turn our attention. It is
often referred to as “Silk damping” (Silk, 1968).

In view of obtaining a dispersion relation w(k) for photons accurate to first order in 77!,
we look for solutions of the form V, o exps [wdn. At this order we need to include the
photon anisotropic stress, which to first order in 7~! from Eq. (2.127c, page 53) is given by

(neglecting polarization effects)

16
I, =+1—
Y T 9

V. (3.115)

Using the anisotropic stress equation (2.51, page 44) we can substitute in the dipole
equation (2.127b, page 53) ® = U + HQH,Y. However, we assume that the oscillation time
scale is much shorter that the expansion time scale, i.e. w™' < H ™!, so that we can neglect
the term H2Hv in the photon dipole. By the same token, in the following we also neglect all
time dependencies of the potentials and of R compared with the oscillation time scale.

We now expand the baryon momentum conservation equation (3.109) up to second order
in 77!, and find, under the above assumptions

Vo =V, — i ' R(wV, — @) — 772 (Rw)?V, + O(+7?). (3.116)

Inserting this into Eq. (2.127b, page 53) we obtain

1
w(l+R)Vy=-Dy\+ 2+ R)®— 71V, |:(Rw)2 — 81@2] . (3.117)

4 27

To lowest order in 7~ we have found in § 3.4 that the quantity %Dgﬂ—l—(%—R)@ oscillates with
the same frequency as V5, see Eq. (3.112). Therefore we set 1Dy + (2+ R)® o exp1 [ wdn,
and using the photon monopole equation (3.105) we arrive at

w? = L Ry -y §k2 (3.118)
3(1+R) 1+ R 27 | '

To zeroth order we find as before w? = k?/[3(1+ R)], which we can use to obtain the first
order solution

k L [R2 8] (3.119)

Barn 7 60+R [0+R) 9

The imaginary term in the frequency induces an exponential damping of the oscillatory
solutions of the form exp(—k?/k3), with the characteristic damping scale given by

_ 1 R? 8
le:/G%[(1+R)Q+9(1+R)]d77' (3.120)

Including polarization effects via Eqs. (2.132, page 54) and (2.136, page 54) would increase
the damping, by changing the numerical factor 8/9 in the above equation to 16/15.
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3.6 Observable quantities

3.6.1 Temperature fluctuations

We now calculate the fluctuations in the CMB photon temperature on the sky. When the
photon mean free path becomes larger than the horizon scale, 1/7 > 1/H, the Universe
becomes transparent and photons propagate along null geodesics (free streaming regime).

In this section we calculate the photon temperature today with the line of sight method:
we formally integrate the Boltzmann equation along the photon path, and obtain the tem-
perature measured today as an integral over a time dependent source term. This approach
includes in principle all the effects due to imperfect photons-electrons coupling and reion-
ization as well, and it is the core of the fast numerical algorithms for the integration of
the photon Boltzmann equation, such as CMBfast (Seljak & Zaldarriaga, 1996). Another
derivation of the same result based on a more physical understanding of the free streaming
regime can be found in Durrer (1990).

Consider the collisional Boltzmann equation for the photons temperature ©(n, k, u = Rn)
(were we neglect polarization)

) 1
O + 1kp® + k(v + &) = —7 [9 + ukVy — ©p — 2P2@2:| , (3.121)
and denote with -
T(n) = / 7di] (3.122)
n
the total opacity from the time 5 until today. Using the equality
d .
an (@e’k“"e_T> = ethmne=T [@ +1ku® + 7"@:| (3.123)
we obtain from (3.121)
70 1
0= —/ ekn(n=mo) =7 [7" <z,uka — 0Oy — 2P2@2> + kp(V + @)} . (3.124)
0

The second term on the right hand side can be integrated by parts and we drop the
boundary term, which contributes only to the monopole and is thus unobservable, obtaining

70
©(no, k, 1) = / dnetH=m0) g() [—auk Vi + Qg + 2 POy + U + @]
0
- o (3.125)
+ / dneFHn=m0) =7 (§ 4 §) |
0

and we have defined the wisibility function
g(n) =te 7. (3.126)

Equation (3.125) is an integral system of equations, since moments ¢ < 3 of the photons
temperature appear on both sides. However, the left hand side can be determined given the
time evolution of an handful of quantities which act as a source on the right hand side: the
photons moments ¢ < 3 are calculated from the Boltzmann hierarchy (2.126, page 53), the
baryon and CDM velocity and density perturbation from the fluid conservation equations
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(2.62-2.63, page 45), while the Bardeen potentials follow from the Poisson equation (2.49)
and either the constraint equation (2.50) or the anisotropic stress equation (2.51, page 44).
Neutrinos can be included via a collisionless Boltzmann hierarchy, Eq. (2.90, page 48). The
great advantage is that only the first few moments of the collisional Boltzmann hierarchy for
photons need to be computed accurately in order to obtain the sources of (3.125), reducing
the number of coupled differential equations which needs solving from several thousands to a
few dozens. This line of sight integration approach is the core algorithm of all modern codes
for the computation of the CMB power spectrum (Seljak & Zaldarriaga, 1996).

The visibility function g(n)dn in (3.125) encodes the information regarding the ionization
history of the Universe, and can be interpreted as the probability that a given CMB photon
was last scattered between n and 1 + dn. The sharp drop of the free electron density n.
at decoupling makes the visibility function sharply peaked around 7gec, cf. the solid line
in Fig. 6.15. When the Universe is reionized at later time, the visibility function becomes
non-zero again, and the free streaming regime goes once again over in a collisional regime
(§ 4.1.3.2).

In the limit of instantaneous recombination, the LSS becomes infinitely thin and the
visibility function a delta function peaked at 7)4ec, while we can approximate e~” with the
Heaviside step function u(n — gec). In this limit, the tight coupled fluid approximation for
photons goes over directly to the free streaming regime, and there is no generation of photons
anisotropic stress nor polarization. Performing the time integral of (3.125) and setting to
zeroth order V4, =V, we find

O(no, k, ) = etkkace=m) {@<OSW> L e®p) 4 @usvv)} ’ (3.127)

where

1
OO = 00+ + 8] (oK) = | 1031+ 8+ ] (e )

1 (3.128)
— |:4D5”y + ‘II:| (ndem k)
@(Dpl) = _ZMkVV<ndec> k) (3129)
0 . .
OUSW) = / dne™ =10 (§ 1 ) (n, k) (3.130)
Tdec

The temperature fluctuation consists of three terms:

e The ordinary Sachs-Wolfe (OSW) part, ©(OSW)  The photons temperature monopole
O on the last scattering surface, together with the potential terms ® and ¥, reflect
intrinsic inhomogeneities in the radiation fluid and in the metric at the moment of
decoupling. On large scales, the ordinary SW effect is responsible for the SW plateau
in the temperature power spectrum, while on intermediate scales the oscillations of
D, produce the familiar peak structure.

e The Doppler term O(PP) « LV arises because of the relative velocity of observer
and emitter. Its contribution shows up on the acoustic peak scale.

e The integrated Sachs-Wolfe (ISW) effect produces the term ©USW) and it is
induced by a time dependence of the Bardeen potentials along the path of the photons.
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The early ISW effect is due to the fact the the universe is not completely matter
dominated at recombination and therefore the potentials are not exactly constant; the
late ISW is generated when the late universe becomes dominated by the curvature or a
cosmological constant term, both of which induce a time dependence in the potentials.

The dependence of the anisotropies on the cosmological parameters is presented in § 4.1.

3.6.2 Angular power spectra

The relevant quantities for the comparison of theoretical models and observations are the
temperature and polarization angular power spectra, which we introduce in this section. We
refer the reader to § 5.1.1 for precise definitions of the terminology. We denote by (-) the
theoretical ensemble average over realizations.

Temperature power spectrum

The temperature fluctuation in direction n on the sky measured by an observer today (1)
and here (x¢) is a superposition of plane wave contributions (in a flat Universe)

1
O(ny, X0, n) = R /d3k O (10, k, n)exok (3.131)

and each Fourier mode can be expanded in spherical harmonics on the 2-sphere as

©(10,k, n) Z Z g (K, 10) Ve (1) , (3.132)

=0 m=—/

where the expansion coefficients ag, (k) are given by
g (k) = / A0k, n) Yo (n) (3.133)
= 470,(K) Yy (K) . (3.134)

In deriving the last expression we have expanded the temperature fluctuation in Legendre
polynomials as in (2.84, page 48) and used the addition theorem and orthogonality relation
for spherical harmonics:

2 1
S Vi@V ) = 2 ). (3.135)
=, 47
/ A0 Vi (0) Y, (1) = 000 - (3.136)

We can perform the harmonic expansion (3.132) directly in real space rather than in Fourier
space, with coefficients ag,(x¢) (for which we will neglect the argument x¢ from now on),
obviously related to ag, (k) by

1 1KX|
7 / d® kag, (k)e'kxo (3.137)

RNCERE

We are interested in the 2-point temperature correlation function C' on the sky between
two directions n and n’. By choosing our coordinate system in such a way that the direction
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n corresponds to the z-axis, and introducing spherical coordinates we can write n’ = (¢, 9)
and n - n’ = cos(¥). If we assume statistical homogeneity and isotropy for the random
field ©, see § 5.1.1, then the correlation function does not depend on the observer’s position
(homogeneity) nor on the azimutal angle ¢ (isotropy). Therefore

C(9) = (B(no,x0,1) - O(10, X0, n’))

1 3.138
= >0+ )R ), (3.138)
¢
where we have defined the CMB angular power spectrum by
(agm . CLZ/m/> = 5@gl5mm/Cg . (3.139)

The fact that C, does not depend on xq is a consequence of the assumption of homogeneity,
while isotropy requires that it does not depend on the index m, which would introduce an
azimutal dependence. It is also customary to assume that the ay,,’s are Gaussian random
fields, as motivated by inflation, but this is not strictly necessary at this stage. Eq. (3.138)
shows that the angular power spectrum is the harmonic transform of the correlation function
on the 2-sphere and for Gaussian variables it contains the full statistical information. If the
agy’s are Gaussian distributed, then the Fourier coefficients ag,, (k) are Gaussian random
variables as well. From the assumption of homogeneity it follows that (ag,(k)) = 0™ (k),
where 5 denotes the Dirac delta function. Homogeneity and isotropy together imply that

1
(2m)?

We now relate the angular power spectrum to the temperature multipoles: this is done

<|a€m’2> =

/ Ble{agm (1)) (3.140)

by observing that the evolution equations (2.126, page 53) for ©, are independent of R, and
therefore we can write

O¢(n, k) = O¢(n, k)x (k) , (3.141)

where we assume that x(k) are the Fourier components of a Gaussian, isotropic and homo-
geneous random field. As a consequence

(x(k) - x* (k) = 0™ (k — k') ([x(K)I?) . (3.142)
Now from (3.139) and using Eqgs. (3.141), (3.140) and (3.134) we obtain

dk
@zm/kgwmmmw. (3.143)
We shall later identify x with the primordial curvature or entropy perturbation, see Eq. (4.5,

page 91), and call
P (k) = 55 (IxI*) (3.144)

the curvature (or entropy) power spectrum: this quantity gives the contribution to Cy per
logarithmic k-interval of the primordial fluctuation.

The photons transfer function ©¢(no, k) in Eq. (3.143) above is an intrinsically 2-dimensional
quantity which gives information about how the initial power is mapped onto the angular
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power spectrum. It can be evaluated from Eq. (3.125, page 79), by observing that the angle
W= k-n in the integrand can be eliminated by replacing

d .
ek =10) gy oy V) = O (ezku(n—no)gvb) — ehnn=mo) g _ ethr(n=—mo) gy, (3.145)

and dropping the total derivative which only gives an unobservable monopole term. Therefore
we can rewrite (3.125, page 79) as

o
O, ki, 1) = / Ay K- 5, ) (3.146)
0

with the source term of the form

v 0 [V, 302] .30
S(nk)=g f+@0—72+‘1’+@ _9[1;+4k21_g4k22 (3.147)
+e (U4 D).

Now we expand the plane wave in radial and angular eigenfunctions, Bessel functions and
Legendre polynomials respectively, using the Rayleigh formula

ekum=m) =N (204 1)jo(k(no — ) Pel(p) (3.148)
L

and we obtain for the temperature transfer function

O4(no. k) = i /0 " S, Kjalk(no — ). (3.149)

This is shown in the top panels of Fig. 3.1 for adiabatic and isocurvature CDM initial
conditions.

Together, Eqgs. (3.149) and (3.143) allow the computation of the CMB angular power
spectrum and neatly split the geometric effects from the physics: all of the dynamical evo-
lution is encoded in the source function S(7, k), while the Bessel function accounts for the
projection from 3-dimensional k-space on the 2-sphere. The generalization of this result for
the IC # 0 case can be found in Zaldarriaga et al. (1998); Zaldarriaga & Seljak (2000); Lewis
et al. (2000). The temperature and E-polarization spectra of a concordance model for adia-
batic and isocurvature CDM initial conditions are displayed in the top left panel of Fig. 4.9
on page 106.

Polarization power spectrum

As mentioned in § 2.2.5.5, polarization of scalar modes is conveniently described by the E
polarization mode, supplemented by the cross-correlator between E and T' (temperature). As
for temperature, we can formally integrate the Boltzmann equation for the Stokes parameter
@, Eq. (2.131, page 54), along the line of sight and obtain

1 1o
©%(no, k, p) = —2/0 e*H=m) g(n) (1 — Py) (92 +05 - @OQ) . (3.150)

The E-polarization power spectrum and the ET-correlator (superscript C') are defined as
(@ - Al = S0 CF (3.151)
(@ + Q75) = S0t 6mme CF (3.152)
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Figure 3.1: Temperature (top) and polarization (bottom) transfer function ©,(ng, k) and
AF(no, k) for adiabatic (left panels) and isocurvature CDM (right panels) initial conditions.
The color scales are arbitrary, and have been chose as too highlight the features of the transfer
functions. In particular, the color coding is not in scale between the different plots.

and in analogy with the treatment for the temperature spectrum they can be computed as
a superposition of k modes of a source function integrated over time:

dk:
CF =an [ P4 16F (0.0, (3153)
(0+2 o
A7 (0, k) = 4 6_2; / dnS®(n, k) je(k(no — ), (3.154)
SE(n, k) = ﬁ (@ +09 - @Q) (3.155)
4k?(no — n)
The cross-correlator spectrum is computed using (3.149) as

dk .

cf = an [ S PK) O m. b)AF (m ). (3.156)

The polarization transfer function AZ (o, k) is plotted in Fig. 3.1 for adiabatic and isocur-
vature CDM initial conditions.
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The degree of polarization is proportional to the magnitude of the temperature quadrupole
at last scattering. Since during the tight coupling regime the temperature quadrupole cannot
grow, polarization is generated in the relatively short transition between the strong coupling
and the free streaming regime. To first order in 7', the temperature quadrupole is pro-
portional to the temperature dipole, see (4.30, page 95). The polarization amplitude is thus
proportional to the temperature dipole at recombination times the width of the last scat-
tering surface (Zaldarriaga & Harari, 1995), resulting in a polarization signal two orders of
magnitude lower than the temperature signal.

3.6.3 Matter power spectrum

Let 6(n,x) denote the real-space density contrast in the matter component in the comoving
gauge; hence § corresponds to the gauge invariant variable A, defined in Eq. (2.37, page 42).
We will drop the time dependence when not needed, and write J instead of A,, to simplify
the notation. For clarity, the Fourier transform of the variables is denoted by a subscript
“k”, in this section only.

The real space correlation function is defined as

E(r)=(0(x)-0(x+r)), (3.157)

where (-) denotes an average over realizations, see § 5.1.1 for precise definitions. It is the
expectation value of d2 = d(x +r) and §; = §(x) under the 2-point probability distribution
function for 1, d2. We write J(x) as

1 X
§(x) = EEE / d®koye™ (3.158)

where we denote by Jx the Fourier transform (in flat space) of §(x). We postulate that §(x)
is a Gaussian distributed, isotropic and homogeneous random field, see § 5.1.1, and therefore
the quantity (0, - 0x) vanishes for k # k’ (homogeneity) and it only depends on the modulus,
not the direction of k (isotropy):

(6 - i) = (2m)%26®) (k — K') P (k) (3.159)

where §® denotes the Dirac delta function. We call P, (k) the matter power spectrum.
Replacing (3.158) in (3.157) we obtain

(2;)3/2 /d3kPm(k;) tkr _ \ﬁ/dk

showing that the correlation function is the Fourier transform of the matter power spectrum.

p2Sinrk sin rk:

E(r) = Py (k), (3.160)

Our aim is to compute the power spectrum today as a function of the spectral distribution
in the early Universe in the adiabatic CDM scenario. To this end, we make use of the results
of linear perturbation theory presented in the previous sections for the growth of matter
perturbations in a Universe containing CDM and photons only. Clearly, these computations
are valid only as long as the scale considered is in the linear regime, i.e. §x < 1. We only
sketch the elements which are needed in the following, referring the reader to e.g. Peebles
(1980); Padmanabhan (1993); Liddle & Lyth (2000) for a full account.
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Perturbations i over a comoving length A ~ k~! behave differently depending whether
they are outside (k < H) or inside (k > H) the Hubble length. For a given scale k, we
denote by 7., the time at which that scale crosses inside the horizon, i.e. H(n..) = k and
by k., the wavelength which enters the horizon at the time of matter-radiation equality, i.e.
key = H(Neq). We thus need to distinguish two cases: scales k > k., enter the horizon in the
radiation dominated epoch, while k < k., enter the horizon after matter domination. We
shall restrict ourselves to length scales A which are large enough not to be wiped out by free
streaming, i.e. A > Apg, see Padmanabhan (1993) for details.

For k > k., and 7e, < 1 < Neq, 0x(n) stays approximately constant after horizon crossing
because the radiation dominated epoch suppresses the growth of perturbation in a dust-like
component; this is called the Meszaros effect (Meszaros, 1974). For n > 7., the Universe is
matter dominated and the situation is analogous to the single fluid case examined in § 3.1,
and the perturbation grows as dx « a, see Eq. (3.14, page 61). Wavelengths which enter

the horizon in the matter dominated epoch, k < k.., start growing as soon as they cross the

eq)
horizon, dx(n) o< a for § > 7., by the same argument given above. Summarizing, we have

that
a

5k(ncnt)a7 fOI“ k > kcq
Ok (1 > Neny) X e a : (3.161)
6k(nent)77 fOI‘ k; < keq
aent aeq

and therefore we know ¢y for all subsequent times once we specify 0k (7en:), the value of the
density contrast for the wavelength k at the moment when that wavelength crossed inside
the horizon. Since for a given wavelength 7.,, & 1/k, horizon crossing happens at a different
time for each scale. We notice that in the second line of Eq. (3.161) we can rewrite the factor

@eq :<77€q)2:<k>20<k2, (3.162)
Qent Tlent keq

where in the first equality we have used the fact that a o 7% in the matter dominated

Qeq/Geni 8BS

universe.
Given that the range of scales of cosmological interest is not too wide, we can make the
following power law Ansatz for the scale dependence of the perturbation at horizon crossing

Ok (Nent) = AKT. (3.163)

An important quantity is k3/(27)3/2P,,(k), which from (3.160) gives the contribution per
logarithmic k-interval to the real space correlation function, and which with the above Ansatz
evaluates to

3

(27]:)3/2Pm(k) s o k372 = const for a = 3/2. (3.164)
This quantity can also be interpreted as the variance of the mass contained in spheres of
diameter A\ ~ 1/k at horizon crossing, see e.g. Padmanabhan (1993); for the value o = 3/2

the variance is the same on all scales.
We might prefer to specify our Ansatz not at horizon crossing, but rather for some fixed
initial time (the same for all scales) ;. In order to relate dy(n;) with (7. ), We notice
that on super-horizon scales k < H and for times 7., > 7 > 7., we have Jx x a o< 7% from
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Eq. (3.14, page 61). For the case k < H in the radiation epoch, < 7 < 7., We can use
the adiabatic solution (3.26, page 63) and the relation

4
_3+3a P

h=A,, = ~ —
k=8m= e Y T i 4

D+ 8 xa?xn?, (3.165)

and the approximation is valid for a < a.,. In conclusion, the comoving dark matter density
contrast grows as 1° at all epochs while outside the horizon. Therefore we obtain (with
Nent > 1; for all scales of interest)

2
6k(nent) = <ner‘]t) 5k(77i> X ]{7_251((?7@) . (3.166)

7

It is customary to make a power law Ansatz for the matter power spectrum at the time ;
of the form
P, (k,n;) = BE" (3.167)

and by the relation (3.166) the index n is related to « by
n=—-2a+4. (3.168)

The value a = 3/2 which yields a constant-mass-variance on all scales at horizon crossing
corresponds to n = 1, the so-called “scale invariant spectral index”; also known as Harrison-
Zel’dovich spectrum (Harrison, 1970; Zel’dovich, 1972). The power spectrum today then
becomes in terms of n, from (3.161)

Kt for k> ke

0 ox . 3.169
k(770) { i for ki < k‘eq ( )

The length scale which crosses the horizon at equality, A, ~ 13/(2,,h%) Mpc corresponds
to a peak in the power spectrum: fluctuations on larger scales, k < k., ~ 1/A., retain their
primordial shape, while perturbations on smaller scales have their spectrum multiplied by
k~*. The above arguments only apply in the linear region, i.e. for k£ 0.3 h/Mpc, above which
non-linear growth of the fluctuations invalidate perturbation theory and a full numerical
simulation is required to follow the evolution.

Finally, we can easily relate the matter power spectrum to the Bardeen potential by
using the Poisson equation (2.49, page 44). If we consider the value of Uy (,..), the Fourier
transform of W evaluated at horizon crossing, we have from the Poisson equation, noticing
that H(New,) = 1/k, 0k = Ayy ~ Ay ~ D by the adiabaticity condition, that Wy (7e,) ~
— 0k (Nent)- Therefore for the power spectrum of the Bardeen potential, defined as

k3
Py = ——{|U|? 1
v = 5o (I0f) (3.170)

we have that
Py(k)|,

o k?’Pm(k)\nem oc k"L (3.171)

ent
and the n = 1 scale invariant spectrum corresponds to Py (7).,;) = const. Or we can specify
Py at a fixed initial time 7;, in which case we obtain again from the Poisson equation

Py (k)

py 0K P (k)

o & kL (3.172)
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The fact that there is no evolution in the power spectrum of W until horizon crossing is
of course a consequence of the fact that Wy ~ const on super-horizon scales, as shown in
§ 3.2. The same scaling applies for the power spectrum of the gauge invariant curvature
perturbation ¢, which is constant on super-horizon scales for adiabatic perturbations, and
proportional to W.



Chapter 4

Parameter dependence

This chapter presents a brief review of the dependence of the CMB power spectra on the
standard cosmological parameters and on general initial conditions, building on the results of
the previous sections. Understanding the impact of the parameters on the observable spectra
builds the framework for parameter extraction from data, which is the subject of Part III.

In § 4.1 we concisely review the origin and main parameters dependencies of well known
features of the power spectrum: the large scale Sachs-Wolfe plateau, the acoustic oscillations,
and the damping tail. Introductory reviews on this topic can be found in e.g. Kosowsky (2002)
and Hu et al. (1997). A detailed physical understanding in a fully analytical approach is
explained in Hu & Sugiyama (1995a,b, 1996). In view of efficient and accurate parameter
estimation, fundamental degeneracies in the CMB spectra are best understood by introducing
a set of analytical functions of the parameters which the CMB probes directly, and upon
which the spectra dependence is almost linear (Kosowsky et al., 2002). We call this new
basis in parameter space “normal parameters set”, and we illustrate it in § 4.2.

In § 4.3 the CMB angular power spectra for general isocurvature initial conditions in a
Universe containing CDM, baryons, photons and neutrinos are presented. The four modes
adiabatic, CDM isocurvature, neutrino density and neutrino velocity — along with a baryon
isocurvature mode which is equal to the CDM mode up to a rescaling constant — span the
whole space of non-diverging solutions of Einstein’s equations at early times (Bucher et al.,
2000), and thus their superposition constitutes the most general type of initial conditions for
CMB anisotropy.

4.1 Standard parameters

The detailed shape of the CMB temperature and polarization spectra depends on the value
of the cosmological parameters and on the type of initial conditions in characteristic ways.
However, certain combination of parameters lead to very similar spectra: this causes degen-
eracies among some parameters, which cannot be reconstructed with CMB alone, but require
the inclusion of external data-sets.

Polarization information helps breaking temperature degeneracies because of two charac-
teristic features: the first is that after decoupling the polarization state is preserved by free
streaming, and the polarization spectrum is only modified by rescattering due to reionization
(§ 4.1.3.2). Therefore in a sense polarization is a more clean probe of the decoupling than
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temperature. The second reason is that while the acoustic peaks in temperature are domi-
nated by the monopole of the temperature fluctuation on the LSS, the peaks in E-polarization
reflect the dipole component at decoupling, i.e. the photon bulk velocity (§ 4.1.2.1).

In the following we revisit the main parameter dependence of the CMB spectra: for the
sake of illustrating the physical effects involved, we divide the CMB power spectrum in
three distinct regions, corresponding to different angular separations on the sky with the
approximate relation 9 ~ 7 //.

e Large scales: on scales larger than the Hubble radius at decoupling, knge. < 1, per-
turbations are dominated by the ordinary Sachs-Wolfe effect, given by the combination
of the intrinsic temperature fluctuations on the LSS and the gravitational redshift in-
duced by climbing out of the potential well. In non-flat cosmologies, or models with a
considerable value of the cosmological constant, the late ISW effect also contributes.
This region corresponds roughly to the COBE scale, ¢ <30 and ¥ 2, 7°.

Reionization produces a a characteristic increase of E-polarization on large scales, the
so-called “polarization bump”.

e Acoustic region: inside the sound horizon photon pressure cannot be neglected,
and scales within the sound horizon k [ ¢sn 2 1 oscillate, while gravitational infall be-
comes negligible because of potential decay inside the horizon. On intermediate scales
50 $£<5600 the CMB power spectrum displays a rich peak structure, reflecting the
contributions of density oscillations and Doppler term on the LSS. The early ISW ef-
fect contributes at roughly the 20% level up to the first acoustic peak (for adiabatic
models). Those scales have a typical angular separation on the sky ranging from about
10° down to a few 10'.

e Damping tail: wavelengths smaller than the diffusion damping scale 1/kp given in
(3.120, page 78) are exponentially suppressed and this causes a drop in power above
¢ ~ 800 or ¥ S1'. This effect combines with rescattering due to reionization, which
also erases fine-scale anisotropies.

4.1.1 Large scales

We wish to investigate the expected temperature fluctuations on very large scales in the gen-
eral case of a superposition of primordial adiabatic and isocurvature CDM initial conditions.
We look at wavelength k < kgec which at decoupling where still outside the horizon and we
consider a zeroth order approximation which neglects any anisotropic stress and the baryon
influence (i.e. set R = 0). If we take decoupling to happen well into matter domination,
we can also neglect the ISW contribution since the potentials are equal and constant — see
Eq. (3.14, page 61) — and to this level of approximation we can set V, = V,. With this
approximations we have for each Fourier mode from Eqgs. (3.128, page 80) and (3.129, page
80)

1
O(no, k, 1) = eFrnace=m) Doy 20 = thpVy | (aces b) (4.1)

In the adiabatic case, we can neglect the contribution of the Doppler term which behaves
as a sine and hence disappears on large scales, kngec < 1, while the cosine oscillation of the
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density perturbation D, . becomes constant, see (3.56, page 67). Therefore for adiabatic
initial conditions, from the solution (3.56) it follows

1
O (1o, k, p) ~ eF#nace=mo) KS@MD - 2cI>MD> + 2(1>MD} (adiabatic), (4.2)

where ®\p denotes the value of ® at decoupling well within matter domination. On the right
hand side, the term —2®y\p comes from the solution (3.56), and its negative sign reflects
the fact that the temperature is larger inside potential wells (® < 0), so that photons are
blushifted when they fall into the well. The term 2®y;p represents the gravitational redshift
which photons experience when they climb out of the potential as they free stream after
decoupling, which exactly cancels the gravitational blueshift term in the absence of baryons.
In conclusion we have

1
O(no, k, 1) = e’k“(”de“"o)gthD (adiabatic). (4.3)

For isocurvature initial conditions, we have that Dy ~(7)dec) = 0, which follows from (3.48,
page 66) with the isocurvature condition ®3 = 0. The Doppler term can again be neglected
with respect to the potential, because from (3.53, page 67) we have that kV, ~ k/H® < &
and (4.1) reduces to

O(no, k, p) ~ F#Maee=m0)9H 11y (isocurvature), (4.4)

the well-known result that isocurvature initial conditions produce large scale fluctuations six
times larger than in the adiabatic case for the same value of the Bardeen potential on the
last scattering surface.

More interestingly, we can relate the large-scale temperature fluctuations to the ampli-
tude of the primordial curvature and entropy spectra. Rewriting (4.3-4.4) in terms of the
curvature and entropy perturbations in the radiation era via Eqgs. (3.33-3.36, page 65), yields
for the source term (3.147, page 83)

S(n.K) = 51— nace) [4”

200 - 2500(0)] (4.5)

where (k) and ¢(k) are the Fourier components of random fields which we assume are
Gaussian distributed, isotropic and homogeneous, see § 5.1.1, evaluated at some initial time
7; deep in the radiation epoch. For their power spectrum we make a power low Ansatz

3 ns—1

Py, = g l6(R)) = G (,fp) , (46)
3 ne—1

Po(k),, = oy (0B = (,fp) , (@
3 ne—1

PR, = 5 ) 070D =S (1) cos(), (43)

The constants (5 and Sy are dimensionless and positive, while the angle A. parameterizes
the correlation between entropy and isocurvature perturbations; the constant kp is a pivot
scale, for which a popular choice is kp = 0.05 Mpcfl, and we have defined n. = (ns+n.)/2.
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The power law index ng is the scalar spectral index: ng ~ 1 is a generic prediction of
inflation, almost independently of the particular model, and is called “scale-invariant” or
Harrison-Zel’dovich (Harrison, 1970; Zel’dovich, 1972) spectral index. The reason for the
name is explained in § 3.6.3. Since ¥  ( up to constant factors, ¥ and ¢ have the same
spectrum.

From (3.143, page 82) the angular power spectrum on large scales (¢ <20) is then given

by
dke [ (k™" 482 [ kN\"™' 4 ke
=4 [ — |22 (= 0 (2 S A=
Ce ”/ K [25 (k;p> 25 \ e 25050 cos(Ae) | 12 * (9

X .7@2 (/f(770 - ndec)) .
The integral can be performed analytically provided all the indexes are within the range

—3 < nx < 3 and in the approximation k(19 — ngec) =~ kno (Gradshteyn & Ryzhik, 1965).
The result is

25
The function f contains the dependence on the spectral indexes, and it is given by
1
F@-—n)I'(¢—35+3)
P22 - B0+ 5 —3)

2 2
Cy = 2n? [Cof(ns,ﬁ) + %f(ne,ﬁ) - %COSO Cos(Ac)f(nc,E)] . (4.10)

f(n, ) = (nokp)' " (4.11)

where I' is the gamma function, which for a scale invariant spectrum, n = 1, evaluates to

1
fn=10= ey

If both the curvature and entropy spectral indexes are close to scale invariant (ng = n, =
1), we find that the so-called Sachs-Wolfe (SW) plateau for ¢ S 20 is constant:

e+1) 1, 4, 4  10—10
o Cg = %CO + %SO — % COS(AC)<OSQ ~ 10 5 (413)

and the numerical value is the measurement of the DMR instrument aboard the COBE

(4.12)

satellite averaged on scales <7° (Smoot et al., 1992). Clearly, uncorrelated entropy and
curvature perturbations (i.e. with cos(A.) = 0) both add to the SW plateau, but a positive
correlation (defined by cos(A.) > 0) reduces the power on large scales, while a negative
correlation increases it, as shown in the top left panel of Fig. 4.9 on page 106. If there is
no correlation, the isocurvature Sachs-Wolfe plateau from (4.3) and (4.4) is 36 times larger
than the adiabatic one for the same value of W at last scattering, and 4 times larger for the
same amplitude of the primordial curvature and entropy perturbations, Eq. (4.13). In the
pure adiabatic case, Sy = 0, we obtain from (4.13) an estimate of the primordial amplitude
of the curvature perturbation:

Co~5-107°. (4.14)

For models with a non-zero cosmological constant, the Universe becomes A dominated
for a/ag > (Qn/Q)Y3, and the potentials start again to decay. This produces a late time
ISW which contributes on large scales, where it is dominant with respect to the ordinary
SW part described above, producing a rise of the SW plateau at low multipoles. The details
differ considerably for adiabatic and isocurvature models, and also depend on the spectral
index, see Hu & Sugiyama (1995b) for a detailed explanation.
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4.1.2 Acoustic region

The structure of the power spectrum on intermediate scales is the result of several physical
effects, sometimes with contrasting impacts. The most distinctive features are acoustic
oscillations and projection.

