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Abstract

Many of the most exciting open problems in high-energy physics are related to

the behavior and ultimate nature of gravity and spacetime. In this dissertation,

several categories of new results in quantum and classical gravity are presented,

with applications to our understanding of both quantum field theory and

cosmology.

A fundamental open question in quantum field theory is related to ultravio-

let completion: Which low-energy effective field theories can be consistently

combined with quantum gravity? A celebrated example of the swampland

program—the investigation of this question—is the weak gravity conjecture,

which mandates, for a U(1) gauge field coupled consistently to gravity, the

existence of a state with charge-to-mass ratio greater than unity. In this the-

sis, we demonstrate the tension between the weak gravity conjecture and the

naturalness principle in quantum field theory, generalize the weak gravity con-

jecture to multiple gauge fields, and exhibit a model in which the weak gravity

conjecture solves the standard model hierarchy problem. Next, we demonstrate

that gravitational effective field theories can be constrained by infrared physics

principles alone, namely, analyticity, unitarity, and causality. In particular, we

derive bounds related to the weak gravity conjecture by placing such infrared

constraints on higher-dimension operators in a photon-graviton effective theory.

We furthermore place bounds on higher-curvature corrections to the Einstein

equations, first using analyticity of graviton scattering amplitudes and later

using unitarity of an arbitrary tree-level completion, as well as constrain the

couplings in models of massive gravity. Completing our treatment of perturba-
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tive quantum gravity, outside of the swampland program, we also reformulate

graviton perturbation theory itself, finding a field redefinition and gauge-fixing

of the Einstein-Hilbert action that drastically simplifies the Feynman diagram

expansion. Furthermore, our reformulation also exhibits a hidden symmetry

of general relativity that corresponds to the double copy relations equating

gravity amplitudes to sums of squares of gluon amplitudes in Yang-Mills theory,

a surprising correspondence that yields insights into the structure of quantum

field theories.

Moving beyond perturbation theory into nonperturbative questions in quan-

tum gravity, we consider the deep relation between spacetime geometry and

properties of the quantum state. In the context of holography and the anti-de

Sitter/conformal field theory correspondence, we test the proposed ER=EPR

correspondence equating quantum entanglement with wormholes in spacetime.

In particular, we demonstrate that the no-cloning theorem in quantum me-

chanics and the no-go theorem for topology change of spacetime are dual under

the ER=EPR correspondence. Furthermore, we prove that the presence of a

wormhole is not an observable in quantum gravity, rescuing ER=EPR from

potential violation of linearity of quantum mechanics. Excitingly, we also prove

a new area theorem within classical general relativity for arbitrary dynamics of

two collections of wormholes and black holes; this area theorem is the ER=EPR

analogue of entanglement conservation. We next turn our attention to the

emergence of spacetime itself, placing consistency conditions on the proposed

correspondence between anti-de Sitter space and the Multiscale Entanglement

Renormalization Ansatz, a special tensor network that constitutes a computa-

tional tool for finding the ground state of certain quantum systems. Further

examining the role of quantum entanglement entropy in the emergence of

general relativity, we ask whether there is a consistent microscopic formulation
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of the entropy in theories of entropic gravity; we find that our results weaken

equation-of-state proposals for entropic gravity while strengthening those more

akin to holography, guiding future investigation of theories of emergent gravity.

Finally, we examine the consequences of the Hamiltonian constraint in

classical gravity for the early universe. The Hamiltonian constraint allows

for the Liouville measure on the phase space of cosmological parameters for

homogeneous, isotropic universes to be converted into a probability distribution

on trajectories, or equivalently, on initial conditions. However, this measure

diverges on the set of spacetimes that are spatially flat, like the observable

universe. In this thesis, we derive the unique, classical, Hamiltonian-conserved

measure for the subset of flat universes. This result allows for distinction

between different models of cosmic inflation with similar observable predictions;

for example, we find that the measure favors models of large-scale inflation,

as such potentials more naturally produce the number of e-folds necessary to

match cosmological observations.
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Chapter 1
Introduction

