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ABSTRACT

A basic feature of nonrelativistic quantum mechanics is the exis-
tence of one representation (the momentum representation) which di-
agonalizes the free part of the Hamiltonian, a second representation
(the position representation) which diagonalizes the interaction part
of the Hamiltonian, and a unitary transformation (Four;er transform)
which connects these two representations. In local Lagrangian field
theofy fhe free particle representation which diagonalizes the free
part of the Hamiltonian is well known, but the representation which
diagonalizes the interaction part of the Hamiltonian has not been
systematically studied. In what follows , this representation is ex-
plicitly constructed and it is shown that there is no unitary transfor-
mation connecting it with the free particle representation. In fact
this representation space is not even a Hilberf space in the sense that

it seems impossible to define a meaningful norm.
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INTRODUCTION

The most fundamental structures in nonrelativistic guantum mechanics are the
two basic representation spaces, position space and momentum space, and the
operation of Fourie;r transformation which connects them. Although one may ab-
stract and consider arbitrary complete sets of commuting observables and their
eigenvectors and eigenvalues, in practical physical problems one solves for the
eigenvectors and eigenvalues of a Hamiltonian whose_free part is diagonal in the
momentum representation and whose interaction part is diégonal (or nearly so) in
the position representation. It is this featurel of physical Hamiltonians which gives
the position,- and momentum representdfions their paramount irriportahce. Most ‘
~ often one solves problems in position space, the representation which diagonalizes
the interaction.

When one turns to quantum field theory, the situation is radically altered. One
invariably works in the representation which diagonalizes the free particle part of
the Hamiltonian and one is completely unfamiliar with the representation which
diagonalizes the interaction part. Let us attempt to remedy this situation.

Consider the case of a local Légrangian field theory with a scalar boson field
coupled to a spin 1/2 fermion fiéldlthrough a simple scalar coupling. The physically
more interesting cases of quantum electrodynamics (in the transversé gauge), psuedo-
scalar meson theory, etc., require only straightforward gene:ralizati'ons of the

methods used to solve the simple scalar coupling case. The Hamiltonian is given

by, /
H=Hy+H, - 1
H0‘=fd3;'§: F l!IT(—:ig -y + ﬁm)ip:
+ —:2l-fd3'§ {(g—?)z + (X¢)2 +u2¢2}: , (1a)




and

3_ .
-H1=gfd xi@e, .. - (1b)
where . |
Y IRRY 1 [ IR TS e |
I =35 LVIX) Y(X)]
To start with we take the usual _represehtation of the commutation (anticommutation)

relations at t = 0, given by

2 r» r [, it . w * ]
Y@= 2;1 J d¢ [ua(g) e'R & by(P) + v, (p) e Rz c&(m)J S (23)
‘qbgc) =fd§_[e12'w’5a(g) + 'e'"iB'?»‘»aT(y&)]'-: - (@h)
AHel_'e uoz(R) and va(g)_ aré the free positivé énd négati;/e enefgy spinor‘s;v
(@), a' (2] = 5(2- 17, : @
(b, (@) lo,,;f(_,xoj)]ﬂb= [e, ) CE(P')]_,.: Buedll-¢h, - o . (3D
and all other commutators (ahticqmmuté:toré)' - 0,
dz= —%&—— : (3c)
(2m)° 2E; S
p
and
. 3 3 o
8(L-¢') =(2m) 2E, & (p-pY- - o (39)

our pro'bliét‘n is 'to‘ find an alternate representation which diagonalizes HI at
t= 0. Therefore, for the rest of this paper we consider the tifme to be fixed at
t= 0. Further if we can find a i'epréseﬁtétion in which $() is diagonal for every
X, and j‘(gg) IS diagoﬁal for every x, then Hy will be diagonal in this representation.

