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Abstract
In this article, we provide notes that complement the lectures on the relativistic
Euler equations and shocks that were given by the second author at the program
Mathematical Perspectives of Gravitation Beyond the Vacuum Regime, which
was hosted by the Erwin Schrödinger International Institute for Mathematics
and Physics in Vienna in February 2022. We set the stage by introducing a
standard first-order formulation of the relativistic Euler equations and provid-
ing a brief overview of local well-posedness in Sobolev spaces. Then, using
Riemann invariants, we provide the first detailed construction of a localized
subset of the maximal globally hyperbolic developments of an open set of
initially smooth, shock-forming isentropic solutions in 1D, with a focus on
describing the singular boundary and the Cauchy horizon that emerges from
the singularity. Next, we provide an overview of the new second-order for-
mulation of the 3D relativistic Euler equations derived in Disconzi and Speck
(2019 Ann. Henri Poincare 20 2173–270), its rich geometric and analytic
structures, their implications for the mathematical theory of shock waves, and
their connection to the setup we use in our 1D analysis of shocks. We then
highlight some key prior results on the study of shock formation and related
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problems. Furthermore, we provide an overview of how the formulation of the
flow derived in Disconzi and Speck (2019 Ann. Henri Poincare 20 2173–270)
can be used to study shock formation in multiple spatial dimensions. Finally,
we discuss various open problems tied to shocks.
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singular boundary
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1. Introduction

In this article, we provide notes that complement the lectures on the relativistic Euler equations
and shocks that were given by the second author at the program Mathematical Perspectives
of Gravitation Beyond the Vacuum Regime, which was hosted by the Erwin Schrödinger
International Institute for Mathematics and Physics in Vienna in February 2022. Broadly
speaking, our main goals are the following:

(1) To briefly introduce the equations.
(2) To provide an overview of the new formulation of the equations derived in [42].
(3) To describe the implications of the formulation from [42] for the study of multi-

dimensional shocks.

Although our main interest is solutions in 3D without symmetry assumptions, we high-
light section 3, in which we rigorously study a family of initially smooth, simple isentropic
shock-forming plane-symmetric solutions and give a complete description of a portion of their
maximal (classical) globally hyperbolic developments (MGHDs for short), up to the bound-
ary. To the best of our knowledge, this is the first article on any quasilinear hyperbolic system
in 1D that provides the detailed construction of the MGHD within the vicinity of a shock sin-
gularity. Section 3 in particular provides an introduction to some of the main ideas behind the
study of shock formation in a gentle, semi-explicit 1D setting, where energy estimates are not
needed. Roughly, the MGHD is the largest possible classical solution + globally hyperbolic
region that is launched by the initial data, and when it exists and is unique (for some solutions
to some hyperbolic PDEs, it is not unique—see section 5.5!), it is the holy grail object, at least
from the point of view of classical solutions.

We stress outright that, although the relativistic Euler equations are posed on an ambient
Lorentzian manifold (M,g), from the point of view of the causal structure of the fluid, the
correct notion of ‘globally hyperbolic’ is not with respect to the spacetime metric g, but rather
with respect to the acoustical metric h, introduced in definition 2.4. To avoid confusion, wewill
refer to this as h-global hyperbolicity and the corresponding maximal (classical) h-globally
hyperbolic development (h-MGHD).

Many of the techniques and geometric insights behind the modern approach to study-
ing shocks have roots in mathematical general relativity, notably the celebrated proof by
Christodoulou–Klainerman [33] of the nonlinear stability of Minkowski spacetime as a solu-
tion to Einstein’s equations. A key unifying theme between the global existence result [33]
and the results on shocks that we discuss here is that nonlinear geometric optics, implemented
via an eikonal function U, plays a central role in the study of the flow. We will discuss eikonal
functions in detail in sections 3 and 6.

We highlight a key advantage of the formulation of the flow derived in [42].

For general solutions (in 3D, i.e. three spatial dimensions), it allows one to
implement a sharp version of nonlinear geometric optics. Nonlinear geometric
optics is crucial for the study of multi-dimensional shocks, and it has other
applications, such as low-regularity well-posedness (see section 2.3.5).

In line with points (1)–(3) above, this article is meant to give an introduction to the math-
ematical techniques and methods needed for the PDE analysis through the lens of nonlinear
geometric optics. A comprehensive topical review of the rich history of shock singularities
in the framework of hyperbolic conservation laws would encompass a work of substantially
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larger order of magnitude. We refer the reader to [18, 40, 50] and the references therein for a
good start.

1.1. Motivation, context, and the structure of the article

1.1.1. Mathematical and physical motivations. The relativistic Euler equations are an import-
ant matter model in mathematical general relativity. For example, relativistic fluids are often
used in cosmology to model the average energy–matter content of spacetime, and they in par-
ticular play a central role in the standard model of cosmology. For a non-exhaustive yet extens-
ive overview of these physical applications, we refer the reader to the texts [79, 98, 101], and
the references therein. There has also been rigorous mathematical progress on the global struc-
ture of solutions when the spacetime is expanding [44, 45, 78, 85, 91]. We also highlight [30]
and [31, chapter 1] for a modern introduction to the relativistic Euler equations and their con-
nections to the laws of mechanics and thermodynamics.

Despite the above remarks, the rigorous mathematical theory of multi-dimensional solu-
tions is far from complete. Even if one considers the relativistic Euler equations on a given
spacetime background (i.e. without coupling to Einstein’s equations), there are many math-
ematically rich phenomena that have not been fully understood. Chief among these is the fun-
damental issue, going back to Riemann’s foundational work [84] on non-relativistic compress-
ible fluids in 1D, that initially smooth solutions can develop shock singularities in finite time.
Shocks are singularities such that various fluid variables’ gradients blow up in finite time (in a
precise, controlled fashion, as it turns out), though the fluid variables themselves (such as the
velocity and density) remain bounded. This phenomenon is also known as wave breaking. The
relatively mild nature of the singularity gives rise to the hope that one might—at least for short
times—be able to uniquely continue the solution weakly past the first singularity1, subject to
suitable selection criteria, typically in the form of Rankine–Hugoniot-type jump conditions
across a shock hypersurface (which is not known in advance) and an entropy-type condition.
This weak continuation problem is known as the shock development problem, and in full gen-
erality, it remains open, for both the 3D relativistic Euler equations and their non-relativistic
analog, i.e. the 3D compressible Euler equations; see section 5.6 for further discussion. The
long-term goal is certainly the following:

Develop a rigorous global-in-time-and-space theory of existence and unique-
ness for open sets of multi-dimensional solutions that are allowed to transition
from classical to weak due to shock formation, and describe the interactions
of different shock hypersurfaces, Cauchy horizons (see section 3.8), and other
crucial qualitative features of the flow.

This goal is far out of reach as of present. If one could accomplish it even in a single per-
turbative regime, that would represent truly remarkable progress.

While there have been many works on shock formation for the multi-dimensional non-
relativistic compressible Euler equations, such as [1–3, 21–24, 35, 66, 68, 92, 96], there have
been relatively few works on multi-dimensional shock formation for the relativistic Euler
equations. The most notable work in the relativistic case is Christodoulou’s breakthrough
monograph [31], in which he proved shock formation and studied some aspects of the h-
MGHD for open sets of irrotational and isentropic solutions in 3D that are compactly supported
perturbations of non-vacuum constant fluid states. Unlike the non-relativistic case, there are

1 In multi-dimensions, the correct notion of ‘first singularity’ is not a point in spacetime, but rather a co-dimension
two submanifold of points; see section 5.5.
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currently no rigorous results that prove multi-dimensional shock formation for the relativistic
Euler equations in the presence of vorticity and entropy. However, in section 6, we provide a
blueprint for how one can use the equations of [42] and the analytic framework of [1, 3, 31, 66,
68, 92, 96] to prove stable shock formation in the 3D relativistic case for open sets of solutions
with vorticity and entropy.

The remainder of the article is organized as follows:

• In section 2, we set up the study of the relativistic Euler equations and provide an overview
of basic ingredients that play a role in the proof of local well-posedness in Sobolev spaces. In
particular, we introduce the acoustical metric h, which is the solution-dependent Lorentzian
metric that drives the propagation of sound waves; the acoustical metric is fundamental for
implementing nonlinear geometric optics and studying multi-dimensional shocks. While we
state the equations in the case of an arbitrary spacetime background (M,g), the vast majority
of the article concerns the case in whichM= R1+3 and g=m is the Minkowski metric on
M. We again point out that nearly all notions of hyperbolicity will refer to the acoustical
metric h and not g or m.

• In section 3, to help readers gain intuition for the subsequent discussion, we study the flow
in one spatial dimension, which is equivalent to studying plane-symmetric solutions in 3D.
In particular, in theorem 3.1, we provide a detailed analysis of the h-MGHD for a large set
of shock-forming relativistic Euler solutions in 1D. Some aspects of the theorem, notably
the results concerning the formation of Cauchy horizons, have not been proved in detail
elsewhere in the literature. Although theorem 3.1 specifically concerns the relativistic Euler
equations, the techniques could be applied to a wide variety of strictly hyperbolic genuinely
nonlinear PDEs in one spatial dimension.

• In section 4, we provide an overview of the new formulation of the 3D relativistic Euler
equations derived in [42].

• In section 5, we describe some previous works on shock formation and related problems.
• In section 6, based in part on our prior experience [1, 3, 66, 68, 92, 96] in studying shock

formation in multi-dimensional non-relativistic compressible fluids, we provide an overview
of how the new formulation of the flow from [42] can be used to study shock formation for
open sets of solutions to the 3D relativistic Euler equations. As of present, rigorous fluid
shock formation results in multi-dimensions with vorticity and entropy have been proved
only for the non-relativistic compressible Euler equations. Nonetheless, from the perspective
of shock formation, the relativistic Euler equations and the non-relativistic compressible
Euler equations enjoy many structural commonalities, and we expect that the overview we
provide in section 6 could be turned (with substantial effort) into a complete proof.

• In section 7, we describe various open problems.

2. Standard formulations of the relativistic Euler equations and local
well-posedness

In this section, we introduce some standard first-order formulations of the relativistic Euler
equations. We also introduce the acoustical metric h and set up a corresponding geometric
version of the energy method that applies to a first-order formulation of the flow. Finally, we
state proposition 2.3, which is a standard result on local well-posedness, and briefly discuss
how its proof is connected to the energy method.

6
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2.1. The basic setup

We start by discussing standard formulations of the relativistic Euler equations on an arbitrary
four-dimensional Lorentzian manifold (M,g), where g is the spacetime metric of signature
(−,+,+,+). Our discussion in this section is motivated by Christodoulou’s presentation in
[31, chapter 1]. We are somewhat terse in our presentation here, and thus we refer readers to
[31, chapter 1] for additional details.

Convention 2.1 (moving indices with g and m). In this section, we will lower and raise
indices with the spacetimemetric g and its inverse g−1respectively, i.e. uα := gακuκ and ξα :=
(g−1)ακξκ. Similar comments apply to the bulk of the article, once we fixM= R1+3 and g=
m as the Minkowski metric on R1+3; see section 2.2.1. This will become especially important
later on, when we introduce the acoustical metric h, i.e. we do not raise or lower indices with
h−1 or h.

2.1.1. The basic fluid variables and relations. We now introduce the basic fluid variables
that will play a role in our study of the relativistic Euler equations: ρ :M→ [0,∞) denotes
the fluid’s (proper) energy density, p :M→ [0,∞) denotes the fluid pressure, s :M→ [0,∞)
denotes the entropy per particle (‘entropy’ for short form now on), n :M→ [0,∞) denotes
the proper number density, θ :M→ [0,∞) denotes the temperature,

H :=
ρ+ p
n

(1)

denotes the enthalpy per particle, and uα denotes the fluid’s four-velocity, which is a future-
directed vectorfield on M normalized by:

g(u,u) =−1. (2)

In the rest of the paper,

H> 0 (3)

denotes an arbitrary fixed, positive value of H; we find it convenient to use H to normalize
various constructions.

We find it convenient to work with the natural log of the enthalpy.

Definition 2.1 (logarithmic enthalpy). We define the (dimensionless) logarithmic enthalpy h
as follows:

h := ln
(
H/H

)
. (4)

Definition 2.2 (the quantity q). We define the quantity q as follows:

q :=
θ

H
. (5)

2.1.2. A first statement of the relativistic Euler equations. Relative to arbitrary coordinates,
the relativistic Euler equations on (M,g) can be expressed as the following system of quasi-
linear hyperbolic conservation laws:

7
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∇κTακ = 0, (α= 0,1,2,3) , (6a)

∇κ (nuκ) = 0, (6b)

where ∇ is the Levi–Civita connection of the spacetime metric g and:

Tαβ := (ρ+ p)uαuβ + p
(
g−1
)αβ

, (α,β = 0,1,2,3) , (7)

is the energy–momentum tensor of the fluid. It turns out that under additional assumptions
discussed in section 2.1.3, equation (2) can be viewed as a constraint that is preserved by the
flow of the PDEs (6a); see equation (15) and the discussion surrounding it. We also emphasize
that later on, we will discuss several other formulations of the flow.

2.1.3. Equation of state and thermodynamic relations. The system (2) + (6a)–(6b) + (7) is
not closed because there are too many fluid variables and not enough equations. The standard
path to closing the system begins with an equation of state, that is, an assumed functional
relationship of the form p= p(ρ,s). The basic hyperbolicity of the equations will require that
speed of sound c, defined by:

c :=

√
∂p
∂ρ

| s, (8)

should be real and non-negative, where ∂p
∂ρ | s denotes the partial derivative of p (i.e. of the

equation of state) with respect to ρ at fixed s. The vanishing of c causes a severe degeneracy
in the system, and we will therefore restrict our attention to solution regimes in which:

0< c⩽ 1, (9)

where we have normalized our setup so that the speed of light is unity (i.e. the second inequality
in (9) implies that the speed of sound is less than or equal to the speed of light). We also restrict
our attention to solutions such that:

ρ> 0, p> 0, n> 0, θ> 0, H> 0. (10)

The laws of thermodynamics demand that the fluid variables satisfy the following functional
relations:

H=
∂ρ

∂n
|s , θ=

1
n
∂ρ

∂s
| n , dH=

dp
n

+ θds, (11)

where ∂
∂n |s denotes partial differentiation with respect to n at fixed s and ∂

∂s | n denotes partial
differentiation with respect to s at fixed n.

2.2. Minkowski metric assumption and Minkowski-rectangular coordinates

In the rest of the paper, unless we explicitly state otherwise, it should be understood that the
spacetime manifoldM is equal toR1+3 and that g is equal to the Minkowski metric, which for
clarity we denote by m. We fix a standard global Minkowski-rectangular coordinate system
{xα}α=0,1,2,3 onM, relative towhichm= diag(−1,1,1,1).We use the notation {∂α}α=0,1,2,3

to denote the partial derivative vectorfields in this coordinate system. We also use the alternate
notation t := x0 and ∂t := ∂0.

8
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2.2.1. Index conventions. From now until the end of the paper, we use the following con-
ventions for indices.

• (Lowercase Greek index conventions) lowercase Greek spacetime indices α, β, etc cor-
respond to the Minkowski-rectangular coordinates and vary over 0,1,2,3. All lowercase
Greek indices are lowered and raised with the Minkowski metric m and its inverse m−1.
Throughout the article, if ξ is a type

(m
n

)
spacetime tensorfield, then unless we indicate

otherwise, in our identities and estimates, {ξα1···αm
β1···βn }α1,···αm,β1,··· ,βn=0,1,2,3 denotes its com-

ponents with respect to the Minkowski-rectangular coordinates.
• (Lowercase Latin index conventions) lowercase Latin spatial indices a, b, etc correspond

to the Minkowski-rectangular spatial coordinates and vary over 1,2,3. Much like in the
previous point, if ξ is a type

(m
n

)
Σt-tangent tensorfield, then {ξa1···amb1···bn }a1,··· ,am,b1,··· ,bn=1,2,3

denotes its components with respect to theMinkowski-rectangular spatial coordinates.
• (Uppercase Latin index conventions) uppercase Latin spatial indices A,B, etc correspond

to the spatial coordinates (x2,x3) and vary over 2,3. This will be important in section 6,
where (x2,x3) will correspond to perturbations away from plane-symmetry.

• (Einstein summation) we use Einstein’s summation convention in that repeated indices are
summed, e.g. LAXA := L2X2 +L3X3.

2.3. A well-posed first-order formulation

In this section, we provide a first-order formulation of the flow inwhich the unknowns are taken
to be

(
h,u0,u1,u2,u3,s

)
. Thanks to the assumptions state in section 2.1.2, the remaining fluid

variables can be expressed2 as functions of the unknowns.

Definition 2.3 (derivative of a scalar function with respect to a vectorfield). Throughout
the paper, ifZ is a vectorfield and f is a scalar function, thenZf := Zκ∂κf denotes the derivative
of f in the direction of Z.

With the help of (11), one can compute that for C1 solutions, (6a)–(6b) is equivalent to the
following first-order formulation of the flow:

uκ∂κh+ c2∂κuκ = 0, (12a)

uκ∂κuα +Πακ∂κh− q
(
mmm−1

)ακ
∂κs= 0, (α= 0,1,2,3) , (12b)

uκ∂κs= 0, (12c)

m(u,u) =−1, (12d)

where:

Παβ :=
(
m−1

)αβ
+uαuβ , (α,β = 0,1,2,3) , (13)

denotes projection onto the m-orthogonal complement of u. In particular,

Πακuκ = 0, (α= 0,1,2,3) . (14)

2 By (2), one can also express u0 =
√
1+ uaua.

9
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Equations (12b)–(12d) + (13) are a first-order quasilinear hyperbolic system and are locally
well-posed in suitable Sobolev spaces; see proposition 2.3. We also note by contracting (12b)
against uβ and using (12c), we deduce—without using (12d)—the following identity:

uκ∂κ {m(u,u)+ 1}= uκ (∂κuλ)uλ

=−{m(u,u)+ 1}uκ∂κh. (15)

Using (15), one can easily show via Grönwall’s inequality that ifm(u,u)+ 1 vanishes at t= 0,
then m(u,u)+ 1 vanishes on any slab [0,T]×R3 of classical existence on which the solution
is C1. Hence, (12d) can be viewed as a constraint on the initial data that is preserved by the
flow.

Remark 2.1 (additional terms in the context of curved spacetime backgrounds). When
posed on a general smooth spacetime background (M,g), there are additional terms on
RHS (12a) and (12b) of the schematic form Γ · f(V), where Γ schematically denotes
Christoffel symbols of g, V denotes the array of fluid variable unknowns (see definition 23),
and f schematically denotes a smooth function. In the context of fluid shock formation, the
dominant terms in the flow are Riccati-type nonlinearities in the fluid obtained after differen-
tiating the equations one time, i.e. they are quadratic in the first derivatives of the fluid, which
blow up (while V remains bounded); see remark 3.5. Note that upon differentiating the term
Γ · f(V), one obtains a term that is linear in the derivatives of the fluid variables. This means,
in particular, that for large-gradient solutions, the differentiated terms ∂α (Γ · f(V)) will be
small relative to the shock-driving Riccati-type fluid terms, i.e. the ‘new terms’ coming from
the non-flat ambient geometry are relatively small. This observation is a key reason behind our
expectation that one can use the methods described later in this article to prove shock forma-
tion for the relativistic Euler equations on a general spacetime (M,g), at least for initial data
with suitable large gradients.

2.3.1. Equations of variation. As a preliminary step in studying the well-posedness of (12b)–
(12d), we will discuss the equations satisfied by the derivatives of solutions. This is import-
ant in the sense that proofs of local well-posedness rely on differentiating the equations to
obtain energy estimates for the solution’s higher derivatives. Specifically, by differentiating
the equations, it is straightforward to see that given a solution (h,uα,s) to (12a)–(12d), any
derivative (of any order), which we denote by (ḣ, u̇α, ṡ), satisfies an inhomogeneous system,
known as the equations of variation, of the following form:

uκ∂κḣ+ c2∂κu̇κ = Ḟ, (16a)

uκ∂κu̇α +Πακ∂κḣ− q
(
mmm−1

)ακ
∂κṡ= Ġα, (α= 0,1,2,3) , (16b)

uκ∂κṡ= Ḣ, (16c)

m(u, u̇) = İ. (16d)

Although here we do not provide a detailed formula for the structure of the inhomogeneous
terms Ḟ, · · · , İ on RHSs (16a)–(16d), it is easy to see that they feature terms involving ⩽ the
number of derivatives represented by the variations (ḣ, u̇α, ṡ), i.e. fewer derivatives than the
principal terms on LHSs (16a)–(16d).

2.3.2. The acoustical metric. Abasic question about the equations of variation is: what kinds
of energy estimates are available for solutions? It turns out that this question is connected to

10
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the intrinsic geometry of the flow via the acoustical metric, which plays a fundamental role
throughout the article.

Definition 2.4 (the acoustical metric and its inverse). We define:

hαβ := n
{
c−2mαβ +

(
c−2 − 1

)
uαuβ

}
, (17a)(

h−1
)αβ

:= n−1
{
c2
(
m−1

)αβ
+
(
c2 − 1

)
uαuβ

}
, (17b)

n := c2 +
(
1− c2

)(
u0
)2 ⩾ 1. (17c)

We refer to h as the acoustical metric. n is just a convenient normalization factor.

With the help of (12d), one can compute that:

hαγ
(
h−1
)γβ

= δβα, (18)

where δβα is the Kronecker delta. That is, (18) shows that h−1 is indeed the inverse of h.
Moreover, by construction, we have:

(
h−1
)00

=−1. (19)

Remark 2.2 (normalization condition for h). Equation (19) is a convenient normalization
condition. Other works (e.g. [31]) rely on a different normalization condition for the acoustical
metric. That represents a minor difference that typically has no important implications for the
study of solutions.

Remark 2.3 (subluminal speeds). Note that by (9), (17a), and (17c), h(Z,Z)< 0 =⇒
m(Z,Z)< 0, i.e. the h-null cones are inside the m-null cones. Note also that by (12d), (17a),
and (17c), we have:

hκλuκuλ =−n< 0. (20)

In particular, u is h-timelike (and thus m-timelike, as one can explicitly see via (12d)).

Remark 2.4 (acoustical metric in a general ambient spacetime (M,g)). When studying the
relativistic Euler equations in a general ambient spacetime (M,g) equipped with coordinates
(x0,x1,x2,x3), where t := x0 is a smooth time function (see section 4.2.5), the acoustical metric
is (modulo the comments of remark 2.2):

hαβ := n
{
c−2gαβ +

(
c−2 − 1

)
uαuβ

}
, (21)

where

n :=−
(
g−1
)00

c2 +
(
1− c2

)(
u0
)2
> 0, (22)

where the positivity on RHS (22) stems from (9) and the assumption that t is a time function for
g, which in particular implies that relative to the coordinates (x0,x1,x2,x3), we have (g−1)00 =
(g−1)κλ(∂κt)∂λt< 0.
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2.3.3. The arraysV and V̇. For notational convenience, we define the solution array V and
the variation array V̇ as follows:

V :=
(
h,u0,u1,u2,u3,s

)
, (23)

V̇ :=
(
ḣ, u̇0, u̇1, u̇2, u̇3, ṡ

)
. (24)

2.3.4. Energy currents and energy identity in differential form. We now introduce energy
currents, which form the basis for energy identities for the equations of variation.

Definition 2.5 (energy currents). Given a solution V to (12a)–(12d) + (13), variations V̇=
(ḣ, u̇α, ṡ) that satisfy (16a)–(16d), and scalar functions f1 and f2, we define the corresponding
energy current vectorfield J̇(V,f1,f2) as follows:

J̇α(V,f1,f2)
[
V̇, V̇

]
:= f1uαṡ2 − 2c2qu̇αṡ− 2quαṡḣ+uαḣ2 + 2c2u̇αḣ+ c2uαu̇κu̇κ

+ 2c2uαuκu̇κḣ+ f2uα (uκu̇κ)
2
. (25)

Note that the components of J̇ can be viewed as quadratic forms in V̇ with coefficients
that depend on the solution V. Related energy currents were used by Christodoulou in [31].
A general framework for constructing energy currents in the context of regularly hyperbolic
PDEs was developed by Christodoulou in [29].

The following lemma provides a differential version of the energy identities afforded by the
energy current. The proof is a tedious but straightforward computation, omitted here (see [31,
equation (1.41)]).

Lemma 2.1 (energy identity in differential form). Under the assumptions of definition 2.5,
with J̇α(V,f1,f2)[V̇, V̇] denoting the energy current defined in (25), the following identity holds
relative to the Minkowski-rectangular coordinates:

∂κJ̇κ(V,f1,f2)
[
V̇, V̇

]
= 2f1ṡḢ− 2qḣḢ− 2qṡḞ+ 2ḣḞ+ 2c2u̇κĠκ + 2c2ḣuκĠκ

+ 2f2quκu̇κḢ+ 2f2uκu̇κuλĠλ +Q(V,f1,f2,∂V,∂f1,∂f2)
[
V̇, V̇

]
, (26)

where Q(V,f1,f2,∂V,∂f1,∂f2)[V̇, V̇] is a quadratic form in V̇ with coefficients that depend on V,
f1, f2, and their first-order partial derivatives; it is straightforward to compute Q in detail,
though we do not do so here.

By integrating (26) over a spacetime region and applying the divergence theorem, one
obtains an energy identity, where the energies are defined along the boundary of the region.
A fundamental question is: when are the energies obtained in this fashion positive definite3?
The answer to this question, provided by lemma 2.2, is tied to the acoustic geometry of the
system, captured by the acoustical metric. In short, the energies are positive definite whenever
the boundary of the region has h-timelike normals, i.e. whenever the boundary is spacelike
with respect to h.

Before proving the lemma, we first introduce a subset of state-space in which the relativistic
Euler equations are hyperbolic.