4.1.2.1 Peak locations

Scales krs =k fondec csdn > 1 enter the horizon before decoupling and thus D, . oscillates as
cos(rsk) — cf. (3.56, page 67) — for adiabatic perturbations or as sin(rsk) — cf. (3.62, page 67)
— in the isocurvature mode. Thus scales which at the moment of decoupling have reached
an extremum of their oscillation will yield corresponding peaks in the temperature power
spectrum. Notice that since the power spectrum is a quadratic quantity, both maxima and
minima of the oscillations give peaks. The £ modes which at recombination are at maximum

compression or expansion are

g — M 12,3, (adiabatic), 415
ad TS(ndec) ( ) ( )
m 1/2 :

k:i(s ) = M, m=0,1,2,... (isocurvature). (4.16)

Ts('r]dec)

The corresponding physical scale AP = aq..7/k subtends an angle ¥ on the sky given by
the angular diameter distance relation (1.32, page 27), and the peaks in the angular power
spectrum show up at ¢ ~ 7/ or

D
0~ =2 (1dec) (adiabatic), (4.17)
ars
D
0 ~ 2+ m)ﬂﬁ(ndec) (isocurvature). (4.18)

S

Since Dy ~(k = k:gl)) < 0, the first adiabatic peak corresponds to a compression maximum,
while the first “isocurvature hump” is an expansion maximum, Dy~ (k = k:l(so )) > 0. In
the literature, “first acoustic peak” usually designates the compression peaks, i.e. the first
adiabatic extremum and the second isocurvature one, which in the notation of (4.15-4.16)
correspond both to the index m = 1. For a flat universe (K = 0) without cosmological
constant (24 = 0) and a baryon content as inferred from BBN (€,h? & 0.02), the location
of the first acoustic peak is approximately

(M) ~ 220 (adiabatic) and (4.19)
(1) ~ 330 (isocurvature). (4.20)

The WMAP data allow a very precise determination of the position of the first peak,
(M = 220.14+0.8 (Page et al., 2003), thereby confirming that the adiabatic mode is the
dominant one. However, subdominant isocurvature contributions cannot be ruled out, see
Chapter 7.

The location of the peaks depends on the of initial conditions, but the inter-peaks distance
is independent on the type of perturbations, and in the above estimate is A¢ ~ 220. The
peak spacing depends on the baryon content, which sets rs, and on the spatial geometry
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which enters in D 4. A larger baryon content slows down the oscillations, thus decreasing
the sound horizon and the spacing between peaks grows larger. The dependence of D4 is
primarily on the curvature of the universe: in a crude approximation we neglect Qi < Q,,
and Qa when integrating (1.34, page 27) up to zgec &~ 1100 > 1 and neglect €, as well
(which is not a good approximation for a large redshift) and we obtain
Da(eae) ~ 0112, (4.21)

Therefore the peak position scales as Q,}l/ 2, which means that the peaks are shifted to
larger ¢ values in an open universe. Introducing a non-zero cosmological constant complicates
matters, since it is then possible to obtain the same value of the angular diameter distance,
and hence the same peak location, by compensating a change in €2, with a different value of
Qp, an effect which goes under the name of angular diameter distance degeneracy (Efstathiou
& Bond, 1999; Melchiorri & Griffiths, 2001). The angular diameter distance test is no longer
sufficient to determine alone the curvature of the universe, but an independent measurement
of ,, or Q2 is necessary.

To illustrate this fundamental degeneracy, let us introduce the shift parameter RS,
which gives the first peak’s position (in an adiabatic model) with respect to its location in a
flat reference model with €, = 1:

¢ = 1) yRehite (4.22)

which can be evaluated from (4.17). To this end, we need the explicit expression for the
sound horizon at decoupling, which is given by

Gdec d _
Ts(Adec) = / cs—1~7da
0 a

d
adec/aO dz (423)

w75
0  a 1/2
Hoagv/3 Jo [(1+3822) Oz + @ + Qa? + Qpat)

(where all the Qx’s are evaluated today). Neglecting the curvature and cosmological constant
term in the early universe (agec/ao < 1) yields the approximate result

1/2
rs(adec) ~ 1 (aeq/a0> X

VaHao "\ e (4.24)
1 + Req + 2Rdec + 2\/(1 + Rdec)(Req + R) .
X In ,
1+ Ry + 2R
where
Q
Rla)= 2% \nd R = R(a.), Rae = Rlage) (4.25)
497 a

In order to find a simple approximate expression for R let us ignore the logarithmic
dependence on the parameters of 5, and neglect the parameter dependence of the factor
(aoq/a0)"/? /R;{2 as well; we shall relax those approximations in § 4.2. Then the sound
horizon for K # 0 models scales as

||

S ec ~ ) 4.2
Ts(Adec) = @ 0, (4.26)
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while for the reference model with (€2,,, Q) = (1,0) we have

DA (adec)

GdecTs (adec) ( )

with « being approximately the same factor as in (4.26). For the shift parameter (4.22) of a
model with arbitrary (£2,,,,2x) we then obtain the simple expression

- 2 Qx|
shift
~ , 4.28
e\ o (4.28)

where An is given in Eq. (1.34, page 27) and y in Eq. (1.3, page 24). This handy expression
gives the approximate position of the first peak as a function of 2,,, and Q,, with Qx obtained
from the constrain 1 = Q,, +Qa +Qx. Here we have ignored the dependence on the radiation
content of the model, which is explicitly included in (Eq. (6.5, page 138)). In the left panel
of Fig. 4.1 we plot lines of R*Mf* = const in the (,,,Q4) plane, which are not parallel to
lines of constant curvature (diagonal lines).

Along with R*M two other physical quantities determine the structure of the peaks:
the baryon density Qyh? controls the relative height of the peaks, see § 4.1.2.2, while the
amount of matter §2,,h? sets the redshift of equality, for a fixed relativistic energy content.
Therefore by fixing the three quantities RS" Q,,h% Qph? we obtain models with almost
indistinguishable power spectra in the acoustic region. This is illustrated in the middle
panel of Fig. 4.1, where a flat, a closed and an open model result completely degenerate,
with the only difference showing up on large scales because of the different amount of late
ISW effect. The right panel shows that conversely the first peak’s position in three flat
models can be very different if the shift parameters differ, and therefore the statement that
the first peak position alone can determine the curvature of the Universe is imprecise.

Polarization peaks are displaced by 7/2 with respect to temperature peaks, hence po-
larization maxima occur at temperature minima. This can be seen by expanding to first
order in 7! the polarization hierarchy (2.132-2.135, page 54), finding for the polarization
monopole and quadrupole

1
oy = —292 and ©F = ~102. (4.29)

The temperature quadrupole is found to the same order from the temperature hierarchy,
including the polarization feedback as in (2.136, page 54), giving
.18
@2 = —T —zk@l . (430)
15
The E-polarization source term (3.155, page 84) becomes in the instantaneous decoupling

approximation
?

SE = _”:__1(770 - ndec)_zgel(ndec) ) (431)
showing that E-polarization probes the temperature dipole, i.e. the bulk velocity of the
photons-baryons fluid, at decoupling. Since ©1 oc V; o Dgﬁ we see that polarization oscil-
lations are out of phase of 7/2, as visible in the top left panel of Fig. 4.9 on page 106.
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Figure 4.1: Left panel: lines of constant shift parameter (4.28) in the (£,,,Q2a) plane (in
blue) correspond to models in which the acoustic peaks are in the same position; those lines
are not parallel to lines of constant curvature (in red, the line of Qo = 1 is the locus of flat
models). Middle panel: a closed (blue, long-dashed), a flat (solid, red) and an open model
(dotted green) with parameters corresponding to the three colored dots in the left panel on
the R = 1.14 line are almost completely degenerate. Right panel: three flat models with
different shift parameters (and values corresponding to the three colored squares in the left
panel) exhibit a very different peak structure. In particular, measuring the position of the
first peak alone is not enough to determine the curvature of the Universe.

4.1.2.2 Baryon signature

Let us now examine in more detail the role of baryons in the adiabatic scenario. The relevant
quantity for the final temperature fluctuations is, from Egs. (3.128) and (3.129, page 80) with
o=y

1 1
ZDQ’7 + 20 —ukV- :§(1 + R)® cos(cskn) — (2+ R)®
JITE (4.32)
4+ 2® — yy——— P sin(cgskn) ,
75 (cskn)

where we have inserted the adiabatic solution (3.113-3.114, page 77) and explicitly restored
the Doppler contribution. The effect of baryons, R > 0, is twofold: the amplitude of the
cosine oscillation is larger and the zero point is now displaced to —R®, i.e. the gravitational
effects of falling into and climbing out of the potential at decoupling no longer exactly cancel
as in Eq. (4.2), where we had taken R = 0. Therefore a larger baryon content enhances
compression peaks, which correspond to negative extrema of the cosine!, while it suppresses
expansion peaks. This leads to a distinctive signature of the baryon density on the CMB
spectrum: a larger baryon content boosts odd peaks and reduces the even ones, hence a
precise measurement of the first three peaks leads to an accurate measurement of the baryon
content, as is evident from Fig. 4.6 on page 103.

Up to now we have put aside the Doppler term V, o< sin(cgkn): the sine is out of phase
of 7/2 with respect to the density oscillation, and its maxima fill in the zeros of the cosine.
In the absence of baryons, this would lead to an exact cancellation and to the disappearance

'Note that ® < 0 inside potential wells, thus cos(cskn) < 0 indeed gives Dy, > 0, according to Eq. (3.113,
page 77), i.e. it corresponds to an overdensity with 67 /T > 0.
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Figure 4.2: Contributions to the adiabatic temperature spectrum (solid) from the tempera-
ture monopole (long-dashed), the temperature dipole (Doppler term, short dashed with label
©1), and ISW effect (reprinted from Hu & Sugiyama, 1995a).

of the acoustic peaks: adding the density and velocity term incoherently in quadrature for
R = 0 gives a constant. However, R > 0 suppresses the Doppler term by a factor (1 + R)
(in quadrature) with respect to the density term, and the net effect is that the velocity
contribution partially fills in the minima of the density oscillation without erasing the peak
structure, as shown in Fig. 4.2. Also the peak structure for the velocity contribution gets
more washed out by the free streaming conversion than for the density, a consequence of the
fact that the velocity term is multiplied by p (Hu & Sugiyama, 1995a).

4.1.2.3 Early ISW effect

At recombination, the Universe is not completely matter dominated, since agec ~ 3a., and
thus the Bardeen potentials are not exactly constant. This gives an early ISW contribution
to the anisotropy, which is spread out over a large multipole range, adding in particular to
the rise from the large scale plateau to the first acoustic peak for the adiabatic scenario,
cf. Fig. 4.2. Since most of the contribution comes from early times, when n < ng, we can

approximatively set js(k(no — 1)) ~ je(kno) and write for the ISW contribution to (3.149,
page 83)

no . . -1m0
O™ =t [ (i 4 @)tk ) o [+ @] olhm). (4.33)
7

Tldec

dec

The early ISW is more prominent if the epoch of equality is delayed due to a smaller matter
content or to a larger radiation content, for instance in the presence of extra relativistic

particles, as shown in § 6.1.

4.1.3 Damping tail
4.1.3.1 Recombination

Temperature fluctuations on small angular scales are exponentially suppressed by diffusion
damping due to the breakdown of tight coupling at recombination, as discussed in § 3.5.
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The effect can be roughly incorporated into the undamped solution (3.127, page 80) by
multiplying it with the damping factor

D(k) = /dng(n)e[k/kp(n)}2 ~ e~ [6/kp(ace))” (4.34)

using the damping length scale kgl of Eq. (3.120, page 78).
The main parameter dependence of the damping scale is easy to understand physically:
the matter content sets the horizon scale at decoupling, while the baryon density controls

the Compton scattering time ~ 7.

Before recombination, photons diffuse by a random
walk over a typical length A\p = VN /7, where N is the number of collisions, N ~ n7. Hence

the damping length scales as

AD ~ \/Ndec/T X wrjll/4w;1/2 , (4.35)

where the last proportion takes advantage of the fact that n. o« wp (see Eq. (6.17, page
1/

estimate is given in Eq. (6.19, page 150), which also includes the effect of the helium fraction,

149)) and Ngec X Wi 2 if decoupling happens in the matter dominated era. A more detailed
which we have ignored here.

Clearly, when recombination occurs the mean free path goes to infinity very rapidly, and
therefore the above argument no longer applies, and one has to use a more sophisticated
analysis. More details and precise fitting formulas for (4.34) can be found in Hu & White
(1997), while useful fitting formulas for many relevant recombination quantities are detailed
in Hu & Sugiyama, 1996, Appendix E.

4.1.3.2 Reionization

When the Universe is reionized, the free electron fraction becomes unity again and CMB
photons can be rescattered. Fairly little is known about the details of the reionization
mechanism and its redshift dependence (for a review see Haiman, 2004) but the null detection
of Gunn-Peterson troughs indicates that the Universe was completely ionized after redshift
~ 6 (Becker et al., 2001), possibly for the second time (Cen, 2003). The recent WMAP
results (Spergel et al., 2003) seem to indicate that reionization happened quite early, at a
redshift z, =~ 17, corresponding to an optical depth of 7, =~ 0.16 for a standard ACDM
model.

Reionization has two effects on the power spectrum: temperature anisotropies on scales
below the angle subtended by the horizon at recombination get washed out, and on the same
scale there is a generation of polarized power. Let us take for simplicity a model in which
all the hydrogen is suddenly reionized at a redshift z.., and ignore helium reionization which
happens around z =~ 3 which only contributes a few percent. Then the corresponding optical
depth to reionization, Ty, is given by

tre
Tre = / cornedt
t

0
eor / ne(2) & (4.36)
0

- Ho (L+2) [Q(1+ 2)* + Qn (1 + 2)3 + Qe(1 + 2)2 + 2]

The free electron density (per cm?) can be expressed as (see Eq. (6.17, page 149))
ne(z) = 11.3-107%(1 — Y,)wp (1 + 2)?, (4.37)
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where we have included the Helium mass fraction Y), for future reference (see § 6.2.2). For
a flat Universe (¢ = 0) and neglecting the contribution of radiation, which is a good
approximation if z,, < 100, the integral in (4.36) can be performed analytically, giving (Hu
& White, 1997)

Y
O,

e = 4.6-1072(1 - Y}) [\/QA (L + 2e)? — 1] . (4.38)
From the definition of the visibility function g, the probability that a photon last scattered
between today and redshift z is

P(z) = /0 ’ g(B)di=1—eT"() (4.39)

and therefore the fraction of photons which arrive to us directly from the recombination epoch
is 1 — P(zre) = exp(—Tye). Above the horizon scale at reionization, all photons contribute
to the anisotropy, while below that scale only the fraction exp(—7y.) which did not rescatter
contribute. Thus power on small scales will be suppressed by a factor exp(—27,) and the
reionization damping factor is given by

1 for ke < 1
Dre(k)=1{ ¢ : (4.40)
e “Tre for kme > 1

The angular scale subtended by the horizon at reionization can be found using (1.32),
yielding the approximate scaling (Tegmark & Silk, 1995)

0oy (4.41)

Without polarization information, reionization is highly degenerate with the spectral
tilt and a tensor or isocurvature contribution which would add power only on large scales:
a larger reionization optical depth can easily be accommodated by adding tensors or an
isocurvature component an reducing at the same time the overall normalization, thereby
exactly compensating the reionization power suppression. This degeneracy can be expressed
by introducing a suitable combination of 7, and the overall normalization, see Eq. (4.48)
and compare Fig. 4.7. However, the characteristic signature of reionization is the generation
of polarized power on the horizon scale of reionization, and the corresponding “polarization
bump”, clearly visible in the bottom right panel of Fig. 6.16 on page 170, around £ =~ 20 in
the E-polarization spectrum can be used to break the degeneracies with other parameters.

The position and scaling of this bump can easily be understood physically (Zaldarriaga,
1997): the temperature quadrupole at reionization, which determines the reionization in-
duced polarization, is given by the free stream of the temperature monopole at decoupling;:

e2 (nre) = (@0 + 2‘1’)(ndec)j2 (k(nre - ndec)) . (4'42)

Given that the k-oscillation of the monopole is much slower than the one of the Bessel
function, rs < Mre — Ndec, the first peak corresponds approximately to the maximum of the
Bessel function, which occurs for k& = 2/(nwe — Ndec). This translates into £ ~ k(ny — mre) ~
2(n0 — Mre)/(Mre — Ndec) = 24/Zre- This peculiar scaling of the position of the reionization
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bump in the E-spectrum could potentially be used to distinguish the effect of a possible time
variation of the fine-structure constant, see § 6.3.4.

Only one parameter is sufficient to characterize the simple model of sudden reionization
presented above, namely the reionization redshift z, or equivalently 7..; but it has been
shown that there are up to five principal reionization modes which could be extracted from
CMB measurements (Hu & Holder, 2003). Furthermore, it is possible to link the reionization
history to specific stellar models and try to constrain the parameters of star formation and
evolution modelling using CMB data (Bruscoli et al., 2002; Holder et al., 2003; Kaplinghat
et al., 2003a).

4.2 Normal parameters

The physical understanding of the characteristic signature of the cosmological parameters
can be exploited to build a set of analytical functions which describe quantities directly
probed by the CMB. We call such a set a “normal parameter basis”, because the effect of the
new parameters is almost orthogonal, in the sense that correlations among the parameters
should be very small. The normal parameter set has the advantage of taking into account
the most severe CMB degeneracies, such as the geometrical degeneracy described above,
a feature which improves the efficiency of parameter space exploration (see § 5.1.7). The
dependence of the CMB spectrum on the normal parameters is almost linear over a wide
range of values, a very important property which makes them ideal as a basis set for the
Fisher matrix analysis, see the explanations in § 5.2 and § 6.2.5 for an application. In terms
of the normal parameters, it is easy to disentangle and understand the physical effects on
the CMB power spectra of each parameter while keeping the other constant, to the contrary
of what happens for cosmological parameters.

We have seen in § 4.1.2 that the shift parameter R the baryon and matter density
determine the location and relative height of the acoustic peaks. We now expand those
considerations by introducing a normal parameter set, based on the discussion of Kosowsky
et al. (2002), to which the reader is referred for further details. See also Sandvik et al. (2004)
for an application to parameter estimation techniques and Jimenez et al. (2004) for recent
improvements including the polarization spectrum.

e The position of the peaks is set by the ratio between the angular diameter distance
relation (1.32, page 27) and the physical size of the acoustic horizon at decoupling,
Eq. (4.24, page 94). Hence a first normal parameter which determines the overall
angular scale is
DA(adec)

adecrs(adec) ’

A

(4.43)

cf. Eq. (4.17), which is just a general expression for the shift parameter. The scale
factor at decoupling agec, or equivalently the redshift of decoupling, depends upon
Oph? and the Q,,/Q,, for which Hu & Sugiyama (1996) provide an accurate analytical
fitting formula. The effect of a change in A while keeping the other normal parameters
fixed is displayed in Fig. 4.3.

e The radiation/matter ratio sets the epoch of equality, which in turn determines the
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Figure 4.3: Impact of the shift parameter (4.43) on the CMB temperature (left) and polar-
ization (right) spectra, all other normal parameters kept fixed. The geometrical projection

effect affects temperature and polarization in the same way. In the bottom panel, we plot

the percent difference with respect to the reference model (black).

amount of early ISW, thus we introduce the parameter

R = Qp Adec

4.44
Q'r‘ ao ) ( )

which gives the matter to radiation density ratio at the time of decoupling. The boost
of the first acoustic peak due to the early ISW is visible in Fig. 4.4.

The geometrical degeneracy is along the energy density in the cosmological constant,
which also gives the amount of late ISW effect. Thus we use the parameter

V= Qph?. (4.45)

As shown in Fig. 4.5, the impact is quite small in magnitude and solely on large angular
scales, where cosmic variance limits our ability to constrain this parameter, making of
the cosmological constant one of the worst determinable parameters with CMB data
alone.

The parameter A already includes the effect of the baryon density on the spacing and
location of the peaks, which is produced by the dependence of the sound horizon on
the baryon content. Therefore keeping the other normal parameters and in particular
A fixed while varying

B = Q,h? (4.46)

isolates the baryon driving effect on the acoustic oscillations, which sets the relative
height of the peaks. Since the polarization amplitude is proportional to the temperature
dipole at recombination, which in turn is suppressed by a factor (1 + R)l/ 2 with R
Qph?, a larger baryon density reduces the height of polarization peaks (Fig. 4.6).
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Figure 4.4: Impact of a change in the radiation to matter energy density ratio at decoupling
(4.44) on the temperature (left) and polarization (right) spectra, all other normal parameters
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equality, which changes the amount of early ISW effect contribution around the first acoustic

peak.

90 2 0.5 Angular scale (deg) 0.1 90 2 05 Angular scale (deg) 0.1
[T T T I L T T T3
[ @ +30% ]
~ 8000 j A i 10-12 -
Y A U -30% & 3
. el aN |
& i 1 S 1
X 4000 1 05 o i
£ R 10 1
2 1 = ]
. 2000 -4 = 1
< L b 10-14 3
ol vl v J Ll [ NI B ]
100 T 100 T T —
50 |- . 50 .
N 0 [ o e " 1w 0 Frosmierss - - - - .
-50 . -50 [ 4
100 Ll vl P U U R R R —100 Ll uniul RN Y T S ' -

2 10 50 400 800 1200 1600 2 10 50 400 800 1200 1600

Multipole 1

Multipole 1

Figure 4.5: Impact of the energy density in the cosmological constant (4.45) on the CMB
temperature (left) and polarization (right) spectra, all other normal parameters kept fixed.
The impact is only on large angular scales due to the late ISW effect, where measurements
are limited by cosmic variance and therefore cannot constraint much this parameter.

e The CMB spectrum turns out to be almost linear in the combination

1/2 1/2
& /:thZ 14 /,

=0 h2(1
M=l {1+ 0o R

(4.47)
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Figure 4.6: Impact of the baryon density (4.46) on the CMB temperature (left) and polariza-

tion (right) spectra, all other normal parameters kept fixed. A larger baryon content boosts

odd peaks and suppresses even ones, see § 4.1.2.2. The height of the polarization peaks is

reduced by a larger baryon content.

which is a refinement of our previous approach of taking simply 2,,,h? as a determining
parameter, see Kosowsky et al. (2002) for more details.

A good way of taking into account the degeneracy between the optical depth to reion-
ization and the scalar normalization described in § 4.1.3.2 is to adopt the parameter

T = Asexp(—27) , (4.48)

where for the adiabatic model considered here A; = (2 is the scalar amplitude of the
power spectrum of the gauge invariant curvature perturbation, cf. Eq. (4.6, page 91).
When adopting a change in 7y, the normalization A; is also changed as to keep the
power above the third peak unchanged, thus avoiding artificial degeneracies with the
other normal parameters, which would disappear if one adopted a different normaliza-
tion convention (Kosowsky et al., 2002), see Fig. 4.7.

The scale dependence of the initial power spectrum is described by the scalar spectral
index ng, as in (4.6). A value ns > 1 (“blue index”) increases the power for wavevectors
larger than the pivot scale, and thus yields more power for large multipoles; the converse
is true for ny < 1 (“red index”), see Fig. 4.8. Therefore the impact on the CMB spectrum
can be approximately modelled as

14

ns—1
Cor p(ns) = Cor p(ns = 1) <€0> (4.49)

with £y a pivot point which should be chosen as to match kp (even though a different
choice will only correspond to a change in overall normalization).
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Figure 4.8: Impact of the scalar spectral index on the CMB temperature (left) and polariza-
tion (right) spectra, all other normal parameters kept fixed. A blue spectrum (ngs > 1) gives
more power at larger multipoles. The glitches are numerical artifacts.

Given the above correspondences, we can transform from the cosmological parameter
set (Qm, Q, Dy, Qp, h) into the normal basis (A, R, V, B, M) and vice-versa by numerically
inverting the relations (4.43-4.47).
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4.3 General initial conditions

As we have seen in § 3.2 and § 3.3, a Universe containing photons, massless neutrinos, cold
dark matter and photons coupled to baryons admits four growing modes for the perturba-
tions. To this set, one should add a baryon isocurvature entropy mode, which we have not
described, but which behaves exactly as the cold dark matter mode, only rescaled by an over-
all constant Qp/Qcqm (Gordon & Lewis, 2003). Thus without loss of generality, we can treat
the CDM and baryon isocurvature modes as one single mode, and restrict our considerations
to the four modes: adiabatic, CDM isocurvature, neutrino entropy and neutrino velocity.

4.3.1 Angular power spectra for all modes

The numerical integration of the evolution equations is necessary to go beyond the early
time approximative solutions derived earlier and obtain the full angular power spectra for
the different types of initial conditions. Recent versions of CAMB include the possibility
of specifying neutrino entropy and velocity initial conditions, along with the adiabatic and
isocurvature CDM ones. The resulting temperature and E-polarization spectra are displayed
in Figures 4.9 and 4.10. Analogously to the adiabatic-CDM isocurvature case discussed in
§ 4.1.1, in the most general case the modes are arbitrarily correlated with each other, and
each of them possesses its own spectral index. In the figures we plot the correlators for total
positive correlation between the modes, take scale invariant spectral indexes for all modes,
n = 1 and we fix the other cosmological parameters to a flat, concordance ACDM model
with early reionization, as emerged from the WMAP data for the pure adiabatic case.

The collection of modes presents a wide variety of oscillatory structures, and very different
amplitude ratios between the large-scale plateau and the peaks. Since the perturbation
equations are linear, the most general CMB power spectrum is a positive definit superposition
of all the modes. From a phenomenological point of view, we expect that widening the initial
condition space to include all of the four possible modes, will lead to large degeneracies
between initial conditions and cosmological parameters. We dedicate § 7.2 to a thorough
investigation of this issue. On the other hand, if the neutrino isocurvature modes were non-
zero, their contribution could conceivably allow to fit the CMB data without the need for a
cosmological constant, a possibility which we analyze and reject in § 7.3.

4.3.2 Modes superposition

In the purely adiabatic scenario, initial conditions for scalar perturbations are described by
two parameters, namely the overall normalization and the spectral index of the curvature
perturbation power spectrum, as in Eq. (4.6, page 91). By enlargening the initial conditions
space to include all of the four possible modes, we add nine amplitudes (three for the CDM
isocurvature, neutrino density and velocity modes, and six for the correlators between the
four modes) and three spectral indexes, for a total of 14 parameters describing the most
general initial conditions.

Although the dependence of the modes on the amplitudes is trivial, the numerical search in
the initial conditions parameter space is complicated by the positive definiteness conditions
on the total spectrum. The total temperature (or polarization) angular power spectrum
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Figure 4.9: Temperature and E-polarization angular power spectra for the four modes consti-
tuting the most general initial conditions for CMB anisotropies, Figure 1 of 2. The correlators
are for positive total correlation between the modes, and we take all spectral indexes to be
unity. The remaining cosmological parameters are fixed to a concordance, flat ACDM model.
In the lower panel, the correlators are plotted in absolute value. The four modes are: ad
(adiabatic), ci (CDM isocurvature), nd (neutrino density/entropy), nv (neutrino velocity).

obtained by superposing the modes must be positive

4
Co=Y M;Cy >0 V ¢, (4.50)
ij=1
with the modes correlation matric M € P,, where P, denotes the space of n x n real,
positive semi-definite, symmetric matrices with in our case n = 4, and the C;] are computed
for a fixed choice of cosmological parameters when only the corresponding element of the
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Figure 4.10: Temperature and E-polarization angular power spectra for the four modes
constituting the most general initial conditions for CMB anisotropies, Figure 2 of 2.

correlation matrix is non-zero, i.e. for M;; = 1, all others vanishing. The elements of the
correlation matrix are arranged so that the amplitudes of the pure modes are along the
diagonal (so that M;; > 0 for i = 1,...,4) while the off-diagonal elements are the correlators
amplitudes. Each correlator amplitude must satisfy Schwartz’ inequality

MP < MyMj; i,j=1,...,4 (4.51)

because of the positive definiteness condition (see Trotta, 2001, Appendix A for a proof), but
in general the correlators amplitudes can of course be negative. Finally, Schwartz’ inequality
between all pairs ¢ # j of M is a necessary but not sufficient condition for the positive
definiteness of the correlation matrix. A sufficient condition is that all sub-determinants of
M are positive or zero (see e.g. Heuser, 1993, proposition 172.5), giving the four sufficient
conditions on the elements of M:

M1 >0, (4.52a)
My Moy — M7, >0, (4.52b)
M1 Moo My + 2M1o Moz Mz Moy — MizMss — M, Mss — Maz My > 0, (4.52c)
det M > 0. (4.52d)

When numerically searching the initial conditions parameter space, the conditions (4.52)
must be imposed by hand to avoid regions which would lead to non-physical (i.e. negative)
angular power spectra. This approach is used in Trotta et al. (2001) and some related issues
are discussed in § 7.2.

A more convenient parametrization of the correlation matrix is employed in Trotta et al.
(2003), where the matrix M € P, is written as

M = UDUT, (4.53)
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U € §O,,, D = diag(dy,ds,...,d,) and d; > 0,7 € {1,2,...,n}. Here SO,, is the space of
n X n real, orthogonal matrices with det = 1 and n = 4. We can write U as an exponentiated
linear combination of generators H; of SO,:

(n®—n)/2
U =exp Z oH; |, (4.54)
i=1
with
0 1 0
-1 0 0
Hi=| o o , (4.55)

and so on, with —7/2 < a; < 7/2,i € {1,2,...,(n? —n)/2}. In analogy to the Euler angles
in three dimensions, we can re-parameterize U in the form

(n?—n)/2

U= J] exp(iH), (4.56)

i=1

with some other coefficients —7/2 < ¥; < 7/2, 4 € {1,2,...,(n* —n)/2}, whose functional
relation with the a;’s does not matter. The diagonal matrix D can be written as

D = diag (tan(6;),...,tan(6,)), (4.57)

with 0 < 0; < 7/2, for i € {1,2,...,n}. In this way, the space of initial conditions for
n modes is efficiently parameterized by the (n? + n)/2 angles 6;,9;. In our case, n = 4
and the initial conditions are described by the ten dimensional hypercube in the variables
(01,...,04,11,...,16). This is of particular importance for the numerical search in the
parameter space. One can then go back to the explicit form of M using Eqs. (4.56), (4.57)
and (4.53). This more efficient parametrization is employed in § 7.3.

There is no optimal solution for an efficient and physically motivated parametrization
of the initial amplitudes; another possibility, based on a ten-dimensional hypersphere, is
employed in the analysis of Bucher et al. (2004).
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Chapter 5

Statistics and data analysis

We are now in a position to attack the task of actually determining the values of cosmological
parameters from the observed CMB anisotropy. To this end, we need several statistical tools,
which we introduce in § 5.1.1. The emphasis is on their application to the CMB: we work
out the cosmic variance limit from first principles in § 5.1.2, and we present the Maximum
Likelihood principle and its application to data analysis in § 5.1.3; we focus on the differences
between the frequentist (§ 5.1.4) and Bayesian approach (§ 5.1.5) to statistics, explaining
the procedures to assess likelihood and confidence intervals and their interpretation; we then
discuss the implementation of two popular methods to sample the parameters space, the
traditional gridding method (§ 5.1.6) and the more efficient Monte Carlo sampling (§ 5.1.7).
In § 5.2 we explain the details of the Fisher matrix analysis, an handy and accurate technique
to produce forecasts for the expected capabilities in terms of parameters extraction of future
CMB observations. In the last section, § 5.3, we offer a brief historical review of the last
decade of CMB observation, presenting the data-sets which are then exploited in Chapters
6 and 7.

5.1 Elements of probability and statistics

5.1.1 Some concepts of probability theory

We work in real, three-dimensional space, and we consider a field X which is defined in all
points r € R? in such a way that the probability of obtaining the value X at the point r
is P(X,r). We call X an infinite dimensional random field and P its 1-point probability
distribution function (pdf). In order to fully describe the random field X, we need to specify
not only P, but also the 2-point pdf, denoted by Pa(Xi,r1, Xo,r2), which describes the
probability of getting the value X; at the point r; and the value X, at the point ro; then
the probability distribution for all triples of points, P3, and so on for an arbitrarily large
number of points.

From the definition of probability, the n-point pdf’s are not all independent, obeying the
relations

Pn(Xl,...,Xn) :/Pn-i-l(Xb'”7XnaXn+1)an+1' (51)

The field X is said to be statistically homogeneous if its 1-point pdf is the same in all points
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of space:
P(X,r) =P(X) (statistical homogeneity), (5.2)

and statistically isotropic if the 2-point pdf depends only on the distance between the points
but not on the direction of the vector joining them:

Pa(X1,r1, Xo,r2) = Po(Xy, Xo,7) (statistical isotropy), (5.3)

with 7 = |r; — ro|. In cosmology, all random fields are assumed to be homogeneous and
isotropic. From now on we will always make this assumption. We denote with () the
ensemble average over realizations of the field X (expectation value). For a function f(X),
its expectation value is

(X)) = /Q F(X)P(X)dX | (5.4)

where the integration goes over all possible realizations of X defining the sample space 2.
The expectation value of f(X) = X is called the mean of X. Under the assumption of
isotropy, (X) is a constant independent on r. Therefore in cosmological perturbation theory
we can always take the perturbations to have zero mean, since a constant offset can always
be reabsorbed in a redefinition of the corresponding background quantity.

Consider X (k), the harmonic transform of X with respect to the eigenfunctions of the
Laplace operator; in R? this is the usual Fourier transform. Then as a consequence of
homogeneity and isotropy, X (k) has the following properties:

(X(k)-

<

(X)) =6 (k - K)g(k)
The real space correlation function is defined as
§(r) = (X(r1) - X(r1 +1)). (5.7)

It is the expectation value of X1 = X(r;) and X3 = X(r; + r) under the 2-point pdf,

&(r) :/Xm/dX2 Po(X1, Xo,7) X1 X2, (5.8)

where in writing £(r) instead of {(r) we have assumed statistical isotropy.
The field X is called space ergodic if we can perform a spatial average instead of an
ensemble average and obtain the same result:

-1
lim (4771%3) / fIX(0)]dPr = (f[X]). (5.9)
R—oo \ 3 r|<R
Notice that ergodicity requires that the field is defined over an infinite space, such as R3.
The temperature field of the CMB however lives on the two-sphere S2, which is a compact
manifolds and therefore not ergodic. Therefore even if we could measure the anisotropies
with no experimental error, we still would not be able to perform the ensemble average with
perfect accuracy, see § 5.1.2.

