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Abstract
We derive the black hole solutions in higher curvature gravitational theories and
discuss their properties. In this talk Lovelock theory is mainly investigated, which
includes cosmological constant, Einstein-Hilbert action, and Gauss-Bonnet term as
its lower order terms. Among the solutions, there are solutions which may become
extreme solutions with zero temperature through physical processes. This may be
a counterexample of the third law of black hole thermodynamics. We also discuss
whether an extreme black hole is formed from a regular spacetime by considering
collapse of a shell.

1 Introduction

Black holes are characteristic objects to general theory of relativity. Recent observational data show the
existence of one or more huge black holes in the central region of a number of galaxies. While over the past
decades much concerning the nature of black hole spacetimes has been clarified, a good many unsolved
problems remain. One of the most important ones is what the final state of black-hole evaporation through
quantum effects is. The mid-galaxy supermassive black holes are certainly not related to this problem;
however, it has been suggested that tiny black holes, whose quantum effect should not be neglected, could
be formed in the early universe by the gravitational collapse of the primordial density fluctuations. Black
holes may become small enough in the final stage of evaporation enough for quantum aspects of gravity
to become noticeable. In other words, such tiny black holes may provide a good opportunity for learning
not only about strong gravitational fields but also about of the quantum aspects of gravity.

Up to now many quantum theories of gravity have been proposed. Among them superstring/M-theory
formulated in the higher dimensional spacetime is the most promising candidate. So far, however, no
much is known about the non-perturbative aspects of the theory have not been To take string effects
perturbatively into classical gravity is one approach to the study of the quantum effects of gravity.

We focus on the n-dimensional action with the Gauss-Bonnet terms for gravity as the higher curvature
corrections to general relativity. The Gauss-Bonnet terms naturally arise as the next leading order of
the α′-expansion of superstring theory, where α′ is inverse string tension [1], and are ghost-free com-
binations [2]. The black hole solutions in Gauss-Bonnet gravity were first discovered by Boulware and
Deser [3]. Since then many types of black hole solutions have been intensively studied.

In this paper, we investigate the third law of the black hole thermodynamics. In general relativity it
is shown that the the 3rd law hold under the following conditions [4]; the energy-momentum tensor of
infalling matters is finite, and the weak energy condition is hold in the neighborhood of outer apparent
horizon. In Gauss-Bonnet gravity, however, there are exotic types of black hole solutions [5], they may
be the first counter examples to the third law. As the first step, we consider the collapse of a thin dust
shell and formation of the extreme black hole solution with a degenerate horizon.
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2 Black Hole Solutions

We start with the following n-dimensional action

S =
∫

dnx
√−g

[
1

2κ2n
(R− 2Λ + αLGB)

]
, (1)

where R and (n)Λ are the n-dimensional Ricci scalar and the cosmological constant, respectively. κn :=√
8πGn, where Gn is the n-dimensional gravitational constant. LGB := R2−4RABRAB+RABCDRABCD

is Gauss-Bonnet Lagrangian, and α ≥ 0 is the coupling constant of the Gauss-Bonnet term. This type of
action is derived from superstring theory in the low-energy limit. We assume the static spacetime with
the following line element:

ds2 = −f(r)e−2δ(r)dt2 + f−1(r)dr2 + r2dΩ2
n−2, (2)

where dΩ2
n−2 = γijdx

idxj is the metric of the (n− 2)-dimensional Einstein space with the volume Σk
n−2.

The solution of the gravitational equations is obtained [3, 5] as

f = k +
r2

2α̃
(1 + εx), δ ≡ 0, (3)

where we have defined α̃ := (n− 3)(n− 4)α, Λ = −(n− 1)(n− 2)/2�2,

x :=

√
1 + 4α̃

(
M̃

rn−1 − 1
�2

)
, M̃ :=

2κ2nM
(n− 2)Σk

n−2
. (4)

The integration constant M is the mass of the black hole. There are two families of solutions which
correspond to ε = ±1.

We focus on the family of solutions with the following parameters: n ≥ 6, �2 = 1, k = −1 and ε = +1.
Fig. 1 shows the M -rh diagram of the solution. The curve of horizon is obtained by the condition
f(rh) = 0. When the mass parameter vanishes M̃ = 0, the spacetime is pure vacuum expressed by
Eq. (3) with x = x0 :=

√
1 − 4α̃/�2. For a well-defined theory, the condition 4α̃ ≤ �2 should be satisfied.

The pure vacuum solution has a black hole event horizon. However, the center is not singular but regular
and spacelike. For 0 < M̃ < M̃ex, the solution has a black hole and an inner horizons. The positive-mass
solutions have a timelike central singularity. For M̃ = M̃ex, the solution has a degenerate horizon and
represents the extreme black hole spacetime. For M̃ > M̃ex, the solution has no horizon and represents
the spacetime with a globally naked singularity.