This is certainly feasible since H(X) and‘j@) are Hermitian operators, and since

(G, o@xN] = (iR, iy =0




PART I

THE DIAGONALIZATION OF ¢(x)

To find the eigenvectors and eigenvalues of ¢(§) it is easiest to go over to the
Fourier transform field operators given by, |
s(p) = 25, [a5 7B oy
- a(p) +(-p). @
Clearly since [¢(x), ¢(§~')] =0, wg have
[6(@). #(@)] =0
and in particular, since qb(—g) = qb(}:)T, we have
[e®, @' 1=0
p -
S0 ¢(£) is a normal operator and may be diagonalized. ¢(£) couples bosons of
momentum P only with bosons of momentam -B, which is to be expected since the
eigenvalues of ¢(x) must be real. Let the free parficle vacuum be denoted by

l¢>, => a(p)l¢> = 0for allp. Then consider the operator

z-exp - faralp e’ GB’] , | (5)
Clearly, |
[aT(-B), Z)] = 0,
and ’
[ap), Z]=- aT(“E) z,
s0

[ap) + 2 (-p)] Zl9>

= z[a(p) - af (-p) + 2 (-0) ] 1> = o,

¢(p) Z|6>

Therefore Z|¢> = [0> is the eigenvector of ¢(p) whose eigenvalue is zero for all p,
i.e.,

$@|0> =0 forallx.
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Consider further the operator
wiee) - exs{ f(at @) o) . (®)

where g(p) is an arbitrary C number function of b which satisfies

T

g@=sg-p). . . (M
Clearly we have . , |
afep), wi=o
and S
[a(p), W)= (@)W,
so that | .
o) WZIg> = g(p)WZ|9> + Wo(p) Z16>
= g WZIp>. -
Since aT(R) cormutes with aT(R') a*(fg') we can write |
UG - WeEz - ew fatlee oTp - a2t afep ], @

and we have

8()> = UgeNle> @
is the eigenvector of ¢(x) for allz, For all g we have -
¢(@)s(E)> = s@)le@> . (10
and for all X
¢()|e@)> = &(x)|s®)> (,il)

where _ :
g = [dt gp) B X
and by Eq. (7), g(x) is real, 1 »
Now let us try and fix the normalizations so as to give us a complete ortho-
normal set of states, and thereby a unli.tary_ transjormé.tion. Toward this end let
| us evaluate the scalar product <f(B)I g(g)) for two arbitrary functions f(g) and g(p)

which satisfy Eq. (7). To facilitate the calculation we insert a convergence factor



by letting |
afp)—ta'(p)

in

e,
where
| 0<t <'1'
Thus we have
&) > = UyleeN|¢> » (11)
where
U ) = exo| faz {tep) 2@ —(52—) dpalepl] - @

Then at the end of the calcuiation we shall take the limit as t —1. We define the
state |0>t by

0>, = U(O)e> , (12)
and we then have,

(<ED)8(R) >, = < ole®e®]05,
where
A=t far ) afp),

and ‘

B=t f df g(p) aT(g)-

Now consider the operator

Bip) = ap) + £ a’(-p). | (13)
It has the basic properties,
| 80>, = 0= <olgTp), | (132)
[6(p), BRN] =0 , (13b)
[6w, ') = - ths-1n (13¢)




Solving (13) for a(p) we find

| —tz - | e
and substituting this into the expressions for A and B we find,
a= (—tp) far o) (8@ - P67 p)  (158)
1-t e =
and |
. (#) Jacep ' - Caep? - s

Let us try to use relation (13a) to our advantage. We shall use the operator identity
(B1+B2) B1 132 -1/2 [Bl,Bz]
= e , (16)

where B and B2 are operators Whose commutator isacC number Letting B be

the BT(p) par’c of B, and B2 be the B(- p) part of B we find usmg (16), (15b), (130),

(13a), and (7) )
: 4 |

Similarly, we find

hRUL P = <0|exp{( £ )fic f*(p)ﬁ(p)} Xexp{ delf(p)l } (17h) |

Applying another operator identity

A By BleAfle*[Al’ B;]

e e =e.

