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Branching ratio and other observables for the rare flavour-changing neutral current decay B̄0
d → K̄∗0 (→

K− π+) e+ e− are studied below c̄c threshold. The total amplitude for this decay includes the term coming from
the Standard Model effective Hamiltonian and the term generated by the processes B̄0

d → K̄∗0 (→ K− π+)V
with intermediate low-lying vector resonances V = ρ(770), ω(782), φ(1020) decaying into the e+e− pair. In-
fluence of the resonances in the region of electron-positron invariant mass up to 2.5 GeV is studied in view of
measurements on LHCb.

1 Introduction

The investigation of rare B decays induced by the flavour-changing neutral current (FCNC) transitions b → s
and b → d represents an important test of the Standard Model (SM) or its extensions (see [1] for a review).
Among the rare decays, the radiative decay b → sγ has probably been the most popular FCNC transition
ever since its experimental observation as B → K∗γ at CLEO in 1993 [2]. This decay proceeds through a
loop (penguin) diagram, to which high-mass particles introduced in extensions to the SM may contribute with a
sizeable amplitude. The size of the decay rate itself, however, provides only a mild constraint on such extensions,
because the SM predictions for exclusive rates suffer from large and model dependent form factor uncertainties
[3, 4]. Further reduction in the theory errors appears rather difficult. Therefore it is advantageous to use in
addition to the rates other observables that can reveal New Physics (NP).

In particular, in framework of the SM, the photons emitted in b→ sγ decays are predominantly left-handed,
while those emitted in b̄ decay are predominantly right-handed. The amplitude for emission of wrong-helicity
photons is suppressed by a factor ∝ ms/mb [5], but this suppression can easily be alleviated in a large number
of NP scenarios where the helicity flip occurs on an internal line.

Measurement of the photon helicity is therefore of interest. Several different methods of measuring the photon
polarization have been suggested, however it appears that the photon polarization is difficult to measure, and
one has to use rather the process b → sγ∗ → s`+`−, where the photon is converted to the lepton pair. In this
decay the angular distributions and lepton polarizations can probe the chiral structure of the matrix element
[6, 7, 8, 9, 10, 11, 12] and thereby the NP effects.

In order to measure effects of NP in the process b→ s`+`− one needs to calculate the SM predictions with a
rather good accuracy. The SM amplitude consists of the short-distance (SD) contribution and the long-distance
(LD) ones. The former is expressed in terms of the Wilson coefficients Ci calculated in perturbative QCD;
they carry information on processes at energy scale ∼ mW , mt. These coefficients are then evolved using the
renormalization group methods to the energies related to the bottom quark mass mb.

The LD terms include factorizable and non-factorizable effects from virtual photon via the semi-leptonic
operators O9V, 10A and electromagnetic dipole penguin operator O7γ in effective Hamiltonian. The radiative
corrections coming from operators O1−6 and gluon penguin operator O8g are also accounted for [13].

The LD effects describing the hadronization process are expressed in terms of matrix elements of the b→ s
operators between the initial B and theK∗ final state. These matrix elements are parameterized in terms of form
factors [8] that are calculated with the help of light-cone sum rules (LCSR) [14] or in soft-collinear effective
theory (SCET) [15]. The form factors have large theoretical uncertainties that are presently the dominant
uncertainties in the SM predictions for exclusive decays.

The presence of additional LD effects originating from intermediate vector resonances ρ(770), ω(782),
φ(1020), J/ψ(1S), ψ(2S),. . . complicates the description. These resonances show up in the region of rela-

tively small dilepton invariant mass mee ≡
√
q2, where q2 = (q+ + q−)2. In order to suppress the charmonia

contribution, often the region of large dilepton mass (q2 � 4m2
c ≈ 6.5 GeV2) is selected, for example, BaBar

and Belle Collaborations apply the corresponding experimental cuts [16, 17].
The region of small dilepton invariant mass, mee < 1 GeV, has also high potential of searching effects of

the NP [6]. At small mee ∼MR the low-lying vector resonances modify the amplitude, and thus may induce in
certain observables the right-handed photon polarization, which is still small but not negligible. The presence of
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Figure 1. Definition of helicity angles θ1, θ2, and φ, for the decay B̄0
d → K̄∗0 e+ e−.

the photon propagator 1/q2 enhances the resonance contribution. Recently the authors of [18] analyzed angular
distribution in the rare decay B̄0 → K̄∗0e+e− in the small-q2 region in order to test possibility to measure this
distribution at LHCb.