The early years of the twentieth century bore witness to three revolutions in

physics: special relativity, general relativity, and quantum mechanics. Special

and general relativity indelibly reshaped our classical understanding of space

and time; the special theory removed the immutable distinction between the

two, mixing them for different frames of reference into a single entity, spacetime,

and the general theory further promoted spacetime from merely a stage on

which physics is performed to an active player in the dynamics of relativistic

gravitation. Quantum mechanics, moreover, swept away the classical clockwork

universe described by precise particle data and trajectories in phase space,

replacing the description of the world with one described fundamentally by

probabilities given by wave functions evolving within Hilbert space. The

ramifications and interplay among the triple revolution of special and general

relativity and quantum theory have, to a large extent, guided and determined

the progress of physics for the last century, which has seen extraordinary and

unprecedented advancement of humanity’s knowledge and understanding of

the world. In this thesis, we investigate the nature of gravity and spacetime

and their implications for the universe, an undertaking that will require the use

of various combinations of ideas from all three of these branches of twentieth-

century physics, with exciting and sometimes surprising results.

The reconciliation of quantum mechanics with special relativity resulted in

the development of quantum field theory, constituting arguably the greatest

success story in the history of science. The formulation of quantum field
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theory over the middle decades of the twentieth century occurred in tandem

with progress in nuclear physics that led ultimately to the development of

the standard model of particle physics. This wildly successful model, whose

experimental verification was completed in 2012 with the discovery of the

Higgs boson at the Large Hadron Collider [14, 15], describes with incredible

precision virtually all observed non-gravitational physical processes, at length

scales ranging from the astrophysical down to around 10−19 m and perhaps

even smaller. The standard model encompasses the electromagnetic, weak, and

strong nuclear forces and their interactions with matter, describing phenomena

ranging from light, to nuclear physics, to chemistry and, when combined

with classical gravity, even describes the workings of stars and predicts the

abundances of elements produced at the beginning of the universe in the big

bang. Of course, there are other known processes and phenomena outside the

reach of the standard model, including dark matter, dark energy, neutrino

masses, the dynamics of the big bang, and the ultimate nature of spacetime,

some of which will be discussed and investigated in this thesis.

Just as important as its success in the standard model, however, quantum

field theory’s power is far greater. More than merely a single model, quantum

field theory is a framework for constructing further physical theories to describe

our universe or others. It is a prescription for model-building, for organizing

physical laws. One writes down an action as an integral over a Lagrangian

density, a functional over spacetime defined in terms of various fields, then

promotes the fields to Hermitian operators obeying the canonical commutation

relations, and one has a quantum field theory. If the theory is perturbative,

one can immediately begin calculating useful quantities, such as scattering

amplitudes, which describe the interaction probabilities of particles, using the

traditional Feynman diagram approach [16] or, alternatively, using modern
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amplitudes methods that make use of the principles of unitarity and analyticity

[17, 18].

A central feature in our understanding of quantum field theory is the

concept of an effective field theory. Rather than forming a description of a

set of phenomena at all energy scales, down to arbitrarily small distances,

an effective field theory is a quantum field theoretic description that is valid

only over a certain range of energy scales [16, 19, 20]. Just as the classical

description of a wave in water breaks down at a length scale of approximately

the size of a water molecule, so, too, does a given effective field theory break

down at some energy scale, at which it is replaced by a new quantum field

theory, with additional quantum fields describing the new degrees of freedom

in the microscopic theory. Indeed, quantum field theory is sufficiently powerful

that effective field theories predict their own demise: scattering amplitudes

diverge at large energies, with the characteristic energy scale at which the

divergence occurs giving the cutoff of the effective field theory. Classic examples

of effective field theories occur as approximations to the standard model at low

energies. The four-fermi interaction among electrons, neutrinos, and quarks

provides a good description of the weak nuclear force at low energies, but

predicts violations of unitarity around the weak scale (246 GeV); as expected,

new degrees of freedom, the W and Z bosons, enter and unitarize the theory.