% f dlg(p) BT(g)} 0>, . (17a)

where [A,,B,] is a C number, and

t -
A = dg £*(p)B(p)
! (l—t"‘)fc e

B, = f dZ g(p) BT(p),

(1t)




we find using(17a) (17h), (7), (13a), and (13c)

t<0I e"lo>, = <f(p>|g(p)>t— <0l0> exp%z(1 t)fdlclfuo)—g(p)l

X exp {<lt 29 fa @ g(g)} : (18)
+t

It remains only to evaluate < olo> ¢+ We have,

2° : 2
<0103, = plexp {5~ [az arp) ac-p em | < [aralp) ali-p}ie>
. ()
= ) 5 <¢l[faL a(p) a-p))” x [z a (p) ale-p))®le>.  (19)
n=0 (n!)
The expression _
| [S2a]" [S2Ta") 0> = ¢,
may be evaluated by induction as follows. Take one operator a(-upM) from the left
and carry it through to the right picking up the commutators along the way. We
obtain, ‘

K =2n < |[S2a]™ fd§a(P) aT(P)[faTaT] &> -

Now take the operator a(p) and carry it through to the right obtaining,
2
K_= {Zn (o) + 4n(n—1)}Kn_1.

- Zn{C(wz) +2(n- 1)}Kn__1, (20

where C(ooz) is the doubly infinite constant given by

o(o?) = SaLBE 1) = f igi‘;éi (21)
T

Since KO =1, we have

K, = 2"l O(") [C(?) + 2]~ - -~ [C(w?) +2(n-1)]
and so
0 4.n 2 2 2
S = (t) G ) | C(» ) C(o7) |
t<0t0>t_n§0 n XT3 [ 2 +1] —---[——(-5—14-(:1-1)]
- (1 - YO /2) (22)




by the binomial theorem. Combining (18) and (22) we have

1
<E(p)|gp)> = lim {— X exp dZif(p) - &(p)
= 1{(1 t)[C(”)/z]} {2<1 t) et o }

X exp dar *(p) g(p . 23
{<1+t>f;(>()} . (23)

First we note that unless f(p) g(p), the first exponential goes rapidly to zero as

t —1. Since we are interested only in the 11m1t as t—1 we may rewrite (23) as

Xp dg |f(p) - g(p
e {2(” fclu g()l}
(1- t)[cw )/2]

<sp)|ep = exp {3 farlf)®} x tim (24)
' t—1

It is a satisfactory feature of (24) that unless
JSatli) - ep)® = o, (25)
the numerator goes rapidly to zero as t —-1, for this means that in some sense the
orthogonality of eigenvectors with different eigenval’ues holds true. However, the
appearance of the factor
(1-t )[C(w )/2]

in the denominator means that it is impossible to orthonormalize the states |g(p)>

and hence there exists no unitary transformation connecting the frge_particle states

‘with the states |g(p)> .

Can we make any better intuitive sense of (24) ? First observe that since

/ 2m’

implies that V is a phase space volume element for a single state for one boson we

may heuristically write

2
(1-th C=/2 fsz<1-t4> (26)




where IT is the product over any half of the possible states for one boson.
S :
Similarly using relation (7) we may heuristically write

exp{z fatlil”} - ISTeXP{If(g)Iz b, (27)

and

. )
exp { -1 )deIf(g) - g(£)|2} e ISYexp {w_}, (28)

2(1- ¢ (1-t%
where IT is the product over a particular half of the possible states for one boson,
namelysa set of half the values of p chosen so that‘ ile is within the set, thep -p
is not within the set. For example we could take the set of all B such that either

P, > 0, orif p, = 0 then py> 0? or if p, = 0 and py = 0 then P, > 0. Now a simple

calculation shows that

2
lim { 1 T ©Xp <_—_If_—_4g_|_>}= T 3(Ref - Reg) o(Imf - Img). (29)
t—~1{(1-t") (1-t))

Therefore combining (26), (27), (28), and (29) we have heuristically

23
<£(p)/g(p)> gi’iﬁﬁm—f = [T3(Ref(p) - Reg(p)) B(1m (p) - Img(p)-

Expression (30) is just the answer we intuitively expect and in fact is just the exact
answer one obtains when the set S contains only a finite number of distinct possible
states, i.e., if we put all our bosons in a finite box and only consider those states
for which | £| <somep .. - Hence we can say that the expression (24) is trying to
describe a continuously infinite product of delta funcﬁons, but since such an infinite
product is mathematically horribly ill defined (in fact the dual motion of integration
over the maﬁifold of all possible functions g(g) ‘has never been successfuliy defined), 2
the mathematics juskt breaks down and produces infinite multiplicative c@nstants as

in (24).
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PART II

THE DIAGONALIZATION OF j(x)

First we note that by (1b) and (3b),
ix = %‘[ W(gg), P(x)] = fﬁ(‘:&) Y(x) + infinit?e constant.
Since we are ihterested in the problem of diagonalizing j(§), the infinite constant
may be ignored and we shall hereafter take
(%) = ¥ v R

as the operator to be diagonalized. |

Secondly, we reintroduce explicit awareness of the infinite Dirac sea of filled
negative energy states by setting |

U 0@ = Vo (R)

i
(a=1,2)
b, (B) = cg(-g) ‘ (32)
Substituting (32) in (2a) we find
4 .
LR Sat u @) e® Fp (). (33)
a= .