We denote by f the estimator for f(X), i.e. a procedure applied to a random sample
of X to produce a numerical value for f, which is called the estimate. When applied to a
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set of observations X fbs, X’gbs, ... X9b% which constitute a random sample, the estimator f

produces a distribution of estimates, and as such it too is a random variable.
An important particular case is the Gaussian random field, for which all the n-point pdf’s
are Gaussian. The 1-point pdf is then

1 X2
X)=— - 5.10
PX) = e (55 ) (5.10)
while the 2-point pdf is given in terms of the field’s correlation function & as
1 X2 4+ X2~ 2§(T)X1X2)
Po(X1, Xo,7) = exp [ ——% 2 5.11
2( 1 2 ) 902 /71 — {2(7“) p ( 252 [1 — 52(7’)] ( )

and the 2-point pdf (or equivalently, the correlation function) contains the full statistical
information.

The statement that the correlation function determines the 2-point pdf completely is true
only for a Gaussian field; in general, from (5.8) it is clear that after the integration &(r)
only contains part of the information encoded in Ps. For instance, Jones (1997) gives an
interesting counter-example of a Gaussian and a non-Gaussian distribution with the same
correlation function and yet with two different 2-point pdf’s.

5.1.2 The origin of cosmic variance

It is instructive to compute explicitly the variance of the observed C; starting from basic
principles. If we assume that the temperature fluctuation © is an isotropic and homogeneous
random field, then the coefficients of the harmonic expansion on the 2-sphere, the az,,’s, have
zero mean and variance given by the true Cy’s:

{(agm) =0 (5.12)
<a>(fm ’ af’m’> = 00O Co - (513)

Inflation predicts that the ay,,’s are very close to Gaussian variables, so we make the as-
sumption of Gaussianity and for the pdf of ay,, we take

Oy
|
Plapm) = 755,° 20, (5.14)

The true ay,,’s are of course inaccessible to us, but from the measured temperature fluctuation

we obtain an estimate which we denote by ay,,. As an estimator for the power spectrum we
define
A Cy

y4
1
Cr=——— Q2 | = ——V 5.15
m=—/
where we have introduced the variable
l N
|, |

V= Z Ym

2
m=—/ Ce

(5.16)

Eq. (5.15) implies an ergodic hypothesis, since in the estimator we replaced the expectation
value in (5.13) by an average over independent azimutal directions by summing over m.
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The variable V is a sum of 2¢ 4+ 1 squared Gaussian variables with unit variance, and
therefore (Kendall & Stuart, 1977) its pdf is the chi-square pdf with 2¢ + 1 = [ degrees of
freedom (dof):

1—2
VT
Po(V)= —— ¢ V/2, 5.17
2()2Wmmf (5.17)
From this we can write down the pdf for the estimator C’g, which is
. l 1Cy
= — — 1
P(Co = 5Py < o ) (5.18)

which shows that our estimator is distributed according to a chi-square pdf. For [ — oo the
Central Limit Theorem guarantees that the distribution will become Gaussian, hence

}m@:@ (5.19)

and the estimator is said to be consistent. From (5.18) we can calculate the expectation
value of ég, finding

(Cy) = Cy (unbiasedness), (5.20)
and its variance 5
A2y A2 2 -
(C7) — (Cy) T ng (efficiency). (5.21)

We conclude that the fact that there are only 2/ + 1 independent directions on the sky for a
given multipole £ limits the efficiency of our estimator for the power spectrum with variance

-Gy 2
Cy 20+ 1

(cosmic variance). (5.22)

Despite the fact that cosmic variance is a fundamental statistical limit, an ingenious
method to circumvent it and to measure the temperature quadrupole with better than cosmic
variance precision has recently been proposed by Skordis & Silk (2004).

5.1.3 The principle of Maximum Likelihood

The estimation problem can be generally stated as follows: starting from a limited number of
observations, which constitute a random sample, one wants to reconstruct some properties of
the underlying pdf. It is simpler to think of the properties of the pdf as unknown parameters,
which we seek to determine. Consider a set of n observations d = {d(l’bs, dgbs, ey dng} of
the variable X and a set of p parameters 0 = {Hfbs, Hgbs, cees ngs}. The measurements have
a conditional probability P(d;|@) to be observed given the value @ for the parameters. The
problem at hand is to estimate the joint conditional probability

mezﬁp@m (5.23)

from the observations d. In the above definition, we thought of L as a function of the random
variable X; however, once the observations have been done, we can think of L rather as a
function of the unknown parameters 0 for a given value of d and call it the likelihood function
(LF).
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The maximum likelihood (ML) principle affirms that as an estimate for 8 we should
choose the value 8* which makes the probability of the actual result obtained, d, as large as
it can be, i.e.

L(d|6*) > L(d|#) (Maximum Likelihood) (5.24)

for all possible values of 6.
Instead of maximizing the LF, one can minimize the quantity

=-2InL, (5.25)

which we will call lognormal LF.
If the pdf is Gaussian, then the ML estimation reduces to the usual least square fit:
suppose that the measured dg’bs are independent from each other and Gaussian distributed

around their (unknown) true values d;(0), with variance given by the experimental error

obs

2PS. Then minimizing £ is equivalent to minimization of the quantity

n obs _ 7. 2
X0) =3 (d"gbd;w}) , (5.26)

i—1 o

g

(3

which is called the chi-square.

Applied to the problem of parameter extraction from CMB data, the ML prescription
means that, given the measured power spectrum, Cgbs, with errors oy, we have to minimize
the value of the chi-square by varying the cosmological parameters of interest. This procedure
only gives information about the set of parameters which are the “most probable” to have
generated the measurements at hand. However, quantifying the error on our estimate for
the parameters is a more subtle business, since it involves dwelling into the exact definition
of what probability means. There is a long dispute going on among specialists about the
correct interpretation of probability, and some fundamental issues are still unresolved. One
can take fundamentally two different point of views on the subject, the orthodox (frequentist)
approach or the Bayesian point of view, as we now explain. A good introduction to Bayesian
methods and a comparison with the sampling theory approach can be found in Box & Tiao
(1973), while Kendall & Stuart (1977) give full details about frequentist theory calculations.
Jaynes (2003) is a very enjoyable book, which provides a wider perspective on the logic
of science and probability theory. A useful textbook with many stimulating examples of
Bayesian inference is MacKay (2003). Frodesen et al. (1979) — written by experimentalists
who have used on the field the methods described — is more praxis-oriented, and explains in
a practical way the statistical mambo-jumbo.

5.1.4 Orthodox probabilities — Confidence intervals

The orthodox definition of probability — also known as “sampling theory” approach — is based
on the empirical repeatability of the experiment, see e.g. Jaynes (2003). If an experiment is
performed N times and the outcome A occurs in M of this cases, then the probability of the
t A
outcome A is Y
P(A) = lim N (5.27)

N—oo
In the case of continuous variables, the concept of probability is defined as the limiting
process (5.27) reached from a finite subdivision in N equiprobable intervals of the sample
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space (Kendall & Stuart, 1977, Section 7.11, Vol. 1). The frequentist approach allows the
definition and interpretation of exclusion regions or confidence intervals for the parameters,
see below. It is the point of view usually adopted in particle physics, where an experiment can
be repeated many times under the same circumstances. It is not very popular in cosmology
though, where there is only one particular realization to observe.

Confidence intervals — frequentist

Confidence intervals in the frequentist approach have a straightforward interpretation: con-
sider a random variable X whose pdf depends on the parameter 6 which we wish to estimate
from a random sample {x’fbs, mgbs, e x(]’\l})s} with an estimator 6. For instance, one can think
of 6 as the true mean p of a normal distribution, and the estimator as the sample mean,
fi=N""30 a9t

The estimates are distributed according to some pdf, which we denote by P.. Then a
100v% confidence interval for the estimated parameter 6 is the range [01;02] such that the

probability content for the estimator is 7, i.e.

0
P60y < 6 < 65) = / Pdf = . (5.28)

01
Notice that this is a statement about the probability of our estimate 6 to lie in a certain
range, with the interpretation that, if we would draw the N samples L times under identical
circumstances, then the estimates produced by 6 fall in the range [01; 02] vL times. Therefore
at this stage we are merely making a statement of the distribution of our estimator. If we
want to convert this into a confidence statement for the true value 8, we can say that there is
a probability v that the random interval [0;; 62] will cover the true value . In other words,

in the long run the limits #; and 0, are such that the statement

01 <0 <6y (5.29)

will be true in 1007% of the cases.

Unfortunately, the above interpretation is unapplicable to cosmology, where we cannot
draw new samples at will from the underlying distribution, but we have to content ourselves
with the only realization we happen to observe. However, we can still use as an estimator
the least-square fit to the observed value, and interpret the result in frequentist’s terms.

Consider the least-square fit of (5.26), which applied to the CMB power spectrum is

obs __ 2
0= (W) , (5.30)

Vi 9y

where the observed Cgbs are estimated using the estimator (5.15): since each term is a sum
of 20+ 1 Gaussian variables squared (the asy,,’s), its distribution becomes Gaussian by virtue
of the Central Limit Theorem only for large ¢. The agbs are the estimated errors from the
observations for each multipole, and 6 is the vector containing the p cosmological parameters
of interest. The functional dependence of Cy(0) is given by the underlying theory, which we
try to falsify by comparing its predictions with the actual observations.

The least-square estimate for @ — which is equivalent to the ML estimator for Gaussian
variables — is the value 8* for which the y? reaches the minimum value x2", which is called
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least square estimate. Until this point, the least-square estimation makes no assumptions
about the underlying pdf for the variables. To the extent to which the Cy’s can be considered
as independent Gaussian variables, then the quantity 2" is distributed as a chi-square pdf
with f = n — p dof, denoted by PX? , see (5.17). Here n is the number of multipoles observed
and p the number of fitted parameters.

Under these assumptions, the distribution Pxﬁ provides a measure of the goodness of fit:
assume that a given parameter set 0 is the correct one, and that the measured chi-square in
our Universe for 6y is X%; then if the measurement would be repeated many times in different
realizations, the probability that the outcome will be equal or larger than the true value X%
is

o0

POE > 2) = / Pa(u)du=1— . (5.31)
X3

The interpretation in frequentist terms is straightforward: if some other parameters 61 have

2(01) = x? > X%, the chance that 6, is the correct set and we are actually seeing a

realization far out in the tail of the distribution is very small.

It now remains to define confidence intervals for the parameters basing on the above
frequentist interpretation: a 1007% confidence interval encompasses parameters whose mea-
sured 2 is smaller than the value of corresponding to the quantile! of 1— for the distribution
PX? . In other words, if the measurements could be repeated many times, in the long run the
above confidence interval would include the true value of the parameters 1007% of the time.
Thus the parameter space outside the estimated confidence interval is a proper exclusion
region at the given confidence level. Notice that the frequentist confidence levels depend
both on the total number of parameters fitted and on the number of independent data points
we are using.

We conclude this section with two remarks: firstly, the above assumptions of Gaussianity
and independency are only partially fulfilled by the C’g’s, therefore the outcome of such
a frequentist analysis is only approximative (see Abroe et al., 2002 for a strictly correct
frequentist parameter estimation, which involves the numerical sampling of the pdf which
we simply took as a chi-square); and second, the clean interpretation of the frequentist
approach is somewhat weakened by the fact that we are compelled to invoke measurements
in other realizations which cannot take place, not even in principle. Bayesian statistics takes
instead a more pragmatic approach, by dealing only with actual observations.

5.1.5 Statistical inference — Likelihood intervals

Bayesian statistics does not consider possible outcomes of measurements which are never
performed. Instead, it exploits the actual data to update our knowledge about the probabil-
ity of a certain statement, starting from our prior degree of belief. Criticism has been raised
against this approach because the final inference depends on the prior information avail-
able, and therefore seems to suffer from a certain degree of subjectivity. However, Bayesian
inference can be applied to theories which are not repeatable and are unscientific in the fre-
quentist point of view (e.g. the probability that it will rain tomorrow). It is based on Bayes’

!Given the pdf P, z is said to be the quantile of g if it satisfies [ P(u)du = q.
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Theorem?, which is nothing more than rewriting the definitions of conditional probability:

P(BJA)P(A)

PAIB) = =5

(Bayes” Theorem). (5.32)

In order to clarify the meaning of this relation, let us write 8 for A and d for B, obtaining

_ L(d|eyp(e)  L(d|9)P(0)
POW) = Tigp@aepe) ~ P

(5.33)

which relates the posterior probability P(0|d) for the parameters @ given the data d to the
likelihood function L(d|@) if the prior pdf P(0) for the parameters is known. The quantity
in the denominator is independent of @ and it is called the evidence of the data for a certain
model (MacKay, 2003). It is important for model comparison, but here we shall regard it
just as a normalization constant. In short

likelihood x prior

posterior = (5.34)

evidence

The prior distribution contains all the (subjective) knowledge about the parameters before
observing the data: our physical understanding of the model, our insight into the experimen-
tal setup and its performance, in short the amount of all our prior scientific experience. This
information is then updated via Bayes theorem to the posterior distribution, by multiplying
the prior with the LF which contains the information coming from the data. The posterior
probability is the base for inference about 8: the most probable value for the parameters is
the one for which the posterior probability is largest.

Bayes’ postulate® states that in absence of other arguments, the prior probability should
be assumed to be equal for all values of the parameters over a certain range, @i, < 0 < Oyax.
This is called a “flat prior”, i.e.

P
P(6) = [H (6 — Ouuin) H (Brnax — 0)] [ | Brmai — brain,i] - (5.35)
i=1
where H is the Heaviside step function and @ax; > Omin; V . This is one of the principal
conceptual difficulties of Bayesian inference: a flat prior on 8 does not correspond to a flat
prior on some other set f(8), obtained via a non-linear transformation f. Therefore the
result of Bayesian inference do depend on the choice of priors, even though this usually does
not constitue a major obstacle in practical problems — see however Bucher et al. (2004) for
an instructive example of the role of priors.

We see from Eq. (5.33) that the Maximum Likelihood principle is equivalent to Bayesian
inference in the case of flat priors. We will always work with flat, top-hat priors unless
otherwise stated. There is however an important conceptual difference. By writing the
posterior distribution as

P(0]d) = (5.36)

it follows that Bayes’ Theorem imposes to maximise the joint probability P(0,d) of 8, d, while
Maximum Likelihood requires that the conditional probability L(d|f) should be maximised.

2Rev. Thomas Bayes, 1763.

3Bayes’ postulate is also known — perhaps with an hint of sarcasm — as the Postulate of Equidistribution of
Ignorance.
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Likelihood intervals — Bayesian

Bayesian statistics use the LF to perform an interval estimation for 8: basing on Bayes’
Theorem, Eq. (5.33), we not only consider the ML point in parameter space as the “most
likely” value of the unknown parameter; we shall also interpret values further and further
away as less and less likely to have generated the particular measurement at hand. Hence
likelihood intervals drawn from the LF measure our “degree of belief” that the particular set
of observations was generated by a parameter belonging to the estimated interval. This is
radically different from the frequentist interpretation sketched above.

Let us simplify the notation by writing L(0) instead of L(d|@), since now we consider
the LF as a function of the parameters given a data set d. Assume further that the LF is a
multivariate Gaussian distribution in the p parameters 6, i.e.

L(6) = (det C)~V2(27) P2 exp(—L)2) (5.37)
L=-2InL=(0—-pCO-p (5.38)

where T' denotes transposition, p is the expectation value of the parameters p = () and C
is the covariance matrix

Cij = (0 — 1) (05 — py)) - (5.39)
From the likelihood one can then obtain the posterior distribution via (5.33), once the prior
is specified. For the prior distribution P(6) a simple choice are so-called “flat” priors, a
multidimensional top-hat function over some range which is supposed to encompass all the
values of interest. Usually, in grid-based method the prior coincides with the extension of
the grid, so that the prior is just a multiplicative constant and we can identify the likelihood
with the posterior. As mentioned, this choice is somewhat arbitrary, since it depends on the
basis chosen for the parameters.

We can Taylor expand a general LF around its maximum which is given by our ML
estimate 8* of p, which on average coincides with the true mean for a normal distribution,
(6*) = p. By definition of the ML point the first derivatives vanish, 9£/00;(6*) = 0, and
we obtain

1 0L
L(O)~ L(O") + = 0, —0)———(0, —07). 5.40
(0)% £00) 4 5 3000~ 00) 05 ) (5.40)
If the LF is sharply peaked around 6%, i.e. the errors on the parameters are small enough,
then third order terms are unimportant and the above Gaussian form is a good enough
approximation everywhere in parameter space. By comparing with (5.38) we find that the

covariance matrix can thus be estimated as
1 9L
—— 5.41
2 00,00, > ( )
is called Fisher information matriz (Kendall & Stuart, 1977, Chap.15, Vol.1).
According to our understanding of the LF as a measure of our degree of belief for the

C=F"' where Fi; = <

o*

possible values of 6, the probability that parameters within a certain region from the ML
point have generated the observations should be proportional to the likelihood content of
the region. The probability content depends on whether we are estimating all parameters
jointly, or keeping some of them fixed to their ML value, or rather disregarding a certain
subset by integrating over them (marginalization). We consider each case in turn.
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Estimation of all p parameters jointly.

Without loss of generality we can take in the following g = 0 in Eq. (5.38), which can always
be achieved by shifting the origin of the coordinate system in parameter space. Contours of
constant likelihood define hyperellipses in parameter space with some probability content we
wish to determine. To this aim we consider the quadratic form

Q) =60TC 0 (5.42)

and for the LF (5.37) the condition Q(8) = Q7 for some constant Q) gives the contours
of constant likelihood. We write )5 to indicate that the numerical value of the constant
depends on the number of parameters under consideration, s, and on the desired probability
content of the hyperellipse, 7. It can be shown (Kendall & Stuart, 1977, Chap.8, Vol.1) that
the quadratic form @ is chi-square distributed with s dof, which allows us to relate Q5 with
the probability content of the ellipse.

If we want a confidence region containing 100v% of the joint probability for all p param-
eters, then s = p and Q% is determined by solving

Q4
; Px% (u)du = ~. (5.43)
The projection (not the intersection) of the hyperellipse Q(0) = Q% onto each of the param-
eter axis gives the corresponding likelihood interval for each parameter when all parameter
are estimated simultaneously (which we will call “joint likelihood interval”).

It is a simple geometrical problem to find an analytical expression for the joint likelihood
interval for each parameter: for the parameter 1 < d < p, the intersection of the hyperellipse
with the hyperplane defined by 65 = ¢, with ¢ a constant, gives either an hyperellipse in p—1
dimensions, or a point or else an empty set. The extrema of the joint likelihood interval for
the parameter d are given by the values of ¢ for which the p — 1 dimensional ellipse reduces
to a point.

To find the equation of the p—1 dimensional ellipse we proceed as follows: define C™' = M
and write Q(6) = QY in the form

~T ~ o~ ~
0 M6 + QCZ mdjaj = Qz - mdd02 , (5.44)
Jj#d
where we have defined

0=01,...,001,04:1,...,0,) € RP! (5.45)

mi1 e ml,d_l de_H e mlp
1\7[ — mq—1,1 ... mq—1,1 c R(p—lxp—l). (5.46)

md+1,1 e mMd+1,1
mp1 e mpp

Now we diagonalize the submatrix M,

diag (A1, ..., \p_1) = A = UTMU (5.47)
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finding the eigenvalues \;,7 < 1 < p—1 and eigenvectors (u1,...,up—1), and after some alge-
braic manipulations of (5.44) we arrive at the equation of the p — 1 dimensional hyperellipse

2

p—1 p—1 o
2 2 ¢
Z Aizi = QF — mgac” + Z " Z mgjugi | (5.48)
i=1 i=1 j#d
where we have defined the new variables
ziz(gf])i—i—%Zmdjuji, 0<i<p-—1. (5.49)
b j#d
The above hyperellipse becomes degenerate if
p—1
D Xzl =0 (5.50)
i=1

from which we obtain a quadratic equation for ¢ with solutions
V@

3 1172
[mdd =i (Zj;éd mdjuji) }

(5.51)

Cmin, max =

It is easy to show that the positive definiteness condition for the Fisher matrix guarantees
that the quantity under the square root in the denominator is always > 0. In conclusion,
the joint likelihood interval for the parameter 6; with likelihood content + is given by

Cmin S Hd S Cmax - (552)

Estimation of k < p parameters, the others fixed.

We are sometimes interested in giving confidence intervals for some subset k£ < p of the
parameters, while assuming the other p — k parameters as (exactly) known. Without loss of
generality we shall take the first £ parameters as the one we are interested in, and we split

o= <z) (5.53)

with t € R¥ and u € RP*. Correspondingly we write the covariance matrix in (5.38) as the

the parameter vector as

Fisher matrix estimate of (5.41),

Cl'=F= (C‘?T g) (5.54)

where A € R*** B € RP~#*P~F and G € RPF*k,
If the known parameters u are held fixed at their ML value, the LF for the parameters
of interests t is simply the full LF restricted to the k subspace,

1
L (t|Ju*) o exp(—itTAt) : (5.55)
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with an appropriate normalization constant, and the new covariance matrix V.€ R*** for
the k parameters of interest is

V =A"! (conditional). (5.56)

In particular, we often consider the best case scenario in which all parameters but one are
supposed to be known exactly, say from independent observations or theoretical prejudice,
and therefore £ = 1. Then the 1o likelihood interval for the first parameter only is the square
root of the covariance matrix element, and it is given by (all others fixed to their ML value)

1
Vi

(5.57)

g1 =

Estimation of k£ < p parameters, the others marginalized.

Instead of fixing some parameters, we may prefer to disregard them completely, by integrating
over them in order to obtain the marginalized likelihood in the k parameter of interest:

L(t)oc/ L(t,u)du, (5.58)

with a suitable normalization constant so that the probability content of the marginalized
LF is equal to unity.

The marginal LF for t is still a multivariate Gaussian, with the same covariance matrix
as the full LF, only with the last p — k rows and columns deleted:

Vij = [F_l]ij 0<4,j <k (marginalized). (5.59)

This result can be obtained by performing explicitly the integration (5.58) or more elegantly
by using the properties of the characteristic function (Kendall & Stuart, 1977, Chap.4, Vol.1).
In terms of the splitting (5.54), the covariance matrix for the marginalized distribution is

V=[A-GB'G"]". (5.60)

Very often one quotes marginalized likelihood intervals for one parameter alone, k£ = 1
with all other parameters marginalized, in which case the 1o error is given by

o1 =\/(F1),, . (5.61)

If the parameters are uncorrelated, then F is diagonal, and fixing u or marginalizing over
them is equivalent, otherwise the resulting likelihood intervals for the parameter(s) of interest
are in general different, with the marginalized interval being broader.

5.1.6 Gridding method

In the numerical fit to the data, the shape of the LF is determined by evaluating the least-
square estimator (5.26, page 115) at each point on a grid in the p dimensional parameter
space and the minimization of the chi-square in the desired range of parameters gives the
ML estimate.
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1007v% 68.3% 95% 95.4% 99% 99.7%
Likelihood content (1o) (1.960) (20) (2.580) (30)
1 parameter, Q! 1.00 3.84 4.00 6.63 9.00
2 parameters, Q2 2.30 5.99 6.17 9.21 11.80

Table 5.1: Ayx? = Qﬁ for marginalized likelihood intervals in one parameter (k = 1) or
marginalized likelihood contours in two parameters (k = 2) for the given joint likelihood
content.

Assuming that the measurements are normally distributed around their true value we
have

L(d|0) = Lax exp [_XQ(O)/2] . (5.62)

From this we can use the above prescriptions to determine likelihood or confidence intervals
from real data.

In the frequentist analysis, the boundaries of the confidence regions represent exclusion
plots at the given confidence level: they are found as the contours of constant y? using the
relation (5.31, page 117), independently of the value of the chi-square at the ML point. In
Bayesian statistics, the likelihood intervals are instead drawn around the ML point, hence
their extension depends on the best fit value. This applies only to the gridding method, not to
the Monte Carlo sampling described below in § 5.1.7. It is customarily to quote marginalized
likelihood intervals for one parameter only or to plot two-dimensional likelihood contours to
show degenerate direction between two parameters (also see below the paragraph discussing
the maximization approach instead of marginalization); for these two cases, the cook-book
prescription for Bayesian (Maximum Likelihood) statistics on a grid of samples in parameter
space is:

e find the ML point Ly, in the grid of parameters by minimizing the x? of Eq. (5.30,
page 116) and mark this point as Xfmn, your least-square estimate of the best fit;

e determine the boundaries of the region containing 100v% of likelihood as the values of
the parameters for which the y? has increased by an amount Ax? = Qlj (k =1,2 the
number of parameters considered) with respect to x2; .

e The values of Qf/ can be found for every desired likelihood content using the relation,
cf. (5.31, page 117)
Q5
v = P2 (u)du. (5.63)
0
Table 5.1 displays the values of Ax? for k = 1,2 and for some popular choices of

likelihood content.

In a real situation, the LF computed using (5.62) will not be exactly a multivariate
Gaussian, and the likelihood intervals obtained with this method will only approximatively
encompasses the stated probability content. There are methods which improve on the as-
sumption of a normal distribution presented here, see for instance Bond et al. (2000); Bartlett
et al. (2000); Wandelt et al. (2001); Jaffe et al. (2003).
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Finally, notice that likelihood (Bayesian) contours are usually much tighter than the
confidence contours drawn from the frequentist point of view. This is a consequence of
the ML point having often a x?/f much smaller than 1, because the data-sets are highly
consistent with each other and also because usually not all points are completely independent.
For the CMB, this was the case when one considered a combination of several data-sets before
WMAP, as we discuss in § 7.2. If we consider the usual situation in which likelihood contours
are drawn in a two dimensional plane with all other parameters marginalized over, the
frequentist approach is more conservative than Bayesian statistics: the region corresponding
to the desired confidence level (frequentist) or likelihood content (Bayesian) -, has bounds
given by x?(0) = 1, with & = 2 for Bayesian statistics and two-dimensional plots, and
k = f for frequentist statistics independently on the number of parameters considered. Since
in general and for reasonably good ML values x2. <O(f) and f > 2, we have that the
probability /likelihood content is the same, i.e.

o (o9}
o PX? (u)du = o Py (u)du (5.64)
f 2
only for Q} > Q3. When looking at Bayesian likelihood contours one should thus keep
in mind that a point more than, say, 30 away from the ML point is not necessarily ruled
out by data. In order to establish this, one has to look at confidence contours, i.e. ask the

frequentist’s question. This is pointed out in a penetrating way by Gawiser (2001).

Maximization instead of marginalization

In practical applications, involving up to a dozen parameters, it is an exceptionally demand-
ing task to perform the multidimensional integral of Eq. (5.58). A computationally more
feasible alternative which avoids the time consuming integration is to maximize the param-

eters we are not interested in, u, for each value of the parameters of interest, t, obtaining
L(t) x max L(t,u) . (5.65)

u

If the distribution is Gaussian, then the two procedures give the same result: maximizing
L(t, u) corresponds to minimization over u of the quadratic form 7 C~18, with the notations
of (5.53) and (5.54). Differentiating with respect to u, we find that the minimum of the

quadratic form lies at
u=-B!GTt, (5.66)

and therefore )
L(t) o< exp —§tT [A-GB'G']t, (5.67)

which is the same result we found by marginalizing over u, Eq. (5.60). Numerical investiga-
tions have found that maximization tends to underestimate errors when the assumption of
a Gaussian distribution is not accurately fulfilled (Efstathiou et al., 1999).

5.1.7 Markov chain Monte Carlo

A big practical limitation to grid based parameter extraction techniques is that the number
of CMB spectra needed scales exponentially with the dimensionality of the parameter space
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considered. Even with fast parallel computing, the required computational time quickly be-
comes very large, even for a moderate number of points in each dimension. Interpolation
algorithms and other optimization techniques have been employed to circumvent this funda-
mental limitation, allowing the handling of up to a dozen parameters (Tegmark et al., 2001).
Nevertheless, this method shows a lack of flexibility if one wants to add new data-sets or
incorporate new parameters or theoretical priors. At the latest with the coming of WMAP
data, the days of grid-based parameter extraction seem to be over, since the accuracy of
WMAP-like data cannot be exploited with the insufficient resolution and flexibility offered
by this technique.

Markov chain Monte Carlo (hereafter MCMC) methods are now becoming the standard
tool to determine parameters from CMB data, combine it with large scale structure con-
straints or investigate the effect of different priors. As advocated e.g. by Christensen et al.
(2001), MCMC is a method to generate a sequence of (correlated) samples, called a Markov
chain, from the posterior pdf of the parameters given the data, (5.33, page 118). The great
advantages are that the computational time scales approximately linearly with the number of
dimensions of the parameter space, and that once the chain has properly converged (see be-
low for more details), the marginalized posterior distribution for the parameter(s) of interest
can be simply recovered by plotting histograms of the sample list, thus avoiding completely
the costly integration. It is easy to adjust the prior information or to include new data-sets
into an existing chain without having to recompute it, with a procedure called “importance
sampling”.

One can think of the MCMC algorithm as an efficient integration technique to evaluate
the posterior distribution in Bayes’ Theorem, Eq. (5.33, page 118). The Monte Carlo sam-
pling does not rely on the assumption of Gaussian pdf’s: indeed, the direct sampling of the
posterior permits to reveal features due to its non-Gaussian distribution, and therefore vastly
improves on the methods based on chi-square goodness-of-fit described above. Besides those
undeniable advantages over the grid method, the popularity of MCMC in the cosmology
community has been boosted by the timely public release of the cosmomc package (Lewis
& Bridle, 2002), which integrates the code cAMB for the computation of the CMB power
spectra? and several useful tools for the generation and interpretation of Markov chains using
CMB and other cosmological data-sets. Further details about MCMC methods can be found
e.g. in Gilks et al. (1996); MacKay (2003).

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is the core of
the sample generation, and produces a Markov chain whose equilibrium distribution is the
target probability density, here the posterior P(€|d). The chain is started from a random
point in parameter space, @y, and a new point @1 is proposed with an arbitrarily proposal
density distribution q(6y,60n,41). The transition kernel T(0,,0,+1) gives the conditional
probability for the chain to move from 6,, to 6,1, and it must satisfy the “detailed balance”

P01 |d)T (0111, 0,) = P(0,|d) (6,1, 0s1) (5.68)

so that the posterior P(6|d) is the stationary distribution of the chain. This is achieved by

“Both codes are available at: http://cosmologist.info.
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defining the transition kernel as
T(ena 0n+1) = Q(ena 0n+1)a(9m 0n+1) ) (5'69)

. ’P(on-‘rl‘d)Q(gn-i-l? en) }
0,,0,+1) = 1, )
&(On, 1) mm{ P(0,]d)q(0n, O 1)

where «(8,,,0,+1) gives the probability that the new point is accepted. Since P(0]d) o

(5.70)

L(d|0)P(0) and for the usual case of a symmetric proposal density, ¢(0y,, 0,+1) = ¢(On+1,6x),
the new step is always accepted if it improves on the posterior, otherwise it is accepted with
probability L(d|@y4+1)P(0r+1)/L(d|60,)P(6,).

The result is a sample list from the target distribution, from which all the statistical
quantities of interest can readily be evaluated. The samples are correlated with each other,
a fact which does not constitute a problem for the statistical inference on the parameters;
however, importance sampling does require uncorrelated samples, which can be obtained
from the original chain by suitably “thinning” the chain, i.e. by retaining only one sample
every IV, with IV of the order of a few thousands. Other important practical issues in working
with MCMC methods involve:

e Burn in period: the initial samples need to be discarded, since the chain is not yet
sampling from the equilibrium distribution. The burn in can roughly be assessed by
looking at the evolution of the posterior and at the position of the chain in parameter
space as a function of the step number. When the chain is started at a random point of
the parameter space, the logarithm of the posterior pdf is large (and thus the posterior
probability is small), and becomes smaller at every step as the chain approaches the
region where the fit to the data is better. Only when the chain has moved in the
neighborhood of the ML point the curve of the log posterior as a function of the step
number flattens around the best fit value. This is illustrated in the left panel of Fig. 5.1.
Another useful diagnostic is the evolution in parameter space of multiple chains, which
are started from different points. In a well-behaved situation all of the chains converge
after the burn-in period to the same region around the ML point, see the right panel
of Fig. 5.1 for an illustration.

e Convergence: assessing convergence of the chain essentially means to know when we
can stop, having gathered a number of samples large enough to correctly derive the
statistical quantities of interest. This is in general a difficult question, see e.g. Cowles &
Carlin (1996); Mengersen et al. (1999) and references therein. The COSMOMC package
offers several useful diagnostic tools, including the Raftery & Lewis (1996) statistics
and the Gelman & Rubin (1992b) criterion.

e Multiple chains: there is a debate among experts about the best strategy between
having one long chain or rather several shorter ones running in parallel, see e.g. Gelman
& Rubin (1992a,b); Raftery & Lewis (1996). Multiple independent chains offer the
advantage of being computed in parallel, and can be started in different points of
the parameter space to ensure good mixing, i.e. an adequate exploration of the whole
parameter space.

e Starting points: after the burn in period, the converged chains do not depend on the
initial starting points. However, it is convenient to start the chains in the proximity of
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Figure 5.1: Illustration of the burn-in period. Left panel: the logarithm of the (non-

normalized) posterior, —InP(6|d), as a function of the step number for four Monte Carlo

chains. After the burn-in period (dotted, vertical lines), the value flattens and the chains are

sampling from the target distribution. Right panel: the four chains (in different colors) are

started in different points of a 6-dimensional parameter space and all converge to the same

region after the burn-in. The vertical axis gives the number of steps.

the parameter region where the best fit is supposedly located, so that convergence will
be quickly achieved, and the sophisticated choice of the starting points proposed by
Gelman & Rubin (1992b) is usually not necessary in cosmological applications. Also
one has to take into account the fact that the MCMC is a local algorithm, which can
be trapped inside local minima far away from the global minimum of the posterior, an
issue which is intimately related with the choice of the proposal density. The use of
simulated annealing algorithm via the introduction of a finite temperature for the MC
can sometimes help in achieving convergence in a weird-shaped parameter space.