We study the B̄0 → K̄∗0e+e− decay at dilepton invariant mass mee < 2.5 GeV. Both the SD and LD effects
in the amplitude are evaluated. The effective Hamiltonian with the Wilson coefficients in next-to-next-to-
leading order (NNLO) approximation is used. The LD effects mediated by the resonances, i.e. B̄0 → K̄∗0V →
K̄∗0γ∗ → K̄∗0e+e− with V = ρ(770), ω(782), φ(1020), are included explicitly in terms of amplitudes of the
decays B̄0 → K̄∗0V .

Sensitivity of the observables to the choice of form factors of the transition B → K∗ is also investigated.
Various models are chosen in our calculation.

Among all observables we calculate, in particular, the coefficient A
(2)
T which determines cos(2φ) dependence

in the angular distribution of the leptons (φ is the angle between the plane spanned by e+, e− and the plane
spanned by the decay products K−, π+ of the K̄∗0 meson) and fraction of longitudinal polarization of K̄∗0

meson.

2 Angular distributions and amplitudes for the B̄0
d → K̄∗0 e+ e− decay

The decay B̄0
d → K̄∗0 e+ e− with K̄∗0 → K−π+ on the mass shell is completely described by four independent

kinematic variables, the electron-positron pair invariant mass squared, q2, and the three angles θ1, θ2, φ. In the
helicity frame (Fig. 1), the angle θ1 (θ2) is defined as the angle between the directions of motion of e+ (K−) in
the γ∗ (K̄∗0) rest frame and the γ∗ (K̄∗0) in the B̄0

d rest frame. The azimuthal angle φ is defined as the angle
between the decay planes of γ∗ → e+ e− and K̄∗0 → K−π+ in the B̄0

d rest frame.
The differential decay rate in these coordinates is specified and discusses in Ref. [19]. Having rich multi-

dimensional structure, this decay rate is sensitive to various effects modifying the SM, such as CP violation
beyond the CKM and/or right-handed currents. Given sufficient data, all bilinear combinations of amplitudes
can in principle be completely measured from the full angular distribution in all three angles θ1, θ2 and φ.

Here we concentrate on the two-dimensional differential decay rate in q2 and azimuthal angle φ. After
integration of fully differential decay rate over the polar angles cos θ1 and cos θ2, we obtain:

d2 Γ

dq̂2dφ
=

1

2π

dΓ

dq̂2

(
1 +

1

2
(1 − f0)A

(2)
T cos 2φ−AIm sin 2φ

)
, (1)

where the electron-positron pairs invariant mass spectrum is

dΓ

dq̂2
= mB

(
|A0|2 + |A‖|2 + |A⊥|2

)
, (2)

and coefficients determining angular dependence in (1) are

A
(2)
T ≡ f⊥ − f‖

f⊥ + f‖
, AIm ≡ Im(A‖A

∗
⊥)∑

k |Ak|2
, (3)

where the fractions of K∗ meson polarization are defined as

fi =
|Ai|2∑
k |Ak|2

, f0 + f‖ + f⊥ = 1 (4)

with i, k = (0, ‖,⊥). Further, mB is the mass of the B0
d meson, q̂2 ≡ q2/m2

B , and AiA
∗
j ≡ AiL(q2)A∗

jL(q2) +

AiR(q2)A∗
jR(q2), where A0L(R), A‖L(R) and A⊥L(R) are the complex decay amplitudes of the three helicity states

in the transversity basis (see details in [19]).
At present the decay rate (1) is experimentally studied at LHCb [18].
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3 Formalism of the B̄0
d → K̄∗0 e+ e− decay

Within the SM, neglecting contributions proportional to the small CKM factor V ∗
usVub, the effective Hamiltonian

for the quark-level transition b→ s e+e− is

Heff = −4GF√
2
V ∗
tsVtb

{ 6∑

i=1

CiOi + C7γO7γ + C8gO8g + C9VO9V + C10AO10A

}
, (5)

where Vij are the CKM matrix elements [20] and GF is the Fermi coupling constant. We use the operator basis
introduced in [21] for the operators Oi, i = 1, . . . , 6, while the remaining ones are given by