Thirdly we note that the Dirac vacuum, |¢>, for free fields is defined by the con-

dition that for all g

ba(g)lq» =0 (x=1,2),
and
T _ _
be,@)1¢> = 0 (@=34. (34)

The b (and bT) operators destroy and create fermions in eigenstates of the
free Hamiltonian. Clearly if we wish to diagonalize j@ we shall need instead
operators which create and destroy particles localized at a given position x.

Therefore consider the operator
, 4
1\
ni(g,) B (ZEp ) E uai(g) boz(..g)’ , (35)

a=1
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where uai(p) is thei'th component (i = 1,2, 3,4) of the spinor ua(p). Define the
E L i

spinor e, by

O 80!1 , , (36)
From (33), (35), and (36) it follows that
4 d3gf iR x
P(x) = e e wn (p), ’ (@37
" =1 (2'rr)3 o o'&
and
343, -
[, @), = 8,502m° °p-p. (38)
Next consider the opefator '
3 .
¢ (%) = ._d% 61}3 X WQ(R) . ' (39)
o (2m)

Substituting (39) in (37) and (38) we find

4
V() = o§1 e, £, (40)
and
e ], = o 0% 1 @

The g-"(and fT) operators are the desired operators which destroy and create particles
localized at a given position. To construct an eigenvector of j(ﬁ}';_) we simply define

it by the condition (compare with (34)) that for all X

£ @i>=0  (@=12)

and
¢ @li> =0 (a =3,4). (42)

If we use the standard repfesentation where
yo = 1 0
0 Vo -1
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we find
i@]i> = ¥iz) vow(x>|3> - {&T @ e L - 1 12 £an@ >
which by (41) and (42) |
= -C@)|i>,

where C(«) is an infinite constant given by

Cw) = 63(0) ———R— :
(2 )

Hence |j> is an eigenvector of i(x)-
To obtain all the eigenvectors of j(x) consider an arbitrary function f(o, X)
whose range consists of the integers 0 and 1. -Define the state [f(a ,3{)) by the

condition that for all @ and x,

£ (@I =0, if flo, = 0 |

and
fl(ﬁ)lb =0, if f(a,x) =1. (43)

Since the states (o, X) are a complete orthonormal set for one particle we see
by analogy to the case with any finite number of particles, that corresponding to the
set of all distinct possible f(a, x) we have a complete set of orthogonal basis states

for all possible numbers of fermions. Furthermor_e,. :

i@IE> =Tyl o> - Z{fT(X)f @ - €150 £,

2
= C() E{f(a,gg - fla + 2,3‘:)}|f> . (44)
. =1 , '
where if

f(oz,_)'s)= 0

- 13 -




then
C(e) f(e,%) = 0.

So |f> is an eigenvector of j(x) whose (infinite) eigenvalue is
2 .
C) 2. {f(a,x) - fla + 2,9t
a=1

Therefore we have found the complete orthogdnal set of eigenvectors and
eigehvalues of 3(35)‘ 3 The infinite cbnstant C(») appears for the following reason:
Consider the case of only one particle localized at ppsition x' énd spinor index a'.
The corresponding state |f,> has
1 if a=oz'and3‘(~=§~'

fle.x= {

Then the eigenvalue of j(x) is

0 otherwise

pa)Cl) i x=g

Cl) Z{ (@, - fy(e +2,9)} = {
0 otherwise
where
| p(l) = p(2) = =p(3) = ~p(4) = +1 .
However, C(») = 8 (0), so the elgenvalue of J('.) is just the expected result,
- p(af)s @-x" .
Alterﬁately cons‘ider the state lf2 > where
fz(a,’}.c') =1lifa=1
and X is within some fin;’te volume V, and f2 = 0 otherwise. Then the eigenvalue of

ix) is

2 :
Ce) T {ty(@.p - @ +2,9} =66 Ce),
a=1 .
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where
1 if X € v
6(x) =

0 otherwise

Thus in this case the eigenvalue is infinite for all % within V, which simply reflects
the infinite density of particles §vithin V.