Proposal density: the optimal choice of the proposal density is the key parameter
for an efficient implementation of the MCMC method. A simple possibility for the pro-
posal density (0, 60,.+1) is a Gaussian with step size s; along the parameter direction
1, independently on the chain position. Finding the optimal value of s; is a trade-off be-
tween a large step size, which will result in almost all step being rejected and therefore
in low efficiency, and a too small value, for which the chain performs a random walk
and the tails of the distribution will not be adequately sampled, giving serious underes-
timate of the likelihood intervals for the parameters. One can also roughly sample the
distribution with a short chain, construct from the samples the covariance matrix of
the posterior distribution and use this information to construct a new parameter basis
approximately aligned with the degeneracy directions (Lewis & Bridle, 2002), which
ensures a more efficient exploration. A sampling method which exploits the known
degeneracies of the CMB and uses normal parameters as basis has been proposed by
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Slosar & Hobson (2003), and it can dramatically enhance the efficiency of the MCMC
algorithm, especially for large data-sets as the one expected for the Planck satellite.

5.2 Fisher matrix forecasts

An important issue is to assess quantitatively the expected performance of future CMB ex-
periments in terms of the precision reached in the determination of cosmological parameters:
this helps in understanding whether an observed degeneracy is a consequence of the lack of
precision in the data, or else it is of fundamental nature and will not be lifted by upcoming
or even ideal (i.e. cosmic variance limited) measurements; it also gives estimates of the neces-
sary instrumental characteristics to achieve a certain precision, and on the optimal observing
strategies, e.g. full sky coverage versus high resolution mapping of a patch only.

It is possible and indeed necessary at the development stage of a CMB experiment to
investigate in detail the above questions by producing mock realizations of the CMB sky and
run Monte Carlo simulations of the observations. From the theorist’s point of view, however,
it is often sufficient and preferable to resort to a simpler alternative, which gives quantitative
and accurate results with very small computational requirements: a Fisher matrix analysis
(FMA) (Knox, 1995; Kosowsky et al., 1996; Tegmark et al., 1997; Zaldarriaga et al., 1997,
Bond et al., 1997; Eisenstein et al., 1998b; Efstathiou & Bond, 1999; Tegmark et al., 2000).

5.2.1 Experimental parameters

As explained in § 5.1.5, if the LF is a multivariate Gaussian then the Fisher information
matrix defined in Eq. (5.41) is an estimate of the inverse of the covariance matrix for the
parameters under scrutiny. Since any LF can be expanded up to second order in the vicinity
of the ML point as in (5.40), the goal is to compute the Fisher matrix for the CMB power
spectrum, including the noise of the future experiment, and estimate from it the covariance
matrix using the results for Bayesian statistics presented in § 5.1.5.

The estimator (5.15) for the CMB temperature power spectrum (below we generalize the
result to include polarization information as well, § 5.2.2) needs to be modified to subtract
off the noise contribution and correct for the fact that the measured ay,;,’s are a smeared out
version of the true ones, resulting from the convolution of the signal with the experimental
beam, giving (Knox, 1995; Bond et al., 1997)

l
N _ 1 . 1\ ety e
Cp= (%H E_Elaﬁm —w, ) /G (5.71)

In the above expression, the two experimental parameters are the inverse weight per solid
angle wy, which accounts for the experimental noise, and the beam width ¢;,, which corrects
the smoothing due to the Gaussian profile of the beam. These two parameters are written
in terms of the fundamental specifications of the experiments, namely the rms pixel noise
(or sensitivity per resolution element) o3, and the angular resolution 6, (FWHM) expressed
in degrees as

wb_l = (op8)?> and £, = V8In2/6,. (5.72)

In the limit of infinite resolution, 6, — 0, and no experimental noise, o, — 0, we recover the
cosmic variance limited estimator (5.15).



5.2 Fisher matrix forecasts 129

As in § 5.1.2, we can now find the pdf for (5.71),

- Oy + witelt+)/6
P(Cy) = f P A Ay
Co + wy LU+ /T X Ce_’_wb—leg(g“)/gb

(5.73)
recalling [ = 2¢ 4+ 1 and the chi-square distribution displayed in Eq. (5.17). The correction
for the noise and the beam size makes this estimator biased, i.e.

(Co) = Cy + wy e D/ (5.74)

which is exactly what we need to compensate for the experimental noise and beam width.
From this it follows from (5.23) and (5.38) that the log-normal LF has the form

_ —1_0(¢+1)/02 éﬂ
£(6) zz:z lln <Cg(9) +w; e b> + o)+ wble““l)/fi] (5.75)

and we have dropped several normalization factors which do not depend on 6. Using (5.74)
we then obtain for the Fisher information matrix defined in (5.41)

)4

D1 90 dC,
Fij =
=2 (ACy)? 96; 06,

L (5.76)

ez‘emin 0
where the quantity (ACy)? is the standard deviation on the estimate of Cy, and takes into
account both the cosmic variance and the experimental error,

(ACy)? = %il (cg + wgle““l)/f?)z : (5.77)

The sum over multipoles runs over the multipole coverage of the experiment, between /i,
and max.

Thus once the experimental parameters are specified, the computation of the Fisher ma-
trix only requires the knowledge of the derivatives of the power spectrum with respect to the
cosmological parameters. The derivatives are determined numerically as double sided deriva-
tives, see § 5.2.3, and this requires the computation of 2p 4+ 1 spectra only for p parameters,
which is a very small computational effort compared with the full numerical exploration of
the likelihood surface.

5.2.2 Generalizations

In this section, we develop the necessary general machinery which refines the above results
including a more detailed experimental parametrization and polarization information.

Most experiments present several frequency channels, each of them characterized by
its own sensitivity ol and angular resolution 05" both for temperature (7') and E-
polarization (P). Furthermore, even full-sky experiments only cover a fraction of the sky,
since point source subtraction, foreground removal and galactic plane cuts have to be per-
formed on the full-sky maps. This can be approximately taken into account by assigning
a “clean” fraction fq, to the experimental coverage. These factors are accounted for by
generalizing the expression (5.77) to (Efstathiou & Bond, 1999)

(ACy)? = (2€+21)fky (Ce+ B;?)2 , (5.78)
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where the inverse noise term By is given by
=Y wee /L (5.79)
(&

and we, ¢, are given by (5.72) for each channel c.

In the more general case, we also want to include E polarization and temperature-
polarization correlation (C) along with temperature information: then instead of a single
derivative we have a vector of three derivatives with the weighting given by the the inverse
of the covariance matrix of the spectra, and the Fisher matrix is given by (Zaldarriaga &
Seljak, 1997),

gll’]’dx
= > Y T Cov G (5.80)
80j o*
b=lin X,Y

where Cov™! is the inverse of the covariance matrix for the spectra evaluated at the ML
point 0%, 0; are the cosmological parameters we want to estimate and X,Y stands for T
(temperature), E (polarization mode), or C' (cross-correlation of the power spectra for T
and E).

For each ¢ one has to invert the covariance matrix and sum over X and Y. The diagonal
terms of the covariance matrix between the different estimators are given by

2

Cov(Cty) = . (Cri+ Brp)? (5.81)
sky
P _
Cov(Chy) = [T (Cre + Bpp)? (5.82)
sky
1
Cov(CEy) = ——— [C2y+ (Cre+ Br})(Cre+ Bpp)] , (5.83)

(2€ + 1)fsky

and the off diagonal terms are

2
COV(CTKCE() WC%e (584)
SKy
2
Cov(CreCeyp) WC@@(CZM + B,;g) (5.85)
SKy
2
Cov(CEcCcy) Cce(Cre + Bpyp) (5.86)

(26 + 1)fsky
where B;EQ =B, % given in Eq. (5.79) and B%, is obtained using a similar expression but
with the experimental specifications for the polarization channels.

5.2.3 Accuracy issues

The accuracy of the Fisher matrix predictions for the errors depends on a number of issues:

e The FMA assumes that the true values of the parameters are in the vicinity of the ML
point 8*. The validity of the results therefore depends on this assumption, as well as
on the assumption that the agp,’s are independent Gaussian random variables.

e This is a local method based on a quadratic expansion of the LF. Only if the FMA
predicted errors are small enough, the method is self-consistent and we can expect
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the FMA prediction to correctly reproduce the exact behavior, and in particular the
correlations between parameters, thus revealing the degeneracy directions. The ex-
pansion up to second order is exact if the dependence of the C; on the parameters is
linear, therefore great importance is attached to the choice of the parameter set with
respect to the FMA is performed. As shown in Kosowsky et al. (2002), employing the
normal parameters set discussed in § 4.2 as a base, the accuracy of the FMA predic-
tions is greatly enhanced. This is because the spectra are almost linear in the normal
parameters in the vicinity of the best fit.

e Special care must be taken when computing the derivatives of the power spectrum
with respect to the cosmological parameters. This differentiation strongly amplifies any
numerical errors in the spectra, leading to larger derivatives, which would artificially
break degeneracies among parameters. Double—sided derivatives reduce the truncation
error from second order to third order terms, but the correct choice of the step size is
a trade-off between truncation error and numerical inaccuracy dominated cases (Press
et al., 1992).

5.3 CMB observations: a brief historical account

The experimental status of CMB observations has made giant leaps over the last ten years,
thanks to spectacular advancements in detector technology. As demonstrated in Chapter 6,
CMB data nowadays provide stringent tests which severely constrain cosmological model
building, and call for more refined theoretical and computational approaches which take into
account subtle physical effects which were so far ignored or thought to be irrelevant. Here
we provide a personal selection of a few milestones of this development, in order to put the
current and future experimental achievements into a wider perspective.

The first detection of temperature anisotropy came in 1992 with the Differential Mi-
crowave Radiometer (DMR) aboard the COBE satellite after one year of observations on
angular scales larger than 7° (Smoot et al., 1992; Wright et al., 1992) or multipoles < 20.
The key results of the full four year DMR observations are summarized in Bennett et al.
(1996, see references therein): the quadrupole amplitude was measured for the first time,
the spectral tilt of the large scale spectrum was found to be compatible with an Harrison-
Zel’dovich spectrum and no evidence of non-Gaussianity of the fluctuations was discovered
in the data. The FIRAS instrument was devoted to the study of the CMB spectrum (Fixsen
et al., 1996), and obtained a precision measurement of its temperature (7' = 2.728 + 0.002
K), while constraining deviations from a perfect black body spectrum to be less than about
one part in 10° with 95% confidence.

The Saskatoon and Toco data provided the first hint for the presence of the first adiabatic
peak (Netterfield et al., 1997; Miller et al., 1999; Knox & Page, 2000), but at the turning
of the millennium several groups independently reported measurements of the temperature
anisotropy with a resolution of a few arcminutes, sufficient to unambiguously reveal the first
peak and start exploring the subsequent ones: BOOMERanG (de Bernardis et al., 2002;
Netterfield et al., 2002) and Maxima (Hanany et al., 2000; Lee et al., 2001), both balloon-
borne bolometric experiments, mapped the multipole region 80 < /¢ < 1000; the CBI (Padin
et al., 2001) and DASI (Halverson et al., 2002) ground based interferometers covered a sim-
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ilar multipole range but with a completely different technology, which had the advantage of
being free from the calibration uncertainty of bolometric receivers. The Archeops experi-
ment (Benoit et al., 2003a), conceived as a balloon-borne precursor of the HFI bolometric
instrument for the Planck satellite, observed a larger portion of the sky, and thus provided
an estimation of the temperature power spectrum which for the first time encompassed the
first peak region and also partially overlapped with the COBE measurement, in the range
15 < ¢ < 350. Given the experimental calibration uncertainty of the bolometers, which is
about 10 — 20%, this permits to test the relative calibration between COBE and the other
experiments with data in the £ 2 50 region, and perform a comparison of the height of the
first peak with respect to the large scale plateau. All of this data generally agrees well on
the position and shape of the first peak, but their resolution is insufficient to permit the
reconstruction of the subsequent ones with high confidence (de Bernardis et al., 2002; Durrer
et al., 2003b).

From the point of view of parameter extraction, each of the above data sets by its own
as well as their combination leads to a broad agreement of an approximately flat Qo ~ 1
universe with scale invariant spectral index ns ~ 1, with the 1o likelihood intervals being
of the order of 10% and somewhat depending on the compilation of data and on the prior
assumed (Stompor et al., 2001; Lange et al., 2001; Pryke et al., 2002; Netterfield et al.,
2002). The estimation of the baryon density proved to be more controversial, because of
discrepancies and a lack of resolution at the level of the second and third peak: in particular,
the BOOMERanG 1998 and MAXIMA data seem to favor a baryon content about 50%
larger than predicted by BBN, around Quh% ~ 0.03 (Tegmark & Zaldarriaga, 2000; Lange
et al., 2001; Stompor et al., 2001), a discrepancy which disappears with the improved beam
reconstruction of the BOOMERanG 2000 observations (Netterfield et al., 2002). Inclusion of
supernovae data or the Hubble Space Telescope prior for the Hubble constant, together with
the flatness determination, points toward a universe dominated by a cosmological constant.

Before the WMAP satellite delivered its results, ground based instruments pressed on
and opened up two new observational directions: very small scale observations (4’ — 5')
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Figure 5.2: The small scale temperature angular power spectrum observed by CBI “mosaic”
during two years and by ACBAR. The shaded region shows the excess power at small scale,
compatible with the SZ effect. Reprinted from Readhead et al. (2004).
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Figure 5.3: The spectacular increase of the accuracy of CMB observations: in the left panel,
a compilation of pre-WMAP temperature power spectrum measurements obtained between
1996 (COBE) and 2003 (CBI) is compared with the WMAP first year data in the right panel,
released in February, 2003. The error-bars give the 1o uncertainty due to the measurement
errors, while the shaded region represent the cosmic variance limit. Both figures reprinted
from Hinshaw et al. (2003a).

and E-polarization detection. The CBI interferometer, in two different configurations called
“mosaic” and “deep field”, obtained measurements of the temperature power spectrum up to
¢ = 3500 (Sievers et al., 2003; Mason et al., 2003), and it was argued that the excess power
observed at high multipoles could be due to the SZ effect, from which a precise determination
of og could possibly be obtained (Bond et al., 2002). The ACBAR experiment, a bolometric
instrument installed at the South Pole, found small scale power consistent with the results of
CBI, without however being able to place tighter constraints on its origin (Goldstein et al.,
2003; Kuo et al., 2004). More recently, the results of two years of observations with the
CBI “mosaic” configuration, give smaller errors in the £ ~ 2000 region, due to the longer
integration time and to an improved absolute calibration derived from the WMAP data, see
Fig. 5.2. Beside revealing effects due to secondary anisotropies as the SZ effect, the small
scale measurements are helpful in better constraining ns, 7 and possible features in the
power spectrum (like a “running”, i.e. a scale dependence of ng) because of the larger lever
arm they offer when combined with WMAP and large scale structure data (Readhead et al.,
2004).

The DASI interferometer reported in the second half of 2002 the first detection of E-
polarization, which was observed on degree angular scales with almost 50 confidence (Kovac
et al., 2002), thereby opening the epoch of polarization measurements.

The first year WMAP data, unveiled in February 2003 (Bennett et al., 2003; Hinshaw
et al., 2003a), essentially confirmed the picture which had emerged from pre-WMAP obser-
vations, see Fig. 5.3: the height of the first peak was corrected by about 10%, showing more
power than in the previous data, while the large scale spectrum confirmed the DMR results.
The second peak is now accurately outlined, while the full four years data should allow to
obtain good resolution up to £ ~ 1000 in temperature. The low power of the quadrupole
remains troublesome, since it is still not clear whether it is pointing to new physics or just a
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consequence of systematical errors. The observation of the temperature-polarization corre-
lation up to ¢ ~ 500 (Kogut et al., 2003) has proved very useful in order to better constrain
parameters. The exquisite quality of the power spectra has tightened the 1o likelihood inter-
vals to a few percent for most cosmological parameters (Spergel et al., 2003), and the central
value has remained in the region preferred by earlier data, with two interesting exceptions:
the TE data favor a much larger reionization optical depth than previously thought, and
there seems to be a slight preference for a “running” (i.e. scale dependent) spectral index
(Peiris et al., 2003).

A complete overview of the evolution of data and of the cosmological parameters derived
from it can be found in the review by Bond et al. (2003).



Chapter 6

Beyond standard parameters

This chapter is devoted to the investigation of three scenarios involving non-standard cosmo-
logical parameters, and focuses on the ability of constraining them using present and future
CMB observations: the existence of extra relativistic particles (§ 6.1); the determination of
the primordial helium mass fraction (§ 6.2); and possible time variations of the fine structure
constant (§ 6.3).

Until recently, the effects induced by these parameters on the CMB where considered too
small to be observable, or else irrelevant; however, the era of precision cosmology that we
are entering requires on one hand that we check the consequences of our assumptions on the
standard results for other parameters (as in the case of the neutrino families and the helium
fraction); on the other hand, it allows us to put under close scrutiny very subtle effects which
could previously be safely neglected because of the less accuracy of the data sets.

6.1 Extra relativistic particles

This section is based on the work published in Bowen et al. (2002), which was carried out
for the most part during my stay in Oxford. We investigate one possible modification to
the standard scenario, namely variations in the parameter wyo] = Q.qh? which describes the
energy density of relativistic particles. The original work has been performed in 2001, and
therefore the results presented here of the pre-WMAP data analysis are nowadays somewhat
outdated. However, the focus is on the degeneracies involving wye and as such the conclusions
drawn are still valid. Furthermore, the subsequent analysis by several groups of the actual
WMAP data permits a comparison between the forecasts obtained with the Fisher matrix
technique in 2001 and the real case, showing a very satisfactory agreement and validating
the method used.

After offering the motivations for our study in § 6.1.1, we review various physical mecha-
nisms that can lead to a change in wye with respect to the standard value in § 6.1.2. In § 6.1.3,
we illustrate how the CMB angular power spectrum depends on this parameter and identify
possible degeneracies with other parameters, then present in § 6.1.4 a likelihood analysis
from pre-WMAP CMB data and show which of the constraints on the various parameters
are affected by variations in wy. Section 6.1.5 forecasts the precision in the estimation of
cosmological parameters for the space missions WMAP and Planck, and then compares the
predictions with actual data analysis performed on the first year WMAP data.
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6.1.1 Motivation

CMB data analysis taking into account variations in the density of relativistic particles has
been previously undertaken by many authors (Hannestad, 2000; Esposito et al., 2001; Kneller
et al., 2001; Hannestad, 2001; Hansen et al., 2002; Zentner & Walker, 2002), giving rather
crude upper bounds, which are significantly improved only by including priors on the age
of the universe or by including supernovae (SN) or large scale structure (LSS) data. It is
worth emphasizing that there is little difference in the bounds on Ngg, the effective number
of relativistic species, obtained from old and recent CMB data because of the degeneracy
described in detail below. We focus here on the effects that the inclusion of this parameter,
wrel, has on the constraints of the remaining parameters in the context of purely adiabatic
models.

As shown below — and as observed previously, see e.g. Hu et al. (1999) — there is a strong
degeneracy between wye and the physical density of non-relativistic matter, wy,, = Q,h%.
This is important, because an accurate determination of w,, from CMB observations (and of
Q,, by including the Hubble Space Telescope result & = 0.72+0.08) can be useful for a large
number of reasons. First of all, determining the cold dark matter content, weqm = wm —wp can
shed new light on the nature of dark matter. The thermally averaged product of cross-section
and thermal velocity of the dark matter candidate is related to w;,, and this relation can
be used to analyze the implications for the mass spectra in versions of the Supersymmetric
Standard Model, see e.g. Barger & Kao (2001); Djouadi et al. (2001); Ellis et al. (2001).
The value of €2, can be determined in an independent way from the mass-to-light ratios of
clusters, and the present value is 0.1 < €,,, < 0.2 (Carlberg et al., 1997; Bahcall et al., 2000).
Furthermore, a precise measurement of {2, will be a key input for determining the redshift
evolution of the equation of state parameter w(z) and thus discriminating between different
quintessential scenarios, see e.g. Weller & Albrecht (2002).

6.1.2 Effective number of relativistic species

The energy density of relativistic particles can conveniently be parameterized via the effec-
tive number of relativistic species, Neg: in the standard model w,e includes photons and
neutrinos, and it can be expressed as

Wrel :W7+Neff s Wy (61)

where w,, is the energy density in photons and w, is the energy density in one active neutrino
family. In geometrical units, where G = h = ¢ = 1, one has w, = 473/45 - g, T, where
g and T, are the relativistic degrees of freedom and the temperature of species z = ~, v,
respectively. Measuring wye thus gives a direct observation of the effective number of neu-
trinos, Neg. Naturally there are only three active neutrinos, and Neg is simply a convenient
parametrization for the extra possible relativistic degrees of freedom

Neg =3+ AN. (6.2)

Thus wye includes energy density from all the relativistic particles: photons, neutrinos, and
additional hypothetical relativistic particles such as a light majoron or a sterile neutrino.
Such hypothetical relativistic particles are strongly constrained from standard Big-Bang
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nucleosynthesis (BBN), where the allowed extra relativistic degrees of freedom typically are
expressed through the effective number of neutrinos, Neg = 3 + ANppn. BBN bounds are
typically about ANppn < 0.2 — 1.0 (Burles et al., 1999; Lisi et al., 1999).

One should, however, be careful when comparing the effective number of neutrino degrees
of freedom at the time of BBN (neutrino decoupling) and at the formation of the CMBR
(photon decoupling). This is because the energy density in relativistic species may change
from the time of BBN (T" ~ MeV) to the time of last rescattering (I' ~ eV), as explained
in Hansen et al. (2002). For instance, if one of the active neutrinos has a mass in the
range eV < m < MeV and decays into sterile particles such as other neutrinos, majorons
etc. with lifetime ¢(BBN) < 7 < t(CMBR), then the effective number of neutrinos at
CMBR would be substantially different from the number at BBN (White et al., 1995). Such
massive active neutrinos, however, do not look very natural any longer in view of the recent
experimental results on neutrino oscillations (Fogli et al., 2001; Gonzalez-Garcia et al., 2001),
showing that all active neutrinos are likely to have masses smaller than 0.1 eV. One could
instead consider sterile neutrinos mixed with active ones which could be produced in the
early universe by scattering, and subsequently decay. The mixing angle must then be large
enough to thermalize the sterile neutrinos, and this can be expressed through the sterile to
active neutrino number density ratio ns/n, ~ 4-10%sin® 20 (m/keV)(10.75/¢*)%/? (Dolgov &
Hansen, 2002), where 6 is the mixing angle, and ¢g* counts the relativistic degrees of freedom,
such that ng/n, = 1 or Ag* = 7/8 increases Nog by one unit. With ng/n, of order unity
we use the decay time, 7 =~ 10%°(keV /m)?/sin? 26 sec, and one finds, 7 =~ 107 (keV /m)* yr,
which is much longer than the age of the universe for m ~ keV, so they would certainly
not have decayed at t(CMBR). A sterile neutrino with a mass of a few MeV would seem to
have the right decay time, 7 ~ 10° yr, but this is excluded by standard BBN considerations
(Kolb et al., 1991; Dolgov et al., 1998). More inventive models with particles decaying during
last rescattering cannot simply be treated with an Ncyp that is constant in time, see e.g.
Kaplinghat et al. (1999), and we will not discuss such possibilities further here.

Even though the simplest models predict that the relativistic degrees of freedom are the
same at BBN and CMB times, one could construct models such as quintessence (Albrecht &
Skordis, 2000; Skordis & Albrecht, 2002) which effectively could change AN between BBN
and CMB (Bean et al., 2001). Naturally AN can be both positive and negative. For BBN,
AN can be negative if the electron neutrinos have a non-zero chemical potential (Kang &
Steigman, 1992; Kneller et al., 2001), or more generally with a non-equilibrium electron
neutrino distribution function (Hansen & Villante, 2000). To give an explicit (but highly
exotic) example of a different number of relativistic degrees of freedom between BBN and
CMB, one could consider the following scenario. Imagine another two sterile neutrinos, one
of which is essentially massless and has a mixing angle with any of the active neutrinos just
big enough to bring it into equilibrium in the early universe, and one with a mass of m,, = 3
MeV and decay time 7,, = 0.1 sec, in the decay channel vy — v, + ¢, with ¢ a light scalar.
The resulting non-equilibrium electron neutrinos happen to exactly cancel the effect of the
massless sterile state, and hence we have ANy = 0. However, for CMB the picture is much
simpler, and we have just the stable sterile state and the majoron, hence ANcyg = 1.57.
For CMB, one can imagine a negative AN from decaying particles, where the decay products
are photons or electron/positrons which essentially increases the photon temperature relative
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to the neutrino temperature (Kaplinghat & Turner, 2001). Such a scenario also naturally
dilutes the baryon density, and the agreement on w; from BBN and CMB gives a bound on
how negative ANcyp can be. Considering all these possibilities, we will therefore not make
the usual assumption, ANggny = ANcwmB, but instead consider ANcvp as a completely free
parameter in the following analysis.

The standard model value for N.g with three active neutrinos is 3.044. This small cor-
rection arises from the combination of two effects arising around the temperature 7' ~ MeV.
These effects are the finite temperature QED correction to the energy density of the elec-
tromagnetic plasma (Heckler, 1994), which gives AN = 0.01 (Lopez & Turner, 1999; Lopez
et al., 1999). If there are more relativistic species than active neutrinos, then this effect
will be correspondingly higher (Steigman, 2001). The other effect comes from neutrinos
sharing in the energy density of the annihilating electrons (Dicus et al., 1982), which gives
AN = 0.034 (Dolgov et al., 1997; Esposito et al., 2000c). Thus one finds Neg = 3.044. An
accurate analysis which takes into account both of this effects simultaneously has been per-
formed by Mangano et al. (2002) and the result indicates that the combined effect is slightly
smaller, Neg = 3.0395.

6.1.3 CMB theory and degeneracies

As explained in detail in Chapter 4, the structure of the Cy spectrum depends on a restricted
combination of cosmological parameters, which are physically probed by the CMB; simpli-
fying somewhat the normal parameters set introduced in § 4.2, we focus here on the four
cosmological parameters

Wy 5 Wm 5 wee and R (6.3)

the physical baryonic density w, = Q3h?, the energy density in matter wy, = (Qeqm + Q) A2,

the energy density in radiation wy and the shift parameter Rehift = ¢ /¢, which gives the

position of the acoustic peaks with respect to a flat, Q4 = 0 reference model, see Eq. (4.22,

page 94). In previous analysis (Efstathiou & Bond, 1999; Melchiorri & Griffiths, 2001), the

parameter wy has been kept fixed to the standard value, while here we will allow it to vary.
It is therefore convenient to write

wrel = 4.13-1075(1 + 0.135 - ANcuB) (6.4)

(taking Teyp = 2.726 K), where ANcyp is the excess number of relativistic species with
respect to the standard model, Nog = 3 + ANcmB, and we drop the subscript CMB from
now on. The shift parameter R depends on QO = Qeam + b, on the curvature Q,, =
1—Qp — Qm — Qel, and on Q) = wie/h? through

R = <1— ! ) VI 2 D+ 2 SO (6.5)
V14 Zgec Qm X(AT) e 1+ Zgec B

where zge. is a function of the physical baryon density and (A7) is given in Eq. (1.33, page
27). Eq. (6.5) generalizes the expression for R given in (4.28, page 95) to the case of
non-constant €.

By fixing the four parameters given in (6.3), or equivalently the set wy, the redshift of
equality zeq = wm/wrel, AN and RNt one obtains a perfect degeneracy for the CMB
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Figure 6.1: Left panel: CMB degeneracies between cosmological models. Keeping zeq, wp
and R fixed while varying AN produces nearly degenerate power spectra. The reference
model (solid line) has AN = 0, Qo = 1.00, ng = 1.00; the nearly degenerate model (dotted)
has AN = 10, Q¢ = 1.05, ng = 1.00. The curves are normalized to the first peak. The
position of the peaks is perfectly matched, only the relative height between the first and the
other acoustic peaks is somewhat different in this extreme example, due to the early ISW
effect. The degeneracy can be further improved, at least up to the third peak, by raising the
spectral index to ng = 1.08 (dashed). Right panel: the matter power spectra of the models
plotted in the top panel together with the observed decorrelated power spectrum from the
PSCz survey (Hamilton & Tegmark, 2002). The geometrical degeneracy is now lifted.

anisotropy power spectra on degree and sub-degree angular scales. On larger angular scales,
the degeneracy is broken by the late ISW effect because of the different curvature and cosmo-
logical constant content of the models. From the practical point of view, however, it is still
very difficult to break the degeneracy, since measurements are limited by cosmic variance on
those scales, and because of the possible contribution of gravitational waves.

Allowing AN to vary, but keeping constant the other three parameters wp, zeq, and
Rhift we obtain nearly degenerate power spectra which we plot in Fig. 6.1, normalized to
the first acoustic peak. The degeneracy in the acoustic peaks region is now slightly spoiled
by the variation of the ratio Q, /€ the different radiation content at decoupling induces
a larger (for AN > 0) early ISW effect, which boosts the height of the first peak with
respect to the other acoustic peaks. Nevertheless, it is still impossible to distinguish between
the different models with present (pre-WMAP) CMB measurements and without external
priors. Furthermore, a slight change in the scalar spectral index, ng, can reproduce a perfect
degeneracy up to the third peak.

The main result is that, even with a measurement of the first three peaks in the angular
spectrum, it is impossible to put bounds on wy alone, even when fixing other parameters

such as wj,. Furthermore, since the degeneracy is mainly in zeq, the constraints on w, from
CMB are also affected, see § 6.1.4.

In Fig. 6.2 we plot the shift parameter R*"ft as a function of AN, while fixing Q,, = 0.3
and Qp = 0.7. Increasing AN moves the peaks to smaller angular scales, even though the
dependence of the shift parameter on AN is rather mild. In order to compensate this effect,
one has to change the curvature by increasing €2, and 5. We therefore conclude that the
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shift

Figure 6.2: The shift parameter R as a function of AN with Q) = 0.7 and Q,, = 0.3.
The position of the peaks is only weakly affected by AN.

present bounds on the curvature of the universe are weakly affected by AN. Nevertheless,
when a positive (negative) AN is included in the analysis, the preferred models are shifted
toward closed (open) universes.

6.1.4 Pre-WMAP constraints from CMB and other data-sets

In this section, we compare pre-WMAP CMB observations with a set of models with cos-
mological parameters sampled as follows: 0.1 < Q,, < 1.0, 0.1 < Qeo1/%a(AN = 0) < 3,
0.015 < Q5 < 0.2, 0 < Qp < 1.0 and 0.40 < h < 0.95. We vary the spectral index of
the primordial density perturbations within the range ns = 0.50, ..., 1.50 and we re-scale the
fluctuation amplitude by a pre-factor Cig, in units of Clc()OBE. We also restrict our analysis
to purely adiabatic, flat models (€t = 1) and we add an external Gaussian prior on the
Hubble parameter h = 0.65 £+ 0.2.

Constraints from CMB only

The theoretical models are computed using the publicly available CMBFAST program (Seljak
& Zaldarriaga, 1996) and are compared with the BOOMERanG-98, DASI and MAXIMA-
1 data. The power spectra from these experiments were estimated in 19, 9 and 13 bins
respectively, spanning the range 25 < ¢ < 1100. We approximate the experimental signal
C# inside the bin to be a Gaussian variable, and we compute the corresponding theoretical
value Cg‘ by convolving the spectra computed by CMBFAST with the respective window
functions. When the window functions are not available, as in the case of Boomerang-98, we
use top-hat window functions. The likelihood for a given cosmological model is then given
by

L= (Ch — CF)Mpp (Clh — C55) (6.6)
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Figure 6.3: Two-dimensional likelihood plots from analysis of CMB data.

where C! (C%) is the theoretical (experimental) band power and Mpp: is the Gaussian cur-
vature of the likelihood matrix at the peak. This expression is a generalization of Eq. (5.30,
page 116) for the case of correlated experimental points. We consider 10%, 4% and 4% Gaus-
sian distributed calibration errors (in pK) for the BOOMERanG-98, DASI and MAXIMA-1
experiments respectively. We also include the COBE data using Lloyd Knox’s RADPAck
package (RADPack Website, 2001).

In order to show the effect of the inclusion of w,¢ on the estimation of the other parameters,
we plot likelihood contours in the wye — Wi, Wrel — Wh, Wrel — N5 planes. Proceeding as in
Melchiorri et al. (2000), we calculate a likelihood contour in those planes by maximizing
the other parameters as explained in § 5.1.5. In Fig. 6.3 we plot the likelihood contours
for wrel V8 wm,wp and ng. As can be seen, wy is very weakly constrained to be in the
range 1 < wiel/wiel(AN = 0) < 1.9 at 1o lc. in all plots!. The degeneracy between wie
and wy, is evident in the left panel of Fig. 6.3. Increasing wyq shifts the epoch of matter-
radiation equality and this can be compensated only by a corresponding increase in w,,. It is
interesting to note that even if we are restricting our analysis to flat models, the degeneracy
is still present and that the bounds on w,, are strongly affected. We find w,, = 0.2 £ 0.1, to
be compared with w,, = 0.13+0.04 when AN is kept to zero. It is important to realize that
these bounds on wyq appear because of our prior on h and because we consider flat models.
When one allows h and €2, to be free parameters, then the degeneracy is almost complete
and there are no bounds on wye.