O7γ =
e

16π2
s̄ σµν(mb(µ)PR +ms(µ)PL) b Fµν , (6)

O8g =
gs

16π2
s̄ σµν(mb(µ)PR +ms(µ)PL)T a bGaµν , (7)

O9V =
αem

4π
(s̄γµPLb) ēγ

µe , O10A =
αem

4π
(s̄ γµPLb) ē γ

µγ5e , (8)

where αem = e2/(4π) = 1/137 is the electromagnetic fine-structure constant, gs is the QCD coupling constant
and PL,R = (1 ∓ γ5)/2 denote chiral projectors. mb(µ) (ms(µ)) is the running bottom (strange) quark mass in
the MS scheme at the scale µ. T a (a = 1, . . . , 8) are the generators of SU(3) color group. Here Fµν and Gaµν
denote the electromagnetic and chromomagnetic field strength tensor, respectively. The Wilson coefficients Ci in
Eq. (5) are calculated at the scale µ = mW , in a perturbative expansion in powers of αs(mW ) (αs(µ) ≡ g2

s/(4π)
is the effective QCD coupling constant), and are then evolved down to scales µ ∼ mb using the renormalization
group equations. The MS mass mb(µ) can be related with the pole mass mb at the scale µ = mb through
[22, 23]:

mb(mb) = mb

(
1 − 4

3

αs(mb)

π
− 10.167

(αs(mb)

π

)2

+ O
((αs(mb)

π

)3))
. (9)

The up to date value of the strange quark mass is ms(2GeV) = 95 ± 25MeV. Note that this running mass
is evaluated at µ0 = 2GeV with three active quark flavours. The evolution of the ms(µ) is governed by the
renormalization group equation. It has the solution [24]

ms(µ)

ms(µ0)
=

f(αs(µ)/π)

f(αs(µ0)/π)
, with f(x) = x

4
9 (1 + 0.895062x+ 1.37143x2) + O(x4) .

The matrix element of the effective Hamiltonian Eq. (5) for the non-resonance (NR) decay B̄0
d(p) →

K̄∗0(k, ε) e+(q+) e−(q−) can be written, in the so-called näıve factorization [25], as

MNR =
GFαem√

2π
V ∗
tsVtb

(
〈K∗0(k, ε)|s̄γµPLb|B0

d(p)〉
(
Ceff

9V ū(q−)γµv(q+) + C10Aū(q−)γµγ5v(q+)
)

− 2

q2
Ceff

7γ 〈K∗0(k, ε)|s̄ i σµνqν(mb(µ)PR +ms(µ)PL) b|B0
d(p)〉 ū(q−)γµv(q+)

)
. (10)

Here, σµν = i
2 [γµ, γν ], qµ = (q+ + q−)µ, C

eff
7γ = C7γ − (4C̄3 − C̄5)/9 − (4C̄4 − C̄6)/3, C

eff
9V = C9V + Y (q2), and

the function Y (q2) is given by [26]

Y (q2) = h(q2 ,mc)(3 C̄1 + C̄2 + 3 C̄3 + C̄4 + 3 C̄5 + C̄6) −
1

2
h(q2 ,mb)(4 C̄3 + 4 C̄4 + 3 C̄5 + C̄6)

−1

2
h(q2 , 0)(C̄3 + 3 C̄4) +

2

9
(
2

3
C̄3 + 2 C̄4 +

16

3
C̄5) , (11)

where the “barred” coefficients C̄i (for i = 1, . . . , 6) are defined as certain linear combinations of the Ci, such
that the C̄i coincide at leading logarithmic order with the Wilson coefficients in the standard basis [13]. mc

denotes the pole mass of charm quark. The function

h(q2,mq) = −4

9

(
ln
m2
q

µ2
− 2

3
− z

)
− 4

9
(2 + z)

√
|z − 1|





arctan
1√
z − 1

z > 1 ,

ln
1 +

√
1 − z√
z

− iπ

2
z ≤ 1 ,

(12)

h(q2, 0) = −4

9
ln
q2

µ2
+

8

27
+ i

4π

9
, (13)
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Figure 2. Non-resonant and resonant contributions to the decay amplitude.

with z = 4m2
q/q

2, is related to the basic fermion loop.
The hadronic part of the matrix element in Eq. (10) describing the B → K∗e+e− transition can be param-

eterized in terms of B → K∗ vector, axial-vector and tensor form factors. The models for the form factors are
discussed in [19].