3 In general, energies are not useful if they are indefinite.

12
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Definition 2.6 (regime of hyperbolicity). We define the regime of hyperbolicity H to be the
following subset of solution-variable space:

H :=
{(
h,u0,u1,u2,u3,s

)
∈ R6 | 0< c(h,s)⩽ 1

}
. (27)

Lemma 2.2 (positive definiteness of J̇(V,f1,f2)[V̇, V̇]). Let ξ be a past-directed h-timelike one-
form, i.e. assume that (h−1)κλξκξλ < 0 and ξ0 := ξ(∂t)> 0. Let K be a compact subset of
the setH defined in (27), and assume that the solution array V defined in (23) satisfies V ∈ K.
Then if f1 and f2 are sufficiently large (in a manner that depends on ξ and K), there exists a
C= C(ξ,K, f1, f2)> 0 such that the quadratic form ξαJ̇α(V,f1,f2)[V̇, V̇] is positive definite in the
following sense:

ξκJ̇κ(V,f1,f2)
[
V̇, V̇

]
⩾ C|V̇|2. (28)

Remark 2.5 (motivation for lemmas 2.1 and 2.2). Although lemmas 2.1 and 2.2 might seem
at first glance like unmotivated technical results, they sit within the general framework ofmul-
tiplier methods for hyperbolic equations. To give a rough idea of the multiplier method, con-
sider a Schwartz-class solution ϕ to the linear wave equation−∂2

t ϕ +∆xϕ = 0 onMinkowski
spacetime (R1+3,m). We define the energy current vectorfield J to be the vectorfield with the
following components relative the standard Minkowski-rectangular coordinates:

J0 :=
1
2
(∂tϕ)

2
+

1
2
|∇xϕ|2, (29a)

Ji :=−(∂iϕ)∂tϕ, (i = 1,2,3) . (29b)

In (29a), ∇xϕ := (∂1ϕ,∂2ϕ,∂3ϕ) denotes the spatial gradient of ϕ and | · | is the stand-
ard Euclidean norm on R3. Then straightforward calculations yield that ∂κJκ = 0 and that
(∂t)κJκ = 1

2 (∂tϕ)
2 + 1

2 |∇xϕ|2. These two identities are analogs of (26) and (28) respectively.
The upshot is that by integrating ∂αJα = 0 over [0, t]×R3, one obtains the celebrated conser-
vation of energy formula for solutions to the linear wave equation:

1
2

ˆ
{t}×R3

{
(∂tϕ)

2
+ |∇xϕ|2

}
dx=

1
2

ˆ
{0}×R3

{
(∂tϕ)

2
+ |∇xϕ|2

}
dx. (30)

The approach is called the ‘multiplier method’ because it is a geometric version of the more
standard proof of (30), in which one multiplies the wave equation by ∂tϕ and integrates by
parts over [0, t]×R3.

Proof. Throughout, C= C(ξ,K, f1, f2) denotes a positive constant (often smaller than 1) that
can vary from line to line.

We start by defining the scalar function ξ∥ by:

ξ∥ := ξκuκ. (31)

Then, using (12d), we decompose:

ξα =−ξ∥uα + ξ⊥α , (32)

where the one-form ξ⊥α satisfies ξ⊥κ u
κ = 0. In particular, ξ⊥α ism-orthogonal to them-timelike

vectorfield uα and thus ξ⊥α is m-spacelike whenever it is non-zero, i.e. (m−1)κλξ⊥κ ξ
⊥
λ ⩾ 0.

13
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Since (h−1)κλξκξλ < 0 and hκλuκuλ < 0 (see (20)), and since ξα is past-directed while uα

is future-directed, it follows that there is a C with 0< C< 1 such that:

C⩽ ξ∥ ⩽ 1
C
. (33)

We can similarly decompose u̇α into a variation that is parallel to uα and one that vanishes
upon contraction with uα. We claim that prove (28), it suffices to show that when f1 = f2 = 0,
ṡ= 0, and uκu̇κ = 0, we have:

ξκJ̇κ
[
V̇, V̇

]
⩾ C

(
ḣ2 + u̇κu̇κ

)
. (34)

The estimate (34) would yield control over ḣ2 and variations such that ṡ= uκu̇κ = 0 (note that
u̇α ism-spacelike for such variations and thus the term u̇κu̇κ on RHS (34) is positive-definite
in such variations). Then to handle general variations, since the first and last terms on RHS (25)
yield the two coercive (in view of (33)) terms f1ξ∥ṡ2 and f2ξ∥(uκu̇κ)2, we can choose f1 and
f2 to be sufficiently large (for example, we can choose them to be large, positive constants) to
obtain control over ṡ2 and (uκu̇κ)2, and large enough so that these two coercive terms and the
coercivity (34) can collectively be used to absorb (via Young’s inequality) all the remaining
terms on RHS (25). In total, this would yield (28).

Hence, to complete the proof of (28), we can assume that f1 = f2 = 0, ṡ= 0, and uκu̇κ = 0.
This implies that u̇α is m-spacelike. We use (12d), (25), (31), and (32) to compute that:

ξκJ̇κ
[
V̇, V̇

]
= ξ∥ḣ2 + 2c2ξ⊥κ u̇

κḣ+ c2ξ∥u̇κu̇κ. (35)

Since (h−1)κλξκξλ <−C< 0, C< n< 1
C , and uκu̇κ = 0, we compute using (12d), (17b),

(31), and (32) that there is a C ′ > 0 such that:

n
(
h−1
)κλ

ξκξλ =−
(
ξ∥
)2

+ c2
(
m−1

)κλ
ξ⊥κ ξ

⊥
λ <−C ′. (36)

We are denoting the positive constant on RHS (36) by ‘C ′’ (rather than ‘C’) for clarity. Since
ξ⊥α is m-spacelike, we have c2(m−1)κλξ⊥κ ξ

⊥
λ ⩾ 0 and thus C ′ < (ξ∥)2. Since ξ⊥α and u̇α are

m-spacelike, for any σ> 0, we can use (36), the Cauchy–Schwarz inequality with respect to
m, and Young’s inequality to bound the cross term on RHS (35) as follows:

|2c2ξ⊥κ u̇κḣ|⩽
1
σ
c4
(
m−1

)αβ
ξ⊥αξ

⊥
β u̇κu̇

κ +σḣ2

⩽ 1
σ
c2
{(

ξ∥
)2

−C ′
}
u̇κu̇κ +σḣ2

⩽ 1
σ
c2
(
ξ∥
)2{

1−C ′C2
}
u̇κu̇κ +σḣ2, (37)

where the lastC on RHS (37) is from (33). We now set σ := ξ∥
{
1−C ′C2

}1/2
. It follows that:

|2c2ξ⊥κ u̇κḣ|⩽ c2ξ∥
{
1−C ′C2

}1/2
u̇κu̇κ + ξ∥

{
1−C ′C2

}1/2
ḣ2. (38)

Thus, since 1−C ′C2 < 1, we deduce from (38) that the cross term on RHS (35) can be
absorbed into the two positive definite terms with room to spare.We have therefore proved (34)
assuming f1 = f2 = 0, ṡ= 0, and uκu̇κ = 0, which completes the proof of the lemma.
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2.3.5. Local well-posedness and continuation principle in Sobolev spaces. In proposi-
tion 2.3, we discuss local well-posedness for the relativistic Euler equations in Sobolev spaces.

Proposition 2.3 (local well-posedness and continuation principle in Sobolev spaces).
Recall the notation V introduced in (23). Let V̊= (̊h, ů0, ů1, ů2, ů3 ,̊s) := V|t=0 be initial data
for the relativistic Euler equations (12a)–(12d) (in particular, assume that ů satisfies (12d)).
Assume that there is an integer N⩾ 3 such that h̊, ů1, ů2, ů3 ,̊s ∈ HN(R3) (and thus (12d) and the
standard Sobolev–Moser calculus imply that ů0 − 1 ∈ HN(R3)) and that V̊(R3) is contained
in a compact subset of the interior of setH defined in (27). Then there is a maximal TLifespan >
0 such that a unique solution to (12a)–(12d) exists and satisfies h,u0 − 1,u1,u2,u3,s ∈
C0
(
[0,TLifespan),HN(R3)

)
∩C1

(
[0,TLifespan),HN−1(R3)

)
. Moreover, either TLifespan =∞, or

one of the following two breakdown scenarios occurs:

(1) (Blowup). The solution’s C1 norm blows up:

lim
t↑TLifespan

‖V‖C1([0,t]×R3) =∞. (39)

(2) (Exiting the regime of hyperbolicity). There exists a sequence of points {(tm,xm)}m∈N ⊂
[0,TLifespan)×R3 such that for every compact subset K of the interior ofH, there exists an
mK ∈ N such that V(tm,xm) /∈ K whenever m⩾ mK.

We make the following remarks.

• In sections 3 and 6, we will study the formation of shock singularities, in which the solution
remains in the interior of the regime of hyperbolicity and the breakdown is precisely due to
the scenario (39).

• The techniques of [51], which rely only on energy estimates, Sobolev embedding, and the
fractional Sobolev–Moser calculus, can be used to save half a derivative compared to pro-
position 2.3, that is, to prove local well-posedness for the 3D relativistic Euler equations
whenever h̊, ů1, ů2, ů3 ,̊s ∈ H5/2+(R3).

• In [103], a low-regularity local well-posedness result for the 3D relativistic Euler equations
was proved. The low-regularity assumption was on the ‘wave-part’ of the initial data, which
was assumed to belong to H2+(R3), while the ‘transport-part’ (including the vorticity and
entropy) was assumed to satisfy some additional smoothness assumptions, which were
shown to be propagated by the flow; the terminology ‘wave-part’ and ‘transport’ is tied
to the formulation of the flow provided by theorem 4.1 and is explained in [103]. Lindblad’s
work [65] implies that the assumptions on the wave-part of the initial data are optimal in the
scale of Sobolev spaces due to the phenomenon of instantaneous shock formation for initial
data in H2(R3). The analysis in [103] relies on the new formulation of the flow presented in
theorem 4.1, which allows one to employ analytical techniques based on nonlinear geomet-
ric optics and Strichartz estimates. The techniques used in [103] have roots in the works [41,
100] (see also [104–106]) on low-regularity well-posedness for the non-relativistic com-
pressible Euler equations, which in turn have roots in the works [56–61, 87, 99] on low-
regularity well-posedness for quasilinear wave equations.

Discussion of proof of proposition 2.3. This is a standard result that can be proved by lin-
earizing the equations, deriving a priori estimates for solutions to the linearized equations,
and then invoking a standard iteration scheme. We refer to [88–90] for the main ideas, where
an analog of proposition 2.3 was proved for the coupling of the relativistic Euler equations
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to Nordström’s theory of gravity. The main idea behind the a priori estimates (in HN) is to
construct energy currents for the linearized systems such that analogs of (26) and (28) hold,
and to control RHS (26) in L2 using the Sobolev–Moser calculus (which is standard in 3D
when N⩾ 3).

3. A study of the maximal development in simple isentropic plane-symmetry

Our goal in this section is to prove theorem 3.1, which yields a complete description of a
localized portion of the boundary of the h-MGHD for open sets of shock-forming solutions
to the relativistic Euler equations (12a)–(12d) in simple isentropic plane-symmetry, where h
is the acoustical metric from definition 2.4; see figure 2. Roughly, the h-MGHD is the largest
possible classical solution + h-globally hyperbolic region that is launched by the initial data.
By a h-globally hyperbolic region R of classical existence launched by the initial data, we
mean that every inextendible h-causal curve in R intersects Σ0 := {t= 0}. In particular, the
h-MGHD cannot contain any points lying in the h-causal future of any singularity, where in
plane-symmetry, the h-causal future of a point is effectively determined by integral curves of
the two transversal null vectorfields L and L from definition 3.1.

The portion of the boundary that we study includes a singular boundary, where the fluid’s
gradient blows up in a shock singularity, and a Cauchy horizon, along which the solution
remains smooth. For the solutions under study, the past boundary of the Cauchy horizon inter-
sects the past boundary of the singular boundary in a distinguished point that we refer to as
‘the crease;’ see figure 3. The terminology ‘crease’ is motivated by its qualitative appearance
in three spatial dimensions; see figure 6. The crease plays the role of the true initial singularity
in a shock-forming relativistic Euler solution.

Section 3 is intended to provide a gentle introduction to the main ideas behind the study of
the h-MGHD in a simplified setting in which the geometry is easy to study and one can avoid
the burden of energy estimates. It will also help set the stage for section 6, in which we outline
some of the main ideas needed to study shock formation in 3D.

3.1. A description of the symmetry class

As we mentioned, we will study simple isentropic plane-symmetric solutions, which we now
describe. First, by ‘isentropic solutions’, we mean that s≡ 0; for any constant s0, we could
treat the case s≡ s0 using the same arguments. From (12c), we infer that for C1 isentropic
solutions, the condition s= s0 is preserved by the flow if it is satisfied at t= 0. By ‘plane-
symmetry’, we mean that u2 = u3 ≡ 0 and that h= h(t,x1), u1 = u1(t,x1), and u0 = u0(t,x1).
Such solutions can be viewed as solutions in 1D in which s≡ 0, and throughout the rest of
the paper, we make that identification. By ‘simple’, we mean that only one Riemann invariant
(see section 3.4) is non-vanishing.

3.2. The basic setup and conventions in plane-symmetry

In section 3, since we are studying isentropic plane-symmetric solutions, we will slightly abuse
notation and use h to denote the restriction of the acoustical metric (17a) and (17b), to the
(t,x1)-plane. That is, in section 3, relative to the (t,x1)-coordinates, we have:

hαβ := n{c−2mαβ +
(
c−2 − 1

)
uαuβ}, (α,β = 0,1) , (40a)(

h−1
)αβ

:= n−1{c2
(
m−1

)αβ
+
(
c2 − 1

)
uαuβ}, (α,β = 0,1) , (40b)
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where n is defined by (17c), and we recall that (19) holds.
For future use, we note that for C1 isentropic plane-symmetric solutions, the relativistic

Euler equations (12a)–(12d) in Minkowski spacetime are equivalent to:

uκ∂κh+ c2∂κuκ = 0, (41a)

uκ∂κu1 +Π1κ∂κh= 0, (41b)

u0 =

√
1+(u1)

2
. (41c)

For future use, we also note the following algebraic identity, which holds in plane-symmetry
due to (17c) and (41c):

n=
(
u0 +u1c

)(
u0 −u1c

)
. (42)

To ensure that shocks can form in solutions near constant fluid states with constant enthalpy
H> 0, we assume the following non-degeneracy assumption:

1− (c)2 +
c ′

cH
6= 0, (43)

where in (43), we are viewing c= c(H), c ′ := d
dHc, and LHS (43) is defined to be the con-

stant obtained by evaluating 1− c2 + c ′

cH at H= H. The condition (43) implies in particular
that the isentropic plane-symmetric relativistic Euler equations are genuinely nonlinear near
the constant-state solution (H,u1)≡ (H,0); see also section 3.5. Christodoulou showed [31,
chapter 1] that irrotational relativistic fluids (of which isentropic plane-symmetric fluids are a
special case) admit a Lagrangian formulation for a potential function, and the only equation of
state leading to 1− c2 + c ′

cH ≡ 0 is such that the potential function solves the timelike minimal
surface equation4. For that equation, which satisfies a nonlinear version of the null condition
that is stronger than the classic null condition identified by Klainerman [55], the first author
proved that perturbations of plane-symmetric data (which are similar to the data we study here
in section 3) lead to global, nonlinearly stable C2 solutions in both R1+1 and R1+3 [4, 5].

3.3. Null frame

In 1D, it is possible to explicitly write down a pair of transversal null vectorfields that dictate
the geometry of sound waves. As we explain in section 6.3, in more than one spatial dimension,
it is not possible to explicitly write down null vectorfields in terms of the fluid variables. Rather,
in that context, the null vectorfields depend on the gradient of an eikonal function U.

Definition 3.1 (null vectorfields in 1D). Relative to the Minkowski-rectangular coordinates
(t,x1), we define the vectorfields L and L as follows:

L := ∂t+
u1

u0 + c

1+ u1

u0 c
∂1, (44a)

L := ∂t+
u1

u0 − c

1− u1

u0 c
∂1. (44b)

4 For the minimal surface equation, c≡ 1 corresponds to the trivial embedding R1+d ↪→ R1+(d+1) with respect to
the Minkowski metric.
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Straightforward calculations based on (40a) and (44a)–(44b) yield the following identities:

h(L,L) = h(L,L) = 0, h(L,L) =−2. (45)

In particular, (45) shows that L and L are h-null. The pair {L,L} is known as a h-null frame.
From (45) and straightforward calculations, we deduce the following lemma.

Lemma 3.1 (h−1 in terms of L and L). In 1+ 1 spacetime dimensions, the inverse acoustical
metric h−1 from (40b) satisfies:

(
h−1
)αβ

=−1
2
LαLβ − 1

2
LαLβ , (α,β = 0,1) , (46)

i.e. h−1 =− 1
2L⊗L− 1

2L⊗L.

3.4. Riemann invariants

In this section, we introduce the Riemann invariants, which are a pair of fluid variables, one
of which is constant along the integral curves of L and the other along the integral curves of
L. For isentropic plane-symmetric solutions to the relativistic Euler equations, the Riemann
invariants can be used as state-space variables for the fluid, i.e. the other fluid variables are
determined by them. Riemann invariants were discovered by Riemann in his proof of shock
formation for the non-relativistic compressible Euler equations in 1D. In [97], Taub discovered
Riemann invariants for the isentropic relativistic Euler equations in 1D. Studying the flowwith
respect to the Riemann invariants allows one to study the h-MGHD using techniques based
on transport equations and ODE theory. In particular, energy estimates are not needed in 1D.
Although Riemann invariants are not available in multi-dimensions, approximate Riemann
invariants are available, and they are convenient for studying perturbations of isentropic plane-
symmetric solutions; see section 6.2.

To proceed, we let F= F(H) be the solution to the initial value problem:

d
dH

F(H) =
1
Hc
, F

(
H
)
= 0, (47)

where H> 0 is the constant (3), and in (47), we are viewing c as a function of H.
Note that since c(H) 6= 0 by assumption, it follows from (47) that the function F has a local

inverse F−1 defined near the origin such that F−1(0) = H.

Definition 3.2 (Riemann invariants). We define the Riemann invariants RPS
(+) and RPS

(−) as
follows:

RPS
(+) := F(H)+

1
2
ln

(
1+ u1

u0

1− u1

u0

)
, (48a)

RPS
(−) := F(H)− 1

2
ln

(
1+ u1

u0

1− u1

u0

)
. (48b)

In the next proposition, for isentropic plane-symmetric solutions, we express the relativ-
istic Euler equations in terms of (RPS

(+),R
PS
(−)), and we provide explicit formulae for various

quantities in terms of (RPS
(+),R

PS
(−)).
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Proposition 3.2 (isentropic plane-symmetric flow in terms of the Riemann invariants).
Let (h,u0,u1) be a C1 solution to (41a)–(41c), and let L and L be the vectorfields from defini-
tion 3.1. Then the Riemann invariants of definition 3.2 satisfy the following quasilinear trans-
port system:

LRPS
(+) = 0, (49a)

LRPS
(−) = 0. (49b)

Moreover, the components of the fluid velocity in the Minkowski-rectangular coordinate
system (t,x1) can be expressed in terms of the Riemann invariants as follows:

u0 = cosh

(
RPS

(+) −RPS
(−)

2

)
, u1 = sinh

(
RPS

(+) −RPS
(−)

2

)
. (50a)

In addition, with F−1 denoting the inverse function of the map F from definition 3.2, we have:

H= F−1

(
1
2

(
RPS

(+) +RPS
(−)

))
. (50b)

Finally, the following identities hold:

L= ∂t+


sinh

(
RPS

(+)−RPS
(−)

2

)
+ ccosh

(
RPS

(+)−RPS
(−)

2

)
cosh

(
RPS

(+)
−RPS

(−)

2

)
+ csinh

(
RPS

(+)
−RPS

(−)

2

)
∂1, (51a)

L= ∂t+


sinh

(
RPS

(+)−RPS
(−)

2

)
− ccosh

(
RPS

(+)−RPS
(−)

2

)
cosh

(
RPS

(+)
−RPS

(−)

2

)
− csinh

(
RPS

(+)
−RPS

(−)

2

)
∂1. (51b)

Proof. Equations (49a) and (49b) follow from straightforward but tedious calculations
involving definition 3.2, equations (41a)–(41c), the identity u0∂αu0 = u1∂αu1 (which follows
from differentiating (41c) with ∂α), and the identity ∂αF(H) = 1

c∂αh (which follows from (4)
and (47)).

To prove the identities in (50a), we first subtract (48b) from (48a) and use (41c) to compute

that 1
2

(
RPS

(+) −RPS
(−)

)
= ln(u0 +u1). Rewriting (41c) as (u0 +u1)(u0 −u1) = 1 and carrying

out straightforward calculations based on the definitions of cosh and sinh, we conclude (50a).
(50b) follows from adding (48a) to (48b), dividing by 2, and then applying F−1 to each side
of the resulting identity.

Finally, (51a) and (51b) follow from definitions (44a) and (44b) and the already proven
identity (50a).

Convention 3.1 (the fluid variables as functions of the Riemann invariants). In view
of (50a) and (50b), throughout section 3, we often view all the fluid variables as smooth func-
tions of the Riemann invariants (or of only RPS

(+) when we are studying simple isentropic

plane-symmetric solutions), e.g. u0,u1,h,H= f(RPS
(+),R

PS
(−)), where throughout the paper, f

schematically denotes a smooth function that can vary from line to line. For example, we

19



Class. Quantum Grav. 40 (2023) 243001 Topical Review

use (47), (50b), the inverse function theorem, and the chain rule to compute the following
identity, which holds for isentropic plane-symmetric solutions:

∂αc=
cH
2
c ′
{
∂αRPS

(+) − ∂αRPS
(−)

}
, (52)

where on RHS (52), c ′ := dc
dH .

3.5. Brief remarks on Riccati-type blowup and genuine nonlinearity

Consider a simple isentropic plane-symmetric solution RPS
(+) to (49a) (with RPS

(−) = 0). By

differentiating the equation with respect to ∂1, one obtains a Riccati-type equation for ∂1RPS
(+)

of the form L∂1RPS
(+) =− d

dRPS
(+)

L1 · (∂1RPS
(+))

2, where here we are viewing L1 as a function

of RPS
(+), which is possible thanks to proposition 3.2 and convention 3.1. Hence, as long as

the genuine nonlinearity condition d
dRPS

(+)

L1 6= 0 holds, then for solutions RPS
(+) launched by

smooth compactly supported initial data, one can easily show that ∂1RPS
(+) typically blows up

along the integral curves of L, much like in the case of Burgers’ equation ∂tΨ +Ψ∂1Ψ = 0;
we refer to [40, section 7.5] for a detailed discussion of the notion of genuine nonlinearity
in the context of 1D hyperbolic conservation laws. One can check that the non-degeneracy
assumption (43) indeed implies that d

dRPS
(+)

L1|RPS
(+)

=0 6= 0, i.e. that equation (49a) is genuinely

nonlinear near (RPS
(+),R

PS
(−)) = (0,0).

Our study of the blowup in theorem 3.1 does not rely on differentiating the equations with
∂1 to obtain a Riccati-type PDE. Instead, it relies on a much sharper approach tied to nonlinear
geometric optics, which we set up in section 3.6. In 3D, such a sharpened approach seems
essential, as there is no known simple approach for studying gradient-blowup based only on
differentiating the equations with respect to a standard, solution-independent partial derivat-
ive operator. In particular, in our discussion of shock formation in 3D in section 6, nonlinear
geometric optics will play a fundamental role.

3.6. Simple isentropic plane-symmetry and nonlinear geometric optics

Our study of the h-MGHD in theorem 3.1 intimately relies on nonlinear geometric optics,
implemented via an acoustic eikonal function U, and a careful study of the corresponding
acoustic geometry. The main idea of the proof of theorem 3.1 is to show that the solution
remains smooth relative to the ‘geometric coordinates’ (t,U) all the way up to the shock and
to recover the formation of the shock as a degeneracy between the geometric coordinates and
the Minkowski-rectangular coordinates (t,x1).

In this section, we construct the eikonal function and corresponding acoustic geometry for
the isentropic relativistic Euler equations in 1D, i.e. to the following initial value problem:{

LRPS
(+) = 0,

RPS
(+)|t=0 = R̊PS

(+),

{
LRPS

(−) = 0,

RPS
(−)|t=0 = R̊PS

(−)

. (53)

More precisely, we restrict our attention to simple isentropic plane-symmetric solutions,
defined here to be those solutions such that RPS

(−) ≡ 0. From (53) and (44b), it follows that

such solutions arise from initial data with R̊PS
(−) ≡ 0. In this case, (50a) yields the identity

20



Class. Quantum Grav. 40 (2023) 243001 Topical Review

u0 = cosh( 12R
PS
(+)). As we alluded to in convention 3.1, (50a) and (50b) also yield similar

formulas for u1, H as functions of RPS
(+).

We start by defining the acoustic eikonal function, which plays a central role in all of the
forthcoming analysis.

Definition 3.3 (the acoustic eikonal function in 1D and the characteristics). Let h−1 be the
inverse acoustical metric defined in (46). Then we define the acoustic eikonal function (eikonal
function for short) to be the solution U to the following fully nonlinear hyperbolic PDE with
Cauchy data: (

h−1
)κλ

∂κU∂λU= 0, (54a)

∂tU> 0, (54b)

U|t=0 =−x1. (54c)

We refer to the level sets of U as ‘the characteristics’.

Remark 3.1 (geometric optics is easier in 1D). Although understanding the fully nonlinear
structure of (54a) is necessary in multiple space dimensions, in 1D, (54a) is equivalent to the
linear (inU) transport equation forU derived in the following lemma. This makes the analysis
of the acoustic geometry in this section considerably simpler than in multi-D. It is also unique
to 1D that the h-null vectorfield L can be explicitly expressed in terms of the fluid via the
formula (44a). The correct analog of (44a) in higher dimensions is precisely L= 1

L0
(geo)

L(geo),

where Lα(geo) =−(h−1)ακ∂κU is a null geodesic vectorfield.

Lemma 3.3 (linear transport equation for U). Let L be the vectorfield defined in (44a). For
simple isentropic plane-symmetric solutions, ifRPS

(+) is sufficiently small
5, then the scalar func-

tion U solves (54a)–(54c) if and only if it solves the following transport equation initial value
problem:

LU= 0, (55a)

U|t=0 =−x1. (55b)

Proof. SupposeU solves (54a) and (54b). Then by (46), we find that 0= (LU) ·LU. If LU= 0,
there is nothing to prove. Hence, we assume that LU 6= 0, and we will show that this leads to
a contradiction. Then by (46), we have LU= 0. By (9), (51b), (54c), (55b), and our smallness
assumption on RPS

(+), we have:

∂tU
∣∣
t=0

=−

 sinh
(

1
2R

PS
(+)

)
− ccosh

(
1
2R

PS
(+)

)
cosh

(
1
2R

PS
(+)

)
− csinh

(
1
2R

PS
(+)

)
∂1U

∣∣
t=0

=
sinh

(
1
2R

PS
(+)

)
− ccosh

(
1
2R

PS
(+)

)
cosh

(
1
2R

PS
(+)

)
− csinh

(
1
2R

PS
(+)

) < 0. (56)

(56) contradicts (54b).

5 The solutions from theorem 3.1 satisfy the needed smallness. The key point is that if RPS
(+)

is large, then L and L

could both be right-pointing or both be left-pointing, in which case the initial condition (55b) would not be sufficient
for identifying the ‘correct root of the eikonal equation’, namely the ‘root’ LU= 0.
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Conversely, if (55a) and (55b) hold, then since (46) implies that (h−1)αβ∂αU∂βU=
−(LU) ·LU, it immediately follows that (54a) and (54c) hold. To prove (54b), we use (9),
(51a), (55a)–(55b), and the smallness of RPS

(+), arguing as in the proof of (56) to deduce that
∂tU> 0, as is desired.

Some remarks are in order.

• The minus sign in (55b) is just a convention imposed for consistency with related results
that have appeared in the literature, such as [1, 66, 68, 96].

• The precise initial condition in (55b) is not important; small perturbations of this initial
condition could also be used to study the h-MGHD.