In the central and right panel of Fig. 6.3 we plot the likelihood contours for w, and ns.
As we can see, these parameters are not strongly affected by the inclusion of wy. The
bound on wp, in particular, is completely unaffected by wye. There is however, a small
correlation between w,e and ng: the boost of the first peak induced by the ISW effect can
be compensated (at least up to the third peak) by a small change in ns (right panel).

Since the degeneracy is mainly in zeq, it is useful to estimate the constraints we can put
on this variable. In Fig. 6.4 we plot the likelihood curve on z¢q alone obtained by maximizing
over all other parameters. By integration of this probability distribution function we obtain

zeq = 31001500 at 68% l.c. (6.7)

'Here as in the following, the abbreviation “l.c.” stands for “likelihood content”, in the Bayesian sense
explained in § 5.1.5.



142 Beyond standard parameters

0,8 -

1
1
1
1
1
[
1
L) 1
Q |
g o06r , .
= |
< 1
ﬁ 0,4 | i
b= X
— ) .
| = Q =1h=0.65 Universe
0,2+ ) m
1
1
0.0 Ll 1 1
0 2000 4000 6000 8000 10000

Redshift of Equality z,
Figure 6.4: Likelihood probability distribution function for the redshift of equality.

Adding other data-sets

It is interesting to investigate how well the constraints from CMB-independent data-sets
can break the degeneracy between w,e and w,,. The supernovae luminosity distance is very
weakly dependent on wye — see however Zentner & Walker (2002) — and the bounds obtained
on {2, can be used to break the CMB degeneracy. Including the SN-Ia constraints on the
Q, — Q4 plane, 0.8Q,, — 0.6Q25 = —0.2 £ 0.1 (Perlmutter et al., 1999), we find

Wrel/wrel (AN = 0) = 1.12%35,  at 20% l.c. (6.8)

It is also worth including constraints from galaxy clustering and local cluster abundances.
The degeneracy between wy, and wg in the CMB cannot be broken trivially by inclusion
of large-scale structure (LSS) data, because a similar degeneracy affects the LSS data as
well (Hu et al., 1999). However, the geometrical degeneracy is lifted in the matter power
spectrum, and accurate measurements of galaxy clustering at very large scales can distinguish
between various models. This is exemplified in the right panel of Fig. 6.2, where we plot three
matter power spectra with the same cosmological parameters as in the top panel, together
with the decorrelated matter power spectrum obtained from the PSCz survey.

The shape of the matter power spectrum in the linear regime for galaxy clustering can
be characterized by the shape parameter

Qmh e-(Qb(1+\/ﬁ/9m)—0-06) . (6.9)
1+0.135AN

From the observed data one has roughly (Bond & Jaffe, 1999) 0.15 <T'+ (ns, —1)/2 < 0.3.
The inclusion of this (conservative) value on I' gives

~

Wrel/wrel (AN = 0) = 1.40%3%,  at 20% l.c. (6.10)

a bound which is less less restrictive than the one obtained using the SN-Ia prior.

A better constraint can be obtained by including a prior on the variance of matter per-
turbations over a sphere of size 8h~! Mpc, derived from cluster abundance observations.
Comparing with og = (0.55 £ 0.05)Q;. %47 we obtain

Wrel/wrel (AN = 0) = 1.27%35,  at 20% l.c. (6.11)
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Wrel/wrel(AN = O) Negr
CMB only 1.5075:50 0.04...13.37
CMB + SN-Ta 112704 0.78...6.48
CMB + PSCz 1407539 1.81...9.59
CMB + o3 1.271049° 1.82...7.59

Table 6.1: Data analysis results: 20 likelihood intervals on the effective energy density
of relativistic particles, wye/wiel(AN = 0), and on the corresponding effective number of
neutrino species, Neg, for different data set combinations. Note that the bounds obtained
with CMB data only mainly reflect the priors used in the analysis.

Our results are summarized in Table 6.1. Combination of present day CMB data with SN
and with LSS data yields a lower bound Neg > 0.8 and > 1.8, respectively, with 20 likelihood
content. Our result is in good agreement with the analysis of Hannestad (2001), which
considered similar data sets. It is worth emphasizing the fact that Neg = 0 is excluded at
much more than 2¢: this can be considered as a strong cosmological evidence of the presence
of a neutrino background, as predicted by the Standard Model. The upper bounds for the
combined sets can be expressed as Neg < 6.5 for CMB+SN and Neg < 9.6 for CMB+LSS,
at 20 l.c.

6.1.5 Fisher matrix forecast

In this section we perform a Fisher matrix analysis with the technique explained is § 5.2 in
order to estimate the precision with which forthcoming satellite experiments will be able to
constrain the parameter zeq.

Table 6.2 summarizes the experimental parameters for WMAP and Planck employed in
the analysis, which considers temperature information only. For both experiment we take
a sky coverage fgy, = 0.50. These values are indicative of the expected performance of the
experimental apparatus, but the actual values may be somewhat different, especially for the
Planck satellite.

As base parameters for the Fisher matrix analysis, we use the following nine dimensional
parameter set:

0= {wb,wc,wA,RShift,zeq,ns,nt,r,Q} . (6.12)

Here ng, n; are the scalar and tensor spectral indices respectively and r = C1'/ C’ég is the tensor
to scalar ratio at the quadrupole. We adopt a phenomenological normalization parameter,
given by

Lo 1/2
Q= (Z 0+ 1)04) : (6.13)
(=2

so that @) effectively measures the mean power seen by the experiment. The shift parameter
R including the radiation content as in Eq. (6.5) takes into account the geometrical
degeneracy. Our purely adiabatic reference model has parameters: w, = 0.0200 (Q =
0.0473), we = 0.1067 (. = 0.2527), wp = 0.2957 (2 = 0.7000), (h = 0.65), Rt = 0.953,
Zeq = 3045, ngy = 1.00, ny = 0.00 , » = 0.10, @ = 1.00. This is a fiducial, concordance model,
which we believe to be in good agreement with most recent determinations of the cosmological
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WMAP Planck
v (GHz) 40 60 90 | 100 150 220 350
0. (degrees) | 0.46 0.35 021 | 0.18 0.13 0.09 0.08
0./1076 6.6 121 255| 1.7 20 43 144
w;l/107% | 29 54 6.8 | 0.028 0.022 0.047 0.44
le 289 385 642 | 757 1012 1472 1619
lrnax 1500 2000

Table 6.2: Experimental parameters used in the Fisher matrix analysis for WMAP (first 3
channels) and Planck (last 4 channels).

parameters (flat universe, scale invariant spectral index, BBN compatible baryon content,
large cosmological constant). Furthermore, we allow for a modest, 10% tensor contribution
at the quadrupole in order to be able to include tensor modes in the Fisher matrix analysis.

We plot the derivatives of Cy with respect to the different parameters in Fig. 6.5. Gener-
ally, we note that derivatives with respect to the combination of parameters describing the
matter content of the universe (wy, and we, Rshift Zeq) are large in the acoustic peaks region,
¢ > 100, while derivatives with respect to parameters describing the tensor contribution (n,
r) are important in the large angular scale region. Since measurements in this region are
cosmic variance limited, we expect uncertainties in the latter set of parameters to be large
regardless of the details of the experiment. The curve for dC;/0Q is of course identical
to the Cy’s themselves. The cosmological constant is a notable exception: variation in the
value of wp keeping all other parameters fixed produces a perfect degeneracy in the acoustic
peaks region. Therefore we expect the derivative 9Cy/dwy to be zero in this region. Small
numerical errors in the computation of the spectra, however, artificially spoil this degener-
acy, erroneously leading to smaller predicted uncertainties. In order to suppress this effect,
we set 0Cy/dwp = 0 for £ > 200. From Eq. (5.76, page 129) we see that a large absolute
value of 9C;/06; leads to a large Fj; and therefore to a smaller 1o error (roughly neglecting
non-diagonal contributions). If the derivative along 6; can be approximated as a linear com-
bination of the others, however, then the corresponding directions in parameter space will be
degenerate, and the expected error will be important. This is the case for mild, featureless
derivatives such as 0Cy/dr, while strongly varying derivatives (such as dC;/OR") induce
smaller errors in the determination of the corresponding parameter. Therefore the choice of
the parameter set is very important in order to correctly predict the standard errors of the
experiment.

Error forecast

The quantity ¢; = 1/y/)\;, where ); is the i-th eigenvalue of the Fisher matrix, is sometimes
used as a rough indication of the resolving power of an experiment. It expresses the accu-
racy with which the ¢-th eigenvector of the Fisher matrix can be determined. The principal
components describe to a good approximation which linear combinations of the cosmological
parameters can be directly measured with the CMB. In fact, they represent linear approxi-
mations to the orthogonal normal parameters introduced in § 4.2. For WMAP (Planck) the
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Parameter WMAP Planck
Redshift of equality 0%eq/ Zeq 0.23 0.02
Relativistic energy OWrel /Wrel 0.43 0.03
Effective v families AN.g 3.17 0.24
Baryons density dwp /wp 0.12 < 0.01
CDM density dwe/we 0.50 0.04
Cosmological constant | dwp/wp 3.40 1.71
Shift parameter RSB < 0.01 < 0.01
Scalar spectral index Ong 0.15 0.01
Tensor spectral index ony 1.96 1.08
Scalar-to-tensor ratio or/r 5.22 2.67
Normalization 0Q 0.01 < 0.01

Table 6.3: Fisher matrix analysis results: expected lo errors for the WMAP and Planck
satellites. See the text for details and discussion.

number of eigenvectors with ¢; < 1072 is 1 out of 9 (3 out of 9) and with ¢; < 1072 is 3/9
(6/9)-

Table 6.3 shows the results of our analysis for the expected 1o error on the physical
parameters. Determination of the redshift of equality can be achieved by WMAP with
23% accuracy, while Planck will pinpoint it down to within 2% relative error. From we =
(Wptwe)/ zeq it follows that the energy density of relativistic particles, wye1, will be determined
within 43% by WMAP and 3% by Planck. This translates into an impossibility for WMAP
alone of measuring the effective number of relativistic species (ANeg ~ 3.17 at 1), while
Planck will be able to track it down to AN.g =~ 0.24. As for the other parameters, while
the acoustic peak’ positions (through the value of R*Mf) and the matter content of the
universe can be determined by Planck with high accuracy (of the order of or less than one
percent), the cosmological constant remains (with CMB data only) almost undetermined,
because of the effect of the geometrical degeneracy. One could also see this as a consequence
of an inappropriate parameterization of the problem: we should in fact use the parameters
which the physics of the CMB measures best, i.e. the principal components. The scalar
spectral index ng and the overall normalization will be well constrained already by WMAP
(within 15% and 1%, respectively), while because of the reasons explained above the tensor
spectral index n; and the tensor contribution r will remain largely unconstrained by both
experiments. Generally, an improvement of a factor ten is to be expected between WMAP
and Planck in the determination of most cosmological parameters.

Our analysis considers temperature information only. Inclusion of polarization measure-
ments would tighten errors, especially for the “primordial” parameters ng,n; and r (Zal-
darriaga et al., 1997; Bucher et al., 2001). This is especially important for a WMAP-type
experiment, since a precise determination of ng and an higher accuracy in w,, would greatly
improve the precision on Neg which can be obtained with temperature only. By the time
Planck will obtain his first results, polarization measurements will hopefully have been per-
formed. Combination of polarization information with the WMAP temperature data would
then considerably improve the precision of the extracted parameter values.

A Fisher matrix analysis for ANz was previously performed by Lopez et al. (1999)
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and repeated by Kinney & Riotto (1999) with the equivalent chemical potential £, AN =
15/7(2(¢/m)% + (€/m)1), and a strong degeneracy was found between Neg, h and 25, and to
lesser extent with €2;,. We have seen here that the degeneracy really is between wyel, Wy, and
ns, and the degeneracy previously observed is thus explained because they considered flat
models, where a change in Qy is equivalent to a change in wy,, wm = (1 — Qp — Q)h2. The
results regarding how precisely the future satellite missions can extract the relativistic energy
density, can be translated into approximately AN.g = 3.17 (£ = 2.4) and ANg = 0.24
(£ =0.73) for WMAP and Planck respectively. However, including neutrino oscillation leads
to equilibration of the different chemical potentials, and hence BBN leads to the stronger
bound |¢] < 0.07 for all neutrino species (Dolgov et al., 2002).

Comparison with WMAP data analysis

After the release of the WMARP first year observations, several groups have independently
carried out an analysis similar to the one presented above (Crotty et al., 2003b; Hannestad,
2003; Pierpaoli, 2003). Unfortunately, none of these works includes tensor modes as in our
forecasts, and one has to keep in mind that the FMA assumed temperature information only
and experimental parameters as appropriate for the original mission specifications, which may
be slightly different from the effective parameters for the first year only. Despite the fact that
the details of the data included and the prior assumptions vary for each work, the overall
agreement of their findings with our forecasts for WMAP is nonetheless very satisfactory.
We briefly review their conclusions and compare them with the above predictions.

In Crotty et al. (2003b) the 1o error on Neg is found to be ANyg = 3.4 using WMAP data
only (but including the TE-spectrum) and a weak top-hat prior on the Hubble parameter,
0.5 < h < 0.9, with the analysis limited to flat models only. This result has to be contrasted
with the prediction above, which for the full WMAP data gives (at 10) ANeg = 3.17. As
predicted, the WMAP observations improve dramatically on the bounds for Neg from CMB
only, which become with the above assumptions —2.1 < AN < 6.9 (at 20 likelihood
content).

These findings are in good concordance with the more general set-up of Pierpaoli (2003),
where curved models are considered as well, the CBI data are used together with the WMAP
observations and constraints from the 2dF matter power spectrum are also included. In this
case the results do not compare directly with our predictions because of the inclusion of
external constraints in the form of the matter power spectrum. The 95% likelihood interval
is then tighter because of the more powerful observational data used, giving (without Hubble
prior) ANeg = 5.5.

The quite complete investigation of Hannestad (2003) also derives constraints on the
neutrino masses, and considers the effects of the inclusion of further observational constraints,
such as a prior on the Hubble parameter, a prior on {2, from supernovee data, a BBN prior
on wp and the 2dF matter power spectrum. Where comparable, the findings are entirely
compatible with the other two works; in particular, for the case of massless neutrinos and
WMAP data only, the 95% likelihood interval for flat models only and a weak top-hat prior
0.5 < h <0.85is AN.g = 8.9.
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Figure 6.5: Derivatives of Cy with respect to the 9 parameters evaluated at the reference
model described in the text. The numerical prefactor indicates that the corresponding curve
has been rescaled: thus 0.1w, means that the displayed curve is 0.1-9Cy/0wy. The derivative
0Cy/0wy has been set to 0 for £ > 200 in order to suppress the effect of numerical errors,
thus taking into account the geometrical degeneracy.
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6.2 The primordial helium fraction

This section is based on the work Trotta & Hansen (2004), where the first determination
of the helium abundance from CMB data alone was presented. After giving the motivation
underlying this investigation in § 6.2.1, we discuss in § 6.2.2 the role of the helium mass
fraction for CMB anisotropies, and in particular the details of the ionization history of the
Universe which are relevant for constraining the helium abundance with the CMB. We then
review the standard Big-Bang Nucleosynthesis scenario for the abundance of light elements
and compare its predictions with current astrophysical measurements in § 6.2.3; the present
constraints from CMB data are presented in § 6.2.4, while the future potential of using the
CMB as an independent way of determining the helium abundance is elucidated in § 6.2.5.
There we also explore the impact of helium for future accurate determination of the baryon
abundance.

6.2.1 Motivation

Our understanding of the baryon abundance has increased dramatically over the last few
years, coming from two independent paths, namely BBN and CMB. Absorption features
from high-redshift quasars allow us to measure precisely the deuterium abundance, D/H,
which combined with BBN calculations provides a reliable estimate of the baryon to photon
ratio,

Mo = 21010, (6.14)
Ny

An independent determination of the baryon content of the universe from CMB anisotropies
comes from the increasingly precise measurements of the acoustic peaks, via the character-
istic signature of the photon-baryon fluid oscillations discussed in § 4.1.2.2. The agreement
between these two completely different approaches is both remarkable and impressive (see
details below). The time is therefore ripe to proceed and test the agreement between other
light elements which are also probed both by BBN and CMB.

Helium being the most abundant of the light elements, it is natural to focus on this
element by exploring the dependency of CMB anisotropies on the value of the primordial
helium mass fraction Y, defined as

NHe

Y,=4 ) (6.15)

Ny

where nye and ny denote the number densities of “He atoms and baryons, respectively. If we
denote by ny and np the number densities of neutrons and protons, respectively, and assume
that all neutrons are in He nuclei, then a simple counting argument gives the estimate

_ 2ny/np

Y. —
1+ny/np

: ~0.25, (6.16)

where the numerical value comes from a rough approximation to the freeze-out value of the
neutron to proton ratio ny/np ~ 1/7, see e.g. Kolb & Turner (1990). The detailed value of
Y), is predicted by BBN as a function of two parameters only, the baryon abundance and the
number of relativistic degrees of freedom at BBN (Fields & Sarkar, 2004).

The hope is that the CMB observations might provide an independent measurement of
Y),, accurate enough to help clarify the present-day discrepancies between direct observations
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of the helium fraction derived from astrophysical systems, whose errors are seemingly dom-
inated by systematics which are hard to assess. The latest CMB data are precise enough
to allow taking this further step, and in view of the emerging “baryon tension” between
BBN predictions from observations of different light elements (Cyburt et al., 2003) possibly
requires taking such a step. The advantage of using CMB anisotropies rather than the tra-
ditional astrophysical measurements, is that the CMB provides a clear measurement of the
primordial helium fraction before it could be changed by any astrophysical process. On the
other hand the dependence of the CMB power spectrum on the primordial helium fraction is
rather mild, a fact which makes it presently safe to set the helium mass fraction to a constant
for the purpose of CMB data analysis of other cosmological parameters, but will have an
impact on the baryon abundance determination from Planck quality data, as we show in
§6.2.5.

6.2.2 The impact of helium on the CMB: ionization history revisited

We now resume our discussion of the recombination epoch and reionization history of the
Universe sketched in § 4.1.3, and focus on the role of the helium mass fraction, considered here
as a free parameter. In a second step, the aim will be to combine the CMB results with the
BBN predictions and compare the result with the independent astrophysical determinations
of the light elements abundance. We thus have at our disposal three different tools, each of
which probes the same quantities at three vastly different epochs of the cosmic history. It
is important to stress that a good agreement among the three is by no means trivial, and
that testing their concordance is a powerful way to check the consistency of the standard
cosmological scenario. On the other hand, significant discrepancies would necessary imply
the need for new physics.

The recent WMAP data allow us to determine with very high precision the epoch of pho-
ton decoupling, zqec, i.e. the epoch at which the ionized electron fraction, z.(z) = ne/ngm,
has dropped from 1 to its residual value of order 10~%. Here n, denotes the number density
of free electrons, while ny is the total number density of H atoms (both ionized and recom-
bined). The redshift of decoupling has been determined to be zgee = 1088'_% (Spergel et al.,
2003), which corresponds to a temperature of about 0.25 eV. Helium recombines earlier than
hydrogen, roughly in two steps: around redshift z = 6000 Helll recombines to Hell, while
Hell to Hel recombination begins around z < 2500 and finishes just after the start of H
recombination (Libarskii & Sunyaev, 1983; Hu et al., 1995; Seager et al., 1999, 2000).

The baryon number density per m?

ny(z) is related to the baryon energy density today,
Wh, by

ny = 11.3(1 + 2)3w, (6.17)

and we have ng = ny(1 —Y,). Usually, the ionization history is described in terms of
ze(2) = ne/(np(1 —Y))). However, for the purpose of discussing the role of Y}, it is more
convenient to consider the quantity

fe(z) = ne/nb (6.18)

instead, the ratio of free electrons to the total number of baryons. For brevity, we will call
fe the free electron fraction. Once the baryon number density has been set by fixing wy,
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Figure 6.6: Evolution of the number density of electrons normalized to the number density
of baryons, f. = n./np, as a function of redshift for different values of the helium fraction
Y,. The black-solid curve corresponds to the standard value Y, = 0.24. The labels (a) to (d)
indicate the four different phases discussed in the text.

one can think of Y}, as an additional parameter which controls the number of free electrons
available in the tight coupling regime. The CMB power spectrum depends on the full detailed
evolution of the free electron fraction, but we can qualitatively describe the role of helium
in four different phases of the ionization/recombination history, displayed in Fig. 6.6.

(a) Before Helll recombination, all electrons are free, therefore f.(z > 6000) =1 —Y,/2.

(b) Hell progressively recombines and just before H recombination begins, f. has dropped
to the value f.(z ~ 1100) =1 —Y,.

(¢) After decoupling, a residual fraction of free electrons freezes out, giving f.(30 < z < 800) =

fres = 2.7-107° Jwm /wp.
(d) Reionization of all the H atoms gives f.(2$20) =1—-Y),.

During phase (a), the photon-baryons fluid is in the tight coupling regime. However
the presence of ionized He increases diffusion damping, therefore having an impact on the
damping scale in the acoustic peaks region: the diffusion damping length (3.120, page 78)
including helium can be approximated as (Hu & Sugiyama, 1995a)

v,\ ! 1
A2~ 1.7 x 107 (1 — ;) wy w126 Mpc?. (6.19)

3/ eq/a + 2

As expected, a larger helium fraction implies an increased damping length, and thus an extra
power suppression on small scales.
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When the detailed energy level structure of Hell is taken into account (Seager et al., 2000),
the transition to phase (b) is smoother than in the Saha equation approximation. Therefore
the plateau with f, = 1 — Y}, is not visible in Fig. 6.6. Before H recombination, He atoms
remain tightly coupled to H atoms through collisions, with the same dynamical behavior. In
particular, it is the total w;, which determines the amount of gravitational pressure on the
photon-baryons fluid, and which sets the acoustic peak enhancement /suppression, see § 4.1.2.
Hence we do not expect the value of Y}, to have any influence on the boosting (suppression)
of odd (even) peaks. The redshift of decoupling (transition between (b) and (c)) depends
mildly on Y}, in a correlated way with wy, since the number density of free electrons in the
tight coupling regime (just before H recombination) scales as ne = feny = ny(1 —7Y,). Hence
an increase in wy can be compensated by allowing for a larger helium fraction. An analytical
estimate along the same lines as in e.g. Kolb & Turner (1990) indicates that a 10% change in
Y), affects zqec by roughly 0.1%, which corresponds to Azgqec = 1. This is of the same order
as the current 1o errors on zqec, obtained by fixing Y}, = 0.24.

After H recombination, the residual ionized electron fraction fI°® does not depend on Y,
but is inversely proportional to the total baryon density (phase (c)). As the CMB photons
propagate, they are occasionally rescattered by the residual free electrons. The corresponding

res

optical depth, 77 is given by
tdec
T = / necopdt
fo (6.20)

Zdec 1 2
z1.86.10—6\/@/ 1+2)
0

(1t 2)% + Q0 /2 2

Performing the integral we can safely neglect the contribution of the cosmological constant
at small redshift, since zgec => Q4 /. Retaining only the leading term, the approximated
optical depth from the residual ionization fraction is estimated to be

T 2 1.24 - 1079(1 + 24ee)?/? & 0.045, (6.21)

independent of the cosmological parameters and of the helium fraction. Therefore after last
scattering we do not expect any significant effect on CMB anisotropies coming from the
primordial helium fraction, until the reionization epoch, phase (d).

As pointed out in § 4.1.3.2, CMB anisotropies are sensitive only to the integrated reionized
fraction if temperature information only is available, while specific signatures are imprinted
on the E-polarization and ET-cross correlation power spectra by the detailed shape of the
reionization history. There are several physically motivated reionization scenarios, which
however cannot be clearly distinguished at present (Haiman & Holder, 2003; Hansen &
Haiman, 2004). Therefore at the present level of accuracy it is safe for our purpose to assume
an abrupt reionization, i.e. that at the reionization redshift 2. all the hydrogen was quickly
reionized, thus producing a sharp rise of n. from its residual value to ngy. More precisely,
Zre 18 the redshift at which x.(zr.) = 0.5. In our treatment we neglect Hell reionization, for
which there is evidence at a redshift z &~ 3 (see Theuns et al., 2002 and references therein).
This effect is small, since one extra electron released at z ~ 3 would change the reionization
optical depth only by about 1%. The effect of Helll reionization, which happens still later,
is even smaller. We also neglect the increase of the helium fraction due to non-primordial



152 Beyond standard parameters

90 2 05 Angular scale (deg) 0.1 a0 2 05 Angular scale (deg) 0.1
T — ] 1 — T3
r +10% F ]
s000 [ Yp ; e a
Q L 10 E El
S S -10% - E
§ o i 1
Q 4000 & 0 1
3N < 10 E E
G = E 3
= < ; ]
X 2000 = r }
= "o E .
Ll E ]
10 T T 10 : . . . . . -
5F 3 5F {
S N =
_5 [ ] -
[ ) S Y I I AU RN N R [N Y S VY T N A SN S NS ENT S B —

2 10 50 400 800 1200 1600 2 10 50 400 800 1200 1600
Multipole 1 Multipole 1

Figure 6.7: CMB temperature (left panel) and polarization (right panel) power spectra and
percentage change (bottom panels) for a 10% larger (smaller) value of the helium mass
fraction, Y. The solid-black line in the top panels corresponds to a standard ACDM model,
with Y}, = 0.24. The impact is at the percent level, and is almost indistinguishable in the
top panels. All other parameters are fixed to the value of our fiducial model (Table 6.4), in
particular, we have 7., = 0.166.

helium production, which has a negligible effect on CMB anisotropies. Those approximations
do not affect the results at today’s level of sensitivity of CMB data: for WMAP noise levels,
even inclusion of the polarization spectra is not enough to distinguish between a sudden
reionization scenario and a more complex reionization history. At the level of Planck a
more refined modelling of the reionization mechanism will be necessary (Holder et al., 2003;
Doroshkevich et al., 2003).

In the sudden reionization scenario adopted here, the relation between reionization red-
shift and reionization optical depth, 7, is given by Eq. (4.38, page 99). Once again, since
the number density of reionized electrons scales as wy(1 —Y},), the redshift of reionization is
positively correlated with Y}, (for fixed optical depth and baryon density).

As a result of the physical mechanism described above, a 10% change in Y}, has a net
impact on the CMB power spectrum at the percent level. The impact on the CMB temper-
ature and polarization power spectra is highlighted in Fig. 6.7. In the temperature panel,
we notice that a larger helium fraction slightly suppresses the peaks because of diffusion
damping, while it has no impact on large scales. Polarization is induced by the temperature
quadrupole component at last scattering and the reionization bump induced in the polar-
ization spectrum (see § 4.1.3.2) is clearly visible in the polarization panel of Fig. 6.7 in the
£ =~ 15 region. A change in the helium fraction implies a shift of the redshift of reionization
for a given (fixed) optical depth, and a consequent shift of the position of the reionization
bump via Eq. (4.41, page 99). The value of Y, does not affect the height of the bump, which
is controlled by the optical depth and is proportional to 72. This effect is highlighted in the
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polarization panel of Fig. 6.7: a 10% change in Y}, induces roughly a 10% change in the posi-
tion of the bump. The subsequent two oscillatory features for £ S 50 reflect the displacement
of further secondary reionization induced polarization oscillations. However, since the value
of polarized power is very low in that region, such secondary oscillations are very hard to
detect precisely.

In principle, given an accurate knowledge of the reionization history, the effect of Y, on
the polarization bump would assist in the determination of the helium abundance. However,
our ignorance of the reionization history prevents us from recovering useful information out
of the measured reionization bump. The displacement induced by Y}, is in fact degenerate
with a partial reionization, or with other, more complex reionization mechanisms. Hence
constraints on Y, come effectively from the damping tail in the £ 2 400 region of the temper-
ature spectrum, which needs to be measured with very high accuracy. Other light elements
like deuterium and helium-3 are much less abundant, and will therefore have even smaller
effect on the CMB power spectrum, at the order of 107°.

6.2.3 Astrophysical measurements and BBN predictions

Once we fix the number of relativistic degrees of freedom by specifying the number of massless
neutrino families, the standard model of Big-Bang Nucleosynthesis (BBN) has only one free
parameter, namely the baryon to photon ratio 79 defined in (1.47, page 31), which for long
has been known to be in the range 1 — 10 (Kolb & Turner, 1990). Thus by observing just
one primordial light element one can predict the abundances of all the other light elements.

Astrophysical measurements

The deuterium to hydrogen abundance, D/H, is observed by Ly-a features in several quasar
absorption systems at high redshift, D/H = 2.78f8:§§ x 107 (Kirkman et al., 2003), which
in BBN translates into the baryon abundance, 019 = 5.9£0.5. Using BBN one thus predicts
the helium mass fraction to be in the range 0.2470 < Y}, < 0.2487. The dispersion in various
deuterium observations is, however, still rather large, ranging from D/H = 1.65 £+ 0.35 X
10~ (Pettini & Bowen, 2001) to D/H = 3.987022 x 10~° (Kirkman et al., 2003), which most
probably indicates underestimated systematic errors.

The observed helium mass fraction comes from the study of extragalactic HII regions
in blue compact galaxies. A careful study by Izotov & Thuan (1998) gives the value Yp =
0.24440.002; however, also here there is a large scatter in the various observed values, ranging
from Y, = 0.230£0.003 (Olive et al., 1997) over Y}, = 0.2384 £0.0025 (Peimbert et al., 2002)
and Y, = 0.23914+0.0020 (Luridiana et al., 2003) to Y, = 0.245240.0015 (Izotov et al., 1999).
Besides the large scatter there is also the problem that the helium mass fraction predicted
from observations of deuterium combined with BBN, 0.2470 < Y, < 0.2487, is larger than
(and seems almost in disagreement with) most of the observed helium abundances, which
probably points towards underestimated systematic errors, rather than the need for new
physics (Cyburt et al., 2003; Barger et al., 2003b). Figure 6.8 is a compilation of the above
measurements, and offers a direct comparison with the current (large) errors from CMB
observations, presented in § 6.2.4, and with the potential of future CMB measurements,
discussed in § 6.2.5.
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Figure 6.8: In the top panel we plot a few current direct astrophysical measurements of the
helium mass fraction Y, as Gaussian likelihood curves with standard deviation corresponding
to the given 1o (statistical) error (blue/dark gray curves, on the left of the diagram), and the
value inferred from deuterium measurements combined with BBN (yellow/light gray curve,
on the far right), see the text for references. In the bottom panel, a direct comparison with
CMB present-day accuracy (actual CMB data, black dashed line, this work; the 1o likelihood
interval is 0.16 < Y, < 0.50) and with its future potential (Fisher matrix forecast for Planck
— green/light gray curve — and a Cosmic Variance Limited experiment — orange/dark gray

curve).

The observed abundance of primordial “Li using the Spite plateau is possibly spoiled by
various systematic effects (Ryan et al., 2000; Salaris & Weiss, 2001). Therefore it is more
appropriate to use the BBN predictions together with observations to estimate the depletion
factor f7 = "Liops/ Liprim instead of using “Liops to infer the value of 719 (Burles et al., 2001;
Hansen et al., 2002).

The numerical predictions of standard BBN (as well as various non-standard scenarios)
have reached a high level of accuracy (Lopez & Turner, 1999; Esposito et al., 2000a,b; Burles
et al., 2001), and the precision of these codes is well beyond the systematic errors discussed
above.

BBN and the need for new physics

If the CMB-determined helium mass fraction turns out to be as high as suggested by BBN
calculations together with the CMB observation of €,h? (as discussed above), this could
indicate a systematic error in the present direct astrophysical helium observations.
Alternatively, if the CMB could independently determine the helium value with sufficient
precision to confirm the present helium observations, then this would be a smoking gun for
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new physics. In fact, one could easily imagine non-standard BBN scenarios which would
agree with present observations of 11p, while having a low helium mass fraction. All what
is needed is additional non-equilibrium electron neutrinos produced at the time of neutrino
decoupling which would alter the n — p reaction. This could alter the resulting helium mass
fraction while leaving the deuterium abundance unchanged. One such possibility would be a
heavy sterile neutrino whose decay products include v.. A sterile neutrino with life-time of
1 — 5 sec and with decay channel vs — v, + ¢ with ¢ a light scalar (like a majoron), would
leave the deuterium abundance roughly untouched, but can change the helium mass fraction
between AY, = —0.025 and AY),, = 0.015 if the sterile neutrino mass is in the range 1 — 20
MeV (Dolgov et al., 1999). A simpler model would be standard neutrino oscillation between
a sterile neutrino and the electron neutrino. The lifetime is about 1 sec when the sterile state
has mass about 10 MeV, and the decay channel is v — v, + [ + 1 (with [ any light lepton),
and such masses and life-times are still unconstrained for large mixing angle (Dolgov et al.,
2000). Related BBN issues are discussed by Shi et al. (1999); Di Bari & Foot (2001); Kirilova
(2003). Such possibilities are hard to constrain without an independent measurement of the
helium mass fraction.