Based on the matrix element in Eq. (10), the non-resonant amplitudes can be written in terms of the vector
V (q2), axial-vector A1,2(q

2) and tensor T1,2,3(q
2) form factors as

ANR
0L,R = −Nλ̂

1/4

2m̂K∗

(
(Ceff

9V ∓ C10A)

(
(1 − q̂2 − m̂2

K∗)(1 + m̂K∗)A1(q
2) − λ̂

A2(q
2)

1 + m̂K∗

)

+2(m̂b − m̂s)C
eff
7γ

(
(1 − q̂2 + 3m̂2

K∗)T2(q
2) − λ̂

1 − m̂2
K∗

T3(q
2)

))
, (14)

ANR
‖L,R = N(1 − m̂2

K∗)
√

2q̂2 λ̂1/4
(
(Ceff

9V ∓ C10A)
A1(q

2)

1 − m̂K∗
+ 2

m̂b − m̂s

q̂2
Ceff

7γ T2(q
2)
)
, (15)

ANR
⊥L,R = −N

√
2q̂2 λ̂3/4

(
(Ceff

9V ∓ C10A)
V (q2)

1 + m̂K∗
+ 2

m̂b + m̂s

q̂2
Ceff

7γ T1(q
2)
)
. (16)

In the above formulas the definition m̂K∗ ≡ mK∗/mB , λ̂ ≡ λ(1, q̂2, m̂2
K∗) = (1 − q̂2)2 − 2(1 + q̂2)m̂2

K∗ +
m̂4
K∗ , m̂b ≡ mb(µ)/mB , m̂s ≡ ms(µ)/mB is used, where mK∗ is the mass of the K∗0 meson, and N =

|VtbV ∗
ts|GFm2

Bαem/(32π
2
√

3π).
The transversity amplitudes in (14)–(16) take a particularly simple form in the heavy-quark and large-energy

limit. This limit is analyzed in Ref. [19]. It follows from this analysis that in the region of very small invariant

masses, q2 � m2
K∗ = 0.803 GeV2, the asymmetry A

(2)
T in Eq. (3) takes the simple form

A
(2)
T ≈ 2ms

mb
. (17)

This result is in agreement with well-known fact, that in the SM for ms = 0 in näıve factorization, A
(2)
T = 0 [9].

In some extensions of the SM, such as left-right model and unconstrained supersymmetric SM, there are
right-handed currents in the matrix element, with the magnitude determined by the coupling C ′ eff

7γ (see, e.g.

Ref. [9]). In this case the asymmetry A
(2)
T is written as

A
(2)
T ≈

2C ′ eff
7γ Ceff

7γ

(Ceff
7γ )2 + (C ′ eff

7γ )2
. (18)

3.1 Resonant contribution

Next, we implement the effects of LD contributions from the decays B̄0
d → K̄∗0 V where V = ρ0 , ω , φ mesons,

followed by V → e+ e− in the decay B̄0
d → K̄∗0 e+ e− (see Fig. 2):

We apply vector-meson dominance (VMD) approach. In general, the γ − V transition can be included into
consideration using various versions of VMD model. In the “standard” version (see, e.g. [27], chapter 6), the
γ − V transition vertex can be written as

〈γ(µ)|V (ν) 〉 = −efVQVmV g
µν , (19)

where gµν is the metric tensor, QV is the effective electric charge of the quarks in the vector meson: Qρ =
1√
2
, Qω = 1

3
√

2
, Qφ = − 1

3 .

The constants fV can be found from the vector-meson decay width to lepton pair

Γ(V → l+l−) =
4πα2

em

3

f2
VQ

2
V

mV

(
1 +

2m2
l

m2
V

) √
1 − 4m2

l

m2
V

. (20)
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Table 1. Mass, total width, leptonic decay width and coupling fV of vector mesons [32] (experimental
uncertainties are not shown).