• We have adapted our eikonal function to L because in theorem 3.1, we will study initial data
that lead to shock-forming solutions such that the singularity is tied to the infinite density of
the L-characteristics and the blowup of ∂1RPS

(+). There is nothing special about L compared
to L, and it is only for convenience that we have adapted our constructions to it. That is,
using the methods of this section, one could also construct an eikonal function U adapted to
L and study different initial data that lead to a singularity tied to the infinite density of the
L-characteristics and the blowup of ∂1RPS

(−). One could also try to study richer problems in
which singularities occur along both families of characteristics.

We now define µ, the inverse foliation density of the characteristics. The name is justified by
the fact that 1

µ
is a measure of the density of the stacking of the characteristics relative to

the level-sets Σt ′ := {t= t ′}. Roughly speaking, µ is initially positive, while shock formation
corresponds to µ ↓ 0, which signifies the infinite density of the integral curves of L (or equi-
valently, the level sets ofU in (t,x1)-space); we refer to figure 3, a context in which µ vanishes
along the curve portion denoted by ‘Υ(B[−U☢,0])’ (we will explain these issues in much more
detail later on).

Definition 3.4 (inverse foliation density). We define the inverse foliation density of the char-
acteristics, denoted by µ, as follows:

µ :=− 1
c
n∂1U

. (57)

In section 6, which concerns solutions in 3D, we will define µ to be − 1
(h−1)κλ∂κt∂λU

;
see (156). Under the initial condition (155) that we will choose for U, that definition of µ
can be shown to agree with the one for plane-symmetric solutions stated in (57).

We also note the following identities, which follow from (55b) and (57):

µ|t=0 =
n

c

∣∣
t=0
, =⇒ c

n
µ
∣∣
t=0

= 1. (58)

We now define a collection of vectorfields associated to the eikonal function.

Definition 3.5 (the vectorfields X, X̆, L̆). Let L and L be the vectorfields from definition 3.1
(they are h-null by (45)). We define:

X :=
1
2
(L−L) , X̆ := µX, L̆ := µL. (59)

Using (44a)–(44b), (45), and (59), it is straightforward to see that X is Σt-tangent (i.e.
Xt= 0) and satisfies h(X,X) = 1, that h(X̆, X̆) = µ2, and that h(L̆, L̆) = 0. We also note that
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in plane-symmetry, using definition 3.1, (42), and definition 3.5, one can compute the follow-
ing identity:

X=− c
n
∂1. (60)

Our main results concern solutions in which the factor c
n on RHS (60) satisfies c

n ≈ 1.

Definition 3.6 (geometric coordinates in 1D and the corresponding partial derivative
vectorfields). We define (t,U) to be the geometric coordinates, and we denote the corres-
ponding geometric coordinate partial derivative vectorfields by

{
∂
∂t ,

∂
∂U

}
(which are not to be

confused with the partial derivatives {∂t,∂1} in the (t,x1)-coordinate system).

Using (44a), (55a), (57), and (60), it is straightforward to compute that:

Lt= X̆U= 1, (61a)

LU= X̆t= 0. (61b)

From (61a) and (61b), it follows that in geometric coordinates, the following identities hold:

L=
∂

∂t
, X̆=

∂

∂U
, (62)

[L, X̆] = 0. (63)

From (44b), (59), and the identities in (62), we deduce the following expression for L̆ relative
to the geometric coordinates:

L̆= µ
∂

∂t
+ 2

∂

∂U
. (64)

We will often silently use (62) and (63) in the rest of section 3.
The following sets play a fundamental role in our analysis of solutions.

Definition 3.7 (portions of submanifolds of geometric coordinate space Rt×RU). Given
intervals I,J⊂ R, relative to the geometric coordinates, we define:

P I
U ′ :=

{
(t,U) ∈ R2 | t ∈ I, U= U ′} , (65a)

ΣJ
t ′ :=

{
(t,U) ∈ R2 | t= t ′, U ∈ J

}
. (65b)

We often write PU instead of P [0,∞)
U and Σt instead of Σ(−∞,∞)

t . We often refer to the PU

as the characteristics.

The following lemma shows that the geometric coordinates degenerate with respect to
the Minkowski-rectangular coordinates precisely when µ= 0. Despite the degeneracy, the-
orem 3.1 shows that for appropriate initial data, the change of variables mapΥwill nonetheless
be a homeomorphism on the subset of the boundary of the h-MGHD where µ vanishes.

Lemma 3.4 (the Jacobian determinant of (t,U) 7→ (t,x1)). Let:

Υ(t,U) :=
(
t,x1
)

(66)
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denote the change of variables map from geometric coordinates to Minkowski-rectangular
coordinates. Then the following identity holds:

detdΥ=− c
n
µ. (67)

Proof. (67) follows from straightforward calculations based on the identity ∂
∂Ux

1 =− c
nµ,

which is implied by (59)–(60) and (62).

3.6.1. Explicit solution formula in geometric coordinates. From (62), we see that in simple
isentropic plane-symmetry, the transport equation (49a) takes the following form in geometric
coordinates:

∂

∂t
RPS

(+) (t,U) = 0. (68)

From (68) and (53), we see that in geometric coordinates, the solution to (68) is:

RPS
(+) (t,U) = R̊PS

(+) (U) . (69)

3.6.2. The evolution equation for µ, the non-degeneracy condition, and explicit expressions
for various solution variables. In this section, we derive various identities involving µ. In
particular, we will later use the identities to show that suitable assumptions on the initial data
of RPS

(+) lead to the vanishing of µ in finite time, i.e. the formation of a shock.
We begin with the following lemma, which provides the evolution equation for µ.

Lemma 3.5 (transport equation satisfied by µ). For simple isentropic plane-symmetric solu-
tions, the inverse foliation density, defined in (57), satisfies the following transport equation,
where c ′(H) := d

dHc(H):

L
( c
n
µ
)
= G, (70)

G :=−
1− c2 + c ′

cH

2(u0 + cu1)
2 X̆R

PS
(+). (71)

Moreover,

LLµ= LL
( c
n
µ
)
= 0. (72)

Proof. First, using (51a), (52), (60), the quotient rule, the identity cosh2(z)− sinh2(z) = 1, and
straightforward calculations, we deduce the following commutator identity, valid for simple
isentropic plane-symmetric solutions:

[L,∂1] =
n

c

{
1− c2 + c ′

cH

2(u0 + cu1)
2

}
XRPS

(+)∂1.

Equation (70) then follows from multiplying (57) by c/n, differentiating both sides with
respect to L, and using the following commutator identity, which is a consequence the eikonal
equation LU= 0:

L
( c
n
µ
)
=

1

(∂1U)
2 L∂1U=

( c
n
µ
)2
L∂1U=

( c
n
µ
)2

[L,∂1]U.
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Equation (72) then follows from differentiating (70) with respect to L and using (49a), (60),
(63), and the assumption of simple isentropic plane-symmetry.

We find it convenient to work with an anti-derivative of the nonlinearity G defined in (71).

To this end, viewing the quantity − 1−c2+ c ′
cH

2(u0+cu1)2 as a function of RPS
(+) (see convention 3.1), we

define the function RPS
(+) → A[RPS

(+)] as follows:

A
[
RPS

(+)

]
:=

ˆ RPS
(+)

0

{
−

1− c2 + c ′

cH

2(u0 + cu1)
2

}(
R ′

+

)
dR ′

+. (73)

From (62) and (73), the fundamental theorem of calculus, and the chain rule, it follows that:

∂

∂U
A
[
RPS

(+)

]
= X̆A

[
RPS

(+)

]
= G, (74a)

A [0] = 0. (74b)

We highlight the important fact that in simple isentropic plane-symmetry, the non-
degeneracy assumption (43), the initial condition of (47), and (73) collectively imply that:

d

dRPS
(+)

A
[
RPS

(+)

]
|RPS

(+)
=0 =−1

2

{
1− (c)2 +

c ′

cH

}
6= 0. (75)

From (73) and (75), it follows that the function RPS
(+) 7→ A[RPS

(+)] is a diffeomorphism from

a neighborhood of the origin (i.e. near RPS
(+) = 0) onto a neighborhood of the origin; we will

silently use this basic fact in the rest of section 3. (75) is fundamental for ensuring the formation
of shocks, for it implies that near (RPS

(+),R
PS
(−)) = (0,0), equation (49a) is genuinely nonlinear;

see also the discussion in section 3.5.
Next, we note that in simple isentropic plane-symmetry, in view of (69), the quantities G,

c, and n can be viewed as functions of U alone. We sometimes emphasize this fact by using
notation such as G(U), c(U), etc. The following corollary is a straightforward application of
this fact and the above discussion; we omit the straightforward proof.

Corollary 3.6 (explicit expressions for µ, Lµ, X̆µ, and ∂1RPS
(+)). Let G be the source term

from (71), viewed as a function of U. LetA= A[RPS
(+)] be the function ofR

PS
(+) defined by (73).

Then for simple isentropic plane-symmetric solutions, the following identities hold relative to
the geometric coordinates, where A ′[R+] :=

d
dR+

A[R+]:

L
{ c
n
µ(t,U)

}
= G(U) =

d
dU

A
[
R̊PS

(+) (U)
]
= A ′

[
R̊PS

(+) (U)
] d
dU

R̊PS
(+) (U) , (76)

c
n
µ(t,U) = 1+ tG(U) = 1+ t

d
dU

A
[
R̊PS

(+) (U)
]

= 1+ tA ′
[
R̊PS

(+) (U)
] d
dU

R̊PS
(+) (U) , (77)
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X̆µ(t,U) = t
(n
c
G ′
)
(U)+

{
d
dU

(n
c

)
(U)

}
{1+ tG(U)}

=
n

c
t
d2

dU2
A
[
R̊PS

(+) (U)
]
+

{
d
dU

(n
c

)
(U)

}{
1+ t

d
dU

A
[
R̊PS

(+) (U)
]}

, (78)

[
∂1RPS

(+)

]
(t,U) =− 1

c
nµ(t,U)

∂

∂U
RPS

(+) (t,U) =−
d
dUR̊

PS
(+) (U)

1+ tG(U)

=−
d
dUR̊

PS
(+) (U)

1+ tA ′
[
R̊PS

(+) (U)
]

d
dUR̊

PS
(+) (U)

. (79)

3.7. Initial data that lead to admissible shock-forming solutions

In this section, we construct examples of initial data that fall under the scope of theorem 3.1,
i.e. initial data that launch shock-forming solutions such that we can derive the structure of a
portion of the maximal classical development that includes a neighborhood of its boundary.
Our construction could be substantially generalized to exhibit a much larger class of initial
data for which the results of theorem 3.1 hold; here we have striven for simplicity.

3.7.1. Assumptions on the ‘seed’ profile. To start, we fix any scalar ‘seed profile’ φ̊ with the
following properties (it is straightforward to show that such functions exist):

• φ̊= φ̊(U) is a6 C∞ function that is compactly supported in an interval [−U1,U2] of
U-values, where U1,U2 > 1.

• d
dU φ̊(U) has a unique, non-degenerate minimum at U= 0 (our choice U= 0 is only for

convenience). In particular, d3

dU3 φ̊(0)> 0.
• Modifying φ̊ by multiplying it by a constant and composing it with a linear map of the form
U→ zU for some constant z ∈ R if necessary, we assume that (for the modified φ̊), there is
a constant δ̊∗ satisfying:

δ̊∗ > 0 (80)

such that:

d
dU

φ̊(U)

∣∣∣∣
U=0

= −̊δ∗,
d2

dU2
φ̊(U)

∣∣∣∣
U=0

= 0; (81)

that there is a constant b satisfying:

b> 0 (82)

such that:

d3

dU3
φ̊(0) = b, (83)

6 Our proof of theorem 3.1 does not actually require ϕ̊ to be C∞; C4 would suffice.
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Figure 1. The graph of a representative ‘seed profile’, with U increasing from right to
left.

and such that:

1
2
b⩽ d3

dU3
φ̊(U)⩽ 2b, if |U|⩽ 1; (84)

and that there is a constant p satisfying:

0⩽ p< 1 (85)

such that:

d
dU

φ̊(U)>−p̊δ∗, if |U|⩾ 1. (86)

See figure 1 for the graph of a representative seed profile.

3.7.2. The initial data for RPS
(+) and amplitude smallness assumption. We now construct the

initial data for RPS
(+). Let φ̊ be as in section 3.7.1. We define the initial data function R̊PS

(+) :=

RPS
(+)|t=0 to be the following function of U:

R̊PS
(+) (U) := A−1 [φ̊(U)] , (87)

where A−1 is the inverse function of the map RPS
(+) → A[RPS

(+)] defined by (73).

Amplitude smallness assumption on the initial data
By (75) and continuity, we can further modify φ̊ by multiplying it by a constant to shrink the
amplitude of R̊PS

(+) and ensure that the following two conditions hold:

(1) The isentropic plane-symmetric initial data array V̊ := (h,u0,u1,0,0,0)|t=0 determined by
R̊PS

(+) via (50a)–(50b) (with RPS
(−) = 0 in those formulas) satisfies V̊ ∈ interior(H), where

H is the regime of hyperbolicity defined in (27).
(2) The following non-degeneracy condition holds:

d

dRPS
(+)

A
[
RPS

(+)

]∣∣∣∣
RPS

(+)
=R̊PS

(+)
(U)

6= 0, U ∈ [−U1,U2] . (88)
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In the rest of section 3, we will use the above two assumptions without always explicitly
mentioning them.

Taking into account (43) and (74b), we deduce from Taylor expansions and standard calcu-
lus that the following conclusions hold, where C> 0 depends on φ̊, and for functions f = f(U)
on Σ0 := {t= 0}, ‖f‖C0(Σ0) :=maxU∈R |f(U)| and ‖f‖C1(Σ0) := ‖f‖C0(Σ0) + ‖ d

dU f‖C0(Σ0):

• R̊PS
(+) is compactly supported in [−U1,U2] and satisfies the following bounds:∥∥∥∥ dM

dUM
R̊PS

(+)

∥∥∥∥
C0(Σ0)

⩽ C, M= 0,1,2,3,4. (89)

• d
dUA[R̊

PS
(+)(U)] has a unique, negative, non-degenerate minimum at U= 0. In particular,

d3

dU3A[R̊PS
(+)(U)]|U=0 > 0.

• There is a differentiable function R : R→ R such that ‖R‖C1(Σ0)
⩽ C and such that:

d
dU

A
[
R̊PS

(+) (U)
]
= −̊δ∗ +

1
2
bU2 +R (U)U3. (90)

• For j = 1,2,3, there exists a continuous function Λj : R→ (0,∞) such that:

Λj (U)≈ 1, U ∈ [−U1,U2] , (91)

and such that for M= 0,1,2, we have:

dM

dUM

(
d
dU

A
[
R̊PS

(+) (U)
]
+ δ̊∗

)
= ΛM+1 (U)U

2−M, if |U|⩽ 1, (92a)

d
dU

A
[
R̊PS

(+) (U)
]
⩾−p̊δ∗, if |U|⩾ 1, (92b)

where p ∈ [0,1) is the non-negative constant in (86), and in (91) and throughout, A≈B
means that there is a C⩾ 1 such that 1

CB⩽ A⩽ CB.

• The constant δ̊∗ appearing in (81) satisfies:

δ̊∗ = max
U∈[−U1,U2]

[G(U)]− = max
U∈[−U1,U2]

[
d
dU

A
[
R̊PS

(+) (U)
]]

−
, (93)

where [z]− :=max{−z,0} is the negative part of z.

3.7.3. The time of first blowup.

Definition 3.8 (time of first blowup). Given any initial data function R̊PS
(+)(U) constructed

above, with δ̊∗ > 0 as in (81), we define:

TShock :=
1

δ̊∗
. (94)

Note that (77) and (93) imply that TShock is the Minkowskian time at which µ first vanishes,
which by (79) is the positive time of first blowup for |∂1RPS

(+)|.
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3.7.4. Sharp estimates for the inverse foliation density. In lemma 3.7, we provide various
estimates for µ and its derivatives in a neighborhood of [0,TShock]×{0} ⊂ Rt×RU. These
estimates will be useful in the description of the boundary of the maximal development.

Lemma 3.7 (sharp estimates for µ and G). Let R̊PS
(+) = R̊PS

(+)(U) be compactly supported
initial data constructed in and satisfying the assumptions stated in section 3.7.2. Recall that
for the corresponding simple isentropic plane-symmetric solution, relative to the geometric
coordinates (t,U),RPS

(+), c, and n are functions of U. With this in mind, we define:

c :=min
U∈R

c(U)
n(U)

, C :=max
U∈R

c(U)
n(U)

. (95)

Note that by (9) and (17c), we have:

0< c⩽ C< 1. (96)

Then there exists7 a constant U☢ depending only on the seed profile φ̊ and satisfying 0<
U☢ < 1 such that the following hold.

Behavior of µ on[−U☢,U☢]. Let TShock > 0 be as defined in (94). Then the following estim-
ates hold for t ∈ [0,TShock]:

−c−1̊δ∗ ⩽ min
Σ
[−U☢,U☢]
t

Lµ⩽ max
Σ
[−U☢,U☢]
t

Lµ⩽−C−1̊δ∗. (97)

Moreover, for (t,U) ∈ [0,TShock]× [−U☢,U☢], the following estimates hold, where here
and throughout, A=Opos(B) means that there exist constants C1,C2 (depending on φ̊)8 such
that 0< C1 ⩽ C2 andC1B⩽ A⩽ C2B, and A=O(B)means that there exists a C> 0 (depend-
ing on φ̊) such that |A|⩽ C|B|:

µ(t,U) =Opos (1)
b

2
U2 +Opos (1) δ̊∗ (TShock − t) , (98)

Lµ(t,U) =−Opos (1) δ̊∗, (99)

X̆µ(t,U) =Opos (1)bU+O (1)(TShock − t) , (100)

LX̆µ(t,U) =O (1) , (101)

X̆X̆µ(t,U) =Opos (1)b+O (1)(TShock − t) . (102)

In addition, we have:

{X̆µ= 0}∩Σ
[−U☢,U☢]
TShock

= {(TShock,0)} ⊂ Σ
[− 1

4U☢,
1
4U☢]

TShock
, (103)

min

Σ
[−U☢,U☢]
TShock

\Σ
[− 1

2 U☢, 1
2 U☢]

TShock

|X̆µ|⩾ bU☢
8

, (104)

7 With minor additional effort, one could explicitly compute such a constant U☢ in terms of the constants associated

to ϕ̊ such as δ̊∗, b, etc.
8 For example, the implicit constants present on RHS (99) can be taken to be C1 = C−1 and C2 = c−1; see (97).
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1
2
C−1TShockb⩽ min

Σ
[−U☢,U☢]
TShock

X̆X̆µ,⩽ max
Σ
[−U☢,U☢]
TShock

X̆X̆µ,⩽ 2c−1TShockb. (105)

µ is uniformly positive away from the interesting region. With p ∈ [0,1) denoting the non-
negative constant on RHS (92b), we have the following estimate:

min
{(t,U) | t∈[0,TShock], |u|⩾U☢}

µ(t,U)⩾Opos (1)(1− p) . (106)

Properties of G in the interesting region. Let G be the source term from (71), viewed as a
function of U, and let G ′ := d

dUG. Then for U ∈ [−U☢,U☢], the following estimates hold:

G(U) = −̊δ∗ +Opos (1)U
2 =−Opos (1) δ̊∗, (107a)

1
G(U)

=− 1

δ̊∗
−Opos (1)U

2, (107b)

G ′ (U) =Opos (1)U. (107c)

In particular:

• G(U)< 0 for U ∈ [−U☢,U☢]
• G ′(0) = 0
• G ′(U)> 0 for U ∈ [0,U☢]
• G ′(U)< 0 for U ∈ [−U☢,0].

Proof. All of the results except for those concerning G are straightforward consequences of
corollary 3.6, the properties of the initial data R̊PS

(+)(U) from section 3.7.2, and Taylor expan-
sions; we omit the details.

To prove the results forG, we first use (69) and (74a) to deduce thatG(U) = d
dUA[R̊

PS
(+)(U)].

Using this identity and (90), we conclude (107c), provided U☢ > 0 is taken to be sufficiently
small.

3.8. The crease, singular curve, and Cauchy horizon in 1D simple isentropic plane-symmetry

In this section, we provide a description of a localized portion of the boundary of the h-MGHD.
We emphasize the following key point, which follows from (69), (77), and (79):

For the initial data from section 3.7.2, the corresponding fluid solutionRPS
(+) and

the inverse foliation density µ are explicit smooth functions on all9 of R2 in the
((t,U)) differential structure, even though the Minkowskian partial derivative
∂1RPS

(+) blows up in finite time.

9 In multi-dimensions, the best known estimates allow for the possibility of high order energy-blowup; see
section 6.9.3. However, even in multi-dimensions, the solution remains smooth at the low-to-mid order derivative
levels.
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Therefore, when we speak of the h-MGHD, we are referring to the standard differential
structure corresponding to the (t,x1) coordinates. Nonetheless, we prefer to carry out most our
analysis of the h-MGHD in (t,U) coordinates, thanks to the explicit structure of the equations
and solutions in geometric coordinates revealed in corollary 3.6. Hence, to reach conclusions
about the behavior of solution in the (t,x1)-differential structure, we have to control the change
of variables map Υ(t,U) := (t,x1); indeed, in theorem 3.1, we reveal various diffeomorphism
and homeomorphism properties of Υ.

For the solutions and localized region under study, when described in geometric coordin-
ates, the boundary of the h-MGHD consists of two pieces, depicted in figure 2:

(1) A singular curve portion B[−U☢,0], emanating from the first shock point—called the crease
and denoted by ∂−B—such that µ vanishes on B[−U☢,0].

(2) A Cauchy horizon portion, denoted by C[0,U☢], which is a portion of the integral curve of
L that emanates from ∂−B, and along which µ is positive, except at ∂−B.

In particular, the image Υ(B[−U☢,0]), depicted in figure 3, is a boundary of the h-MGHD
in the differential structure of the Minkowski-rectangular coordinates (t,x1) in the sense that
|∂1RPS

(+)| blows up when µ vanishes (as it does along Υ(B[−U☢,0])). In contrast, even though

RPS
(+) remains smooth all the way up to Υ(C[0,U☢]\∂−B), Υ(C[0,U☢]) is a boundary of the h-

MGHD because the creaseΥ(∂−B)—apoint at which |∂1RPS
(+)| blows up—lies in the h-causal

past of any point in Υ(C[0,U☢]). We highlight again that the singular behavior is only visible
relative to the differential structure of Minkowski space in (t,x1) coordinates. The discrepancy
between the behavior of the solution in the two coordinate systems is tied to the breakdown in
the diffeomorphism property of Υ when µ vanishes; see (67).

3.8.1. Singular curve, crease, Cauchy horizon, and developments. We now define some
subsets of geometric coordinate spaceRt×RU that, in theorem 3.1, will play an important role
in describing the shape of the h-MGHD. Many of our definitions are localized to the subset
{|U|⩽ U☢}, where U☢ > 0 is the constant from lemma 3.7. This is mainly for convenience,
since lemma 3.7 provides sharp control over the solution when |U|⩽ U☢.

Definition 3.9 (truncated portions of the singular curve and the crease). For the solu-
tion launched by the compactly supported initial data R̊PS

(+) = R̊PS
(+)(U) constructed in

section 3.7.2, letG be the corresponding source term from (71), viewed as a function ofU. We
define:

tSing (U) :=− 1
G(U)

. (108)

Let I⊂ [−U☢,U☢] be a subset ofU-values, whereU☢ > 0 is the constant from lemma 3.7.
We define the truncated singular curve to be the following subset of geometric coordinate
space Rt×RU:

BI := {(t,U) ∈ [0,∞)× I | µ(t,U) = 0}∩
{
(t,U) ∈ [0,∞)× I | X̆µ(t,U)⩽ 0

}
= {(tSing(U),U) | U ∈ I}∩

{
(t,U) ∈ [0,∞)× I | X̆µ(t,U)⩽ 0

}
, (109)
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where X̆ is the vectorfield defined in (59), and the second identity in (109) follows from (77),
(96), and (108).

We define the crease, which we denote by ∂−B, to be the following subset of geometric
coordinate space Rt×RU (theorem 3.1 implies that ∂−B is a single point for the solutions
studied there):

∂−B :=
{
(t,U) ∈ [0,∞)× [−U☢,U☢] | µ(t,U) = 0

}
∩
{
(t,U) ∈ [0,∞)× [−U☢,U☢] | X̆µ(t,U) = 0

}
. (110)

From (77), (78), (96), (107b), (107c), and (108), it follows that if (t ′,U ′) ∈
{
(t,U) ∈

[0,∞)× [−U☢,U☢] | µ(t,U) = 0
}
, then X̆µ(t ′,U ′) =Opos(1)U ′ and thus X̆µ(t ′,U ′)⩽

0 ⇐⇒ U ′ ∈ [−U☢,0]. We therefore have the following alternate characterization of BI:

BI =
{
(tSing(U),U) | U ∈ I∩ [−U☢,0]

}
∩ [0,∞)×R. (111)

We make the following remarks.

• One might wonder why in the singular curve definition (109), there is a restriction to regions
in which X̆µ⩽ 0. This is because the portion of {µ= 0} on which we formally have X̆µ> 0
never actually dynamically develops in the h-MGHD; that ‘fictitious portion’ is cut off by
the Cauchy horizon before it has a chance to dynamically form; see figure 2 and remark 3.2.

• Our terminology ‘crease’ is motivated by picture of the h-MGHD in multi-dimensions,
where the analog of ∂−B is a co-dimension two hypersurface given by the intersection of
the singular boundary and the Cauchy horizon; see figure 6.

• From (79), (109), and (111), we deduce the following key result: in regions where we can
justify the use of geometric coordinates for reaching conclusions about the behavior of the
solution in (t,x1) space, BI is the subset of points (t,U) ∈ [0,∞)×

(
I∩ [−U☢,0]

)
such that

|∂1RPS
(+)(t,U)| blows up at Υ (t,U). In theorem 3.1, we will indeed justify the use of the

geometric coordinates when I= [−U☢,0].
• (77), (93), and (96) imply that TShock is the smallest value of t along B[−U☢,0].
• To further flesh out the previous point, we note that for the solutions we study in theorem 3.1,

the smallest value of t on B[−U☢,0] will occur precisely atU= 0, and we will have tSing(0) =
TShock.

Definition 3.10 (truncated Cauchy horizon). Assume that ∂−B = (TShock,0), where TShock

is defined by (94) (theorem 3.1 shows that this assumption is satisfied for the solutions under
study here). Let L̆ be the vectorfield defined in (59). Let γ̆ be the integral curve of 1

2 L̆ in

geometric coordinate space Rt×RU parametrized by U (note that 1
2 L̆U= 1 by (64)), with the

initial condition γ̆(0) = ∂−B. That is, γ̆ solves the following initial value problem:

d
dU

γ̆ (U) =
1
2
L̆ ◦ γ̆ (U) , (112a)

γ̆ (0) = (TShock,0) . (112b)

We use the notation tCH to denote the t-component of the curve γ̆. That is, by (64), we have:

γ̆ (U) = (tCH (U) ,U) , (113)
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where tCH solves the following initial value problem:

d
dU

tCH (U) =
1
2
µ(tCH (U) ,U) , tCH (0) = TShock. (114)

Then for an interval I⊂ [0,∞) of non-negative10 U-values, we define the truncated Cauchy
horizon to be:

CI := γ̆ (I) . (115)

We now define M∗, which is a subset of Rt×RU that is tailored to the shape of
the h-MGHD.