3 Motion of the Thin Dust Shell

We define the trajectory of the (n − 1)-dimensional dust shell as t = t(τ) and r = R(τ), where τ is the
proper time on the shell. The induced metric is

ds2 = −dτ2 +R(τ)2dΩ2
n−2. (5)

Since it is shown that there is the generalized Birkhoff’s theorem in Gauss-Bonnet graivty [6], we can
employ the generalized thin shell formalism [7, 8]. The junction condition at the shell is

[Kμν ]± − hμν [K]± + 2α
(
3[Jμν ]± − hμν [J ]± − 2Pμρνσ[Kρσ]±

)
= −κ25τμν , (6)

where

Jμν =
1
3
(
2KKμρK

ρ
ν +KρσK

ρσKμν ,−2KμρK
ρσKσν −K2Kμν

)
, (7)

Pμνρσ = Rμνρσ + 2hμ[σRρ]ν + 2hν[ρRσ]μ +Rhμ[ρhσ]ν , (8)
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Figure 1: The M̃ -r diagrams of the static solutions in the six-dimensional Einstein-Gauss-Bonnet-Λ
system with 1/�2 = 1 (negative cosmological constant), k = −1, and ε = +1. We set α̃ = 0.2. The M̃ -r
diagrams of the higher-dimensional solutions where n > 6 have qualitatively similar configurations.

and τμν is the energy-momentum tensor on the brane. We have introduced [X]± := X+−X−, where X±
are X’s evaluated either on the plus or minus side of the shell. The shell is assumed to be dust with the
surface energy density ρ. Since the surface energy density of the dust shell is conserved [8], it behaves as

d

dτ
(ρRn−2) = 0. (9)

The proper mass of the dust shell defined as Ms = Σk
n−2R

n−2ρ remains constant.
In 6-dimensional spacetime the Equation of the shell can be written in a simple way as[

D

√
f + Ṙ2

]
±

= −C, (10)

where

C :=
M̃s

2R3
, D± := 1 +

4αk
R2

− 2α̃
3R2

f±. (11)

This equation can be solved with respect to Ṙ2 as

Ṙ 2
± =

1
(D2

+ −D2−)2
{
C2(D2

+ +D2
−) − (D2

+ −D2
−)(f+D2

+ − f−D2
−)

±2C
√
D2

+D
2−
[
C2 − (f+ − f−)(D2

+ −D2−)
]}
. (12)

It is noted that the ± of the Ṙ 2
± does not mean the inner and outer value of Ṙ2 but two roots in Eq. (12).

Here we set α̃ = 0.02. Fig. 2 shows square of the velocity of the shell. The positive (negative) sign of

the square root Ṙ± =
√
Ṙ2±

(
Ṙ± = −

√
Ṙ2±

)
is the speed of the expanding (collapsing) shell.

For the case with M̃s = 0.1M̃ex, Ṙ2 behaves as R4 for large R. The collapsing shell from the infinity
bounces at r = 5.1648 and expands to infinity. There is another region where the shell can move. As
the shell moves inward below r = 0.7772, its speed decreases, and the solution curve is terminated

at r = 0.3652. Below this radius
√
f− + Ṙ2 takes imaginary value. This means that the shell moves

spacelike. Since the radius of the extreme horizon is rex = 0.2764, the degenerate horizon is not formed.
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Figure 2: The motion of the thin dust shell. We set the parameters as α̃ = 0.2, �2 = 1, k = −1 and
ε = 1. The interior region is pure vacuum solution with the black hole horizon at rh = 0.525731, and the
exterior of the shell is extreme black hole solution with the degenerate horizon at rex = 0.276393. The
mass of the black hole is M̃ex = 0.035771. The curves shows the velocity of the shell with M̃s = 0.1M̃ex

(solid curve), M̃s = 0.5M̃ex (dotted curve), M̃s = M̃ex (dashed curve), and M̃s = 2M̃ex (dot-dashed
curve).

For the case with M̃s = 0.5M̃ex, the region where Ṙ2 is negative disappears. The collapsing shell

from the infinity does not bounce but continues to collapse to r = 0.3154 where the
√
f− + Ṙ2 takes

imaginary value.
For the case with M̃s = M̃ex, the collapsing shell from the infinity continues to collapse to r = 0.2099.

This is inside of rex. By the generalized Birkhoff’s theorem, the exterior spacetime is static extreme
black hole solution. This means that the degenerate horizon is formed. However, below r = 0.2099, the
shell moves spacelike. There is another region where the shell can move below r = 0.05922. However, if
the shell moves in this region, the degenerate horizon exist from the beginning. This does not mean the
formation of the degenerate horizon.

For the case with M̃s = 2M̃ex, the shell moves timelike in all the region. The shell from the infinity
continues to collapse to the center and would form the central singularity. In this case the degenerate
horizon is formed without any irrelevant phenomena. This can be the counter example to the third law
of the black hole thermodynamics.
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