V mV ,MeV ΓV ,MeV Γ(V → e+ e−) , keV fV , MeV
ρ0 775.49 149.1 7.04 221.3
ω 782.65 8.49 0.60 194.7
φ 1019.455 4.26 1.27 228.6

This version of VMD model will be called VMD1. The vertex (19) comes from the transition Lagrangian

LγV = −eAµ
∑

V

fVQVmV Vµ . (21)

A more elaborate model (called hereafter VMD2) originates from Lagrangian

LγV = −e
2
Fµν

∑

V

fVQV
mV

Vµν , (22)

where Vµν ≡ ∂µVν − ∂νVµ and Fµν ≡ ∂µAν − ∂νAµ is the electromagnetic field tensor.
Lagrangian (22) is explicitly gauge invariant, unlike Eq. (21), and gives rise to to the γ − V vertex

〈 γ(µ)|V (ν) 〉 = −efVQV
mV

(q2gµν − qµqν) , (23)

where q is the virtual photon (vector meson) four-momentum. This transition vertex is suppressed at small
invariant masses, q2 � m2

V , i.e. in the region far from the vector-meson mass shell 1.
Note that these two versions of the VMD model have been discussed in Refs. [28, 29]. The VMD2 version

naturally follows from the Resonance Chiral Theory [30]; in this context VMD2 coupling has been applied in
[31] for studying electron-positron annihilation into π0π0γ and π0ηγ final states.

Parameters of vector resonances are presented in Table 1.

3.2 Amplitudes for B̄0
d → K̄∗0V decay

An important ingredient of the resonant contribution is amplitude of the decay of B meson into two vector
mesons, B(p) → V1(q, λ1) + V2(k, λ2), with on-mass-shell meson V2 (k2 = m2

2) and off-mass-shell meson V1

(q2 6= m2
1).

For the case of two on-mass-shell final mesons one can write the amplitude in the form

M = Γµνε
µ∗
1 (q)εν∗2 (k) , Γµν = a gµν + b pµpν − ic εµναβq

αkβ (24)

in terms of Lorentz scalars a, b, c, ε0123 = +1, and the four-momenta in the B-meson rest frame are pµ =
(mB ,

−→
0 ), qµ = (E1, 0, 0, |−→q ∗|), kµ = (E2, 0, 0,−|−→q ∗|). We will use the notation m̂1(2) ≡ m1(2)/mB and put

p2 = m2
B . Conservation of angular momentum requires for the vector-meson helicities λ1 = λ2 ≡ λ.

Define Hλ ≡ Hλ1λ2
= Γµνε

µ∗
1 (λ)εν∗2 (λ) and find the relations:

H0 = − 1

2m̂1m̂2

[
(1 − m̂2

1 − m̂2
2) a+

m2
B

2
λ(1, m̂2

1, m̂
2
2) b

]
, H± = a± m2

B

2

√
λ(1, m̂2

1, m̂
2
2) c , (25)

with λ(1, m̂2
1, m̂

2
2) ≡ (1 − m̂2

1)
2 − 2m̂2

2(1 + m̂2
1) + m̂4

2.
One can also introduce another set of amplitudes

A‖ =
1√
2
(H+ +H−) , A⊥ =

1√
2
(H+ −H−) , A0 = H0 , (26)

A‖ =
√

2 a , A⊥ = m2
B

√
λ(1, m̂2

1, m̂
2
2)

2
c , A0 = − 1

2m̂1m̂2

[
(1 − m̂2

1 − m̂2
2) a+

m2
B

2
λ(1, m̂2

1, m̂
2
2) b

]
. (27)

The decay width is expresses as follows:

Γ(B → V1V2) =
mB

2

√
λ(1, m̂2

1, m̂
2
2)

1

8πm2
B

(
|H0|2 + |H+|2 + |H−|2

)
=

√
λ(1, m̂2

1, m̂
2
2)

16πmB

∑

λ

|Aλ|2 . (28)

1The term ∝ qµqν/q2 in (23) does not contribute when contracted with the leptonic current
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Table 2. Branching ratio [33], and decay amplitudes for B0
d → K∗0 ρ0 [34], B0

d → K∗0 ω [34] and B0
d → K∗0 φ

[33].