Definition 3.11 (classical development regions). Let B[−U☢,0] and C[0,U☢] denote the trun-
cated singular curve and Cauchy horizon from definitions 3.9 and 3.10, where 0< U☢ < 1 is
the constant from lemma 3.7. Let tSing and tCH be the functions of U from (108) and (113). We
define the following subsets of geometric coordinate space Rt×RU:

MSing :=
{
(t,U) ∈ R2 | 0⩽ t< tSing (U) , U ∈

[
−U☢,0

]}
, (116)

MReg :=
{
(t,U) ∈ R2 | 0⩽ t⩽ tCH(U), U ∈ (0,U☢]

}
, (117)

M∗ :=MSing ∪MReg. (118)

The set M∗ defined by (118) is the region of geometric coordinate space lying between

Σ
[−U☢,U☢]
0 and C(0,U☢] ∪B[−U☢,0], where the boundary portions C(0,U☢], P

[0,tSing(−U☢))
−U☢ , and

P [0,tCH(U☢)]
U☢ are included, but B[−U☢,0] is not; see figure 2. Theorem 3.1 shows that Υ(M∗)⊂

Rt×Rx1 is a subset of Minkowski-rectangular coordinate space where we can justify the
use of (t,U) coordinates to reach conclusions about the behavior of the solution in (t,x1)
coordinates11.

3.8.2. The main theorem. We now prove theorem 3.1, which is the main result of section 3.
On the region M∗, the theorem provides a sharp description of the solution in the differential
structure of the geometric coordinates (t,U) as well as the behavior of the solution onΥ(M∗)
in differential structure of the Minkowski-rectangular coordinates (t,x1), where we recall that
Υ(t,U) = (t,x1) is the change of variables map. In particular, the theorem reveals various dif-
feomorphism and homeomorphism properties of Υ and exhibits the blowup of |∂1RPS

(+)| as
Υ(B[−U☢,0]) is approached by points in Υ(M∗). In figure 2, we have depicted the region in
geometric coordinate space R×RU. In figure 3, we have depicted the region in Minkowski-
rectangular coordinate space R×Rx1 , i.e. the image under Υ of the region from geometric
coordinate space.

10 In theorem 3.1, the Cauchy horizon will correspond to non-negative values of U.
11 With some additional effort, given the results of theorem 3.1, we could extend the region of
spacetime on which Υ(t,U) = (t,x1) is a homeomorphism to include the infinite region MLarge

∗ :=
M∗

∪
([0,TShock]× (−∞,−U1)∪ (U2,∞)). We refrain from giving the proof because it would require some

technical, but uninteresting, adjustments of the arguments presented in the proof of the theorem. The details are
uninteresting in the sense that µ is uniformly positive on MLarge

∗ \M∗ (see (106)) and thus no singularity occurs in
that region.
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Figure 2. M∗ in geometric coordinate space, with U increasing from right to left.

Figure 3. Υ(M∗) in Minkowski-rectangular coordinate space.

Remark 3.2 (only a subset of {µ= 0} is relevant for the h-MGHD). The dotted curve in
figure 2 labeled ‘{µ= 0}∩ {X̆µ> 0}’ is not part of the h-MGHD or its boundary. Formally,
{µ= 0}∩ {X̆µ> 0} is the portion of the level set {µ= 0} that never has a chance to dynamic-
ally emerge because it is cut off by the Cauchy horizon portion C(0,U☢], which lies below it (as

the proof of theorem 3.1 shows). For this reason, we do not display Υ({µ= 0}∩ {X̆µ> 0})
in figure 3. One can use Taylor expansions to show that formally, Υ({µ= 0}∩ {X̆µ> 0})
would be a curve in Υ(MSing) that lies below Υ(B[−U☢,0]) and thus formally, Υ would not
even be injective if its domain extended up to {µ= 0}∩ {X̆µ> 0}.

Theorem 3.1 (a large portion of the h-MGHD, including a localized portion of its
boundary). Let R̊PS

(+) be initial data satisfying the assumptions of section 3.7.2, and letRPS
(+)
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be the corresponding solution of the quasilinear initial value problem (53) (with R̊PS
(−) ≡ 0).

Under the assumptions and conclusions of lemma 3.7, perhaps shrinking the constant U☢ > 0
if necessary, the following results hold, where the notation Opos(1) is defined in the statement
of lemma 3.7.

Classical existence with respect to the geometric coordinates. With respect to the geometric
coordinates (t,U), the following results hold.

• RPS
(+) is a smooth function of U alone, i.e.RPS

(+)(t,U) = R̊PS
(+)(U).

• RPS
(+), the null vectorfields L and L̆, the vectorfield X̆, and the inverse foliation density µ exist

classically on Rt×RU.

• On {(t,U) ∈ R2 | U /∈ [−U1,U2]},RPS
(+) vanishes, L

1 := Lx1 = c, L̆
1
:= L̆x1 =−c, and µ=

1/c, where the constant c> 0 denotes the speed of sound when the enthalpy is constantly
H, where H> 0 is the constant fixed in (3).

• The following estimate holds:

Lµ(t,U) =−Opos (1) δ̊∗, for (t,U) ∈ R2 ×
[
−U☢,U☢

]
. (119)

In particular, withM∗ denoting the closure of the regionM∗ defined in (118), since defin-
ition 3.11 implies thatM∗ ⊂ R2 × [−U☢,U☢], it follows that the estimate (119) holds on
M∗.

Description of the h-MGHD in geometric coordinates.

• Let B[−U☢,0] be the singular curve portion from (111), and letM∗ be the subset of geometric
coordinate space defined in (118). Then the following disjoint union holds, whereM∗ is the
closure ofM∗:

M∗ =M∗ tB[−U☢,0]. (120)

• The crease, which is defined in (110), is a single point:

∂−B = {(TShock,0)} . (121)

• The singular curve function tSing = tSing(U) from (108) and (111) satisfies the following
estimates:

d
dU

tSing (U) =Opos (1)U, U ∈
[
−U☢,0

]
, (122a)

tSing (U) = TShock +Opos (1)U
2, U ∈

[
−U☢,0

]
. (122b)

• The rectangular spatial coordinate x1 satisfies the following estimate on B[−U☢,0]:

d
dU

x1 (tCH (U) ,U) =Opos (1)U, U ∈
[
−U☢,0

]
. (123)

• The integral curve initial value problem for γ̆(U) given by (112a)–(112b) has a unique
solution on the interval U ∈ [0,U☢]. Hence, the truncated Cauchy horizon C[0,U☢], defined
in (115), can be parameterized as follows:

C[0,U☢] =
{
(tCH (U) ,U) | U ∈

[
0,U☢

]}
, (124)
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as in (115). Moreover, tCH(U) satisfies the following estimates:

d
dU

tCH (U) =Opos (1)U
2, U ∈

[
0,U☢

]
, (125a)

tCH (U) = TShock +Opos (1)U
3, U ∈

[
0,U☢

]
. (125b)

• The inverse foliation density µ, defined in (57), satisfies the following estimate along the
Cauchy horizon portion C[0,U☢]:

µ(tCH (U) ,U) =Opos (1)U
2, U ∈

[
0,U☢

]
. (126)

• The rectangular spatial coordinate x1 satisfies the following estimate along the Cauchy hori-
zon portion C[0,U☢]:

d
dU

x1 (tCH (U) ,U) =−Opos (1)U
2, U ∈

[
0,U☢

]
. (127)

µ is positive on M∗ and on M∗\B[−U☢,0], but vanishes on B[−U☢,0]. In particular, (126)
implies that µ is positive on C(0,U☢] but vanishes on the crease ∂−B ⊂ C[0,U☢], which corres-
ponds to U= 0 in (126).

Description of the singularity formation and the h-MGHD in Minkowski-rectangular
coordinates.

• Let Υ(t,U) := (t,x1) be the change of variables map from geometric coordinates to
Minkowski-rectangular coordinates. Then Υ is a diffeomorphism fromM∗ onto its image.
Moreover, Υ is a homeomorphism fromM∗ onto its image.

• The solutionRPS
(+) exists classically relative to theMinkowski-rectangular coordinates (t,x

1)

on the subsetΥ(M∗) of Rt×Rx1 . In particular, since the Cauchy horizon portion C(0,U☢] is
contained inM∗,RPS

(+) exists classically relative to the Minkowski-rectangular coordinates

(t,x1) on Υ(C(0,U☢]).
• The following estimate holds on Υ(M∗):∣∣∣[∂1RPS

(+)

]
◦Υ−1

(
t,x1
)∣∣∣= 1

µ

∣∣∣n
c
X̆RPS

(+)

∣∣∣ ◦Υ−1
(
t,x1
)
=

1
µ
Opos (1) ,

(
t,x1
)
∈Υ(M∗) .

(128)

In particular, since µ vanishes along Υ(B[0,U☢]), given any point (t∗,x
1
∗) ∈Υ(B[0,U☢]) and

any sequence of points {(tm,x1m)}m∈N ⊂Υ(M∗) with limm→∞(tm,x1m) = (t∗,x1∗), we have
that |∂1RPS

(+)| ◦Υ
−1
(
(tm,x1m)

)
→∞ as m→∞.

• Recall that the vectorfield L is defined relative to the (t,x1)-coordinates in (44a) (see
also (51a)). With respect to the (t,x1)-coordinates, the solution RPS

(+) and all of its L-

derivatives of any order, i.e. LMRPS
(+) for any M, are continuous on Υ(M∗), including the

singular curve portionΥ(B[0,U☢]). Moreover, onΥ(M∗), relative to the (t,x1)-coordinates,
the 1D acoustical metric hαβ from (40a) is a continuous, non-degenerate, 2× 2 matrix of
signature (−,+).
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The causal structure of the Cauchy horizon.

• C[0,U☢] is a h-null curve portion, i.e. its tangent vector is null with respect to h.

The causal structure of the singular curve.

• Relative to the geometric coordinates (t,U), the vectorfield Q defined by:

Q := L−
L
(
c
nµ
)

X̆
(
c
nµ
) X̆ (129)

is well-defined on the singular curve portion B[−U☢,0), and Q is tangent to B[−U☢,0).
• OnB[−U☢,0), we have Qt> 0 and QU< 0. In particular, Q is future-directed and transversal
to the characteristics PU.

• For every q ∈ B[−U☢,0), the pushforward vectorfield [dΥ(q)] ·Q(q), which is tangent to the
curve Υ(B[−U☢,0))⊂ Rt×Rx1 , is equal to L|Υ(q) = [Lκ∂κ]Υ(q).

• For every q ∈ B[−U☢,0), L|Υ(q) is h-orthogonal to the tangent space of Υ(B[−U☢,0)).

Since there exist integral curves of the h-null vectorfield Lκ∂κ that foliate and are h-orthogonal
to Υ(B[−U☢,0)), it follows that Υ(B[−U☢,0)) is a h-null curve in the Minkowskian coordinate
differential structure.

Before proving the theorem, we make some remarks.

• All the important results of the theorem are stable under perturbations of the initial data
of RPS

(+). That is, even though the theorem was stated only for initial data that satisfy the
assumptions of section 3.7.2, the proof shows that if one perturbs any of those data by an
arbitrary (small)C4 function, then the corresponding perturbed simple isentropic plane-wave
solution has an h-MGHD/exhibits singularity formation that is quantitatively and qualitat-
ively close to the un-perturbed solution.

• In a similar vein as the previous point, with only modest additional effort, the results of the-
orem 3.1 could be extended to a large, open set of (non-simple) isentropic plane-symmetric
solutions in which RPS

(−) is sufficiently small compared to RPS
(+) (or, alternatively, in which

RPS
(+) is sufficiently small compared to RPS

(−)).
• The emergence of the Cauchy horizon from the crease is fundamentally tied to the fact

that in 1D, the isentropic compressible Euler equations have two characteristic directions,
L and L, as is evident from equations (49a) and (49b). In particular, even within the class
of simple isentropic plane-symmetric solutions in which RPS

(−) (which is transported by L)
vanishes, when investigating the structure of the h-MGHD, one cannot ‘ignore’ the L dir-
ection. This is in contrast to Burgers’ equation, in which there is only one characteristic
direction. Relatedly, for Burgers’ equation, there does not exist a notion of ‘globally hyper-
bolic’ that enjoys the same fundamental significance as the notion of ‘globally hyperbolic’
in the context of Lorentzian geometry, relativistic Euler flow, or wave equations.

• From the point of view of determinism, the Cauchy horizon is an ally in that it ‘blocks’
the non-uniqueness of classical solutions (in h-globally hyperbolic regions). In particular,
in figure 3, one can see that the Cauchy horizon prevents the characteristics in the left of the
figure from entering into the region on the right, where the fluid’s gradient blows up. That is,
the Cauchy horizon prevents crossing of the characteristics Υ(M∗), which in turn prevents
multi-valuedness/non-uniqueness of classical solutions in this region. This should be con-
trasted against Burgers’ equation, which exhibits non-uniqueness of classical solutions due
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to multi-valuedness stemming from the crossing of characteristics emanating from widely
separated regions in the initial data hypersurface.

• In figure 3, along Υ(B[−U☢,0]), one sees the interesting phenomenon of non-uniqueness of
integral curves of L. In particular, L is tangent toΥ(B[−U☢,0]) and the characteristics, which
are the straight lines in the figure that intersectΥ(B[−U☢,0]) tangentially. The non-uniqueness
is tied to the blowup of |∂1L1| along Υ(B[−U☢,0]), which in particular shows that Lα does
not enjoy the Lipschitz regularity that lies behind standard ODE uniqueness theorems for
integral curves.

• One can show that in 1D, the acoustical metric takes the following form in geometric
coordinates: h=−µdt⊗ dU−µdU⊗ dt+µ2dU⊗ dU. In particular, in geometric coordin-
ates, h vanishes at points such that µ= 0. Hence, h is not capable of ‘measuring’ causal-
ity along the singular curve portion B[−U☢,0], along which µ vanishes. We note, however,
that in more than one space dimension, even when µ= 0, there are some remaining non-
degenerate components of h in geometric coordinates. Relatedly, in our 3D paper [1] on the
non-relativistic compressible Euler equations, we prove that the ∂−B is a co-dimension two
h-spacelike submanifold of geometric coordinate space.

Proof of theorem 3.1. Throughout the proof, we will silently shrink the size of U☢ as neces-
sary; this will in particular guarantee that some important terms arising in various Taylor
expansions have a sign.

Classical existence and properties of the solution relative to the geometric coordinates:

The fact that RPS
(+)(t,U) = R̊PS

(+)(U) is smooth on all of Rt×RU was proved in (69). In par-

ticular, in geometric coordinates, RPS
(+) smoothly extends to the closure M∗. The fact that

RPS
(+) vanishes on the complement of {(t,U) ∈ R2 | U ∈ [−U1,U2]} then follows from our

assumptions on the initial data, which in particular imply that R̊PS
(+) is supported in [−U1,U2].

Next, using the identity (77), the estimate (96), and the fact that RPS
(+) is supported in

{(t,U) ∈ R2 | U ∈ [−U1,U2]}, we conclude the asserted properties of µ in geometric coordin-
ates, except for the positivity of µ on M∗, which we prove below. The asserted properties of
L, L̆, Lx1, and Lx1 in geometric coordinates then follow from (51a)–(51b), (62), (63), and the
fact that RPS

(+) is supported in {(t,U) ∈ R2 | U ∈ [−U1,U2]}.
Proof of the properties of and relative to the geometric coordinates: The fact that the
crease is the single point (TShock,0) is a consequence of definition (110), (98), and (103). We
have therefore proved (121).

From (77), (96), (108), (109), (111), and definition (116), we see that µ> 0 onMSing while
µ vanishes on B[−U☢,0].

The estimate (119) follows from the first equality in (76) and the estimate (107a).
The estimates (122a)–(122b) follow from definitions (94) and (108) and the estim-

ates (107b)–(107c).

Proof of the properties of relative to the geometric coordinates: We first prove that the
integral curve initial value problem for γ̆(U) given by (112a)–(112b) (or equivalently, (114))
has a unique solution on the interval U ∈ [0,U☢]. Since µ is a smooth function on all of
(t,U) ∈ R2, the standard existence and uniqueness theorem for ODEs yields a unique solu-
tion to (114) for U ∈ [0,U☢], provided we shrink the size of U☢ if necessary.

We now prove (125a) and (125b). Differentiating (114) and using (62) and the chain rule,
we deduce that:

d2

dU2
tCH (U) =

1
4
[µ(Lµ)] |(tCH(U),U) +

1
2
X̆µ|(tCH(U),U), (130)
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d3

dU3
tCH (U) =

1
8

[
µ2 (LLµ)

]
|(tCH(U),U) +

1
8

[
µ(Lµ)2

]
|(tCH(U),U) +

1
4

[(
X̆µ
)
(Lµ)

]
|(tCH(U),U)

+
1
2

[
µ
(
X̆Lµ

)]
|(tCH(U),U) +

1
2
X̆X̆µ|(tCH(U),U). (131)

Using (62), (114), (130)–(131), and the expansions (98)–(102), we can Taylor expand the
solution tCH(U) to (114) around U= 0, thereby concluding (125a)–(125b).

Since (114) implies that µ(tCH(U),U) = 2 d
dU tCH(U) along C(0,U☢], we can use the expan-

sions described in the previous paragraph to conclude the estimate (126) for µ.
To prove (127), we first use (51b), (59), (112a), our assumed smallness on the amp-

litude of the initial data (which in particular implies that the ratio sinh(
RPS

(+)
2 )−ccosh(

RPS
(+)
2 )

cosh(
RPS

(+)
2 )−c sinh(

RPS
(+)
2 )

from

RHS (44b) withR(−) ≡ 0 is−Opos(1)), and the chain rule to deduce that d
dUx

1 (tCH(U),U) =
1
2 L̆

1
(tCH(U),U) = 1

2 [µL
1] (tCH(U),U) =−µOpos(1). From this relation and (126), we con-

clude (127).
Finally, C[0,U☢] is a h-null curve portion because its tangent vector is everywhere propor-

tional to the vectorfield L̆, which is h-null by (45) and (59).

Proof of (120): we have already shown that tSing(U) is smooth on [−U☢,0], that tCH(U) is
smooth on [0,U☢], and that tSing(0) = tCH(0) = TShock. From these facts, (111), and (116)–
(118), we conclude (120).

Proof that µ> 0 on M∗: We have already shown that µ> 0 on MSing. Hence, in view of
definition 118, we see that to prove µ> 0 on M∗, it suffices to prove µ> 0 on MReg. To this
end, we first note that the same arguments given above imply that the curve U→ (tSing(U),U)
is smooth for U ∈ [−U☢,U☢] and that tSing(U) satisfies the estimate stated in (122b) for
U ∈ [−U☢,U☢] (not just for U ∈ [−U☢,0]). The portion of this curve corresponding to
U ∈ (0,U☢] is shown as a dotted curve in figure 2; for purposes of this proof, we denote this
dotted curve, which by definition does not contain the crease, by ‘BFictitious’ (‘fictitious’ because
the image of BFictitious under Υ in (t,x1)-space is not part of the h-MGHD). The same argu-
ments that we used to prove that µ> 0 onMSing (which relied on (77), (96), and (108)) imply
that µ> 0 on D :=

{
(t,U) ∈ R2 | 0⩽ t< tSing(U), U ∈ (0,U☢]

}
, where we note that the top

boundary of this region is BFictitious. The key point is that (113), (115), and the estimates (122b)
(valid also forU ∈ (0,U☢]) and (125b) imply that tCH(U)< tSing(U) forU ∈ (0,U☢] and thus
C(0,U☢] lies below BFictitious. In view of definition (117), we see that M∗ ⊂D and hence µ> 0
on MReg, as desired.

Proof of the diffeomorphism and homeomorphism properties ofΥ: From definition 3.11,
we see that the top boundary ofM∗ is the followingU-parameterized curve (note that the curve
is well-defined since tSing(0) = tCH(0) = TShock):

γtop (U) = (ttop (U) ,U) , U ∈
[
−U☢,U☢

]
, (132)

ttop (U) :=

{
(tSing (U) ,U) , U ∈

[
−U☢,0

]
,

(tCH (U) ,U) , U ∈
[
0,U☢

]
.

(133)

Using (123), (127), and the mean value theorem, we see that the function U→ x1(ttop(U),U)
is strictly decreasing for U ∈ [−U☢,U☢], i.e. the x1 coordinate function strictly decreases as
we move from right to left along the top boundary of M∗ in figure 2. Next, we note that (59)
and (60) imply that ∂

∂Ux
1 =− c

nµ. Using this identity, the fact that c
n > 0, and the fact that
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we have already shown that µ> 0 on M∗ and µ vanishes precisely along the curve portion
B[−U☢,0] in M∗, we see that for any (t,U) ∈M∗, the map U→ x1(t,U) is strictly decreas-
ing. From these two monotonicity properties of x1, we conclude, given the shape of M∗ (see
figure 2), that the map Υ(t,U) = (t,x1(t,U)) is injective on the compact set M∗ and thus is a
homeomorphism fromM∗ ontoΥ(M∗). Also considering the identity detdΥ=− c

nµ proved
in (67), we further conclude that Υ is a diffeomorphism on M∗, where µ> 0.

Proof of (128) and the structure of the h-MGHD in Minkowski-rectangular coordinates
(t,x1): We deduce from (59), (60), (69), (76), the chain rule, the non-degeneracy assump-
tion (88), and (119) that for (t,U) ∈M∗, the following estimate holds:

∣∣µ∂1RPS
(+)

∣∣(t,U)= n(U)
c(U)

∣∣∣X̆RPS
(+) (U)

∣∣∣= n(U)
c(U)

∣∣∣∣ d
dU

R̊PS
(+) (U)

∣∣∣∣= n(U)
c(U)

∣∣∣∣∣∣∣
d
dUA

[
R̊PS

(+) (U)
]

d
dRPS

(+)

A
[
R̊PS

(+) (U)
]
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
Lµ(U)

d
dRPS

(+)

A
[
R̊PS

(+) (U)
]
∣∣∣∣∣∣∣=Opos (1) . (134)

From (134), we conclude (128).
The continuity of RPS

(+), L
MRPS

(+) and hαβ = hαβ(RPS
(+)) all the way up to Υ(M∗) in

Minkowski-rectangular coordinates (t,x1) follows from the fact that RPS
(+)(t,U) is smooth on

Rt×RU and the already proven fact thatΥ is a homeomorphism fromM∗ ontoΥ(M∗). The
non-degeneracy of the 2× 2 matrix hαβ relative to the (t,x1)-coordinates follows from the
expression (40a) for hαβ = hαβ(RPS

(+)), our assumed smallness on the amplitude of the initial
data (which in particular implies that 0< c⩽ 1), and the identities stated in proposition 3.2.

Proof of the causal structure of the singular curve inMinkowski-rectangular coordinates:
Using (62), (76)–(77), and (108)–(109), we deduce that along B[−U☢,0), the vectorfield Q
defined by (129) can be expressed as follows, where G is the source term from (71), viewed
as a function of U, and G ′ is its derivative:

Q=
∂

∂t
− G(U)
tG ′(U)

∂

∂U
=
∂

∂t
+
G2(U)
G ′(U)

∂

∂U
, along B[−U☢,0). (135)

Hence, using (107a) and (107c), we see thatQ is well-defined onB[−U☢,0), i.e. the denominator
term G ′(U) on RHS (135) is non-zero for U ∈ [−U☢,0). Next, we deduce from (129) that
Q
(
c
nµ
)
= 0, i.e. that Q is tangent to the level sets of c

nµ. Using the fact that c
n > 0 (see (96)),

we see that the zero level set of c
nµ coincides with the zero level set of µ. Hence, in view of

definition (109), we see that Q is tangent to B[−U☢,0). The inequalities Qt> 0 and QU< 0
follow easily from (135), (107a), and (107c).

Next, using (59), (60), and (62), we see that the pushforward of ∂
∂U by Υ, i.e. dΥ · ∂

∂U is
equal to − c

nµ∂1. Hence, dΥ · ∂
∂U vanishes along all of Υ (B[−U☢,0)), where µ is 0. Moreover,

from (62), we deduce that dΥ · ∂
∂t = Lκ∂κ. From these facts and (135), we deduce that for every

q ∈ B[−U☢,0), we have [dΥ(q)] ·Q(q) = L|Υ(q). In particular, since L|Υ(q) spans the tangent
space ofΥ(B[−U☢,0)) and is h-null (see (45)), it follows thatΥ(B[−U☢,0)) is a h-null curve.
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4. The new formulation of the flow in three spatial dimensions

In section 6, we provide an overview of how to extend some aspects of the simple isentropic
plane-symmetric shock formation results yielded theorem 3.1 to the much harder case of three
spatial dimensions in the presence of vorticity and entropy. The strategy we present in section 6
is based on the approach we used in studying shock formation for the non-relativistic multi-
dimensional compressible Euler equations [1, 66, 68]. Fundamental to that strategy is the
availability of a new formulation of the flow as as system of geometric wave-transport-div-
curl equations that exhibit remarkable regularity properties and geometric null structures. As
we explain in section 6, such a formulation allows one to implement multi-dimensional non-
linear geometric optics, which is important for the study of shocks (as is already evident from
theorem 3.1). In the non-relativistic case, such a formulation was derived in [67, 95], while
in the relativistic case, such a formulation was derived in [42]. In section 4, in the relativistic
case, we set up the machinery needed to state the formulation from [42] and present it in a
simplified, schematic form as theorem 4.1. In section 4.2.5, we make some brief comments on
how the new formulation can be extended to more general spacetimes (M,g).

4.1. Connection to quasilinear wave equations

Although our study of isentropic plane-symmetric solutions in section 3 was based on ana-
lyzing the first-order Riemann invariant system (49a) and (49b), as we will see in section 6,
in multi-dimensions, it is advantageous to work with the formulation of the flow provided
by theorem 4.1, which features geometric wave equations. The main advantage is that for
geometric wave equations, there is an advanced geo-analytic machinery available, tied to
the vectorfield method, for studying the global behavior of solutions. To motivate the relev-
ance of wave equations for the study of relativistic fluids, we now establish a simple connec-
tion between quasilinear wave equations and the Riemann invariant formulation of isentropic
plane-symmetric solutions that we provided in section 4. More precisely, upon differentiat-
ing (49a) and (49b), we deduce that for isentropic plane-symmetric solutions, the Riemann
invariants (RPS

(+),R
PS
(−)) satisfy the following coupled system of quasilinear wave equations:

LLRPS
(+) = 0, (136a)

LLRPS
(−) = 0. (136b)

Equations (136a) and (136b) are quasilinear wave equations because by lemma 3.1, the
principal operator on the LHSs is proportional to (h−1)αβ∂α∂β , where h is the acoustical
metric.