Similarly, one can compute the scattering ofW bosons without the Higgs boson,

in which case one also finds unitarity violation around the weak scale; the Higgs

boson enters the model to save the theory, resulting in the standard model.

Indeed, the standard model itself will ultimately prove to be an effective field

theory. One can view high-energy physics experiments at the Large Hadron

Collider and elsewhere as constituting the search for the energy scale at which

this effective theory breaks down.



4
While special relativity and quantum mechanics proved amenable to uni-

fication, general relativity is another matter. It is sometimes claimed that

general relativity and quantum mechanics are fundamentally incompatible, but

from the correct perspective this is not so. One can treat general relativity

perturbatively as an effective field theory [21, 22]. The Lagrangian is written

in terms of a spin-two quantum field, the graviton, defined on a background

spacetime and with interactions prescribed by the Einstein-Hilbert action,

which is proportional to the spacetime curvature and which in its classical

form gives the action formulation for the Einstein equation of general relativity.

As an effective field theory, perturbative quantum gravity predicts its own

breakdown at the Planck scale, ∼ 1019 GeV, or around 10−35 m. This is a

fantastically high-energy regime, orders of magnitude outside the bounds of

current experiment, but excitingly, not necessarily outside of our theoretical

ability to describe physics. This energy scale can be extracted, for example, by

computing graviton scattering amplitudes, a calculational exercise that will be

of importance later in this thesis.

As a result of this predicted breakdown of perturbative quantum gravity

at the Planck scale, over the last several decades enormous efforts have been

undertaken to find the ultraviolet completion of gravity, just as the W and Z

bosons are the ultraviolet completion of the four-fermi theory. In the case of

gravity, however, the task of finding a high-energy completion has proved to be

not nearly so straightforward. The best, and arguably unique, candidate for an

ultraviolet-complete quantum theory of gravity comes from string theory [23, 24],

in which pointlike quantum fields are replaced by extended objects. While the

present discussion does not permit space for a full introduction to string theory,

we briefly note that, like quantum field theory, string theory is a framework that

describes a very large number of low-energy effective field theories; in the case of
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string theory, the ultraviolet completion for each consistent effective field theory

contains an infinite tower of massive states, which prevent graviton scattering

amplitudes from diverging at high energies [25, 26]. The large collection of

effective field theories spanned by stringy completions is known as the landscape

[27–30] and it is believed that our standard model occupies a point in this wide

array of possible sets of low-energy laws of physics.

A crucial question that the quantum field theorist asks of string theory

is whether all effective field theories lie in the landscape. That is, can all

possible sets of low-energy laws of physics be consistently incorporated into

quantum gravity? Perhaps surprisingly, the answer is that they cannot [31].

Some apparently theoretically healthy effective field theories at low energies

cannot be consistently combined with quantum gravity and thus are outside the

landscape; they are said to lie in the swampland [27, 29]. A crisis immediately

arises: How can one characterize the set of effective field theories allowed by

quantum gravity and thus distinguish the landscape from the swampland?

This swampland program, the focus of Chaps. 2 through 6 of this thesis, is of

fundamental importance to our understanding of quantum field theories and

furthermore is crucial for restricting model-building to achieve consistency with

quantum gravity [1–5].

The most celebrated result of the swampland program is the weak gravity

conjecture [30], which forms a constraint on the charges, under a U(1) gauge

field, of matter coupled consistently to quantum gravity. In essence, the weak

gravity conjecture requires the existence of a particle in the spectrum of the

theory for which the electromagnetic charge is greater than the gravitational

charge (the mass) in Planck units. The weak gravity conjecture was initially

argued for using examples from string theory and thought experiments involving

black holes [30], particularly the requirement that charged black holes must all
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be able to quantum mechanically decay into particles, in processes involving

Hawking radiation and pair-production of charged states. This requirement

of black hole decay, which is motivated by reasons we will discuss, points the

way toward a generalization of the weak gravity conjecture. In Chap. 2, we

generalize the weak gravity conjecture to models containing multiple Abelian

gauge fields (i.e., multiple copies of electromagnetism), which are well motivated

in the context of string theory. Surprisingly, we find that the weak gravity

bounds become more stringent with the addition of extra forces. Furthermore,

we demonstrate that the weak gravity conjecture can be in tension with the

principle of naturalness, the generic requirement in quantum field theory that

cancellations are not happenstance but reliant on the presence of symmetries.