Another much studied effect of neutrinos is the increased expansion rate of the universe if
additional degrees of freedom are present (for BBN), and the degeneracy between the total
density in matter and relativistic particles (for CMB), which is presented in detail in § 6.1.
The more general set-up would then be to allow Neg as a further free parameter both in the
CMB and BBN analysis, but because of the very weak dependence of the CMB on Y}, this
would spoil any hope of being able to constrain the helium fraction with the CMB; therefore
we choose to fix Nog = 3.04.

Also, an electron neutrino chemical potential could potentially alter the BBN predic-
tions (Kang & Steigman, 1992; Lesgourgues & Pastor, 1999), however, with the observed
neutrino oscillation parameters the different neutrino chemical potentials would equilibrate
before the onset of BBN (Dolgov et al., 2002; Wong, 2002; Abazajian et al., 2002), hence
virtually excluding this possibility (see however Barger et al., 2003a).

6.2.4 WMAP Monte Carlo analysis

We use a modified version of the publicly available Markov Chain Monte Carlo package
cosMoMC as described in Lewis & Bridle (2002) in order to construct Markov chains (see
§ 5.1.7) in our seven dimensional parameter space. We sample over the following set of
cosmological parameters: the physical baryon and CDM densities, w, = Qyh? and w, = Q.h?,
the cosmological constant in units of the critical density, 25, the scalar spectral index and
the overall normalization of the adiabatic power spectrum, ny and A = Cg , cf. Eq. (4.6, page
91), the redshift at which the reionization fraction is a half, z,., and the primordial helium
mass fraction, Y,. We restrict our analysis to flat models, therefore the Hubble parameter is
a derived parameter,

b= [(we + wp) /(1 — Q)2 (6.22)

We consider purely adiabatic initial conditions and three massless neutrino families for the
reason given above. We do not consider either gravitational waves or massive neutrinos. We
include the WMAP data from Kogut et al. (2003); Hinshaw et al. (2003b) (temperature and
polarization) with the routine for computing the likelihood supplied by the WMAP team
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Figure 6.9: One-dimensional posterior likelihood distribution for the helium mass fraction,
Y,, using CMB data only. The solid-black line is for all other parameters marginalized, the
dashed-red line gives the mean likelihood.

(Verde et al., 2003). We make use of the CBI (Pearson et al., 2003) and of the decorrelated
ACBAR (Kuo et al., 2004) band powers above £ = 800 to cover the small angular scale region
of the power spectrum.

Since Y}, is a rather flat direction in parameter space with present-day data, we find that
a much larger number of samples is needed in order to achieve good mixing and convergence
of the chains in the full 7D space. We use M = 4 chains, each containing approximately
N = 3-10° samples. The mixing diagnostic is carried out along the same lines as in Verde
et al. (2003), by means of the Gelman and Rubin criterion (Gelman & Rubin, 1992b). The
burn-in of the chains also takes longer than in the case where Y, is held fixed, and we discard
6000 samples per chain.

Results

Marginalizing over all other parameters, we find that the helium mass fraction from CMB
alone is constrained to be

Y, < 0.647 at 99% lc. (1 tail limit) (6.23)
and 0.160 <Y, < 0.501 at 68% l.c. (2 tails). (6.24)

Thus, for the first time the primordial helium mass fraction has been observed using the
cosmic microwave background. However, present-day CMB data do not have by far sufficient
resolution to discriminate between the astrophysical helium measurements, Y, ~ 0.244, and
the deuterium guided BBN predictions, Y}, ~ 0.248, which would require percent precision.
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In Fig. 6.9 we plot the marginalized and the mean likelihood of the Monte Carlo samples
as a function of Yj,. If the likelihood distribution is Gaussian, then the 2 curves should be
indistinguishable. The difference between marginalized and mean likelihood for Y), indicates
that the marginalized parameters are skewing the distribution, and therefore that correlations
play an important role. Although the mean of the 1D marginalized likelihood is rather
high, (L(Y,)) = 0.33, the mean likelihood peaks in the region indicated by astrophysical
measurements, Y, ~ 0.25. In view of this difference, it is important to understand the role
of correlations with other parameters, and we will turn to this issue now.

In Fig. 6.10 we plot joint 68% and 99% confidence contours in the (wy,Y))-space. From
the Monte Carlo samples we obtain a small and negative correlation coefficient between the
two parameters, corr(Yy,wy) = —0.14. Baryons and helium appear to be anticorrelated sim-
ply because present-day WMAP data do not map the peaks structure to sufficiently high £.
Precise measurements in the small angular scale region should reveal the expected positive
correlation between the baryon and helium abundances, which is potentially important in
order to correctly combine BBN predictions and CMB measurements of the baryon abun-
dance. We turn to this question in more detail in the next section. In BBN the baryon
fraction and helium fraction are correlated along a different direction, cf. Fig. 6.10. However,
this correlation is very weak, and the BBN relation gives practically a flat line. Since the
two parameters are not independent from the CMB point of view, it is in fact not completely
accurate to perform the CMB analysis with fixed helium mass fraction of ¥}, = 0.24 to get the
error-bars on the baryon fraction, and then re-input this baryon fraction (and error-bars) to
predict the helium mass fraction from BBN. The most accurate procedure is to analyse the
CMB data leaving Y), as a free parameter, thereby obtaining the correct (potentially larger)
error-bars on wy upon marginalization over Y,.

In view of the emerging baryon tension between CMB and BBN;, it is important to check
whether allowing helium as a free parameter can significantly change the CMB determination
of the baryon density or its error. In order to evaluate in detail the impact of Y}, on the error-
bars for wy, we consider the following three cases.

(a) The usual case, when the helium fraction for the CMB analysis is assumed to be known

a priori and is fixed to the canonical value Y, = 0.24.

(b) A case with a weak astrophysical Gaussian prior on the helium fraction, which we
take to be Y, = 0.24 & 0.01. As discussed above, the error-bars of the astrophysical
measurements are typically a factor 5 tighter than this, but our prior is chosen to
encompass the systematic spread between the different observations.

(c) The case in which we assume a uniform prior for Y}, in the range 0 <Y, <1, ie. Y, is
considered as a totally free parameter.

We do not find any significant change in the error-bars for wy in the three different cases.
The confidence intervals on wy, alone are determined to be (case (¢)) 0.0221 < w, < 0.0245 at
68% l.c. (0.0204 < wy, < 0.0276 at 99 % l.c.). The standard deviation of wj as estimated from
the Monte Carlo samples is found to be 63, = 1.3 - 1073, This is in complete agreement with
the error-bars on wy obtained by the WMAP team for the standard ACDM case (Spergel
et al., 2003). We conclude that at the level of precision of present-day CMB data, it is still
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Figure 6.10: Joint 68% and 99% likelihood contours in the (wyp,Yy)-plane from CMB data
alone. The solid-blue line gives the BBN prediction (Burles et al., 1999), which on this figure
almost looks like a straight line.

safe to treat the baryon abundance and the helium mass fraction as independent parameters.
This result is non-trivial, since the fact that the damping tail is not yet precisely measured
above the second peak would a priori suggest that degeneracies between Y),, w; and n, could
potentially play a role once the assumption of zero uncertainty on Y, is relaxed. The impact
of Y}, is small enough, and the error-bars on wj large enough that a uniform prior on Y, can
still be accommodated within the uncertainty in the baryon abundance obtained for case (a).
However, the Y, —w, correlation will have to be taken into account to correctly analyze future
CMB data, with a quality such as Planck. We discuss this potential in the next section.

We observe the expected correlation between the redshift of reionization and the helium
fraction (Fig. 6.11), which is discussed above. The correlation coefficient between the two
parameters is found to be rather large and positive, corr(Y, z..) = 0.40. This correlation
produces a noticeable change in the marginalized 1D-likelihood distribution for z,, as we go
from case (a) to case (c). Marginalization over the additional degree of freedom given by
Y, broadens considerably the error-bars on z.. In fact, the 68% confidence interval for z
increases by roughly 20% (and shifts to somewhat higher values), from 10.2 —20.9 (case (a))
to 10.6 — 23.3 (case (c)). Case (b) exhibits similar error-bars as case (a). On the other hand,
the determination of the reionization optical depth is not affected by the inclusion of helium
as a free parameter, giving in all cases 0.08 < 7, < 0.23. Correspondingly, the correlation
is less significant, corr(Y}, .) = —0.11. We therefore conclude that the differences in the
determination of z. are due only to the variation of the amount of electrons available for
reionization as Y}, is changed.

Leaving Y, as a free parameter also has an impact on the relation between w;, and the
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Figure 6.11: Joint 68% and 99% likelihood contours in the (Y}, zyc)-plane (upper panel) and
in the corresponding (Yj, 7vc)-plane (bottom panel) from CMB data alone. In the upper
panel, the solid-red line is the relation z.(Y}) from Eq. (4.38, page 99), obtained by fixing
the reionization optical depth to the value 1, = 0.166, while the other parameters are
those of our fiducial ACDM model. Although clearly the exact shape of z.(Y,) depends
on the particular choice of cosmology, it is apparent that the Y, — 2, degeneracy is along
this direction. The correlation between Y, — 7. is almost negligible with present-day data
(bottom panel).

scalar spectral index, ng. The extra power suppression on small scales which is produced by
a larger Y, can be compensated by a blue spectral index, cf. Fig. 6.12.

6.2.5 Potential of future CMB observations

In order to estimate the precision with which future satellite CMB measurements will be
able to constrain the helium mass fraction we perform a Fisher matrix analysis along the
lines presented in § 5.2. As already emphasized, in order to obtain a reliable prediction, it is
extremely important to choose a parameter set whose effect on the CMB power spectrum is
as linear and uncorrelated as possible. Here we improve upon the choice made in § 6.1.5 by
adopting the full set of normal parameters introduced in § 4.2. Our nine dimensional basis
parameter set is then

0={AB,V,RM,T,As,ns,Y,} , (6.25)

where the scalar power spectrum normalization constant is A; = Cg , see (4.6, page 91). The
quantities A, B,V, R, M, T are defined in Eqs. (4.43-4.47, page 102). It has been shown that
the normal parameter set is very well adapted to the FMA, which give accurate predictions
(Kosowsky et al., 2002). Since here we are interested in the predictions for B = Q,h? and
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Figure 6.12: Scatter plot in the wy, — ns plane, with the value of Y}, rendered following the
color scale. Green corresponds roughly to the BBN preferred value.

Y, we do not need to explicitly map the FMA forecasts in the normal parameter space onto
the cosmological parameter space.

The choice of the physical parameter set makes it easy to implement in the FMA interest-
ing theoretical priors. For instance, we are interested in imposing flatness in our forecast, in
order to be able to directly compare present-day accuracy on Y, with the potential of Planck
and of and ideal CMB experiment (see below). The prior on the curvature of the universe
is imposed in the FMA by fixing the value of the parameter A to the one of the fiducial
model. In fact, the parameter A is a generalization of the shift parameter, which describes
the sideways shift of the acoustic peak structure of the CMB power spectrum as a function of
the geometry of the universe and its content in matter, radiation and cosmological constant.
Although imposing A = const is not the same as having a constant spatial curvature over
the full range of cosmological parameters, for the purpose of evaluating derivatives the two
conditions reduce to the same. The fact that our fiducial model is actually slightly open
(see below), does not make any substantial difference in the results, apart from reducing
the numerical inaccuracies which would arise had we computed the derivatives around an
exactly flat model. We can also easily impose a prior knowledge of the helium fraction, by
fixing the value of Y),, as is usually the case for present CMB analyses, and investigate how
this modifies the expected error on the the baryon density.

Accuracy issues

We numerically compute double sided derivative of the power spectrum around the fiducial
model with cosmological parameters given in Table 6.4. We find it necessary to increase
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Parameter Value
Baryons Q 0.046
Matter QO 0.270
Dark Energy Qa 0.720
Radiation Qpad 7.95-107°
Massless v families N, 3.04
Total density Qiot 0.990
Hubble constant h 0.72
Optical depth Tre 0.166
Spectral index N 0.99
Normalization Ay 2.107°

Table 6.4: Cosmological parameters for the fiducial ACDM model around which the FMA
is performed. We choose a slightly open model to avoid numerical inaccuracies in the deriva-
tives.

the accuracy of CAMB by a factor of 3 in each of the “accuracy boost” values. As a fiducial
model, we use the best fit model to the WMAP data for the standard ACDM scenario, as
given in Table 1 of Spergel et al. (2003). However, in order to avoid numerical inaccuracies
which arise when differentiating around a flat model, we reduce slightly the value of 5 by
imposing an open universe, (o = 0.99.

We perform the FMA for the expected capabilities of Planck’s High Frequency Instru-
ment (HFI) and for an ideal CMB measurement which would be cosmic variance limited
(CVL) both in temperature and in E-polarization (and we do not consider the B-polarization
spectrum), and therefore represents the best possible parameter measurement from CMB
anisotropies alone. The complicated issues coming from foreground removals, point source
subtraction, etc. are assumed to be already (roughly) taken into account by the experi-
mental parameters, see § 5.2.1 for definitions. These are the effective percentage sky cov-
erage fqy, the number of channels, the sensitivity of each channel ol P for temperature
(T) and E-polarization (E) in uK and the angular resolution 62 (in arcmin). For Planck
HFI, we take the three channels with frequencies 100, 143 and 217 GHz, with respectively
0?2172’3 = 5.4,6.0,13.1 and 0522’3 = 11.4,26.7 and we have fqy, = 0.85 (Planck Website,
2004) Since the CVL is an ideal experiment, we put its noise to zero and assume perfect
foregrounds removal, so that fq, = 1. In order to test the accuracy of our predictions
and compare present-day results with the forecasts, we also perform an FMA with WMAP
first year parameters, obtaining excellent agreement between the FMA results and the error-
bars from actual data. For the purpose of comparison, we include forecasts for the full
WMAP four year mission, which will also measure E-polarization and reduce present-day
errors on the temperature spectrum by a factor of two. We limit the range of multipoles
to ¢ < 2000, because at smaller angular scales non-primary anisotropies begin to dominate
(Sunyaev-Zeldovich effect). Seljak et al. (2003b) discuss the issue of numerical precision of
three different CMB codes and conclude that they are accurate to within 0.1%. While this is
encouraging, it is not of direct relevance to this work, since what matters in the computation
of derivatives is not much the absolute precision of the spectra, but rather their relative
accuracy.
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Temperature + TE-cross + E-polarization

No priors Flatness Flatness and
Y, =0.24

AY,  Awy, | AY, Awy Awp

Yy wp Yy wp wp
WMAP 4yrs ! ~50 292 | ~40 2.86 2.86
Planck 7.60 1.31 | 496 1.26 0.70
CVL 259 0.34 | 1.52 0.32 0.13

Temperature + TE-cross

WMAP 1st yr 2 | N/JA N/A | 71.25 5.04 5.04
WMAP 4yrs ! ~ 75 4.10 | ~60 3.94 3.94
Planck 891 1.74 | 6.60 1.63 0.74
CVL 5.18 0.55 | 2.84 0.55 0.19

Table 6.5: Fisher matrix forecasts and comparison with present-day results for different
priors and using different combinations of temperature and polarization CMB spectra. Errors
are in percent with respect to the values of the fiducial model, Y, = 0.24 and w;, = 0.0238
(1o l.c. all other marginalized).

Forecasts and discussion

Table 6.5 summarizes our forecasts for the future measurements and compares them with
the results obtained from WMAP actual data.

We notice that when the WMAP full four year data will be available (including E-
polarization), the error on the baryon density is expected to decrease by a factor of two
to about 3%, compared to today’s 5% (assuming flatness). Nevertheless, inclusion of Y}, as
a free parameter will still have no effect on the determination of wy for WMAP, i.e. Y, will
remain an essentially flat direction when marginalized over. While the determination of the
helium fraction will improve, the FMA cannot reliably assess quantitatively how much, since
for such large errors the likelihood distribution is not Gaussian and the quadratic approxi-
mation breaks down. In the table we therefore give the FMA estimation as an indication,
with the caveat that the Fisher approximation is likely to be inaccurate for the real errors
on Y, from WMAP’s four year data-set.

It is interesting that for Planck, the effect of the helium fraction can no longer be neglected.
Inclusion of the helium fraction increases the error on wy by roughly 80%, from 0.7% to 1.3%.
The correlation between the two parameters will have to be taken into account, as is evident
from Fig. 6.13. The expected correlation coefficient is corr(Y,,wp) = 0.84 (0.91) for Planck
(for CVL). The expected 1o error on Y, is about 5% for Planck, or AY, ~ 0.01. This
is of the same order as the spread in current astrophysical measurements. We conclude
that in Planck-accuracy data analysis, it will be necessary to include the uncertainty in the
determination of the helium mass fraction, at least in the form of a Gaussian prior over Y,
of the type we used in the CMB data analysis presented above.

Finally, measuring CMB temperature and polarization with cosmic variance accuracy
would allow Y}, to be constrained to within 1.5%, or AY),, ~ 0.0036 (assuming flatness). Such
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Figure 6.13: FMA forecast for the expected errors from WMAP four year mission (dotted-
black), Planck (dashed-red) and a CVL experiment (solid-green). The ellipses encompass
1o and 30 joint likelihood regions for wy, — Y, (all other parameters marginalized). The axis
values give the error in with respect to the fiducial model values. This forecast is for the full
CMB information (Temperature, TE-cross, E-polarization) and assumes flatness.

an ideal measurement would be able to discriminate between the BBN-guided, deuterium
based helium value and the current lowest, direct helium observations (cf. Fig. 6.8).

Our forecasts for the uncertainty in the Helium mass fraction from future observations are
in excellent agreement with the findings of Kaplinghat et al. (2003b). There, the standard
deviation on Y), for Planck is estimated to be AY, = 0.012. Kaplinghat et al. (2003b)
also consider an experiment (CMBPol) with characteristics similar to our CVL, for which
they forecast AY, = 0.0039, again in close agreement with our result. In an earlier work,
Eisenstein et al. (1998a) found for Planck (temperature and polarization) AY, = 0.013, also
in satisfactory concordance with our result. It should be noticed that the forecast reported
for MAP in Table 2 of Eisenstein et al. (1998a), namely AY, = 0.02, is nothing but the
Gaussian prior Y, = 0.24 £ 0.02 which was assumed in their analysis.

The main source of improvement for the determination of Y, will be the better sampling of
the temperature damping tail provided by Planck and the CVL. Polarization measurements
have mainly the effect of reducing the errors on other parameters. In fact, we have checked
that excluding from our FMA the 2 < ¢ < 50 region of the E-polarization and ET-correlation
spectra changes the forecast precision on Y}, less than about 10-15% for Planck and less than
a few percent for CVL. This supports the conclusion that the low-£ reionization bump is not
very useful in measuring the helium abundance, because of the degeneracy with zye.
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6.3 Time variations of the fine-structure constant

The search for observational evidence for time or space variations of the ‘fundamental’ con-
stants that can be measured in our four-dimensional world is an extremely exciting area of
current research, with several independent claims of detections in different contexts emerging
in the past few years. In particular, possible time variations of the fine-structure constant
can be tested with the CMB, and represent another line of investigation going beyond the
standard description of cosmology. The contents of this section summarize the latest result of
a rather large collaboration I have been involved with, aimed at constraining time variations
of the fine-structure constant using CMB anisotropy. We thoroughly studied the issue of
crucial degeneracies with other cosmological parameters and discussing what improvements
can be expected with forthcoming data-sets (Martins et al., 2002, 2004; Rocha et al., 2004).

We motivate the search for time variations of the fine-structure constant in § 6.3.1, and
review the current observational status of observations other than the CMB in § 6.3.2. After
presenting the relevance of the fine-structure constant for CMB anisotropies in § 6.3.3 and
§ 6.3.4, in § 6.3.5 we provide up-to-date WMAP constraints on the value of a at the epoch
of decoupling; § 6.3.6 is dedicated to a detailed Fisher matrix analysis which encompasses
the standard parameters plus the fine-structure constant for the full WMAP four year data,
for the Planck satellite and for a cosmic variance limited, ideal experiment.

6.3.1 Motivation

Cosmology and astrophysics play an increasingly important role as testing ground for our
understanding of fundamental physics, since they provide us with extreme conditions (that
one has no hope of reproducing in terrestrial laboratories) in which to carry out a plethora
of tests and search for new paradigms. Perhaps the more illuminating example is that
of multidimensional cosmology: currently preferred unification theories (Polchinski, 1998;
Damour, 2003a) predict the existence of additional space-time dimensions, which will have a
number of possibly observable consequences, including modifications in the gravitational laws
on very large (or very small) scales (Will, 2001) and space-time variations of the fundamental
constants of nature (Martins, 2002; Uzan, 2003).

The most promising case, and the one that has been the subject of most recent work and
speculation, is that of the fine-structure constant

a=S (6.26)

where e is the electron charge, ¢ the speed of light and h Planck’s constant.

There have been a number of recent reports of evidence for a time variation of fundamental
constants (Webb et al., 2001, 2003; Murphy et al., 2001c; Ivanchik et al., 2003), which we
review below. Apart from their obvious direct impact if confirmed, they are also crucial in a
different, indirect way, since they provide us with an important (and possibly even unique)
opportunity to test a number of fundamental physics models, such as string theory. Indeed
here the issue is not if such a theory predicts such variations, but at what level it does so,
and hence if there is any hope of detecting them in the near future, or if we have done it
already.
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On the other hand, the theoretical expectation in the simplest, best motivated model is
that a should be a non-decreasing function of time (Damour & Nordtvedt, 1993; Santiago
et al., 1998; Barrow et al., 2002). This is based on rather general and simple assumptions,
in particular that the cosmological dynamics of the fine-structure constant is governed by a
scalar field whose behavior is akin to that of a dilaton. If this is so, then it is particularly
important to try to constrain it at earlier epochs, where any variations relative to the present-
day value should be larger. However, one of the interpretations of the Oklo results is that «
was larger at an epoch corresponding to a redshift of about z ~ 0.1 than today, whereas the
quasar results indicate that o was smaller at z ~ 2—3 than today, see below for more details.
If both results are validated by future experiments, then the above theoretical expectation
must clearly be wrong, which would be a perfect example of using astrophysics to learn about
fundamental physics. Playing devil’s advocate, one could certainly conceive that cosmological
observations of this kind could one day prove string theory wrong. Indeed, it has been argued
(Damour, 2003a,b) that even the results of Webb and collaborators may be hard to explain
in the simplest, best motivated models where the variation of the fine-structure constant is
driven by the spacetime variation of a very light scalar field.

Cosmic microwave background anisotropies provide a tool to measure the fine-structure
constant at high redshift, being mostly sensitive to the epoch of decoupling, z ~ 1100.

6.3.2 The observational status

The recent explosion of interest in the study of varying constants is mostly due to the results
of Webb and collaborators (Murphy et al., 2001b; Webb et al., 2001; Murphy et al., 2001c,a)
of a 40 detection of a fine-structure constant that was smaller in the past,

A
2% (L072+£018)x 1077, 2~ 0.5—3.5; (6.27)

indeed, more recent work (Murphy et al., 2003; Webb et al., 2003) provides an even stronger
detection. These results are obtained through comparisons of various transitions (involving
various different atoms) in the laboratory and in quasar absorption systems, using the fact
that the size of the relativistic corrections goes as (aZ)2. A number of tests for possible
systematic effects have been carried out, all of which have been found either not to affect
the results or to make the detection even stronger if corrected for.

A somewhat analogous (though simpler) technique uses molecular hydrogen transitions
in damped Lyman-« systems to measure the ratio of the proton and electron masses, u =
mp/me (using the fact that electron vibro-rotational lines depend on the reduced mass of
the molecule, and this dependence is different for different transitions). The latest results
(Ivanchik et al., 2002) using two systems at redshifts z ~ 2.3 and z ~ 3.0 are

A
2H  (57+3.8)x 1077, (6.28)
1
or
A
ZH o (12.5+£4.5) x 1077, (6.29)
7

depending on which of the (two) available tables of “standard” laboratory wavelengths is
used. This implies a 1.50 detection in the more conservative case, though it also casts some
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doubts on the accuracy of the laboratory results, and on the influence of systematic effects
in general.

We should also mention a recent re-analysis (Fujii, 2002) of the well-known Oklo bound
(Damour & Dyson, 1996). Using new Samarium samples collected deeper underground
(aiming to minimize contamination), these authors again provide two possible results for
both a and the analogous coupling for the strong nuclear force, ay,

& O

o~ =(04£05) x 107 Ty (6.30)
S
or
g ~ % — —(4440.4) x 107 Ty, (6.31)
S

Note that these are given as rates of variation, and effectively probe timescales corresponding
to a cosmological redshift of about z ~ 0.1. Unlike the case above, these two values corre-
spond to two possible physical branches of the solution. See Fujii (2002) for a discussion of
why this method yields two solutions (and also note that these results have opposite signs
relative to previously published ones, Fujii et al., 2000). While the first of these branches
provides a null result, (6.31) is a strong detection of an « that was larger at z ~ 0.1, that is a
relative variation that is opposite to Webb’s result (6.27). Even though there are some hints
(coming from the analysis of other Gadolinium samples) that the first branch is preferred,
this is by no means settled and further analysis is required to verify it.

Still we can speculate about the possibility that the second branch turns out to be the
correct one. Indeed this would definitely be the most exciting possibility. While in itself
this wouldn’t contradict Webb’s results (since Oklo probes much smaller redshift and the
suggested magnitude of the variation is smaller than that suggested by the quasar data), it
would have striking effects on the theoretical modelling of such variations. In fact, proof that
« was once larger than today’s value would sound the death knell for any theory which models
the varying « through a scalar field whose behaviour is akin to that of a dilaton. Examples
include Bekenstein’s theory (Bekenstein, 1982) or simple variations thereof (Sandvik et al.,
2002; Olive & Pospelov, 2002). Indeed, one can quite easily see (Damour & Nordtvedt, 1993;
Santiago et al., 1998) that in any such model having sensible cosmological parameters and
obeying other standard constraints, & must be a monotonically increasing function of time.
Since these dilatonic-type models are arguably the simplest and best-motivated models for
varying « from a particle physics point of view, any evidence against them would be extremely
exciting, since it would point towards the presence of significantly different, yet undiscovered
physical mechanisms.

Finally, we also mention that there have been recent proposals (Braxmaier et al., 2001)
of more accurate laboratory tests of the time independence of o and pu using monolithic
resonators, which could improve current bounds by an order of magnitude or more.

However, given that there are both theoretical and experimental reasons to expect that
any recent variations will be small, it is important to develop tools allowing us to measure
« in the early universe, as variations with respect to the present value could be much larger
then.
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6.3.3 Effects of a on the ionization history

The reason why the CMB can be used as a probe of variations of the fine-structure constant
is that these alter the ionization history of the universe. Here we present the dominant
effects, see Hannestad (1999); Kaplinghat et al. (1999) for a detailed treatment.

The impact of the fine-structure constant on the CMB comes from the dependence of the
differential optical depth 7 (2.117, page 52) on the Thomson scattering cross section, which
is

8Tah?
= " 6.32
or 3m2c? ’ (6.32)
where we have reintroduced the speed of light ¢ and the Planck constant A, and m, is
the electron mass. Now the equilibrium electron ionization fraction ze! = n./ng goes
approximately as
eq M\ 3/2

2% o <?) exp(—B/T), (6.33)

where B is the Hydrogen binding energy
B = a’m.c?/2 (6.34)

(see e.g. Kolb & Turner, 1990). If we ignore the fact that x.(z) does not precisely track its
equilibrium value, and since the exponential factor dominates near recombination, we would
simply expect from T oc 1/a o z that the reionization fraction be just a function of z/a?.

3/2 and

This turns out to be approximately correct, even if the effect of the factor (me/T)
the departure of z, from zc? need to be taken into account for a more precise estimation
(Kaplinghat et al., 1999).

In general, around the decoupling epoch relevant for the CMB, the fine-structure constant
can be expected to evolve with redshift, @« = a(z), but we can take a constant value agec =
a(zgec) instead and consider it as an effective value averaged over the recombination process.
Summarizing, there are two important changes in the reionization history brought about by
a change in agec, the value of v at the recombination epoch, which are best discussed in
terms of changes on the visibility function g(z), defined in Eq. (3.126, page 79). A larger

value of agec With respect to ag, its value today, implies:

e an increased redshift of last scattering: as estimated above, this follows from rescaling
the reionization fractions as z/ aﬁec, hence decoupling happens earlier for a larger agec,
which means that the sound horizon 74(zqec), see Eq. (4.24, page 94), is smaller. As a
consequence, we expect a shift of the peaks’ structure to larger ¢ values, according to
(4.17, page 93). This effect will be degenerate with the shift parameter RS (4.22,
page 94) or equivalently with the normal parameter A, Eq. (4.43, page 100), as shown
in Fig. 6.14. There will also be a boost of the first acoustic peak due to the increased
early ISW effect, see § 4.1.2.3.

e A narrower peak of the visibility function: by increasing age. the peak of the visibility
function is moved to a larger redshift, when the expansion rate is faster

T o< —H o —(1+ 2) (6.35)

and thus the temperature and therefore x. drop faster, which makes g(z) narrower,
see Fig. 6.15. This leads to a smaller damping scale, cf. Eq. (4.34, page 98), hence the
small-scale power of the CMB spectrum increases for agec/ap > 1.
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Figure 6.14: Left panel: derivatives of the temperature spectrum with respect to agec and the
shift parameter R, We plot —9C;/dage. to facilitate the comparison with 9C,/ORM,
The two derivatives are perfectly in phase: this is responsible for the degeneracy between
the corresponding parameters (right panel, Fisher matrix analysis). Only the different am-
plitudes allow an experiment which maps sufficiently high multipoles with high accuracy to
distinguish between them, in particular revealing the change in the damping scale brought
about by changes in age.. In the right panel, the Fisher matrix results contain 1o of the

likelihood (including temperature only), and clearly indicate a strong correlation between
the two parameters (see Martins et al., 2002).

In Fig. 6.16 we plot the resulting CMB temperature spectrum, where the above mentioned
changes are readily distinguishable.

6.3.4 The role of reionization

After decoupling, the CMB is essentially insensitive to how « varies, until the reionization
epoch is reached, at which point Thomson scattering becomes effective again. If the value of o
at reionization, aye = (2ye), is different from its value today, it will affect the CMB spectrum
through a change in the reionization optical depth 7... However, 7, is itself dependent on
the cosmological model and possibly on a number of relevant non-linear physical processes
related to the astrophysical mechanisms responsible for the reionization. In general, this
problem is solved by treating 7 as a free parameter, which accounts for the relatively poor
knowledge of the details of the reionization history and in our case for the uncertainty about
the exact value of o during the reionization epoch. We conclude that provided we treat
Tre as a free parameter the lack of a precise knowledge of the value of a during the epoch
of reionization is unimportant, and we can take aye = ag. On the more phenomenological
side, the results of Webb and collaborators for the value of a at a redshift of 2 — 3 would
suggest that at the epoch of reionization the possible changes in « relative to the present
day are already very small. Therefore one can calculate the effect of a varying o by simply
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Figure 6.15: Tonization fraction as a function of redshift (left panel) and visibility function as
a function of conformal time (right panel) for different values of the fine-structure constant
at decoupling: agec/ap = 1 (solid), agec/ap = 1.03 (dotted), agec/co = 0.97 (dashed).
Decoupling happens earlier and the last scattering surface is narrower for agec/ap > 1.

assuming two values for the fine-structure constant, one at low redshift, z < 20, for which we
take today’s value by the above argument, and one around the epoch of decoupling, agec,
which we want to determine.

As shown in § 4.1.3.2, reionization changes the amplitude of the acoustic peaks in the
temperature spectrum, without affecting their position and spacing, while introducing the
reionization bump at low £ in the polarization spectrum. If the value of agec is different from
the value today (which corresponds to aye), then the peaks in the polarization power spectrum
at small angular scales will be shifted sideways, while the reionization bump on large angular
scales will remain fixed. This is illustrated in Fig. 6.16 (lower right panel). It follows that by
measuring the separation between the acoustic peaks and the bump, one could in principle
measure both « and the reionization optical depth 7, as shown in Fig. 6.17. This holds
true as long as one assumes a specific reionization history, such as the sudden reionization
scenario used here. However, if we would allow for a more realistic reionization modelling,
the detailed dependence of the reionization bump on the new reionization parameters is likely
to wash out this effect. Nevertheless, with present-day accuracy the CMB data are sensitive
only to the optical depth of reionization, as pointed out in § 6.2.2, which justify the use of
the simplest reionization modelling. Within this framework, the fact that 7. unexpectedly
turned out to be as large as 0.16 as derived from the WMAP data (Spergel et al., 2003) makes
the prospects of constraining « with the CMB much better because of the above effect.

Finally, we point out that the modifications discussed above are direct consequences of
an « variation, and that indirect effects are usually present as well since any variation of « is
necessarily coupled with the dynamics of the Universe (Mota & Barrow, 2004). Here we take
a pragmatic approach and say that, since the CMB is insensitive to the details of « variations
from decoupling to the present day, we do not in fact need to specify a redshift dependence
for this variation — although we could have specified one if we so chose. At this stage,
we prefer to focus on model-independent constraints, and hence do not attempt to include
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Figure 6.16: Contrasting the effects of varying agec (left) and reionization optical depth 7y
(right) on the CMB temperature (top) and polarization (bottom). The reionization bump
is not changed by variations of agec/cp. The black lines are for the WMAP best fit model,
with agec/ag = 1 and 7 = 0.17.

an explicit modelling for the redshift dependence a(z). Nevertheless, given some model-
independent constraints one can always translate them into constraints on the parameters
of one’s favorite model. Beside possible time variations of «, investigated here, one could
also envisage searching for spatial variations on the last scattering surface (Sigurdson et al.,

2003).