4.2. Additional fluid variables

The remainder of section 4 concerns solutions
(
h,u0,u1,u2,u3,s

)
to the relativistic Euler

equations (12a)–(12d) in three spatial dimensions without any symmetry, isentropicity, or
irrotationality assumptions.

In section 4.2, we introduce some additional fluid variables that complement the ones we
introduced in section 2. The new variables play a fundamental role in the new formulation of
relativistic Euler flow provided by theorem 4.1.

Definition 4.1 (the u-orthogonal vorticity of a one-form). Let ξ be a one-form. We define
its u-orthogonal vorticity, denoted by vortα(ξ), to be the following vectorfield, where ϵ is the
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fully antisymmetric symbol normalized by ϵ0123 = 1:

vortα (ξ) :=−ϵαβγδuβ∂γξδ, (137)

and we recall that throughout the paper, we use theMinkowski metricm—as opposed to h—to
lower and raise indices. In particular, ϵ0123 =−1.

Note that uαvortα(ξ) = 0, which explains our terminology ‘u-orthogonal vorticity’ of ξ.

Definition 4.2 (vorticity vectorfield). We define the vorticity ϖα to be the following vector-
field:

ϖα := vortα (Hu) =−ϵαβγδuβ∂γ (Huδ) . (138)

Definition 4.3 (entropy gradient one-form). We define Sα to be the following one-form:

Sα := ∂αs. (139)

The fluid variables C and D from the next definition play a fundamental role in the setup
of the new formulation of the flow. In particular, theorem 4.1 shows that they satisfy transport
equations with source terms that enjoy remarkable regularity and null structures.

Definition 4.4 (modified fluid variables). Wedefine Cα andD to respectively be the following
vectorfield and scalar function:

Cα := vortα(ϖ)+ c−2ϵαβγδuβ(∂γh)ϖδ +(θ− θ;h)S
α(∂κu

κ)+ (θ− θ;h)u
α(Sκ∂κh)

+ (θ;h− θ)Sκ((m)−1)αλ∂λuκ), (140a)

D :=
1
n
(∂κS

κ)+
1
n
(Sκ∂κh)−

1
n
c−2 (Sκ∂κh) . (140b)

We clarify that in (140a), θ;h denotes the partial derivative of the temperature θwith respect
to h at fixed s.

4.2.1. Covariant wave operator. Covariant wave equations play a central role in theorem 4.1.
In definition 4.5, we recall the standard definition of a covariant wave operator acting on scalar
functions; in theorem 4.1, we apply the covariant wave operator only to quantities that we view
to be scalar functions.

Definition 4.5 (covariant wave operator acting on a scalar function). The covariant wave
operator □h acts on scalar functions φ as follows:

□hφ :=
1√
|deth|

∂κ

{√
|deth|

(
h−1
)κλ

∂λφ
}
. (141)

4.2.2. Null forms. In definition 4.6, we recall the definition of standard null forms relative
to h. The key point is that in theorem 4.1, all derivative-quadratic terms on the RHS of the
equations are null forms relative to the acoustical metric. In section 6.8.3, we will provide a
detailed explanation as to why, in the context of shock formation, such null forms are harmless
error terms. However, at this point in the paper, wemerely state that h-null forms are derivative-
quadratic nonlinearities that, when a shock forms, are strictly weaker than the Riccati-type

42



Class. Quantum Grav. 40 (2023) 243001 Topical Review

terms that drive the blowup (see section 3.5). As we will further explain in remark 6.4, the
dangerous Riccati-type terms are ‘hiding’ in the definition of the covariant wave operator on
LHS (146a).

Definition 4.6 (standard null forms relative to h). We define the standard null forms relative
to h (which we refer to as ‘standard h-null forms’ for short) to be the following derivative-
quadratic terms, where ϕ and ψ are scalar functions and 0⩽ α < β ⩽ 3:

Q(h) (∂∂∂ϕ,∂∂∂ψ) :=
(
h−1
)κλ

∂κϕ∂λψ, (142a)

Qαβ (∂∂∂ϕ,∂∂∂ψ) := ∂αϕ∂βψ − ∂βϕ∂αψ. (142b)

4.2.3. Two vectorfields. The two vectorfields featured in the following definition will play
a role in our forthcoming discussion.

Definition 4.7 (B and N). We define B and N to respectively be the vectorfields with the fol-
lowing components relative to the Minkowski-rectangular coordinates (t,x1,x2,x3):

Bα :=
1
u0

uα, (143a)

Nα :=−
(
h−1
)αβ

∂β t=−
(
h−1
)α0

. (143b)

Note that Bt= 1, while by (19), N is the future-directed h-unit normal to Σt. In particular,

h(N,N) =−1. (144)

We also compute that:

h(B,N) =−B0 =−1. (145)

4.2.4. The geometric wave-transport-div-curl formulation of the flow. We now state—in a
somewhat abbreviated form—the formulation of relativistic Euler flow derived in [42]. The
proof of theorem is based on differentiating the equations (12a)–(12d) in well-chosen direc-
tions and finding a myriad of cancellations and special structures.

Theorem 4.1 ([42, the geometric wave-transport-div-curl formulation of the flow]). Let
Ψ⃗ =

(
h,u0,u1,u2,u3,s

)
be a C3 solution to the relativistic Euler equations (12a)–(12d) on

the Minkowski spacetime background. Then for Ψ ∈ Ψ⃗, the following equations hold, where
Q denotes a linear combination of standard h-null forms (see definition 4.6) and f denotes a
smooth function, both of which are free to vary from line to line:

□h(Ψ⃗)Ψ= f(Ψ⃗) · (C,D)+ f(Ψ⃗) ·Q(∂∂∂Ψ⃗,∂∂∂Ψ⃗)+ f(Ψ⃗,S) · (ϖ,S) ·∂∂∂Ψ⃗, (146a)

B(ϖi,Si) = f(Ψ⃗,S) · (ϖ,S) ·∂∂∂Ψ⃗, (146b)

B(Ci,D) = f(Ψ⃗) ·Q(∂∂∂ϖ,∂∂∂Ψ⃗)+ f(Ψ⃗) ·Q(∂∂∂S,∂∂∂Ψ⃗)+ f(Ψ⃗) · (ϖ,S) ·Q(∂∂∂Ψ⃗,∂∂∂Ψ⃗)

+ f(Ψ⃗) ·∂∂∂Ψ⃗ · (C,D)+ f(Ψ⃗) · S ·∂∂∂S+ f(Ψ⃗,ϖ,S) · (ϖ,S) ·∂∂∂Ψ⃗, (146c)

∂κϖ
κ = f(Ψ⃗) ·ϖ ·∂∂∂Ψ⃗, vortα(S) = 0. (146d)
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4.2.5. Comments on the case of more general ambient spacetimes (M,g). Here we make
some brief comments on some of the adjustments that would be needed to extend the results
of section 4 to general g-globally hyperbolic spacetimes (M,g). By g-globally hyperbolic,
we mean that there exists a g-Cauchy hypersurface Σ0 ⊂M. By a ‘g-Cauchy hypersurface’,
we mean a co-dimension one submanifold Σ0 such that every inextendible g-causal curve in
M intersects Σ0 exactly once. It is well known [17, 46] that g-globally hyperbolic spacetimes
admit a smooth time function t : M→ R. By a ‘time function’, we mean that t−1(0) = Σ0,
that the level sets Σt ′ := {t≡ t ′} are g-spacelike Cauchy hypersurfaces, that M= ∪tΣt, and
that t has a past-directed timelike gradient ∇#t := g−1 · dt (which is everywhere normal to
Σt). Here, ∇#t denotes the vectorfield equal to the dual of ∇t with respect to g.

First, we note that the extra terms described in remark 2.1 would lead to the presence of
extra terms in the system (146a)–(146d). However, as we described in remark 2.1, in the context
of the study of shock formation, in which fluid gradients are large, the extra terms would be
small relative to the shock-driving Riccati-type fluid terms (which are ‘hidden’ in□h(Ψ⃗)Ψ; see
remark 6.4).

Next, we note that under the above assumptions, we can define a lapse function Φ by Φ :=
(−g(∇t,∇t))−1/2. We can then define the vectorfield T :=−Φ2∇#t, which is g-normal to Σt

and satisfies Tt= 1. Hence, given a coordinate system (x1,x2,x3) on Σ0, it can be propagated
to any Σt by the flow of T, thereby yielding a coordinate system (t,x1,x2,x3) on spacetime. In
this setup, the ambient spacetime metric can be decomposed as follows:

g=−Φ2dt⊗ dt+ g, (147)

where g= g(t) is the Riemannian metric on Σt induced by g, i.e. the first fundamental form
of Σt with respect to g. Given g and the relativistic fluid, the corresponding acoustical metric
h is defined by (21).

The upshot of introducing a time function t is that it allows for many of the constructions
from this section to easily be generalized. For example, using (2) and (147), one sees that u0 :=
u ·∇t := uκ∂κt> 0 and hence one could naturally define the analog of (143a) byB := 1

u0 u and
the analog of (143b) by N :=−h−1 · dt.

5. Some prior works on shocks

In this section, we discuss some prior works on shocks. There is a vast literature, and we cannot
hope to mention all of it here. We have aimed to discuss works that provide further context
and motivation for sections 2 and 4 and to help prepare the reader for sections 6 and 7.

5.1. Comments on the 1D theory

In Riemann’s foundational paper [84], he developed the method of Riemann invariants and
combined it with the method of characteristics to prove that for the 1D non-relativistic com-
pressible Euler equations, there exist large sets of initial data such that a shock forms in the
sense that the fluid’s gradient blows up in finite time, though the fluid variables themselves
remain bounded. Once one has formulated the flow in terms of Riemann invariants, the proof
of the blowup is based on differentiating the equations to obtain a coupled system of Riccati-
type equations along the characteristics. This can be viewed as a multi-directional (i.e. there
are two characteristic directions in 1D isentropic compressible Euler flow) version of the
blowup of ∂xΨ that often occurs in solutions to Burgers’ equation ∂tΨ(t,x)+Ψ∂xΨ(t,x) = 0;
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in section 3.5, we discussed this approach in more detail in the case of simple isentropic plane-
symmetric solutions to the relativistic Euler equations. Lax later generalized [63] Riemann’s
results to 2× 2 genuinely nonlinear hyperbolic systems in 1D. John later extended [54] Lax’s
blowup-results to apply to some systems in 1D with more than two unknowns. Christodoulou
and Raoul-Perez used a sharpened, more geometric version (in the style of our proof of the-
orem 3.1) of Lax’s approach to give a detailed proof of shock formation in 1D for electromag-
netic waves in nonlinear crystals [36]. Related results have recently been proved for plane-
symmetric solutions to the equations of elasticity [12] and the equations of non-relativistic
magnetohydrodynamics [13], and in these works, the plane-symmetric blowup was also used
to prove ill-posedness results in 3D; see also the survey article [14]. For the relativistic Euler
equations in 1D, stable blowup-results have been proved for large sets of initial data (which
are allowed to be large) for isentropic flows [16] as well as flows with dynamic entropy
[15]. Theorem 3.1 provides a sharpened version of these kind of results for simple isen-
tropic plane-symmetric solutions to the relativistic Euler equations; by ‘sharpened’, we mean
that, different from the works mentioned above, theorem 3.1 follows the solution all the
way up to the singular boundary and Cauchy horizon, rather than just up to the time of first
blowup.

Even though shocks can form for large classes of hyperbolic PDEs, signifying the end
of the classical evolution, ideally, one would like to develop a theory of weak solutions that
can accommodate the formation of shocks and their subsequent interactions. In 1D, a robust
such theory exists, at least for strictly hyperbolic systems and initial data that are small in a
suitable bounded variation (BV) function space. We refer to [40] for an extensive discussion
of the 1D theory. In multi-dimensions, much less is known. A key obstacle is that it is known,
thanks to the important paper [81] by Rauch, that quasilinear hyperbolic PDEs are typically
ill-posed in BV spaces. In fact, for most multi-dimensional quasilinear hyperbolic systems of
interest, even local well-posedness is known only in L2-type Sobolev spaces. In practice, this
means that to prove shock formation in multi-dimensions, one must commute the equations
and derive energy estimates up the singularity; this turns out to be a difficult task, for reasons
we discuss in detail in section 6.

5.2. Blowup-results in multi-dimensions without symmetry: proofs by contradiction

In light of the previous paragraph, it is perhaps not surprising that the first blowup-results
without symmetry assumptions in fluid mechanics were non-constructive. Specifically, in [86],
Sideris studied the 3D compressible Euler equations under equations of state that satisfy a con-
vexity assumption. For open sets of initial data (including near-constant-state-data) without
symmetry or irrotationality assumptions, he used arguments based on integrated quantities
to give a proof by contradiction that a smooth solution cannot exist for all time. For the
3D relativistic Euler equations and relativistic Euler–Maxwell equations, Guo and Tahvildar-
Zadeh proved similar results [49] for open sets of initial data that are large perturbations of
constant-states with positive density. In contrast to the present work, [49, 86] relied on con-
vexity assumptions on the equation of state.

5.3. Proofs of shock formation in multi-dimensions via nonlinear geometric optics

Alinhac [8–11] was the first to prove stable shock formation without symmetry assumptions
for scalar quasilinear wave equations in 2D and 3D of the form:(

h−1
)κλ

(∂∂∂Φ)∂κ∂λΦ= 0 (148)
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Figure 4. Strictly convex crease and singular boundary.

whenever the nonlinearities in (148) fail to satisfy the null condition. In (148), h is a Lorentzian
metric whose components hαβ in the standard coordinate system are prescribed functions of
∂∂∂Φ, i.e. functions of the spacetime-gradient of Φ in the standard coordinate system. Alinhac’s
proof applied to open sets of initial data that satisfy a non-degeneracy assumption that guar-
anteed that within the constant-time hypersurface of first blowup, the singularity is an isol-
ated point. His non-degeneracy assumption guaranteed that the singular boundary B and its
past boundary ∂−B are strictly convex, as in figure 4, and in the context of the figure, his
approach allowed him to follow the solution up to the flat constant-time hypersurface that
contains the point blowest; in section 5.5, we discuss B and ∂−B in more detail. Alinhac’s main
results showed that at blowest, a shock forms in the sense that∂∂∂2Φ blows up while∂∂∂⩽1Φ remains
bounded. His proof relied on nonlinear geometric optics (i.e. eikonal functions and the method
of characteristics, as in sections 3.6 and 6.3), and his proof showed that relative to a geometric
coordinate system constructed out of the eikonal function, Φ and its partial derivatives remain
bounded, except possibly at the high derivative levels. To close the energy estimates in the geo-
metric coordinate system without derivative loss, he relied on a Nash–Moser iteration scheme
that necessarily terminated at the time of first blowup.

In Christodoulou’s breakthrough monograph [31], he proved a substantially sharper result
for the 3D relativistic Euler equations in regions where the solution is irrotational and isen-
tropic. The dynamics in such regions is described by a scalar quasilinear wave equation for a
potential function Φ (i.e. ∂∂∂Φ determines the four-velocity and proper energy density) that is
of the form (148) and that is invariant under the Poincaré group. Like Alinhac, Christodoulou
used an eikonal function in his proof, that is, a solution U to the eikonal equation:(

h−1
)κλ

(∂∂∂Φ)∂κU∂λU= 0. (149)

The level sets of U are characteristic for equation (148), i.e. hypersurfaces that are null with
respect to h. Also like Alinhac, Christodoulou constructed a geometric coordinate system
tied to U and proved that relative to the geometric coordinates, the solution remains smooth,
except possibly at the high derivative levels. He showed that for open sets of initial data, the
shock singularity—i.e. the blowing-up of the second-order Minkowski-rectangular derivatives
∂∂∂2Φ while ∂∂∂⩽1Φ remains bounded—is tied to the vanishing of the inverse foliation density µ,
defined by:

µ :=− 1

(h−1)
κλ

(∂∂∂Φ)∂κU∂λt
=− 1

(h−1)
κ0
(∂∂∂Φ)∂κU

, (150)

46



Class. Quantum Grav. 40 (2023) 243001 Topical Review

where t is the standard time coordinate on Minkowski spacetime. The vanishing of µ signifies
the infinite density of the level-sets ofU inMinkowski-spacetime, i.e. the infinite density of the
characteristics and the blowup of ∂∂∂U, as in theorem 3.1. Motivated by techniques used in his
joint proof of the stability of Minkowski spacetime with Klainerman [33], Christodoulou was
able to avoid Nash–Moser estimates. Rather, to avoid derivative loss in the eikonal function
and to close the proof, he used a geometric energy method for wave equations and U; see
section 6 for further discussion of a related geometric energy method in the context of the 3D
relativistic Euler equations with vorticity and entropy.

The results of [31] go beyond Alinhac’s in several crucial ways. First, for smooth compactly
supported perturbations of non-vacuum constant-state initial data, Christodoulou proved that
the solution remains global unless µ vanishes, i.e. he proved a conditional global existence
result. Second, his geometric energy method allowed for commutator and multiplier vector-
fields with time and radial weights, which allowed him to simultaneously study the inter-
action between the dispersive tendency of waves and the fact that nonlinearities can focus
waves and cause singularities. Third, for open sets of initial data that do not have to sat-
isfy Alinhac’s non-degeneracy condition, Christodoulou proved that µ vanishes in finite time,
leading to the blowup of ∂∂∂2Φ. In particular, even without strict convexity of the type shown
in figure 4, Christodoulou was able show that there is at least one singular point. Finally,
for open sets of initial data that satisfy a non-degeneracy assumption that is weaker than
Alinhac’s, Christodoulou was able to follow the solution beyond the time of first blowup
and to reveal a portion of the h-MGHD, up to the boundary. The portion of the boundary
of the h-MGHD revealed by [31] was not described explicitly and thus we cannot make
straightforward comparisons with theorem 3.1. The weaker notion of non-degeneracy used
by Christodoulou coincides with our notion of transversal convexity, which we describe in
section 5.5.

Christodoulou’s results [31] have been extended and applied to other equations, including:

• Under the assumption of an irrotational and isentropic flow, the (non-relativistic) 3D com-
pressible Euler equations were handled in [35].

• A larger class of wave equations (e.g. without the assumption of Poincaré invariance) was
treated in [76, 92]. See also the survey article [50], which is centered around the works [31,
92].

• Solution regimes that are different than the small, compactly supported data regime were
treated in [76, 96].

• Solutions that exist classically precisely on a past-infinite half-slab were studied in [75].
• Some systems in 1D involving multiple speeds of propagation were treated in [12, 13, 36].
• Other multiple speed systems in multi-dimensions were treated in [93, 94].
• 2D compressible Euler solutions with vorticity were handled in [66] with the help of the new

formulation of the flow derived in [67], which yields a non-relativistic analog of theorem 4.1
for barotropic equations of state, which by definition are such that the pressure is a function
of the density.

• 3D compressible Euler solutions with vorticity and entropy were treated in [68] with the
help of the new formulation of the flow derived in [95], which extends the results of [67] to
general equations of state in which the pressure is a function of the density and entropy.

• For the 3D compressible Euler equations with vorticity and entropy, a complete description
of open sets of solutions up to a neighborhood of the boundary of the h-MGHD is provided
by our series [1–3], which collectively yield a multi-dimensional version of theorem 3.1 for
the non-relativistic equations. See also section 5.5.
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5.4. A different approach to multi-dimensional singularity formation

In the works [23, 24], the authors developed a new approach for proving gradient-blowup for
for solutions the 3D compressible Euler equations under adiabatic equations of state with vor-
ticity (and entropy in [24]). Instead of using nonlinear geometric optics, the authors used mod-
ulation parameters to show that for open sets of initial data with large gradients, the solution
forms a gradient singularity in finite time that is a perturbation of a self-similar Burgers-type
shock. The approach allows one to follow the solution to the time of first blowup, but not fur-
ther. It applies to non-degenerate initial data such that within the constant-time hypersurface
of first blowup, the singularity occurs at an isolated point. That is, the approach applies when
the singular boundary B and its past boundary ∂−B are strictly convex, as in figure 4, and in
the context of the figure, it allows one to follow the solution up to the flat constant-time hyper-
surface that contains the point blowest, where the singularity occurs. Such singularities can be
viewed as fluid analogs of the ones studied by Alinhac in his aforementioned works [8–11]
on quasilinear wave equations. See also the precursor work [22], in which the authors stud-
ied the same problem for the 2D compressible Euler equations in azimuthal symmetry, and
the work [21], which, in the same symmetry class, constructs unstable self-similar solutions
whose cusp-like behavior at the singularity is non-generic.

Self-similar blowup is a phenomenon that occurs in many other PDEs besides those of fluid
mechanics. In particular, singularity formation modeled on a self-similar Burgers’-type shock
has been proved for various non-hyperbolic PDEs [37–39, 62, 77, 80, 102].

5.5. h-MGHDs

It is of mathematical and physical interest to study shock-forming solutions in a region of
classical existence that goes beyond the constant-time hypersurface of first blowup, e.g. in a
region larger than the one studied by Alinhac in [8–11], as we described in section 5.3. The
holy grail object in this vein is the h-MGHD, which is what we studied in theorem 3.1 within
the class of simple isentropic plane-symmetric solutions to the relativistic Euler equations.
Recall that, roughly speaking, the h-MGHD the largest possible classical solution+ h-globally
hyperbolic region that is uniquely determined by the initial data. In particular, the h-MGHD
can have a complicated boundary that includes points lying to the future of the constant-time
hypersurface of first blowup, as in figures 3 and 6. Here, ‘h-globally hyperbolic’ means that
the development contains a Cauchy hypersurface, i.e. a surface such that every inextendible h-
causal curve (where h is the acoustical metric) in the development intersects it. In the important
work [43], the authors showed that for general quasilinear hyperbolic PDEs, one cannot ensure
uniqueness of theMGHD until one constructs it and shows that it enjoys some crucial structural
properties, which are global in nature.

In our series [1–3], for open sets of initial data for the 3D compressible Euler equations
leading to shock-forming solutions, we constructed a large (though bounded) portion of the
h-MGHD, up to the boundary, i.e. in the non-relativistic case without symmetry assumptions,
we proved an analog of theorem 3.1. In particular, these are the first results to fully justify
figure 6 for open sets of solutions to the 3D compressible Euler equations with vorticity and
dynamic entropy. Although these works are of mathematical interest in themselves, they are
also fundamental for setting up the shock development problem, as we describe in section 5.6.

Our results [1–3] exhibit a localized version of the crucial property that the h-MGHD ‘lies
on one side of its boundary’, as is shown in figure 6. In [43], the authors showed, roughly,
that if this ‘one-sidedness’ property holds globally, then the h-MGHD is unique. They also
showed, for a specific hyperbolic PDE and specific initial data, that uniqueness of the MGHD
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fails and the property fails! As in theorem 3.1, the boundary portion we construct in [1–3] has
two kinds of components:

• A singular boundary B, constructed in [3], along which the fluid’s gradient blows up, the
past boundary of which is a two-dimensional acoustically spacelike12 submanifold known
as the crease and denoted by ‘∂−B’ in figure 6.

• A Cauchy horizon, constructed in [2] and denoted by ‘C’ in figure 6, which is an acoustic-
ally null hypersurface that emanates from the crease and along which the solution extends
smoothly (except at the crease). The crease plays the role of the true initial singularity in
shock-forming solutions.

Our analysis in [1, 2] relies on an assumption of transversal convexity, which is a weak, stable
form of convexity that can be read off the initial data and propagated by the flow. Roughly,
transversal convexity means that when the inverse foliation density µ (which in the context of
[1, 2] is an analog of (150) or (156) for the 3D compressible Euler equations) is small, µ has
a positive second derivative in a direction transversal to the level sets of the eikonal function
U. For the simple isentropic plane-symmetric solutions we studied in section 3, transversal
convexity is ensured by the estimate (102) and is manifested in figure 3 by the upward-bending
nature ofΥ(B[−U☢,0]).We highlight the importance of transversal convexity with the following
remarks.

Even for simple isentropic plane-symmetric solutions, in the absence of trans-
versal convexity, the qualitative structure of the singularity can be radically
altered. For example, if instead of the estimate (102) there held X̆X̆µ≡ 0 at the
first singularity, then in the (t,x1)-coordinates picture, an entire continuum of
characteristics would fold into a single point, and the change of variables map
Υ from theorem 3.1 would dramatically fail to be an injection. This would be
a serious obstacle to even the local well-posedness of the shock development
problem, which we describe in section 5.6. This is in contrast to the ‘favorable’
situation shown in figure 3, in which, thanks to transversal convexity, the char-
acteristics graze the singular boundaryΥ(B[−U☢,0]), but distinct characteristics
do not actually intersect along Υ(B[−U☢,0]).

In the context of the 3D solutions depicted in figure 6, the transversal convexity is mani-
fested by B being ‘convex in the x1-direction’ (i.e. upward bending in the x1 direction) but not
necessarily convex in the (x2,x3)-directions. Note that if we view plane-symmetric solutions
as solutions in 3D with symmetry, then the corresponding singular boundary B is not strictly
convex because of the ‘symmetric directions’ (x2,x3).

Of the works on shock formation cited in section 5.3, Christodoulou’s monograph [31]
on 3D irrotational and isentropic relativistic fluids is the only one that follows the solution
beyond the time of first blowup. He used eikonal functions and foliations of spacetime by h-
spacelike planes Σ (more precisely, the Σ were coordinate planes with respect to the standard
Minkowski-rectangular coordinates) to reveal an implicit portion of the boundary of the h-
MGHD, where, for example, the portion of the crease ∂−B that was revealed is such that the
crease had to lie to the future of anyΣ that is tangent to it. For initial data such that the crease is a

12 Acoustically spacelike means spacelike with respect to the acoustical metric of the 3D compressible Euler
equations. Acoustically null means null with respect to the acoustical metric.
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Figure 5. Rough foliations and the singular boundary from [1], depicted in Cartesian
coordinate space.

strictly convex subset of Minkowski-rectangular coordinate space (as in figure 4), his approach
can be used to study the entire crease and a neighborhood of the singular boundary that emerges
from it. However, strict convexity does not hold for all shock-forming solutions. In particular,
as we noted in the previous paragraph, strict convexity fails for symmetric solutions (roughly,
strict convexity will fail in the directions of symmetry) and general small perturbations of
them. In [1], under the weaker assumption of transversal convexity, we construct the entire
crease and a neighborhood of the singular boundary that contains it for solutions with vorticity
and dynamic entropy. To handle the lack of strict convexity, we dynamically construct a new
foliation of spacetime by ‘rough acoustically spacelike hypersurfaces’, depicted in figure 5,
that are precisely adapted to the shape of the crease and singular boundary. We refer to the
foliations as ‘rough’ because they are less differentiable than the fluid solution, which is a key
difficulty that has to be overcome in the PDE analysis. To handle the presence of vorticity and
dynamic entropy, we combine the special structure of the geometric wave-transport-div-curl
formulation of the flow derived in [95] with upgraded versions of the integral identities derived
in [3], which in total yield a regularity theory for the vorticity and entropy that is adapted to
the rough foliations (and hence the shape of the singular boundary) and that allows one to
treat the fluid equations as a perturbation of a wave equation system. In particular, as in [66,
68], the framework yields (and requires) one extra degree of differentiability for the vorticity
and entropy compared to standard estimates. See also section 6.9.2, in which we discuss the
extra differentiability of the vorticity and entropy in the context of the 3D relativistic Euler
equations.
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5.6. Shock development problem

In Majda’s celebrated works [71, 72], he solved the shock front problem for open sets of solu-
tions to the non-relativistic 3D compressible Euler equations. Roughly, this means that he
considered piecewise smooth initial data that have a jump discontinuity across a smooth hyper-
surface, and he then constructed a local weak solution to the equations and a shock hypersur-
face such that the solution is piecewise smooth on either side of shock hypersurface but has a
jump discontinuity across it and satisfies the Rankine–Hugoniot condition and an entropy-type
condition.