It is inferesting fo note that in'a completely analogous way we can construct
the set of all eigenvectors and eigenvalues of H,, the free particle Hamiltonian.
We simply consider all possible functions g(o, E) whose range is 0 and 1, and
define the corresponding state by the conditién

by®)g> =0, ifgle,p) =0
b:;(p)lg > =0, ifga,p) =1 (45)
i - _

Then we have
4 ; | 4 [ Ped o
§0|g> = of\_;:l f ApE b, (B) b (R)g> = o§1 [-—(ﬁ?‘p‘p(a)Epg(a,g),g> (46)

So |g> is an 'eigenvector of HO" Just as before, the states |g(a,p)> for all possible
distinct functions g, constitute a complete orthogonal basis set for all possible

numbers of fermions, but which diagonalizes H,. Note that the conventional Hilbert

0
space in which one does quantum field theory is an infinitesimally small subsét of
this complete orthogonal basis set. The conventional Hilbert space corresponds to
the subset of those functions g(a, p) such that for all b,
»
, 0 if a=1,2
g(a,p) = :
e 1 if «a=3,4 ,

except for a finite number of discrete values, o5 and P (i=1,2,...,n), where

8oy, gi) is arbi'traryv(but must be 0 or 1).
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Returning to the eigenvectors of j(x) we may ask if there exists a unitary
transformation from the complete orthogonal basis states |g(a, £)> which diagonalize
HO to the complete orthogonal basis states lf(a,g)) which diagonalize j%) and hence
HI. First we observe that, just as in the boson case, the set of basis states is so

_ infinite that it seems impossible to define the notion of integration over all p

states, and therefore it is impossible to define a normalization for the basis states.

So, there exists no unitary transformation connecting the lg> states with the [f)

states. If we try to write any given |f) state as a superposition of |g) states this

problem of the basis set being too infinite immed.iately appears. To see this, write

the given |f> state in the form
- T '
e, z> =T ] 1oy (47
where |0> is the no particle state defined by

£, @]0>=0 | 0
for all @ and X, and by If] is meant the produce over all o and X such that f(a, x) =1

Now from Eqs. (35) and (39) it follows that |
§(,,) Zfdzs P by(), (48)
where
Sia(i{-’R) = Yy
Substituting this in (47) we find

|f>=Ig[ fdz.: b’"(p) Sto (p,g,g)]l0>- (49)
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If there are only a finite number, N, of particles in the state |£> we have from (49)

=1 [Zfdc (p)sT @ ]|0>

4 S
T E
= d .d T s 05, o
’Bl’.' Z pN’"lf Cl ¢ {1 1 ﬁl 1(p1 m)} {1-—1 ﬁ R )}, - (59)

Since the expression
(p 20>
1—1 B

‘is just a |g)> basis state, Eq. (50) gives |f) as the required superposition of g
states. However if, as is generally true, the state |[f> contains a continuously

infinite number of particles, then the

(75} 22:9)

will in general be either zero or infinite, and there will be a continuously infinite
number of summations and integrals to do, which is also ill defined. Therefore, in

genéral, it is iinprsible to write a gix}en |£> state as a superposition of ig> states.
CONCLUSION

We have shown that a basic element of the nonrelativistic quantum thébry is
absent in quantum field theory. We are still able to construct explicit representations
which diagonalize either the free part 61‘ thé interaction pétrf of the Hamiltonian. in
quantum field theory, just as in nonrelativistic quantum theory, but' there is no
unitary transforniation conriecting‘ the two representations.

In nonrelativistic quantum mechanics all the Hermitian operators which occur
in the theory can be diagonalized, and the vé.rioué representations which diagonalize

them are connected by unitary transformations. This feature is fundamental to both
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calculation and physical interpretation of the theory. The fact that this is no longer
true in quantum field theory, as we have amply demonstrated, is a serious dif-

ficulty which has yet to be understood and overcome.
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