Mode K∗0 ρ0 K∗0 ω K∗0 φ
Br(B0

d → K∗0 V ) 3.4 × 10−6 2.0 × 10−6 9.8 × 10−6

|hV0 |2 0.70 0.75 0.480
|hV⊥|2 0.14 0.12 0.24

arg(hV‖ /h
V
0 ) (rad) 1.17 1.79 2.40

arg(hV⊥/h
V
0 ) (rad) 1.17 1.82 2.39

Table 3. The numerical input used in our analysis. Quark and meson masses are given in GeV.

|VtbV ∗
ts| GF , GeV−2 µ = mb mc mb(µ) ms(µ) mB mK∗ τB , ps

0.0407 1.16637 × 10−5 4.8 1.4 4.14 0.079 5.2795 0.896 1.525

Next, we define the normalized amplitudes:

hλ ≡ Aλ√∑
λ′ |Aλ′ |2

,
∑

λ

|hλ|2 = 1 (λ, λ′ = 0, ‖,⊥) . (29)

By putting m1 = mV , m2 = mK∗ and using (28), (29) we obtain the relation between the amplitudes hλ
and Aλ of the process under study B̄0

d → K̄∗0V for any vector meson V = ρ(770), ω(782), φ(1020):

hVλ =
1

4
λ1/4(1, m̂2

V , m̂
2
K∗)

√
τB

πmB Br(B̄0
d → K̄∗0V )

AVλ , (30)

where Br(. . .) is the branching ratio of B̄0
d → K̄∗0V decay and τB is the lifetime of a B meson.

Solving Eqs. (27) we find the scalars a, b and c, and then extend the helicity amplitudes AVλ off the mass
shell of the meson V , i.e. for q2 6= m2

V . We introduce the phases δVλ ≡ arg(hVλ ) = arg(AVλ ), and will count the
phases of the off-shell amplitudes relative to the phase of hV0 . Then we have

AV‖ (q2) = |AV‖ | ei(δ
V
‖ −δV0 ) , AV⊥(q2) =

√
λ(1, q̂2, m̂2

K∗)

λ(1, m̂V
2, m̂2

K∗)
|AV⊥| ei(δ

V
⊥−δV0 ) ,

AV0 (q2) = − 1

4
√
q̂2m̂K∗

[√
2(1 − q̂2 − m̂2

K∗)|AV‖ | ei(δ
V
‖ −δV0 ) + λ(1, q̂2, m̂2

K∗)|b̂V | ei(Φb−δ
V
0 )
]
,

|b̂V | ≡ m2
B |bV | =

√
2

λ(1, m̂2
V , m̂

2
K∗)

[
8m̂2

K∗m̂2
V |AV0 |2 +

(
1 − m̂2

V − m̂2
K∗

)2 |AV‖ |2

+ 4
√

2m̂K∗m̂V (1 − m̂2
V − m̂2

K∗)|AV0 ||AV‖ | cos((δV‖ − δV0 ))
]1/2

,

sin(ΦVb − δV0 ) = − 1

|b̂V |

√
2

λ(1, m̂2
V , m̂

2
K∗)

(1 − m̂2
V − m̂2

K∗)|AV‖ | sin((δV‖ − δV0 )) ,

cos(ΦVb − δV0 ) = − 1

|b̂V |

√
2

λ(1, m̂2
V , m̂

2
K∗)

[
2
√

2m̂V m̂K∗ |AV0 | + (1 − m̂2
V − m̂2

K∗)|AV‖ | cos((δV‖ − δV0 )
]
. (31)

Finally, we obtain the total amplitude including non-resonant and resonant parts

AλL,R = ANRλL,R +
αemλ

1/4(1, q̂2, m̂2
K∗)√

24π

∑

V

QV fV
DV (q2)

CγV e
iδV0 AVλ (q2) , (32)

where λ = (0, ‖,⊥), CγV = mV√
q2

(√
q2

mV

)
for the VMD1 (VMD2) version, and DV (q2) = q2 −m2

V + imV ΓV (q2)

is the Breit-Wigner function for the V meson resonance shape with the energy-dependent width ΓV (q2). For
details regarding energy-dependent widths see [19].