The shock development problem is closely related to the shock front problem but is laden
with additional technical difficulties. It is the problem of describing how initially smooth solu-
tions form a ‘first singularity’ (which is the crease, as described in section 5.5), from which
emerges a shock hypersurface (which is not known in advance, as in the shock front problem),
and describing the transition of the solution from classical to weak such that in the ‘weak
solution region’, the solution jumps across the shock hypersurface and satisfies the Rankine–
Hugoniot jump condition and an entropy-type condition. In particular, in the shock devel-
opment problem, there is no jump discontinuity in the initial data; rather, the jump emerges
dynamically, starting from the crease. In problems that are effectively one-dimensional (and
thus energy estimates can be avoided), the shock development problem has been solved for
various hyperbolic PDEs [20, 28, 34, 52, 53, 64].

The only solution to a multi-dimensional shock development problem without symmetry
assumptions was provided by Christodoulou’s recent breakthrough monograph [32], in which
he used nonlinear geometric optics (i.e. a pair of acoustic eikonal functions, one ingoing and
one outgoing) to solve the restricted shock development problem in an arbitrary number of
spatial dimensions for the compressible Euler equations and the relativistic Euler equations.
Roughly, the word ‘restricted’ means that he solved an idealized problem in which he ignored
the jump in entropy and vorticity across the shock hypersurface, thereby producing a weak
solution to a hyperbolic PDE system that approximates the true one; in the real problem,
which remains unsolved, the vorticity and entropy must jump across the shock hypersur-
face. Compared to the 1D case, the main new difficulty in multiple spatial dimensions is that
one must derive energy estimates, which are degenerate near the first singularity for reasons
related to the energy degeneracies that occur in the shock formation problem, as we discuss in
section 6.9.3.

We highlight the following key issue, which is a primary motivating factor for our construc-
tion of large portions of the h-MGHD in [1–3]:

The setup of the shock development problem (see [32, 34]) is such that the
data for it are an h-MGHD13 of a shock-forming solution launched by smooth
initial data, with a precise description of the gradient-blowup along a singu-
lar boundary, a precise description of the classical solution’s regular behavior
along a Cauchy horizon C, and a sharp description of the structure of the ‘first
singularity’, which in section 5.5 (also in theorem 3.1), we referred to as ‘the
crease’ and which we denote by ‘∂−B’ in figure 6. Crucially, under the ‘trans-
versal convexity’ assumption described in section 5.5, ∂−B is a co-dimension
two, h-spacelike submanifold equal to the intersection of the Cauchy horizon

13 The shock development problem is local, so to locally study the solution, one only needs as initial data a portion of
the h-MGHD, specifically a portion that contains a crease and a portion of the singular boundary and Cauchy horizon
that emerge from it, which we constructed in [1–3].
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and the singular boundary; without this structure, it is not even clear whether
the shock development problem is well-posed. These structures, as well as the
full state of the fluid up to ∂−B, C, were posited as data in [32, 34]. In 1D,
theorem 3.1 provides the first rigorous construction of these qualitative and
quantitative aspects of the data for the shock development problem, starting
from smooth initial conditions on a spacelike Cauchy hypersurface. For the
non-relativistic Euler equations in 3D and without symmetry assumptions, our
works [1–3] collectively provide an analog of theorem 3.1.

5.7. Rarefaction waves

In his foundational papers [6, 7], for a large class of multi-dimensional hyperbolic sys-
tems that includes scalar conservation laws and the compressible Euler equations as special
cases, Alinhac proved local existence and uniqueness for rarefaction wave solutions. Multi-
dimensional rarefaction waves are analogs of a class of solutions to the well-known Riemann
problem in 1D, in which the initial data are piecewise smooth and discontinuous, and the initial
discontinuity is immediately smoothed out by the flow. His approach relied on Nash–Moser
estimates to overcome derivative loss in linearized versions of the equations. Alinhac proved
[6, 7] that, as in the 1D case, in the corresponding multi-dimensional region + solution, the
initial discontinuity is immediately smoothed out by the flow. In the important recent works
[69, 70], the authors study the isentropic 2D compressible Euler equations with a family of
irrotational discontinuous initial data that are (asymmetric) perturbations of plane-symmetric
data for a corresponding 1DRiemann problem. For irrotational data, their main result provides
a sharpened version of the local existence and uniqueness results of Alinhac [6, 7]. Their work
shows in particular that the 2D irrotational rarefaction solution is a perturbation of the standard
1D rarefaction wave solution to the Riemann problem. Compared to [6, 7], the works [69, 70]
yield two important advances. First, the techniques of [69, 70] avoid a loss of derivatives in a
corresponding linearized problem and consequently, the authors were able to close the energy
estimates without Nash–Moser estimates. Second, [69, 70] provide a complete description of
the characteristic geometry in the problem.

6. Some ideas behind the proof of shock formation in 3D without symmetry

In this section, we provide an outline (without complete proofs) of how to extend some aspects
of theorem 3.1 to apply to open sets of 3D relativistic Euler solutions without symmetry, isen-
tropicity, or irrotationality assumptions. We anticipate that all aspects of theorem 3.1 can be
extended. A key reason behind our expectation is the availability of the new formulation of
the flow provided by theorem 4.1, which is qualitatively similar to the formulation of the non-
relativistic flow from [95], which was used in prior related works [1–3, 66, 68] on shocks for
the (non-relativistic) 3D compressible Euler equations. To keep the discussion short, we only
sketch some key ideas behind the proof of conjecture 1, which essentially concerns studying
3D solutions until their time of first blowup. Our discussion here mirrors the strategy we used
in our work [68], in which we proved an analog of conjecture 1 for the non-relativistic 3D
compressible Euler equations.

6.1. Conjectures for the 3D relativistic Euler equations

To set the stage, we state three conjectures for the 3D relativistic Euler equations that are tied
to the following figure:
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Figure 6. Conjectured local picture of the h-MGHD for general small perturbations
of simple isentropic plane-symmetric solutions to the 3D relativistic Euler equations
in Minkowski-rectangular coordinate space, with the mapΥ(t,U,x2,x3) = (t,x1,x2,x3)
suppressed.

For the 3D compressible Euler equations, figure 6 has been justified [1–3] for open sets of
initial data.

Conjecture 1 (time of first blowup for the 3D relativistic Euler equations with vorticity and
entropy). Consider the simple isentropic plane-symmetric solutions of theorem 3.1 as ‘back-
ground solutions’ to the 3D relativistic Euler equations with symmetry. Consider smooth initial
data in 3D—without symmetry, irrotationality, or isentropicity assumptions—that are close (in
a sufficiently high-order Sobolev space) to the data of one of the background solutions. Then
the perturbed solution forms a shock at a time that is a perturbation of TShock, i.e. a perturb-
ation of the shock-formation-time of the background solution; the conjectured perturbed first
blowup-time is the smallest value of t along the crease ∂−B depicted in figure 6.

Conjecture 2 (the structure of the crease and singular boundary for the 3D relativistic
Euler equations with vorticity and entropy). Under the assumptions of conjecture 1, the
perturbed solution has a crease and singular boundary that are perturbations of the crease sin-
gular boundary of the background solution; the background crease and singular boundary are
depicted in figure 3, while the conjectured perturbed singular boundary and crease are depicted
in figure 6.

Conjecture 3 (the structure of the Cauchy horizon with vorticity and entropy). Under the
assumptions of conjecture 1, the perturbed solution has a Cauchy horizon that is a perturbation
of the Cauchy horizon of the background solution; the background Cauchy horizon is depicted
in figure 3, while the conjectured perturbed Cauchy horizon is depicted in figure 6.

Conjecture 2 is strictly harder than conjecture 1, while conjecture 3 is independent (though
closely related).

6.2. Almost Riemann invariants

To study general (asymmetric) perturbations of simple isentropic plane-symmetric solutions,
it is convenient to use analogs of the Riemann invariants from definition 3.2.
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Definition 6.1 (almost Riemann invariants). Let F= F(H,s) be the solution to the following
transport equation initial value problem:

∂

∂H
F(H,s) =

1
Hc(H,s)

, F
(
H,s
)
= 0, (151)

whereH> 0 is the constant (3), and in (151), we are viewing the speed of sound c as a function
of H and s.

We define the almost Riemann invariantsR(+) and R(−) as follows:

R(+) := F(H,s)+
1
2
ln

1+ u1√
1+(u1)2

1− u1√
1+(u1)2

 , (152a)

R(−) := F(H,s)− 1
2
ln

1+ u1√
1+(u1)2

1− u1√
1+(u1)2

 . (152b)

Note that for plane-symmetric solutions with s≡ 0, the quantities defined by (152a)
and (152b) coincide with the ones defined in (48a) and (48b).

We view R(+) and R(−) as replacements for H and u1 that are convenient for studying
perturbations of simple isentropic plane-symmetric solutions. In particular, for values of (H,s)
near (H,0), the factor 1

Hc(H,s) in (151) is positive. The implicit function theorem then allows
one to solve for H as a smooth function of F and s. We can then use the relations (152a)
and (152b) to express (H,u1) as smooth functions of (R(+),R(−),s). Then, under the algebraic
relation (12d), a complete set of state-space variables for the 3D relativistic Euler equations is
given by:

Ψ⃗ :=
(
R(+),R(−),u

2,u3,s
)
. (153)

Although we have previously used the symbol Ψ⃗ to denote the array
(
h,u0,u1,u2,u3,s

)
, in the

rest of section 6, we use Ψ⃗ to denote the array in (153).
Away from isentropic plane-symmetry, R(+) and R(−) no longer solve the homogeneous

transport equations (49a) and (49b). However, from (146a), the chain rule, and definition 6.1, it
follows that for general solutions, R(+) and R(−) satisfy geometric wave equations that have
the same schematic form as (146a). In the rest of section 6, we use this fact without always
explicitly mentioning it.

6.3. Nonlinear geometric optics

As in the 1D case treated in section 3, the study of shock formation in 3D relies on nonlinear
geometric optics, i.e. multi-dimensional analogs of the constructions from section 3.6. The
main object behind the construction is an eikonal function. The use of eikonal functions to
study the global properties of multi-dimensional quasilinear hyperbolic PDE solutions ori-
ginated Christodoulou–Klainerman’s proof [33] of the stability of Minkowski spacetime. See
also section 5.3 for a discussion of nonlinear geometric optics in the context of proofs of multi-
dimensional shock formation.
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As we discussed at the beginning of section 3.6, for simple isentropic plane-
symmetric solutions, the role of nonlinear geometric optics/geometric coordin-
ates is to yield a framework/differential structure in which the solution remains
smooth all the way up to the shock, thereby allowing one to reduce the problem
of shock formation to amore traditional problem inwhich one studies long-time
existence. The same remarks hold in the present context of three spatial dimen-
sions, althoughmany additional geometric constructions are required. In partic-
ular, all of the geometric quantities we introduce in sections 6.3 and 6.8, includ-
ing the acoustic eikonal function, the geometric coordinates, various geometric
vectorfields, and various geometric energies are introduced in order regularize
the problem. However, unlike in the simple isentropic plane-symmetric case,
in the present multi-dimensional context, one needs to derive energy estimates,
and it turns out that a remnant of the shock singularity survives, even in the
‘good’ geometric coordinates. The remnant manifests as singular estimates for
the high-order geometric energies, though it is crucial for our approach that the
mid-order-and-below geometric energies remain bounded; see section 6.9.3 for
further discussion.

Definition 6.2 (acoustic eikonal function). An acoustic eikonal function (eikonal function
for short) is a solution to the eikonal equation, which is the following fully nonlinear hyperbolic
PDE, where h−1 is the acoustical inverse metric from definition 2.4:(

h−1
)κλ

(Ψ⃗)∂κU∂λU= 0, ∂tU> 0. (154)

When studying shocks close to plane-symmetry, it is convenient to assume the following
initial condition forU, which is the exact same initial condition (55b) that we used in our study
of isentropic plane-symmetric solutions:

U|t=0 =−x1. (155)

We refer to the level sets of U as the characteristics. One can show that for isentropic plane-
symmetric solutions, the solution ‘U’ to (55a) and (55b) coincides with the solution to (154)
and (155).

Definition 6.3 (inverse foliation density). We define the inverse foliation density of the char-
acteristics to be the following scalar function:

µ :=− 1

(h−1)
κλ

(Ψ⃗)∂κt∂λU
=

1
NU

, (156)

where the second equality in (156) follows from (143b).

One can show that for isentropic plane-symmetric solutions, the quantity ‘µ’ defined by (57)
coincides with the one defined in (156). As in section 3, the formation of a shock occurs when
the density of the characteristics becomes infinite, that is, when µ ↓ 0.

6.4. Geometric coordinates and vectorfield frames tied the eikonal function

In this section, we introduce geometric coordinates and related vectorfields that are analogs of
quantities we used in our study isentropic plane-symmetric solutions.
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6.4.1. t Geometric coordinates.

Definition 6.4 (geometric coordinates and the corresponding partial derivative vector-
fields). We refer to {t,U,x2,x3} as the geometric coordinates on spacetime, where U is the
eikonal function and t, x2, and x3 are the Minkowski-rectangular coordinates, with t := x0. We
denote the corresponding partial derivatives by { ∂

∂t ,
∂
∂U ,

∂
∂x2 ,

∂
∂x3 } (which are not to be confused

with the partial derivatives ∂α in the (t,x1,x2,x3)-coordinate system).

Definition 6.5 (some important submanifolds of geometric coordinate space).

• We denote the level set {U= U ′} by PU ′ , and we refer to these level sets as the character-
istics; see figure 7.

• We define Σt ′ to be the hypersurface {t= t ′}, where t is the Minkowski time function.
• We define the two-dimensional surfaces ℓt ′,U ′ := Σt ′ ∩PU ′ ; see figure 7.

The surfacesPU are characteristic for the wave operator□h on LHS (146a), or equivalently,
null with respect to the acoustical metric h (h-null for short).

As we mentioned in section 3 and just above definition 6.2, a key strategy behind the proof
of shock formation is to show that the solution remains smooth with respect to the geometric
coordinates. The blowup of the solution’s gradient in (t,x1,x2,x3)-coordinates, i.e. the blowup
of ∂∂∂Ψ⃗, occurs when µ vanishes. One can prove (see e.g. [68, lemmas 2.22 and 2.23]) the
following relationship between the partial derivatives in the two coordinate systems, where
the aβα are smooth (solution-dependent) functions of the geometric coordinates:

∂α = a0α
1
µ

∂

∂U
+ a1α

∂

∂t
+ a2α

∂

∂x2
+ a3α

∂

∂x3
. (157)

The first product on RHS (157) shows in particular why ∂∂∂Ψ⃗ can blow up as µ ↓ 0, even when
the derivatives of Ψ⃗ with respect to elements of { ∂

∂t ,
∂
∂U ,

∂
∂x2 ,

∂
∂x3 } remain bounded. The use of

geometric coordinates allows one to study the problem of shock formation by using ideas that
have traditionally been used in long-time existence problems. However, different from the 1D
case, in 3D, some difficult degeneracies can occur in the energy high-order energy estimates;
we discuss this difficulty in more detail in section 6.9.3.

6.4.2. Vectorfield frames. Experience has shown (e.g. [31] and the related works cited in
section 5.3) that in the study of shocks, to avoid loss of derivatives in commutator estimates and
other difficulties, it is advantageous to use vectorfield frames adapted to the eikonal function.
In particular, once one has constructed U, one can construct the following vectorfield frames,
depicted in figure 7:

Z := {L, X̆,Y(2),Y(3)}, P := {L,Y(2),Y(3)}, Y := {Y(2),Y(3)}, (158)

which we describe below. The frameZ spans the tangent space of geometric coordinate space,
the subset P spans the tangent space of the characteristicsPU, and the subset Y spans the tan-
gent space of the two-dimensional surfaces ℓt,U, i.e. the span ofY is equal to that of { ∂

∂x2 ,
∂
∂x3 }.

We now briefly describe how to construct the vectorfields. First, L is defined by:

Lα :=−µ
(
h−1
)ακ

(Ψ⃗)∂κU. (159)
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Figure 7. The frame Z at two distinct points on PU with the x3-direction suppressed.

L is clearly h-orthogonal to the characteristics PU, and by (154) and (156), we see that
h(L,L) = 0 and Lt= 1. In particular, since L is h-orthogonal to PU and h-null, PU is a h-
null hypersurface. One can show that for isentropic plane-symmetric solutions, the quantity
‘L’ defined in this fashion coincides with the one defined in (44a). However, for general solu-
tions in 3D, a big difference with the plane-symmetric case is that there does not exist any
explicit formula for L in the spirit of (44a). That is, in general, L depends on the gradient of
U, which in turns depends implicitly on the fluid solution via the coefficients in the eikonal
equation (154).

Next, we defineX to be theΣt-tangent vectorfield that is h-orthogonal to the ℓt,U, normalized
by h(X,X) = 1, and is such that U increases along the integral curves of X, i.e. XU> 0. We
then define X̆ := µX, where µ is defined in (156). It follows that h(X̆, X̆) = µ2. With the help
of (19), one can show that X̆U= 1. That is, X̆ is a geometric replacement14 for ∂

∂U , and among
the elements of Z , it is the one vectorfield that is transversal to the characteristics. One can
show that for isentropic plane-symmetric solutions, the quantities ‘X’ and ‘X̆’ defined in this
fashion coincide with the ones defined in (60).

Next, for A= 2,3, we define Y(A) to be the h-orthogonal projection of ∂A onto ℓt,U, where ∂A
is the standard Minkowski-rectangular partial derivative vectorfield. In our study of isentropic
plane-symmetric solutions, we did not rely on any analogs of the Y(A).

For future use, we use (12d), (17a), and (143a) to compute that:

h(B,L) = nm(B,L) . (160)

Note that RHS (160) < 0 because n> 0, B is future-directed and h-timelike, L is future-
directed and h-null, and the h-null cones are inside the m-null cones (see remark 2.3).

6.4.3. The first fundamental form of ℓt,U and related decompositions. Standard calculations
(see, e.g. [96, equation (2.40b)]) imply that the inverse acoustical metric from (17b) can be

14 (63) shows that in plane-symmetry, X̆= ∂
∂U

. However, in the general 3D case, X̆ is equal to ∂
∂U

plus corrections

belonging to span
{

∂
∂x2

, ∂
∂x3

}
.
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decomposed as follows:(
h−1
)αβ

=−LαLβ −LαXβ −XαLβ +
(
h/−1
)αβ

, (161)

where h/ is the Riemannian metric on ℓt,U induced by h, i.e. the first fundamental form of
ℓt,U. We view h/ to be a spacetime tensor that vanishes on contraction with L or X and that
agrees with h on ℓt,U-tangent vectors. Moreover, in (161), (h/−1)αβ := (h−1)αγ(h−1)βδh/γδ is
the corresponding inverse first fundamental form.

In what follows, ∇/ denotes the Levi–Civita connection of h/ and | · |h/ denotes the pointwise
norms of tensors with respect to h/, e.g. for scalar functions f, we have |∇/ f |2h/ = (h/−1)κλ∇/κf∇/λf.

For future use, we note that for scalar functions f, we have the following decomposition of
µ□h(Ψ⃗)f (see, e.g. [96, proposition 2.16]), where∆/ denotes the covariant Laplacian associated
to h/:

µ□h(Ψ⃗)f =−L
(
µLf + 2X̆f

)
+µ∆/ f + · · · . (162)

On RHS (162), . . . denotes terms that depend on the first derivatives of f and that we will not
discuss in detail here.

Remark 6.1 (comments on the case of more general ambient spacetimes (M,g)). Under
the setup described in section 4.2.5, almost all the constructions from this section have natural
analogs for the study of the relativistic Euler equations on a g-globally hyperbolic spacetime
(M,g). That is, consider the time function t : M→ R and the foliations M= ∪tΣt. Here are
three concrete examples:

(I) The definition of the eikonal function (17a) would remain unchanged.
(II) WithN :=−h−1 · dt, (156) would again yield a suitable definition of the inverse foliation

density (of the characteristics, with respect to Σt).
(III) X could be defined to be a Σt-tangent vectorfield that is h-orthogonal to ℓt,U and normal-

ized by h(X,X) = 1 (this would define X up to an overall minus sign, where in section 3,
we defined X such that is ‘left-pointing’).

We do, however, highlight the following point: general spacetime manifolds have no sym-
metries and thus do not generally allow for the existence of the simple plane-symmetric
solutions constructed in section 3. Nonetheless, we expect the robust geometric framework
described above and many of the key ideas presented in the subsequent sections to be useful
for proving shock formation results for initial data with large gradients. We also note that the
initial data (155) for the eikonal function generally needs to be adjusted to fit the regime one
is studying.

6.5. Description of the compactly supported initial data of perturbations of simple isentropic
plane-symmetric solutions

We now describe the initial data in conjecture 1 in more detail. One simply takes any of the
‘background’ simple isentropic plane-symmetric shock-forming solutions from theorem 3.1
and then considers a general small (asymmetric) perturbation of its initial data on Σ0. For the
proof to close, the perturbed initial data need to belong to a sufficiently high order Sobolev
space; we will discuss the issue of regularity in more detail later on. For convenience, it is
easiest to consider perturbed initial data that, like the background data, are compactly suppor-
ted inΣ[−U1,U2]

0 := Σ0 ∩{(t,U,x2,x3) | −U1 ⩽ U⩽ U2}. Then by finite speed of propagation,
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the corresponding perturbed solution remains spatially compactly supported for all time and
in particular vanishes along the characteristic P−U1 (which therefore appears flat in figure 6).
The compact support allows one to avoid difficult boundary terms in the elliptic estimates for
the vorticity and entropy; see section 6.9.2.

For such initial data, all of the wave variables in the array Ψ⃗ defined in (153)—except for
R(+)—will initially have a negligible effect on the dynamics. Similarly, the fluid variables
ϖα, Sα, Cα, and D from section 4.2 will also be small initially. The challenge is to propagate
suitable versions of this smallness all the way up to the shock.

6.6. Bootstrap assumptions and the regions M[0,t ′),[−U1,U ′]

To prove that a shock forms, one commutes the equations up to Ntop times and derives energy
estimates up to top-order and L∞ estimates at the lower orders. For reasons described later on,
the proof requires Ntop to be rather large (i.e. substantially larger than a proof of local well-
posedness requires) and thus the initial data need to belong to a high order Sobolev space. To
close the proof, it is convenient to make L∞ bootstrap assumptions that capture the expectation
that at the lower derivative levels, the solution behaves like a perturbation of a simple isentropic
plane-symmetric solution (in which onlyR(+) is non-vanishing). That is, one aims to propag-
ate various aspects of the smallness enjoyed by the initial data described in section 6.5. The
bootstrap assumptions are convenient because explicit formulae in the spirit of corollary 3.6
are not available in 3D. They capture the expectation that nonetheless, the 3D solution should
obey estimates that are similar to the ones proved in lemma 3.7 and theorem 3.1 in the simple
isentropic plane-symmetric case.

Before introducing the bootstrap assumptions, we first introduce some notation. In what
follows, PN denotes an arbitrary order N string of elements of the PU-tangent vectorfields P
defined in (158). We refer to such vectorfields as ‘tangential’ (to the characteristics PU). In
contrast, the vectorfield X̆ from (158) is transversal (because it satisfies X̆U= 1).

The bootstrap assumptions are made on a region M[0,TBoot),[−U1,U3] for some TBoot > 0 and
U3 > U2 (discussed further below, where U1 and U2 are as in section 6.5), where in the rest of
section 6, given any t ′ > 0 and U ′ ∈ [−U1,U2], M[0,t ′),[−U1,U ′] denotes the following open-
at-the-top slab in geometric coordinate space:

M[0,t ′),[−U1,U ′] := {(t,U,x2,x3) | t ∈ [0, t ′)}∩ {(t,U,x2,x3) | −U1 ⩽ U⩽ U ′}. (163)

The proof will show that µ first vanishes at a time that is a perturbation of the plane-symmetric
blowup-time TShock from theorem 3.1. That is, in all estimates and arguments, one can safely
assume that 0< TBoot ⩽ 2TShock. From this assumption, the assumption that the data are sup-
ported in Σ

[−U1,U2]
0 , and finite speed of propagation, one can compute/choose U3 > U2 such

that for t ∈ [0,TBoot), the solution is trivial15 at points in Σt belonging to the complement of
Σt ∩{U ∈ [−U1,U3]}.

Specifically, for N up to mid-order, i.e. roughly, for N⩽ Ntop

2 , one assumes L∞ smallness
on M[0,TBoot),[−U1,U3] for the following quantities, which, aside from Lµ, vanish in the case of
simple isentropic plane-symmetric solutions:

• The pure Pu-tangential derivatives PNR(+), PNϖα, PNSα, PNCα, PND, PNLi, and
PNµ, except Lµ does not have to be small (see (119)).

15 For general perturbations of the background solutions, the perturbed solution will not be spatially supported in
Σt ∩{U ∈ [−U1,U2]}; this is why we have introduced the parameter U3.
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• Mixed tangential-transversal derivatives of all these quantities except µ, e.g. LX̆R(+).
• Pure transversal derivatives of all fluid variables excludingR(+), e.g. for X̆R(−), X̆v2, X̆ϖα,
X̆Cα.

One also assumes L∞ boundedness (not smallness) on M[0,TBoot),[−U1,U3] for the following
quantities, which are non-zero for the simple isentropic plane-symmetric solutions we studied
in theorem 3.1:

• X̆R(+)

• X̆Li, Lµ.

One also assumes that:

µ> 0, on M[0,TBoot),[−U1,U3]. (164)

The assumption (164) captures that no shock has occurred on M[0,TBoot),[−U1,U3], though it
leaves open the possibility that the shock happens exactly at time TBoot.

The difficult part of the proof is proving energy estimates that allow one to derive, through
a combination of Sobolev embedding and transport estimates, improvements of the bootstrap
assumptions. Then through a standard continuation argument, one can extend the solution all
the way up until the first time that µ vanishes.