6.3.5 CMB constraints on o from WMAP alone

We use a modified version of CMBFAST which includes the effects of varying « described
above, to analyse the recent WMAP temperature and cross-polarization data adopting the
likelihood estimator method described in Verde et al. (2003). The models are sampled on an
uniform grid in a 7 dimensional parameter space as follows:

0.05 < Q.h* < 020 (0.01),

0.010 < Qh? < 0.028 (0.001),

0.500 <y < 0950 (0.025),

0.900 < agec/cp< 1.050 (0.005), (6.36)
0.06 < Tre < 030 (0.02),

0.880 < ny < 1.08  (0.005),

~0.15 < éizzj < 005 (0.01).

The numbers between parentheses give the step size along each direction; ng is the scalar
spectral index of the primordial power spectrum, and dns/d In k is the spectral index running,
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Figure 6.17: The separation in ¢ between the reionization bump and the first (solid lines),
second (dashed) and third (dotted) peaks in the polarization spectrum, as a function of «
at decoupling and 7. A (somewhat idealized) description of how « and 7, can be measured

using CMB polarization.

i.e. we introduce a scale dependence of the spectral index of the form

dng k
ns(k) = ns(kp) + Tk In <kp) , (6.37)

where ns = ngs(kp) is a constant and the pivot scale kp is chosen to be kp = 0.002Mpc~!
We only include flat models, so that the Hubble parameter Hy = 100k km s~! Mpc~! is a
derived quantity. We don’t consider gravity waves or isocurvature modes since these further
modifications are not required by the WMAP data.

The likelihood distribution function for age./ap, obtained after marginalization over the
remaining parameters, see § 5.1.5, is plotted in Fig. 6.18, and gives the marginalized confi-

(6.38)

dence interval
(at 95% l.c.).

0.95 < agec/ap < 1.02

If we impose dng/dInk = 0 we obtain instead
(6.39)

0.94 < agec/ao < 1.01  (at 95% l.c.).

It is interesting to consider the correlations between a o/« and the other parameters in
order to see how this modification to the standard model can change our conclusions about
cosmology. In Fig. 6.19 we plot the likelihood contours in the /gy — 7y plane for two cases:
using the temperature only WMAP data and including the T'E cross correlation data. There
is a clear degeneracy between these two parameters if one uses only temperature information:
increasing the optical depth allows for an higher value of the spectral index ng and a lower
value of a/ag. Inclusion of the TE data is already able to partially break this degeneracy,
but, as we explain below, more detailed measurements of the polarization spectra are needed

to constraint separately the two parameters,
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Figure 6.18: Marginalized likelihood distribution function for variations in the fine-structure
constant at the time of decoupling obtained by an analysis of the WMAP data (TT+TE,
one-year).

One of the most unexpected results from the WMARP data is the hint for a scale-dependence
of the spectral index ns (see e.g. Peiris et al., 2003; Kinney et al., 2004). Such a dependence
should not be detectable in most of the viable single field inflationary models and, if con-
firmed, would have strong consequences on the possibilities of reconstructing the inflationary
potential. For this reason we included the running of the spectral index in our parameter
set. In Fig. 6.20 we plot likelihood contours in the at/ay — dns/dIn k plane, showing that a
lower value of av/ay would prefer the absence of running. As already pointed out in Bean
et al. (2003), a modification of the recombination scheme can therefore provide a possible
explanation for the large value of dns/dInk found from WMAP data.

In previous (pre-WMAP) work, CMB-based constraints on a were obtained with the help
of additional cosmological data-sets and priors, as in Martins et al. (2002). This procedure
was exposed to the criticism that different data-sets could possibly have different systematic
errors that are impossible to control and could conceivably conspire to produce the results
quoted. The above results are obtain from WMARP only, and therefore eliminate this possible
uncertainty. For earlier works and pre-WMAP constraints, see also Avelino et al. (2000,
2001); Battye et al. (2001); Hannestad (1999).

6.3.6 Fisher matrix forecasts and degeneracies

We apply the Fisher matrix analysis (FMA) technique explained in § 5.2 to the problem of
forecasting the expected precision in the determination of age. with CMB anisotropy. For
the accuracy reasons presented at length in § 5.2, § 6.1.5 and § 6.2.5, we choose to employ
the following 8 dimensional base parameter set

0 = {Qbh27 th27 QAh2a RShiftv Ng, Q, Tre, adec/ao} (640)

which takes into account the severe geometrical degeneracy via the shift parameter RSPt
defined in Eq. (4.22). The quantity ns is the scalar spectral index (without running) and @
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Figure 6.19: Likelihood contour plot in the agec/y — Tre plane including temperature
information only (TT) and TT+4TE together from WMAP (68% and 95% l.c. from the
inside out). The inclusion of polarization data partially breaks the degeneracy between

these two parameters.

a phenomenological normalization parameter as in (6.13, page 143). We restrict ourselves to
scalar modes and adiabatic initial conditions.

The maximum likelihood model around which the FMA for Planck and the CVL is
performed has parameters w, = 0.0200, w, = 0.1310, wy = 0.2957 (and h = 0.65),
RePif — 0.9815, ny, = 1.00, @ = 1.00, 7 = 0.20 and o/ag = 1.00. We differentiate around
a slightly closed model (as preferred by WMAP) with Qi = 1.01 to avoid extra sources
of numerical inaccuracies, since open and closed models are computed by CMBFAST using
different numerical techniques which would introduce unwanted inaccuracies.

Regarding numerical accuracy issues in the computation of the Fisher matrix, we imple-
ment in the present work double-sided derivatives, which reduce the truncation error from

WMAP Planck
v (GHz) 40 60 90 100 143 217
0. (arcmin) 31.8 21.0 138 | 10.7 8.0 5.5
o.T (uK) 198 300 456 | 54 6.0 13.1
o (LK) 28.02 42.43 64.56 | n/a 114  26.7
wol-10° (K2 ster) | 336 33.6  33.6 | 0.215 0.158 0.350
le 254 385 586 | 757 1012 1472
Crnax 1000 2000
foky 0.80 0.80

Table 6.6: Experimental parameters for WMAP and Planck (nominal mission). Note that
we express the sensitivities in uK. See § 5.2.1 for definitions.
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Figure 6.20: Likelihood contour plot in the agec/ap — dng/dInk plane, from WMAP tem-
perature and ET correlation data (68%, 95% and 99% l.c. from the inside out). A zero scale
dependence, as expected in most of the inflationary models, seems to be more consistent
with a value of agec/ap < 1.

second order to third order terms. The choice of the step size is a trade-off between trunca-
tion error and numerical inaccuracy dominated cases. For an estimated numerical precision
of the computed models of order 1074, the step size should be approximately 5% of the
parameter value (Press et al., 1992), though it turns out that for derivatives in direction of
and ng the step size can be chosen to be as small as 0.1%. After several tests, we have chosen
step sizes varying from 1% to 5% for wy, wm,wa and R3M. This choice gives derivatives with
an accuracy of about 0.5%. The derivatives with respect to @) are exact, being the power
spectrum itself.

Predictions for WMAP’s four year data

We present here the main results of the Fisher matrix forecasts; the full tables and more
detailed comments can be found in Rocha et al. (2004). We first concentrate on the potential
of the WMAP four year data, and we compare in Tables 6.7 and 6.8 the expected errors for
two cases, for the base set of parameters (6.40) with and without inclusion of agec/ap. In
both cases, we take as reference model for the Fisher matrix the WMAP best fit model of
Table 1, in Spergel et al. (2003), but with a slightly larger cosmological constant which gives
Qtot = 1.01, for the accuracy reasons explained above.

Table 6.7 gives accurate predictions for the errors on standard cosmological parame-
ters, for models including non-flat cosmologies. Clearly, with the WMAP sensitivity, E-
polarization alone will not constrain much the parameters, but combining temperature in-
formation with the polarization channels will reduce the errors on the baryon and matter
density and on the shift parameter by about a factor of three, with all other parameters
marginalized over. The error on the cosmological constant will remain of order unity, since
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Quantity 1o errors (%)
WMAP four year
marg. fixed joint ‘ marg. fixed joint
Polarization (EE) Temperature (TT)
baryon density W 110.64 16.58 316.44 7.33 0.81  20.96
matter density Wn 49.48 17.16 141.52 8.91 0.77  25.49
A density WA 622.34 9758 1779.93 | 113.30 83.39 324.06
spectral index Ng 69.43 4.89  198.58 6.68 0.53 19.11
normalization Q 79.22  13.51  226.58 0.90 0.32 2.58
shift parameter Rehift 4652 13.04 133.06 | 9.25  0.59  26.47
reionization optical depth Tre 100.84 821  288.40 | 102.72 16.70 293.79
Temp+Pol (TT+EE) All (TT+EE+4+TE)
baryon density wp 2.14 0.80 6.11 2.13 0.80 6.08
matter density W 3.09 0.77 8.85 3.08 0.77 8.81
A density WA 90.70 63.84 259.41 | 86.97 62.69 248.75
spectral index Ng 1.46 0.52 4.18 1.45 0.52 4.15
normalization Q 0.52 0.32 1.48 0.52 0.32 1.48
shift parameter Rehift 986 0.59 8.17 2.84 059 812
reionization optical depth Tre 10.52 745 30.08 10.41 744  29.78

Table 6.7: Fisher matrix analysis results for a standard model with inclusion of reionization
(for the WMAP best fit model as the fisher analysis fiducial model, with 7. = 0.17): expected
lo errors from the WMAP-four year data. The column marg. gives the error with all other
parameters being marginalized over; in the column fized the other parameters are held fixed
at their ML value; in the column joint all parameters are being estimated jointly.

this is an expression of the geometrical degeneracy which is fundamentally unbreakable with-
out external priors. The spectacular improvement of about a factor 10 in determining 7e
with polarization information is a consequence of the expected measurement of the reion-
ization induced polarization bump, which breaks the degeneracy with normalization present
with temperature alone. The spectral index accuracy thus increases by a factor 4, because
the better determination of the reionization optical depth assists into breaking the small scale
degeneracy with ng. The column “fixed” gives the best case scenario in which all other param-
eters are assumed to be known and fixed to their fiducial model value. In this case, the errors
obtained by combining all channels are below 1% for all parameters but the cosmological
constant.

Let us now compare this forecasts with the corresponding entries in Table 6.8, where the
parameter agec/ap has been added. The addition of a varying fine-structure constant opens
up new degeneracy directions, hence the marginalized and joint error forecasts get worse (but
not the errors with all other parameters fixed, of course). The most degenerate direction
is with the shift parameter (marginalized errors larger by a factor 7 with all channels), as
expected from the above considerations. Due to its effect on the peak heights, the fine-
structure constant is largely degenerate with w; up to the second acoustic peak; an accurate
mapping of the large multipole temperature spectrum can nevertheless lift this degeneracy,
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Quantity 1o errors (%)
WMAP four year
marg. fixed  joint ‘ marg. fixed joint
Polarization (EE) Temperature (TT)
baryon density wp 173.74 16.58 496.91 | 14.09 0.81  40.30
matter density W 260.62 17.16 74540 | 13.76 0.77  39.36
A density WA 637.28 97.58 1822.66 | 133.73 83.39 382.47
spectral index Ng 108.18 4.89  309.41 7.86 0.53  22.47
normalization Q 96.60 13.51 276.30 2.33 0.32 6.67
shift parameter RePift 133.23 13.04 381.04 | 2629 0.59 75.19
fine structure constant Qldec 69.10 2.48  197.62 5.83 0.12 16.66
reionization optical depth Tre 228.69 8.21  654.07 | 103.86 16.70 297.05
Temp+Pol (TT+EE) All (TT+EE+TE)

baryon density Wp 7.50 0.80 21.44 7.41 0.80  21.18
matter density W 5.48 0.77 15.66 5.46 0.77  15.62
A density WA 91.57 63.84 261.91 | 87.48 62.69 250.20
spectral index Ns 2.03 0.52 5.82 2.03 0.52 5.81
normalization Q 1.31 0.32 3.73 1.30 0.32 3.71
shift parameter RePift 1434 059  41.01 | 14.17  0.59  40.53
fine structure constant Qldec 3.08 0.11 8.80 3.05 0.11 8.71
reionization optical depth Tre 10.65 745 30.46 10.52  7.44  30.08

Table 6.8: Fisher matrix analysis results for the model of Table 6.7 with inclusion of agec.

also constraining better ns, see Martins et al. (2002) for details. This explains the larger
errors on the baryon density and on the spectral index as we include « in the parameter set.
However, the optical depth determination remains almost unaffected, as a consequence of
the simultaneous measurement of the reionization bump’s position and of the acoustic peaks
angular scale, thereby validating our method for the restricted class of sudden reionization
models considered here.

Predictions for Planck and an ideal experiment

We now focus on the Fisher matrix forecasts for the expected performance of the Planck
satellite, and compare them with the results for an ideal CMB experiment, which would
map both temperature and E-polarization with cosmic variance limited (CVL) accuracy up
to £ = 2000. Clearly, such a measurement is not feasible in practice, because of foreground
removal and limited instrumental sensitivity, but it represents in principle the best possible
parameters determination using CMB alone. The full results are tabulated in Table 6.9 and
Table 6.10. In order to clarify the role of correlations between parameters, we plot in Figures
6.21 and 6.23 the 20 joint likelihood contours for all couples of parameters for Planck, and
in Figures 6.22 and 6.24 for the CVL experiment.

The first important fact is that E-polarization data alone from Planck will constrain the
standard parameters better than the four year WMAP temperature data alone, compare
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Table 6.7 with Table 6.9. This follows from the fact that the polarization spectrum is
less plagued by large scale degeneracies than the temperature spectrum. Furthermore, as
apparent from Fig. 6.21, degeneracy directions for the temperature spectrum are in many
cases almost orthogonal to the directions in the polarization channel. This is especially the
case for 74, and in fact combining temperature and polarization information reduces its
marginalized error from 16% (6%) for temperature (polarization) alone to 4%. In general,
the WMAP four year error-bars will be approximately halved for all parameters by Planck.
Another significant aspect is that by comparing the temperature only column for Planck
to the one for the CVL experiment, we conclude that Planck will be essentially cosmic
variance limited as far as the temperature spectrum is concerned. This is not the case for
the polarization channel, for which there will still be room for a substantial improvement
over Planck’s capabilities: the CVL experiment can do better than Planck by a factor 5
or more on average. The comparison of Figures 6.21 and 6.22 immediately confirms this
conclusion, which makes a strong case for a post-Planck, polarization-dedicated experiment.

When we add the fine-structure constant to the Planck parameter set, the ellipses for
temperature and polarization get larger for all the couples of parameters involving degener-
ate directions with «, compare Fig. 6.23 with Fig. 6.21. As before, this happens mostly for
the Rt ng and 7 using temperature information only. The degradation of the accuracy
on those parameters is less dramatic than for WMAP, because Planck will map the spectrum
to larger multipoles. It is remarkable that the combined temperature and polarization error
does not grow very much when we add «, because the degeneracies are in different direc-
tions for the two channels. The fine-structure constant is the only parameter which Planck
will constrain better with temperature only (0.7%) than with polarization only (2.7%, all
others marginalized), while the situation is opposite for 7., 27% for temperature and 9%
for polarization. Combining the two channels again lifts most of the degenerate directions,
and we conclude that Planck will achieve an accuracy on agec of order 0.3% (1o, all others
marginalized), thus improving by about a factor of 10 on the expected performance of the
four year WMAP mission and a factor of 5 on the current upper bound (obtained however
under the assumption of flatness). At the same time, the reionization optical depth will be
constrained to about 4.5%. Our findings for agec/ap and 7 are summarized in Fig. 6.25,
where we compare degeneracy directions in the agec/o, e plane for temperature alone,
polarization alone and the combined channels, for Planck and the CVL experiment. We also
superimpose the corresponding forecast for the WMAP four year mission (all channels) in
order to facilitate the comparison.

The columns in Table 6.10 regarding the CVL experiment and the corresponding Fig. 6.24
give information about further improvements on Planck’s parameter accuracy. As mentioned,
a cosmic variance limited measurement of polarization could further reduce Planck’s error-
bars by a factor 2 to 3, reaching the highest possible accuracy from CMB alone. In particular,
our analysis indicate that CMB alone can constrain variations of o up to O(1073) at z ~ 1100.
Going beyond will require additional priors on the other parameters.
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Quantity lo errors (%)
Planck HFI CVL
marg. fixed joint ‘ marg. fixed  joint
Polarization only (EE)
baryon density wWh 6.21 111 17.75 0.48  0.25 1.38
matter density Wi 3.37 0.39 9.64 0.70  0.03 1.99
cosmological constant density — wj 37.37  22.87 106.89 | 11.40 9.99  32.61
spectral index Ng 1.53 0.96 4.38 0.30 0.08 0.86
normalization Q 2.23 0.51 6.38 0.24  0.07 0.67
shift parameter Rehift 333 035 952 | 0.65 0.03  1.86
reionization optical depth Tre 5.74 2.78  16.42 1.81 1.52 5.18
Temperature only (TT)
baryon density wh 0.86 0.60 2.46 0.57  0.38 1.64
matter density W, 1.51 0.13 4.31 1.10 0.08 3.14
cosmological constant density — wy 110.15 96.15 315.03 | 98.15 86.00 280.72
spectral index Ng 0.54 0.13 1.56 0.36 0.07 1.04
normalization Q 0.20 0.11 0.56 0.17  0.07 0.50
shift parameter ReMift 147 012 4.21 1.05 0.07 3.01
reionization optical depth Tre 16.50  8.28  47.20 | 14.02 5.89  40.09
Temperature and Polarization (TT+EE)

baryon density wh 0.80 0.53 2.30 0.32 0.21 0.92
matter density W 1.24 0.12 3.55 0.55  0.03 1.58
cosmological constant density — wy 30.58 22.04 87.46 | 10.72 9.85  30.65
spectral index N 0.43 0.13 1.23 0.20  0.05 0.58
normalization Q 0.19 0.10 0.53 0.14 0.05 0.41
shift parameter Rebift 192 011 348 | 0.52  0.03  1.49
reionization optical depth Tre 4.04 2.6  11.56 1.73 1.48 4.96

Table 6.9: Fisher matrix analysis results including reionization (7. = 0.20): expected lo

errors for the Planck satellite and for cosmic variance limited (CVL) experiment.
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Figure 6.21: Ellipses containing 95.4% (20) of joint confidence (all other parameters
marginalized) using temperature alone (red), E-polarization alone (yellow), and both jointly
(white), for a standard model with inclusion of reionization (7. = 0.20). Fisher matrix
forecast for the Planck HFI instrument.
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Figure 6.22: Ellipses containing 95.4% (20) of joint confidence (all other parameters
marginalized) using temperature alone (red), E-polarization alone (yellow), and both jointly
(white), for a standard model with inclusion of reionization (7. = 0.20). Fisher matrix
forecast for an ideal cosmic variance limited (CVL) experiment.
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Quantity lo errors (%)
Planck HFI CVL
marg. fixed joint ‘ marg. fixed  joint
Polarization only (EE)
baryon density wp 6.46 1.11  18.47 1.09 0.25 3.12
matter density W 7.75 0.39 22.17 1.61 0.03 4.60
cosmological constant density wa 41.61 22.87 119.01 | 11.60 9.99 33.17
spectral index N 4.14 0.96 11.85 0.77 0.08 2.22
normalization Q 2.99 0.51 8.55 0.24 0.07 0.68
shift parameter Rehift 956  0.35  27.33 | 1.19  0.03 3.40
fine structure constant Qldec 2.66 0.06 7.62 0.40 <0.01 1.14
reionization optical depth Tro 8.81 2.78 25.19 | 2.26 1.52 6.45
Temperature only (TT)
baryon density wp 1.09 0.60 3.12 0.83 0.38 2.37
matter density Wi 3.76 0.13 10.74 2.64 0.08 7.55
cosmological constant density wa 111.61 96.15 319.21 | 98.97 86.00 283.05
spectral index N 2.18 0.13 6.24 1.49 0.07 4.26
normalization Q 0.20 0.11 0.57 0.18 0.07 0.50
shift parameter Rehift 158 012 453 | 1.06  0.07 3.04
fine structure constant Qdec 0.66 0.02 1.88 0.41 0.01 1.18
reionization optical depth Tre 2693 8.28 77.02 | 20.32 5.89 58.11
Temperature and Polarization (TT+EE)

baryon density wp 0.91 0.53 2.61 0.38 0.21 1.09
matter density Wi 1.81 0.12 5.17 0.67 0.03 1.91
cosmological constant density wy 30.89 22.04 88.36 | 10.79 9.85 30.85
spectral index Ng 0.97 0.13 2.77 0.33 0.05 0.93
normalization Q 0.19 0.10 0.54 0.14 0.05 0.41
shift parameter Rebift 143 011 4.08 | 0.60  0.03 1.72
fine structure constant Qdec 0.34 0.02 0.97 0.11 <0.01 0.32
reionization optical depth Tre 4.48 2.65  12.80 1.80 1.48 5.15

Table 6.10: Fisher matrix analysis results as in Table 6.9 but including aec.
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Figure 6.23: Ellipses containing 95.4% (20) of joint confidence (all other parameters
marginalized) using temperature alone (red), E-polarization alone (yellow), and both jointly
(white), for a standard model with inclusion of reionization (7 = 0.20) and time variations
of the fine-structure constant. Fisher matrix forecast for the Planck HFT instrument.
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Figure 6.24: Ellipses containing 95.4% (20) of joint confidence (all other parameters
marginalized) using temperature alone (red), E-polarization alone (yellow), and both jointly
(white), for a standard model with inclusion of reionization (7 = 0.20) and time variations
of the fine-structure constant. Fisher matrix forecast for an ideal cosmic variance limited
(CVL) experiment.
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Figure 6.25: Ellipses containing 95.4% (20) of joint likelihood in the agec/cp — Tre plane
(all other parameters marginalized), for the Planck and cosmic variance limited (CVL) ex-
periments, using temperature alone (red), E-polarization alone (yellow), and both jointly
(white). The dashed contour represents the WMAP - 4years forecast using (TT+EE+TE)
jointly.



Chapter 7

Testing the paradigm of
adiabaticity

Combination of today’s high quality CMB data with other cosmological data sets allows us
to constrain the eight parameters

0= {chmyQbaQAaNuahaTreyn&As} (71)

with an accuracy of a few percent (Tegmark et al., 2004b), if we assume flatness, i.e. by
imposing (¢ = 0. This is a spectacular achievement, even more so given the fact that many
completely independent measurements seem to be converging towards the same values. In
the previous sections we have discussed the determination of most of the above parameters;
here we highlight that the accuracy of parameter extraction depends crucially on the as-
sumption that the initial conditions for the perturbations are purely adiabatic, and explore
the consequences of relaxing this strong assumption by including the most general type of
initial conditions in the problem.

This chapter is organized as follows: we first present an introductory survey on recent
CMB analysis involving isocurvature modes, § 7.1; we then investigate in a specific example
how the inclusion of isocurvature modes spoils the precise determination of the baryon density
from pre-WMAP CMB data in § 7.2; in § 7.3 we ask whether the presence of non-adiabatic
contribution can reproduce CMB and large scale structure observations without the need for
a cosmological constant, and we conclude that 25 # 0 is robust with respect to the inclusion
of isocurvature modes and to the use of a frequentist (rather than Bayesian) approach;
finally, in § 7.4 we give the future prospects for the determination by WMAP and Planck of
cosmological parameters independent of any assumption about the type of initial conditions.

7.1 Introductory survey

Until recently, most of the literature has focused on parameter extraction assuming purely
adiabatic initial conditions, because the evidence for a first acoustic peak around ¢ = 220
very soon ruled out the possibility of the simplest alternative, namely purely isocurvature
CDM initial conditions, see e.g. Enqvist et al. (2000). Nevertheless, subdominant CDM
isocurvature contributions cannot be excluded, and the constraints are even less stringent
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if one allows for a correlated mixture, in which case the correlator can cancel out most
of the isocurvature contribution on large scale (Langlois & Riazuelo, 2000; Amendola et al.,
2002). This qualitative conclusion holds even after the more precise measurements of WMAP
(Valiviita & Muhonen, 2003).

In the works of Bucher et al. (2001, 2002) the consequences for parameter extraction
are examined when the most general initial conditions are allowed, with the conclusion that
only a precise measurement of polarization would allow for the simultaneous reconstruction of
cosmological parameters and of the initial conditions correlation matrix. The first attempt of
including all the modes in a numerical parameter determination from real data is performed
in Trotta et al. (2001), as illustrated in § 7.2, with the result that the pre-WMAP CMB data
can not constrain to any extent the value of the baryon density and the Hubble parameter
in the general initial conditions case. After the release of the WMAP first-year data, two
groups have re-investigated the question of the most general initial conditions in the wake
of the improved measurements: Crotty et al. (2003a) consider a correlated mixture of the
adiabatic mode with each of the isocurvature modes in turn, finding that the pre-WMAP
constraints on the isocurvature contribution are significantly improved; Bucher et al. (2004)
refine the analysis of Trotta et al. (2001) by using Monte Carlo methods, and simultaneously
including all the isocurvature modes and six cosmological parameters, but the conclusions
remained qualitatively the same. The bottom line is that the relaxing the assumption of
adiabaticity spoils our ability to do precision cosmology.

The phenomenological approach gives useful hints on the “stiffness” of current data, and
indeed the possibility of accommodating isocurvature modes has been considerably reduced
by WMAP. Although independent of any model for the generation of perturbations, this
approach has the disadvantage of introducing many new free parameters in the description
of the power spectrum. To reduce this number somewhat, all analyses so far have assumed
the same spectral index for all modes, an assumption which is not really motivated. Since the
current CMB data are in excellent agreement with purely adiabatic initial conditions, it is not
surprising however that there is no statistical evidence that such extra parameters should be
non-zero. Occam’s razor would therefore dictate to stick to the simplest adiabatic description,
lacking any evidence for a more complicated model. However, there is no compelling reason
why the physics of the early universe should boil down to only one degree of freedom.

A second reason why model-independent constraints should be regarded with care is that
in any specific implementation, some of the parameters will be correlated. For instance, in
the curvaton scenario (Moroi & Takahashi, 2001; Lyth & Wands, 2002; Enqvist & Sloth,
2002; Lyth et al., 2003), the adiabatic and residual isocurvature modes are always totally
correlated or anti-correlated. Therefore, not only the number of extra degrees of freedom is
reduced, but possibly the parameter space of the model is a highly constrained subspace of the
model-independent parameter space. For this reason it is interesting to derive model-specific
constraints, which are more stringent than those obtained with a general phenomenological
parametrization. For instance, WMAP constraints for the curvaton model have been derived
for the case of CDM and baryons isocurvature fluctuations (Gordon & Lewis, 2003; Lyth &
Wands, 2003). The neutrino density mode can be generated from perturbations of the
neutrino chemical potential (Lyth et al., 2003), and bounds have recently been derived for
this case (Gordon & Malik, 2004). It seems more difficult to produce a neutrino velocity
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mode: a working model is at present still lacking.

Despite these difficulties, the CMB represents the most promising data set to learn about
the type of initial conditions realized in the observed Universe: it is our window to the very
early universe.

7.2 Precision cosmology and general initial conditions

In this section, based on the work published in Trotta et al. (2001), we investigate the extent
to which the determination of cosmological parameters depends on the assumptions about
initial conditions. We show in a specific example how the allowed parameter range is enlarged
when the usual requirement for purely adiabatic initial conditions is relaxed. In order to limit
the computational effort, we have chosen to vary some cosmological parameters and keep the
others fixed. We consider flat models only, and we fix the total density parameter, the total
matter density and the cosmological constant density parameter as follows:

Qot =N+ =1,
Q= Qedm + 2 = 0.3, (72)
Qp =0.7,

where Qcqm and Qy are the density parameters of cold dark matter (CDM) and baryons
respectively, and €2 denotes the density parameter due to a cosmological constant, 2y =
A/SHS, and Hy = 100h km s~! Mpc~! is the Hubble parameter today. With Q, fixed to
the above values, we then vary the Hubble parameter h, the baryon density wp = Qph?
and the correlation matrix M which describes the most general (i.e. mixed adiabatic and
isocurvature) initial conditions, as explained in § 4.3. We also fix to unity the scalar spectral
index, ng = 1 for all modes and cross-correlators. Even by varying only two cosmological pa-
rameters, our parameters space is still 12-dimensional, since the initial condition correlation
matrix introduces ten free amplitudes.

We also investigate the following question: what is the preferred isocurvature contribution
to the perturbations? We shall see that, with pre-WMAP CMB data, this question cannot
be answered without strong assumptions about the cosmological parameters.

7.2.1 Pre-WMAP data analysis

Our analysis uses the COBE (Tegmark & Hamilton, 1997) and BOOMERanG (Netterfield
et al., 2002) data. For the latter, we take into account the calibration and the beam size
uncertainties which treated just like two additional (normally distributed) parameters of the
problem (“nuisance parameters”). The two cosmological parameters h,w, are sampled on a
uniform grid as follows (the number in parenthesis is the step size):

050 <h < 080 (0.05), (7.3)
0.015 < wp< 0.085  (0.005).

For each grid point, we search the initial condition space by minimizing the chi-square, as
explained in § 5.1.5. We look for the best fit point by using a downhill simplex method (Press
et al., 1992) initiated after choosing a starting point randomly. The positive semi-definiteness
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of the correlation matrix M is ensured by penalty functions which guarantee that the con-
ditions (4.52, page 107) are satisfied (more details are given in Trotta, 2001). The best fit is
then estimated after 15,000 minimization runs using this procedure. It turns out that the
topology of the x? surface on our 14-dimensional parameter space (including the two above
nuisance parameters) is quite complicated with many local minima and large degeneracies,
which considerably complicates the numerical search. We assume that the likelihood func-
tion is Gaussian, and we maximize instead of marginalize over the parameter we are not
interested in, see § 5.1.5.

In Fig. 7.1 we show the best-fit spectra for two different choices of the cosmological
parameters wyp, and h. Both of them are good fits if we allow for mixed initial conditions.
On the plot we have also indicated the reduced 2, i.e. the value of yx?/F, where F is
the number of degrees of freedom of the fit. For a fixed choice of wy,, h the purely adiabatic
model has only three parameters (the amplitude of the adiabatic mode, and the two nuisance
parameters). With 26 data points (7 from COBE and 19 from BOOMERanG) this leads to
Fap = 26 — 3 = 23 degrees of freedom. The mixed models have a symmetric 4 x 4 matrix
determining the initial amplitude, leading to a total of 12 parameters and hence Fyx = 14
degrees of freedom. If we also vary wy, and h, the number of degrees of freedom is lowered
by two. It is not surprising that for fixed values h = 0.65, wp, = 0.02, which are well fitted
by the adiabatic model, the reduced x? of the adiabatic model is somewhat lower than the
one of the mixed model, since Fyix < Fap (as an example, see top panel of Fig. 7.1). For
the mixed model, the absolute x? is always lower.

For both models we determine the likelihood functions of the cosmological parameters wy,
and h by maximizing the initial conditions correlation matrix and the nuisance parameters.
The result is shown in the left panel of Fig. 7.2 where the likelihood contours in the (wy, h)
plane are indicated for purely adiabatic and for mixed (general isocurvature) models. It
is remarkable the extent to which the innermost lo contour opens up, once we allow for
isocurvature components. Strangely, the least likely region is the upper left corner which
contains the value of wy, = 0.019 £ 0.02 inferred from BBN (Burles et al., 2001) and the
Hubble space telescope key project value for the Hubble parameter (Freedman et al., 2001)
of h = 0.72 4+ 0.08. Moreover, there is absolutely no upper limit for wy, within the range
investigated here! This is explained by the fact that the strongest features of a high baryon
density universe, the asymmetry between even and odd acoustic peaks and the shift of the
peak position due to the change in the sound velocity, can be fully compensated by an
admixture of isocurvature modes (see left panel of Fig. 7.1). A very high baryon density can
therefore easily be accommodated into this framework. However, for high wy, and low h, it
is difficult to find a good fit because there is not enough power in the secondary peak region
due to the early integrated Sachs-Wolfe effect boosting the first peak.

We define the isocurvature content of a mixed model as

Moo + M3z + Myq
trM ’

gl (7.5)
where M7, denotes the adiabatic mode amplitude. The isocurvature content of the model
shown in the left panel of Fig. 7.1 is only v = 0.12, while for the parameter choice in the right
panel one has v = 0.69. Hence, if the cosmological parameters are close to those chosen in
the left panel, we can conclude that the cosmic perturbations are predominantly adiabatic.



7.2 Precision cosmology and general initial conditions 189

h =065 | h = 0.65

6000 - @, = 0.020 | 6000 - @, = 0.0427]
XunZ = 1.08
XuZ = 0.83

Xux® = 0.77 |
Xup? = 4.32

4000 4000

2000 2000

T2 (¢+1)C,/(2m)  [1K?E]
T3 (¢+1)C,/(2m)  [1K?]

O IIIIIIIIIIIIIIIIIII 1 O IIIIIIIIIIIIIIIIII;‘.. ”I
200 400 600 800 1000 200 400 600 800 1000

{ /

Figure 7.1: CMB anisotropy temperature spectrum for different values of the cosmological
parameters wp, and h. We plot the best-fit corresponding to a purely adiabatic case (dashed
line) and allowing general initial conditions, mixed models (solid line). The calibration and
the beam size of the BOOMERanG data have been optimized to fit the mixed model (solid
error bars) or the adiabatic model (dotted error bars). The parameter choice in the left panel
(wp, = 0.02, h = 0.65) can be fitted by both models while the values wy, = 0.042, h = 0.65
(right panel), can only be fitted by a mixed model.