At present only the amplitudes hVλ for B0
d → K∗0 φ decay are known from experiment [33], therefore we use

the amplitudes of B0
d → K∗0 ρ and B0

d → K∗0 ω decays from theoretical prediction [34]. The absolute values
and phases of hVλ are shown in Table 2. Other parameters of the model are indicated in Table 3, and the SM
Wilson coefficients at the scale µ = 4.8 GeV to NNLO accuracy [11] are shown in Table 4.
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Table 4. The SM Wilson coefficients at the scale µ = 4.8 GeV, to NNLO accuracy. Input: αs(mW ) = 0.120,
αs(µ) = 0.214, obtained from αs(mZ) = 0.1176 using three-loop evolution, mt(mt) = 162.3GeV, mW =
80.4GeV and sin2 θW = 0.23.

C̄1(µ) C̄2(µ) C̄3(µ) C̄4(µ) C̄5(µ) C̄6(µ) Ceff
7γ (µ) Ceff

8g (µ) C9V(µ) C10A(µ)
−0.128 1.052 0.011 −0.032 0.009 −0.037 −0.304 −0.167 4.211 −4.103

Figure 3. Longitudinal polarization fraction of K∗ meson fL ≡ f0 (upper panels) and transverse asymmetry

A
(2)
T (lower panels) as functions of mee/mB . Left (right) panel corresponds to calculation within VMD1 (VMD2)

version of the VMD model. Solid line corresponds to calculation without resonances in the transition form factor
model [14]. Dashed and dotted lines are calculations including resonances in the form factor model from [14]
and [19] (Eqs. (A7)-(A9) and (A17) there), respectively. The horizontal dashed line indicates zero.

4 Results of calculation for the B̄0
d → K̄∗0 e+ e− decay and discussion

On Fig. 3 we present results for the invariant mass dependence of a few observables for the B̄0
d → K̄∗0 e+ e−

decay. The upper limit of the invariant mass region, 2.5 GeV, is taken to exclude the contribution from J/ψ(1S)
and higher resonances. Of course the presented results may depend on the phase δV0 in Eq. (32); for definiteness,
we choose δV0 = 0 for all resonances ρ, ω and φ.

In general, the resonances ρ, ω and φ show up as irregularities on the smooth non-resonant background.
There is practically no dependence of longitudinal polarization fraction fL on the choice of form factors. At
very small mee this observable shows a sensitivity to the version of the VMD model.

The asymmetry coefficient A
(2)
T in Eq. (7) is more sensitive to the form factor model. Addition of the

resonances change considerably this observable. The resonant contribution depends on the version of the VMD

model, in particular, at invariant mass below 0.5 GeV (where q2 � m2
K∗), in the VMD2 version, A

(2)
T is about

0.04 which is in agreement with Eq. (17). While in the VMD1 version, the resonances influence A
(2)
T even at

small mee.

Note, that the dependence of A
(2)
T on the mass of the strange quark has been studied in [19], and it appeared

to be important. Indeed, comparison of A
(2)
T for ms = 0 and ms 6= 0 demonstrates effect of the “wrong”

helicity transition bL → sR + γR. In the SM this effect is proportional to 2ms/mb (see Eq. (17)), while in some
extensions of the SM it can reach bigger values depending on the coefficient C ′ eff

7γ in Eq. (18).
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5 Conclusions

The rare FCNC decay B̄0
d → K̄∗0 (→ K− π+) e+ e− has been studied in the region of electron-positron invariant

mass below c̄c threshold. Main emphasis has been put on an accurate account of the mechanism B̄0
d → K̄∗0 (→

K− π+)V with low lying vector resonances V = ρ(770), ω(782), φ(1020) decaying into the e+e− pair.

The invariant mass dependence of the coefficient A
(2)
T in the azimuthal angle distribution of the lepton pair

has been calculated and studied.
In view of the current experiments on LHCb, in which the integrated over invariant mass observables will

be measured [18], we have also calculated the corresponding quantities [19]. Two integration regions have been
selected which are particularly suitable for the planned future measurements on LHCb [18]. The predictions for
integrated observables are given in framework of the SM with account of low lying vector resonances.
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and kind hospitality in Dniepropetrovsk.
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