6.7. The behavior of µ and the formation of a shock

Given the framework established above and the bootstrap assumptions, it is not difficult to
prove that shocks can form for open sets of initial data that are perturbations of simple isen-
tropic plane-symmetric data. We now sketch the argument. Using the eikonal equation (154)
and the bootstrap assumptions of section 6.6 one can show that for perturbations of simple
isentropic plane-symmetric solutions, the inverse foliation density defined in (156) satisfies an
evolution equation of the following schematic form (see lemma 3.5) on M[0,TBoot),[−U1,U3]:

Lµ
(
t,U,x2,x3

)
= X̆R(+)

(
t,U,x2,x3

)
+ · · · , (165)

where · · · denotes small error terms. In addition, using that LX̆R(+) is small by the bootstrap
assumptions, one can show that on M[0,TBoot),[−U1,U3], we have:

X̆R(+)

(
t,U,x2,x3

)
= X̆R(+)

(
0,U,x2,x3

)
+ · · · , (166)

that is, X̆R(+) stays close to its initial condition (see (69), which shows that in simple isen-
tropic plane-symmetry R(+) depends only on U). Combining (165) and (166), we see that on
M[0,TBoot),[−U1,U3], we have:

Lµ
(
t,U,x2,x3

)
= X̆R(+)

(
0,U,x2,x3

)
+ · · · . (167)

Since Lt= 1 (i.e. L= d
dt along the integral curves of L), and since the ℓt,U-tangential derivat-

ive ∂
∂xAµ is small by the bootstrap assumptions, we deduce from (167) and the fundamental

theorem of calculus that on M[0,TBoot),[−U1,U3], we have:
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µ
(
t,U,x2,x3

)
= µ

(
0,U,x2,x3

)
+ t
{
X̆R(+)

(
0,U,x2,x3

)
+ · · ·

}
. (168)

Thus, for initial data such that there are points where X̆R(+)(0,U,x2,x3) is negative and large
enough to dominate the terms · · · on RHS (168), we infer from (168) that minΣt µ will vanish
in finite time, and that the time of first vanishing can be controlled by the initial data. Moreover,
since this argument implies that |X̆R(+)| 6= 0 at the points where µ vanishes, and since:

|XR(+)|=
1
µ
|X̆R(+)|, (169)

it follows that |XR(+)| blows up like C
µ

at the points where µ vanishes (see (128) and (157)).
In total, these arguments show why µ can vanish in finite time and reveal how the vanishing is
connected to the blowup of |XR(+)|.

We also note that the above arguments yield the following:

Lµ
(
t,U,x2,x3

)
< 0, at points where µ

(
t,U,x2,x3

)
is close to 0, (170)

which is an analog of the estimate (119) in simple isentropic plane-symmetry. In particular,
at fixed (U,x2,x3), µ vanishes linearly in t. These facts have important implications for the
energy estimates, described below; see in particular remark 6.3.

6.8. Vectorfield multiplier method and energies

In this section, we describe some basic ingredients that are needed to set up the energy estim-
ates. To control the solution up to the shock, one needs geometric machinery that is much more
advanced than that of section 2.3.4 and that takes advantage of the structure of the equations
provided by theorem 4.1.

6.8.1. Energies and null fluxes for wave equations. In this section, we set up the vectorfield
multiplier method for the wave equations (146a).

Given a scalar function f, we define the energy–momentum tensor associated to it to be the
following symmetric type

(0
2

)
tensor:

Qαβ =Qαβ [ f ] := Dα fDβ f −
1
2
hαβ

(
h−1
)κλ

DκfDλf. (171)

In (171) and throughout, D denotes the Levi–Civita connection of h.
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Straightforward calculations, based on the symmetry property DαDβ f= DβDαf and the
Leibniz rule, yield that given any multiplier vectorfield Z, we have the following identity:(

h−1
)αβ

(DαQβκ [f]Z
κ) =

(
□h(Ψ⃗)f

)
Zf +

1
2

(
h−1
)αβ (

h−1
)κλ

Qακ
(Z)πππβλ, (172)

where:

(Z)πππαβ := hβκDαZ
κ +hακDβZ

κ (173)

is the deformation tensor of Z (with respect to h). The identity (172) is convenient for book-
keeping in the divergence theorem when one integrates by parts.

To derive energy-null flux identities for wave equations, we will use (172) with the multi-
plier vectorfield Z equal to T̆, which is defined as follows, where L and X̆ are as in section 6.4.2:

T̆ := (1+ 2µ)L+ 2X̆. (174)

One can compute that h(T̆, T̆) =−4µ(1+µ) and thus T̆ is h-timelike whenever µ> 0. The
h-timelike nature of T̆ is crucial for generating coercive energies. The µ-weights in (174) have
been carefully placed. Recall that X̆= µX, where h(X,X) = 1. Thus, X̆ effectively contains a
µ-weight.

To close the L2 estimates, one needs energies on:

Σ
[−U1,U

′]
t ′ := {

(
t,U,x2,x3

)
| t= t ′}∩ {

(
t,U,x2,x3

)
| −U1 ⩽ U⩽ U ′} (175)

and null fluxes on:

P [0,t ′)
U ′ := {(t,U,x2,x3) | 0⩽ t< t ′}∩ {(t,U,x2,x3) | U= U ′}. (176)

Recall thatN is the future-directed h-unit normal toΣt defined in (143b). The strength of our
energies on the Σ[−U1,U]

t is determined by the following identity (see, e.g. [96, lemma 3.4]):

Q [f]
(
T̆,N

)
=

1
2
(1+ 2µ)µ(Lf)2 + 2µ(X̆f)Lf+ 2(X̆f)2 +

1
2
(1+ 2µ)µ|∇/ f|2h/. (177)

Similarly, the strength of our null fluxes on the P [0,t)
U is determined by the following identity

(again, see, e.g. [96, lemma 3.4]):

Q [f]
(
T̆,L
)
:= (1+µ)(Lf)2 +µ|∇/ f|2h/. (178)

These identities (177)–(178) motivate the following definition.

Definition 6.6 (wave equation energies and null-fluxes). Given a scalar function f, we define
the associated energy E(Wave)[f] and null flux E(Wave)[f] as follows:

E(Wave) [f] (t,U)

:=

ˆ
Σ

[−U1,U]
t

{
1
2
(1+ 2µ)µ(Lf)2 + 2µ(X̆f)Lf+ 2(X̆f)2 +

1
2
(1+ 2µ)µ|∇/ f|2h/

}
dϖh/ dU

′, (179a)

F(Wave)[f](t,U) :=
ˆ
P[0,t)
U

{
(1+µ)(Lf)2 +µ|∇/ f|2h/

}
dϖh/ dt

′, (179b)
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where h/ and |∇/ f|2h/ are as in section 6.4.3, and on each ℓt ′,U ′ ,

dϖh/ :=
√

deth/(t ′,U ′,x2,x3)dx2dx3, (180)

is the canonical volume form induced by h/. In particular, the determinant in (180) is taken
relative to the coordinates (x2,x3) on ℓt ′,U ′ .

Remark 6.2 (µ weights and error terms). Note that one L-derivative involving term on
RHS (179b) lacks a µ-weight. This means that F(Wave)[f](t,U) is strongly coercive in the
L-derivatives even in regions where µ is small. This is crucial for controlling L-derivative-
involving energy estimate error terms that lack µ-weights. In contrast, all terms on RHS (179a)
and (179b) involving the ∇/ -derivatives of f have a µ-weight. Hence, to control dangerous ∇/ -
derivative-involving energy estimate error terms that lack µ-weights, one must rely on the
special structure afforded by the coercive spacetime integral described in remark 6.3.

Using (172) with Z := T̆, one can prove the following lemma (see, e.g. [96, propos-
ition 3.5]), which forms the starting point for the L2-analysis of solutions to the wave
equations (146a).

Lemma 6.1 (energy-null flux identity for wave equations). For scalar functions f on
M[0,TBoot),[−U1,U3] that vanish along

16 P−U1 , the following energy-null flux identity holds for
(t,U) ∈ [0,TBoot)× [−U1,U3]:

E(Wave)[f](t,U)+F(Wave)[f](t,U) = E(Wave)[f](0,U)

− 1
2

ˆ
M[0,t),[−U1,U]

µ(h−1)αβ(h−1)κλQακ
(T̆)πππβλ dϖh/ dU

′dt ′

−
ˆ
M[0,t),[−U1,U]

(T̆f)(µ□h(Ψ⃗)
f)dϖh/ dU

′dt ′. (181)

Remark 6.3 (the coercive spacetime integralK[f](t,U)). Upon decomposing theQ-involving
integral on RHS (181) relative to the vectorfields in Z , one finds that it contains the following
term, which, after moving it to LHS (181), takes the following form:

K[f](t,U) =
1
2

ˆ
M[0,t),[−U1,U]

[Lµ]−|∇/ f|2h/ dϖh/ dU
′dt ′. (182)

In (182), [z]− :=max{0,−z} denotes the negative part of z. Importantly, the discussion in
section 6.7 shows that Lµ is negative in regions close to the shock (i.e. in regions where µ

is small) and thus in such regions, K[f](t,U), which we again emphasize has the favorable
sign (182) when moved to LHS (181), yields non-µ-weighted spacetime L2 control of |∇/ f|2h/.
As we mentioned above, the control afforded by this term is crucial for controlling error terms
in the energy estimates that depend on ∇/ f but lack µ-weights.

6.8.2. Energies and null fluxes for transport equations. We now define energies and null
fluxes for transport equations of the formBf = · · · , where the vectorfieldB is defined in (143a).
The energies and null fluxes are relevant for controlling solutions to the transport equations
from theorem 4.1.

16 This vanishing assumption holds under the compact support assumptions on the initial data stated in section 6.5.
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Specifically, motivated by the identities (145) and (160), we define the following energies
and null fluxes.

Definition 6.7 (transport equation energies and null-fluxes).

E(Transport) [f] (t,U) :=
ˆ
ΣU
t

µf 2 dϖh/ dU
′, (183a)

F(Transport)[f](t,U) :=
ˆ
P[0,t)
U

[−nm(B,L)]f 2 dϖh/ dt
′. (183b)

Note that the discussion below (160) implies that the factor −nm(B,L) on RHS (183b) is
positive, which of course is important for the coercivity of F(Transport)[f](t,U). For the same
reasons given in section 6.8.1, it is crucially important that RHS (183b) lacks a µ-weight.

By applying the divergence theorem to the vectorfield f 2B on M[0,t),[−U1,U], using (145)
and (160), and using that in geometric coordinates we have (see, e.g. [92, corollary 3.47]):√

|deth|dx2dx3dU ′dt ′ = µdϖh/ dU
′dt ′, (184)

one can prove the following lemma, which forms the starting point for the L2-analysis of solu-
tions to the transport equations (146b) and (146c).

Lemma 6.2 (energy-null flux identity for transport equations). For scalar functions f on
M[0,TBoot),[−U1,U3] that vanish along P−U1 (footnote 16 applies here as well), the following
energy-null flux identity holds for (t,U) ∈ [0,TBoot)× [−U1,U3]:

E(Transport)[f](t,U)+F(Transport)[f](t,U) = E(Transport)[f](0,U)

+

ˆ
M[0,t),[−U1,U]

µ(DαBα)f 2 dϖh/ dU
′dt ′

+

ˆ
M[0,t),[−U1,U]

2f(µBf)dϖh/ dU
′dt ′. (185)

6.8.3. Commutator method and the shock-driving terms. To derive suitable energy estim-
ates, one commutes µ-weighted17 versions of the equations of theorem 4.1 with the elements
of the PU-tangent subset P defined in (158) and then applies the energy-null flux identities
of lemmas 6.1 and 6.2 and the elliptic estimates described in section 6.9.2. In particular, it has
been understood since [68] that to close the energy estimates in a shock formation problem,
one does not need to commute the equations with the vectorfield X̆, which is transversal to the
characteristics. We stress that it does not seem possible to close the estimates by commuting
the equations with the Minkowski-rectangular partial derivatives ∂α; such an approach would
generate error terms that we do not know how to control.

Although one must commute with all the elements of P to close the energy estimates, the
most difficult terms arise from commuting the wave equation (146a) with a string of elements
of the ℓt,U subset Y defined in (158). Schematically, for Ψ ∈ Ψ⃗, with Y N denoting an order
N string of elements of Y , we have:

µ□h(Ψ⃗)Y
NΨ= (X̆Ψ) ·Y Ntrh/χ+µf(Ψ⃗)Y NC+µf(Ψ⃗)Y ND+ · · · , (186)

17 Theµ-weights allow one to avoid problematic error terms, and they are compatible with theµ-weights in lemmas 6.1
and 6.2.
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where χ is the null second fundamental form of PU with respect to h, trh/χ denotes its trace
with respect to h/, and · · · denotes easier error terms.

The Y NC- and Y ND-involving terms on RHS (186) clearly arise from the first term on
RHS (146a), and we will discuss how to control them in section 6.9.2. We refer to the proofs
of [96, lemmas 2.18 and 4.2] for details on the origin of the commutator term (X̆Ψ) ·Y Ntrh/χ,
which we describe how to control just below; this term would lead to the loss of a derivative
at the top order if handled in a naive fashion.

Before proceeding, we first highlight that we have relegated all null-form-involving terms
on RHS (146a) to the terms · · · on RHS (186). The reason is that one can show (see [66,
lemma 2.56]) that h-null forms (see definition 4.6) enjoy the following good decomposition,
expressed schematically, relative to the frame Z (158), where P schematically denotes ele-
ments of P:

µQ(∂∂∂ϕ,∂∂∂ψ) = µPϕ ·Pψ+ X̆ϕ ·Pψ+ X̆ψ ·Pϕ. (187)

The key point is that there are not any terms on RHS (187) that are proportional to X̆ψ · X̆ϕ;
signature considerations imply that such terms, if present, would be multiplied by a dangerous
factor of 1

µ
. Such a factor would become singular asµ ↓ 0, which would spoil the philosophy of

proving that the solution remains quite regular in geometric coordinates, even as µ vanishes. A
decomposition similar to (187) also holds for the up-to-top-order derivatives of the µ-weighted
h-null forms. We stress that the absence of terms proportional to X̆ψ · X̆ϕ on RHS (187) is a
statement about the full nonlinear structure of the h-null forms from definition 4.6. In partic-
ular, this notion of null form is tied to the acoustical metric h and is stronger than the ‘classic
null condition’ established by Klainerman in [55], which is tied to the Minkowski metric and
is indifferent to the structure of most cubic nonlinearities.

Remark 6.4 (the shock-driving terms are hidden in □h(Ψ⃗)Ψ). The upshot is that all terms
in (146a) that drive the formation of the shock are hidden in the covariant wave operator term
□h(Ψ⃗)Ψ on the LHS.More precisely, the shock-driving terms are semilinear Riccati-type terms
of typeXΨ ·XΨ (see section 3.5) that become visible if one first expands LHS (146a) relative to
theMinkowski-rectangular coordinates and then decomposes the semilinear termswith respect
to the frame Z from (158).

In view of the above discussion, it follows that the goal is to show that all terms on
RHS (186) are error terms that do not interfere with the shock formation processes. As we
have alluded to earlier, this is indeed possible except at the high derivative levels, where the
difficult regularity theory of the eikonal function (in particular, the difficult regularity theory
of χ) leads to singular high-order estimates; see section 6.9.3.

We now explain how to control the first product on RHS (186). One starts with the
Raychaudhuri equation [82], which plays an important role in mathematical general relativity,
and which takes the following form in the present context:

Ltrh/χ=
Lµ
µ

trh/χ−RicLL− |χ|2h/. (188)

In (188), Ric is the Ricci curvature of the acoustical metric h and RicLL := RicαβLαLβ . The
difficulty is that since h= h(Ψ⃗), Ric depends on the second derivatives of Ψ⃗. This suggests
that control of the term Y Ntrh/χ on RHS (186) requires control over N+ 2 derivatives of Ψ⃗,

which is one too many derivatives to be compatible with the regularity for Ψ⃗ afforded by
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energy estimates for the wave equation (186), i.e. one has to worry about losing a derivative
at the top-order.

Fortunately, based on ideas originating in [33, 56], there is a way to avoid the loss of deriv-
atives by combining the special structure of RicLL with the special structures of the equations
of theorem 4.1. We will briefly explain the main ideas of the argument. First, one decomposes
RicLL to deduce an algebraic identity that can schematically be expressed as:

µRicLL = L
{
µf(Ψ⃗) ·LΨ⃗+µf(Ψ⃗) ·∇/Ψ⃗

}
+µf(Ψ⃗) ·∆/Ψ⃗+ · · · , (189)

where f schematically denotes a smooth function that is allowed to vary from line to line and
· · · denotes lower order terms that depend on the first derivatives of Ψ⃗. Next, one uses (162)
and (165) to replace the term µf(Ψ⃗) ·∆/Ψ⃗ on RHS (189) with a perfect L-derivative term plus
µ□h(Ψ⃗)Ψ⃗ plus lower-order terms. One then uses the relativistic Euler wave equation (146a)

to replace µ□h(Ψ⃗)Ψ⃗ with the inhomogeneous terms on RHS (146a). Combining with (188)
and bringing all perfect L-derivative terms to the left, we deduce a transport equation that can
schematically be expressed as:

L
{
µtrh/χ+ f(Ψ⃗)X̆Ψ⃗+µf(Ψ⃗)LΨ+µf(Ψ⃗)∇/Ψ

}
=−µ|χ|2h/ +µf(Ψ⃗)C+µf(Ψ⃗)D+ · · · ,

(190)

where · · · denotes easier error terms that involve ϖ, S, and the first derivatives of Ψ⃗. In par-
ticular, RHS (190) does not involve the second derivatives of Ψ⃗, which is its main advantage
compared to equation (188).

Similar results hold for the commuted equations, i.e. given any orderN string of ℓt,U-tangent
vectorfields Y N, with (Y N)X denoting the ‘fully modified’ orderN version of trh/χ defined by:

(Y N)X := µY Ntrh/χ+Y N
{
f(Ψ⃗)X̆Ψ⃗+µf(Ψ⃗)LΨ+µf(Ψ⃗)∇/Ψ

}
, (191)

one can derive a transport equation of the following schematic form (see, e.g. the proof of [92,
proposition 11.10] for the main ideas behind the proof):

L(Y
N)X =−µY N(|χ|2h/)+µf(Ψ⃗)Y NC+µf(Ψ⃗)Y ND+ · · · . (192)

Equation (192) is an order N version of equation (190) that allows one to control (Y N)X
without derivative loss, assuming that one can adequately control RHS (192). In section 6.9.2,
we will explain how to control the Y NC- and Y ND-involving terms on RHS (192). One
remaining difficulty is that the term µY N(|χ|2h/) on RHS (192) involves the full tensor χ, rather
than just the trace part featured on LHS (192). However, one can control this term using a
strategy that goes back to [33, 56]. Specifically, one can use elliptic estimates on the two-
dimensional surfaces ℓt,U, based on the Codazzi equations from geometry, to control the ℓt,U-
tangent derivatives of |χ|2h/ in terms of the ℓt,U-tangent derivatives of trh/χ plus error terms with
an admissible amount of regularity; similar results hold up to top-order, and we refer, for
example, to the proof [92, lemma 20.20] for the main ideas behind the analysis. In total, the
approach described above allows one to control the product (X̆Ψ) ·Y Ntrh/χ on RHS (186) in
appropriate L2-based Sobolev spaces. However, the argument introduces a difficult factor of
1
µ

into the top-order estimates, as we explain in section 6.9.
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6.9. Energy estimates

In this section, we will describe some features of the proof of the energy estimates, which are
the most technical and difficult aspect of studying shock formation.

6.9.1. Transport variable energy estimates. We now explain how to derive energy estimates
for (ϖ,S), which solve the transport equation (146b). These estimates are relatively easy to
derive. Let PN denote an arbitrary order N string of elements of the PU-tangent vectorfields
P defined in (158). One multiplies equation (146b) by µ, commutes with PN for N⩽ Ntop,
and uses the bootstrap assumptions and the transport equation energy identity (185) to deduce
that for (t,U) ∈ [0,TBoot)× [−U1,U3], we have:

E(Transport)[P
⩽N(ϖ,S)](t,U)+F(Transport)[P

⩽N(ϖ,S)](t,U)

≲ data+
ˆ
M[0,t),[−U1,U]

{
µ-regular Ψ⃗ terms

}
dϖh/ dU

′dt ′

+

ˆ U

−U1

F(Transport)[P
⩽N(ϖ,S)](t,U ′)dU ′. (193)

From (193) and Grönwall’s inequality in U, we deduce that:

E(Transport)[P
⩽Ntop(ϖ,S)](t,U)+F(Transport)[P

⩽Ntop(ϖ,S)](t,U)

≲ data ·
ˆ
M[0,t),[−U1,U]

{
µ-regular Ψ⃗ terms

}
dϖh/ dU

′dt ′, (194)

where here and throughout, ‘data’ denotes a small term that depends on the initial data and that
measures the perturbation of the data away from simple isentropic plane-symmetric data. The
terms ‘µ-regular Ψ⃗ terms’ in (194) are easily controllable by the wave energies and null fluxes,
and in particular, no singular factor of 1

µ
is present in these terms. Hence, the estimate (194)

shows that the behavior of P⩽Ntop(ϖ,S) is effectively determined by the behavior of the wave
variables Ψ⃗ (defined in (153)). We clarify that even though there is no singular factor of 1

µ

present in the µ-regular Ψ⃗ terms, these terms can still blow up at the high derivative levels as
µ ↓ 0, for reasons we describe in section 6.9.3. Hence, in view of the coupling between the
transport and wave energies shown by (194), we see that the blowup of the Ψ⃗-energies can
cause the blowup of the (ϖ,S)-energies.

6.9.2. Elliptic-hyperbolic estimates for the vorticity and entropy. Recall that the terms Y NC
and Y ND appear on RHSs (186) and (192). To close the energy estimates, we need to control
P⩽Ntop(C,D) in L2. These terms would lead to a loss of derivatives at the top-order if handled
in a naive fashion. There are several reasons why one cannot control these terms by using only
the same transport equation energy methods we used to derive (194). One reason is that defini-
tion 4.4 shows that from the point of view of regularity, we have (C,D)∼ ∂∂∂(ϖ,S)+ · · · ; since
the inhomogeneous terms in the transport equation (146b) satisfied by (ϖ,S) suggest (incor-
rectly, as it fortunately turns out) that ∂∂∂(ϖ,S) have at best the same regularity as ∂∂∂2Ψ⃗, this is
formally inconsistent (from the point of view of regularity) with having ∂∂∂(ϖ,S) as a source
term in the wave equations (146a) for Ψ⃗. A second reason is that the transport equations (146c)
satisfied by (C,D) feature the inhomogeneous terms Q(∂∂∂ϖ,∂∂∂Ψ⃗) and Q(∂∂∂S,∂∂∂Ψ⃗), which
depend on the general first derivatives of (ϖ,S), rather than the special combinations of first
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derivatives of (ϖ,S) present in the definitions (140a) and (140b) of (C,D). That is, due to
these inhomogeneous terms, (146c) cannot be treated as a pure transport equation in (C,D).

To overcome the difficulties highlighted in the previous paragraph, one can treat (146b)–
(146d) as a coupled transport-div-curl system that yields L2-control of (C,D) and (∂∂∂ϖ,∂∂∂S),
where (C,D) are controlled with hyperbolic transport energy estimates in the spirit of (194),
and the elliptic estimates are used only to handle the inhomogeneous terms Q(∂∂∂ϖ,∂∂∂Ψ⃗) and
Q(∂∂∂S,∂∂∂Ψ⃗) on RHS (146c). Similar results hold up to top-order and yield L2 control over
∂∂∂P⩽Ntop(ϖ,S) and P⩽Ntop(C,D). One key difficulty in this argument is that to obtain elliptic
estimates on the spacelike hypersurfaces Σt, one needs to extract a spatial div-curl subsystem
from (146b)–(146d); the difficulty is that equations (146b)–(146d) appear to involve spacetime
div-curl equations. Nevertheless, by splitting various derivative operators into a B-parallel part
and a Σt-tangent part, one can extract the desired spatial div-curl subsystem; we refer to the
proof of [42, lemma 9.21] for details on this extraction in the context of a local well-posedness
argument.We also refer to [68, sections 11.2 and 11.3] for similar but simpler elliptic estimates
in the context of shock formation for the non-relativistic 3D compressible Euler equations.

The argument described in the previous paragraph applies when the initial data of the vor-
ticity and entropy are compactly supported, which is the case for the initial data described in
section 6.5. The key point is that under compact support, one can avoid boundary terms in the
elliptic estimates (the boundary terms vanish thanks to the compact support). To treat solutions
that are not (spatially) compactly supported, one would need to handle the boundary terms that
arise in the elliptic estimates. In the case of non-relativistic 3D compressible Euler equations,
based on the special structures found in the formulation of the flow derived in [95], localized
spacetime ‘elliptic-hyperbolic’ integral identities for the vorticity and entropy were derived in
[3]. The identities of [3] allow one, in the non-relativistic case, to handle the boundary terms.
In particular, in [1, 2], we used specialized versions of those identities to study the structure of
h-MGHD for the non-relativistic 3D compressible Euler equations. To extend these results to
3D relativistic Euler solutions without compact support, one would need to derive relativistic
analogs of the integral identities from [3].

6.9.3. The wave energy estimate hierarchy. We now discuss the energy estimates for the
wave variables Ψ⃗, defined in (153). As before, let PN denote an arbitrary order N string of
elements of the PU-tangent vectorfields P defined in (158). The main difficulty in closing
the energy estimates in multi-dimensions is that the best estimates we know how to derive
allow for the possibility that the top-order energies blow up as µ ↓ 0. Before proceeding, for
notational convenience, we define:

E(Wave)

[
PNΨ⃗

]
(t,U) := max

Ψ∈Ψ⃗
E(Wave)

[
PNΨ

]
(t,U) ,

F(Wave)

[
PNΨ⃗

]
(t,U) := max

Ψ∈Ψ⃗
F(Wave)

[
PNΨ

]
(t,U) ,

K
[
PNΨ⃗

]
(t,U) := max

Ψ∈Ψ⃗
K
[
PNΨ

]
(t,U) ,

(195)

where E(Wave) and F(Wave) are as in definition 6.6 and K is as in remark 6.3.
The estimates for the wave energies and null fluxes take the following hierarchical form on

(t,U) ∈ [0,TBoot)× [−U1,U3] (see, e.g. [66, proposition 14.1] for complete proofs in the case
of the 2D non-relativistic compressible Euler equations with vorticity):

E(Wave)

[
PNtopΨ⃗

]
(t,U)+F(Wave)

[
PNtopΨ⃗

]
(t,U)+K

[
PNtopΨ⃗

]
(t,U)
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⩽ data ·µ−A
⋆ (t,U) , (196a)

E(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+F(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+K

[
PNtop−1Ψ⃗

]
(t,U)

⩽ data ·µ−(A−2)
⋆ (t,U) , (196b)

E(Wave)

[
PNtop−2Ψ⃗

]
(t,U)+F(Wave)

[
PNtop−2Ψ⃗

]
(t,U)+K

[
PNtop−2Ψ⃗

]
(t,U)

⩽ data ·µ−(A−4)
⋆ (t,U) , (196c)

...