In the right panel of Fig. 7.2 we plot the isocurvature content, v, of the best fit model
obtained by minimizing x? by variation of the initial conditions for given values of the
cosmological parameters. Clearly, the further away we move from the region of parameter
space well fitted by the purely adiabatic model, the higher the isocurvature contribution
needed to fit the data becomes.

The main non-adiabatic component of our best fits is the neutrino entropy mode. This
was to be expected, since this mode and its correlator with the adiabatic mode can shift the
peak positions and can substantially add or subtract power from the second peak (Bucher
et al., 2000). A crucial point is, therefore, to know whether such a mode can appear in
a realistic structure formation scenario. It is known that for interacting species the non-
adiabatic part of the perturbations tends to decay with time. Therefore, the generation of a
neutrino entropy component can only occur after neutrino decoupling, that is at T < 1 MeV
(see Gordon & Malik, 2004 for a discussion). A neutrino isocurvature perturbation could also
be due to a fourth species of sterile neutrinos which may have decoupled very early in the
history of the Universe. The same remark also applies of course to the CDM isocurvature
mode. Note that the energy density of this fourth neutrino type cannot be very high, in
order not to contradict the light element abundances, but there is nothing which prevents
(at least in principle) the presence of large perturbations in this component.



190 Testing the paradigm of adiabaticity

0.80
0.75
0.70

0.80

Isocurvature

0.75 content i

0.70 L)

0.65 0.65

Hubble parameter
Hubble parameter

0.60 0.60

0.55 r 99"/0\'C'

0.55

0'50 1 1 1 1 1 0‘50 1 1 1 1
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 7.2: Left panel: the contours of 68%, 95%, 99% likelihood content in the (wy,, k) plane
for purely adiabatic models (shadows of green, smaller contours) and for mixed models (red to
yellow, large contours). The likelihoods are obtained by maximizing the nuisance parameters,
and the initial conditions correlation matrix M for mixed (i.e. general isocurvature) models.
For mixed models, the lowest x? corresponds to even higher values of wy, and h than those
shown in the plot. Right panel: the isocurvature content v defined in (7.5) of the best
fit mixed model as function of the parameters (wp,h). A larger value for + indicates a
predominance of the isocurvature modes on the adiabatic one.

7.2.2 How important is the assumption of adiabaticity?

We have shown that in allowing for isocurvature perturbations, one can fit very well pre-
WMAP CMB data with cosmological parameters which differ considerably from the ones
preferred by adiabatic perturbations alone. More importantly, allowing for generic initial
conditions, the ranges of cosmological parameters which can fit the CMB anisotropy data
open up to an extent to become nearly meaningless. On the other hand, assuming measure-
ments of cosmological parameters from other methods like direct measurements of the Hubble
parameter which yield h ~ 0.65 and BBN which implies wy, ~ 0.02, we can use the CMB to
limit the isocurvature contribution in the initial conditions (or other unconventional features)
and thereby learn something about the very early universe, i.e., the inflationary phase which
has generated these initial conditions. For cosmological parameters in the range preferred
by other CMB independent measurements (2p ~ 0.7, Oy, ~ 0.3, b ~ 0.65, wp ~ 0.02) the
isocurvature contribution in the initial conditions has to be relatively modest (y < 0.3). We
have also checked explicitly that, given these cosmological parameters, a purely isocurvature
model, i.e. one with M7, = 0, cannot fit the data.

Finally, and most importantly, our work shows the danger of calling parameter estima-
tion by CMB anisotropy experiments a “parameter measurement” since the results depend
so sensitively (and quite unexpectedly) on the underlying model assumptions. We rather
consider CMB anisotropies as an excellent tool to test model assumptions or consistency. In
the light of these findings, non-CMB measurements of cosmological parameters acquire even
more importance. In short, CMB is the ideal tool to investigate the primordial parameters
for cosmic structure formation (i.e. the initial conditions), while there are many other possi-
bilities to constrain cosmological parameters (Q2x, h, etc), which we have to use in order to
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obtain good limits for possible isocurvature perturbations.

As shown in Bucher et al. (2001) and discussed in § 7.4, CMB temperature anisotropies
alone, even if measured with optimal precision limited by cosmic variance, do not allow the
degeneracy between cosmological parameters and initial conditions to be removed. Polariza-
tion measurements represent an additional non-trivial means to lift this degeneracy and might
constrain the contribution of the isocurvature modes to about 10% accuracy (Bucher et al.,
2001). The main reason for this is that polarization is mostly sensitive to the quadrupole of
the photon distribution rather than the photon density perturbation, these two quantities
depending in a different way on the initial conditions. In the same vein, using the normal-
ization of the matter power spectrum (provided it can be measured accurately) also helps to
break some of the degeneracies induced by the isocurvature modes, as we show in the next
section.
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7.3 The cosmological constant problem

Ever since the beginning of modern cosmology, one of the most enigmatic ingredients has
been the cosmological constant. Einstein (1917) introduced it to find static cosmological
solutions (which are, however, unstable). Later, when the expansion of the Universe had
been established, he reportedly called it his “greatest blunder”. In relativistic quantum field
theory, for symmetry reasons the vacuum energy momentum tensor is of the form eg,, for
some constant energy density €. The quantity A = 87wGe can be interpreted as a cosmological
constant. Typical values of € expected from particle physics come, for example, from the
super-symmetry breaking scale which is expected to be of the order of € 2 1 TeV* leading to
A2 1.7x10726 GeV?, and corresponding to 2 2 10°8. Recall that for the density parameter
Qp = €/ peric = A/ (87TGperit ), where peris = 8.1 x 10747 h2 GeV* is the critical density and the
fudge factor h is defined by Hy = 100 h km s~! Mpc ™, lying in the interval 0.5 < h < 0.8.
Hj is the Hubble parameter today.

Such a result is clearly in contradiction with kinematical observations of the expansion
of the universe, which tell us that the value of ., the density parameter for the total
matter-energy content of the universe, is of the order of unity, O(€4o) ~ 1. For a long time,
this apparent contradiction has been accepted by most cosmologists and particle physicists,
convinced that there must be some deep, not yet understood reason that vacuum energy
— which is not felt by gauge-interactions — does not affect the gravitational field either,
and hence we measure effectively A = 0. This slightly unsatisfactory situation became
really disturbing in 1998, as two groups, which had measured luminosity distances to type
Ta supernovae, independently announced that the expansion of the universe is accelerated
in the way expected in a universe dominated by a cosmological constant (Riess et al., 1998;
Perlmutter et al., 1999). More recent measurements, which extend to higher redshift, seem
to strengthen this conclusion (Tonry et al., 2003; Riess et al., 2004), obtaining values of the
order O(Qy,) ~ O(24) ~ 1 and cannot be explained by any sensible high energy physics
model. Tracking scalar fields or quintessence (Ratra & Peebles, 1988; Wetterich, 1988)
and other similar ideas (Ferreira & Joyce, 1997) have been introduced in order to mitigate
the smallness problem — i.e., the fact that e ~ 107%0 GeV*. However, none of those is
completely successful and really convincing at the moment, see Straumann (2003); Sahni
(2004) for reviews.

7.3.1 Does structure formation need a cosmological constant?

After the supernovae la results, cosmologists have found many other data-sets which also
require a non-vanishing cosmological constant. The most prominent fact is that CMB
anisotropies indicate a flat universe, Qiyot = Qm + Q4 = 1, while measurements of clus-
tering of matter, e.g., the galaxy power spectrum, require I' = h€);,, ~ 0.2. But also CMB
data alone, with some reasonable prior on the Hubble parameter, point to €24 > 0 at high
significance (Spergel et al., 2003).

This cosmological constant problem is probably the greatest enigma in present cosmology.
The supernova results are therefore under detailed scrutiny, and there has been a significant
amount of work aiming at finding an alternative explanation for the data, see e.g. Meszaros
(2002); Blanchard et al. (2003); Alam et al. (2004). Cosmological observations are usually
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very sensitive to systematic errors which are often very difficult to discover. Therefore, in
cosmology an observational result is usually accepted by the scientific community only if
several independent data-sets lead to the same conclusion. But this seems to be exactly the
case for the cosmological constant.

It is therefore imperative to investigate in detail whether present structure formation
data does require a cosmological constant, by asking whether enlarging the space of models
for structure formation does mitigate the cosmological constant problem. There are several
ways to enlarge the model space, e.g. one may allow for features in the primordial power
spectrum, like a kink (Barriga et al., 2001). Here we study the cosmological constant problem
in relation to the initial conditions for the cosmological perturbations.

In a first step we discuss once more the usual results obtained assuming purely adiabatic
models and we investigate the extent to which pre-WMAP CMB data alone or combined
with large-scale structure measurements require 24 # 0 in a flat universe, presenting the
findings published in Trotta et al. (2003). We shall first proceed with the usual Bayesian
analysis, but we also discuss the results which are obtained in a frequentist approach. We
find that even if 25 = 0 is outside the high likelihood region in a Bayesian approach this is
no longer the case from the frequentist point of view. In other words the probability that a
model with vanishing 25 leads to the present-day observed CMB and large-scale structure
data is not exceedingly small.

We then study how the results are modified if we allow for general isocurvature contribu-
tions to the initial conditions. In this first study of the matter power spectrum from general
isocurvature modes we discover that a COBE-normalized matter power spectrum reproduces
the observed amplitude only if it is highly dominated by the adiabatic component. Hence
the isocurvature modes cannot contribute significantly to the matter power spectrum and
do not lead to a degeneracy in the initial conditions for the matter power spectrum when
combined with CMB data.

7.3.2 CMB and large scale structure data analysis

The pre-WMAP CMB measurements, from BOOMERanG (Netterfield et al., 2002), MAX-
IMA (Lee et al., 2001), DASI (Halverson et al., 2002), VSA (Scott et al., 2003; Taylor et al.,
2003), CBI (Pearson et al., 2003) and Archeops (Benoit et al., 2003a) are in very good agree-
ment up to the third peak in the angular temperature power spectrum of CMB anisotropies,
¢ ~ 1000. In our analysis we therefore use the COBE data (Smoot et al., 1992; Bennett et al.,
1994) in the decorrelated compilation of Tegmark & Hamilton (1997) (7 points excluding the
quadrupole) for the ¢ region 3 < ¢ < 20 and the BOOMERanG data to cover the higher ¢
part of the spectrum (19 points in the range 100 < ¢ < 1000). Since Archeops has the small-
est error bars in the region of the first acoustic peak, we also include this data-set (16 points
in the range 15 < ¢ < 350). Including any of the other mentioned data does not influence
our results significantly. The BOOMERanG and Archeops absolute calibration errors (10%
and 7% at lo, respectively) as well as the uncertainty of the BOOMERanG beam size are
included as additional Gaussian nuisance parameters, and are maximized over. We make
use of the Archeops window functions available from the Archeops Website (2003), while
for BOOMERanG a top-hat window is assumed. For the matter power spectrum, we use
the galaxy-galaxy power spectrum from the 2dF data which is obtained from the redshift of
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about 10° galaxies (Tegmark et al., 2002). We include only the 22 decorrelated points in the
linear regime, i.e., in the range 0.017 < k < 0.314 [ Mpc~!], and the window functions of
Tegmark et al. (2002) which can be found at Tegmark’s Website (2003).

Our grid of models is restricted to flat universes and we assume purely scalar pertur-
bations. Since the goal here is more to make a conceptual point than to consider the
most generic model, we fix the baryon density to the BBN preferred value Qph? = wy, =
0.020 (Burles et al., 2001) and we investigate the following 3-dimensional grid in the space
of cosmological parameters:

035 <h < 1.00 (0.025),
0.00 < Qa< 0.95 (0.05), (7.6)
0.80 < ng < 1.20 (0.05),

where ng is the scalar spectral index, which again we take to be the same for all modes, and the
numbers in parenthesis give the step size we use. The total matter content 2, = Qcqm + Qb
is Qm = 1 — Qp, and Q.qm indicates the cold dark matter contribution. For all models the
optical depth of reionization is 7 = 0 and we have three families of massless neutrinos. For
each grid point we compute the ten CMB and matter power spectra, one for each independent
set of initial conditions, as explained in § 4.3. The initial condition correlation matrix M is
parameterized using the ten dimensional hypercube parameters presented on page 108.

For a given initial conditions correlation matrix M and spectral index ng, we quantify
the isocurvature contribution to the CMB temperature anisotropy by the phenomenological

Z (e +1))CF),

X=CINV,ND
B

S (we+ ey,

Y=AD,CI,NV,ND

parameter (3 defined as

(7.7)

where the average (-) is taken in the ¢ range of interest, in our case 3 < ¢ < 1000, and
where C’éX’X) stands for the auto-correlator of the CMB anisotropies with initial conditions
X. This quantity measures the average power of the adiabatic and isocurvature modes over
the full multipole range, and therefore it gives a more phenomenological description of the
isocurvature contribution than the parameter v used in the previous section, and defined in
Eq. (7.5, page 188).

As highlighted in § 5.1.5, the correct interpretation of Bayesian statistics is in terms of
most likely regions in parameter space, while the frequentist approach is required in order
to obtain exclusion intervals for the parameters. In order to answer the question of whether
the CMB and large scale structure data exclude with a given confidence the value 25 = 0,
we use the frequentist statistics, and compare the result with the usual Bayesian approach.

7.3.3 Adiabatic perturbations

We first fit CMB data only (N = 42) by maximizing M = 7 parameters, i.e., the three
nuisance parameters, ng, h, 2p and the overall amplitude of the adiabatic spectrum, and we
find (Bayesian likelihood intervals on {25 alone):

Qp = 0807010 at 20 and  TO12 at 30. (7.8)
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Figure 7.3: Joint likelihood contours (Bayesian, left panel) and confidence contours (frequen-
tist, right panel), with CMB only (solid lines,10, 20, 30 contours) and CMB+2dF (filled)
for purely adiabatic initial conditions. In the right panel, the number of effective degrees of
freedom is Fog = 31 for CMB alone Fog = 50 for CMB+2dF.

The asymmetry in the intervals arises because the value of 25 for our maximum likelihood
(ML) model is relatively large. One could achieve a better precision in determining the ML
value of (25 by using a finer grid and varying wy, as well, which has extensively been done in
the literature and is not the scope of this work. Moreover, the position of the acoustic peaks
in CMB anisotropies is mostly sensitive to the age of the universe at recombination, which
depends only on Q,,h2, and to the angular diameter distance, which depends on Q,, Qa
and the curvature of the universe. When the universe is flat, the angular diameter distance
is weakly dependent on the relative amounts of €2, and €25 as long as €25 is not too large,
see § 4.1.2 and Fig. 4.1 on page 96. Hence, one can achieve a sufficiently low value of 2, h?
either via a large cosmological constant or via a very low Hubble parameter, h < 0.45.

We now include the matter power spectrum P,,, assuming P, = b2Pg, where P, is the
observed galaxy power spectrum and b some unknown bias factor (assumed to be scale
independent), over which we maximize. Inclusion of this data in the analysis breaks the 4,
h degeneracy, since P,, is mainly sensitive to the shape parameter I' = Q,,h. We therefore
obtain significantly tighter overall likelihood intervals for €2,:

Qa =0.701017 at 20 and )35 at 30. (7.9)

We plot joint likelihood contours (Bayesian) for 4, h with purely adiabatic initial conditions
in the left panel of Fig. 7.3. From the Bayesian analysis, one concludes that CMB and 2dF
together require a non-zero cosmological constant at very high significance, more than 7o
for the points in our grid! Note that the ML point has a reduced chi-square )2%256 = 0.59,
significantly less than unity.

The frequentist analysis, however, excludes a much smaller region of parameter space, cf.
the right panel of Fig. 7.3. The frequentist contours must be drawn for the effective number
of degrees of freedom, i.e., using the number of effectively independent data points. We can
therefore roughly take into account a 10% correlation, which is the maximum correlation
between data points given in Netterfield et al. (2002); Benoit et al. (2003a), by replacing F'
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by the effective number of degrees of freedom, Fog = 0.9N — M, and rounding to the next
larger integer (to be conservative). One could argue that the BOOMERanG and Archeops
data points are not completely independent, since BOOMERanG observed a portion of the
same sky patch as measured by Archeops. This possible correlation is difficult to quantify,
but should not be too important since the sky portion observed by Archeops is a factor of
10 larger than BOOMERanG’s and therefore we ignore it here. The right panel of Fig. 7.3
is drawn with Fog = 31 for CMB alone and F.g = 50 for CMB+2dF, but we have checked
that our results do not change much if we use a 5% correlation.

It is interesting to note that there are regions in the left panel which are excluded with
a certain confidence by CMB data alone but are no longer excluded at the same confidence
when we include the 2dF data. In other words, it would seem that taking into account more
data and therefore more knowledge about the universe, does not systematically exclude more
models, i.e., the CMB+2dF contours are not always contained in the CMB alone contours.
This apparent contradiction vanishes when one realizes that the confidence limits on, e.g.,
Qx alone in the frequentist approach are just the projection of the confidence contours of
the right panel on the (25 axis. One can readily verify in the right panel that the confidence
limits for the combined data-set are always smaller than the ones for CMB data alone. There
are points with 25 = 0 and h ~ 0.40 which are still compatible within 2¢ with both 2dF
and CMB data, at the price of pushing somewhat the other parameters. In the best fit with
Qa = 0 shown in Fig. 7.4, one has to live with a red spectral index ng = 0.80. Furthermore,
the calibration of the BOOMERanG and Archeops data points is reduced in this fit by 34%
and 26%, respectively, i.e., more than 3 times the quoted 1o systematic error.

In both cases, it is clear that one can exploit the Qj, h degeneracy to fit CMB data
alone with a model having Q2,4 = 0. For a flat universe like the one we are considering,
one has then to use a much smaller value of the Hubble parameter than the one indicated
by other measurements, most notably the HST Key Project (Freedman et al., 2001), which
gives h = 0.72 + 0.08. The 2dF data are mainly sensitive to the shape parameter I' ~ 0.2,
hence 2dF with €, = 1.0 would require an even lower value of h which is not compatible
with CMB. Therefore inclusion of 2dF data tends to exclude any flat model without a
cosmological constant. Summing up, for purely adiabatic initial conditions the Bayesian
approach gives very strong support to 24 # 0; in the more conservative frequentist point
of view, while 2y # 0 cannot be excluded with very high confidence, the combination of
2dF and pre-WMAP CMB data start to be incompatible with a flat universe with vanishing
cosmological constant. These conclusions are in qualitative agreement with previous works
using comparable data (Netterfield et al., 2002; Pryke et al., 2002; Lewis & Bridle, 2002;
Wang et al., 2002; Durrer et al., 2003b; Rubino-Martin et al., 2003; Benoit et al., 2003b).
In the next section we investigate the stability of these well known results with respect to
inclusion of non-adiabatic initial conditions.

7.3.4 Mixed adiabatic and isocurvature perturbations

We now enlarge the space of models by including all possible isocurvature modes with ar-
bitrary correlations among themselves and the adiabatic mode as described in the previous
section, but with the restriction that all modes have the same spectral index. We first consider
CMB data only and maximize over initial conditions. The number of parameters increases
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Figure 7.4: Best fit with 2, = 0 and purely adiabatic initial conditions, compatible with
CMB and 2dF data within 20 confidence level (frequentist). In the right panel, only the 2dF
data points left of the vertical, dotted line — i.e., in the linear region — have been included
in the analysis. Note the low CMB first acoustic peak in the left panel due to the joint effect
of the red spectral index and of the absence of early ISW effect. In this fit, the calibration
of BOOMERanG (red/dark gray errorbars) and Archeops (green/light gray errorbars) has
been reduced by 34% and 26%, respectively. To appreciate the difference, we plot the
non recalibrated value of the BOOMERanG and Archeops data points as diagonal/magenta
crosses and vertical/light blue crosses, respectively. Even though the fit is “by eye” very
good, it seems highly unlikely that the calibration error is so large.

by nine and the number of degrees of freedom decreases correspondingly with respect to the
purely adiabatic case considered above.

Likelihood (Bayesian, left panel of Fig. 7.5) and confidence (frequentist, right panel of
Fig. 7.5) contours widen up somewhat along the degeneracy line. The enlargement is less
dramatic than in the case of the baryon density presented in § 7.2. This is partially due to
our prior of flatness which reduces the space of models to those which are almost degenerate
in the angular diameter distance. Most of our models have the first acoustic peak of the
adiabatic mode already in the region preferred by experiments, hence in most of the fits,
isocurvature modes play a modest role, especially in the parameter regions with large 4,
h (cf. Fig. 7.9 and the discussion below). Nevertheless, because of the 4, h degeneracy,
even a modest widening of the contours along the degeneracy line results in an important
enlargement of the likelihood limits. The ML point does not depart very much from the
purely adiabatic case, but now we cannot constrain 4 at more than 1o (Bayesian, CMB
only):

Qr = 085709 at 1o, (7.10)

and no limits for 0.0 < Qx < 0.95 at higher confidence.
In Fig. 7.6 we plot the dark matter power spectra of the different auto- (left panel)
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Figure 7.5: Joint likelihood contours (Bayesian, left panel) and confidence contours (frequen-
tist, right panel), with CMB only (solid lines) and CMB+2dF (filled) after maximization over
general isocurvature initial conditions. The likelihood /probability content is 1o, 20, 30, from
the center to the outside. The disconnected 1o region in the left panel is an artificial feature
due to the grid resolution. In the right panel, the number of effective degrees of freedom is
Fog = 22 for CMB alone Fo.g = 41 for CMB+2dF.

and cross-correlators (right panel) for a concordance model. The norm of each pure mode
(AD, CI, ND, NV) is chosen such that the corresponding CMB power spectrum is COBE-
normalized. The cross-correlators are normalized according to totally correlated spectra,

Mxyy = /MxMy/2, (7.11)

where Mx y) denotes the norm of the cross-correlator between the modes XY and Mx

ie.

the norm of the pure mode X. A crucial result is that the COBE-normalized amplitude
of the adiabatic matter power spectrum is nearly two orders of magnitude larger than the
isocurvature contribution. The main reason for this is the amplitude of the Sachs-Wolfe
plateau which is about %CD for adiabatic perturbations and 2% for isocurvature perturbations,
where @ is the gravitational potential at last scattering, see Eq. (4.3) and Eq. (4.4, page 91).
This difference of a factor of about 36 in the power spectrum on large scales is clearly visible
in the comparison of Pyop and Pcy (the difference increases at smaller scales). The case of
the neutrino modes is even worse since they start with vanishing dark matter perturbations.
That the CDM isocurvature matter power spectrum is much lower than the adiabatic one
has been known for some time (see e.g. Stompor et al., 1996; Pierpaoli et al., 1999). However,
it was not recognized before that the same holds true for the neutrino isocurvature matter
power spectra as well, and — more importantly — that this leads to a way to break the strong
degeneracy among initial conditions which is present in the CMB power spectrum alone.

In an analysis with general initial conditions including the 2dF data only we obtain very
broad likelihood and confidence contours which exclude only the lower right corner of the
(Q4, h) plane. In contrast to the CMB power spectrum, the matter power spectrum can be
fitted with extremely high adiabatic and isocurvature contributions, which are then typically
cancelled by large anti-correlations between the spectra. This behavior is exemplified for a
model with general isocurvature initial conditions and Q) = 0.70, h = 0.65, ng = 1.0
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Figure 7.6: Dark matter power spectra of the different auto- (left panel) and cross-correlators
(right panel) for a concordance model with Qy = 0.70, h = 0.65, ng = 1.0, w, = 0.020,
with the corresponding CMB power spectrum COBE-normalized. The color and line style
codes are as follows: in the left panel, adiabatic (AD): solid/black line; CDM isocurva-
ture (CI): dotted/green line; neutrino density (ND): short-dashed/red line; neutrino ve-
locity (NV): long-dashed/blue line; in the right panel, AD: solid/black line (for compari-
son), (AD, CI): long-dashed/magenta line, (AD,ND): dotted/green line, (AD,NV): short-
dashed/red line, (CI,ND): dot-short dashed/blue line, (CI,NV): dot-long dashed/light-blue
line, and (ND,NV): dot-short dashed/black line. The adiabatic mode is by far dominant
over all others.

in Fig. 7.7. The best fits with 2dF data only are dominated by large isocurvature cross-
correlations. Clearly, the resulting CMB power spectrum is highly inconsistent with the
COBE data. Hence such “bizarre” possibilities are immediately ruled out once we include
CMB data. Conversely, moderate isocurvature contributions can help fitting the CMB data,
and do not influence the matter power spectrum, which is completely dominated by the
adiabatic mode alone.

Combining CMB and 2dF data we find now (Bayesian, mixed isocurvature models):

Qp=0.65T522 at 20 and TO% at 30. (7.12)

The likelihood limits are larger than for the purely adiabatic case but it is interesting that the
Bayesian analysis still excludes 25 = 0 at more than 30 even with general initial conditions,
for the class of models considered here. Because of the above explained reason, the widening
of the limits is not as drastic as one might fear. Therefore, combination of CMB and LSS
measurements turn out to be an ideal tool to constrain the isocurvature contribution to the
initial conditions.

From the frequentist point of view, one notices that the region in the Q4, h plane which
is incompatible with data at more than 3¢ is nearly independent on the choice of initial
conditions (compare the right panels of Fig. 7.3 and Fig. 7.5). Enlarging the space of initial
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Figure 7.7: Concordance model fit with general isocurvature initial conditions and 2dF
data only. The total spectrum (solid/black) is the result of a large cancellation of the
purely adiabatic part (long-dashed/red) by the large, negative sum of the various correlators
(dotted /magenta, plotted in absolute value). The short-dashed/green curve is the sum of
the three pure isocurvature modes, CI, ND and NV. Note that the resulting total spectrum
is less than one tenth of the purely adiabatic part.

conditions seemingly does not have a relevant benefit on fitting CMB and 2dF data with or
without a cosmological constant. The reason for this is that the (COBE-normalized) matter
power spectrum is dominated by its adiabatic component and therefore the requirement
Qmh ~ 0.2 remains valid. In Fig. 7.8 we plot the best fit model with general initial conditions
and Qp = 0. We summarize our likelihood and confidence intervals on Q4 (this parameter
only) in Table 7.1.

In Fig. 7.9 we plot the isocurvature contribution to the best fit models with CMB and 2dF
in terms of the parameter 3 defined in (7.7). The best fit with Q24 = 0 has an isocurvature
contribution of about 40%. We can put a constraint on the maximal isocurvature contribution
allowed by combining this plot with the exclusion plot obtained with the frequentist approach,
Fig. 7.5 right panel. The result is that frequentist statistics limits the isocurvature content
G to be

8504 (20 cl). (7.13)

7.3.5 Do isocurvature perturbations mitigate the A problem?

There are three main conclusions we can draw from these results. The first one is not new, but
seems to be dangerously forgotten in recent cosmological parameters estimation literature:
namely that likelihood contours cannot be used as “exclusion plots”. The latter are usually
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Figure 7.8: Best fit with general isocurvature models and 25 = 0. As for the purely adiabatic
case, even with general initial conditions the absence of the cosmological constant suppresses
in an important way the height of the first peak. In both panels we plot the best total spec-
trum (solid/black), the purely adiabatic contribution (long-dashed/red), the sum of the pure
isocurvature modes (short-dashed/green) and the sum of the correlators (dotted/magenta,
multiplied by —1 in the left panel and in absolute value in the right panel). The matter
power spectrum is completely dominated by the adiabatic mode, while the correlators play
an important role in cancelling unwanted contributions in the CMB power spectrum at the
level of the first peak and especially in the COBE region. For this model we have an isocur-
vature content 8 = 0.39, while the BOOMERanG and Archeops calibrations are reduced by
28% and 12%, respectively. The color codes for the error-bars are the same as in Fig. 7.4.

substantially wider, less stringent. A more rigorous possibility are frequentist probabilities,
which however suffer from the dependence on the number of really independent measurements
which is often very difficult to come by.

Secondly, we have found that in COBE-normalized fluctuations, the matter power spec-
trum has negligible isocurvature contributions and is essentially given by the adiabatic mode.
Hence the shape of the observed matter power spectrum still requires Q,,h ~ 0.2, indepen-
dent of the choice of initial conditions. Due to this behavior, the condition Q2 = Qp +Q, =1
requires either a cosmological constant or a very small value for the Hubble parameter,
independently from the isocurvature contribution to the initial conditions.

The third conclusion concerns the presence of a cosmological constant from pre-WMAP
CMB data combined with the 2dF matter power spectrum: For flat models, a likelihood
(Bayesian) analysis strongly favors a non-vanishing cosmological constant. Even if we allow
for isocurvature contributions with arbitrary correlations, a vanishing cosmological constant
is still outside the 3o likelihood range. It is possible that there are open models, which we did
not consider here, in which the NV mode would be dominant,: this because it presents a first
acoustic peak at £ = 170 in flat models, which would be displaced to a larger multipole value,
as preferred by data, in an open Universe, thereby possibly giving a good fit to CMB data
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Figure 7.9: Isocurvature content 0.0 < g < 1.0 of best fit models with CMB and 2dF data.
The contours are for g = 0.20,0.40,0.60, 0.80 from the center to the outside.

Purely adiabatic
Bayesian' Frequentist?
Data-sets Qa lo 20 3o lo 20 30 F X*/F
0.08 0.10 0.12
CMB 0.80 | Toos Toie 0121 <0.93 — - 35 0.58
CMB +2dF | 0.70 | T502 013 032 | a0 <092 <092 |56 059
General isocurvature
0.0
CMB 0.85 | 79% - — - — — 26 0.74
CMB+2dF 065 | *010 T3 T9I | <090  <0.92 <0.95 | 47 0.67

I Tikelihood interval.

2 Region not excluded by data with given confidence.

Table 7.1: Likelihood (Bayesian) and confidence (frequentist) intervals for Q2 alone (all other

parameters maximized). A bar, —, indicates that at the given likelihood/confidence level the

analysis cannot constraint {25 in the range 0.0 < Qx < 0.95. Where the quoted interval is

smaller than our grid resolution, an interpolation between models has been used.

and allow for the observed shape parameter I' with a reasonable value of hA. This question

remains to be investigated in detail.

The situation changes considerably in the frequentist approach. There, even for purely

adiabatic models, Q25 = 0 is still within 30 for a value of h < 0.48 which is marginally

defendable. The conclusion does not change very much when we allow for generic initial

conditions.
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7.4 Precision cosmology independent of initial conditions

As we have seen, it is difficult to simultaneously constrain both the type of initial conditions
and the cosmological parameters using CMB alone. The future high accuracy measurements
of CMB polarization will help substantially in breaking degeneracies between initial condi-
tions. The degeneracies in the parameter dependence of temperature and polarization are
almost orthogonal, and polarization can therefore lift “flat directions” in parameter space.
To determine cosmological parameters independently on the initial conditions, one in-
cludes general isocurvature modes, and then marginalize over them. Bucher et al. (2002,
2001) considered forecasts for WMAP and Planck, and found that admitting isocurvature
modes would ruin the ability of WMAP to determine the cosmological parameters with tem-
perature information only. They also highlighted that polarization measurements would be
decisive in assisting into the reconstruction of the cosmological parameters when allowing
for general isocurvature initial conditions. Their results were obtained with a Fisher matrix
analysis on a cosmological parameter set which, according to Kosowsky et al. (2002), leads to
large overestimates of the expected errors. We have reproduced their study (Trotta & Dur-
rer, 2004), using for the Fisher matrix forecast the normal parameter set described in § 4.2 so
that we obtain forecasts not for the highly degenerate directions defined by the cosmological
parameters, but rather for orthogonal combinations which are well measured by the CMB.
Along these directions, forecasts are much more reliable. The main features are summarized
in Fig. 7.10, where we plot the expected 1o error in percent for the six quantities which are
directly probed by the CMB with good accuracy (see figure caption). We omit the energy
density in the cosmological constant, which is ill-determined with CMB alone because of the
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Figure 7.10: Fisher matrix forecast for the percent lo errors on six quantities which are
well determined by CMB alone with and without inclusion of general isocurvature initial
conditions. The left (right) panel is a forecast for WMAP four year mission (Planck). From
left to right, on the abscissa axis: the baryon density, wp, the angular diameter distance
Dy, the redshift of matter-radiation equality z.,, the scalar spectral index ng, the scalar
adiabatic amplitude Aaq and a function of the optical depth to reionization, 7. In the
legend, “AD” means that only adiabatic fluctuations were included, “iso” means that general

isocurvature modes were included and marginalized over. “T'T” uses temperature information

alone, “T'4+P” has temperature, E-T correlation and E-polarization.
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geometrical degeneracy. We do not restrict our analysis to flat models, but include spaces
with non-zero curvature.

For WMAP the errors on normal parameters will increase roughly by a factor ten with
respect to the purely adiabatic scenario if one marginalizes over general initial conditions,
when temperature information alone is considered (cf. first and third bar in the left panel).
When the full polarization information is included, however, the errors will still be within
approximately 10 to 30% even in the general isocurvature scenario. From the right panel, we
deduce that for the Planck experiment the worsening of the errors will be much less if the high
quality polarization information is included. Roughly speaking, by including isocurvature
modes we expect errors which are larger than in the adiabatic case by about a factor of two,
but mostly still within the few percent accuracy. These findings are in qualitative agreement
with Bucher et al. (2001), while providing a quantitatively more reliable estimate of the
expected accuracy.

This shows that the CMB alone will be able to provide high precision cosmology even if
the strong assumption of purely adiabatic initial conditions will be relaxed. Combining CMB
results with other observation which independently constrain the cosmological parameters,
will enable us to fully open this window to the mysterious epoch of the very early universe.
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