E(Wave)

[
P[1, A2 ]Ψ⃗

]
(t,U)+F(Wave)

[
P[1, A2 ]Ψ⃗

]
(t,U)+K

[
P[1, A2 ]Ψ⃗

]
(t,U)

⩽ data, (196d)

where as before, ‘data’ denotes a small term that depends on the initial data and that measures
the perturbation of the data away from simple isentropic plane-symmetric data,

µ⋆ (t,U) :=min{1, min
Σ
[−U1,U]
t

µ}, (197)

P [1, A2 ] denotes an arbitrary string of elements of the PU-tangent vectorfields P of order in
between18 1 and A

2 , and for reasons described below,A� 1 is a universal constant (independent
of Ntop, the initial data, and the equation of state).

Energy estimates in the spirit of (196a)–(196d), which are singular at the high derivative
levels, are the only kinds of energy estimates that are known in the context ofmulti-dimensional
shock formation. One might be concerned that the high-order energies are allowed to blow up
when µ vanishes, as this seems to be in conflict with the philosophy described in section 6.3,
namely that the solution should look regular in geometric coordinates, all the way up to the
shock. However, the full hierarchy (196a)–(196d) shows that the wave energies become less
singular by two powers of µ−1

⋆ with each level of descent below the top, until one reaches
the level (196d) at which the energies remain bounded. In particular, the boundedness of the
mid-order and below geometric energies, as shown by the estimate (196d), capture the sense
in which the solution remains regular relative to the geometric coordinates. Due to coupling
(see, e.g. (194)), these estimates imply that the fluid variables C,D,ϖ,S obey a similar energy
hierarchy (omitted here for brevity, but see [68] for a detailed statement and proof of the hier-
archy in the case of the non-relativistic 3D compressible Euler equations) featuring related
but distinct blowup-rates, which are nonetheless compatible with proving (196a)–(196d). We
highlight the following key point:

18 One can close the proof without deriving energy estimates in the case N= 0. This is convenient because the order
0 wave energies can initially be large, stemming from the initial largeness of the data for X̆R(+) (largeness that is
present even for the simple isentropic plane-symmetric solutions treated in theorem 3.1). In contrast, the energies
in (196a)–(196d) are initially small (in fact, they vanish for the solutions in theorem 3.1).
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The non-singular estimates (196d) are what allow one to improve, through
Sobolev embedding, a smallness assumption on ‘data’, and derivative-losing
transport-equation-type estimates, the L∞ bootstrap assumptions described in
section 6.6.

The singular top-order wave equation energy estimate (196a) stems from the following
integral inequality, whose proof we describe in section 6.9.4:

E(Wave)

[
PNtopΨ⃗

]
(t,U)+F(Wave)

[
PNtopΨ⃗

]
(t,U)+K

[
PNtopΨ⃗

]
(t,U)

⩽ data+A
ˆ t

t ′=0

∥∥∥∥Lµµ
∥∥∥∥
L∞

(
Σ
[−U1,U]
t ′

)E(Wave)

[
PNtopΨ⃗

]
(t ′,U) dt ′ + · · · . (198)

In (198), A� 1 is the universal positive constant mentioned above and · · · denotes similar or
easier19 error terms. From (198) and Grönwall’s inequality, we deduce that:

E(Wave)

[
PNtopΨ

]
(t,U)+F(Wave)

[
PNtopΨ

]
(t,U)+K

[
PNtopΨ

]
(t,U)

⩽ data · exp

Aˆ t

t ′=0

∥∥∥∥Lµµ
∥∥∥∥
L∞

(
Σ
[−U1,U]
t ′

) dt ′

+ · · · (199)

An argument based on precise, refined versions of (167) and (168) yields the following crucial
bound, which can be proved using the same arguments given in [96, section 10] (the proof is
trivial if one ignores the terms · · · in (167) and (168)):

exp

ˆ t

t ′=0

∥∥∥∥Lµµ
∥∥∥∥
L∞

(
Σ
[−U1,U]
t ′

) dt ′

⩽ Cµ−1
⋆ (t,U)+C, (200)

where µ⋆ is defined in (197). Combining (199) and (200), we conclude (196a).
The less singular below-top-order estimate (196b) stems from the following integral

inequality, whose proof we describe in section 6.9.5:

E(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+F(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+K

[
PNtop−1Ψ⃗

]
(t,U)

⩽ data+C
ˆ t

t ′=0

1

µ
1/2
⋆ (t ′,U)

E1/2
(Wave)

[
PNtop−1Ψ⃗

]
(t ′,U)

×
ˆ t ′

t ′ ′=0

1

µ
1/2
⋆ (t ′ ′,U)

E1/2
(Wave)

[
PNtopΨ⃗

]
(t ′ ′,U) dt ′ ′ dt ′ + · · · . (201)

Note that RHS (201) involves a coupling between the top-order energies and the just-below-
top-order energies. The actual proof of (196b) involves a delicate Grönwall argument that is
coupled to the proof of the top-order estimate (196a) as well as the following estimates, which

19 In reality, some of the ‘easier’ error terms also require substantial effort to treat. For example, to handle some of the
error terms coming from the (T̆)πππβλ-involving integral on RHS (181), one needs sharp information about the behavior
of µ and its derivatives in regions where µ is small; see, for example, [66, lemma 14.10].
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hold for numbersB> 1 andwhich can be proved by using arguments similar to the ones needed
to prove (200):

ˆ t

t ′=0
µ−B
⋆ (t ′,U) dt ′ ⩽ Cµ1−B

⋆ (t,U) , (202)

ˆ t

t ′=0
µ
− 9

10
⋆ (t ′,U) dt ′ ⩽ C. (203)

We stress that (202) is a ‘quasilinear version’ of the following simple estimate, which is valid
for t ∈ [0,1):

´ t
t ′=0(1− t ′)−B dt ′ ⩽ C(1− t)1−B. Similarly, (203) is a quasilinear version of

the estimate
´ t
t ′=0(1− t ′)−

9
10 dt ′ ⩽ C. The proof of (202) and (203) fundamentally relies on

the fact that µ vanishes linearly in t, as we described at the end of section 6.7. Here, we will
just use (201) and (202) to explain why the desired estimates (196a) and (196b) are consistent
with respect to powers of µ−1

⋆ (t,U). To confirm the consistency, we plug the estimates (196a)
and (196b) into the integrals on RHS (201) to deduce:

E(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+F(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+K

[
PNtop−1Ψ⃗

]
(t,U)

⩽ data+ data ·
ˆ t

t ′=0
µ
− A

2 +
1
2

⋆ (t ′,U)
ˆ t ′

t ′ ′=0
µ
− A

2 −
1
2

⋆ (t ′ ′,U) dt ′ ′ dt ′ + · · · . (204)

Using (204) and twice using (202), we deduce that:

E(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+F(Wave)

[
PNtop−1Ψ⃗

]
(t,U)+K

[
PNtop−1Ψ⃗

]
(t,U)

⩽ data ·µ−(A−2)
⋆ (t,U) , (205)

which is indeed consistent with the desired estimate (196b). This concludes our proof sketch
of (196b).

Using the same strategy, one can continue the descent in the energy estimate hierarchy,
gaining two powers of µ⋆ with each level of descent until one finally one can use (203) to
reach the level (196d), where the energies remain uniformly bounded.

6.9.4. Discussion of the proof of the top-order inequality (198). We now sketch some key
ideas behind the proof of (198). We focus on the most difficult case in which the operator
PNtop in (198) is of the form20 PNtop = Y Ntop , where Y Ntop is a string of elements of the ℓt,U-
tangent subsetY defined in (158). Using the wave equation energy-null flux identity (181), the
commuted wave equation (186), the transport/elliptic estimates for the vorticity and entropy
described in sections 6.9.1 and 6.9.2, and the coerciveness of the spacetime integral from (182),
one can show that for Ψ ∈ Ψ⃗ (which is defined in (153)), the following identity holds for
(t,U) ∈ [0,TBoot)× [−U1,U3]:

E(Wave)[Y
NtopΨ](t,U)+F(Wave)[Y

NtopΨ](t,U)+K[Y NtopΨ](t,U)

= data+
ˆ
M[0,t),[−U1,U]

(T̆Y NtopΨ) · (X̆Ψ) ·Y Ntop trh/χdϖh/ dU
′dt ′

20 The case in which PNtop contains an L-differentiation is much easier because in that case, one can directly use
equation (188) to estimate the L-derivatives of trh/χ.
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+

ˆ
M[0,t),[−U1,U]

µ(T̆Y NtopΨ) ·Y NtopC dϖh/ dU
′dt ′

+

ˆ
M[0,t),[−U1,U]

µ(T̆Y NtopΨ) ·Y NtopDdϖh/ dU
′dt ′ + · · · , (206)

where · · · denotes easier error terms.
We first consider the difficult case Ψ =R(+). We recall the definition (174) of T̆.

We consider the part of the integral
´
M[0,t),[−U1,U]

(T̆Y NtopΨ) · (X̆Ψ) ·Y Ntop trh/χdϖh/ dU ′dt ′ on

RHS (206) that is generated by the 2X̆ term in (174). Using (191), and using (165) to replace
X̆R(+) with Lµ up to error terms, we can express the 2X̆-involving portion of the integral under
consideration as follows, where we highlight the crucial factors of 1

µ
on RHS (207), and for

simplicity, we have ignored the factors of f(Ψ⃗) on RHS (191):

2
ˆ
M[0,t),[−U1,U]

(X̆Y NtopR(+)) · (X̆R(+)) ·Y Ntop trh/χdϖh/ dU
′dt ′

=−2
ˆ
M[0,t),[−U1,U]

Lµ
µ

· (X̆Y NtopR(+)) · (X̆Y NtopR(+))dϖh/ dU
′dt ′

+ 2
ˆ
M[0,t),[−U1,U]

Lµ
µ

· (X̆Y NtopR(+)) · (Y
Ntop )X dϖh/ dU

′dt ′ + · · · (207)

From (179a), it follows that the first integral on RHS (207) is bounded by the A-multiplied
integral on RHS (198) (this integral contributes a ‘portion of’ the ‘A’). The (Y Ntop )X -involving
integral on RHS (207) can be bounded by a similar error term involving a double time-integral,
where one of the time integrations comes from integrating (192); we refer to the proof of [96,
proposition 14.2] for the details. The part of the first integral on RHS (206) that is generated by
the (1+ 2µ)L term in (174) can be handled through an argument involving integration by parts
in L, which leads to difficult critical-strength boundary terms that make a similar contribution
to the blowup of the top-order energies as the A-multiplied integral on RHS (198); the same
arguments given in the proof of [96, proposition 14.2] can be used to handle these terms. The
Y NtopC- and Y NtopD-involving integrals on RHS (206) are easy to handle, thanks to the helpful
factor of µ in the integrand and the strategy for bounding Y NtopC and Y NtopD via transport-
div-curl estimates that we described in section 6.9.2.

We now consider the remaining cases, namely Ψ ∈ {R(−),s,u2,u3}. The identity (206)
holds in these cases too. However, the factor of X̆Ψ in the identity is now very small in L∞

in these cases, since we are considering perturbations of simple isentropic plane-symmetric
solutions (for which these quantities all vanish). Hence, due to the smallness, all error terms
on RHS (206) are much easier to treat and can in fact be relegated to the error terms ‘· · · ’ on
RHS (198); see [66, page 154] for further details.

6.9.5. Discussion of the proof of the just-below-top-order inequality (201). We now sketch
some key ideas behind the proof of the just-below-top-order inequality (201). First, one uses
the identity (206), which, for any Ψ ∈ Ψ⃗, holds with PNtop−1 in the role of Y Ntop . The key
step, which is the one that is different compared to the proof of (198), is that one bounds the
error integral on LHS (207), namely

2
ˆ
M[0,t),[−U1,U]

(T̆PNtop−1Ψ) · (X̆Ψ) ·PNtop−1trh/χdϖh/ dU
′dt ′, (208)
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in a different way. First, one uses the bootstrap assumptions to bound the factor |X̆Ψ| in (208)
by≲1. Next, one uses (174), the Cauchy–Schwarz inequality, and (179a) to bound the integral
in (208) by:

≲
ˆ t

0

1

µ
1/2
⋆ (t ′,U)

E1/2
(Wave)

[
PNtop−1Ψ

]
(t ′,U)

∥∥PNtop−1trh/χ
∥∥
L2

(
Σ
[−U1,U]
t ′

) dt ′ + · · · , (209)

where we have used that the PU-tangent derivative terms in the energy (179a) contain a µ-
weight, while there is an L factor in the definition of T̆ that does not contain a µ weight. Next,
to bound the factor ‖Y Ntop−1trh/χ‖L2(Σ

[−U1,U]

t ′ )
, one commutes the Raychaudhuri equation (188)

with PNtop−1 and uses the schematic relation RicLL = P2Ψ⃗+ · · · to deduce the follow-
ing evolution equation, schematically depicted: LY Ntop−1trh/χ= PNtop+1Ψ⃗+ · · · , where · · ·
denotes lower order error terms. This equation represents a loss of one derivative in the estim-
ates and leads to the coupling between the different order energies described below (201).
However, such a loss is permissible below the top-order. Since Lt= 1 and LU= 0, we can
integrate this evolution equation and use (179a) to deduce that:

∥∥PNtop−1trh/χ
∥∥
L2

(
Σ
[−U1,U]
t ′

) ≲ data+
ˆ t ′

0
‖PNtop+1Ψ⃗‖

L2

(
Σ
[−U1,U]
t ′ ′

) dt ′ ′ + · · ·

≲ data+
ˆ t ′

0

1

µ
1/2
⋆ (t ′ ′,U)

E1/2
(Wave)

[
PNtopΨ

]
(t ′ ′,U) dt ′ ′ + · · · ,

(210)

where to obtain the last line of (210), we have again used that the PU-tangent derivative terms
in the energy (179a) contain a µ-weight. Inserting (210) into (209), we conclude (201).

7. Open problems

In this section, we describe various open problems tied to shocks.

(1) Prove conjecture 1. In section 6, we outlined how to achieve this. We are confident that
the conjecture can be proved, especially since the formulation of relativistic Euler flow
provided by theorem 4.1 is qualitatively similar to the formulation of 3D non-relativistic
compressible Euler flow derived in [95], a system for which shock formation results have
been derived (see section 5). Nonetheless, there are many non-trivial details that have to
be checked, and this would be a good project for someone who wants to learn the field.

(2) Prove conjecture 2. This problem is much more technically demanding than proving
conjecture 1. However, for the same reasons mentioned above, we expect that this can be
achieved by adapting the methods used in the non-relativistic work [1] to the equations
of theorem 4.1.

(3) Prove conjecture 3. This problem is also much more technically demanding than prov-
ing conjecture 1. For the same reasons mentioned above, we expect that this can be
achieved by adapting the methods that we are using in our forthcoming non-relativistic
work [2] to the equations of theorem 4.1.

(4) The shock development problem. Recall that in [32], Christodoulou solved the
restricted shock development problem for the relativistic Euler equations and the non-
relativistic compressible Euler equations in an arbitrary number of spatial dimensions;
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see section 5.6. The general problem, i.e. the shock development problem with vorti-
city and entropy, remains an outstanding open problem for both systems in two or more
spatial dimensions.

(5) The global behavior of solutions with shocks. After the shock development problem
(which is local-in-time) is solved, a particularly compelling problem will be to under-
stand the global-in-time-and-space behavior of the correspondingweak solutions, at least
in a perturbative regime. Among the many outstanding challenges in this problem is that
of understanding the long-time behavior of the vorticity and entropy; even in the context
of smooth incompressible non-relativistic flows, the long-time behavior of the vorticity
is not well understood. We do, however, mention that in the breakthrough works [26, 27],
for axisymmetric incompressible non-relativistic flows in 3D with a boundary, smooth
initial conditions were identified such that the solution (including the vorticity) blows up
in finite time in an approximately self-similar fashion; such vorticity blowup, if present
in multi-dimensional relativistic Euler flow, would be a serious obstacle to finding a
meaningful way to continue the solution weakly past the singularity.

(6) Extending the results to the coupled Einstein–Euler system. It is of great interest to
extend the above results to the Einstein–Euler system in multiple spatial dimensions.
The expectation is that while the fluid will exhibit shock wave phenomena (as in the
uncoupled problem), the gravitational metric will exhibit less singular behavior. As of
present, the only known singularity formation result for the coupled system is in the
plane-symmetric case [83], in which the dynamics are described by 1+ 1-dimensional
hyperbolic PDEs. In [83], it was shown that for many equations of state and a large
class of plane-symmetric initial data, the Einstein–Euler solution breaks down in finite
time. Although [83] provided heuristic arguments suggesting that the singularity is of
shock-type, a precise description of the singularity was not given. The multi-dimensional
problem is a difficult PDE problem because surfaces that are null or ‘barely spacelike’
with respect to the acoustical metric are in fact timelike with respect to the gravitational
metric; the reason is that speed of sound is slower than the speed of propagation of grav-
itational waves (at least when the speed of sound is less than unity). A corresponding
key difficulty that arises in the context of the PDE estimates is that one must control the
spacetime metric on various gravitationally timelike surfaces on which the fluid is sin-
gular; this is difficult at the top derivative level because generally, energy estimates for
the spacetime metric are not available on surfaces that are timelike with respect to the
spacetime metric. In contrast, in multiple wave speed systems such that the shock forms
in the fastest wave, it is possible to close the top-order energy estimates and thus prove
stable shock formation for the coupled problem [93].

(7) Extending the results to more complicated multiple speed systems. It is also of great
physical and mathematical interest to extend the above results to other multiple speed
systems, such as the equations of compressible magnetohydrodynamics, the GRMHD
equations (i.e. the coupling of Einstein’s equations to the equations of relativistic mag-
netohydrodynamics), the equations of elasticity, the equations of nonlinear electromag-
netism, and the equations of crystal optics. A key difficulty of these systems is that their
principal symbols are more complicated than wave operators and transport operators.
Relatedly, their corresponding geometry is more complicated than Lorentzian geometry,
and the characteristics comprise multiple sheets, which can be singular even at the tan-
gent space level. These difficulties are a serious obstacle to implementing the kind of
sharp version of nonlinear geometric optics (i.e. eikonal functions) that has been so suc-
cessfully employed to study shocks for wave equations and fluid equations.
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(8) Implosion singularities. In the breakthrough works [73, 74], the authors proved implo-
sion singularity formation for some initially C∞ spherically symmetric solutions to the
compressible Euler equations and Navier–Stokes equations under adiabatic equations
of state p= ργ for γ> 1, outside of a countable set of γ-values. In [19], the results
were extended to allow for all γ> 1. Implosion singularities are much more severe than
shocks in the sense that the density itself blows up in finite time at the center of symmetry
(in shock singularities, the density’s gradient blows up but the density itself remains
bounded). The proof depends on the detailed structure of the equations and in particular
relies on a careful analysis of a phase portrait for self-similar solutions. Hence, it is of
interest to decide whether a similar result holds for the relativistic Euler equations. We
highlight the important related work [48], in which the authors studied spherically sym-
metric solutions the Einstein–Euler equations under adiabatic equations of state p= ερ
for 0< ε� 1 sufficiently small and proved the existence of self-similar solutions that
form a naked singularity. See also [47], in which the authors studied solutions to the non-
relativistic Euler–Poisson system under adiabatic equations of state p= ργ for γ ∈ (1, 43 )
and showed the existence of spherically symmetric self-similar imploding solutionsmod-
eling gravitational collapse, i.e. initially smooth solutions such that the density blows up
in finite time.

(9) Inviscid limits. In [25], the authors studied the inviscid limit of solutions to the 1D vis-
cous Burgers’ equation all the way up to the time of first shock formation in the inviscid
solution. They decomposed the viscous solution into a singular piece and a smoother
piece and proved that the viscous solution converges to the singular piece in L∞ as the
viscosity vanishes, where the L∞ norm is taken over the entire slab of classical existence
of the inviscid solution. This is the first result of its type that extends all the way to the
time of first singularity formation. Important open problems include extending this res-
ult to the 1D compressible Euler equations (where the corresponding viscous equations
are the Navier–Stokes equations) and, after that, to multi-dimensions. It would also be
of interest to extend the result to the relativistic Euler equations, but as of present, it is
not clear if there exist any well-posed relativistic viscous fluid models that suppress the
singularity formation while retaining physically desirable features such as causality.

(10) Rarefaction waves. In section 5.7, we described the recent works [69, 70] on irrotational
rarefaction wave solutions to the 2D compressible Euler equations. It is of interest to
eliminate the irrotationality assumption and to extend these results to the relativistic Euler
equations, and perhaps even the Einstein–Euler equations.
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les-Eaux, 2002) (Univ. Nantes) p 33

[12] An X, Chen H and Yin S 2020 Low regularity ill-posedness for elastic waves driven by shock
formation (arXiv:2003.03195)

[13] An X, Chen H and Yin S 2021 Low regularity ill-posedness and shock formation for 3D ideal
compressible MHD (arXiv:2110.10647)

[14] An X, Chen H and Yin S 2022 Low regularity ill-posedness for non-strictly hyperbolic systems
in three dimensions J. Math. Phys. 63 051503

[15] Athanasiou N, Bayles-Rea T and Zhu S 2023 Development of singularities in the relativistic Euler
equations Trans. Am. Math. Soc. 376 2325–72

[16] Athanasiou N and Zhu S 2021 Formation of singularities for the relativistic Euler equations J.
Differ. Equ. 284 284–317

[17] Bernal A N and Sánchez M 2006 Further results on the smoothability of Cauchy hypersurfaces
and Cauchy time functions Lett. Math. Phys. 77 183–97

[18] Bressan A, Chen G-Q G, Lewicka M and Wang D 2011 Nonlinear Conservation Laws and
Applications (Springer)

[19] Buckmaster T, Cao-Labora G and Gómez-Serrano J 2022 Smooth imploding solutions for 3D
compressible fluids (arXiv:2208.09445)

[20] Buckmaster T, Drivas T D, Shkoller S and Vicol V 2022 Simultaneous development of shocks
and cusps for 2D Euler with azimuthal symmetry from smooth data Ann. PDE 8 26

[21] Buckmaster T and Iyer S 2022 Formation of unstable shocks for 2D isentropic compressible Euler
Commun. Math. Phys. 389 197–271

[22] Buckmaster T, Shkoller S and Vicol V 2022 Formation of shocks for 2D isentropic compressible
Euler Commun. Pure Appl. Math. 75 2069–120

[23] Buckmaster T, Shkoller S and Vicol V 2023 Formation of point shocks for 3D compressible Euler
Commun. Pure Appl. Math. 76 2073–191

[24] Buckmaster T, Shkoller S and Vicol V 2023 Shock formation and vorticity creation for 3D Euler
Commun. Pure Appl. Math. 76 1965–2072

76

https://orcid.org/0000-0001-5188-5265
https://orcid.org/0000-0001-5188-5265
https://orcid.org/0009-0007-8698-5515
https://orcid.org/0009-0007-8698-5515
https://arxiv.org/abs/2207.07107
https://arxiv.org/abs/2003.02815
https://doi.org/10.1017/fmp.2020.10
https://doi.org/10.1017/fmp.2020.10
https://arxiv.org/abs/1912.04692
https://doi.org/10.1080/03605308908820595
https://doi.org/10.1080/03605308908820595
https://doi.org/10.1512/iumj.1989.38.38017
https://doi.org/10.1512/iumj.1989.38.38017
https://doi.org/10.1007/BF02392822
https://doi.org/10.1007/BF02392822
https://doi.org/10.2307/121020
https://doi.org/10.2307/121020
https://doi.org/10.1353/ajm.2001.0037
https://doi.org/10.1353/ajm.2001.0037
https://arxiv.org/abs/2003.03195
https://arxiv.org/abs/2110.10647
https://doi.org/10.1063/5.0089521
https://doi.org/10.1063/5.0089521
https://doi.org/10.1090/tran/8729
https://doi.org/10.1090/tran/8729
https://doi.org/10.1016/j.jde.2021.03.010
https://doi.org/10.1016/j.jde.2021.03.010
https://doi.org/10.1007/s11005-006-0091-5
https://doi.org/10.1007/s11005-006-0091-5
https://arxiv.org/abs/2208.09445
https://doi.org/10.1007/s40818-022-00141-6
https://doi.org/10.1007/s40818-022-00141-6
https://doi.org/10.1007/s00220-021-04271-z
https://doi.org/10.1007/s00220-021-04271-z
https://doi.org/10.1002/cpa.21956
https://doi.org/10.1002/cpa.21956
https://doi.org/10.1002/cpa.22068
https://doi.org/10.1002/cpa.22068
https://doi.org/10.1002/cpa.22067
https://doi.org/10.1002/cpa.22067


Class. Quantum Grav. 40 (2023) 243001 Topical Review

[25] Chaturvedi S and Graham C 2023 The inviscid limit of viscous Burgers at nondegenerate shock
formation Ann. PDE 9 1

[26] Chen J and Hou T Y 2022 Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler
equations with smooth data I: analysis (arXiv:2210.07191)

[27] Chen J and Hou T Y 2023 Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler
equations with smooth data II: rigorous numerics (arXiv:2305.05660)

[28] Chen S and Dong L 2001 Formation and construction of shock for p-system Sci. China A
44 1139–47

[29] Christodoulou D 2000 The Action Principle and Partial Differential Equations (Annals of
Mathematics Studies, vol 146) (Princeton University Press)

[30] Christodoulou D 2007 The Euler equations of compressible fluid flow Bull. Am. Math. Soc.
44 581–602

[31] Christodoulou D 2007 The Formation of Shocks in 3-Dimensional Fluids (EMS Monographs in
Mathematics) (European Mathematical Society (EMS))

[32] Christodoulou D 2019 The Shock Development Problem (EMS Monographs in Mathematics)
(European Mathematical Society)

[33] Christodoulou D and Klainerman S 1993 The Global Nonlinear Stability of the Minkowski Space
(Princeton Mathematical Series, vol 41) (Princeton University Press)

[34] Christodoulou D and Lisibach A 2016 Shock development in spherical symmetry Ann.
PDE 2 1–246

[35] Christodoulou D andMiao S 2014 Compressible Flow and Euler’s Equations (Surveys of Modern
Mathematics vol 9) (International Press, Higher Education Press)

[36] Christodoulou D and Perez D R 2016 On the formation of shocks of electromagnetic plane waves
in non-linear crystals J. Math. Phys. 57 081506

[37] Collot C, Ghoul T-E, Ibrahim S and Masmoudi N 2022 On singularity formation for the two-
dimensional unsteady Prandtl system around the axis J. Eur. Math. Soc. 24 3703–800

[38] Collot C, Ghoul T-E and Masmoudi N 2021 Singularities and unsteady separation for the inviscid
two-dimensional Prandtl system Arch. Ration. Mech. Anal. 240 1349–430

[39] Collot C, Ghoul T-E and Masmoudi N 2022 Singularity formation for Burgers’ equation with
transverse viscosity Ann. Sci. Éc. Norm. Supér. 55 1047–133
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