Indeed, we discover that it is possible for the weak gravity conjecture to falsify

the naturalness principle and we use this fact to build a model that uses the

weak gravity conjecture to solve the hierarchy problem in the standard model

[32, 33], the mystery of the large ratio between the energy scale of the weak

nuclear force and the Planck scale of quantum gravity.

Subsequently, in Chap. 3, we examine the motivation for the weak gravity

conjecture from an entirely new perspective. As we noted, the original argu-

ments for the weak gravity conjecture are dependent on assumptions about

high-energy physics, namely, string theory and properties of black hole de-

cay. However, swampland bounds can also arise from bottom-up, rather than

top-down, reasoning [2–5, 31, 34–37]. In particular, the principles of causality

(that is, no time machines), unitarity (consistency of quantum mechanics),

and analyticity of scattering amplitudes (related to physical locality) form a

powerful toolbox of low-energy physics postulates that will remain valid for any

well-behaved ultraviolet completion. Thus, considerations of infrared physics

can help constrain the ultraviolet. In Chap. 3, these principles are employed to
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explore the possibility of proving the weak gravity conjecture in the infrared.

By placing bounds on the coefficients of higher-dimension operators in an

effective field theory of an interacting photon and graviton, we find that bounds

very similar to the weak gravity conjecture can be derived.

In Chaps. 4 through 6, we move on from the consideration of the weak

gravity conjecture to the more general question of placing infrared consistency

bounds on gravitational effective field theories. Whatever the final theory of

quantum gravity ultimately is found to be, Einstein’s equations will receive

corrections. At present, physicists can write down the possible form of these

corrections, but their coefficients can only be computed after making particular

assumptions about the ultraviolet, e.g., assuming a particular version of string

theory. However, infrared consistency criteria can be applied to general gravita-

tional effective field theories, allowing us to bound the quantum corrections to

Einstein’s equations in ways that will remain robust under arbitrary ultraviolet

completions.

In Chap. 4, we focus on using the requirement of analyticity of scattering

amplitudes to bound higher-curvature operators. While the Einstein-Hilbert

action of general relativity is linear in the Riemann curvature tensor, we

bound operators at quartic order in the Riemann tensor, by requiring that

graviton scattering amplitudes are analytic functions of complex momenta and

using physical criteria such as the optical theorem from quantum mechanics.

Furthermore, we use this same mathematical technology to prove that the

curvature-squared operator is inconsistent unless it is accompanied by new states

appearing at the energy scale suggested by effective field theory reasoning, as is

the case in string theory and as is required by causality [37]. These bounds help

to constrain gravitational effective field theories, providing a useful diagnostic

for candidate low-energy limits of quantum gravity.
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Next, in Chap. 5, we continue with our exploration of analyticity bounds

on modifications of gravity. In general relativity, the graviton is a massless

spin-two particle that in four spacetime dimensions describes two degrees

of freedom. However, it is a priori possible that the graviton has a small

mass [38]; indeed, motivations for considering massive gravity include using a

small graviton mass, of order the Hubble scale, to explain the observed small

acceleration of the universe in the present epoch. A massive graviton in four

dimensions describes five degrees of freedom—two tensors, two vectors, and

one scalar—and is famously subject to various theoretical pathologies [39–42].

However, a recently discovered version of the theory, so-called ghost-free massive

gravity [43, 44], is free of many of these obstacles and furthermore contains

two free parameters in its action. In Chap. 5, we consider tree-level scattering

of massive graviton states, demonstrating that there is a finite region of this

two-dimensional parameter space of couplings that obeys analyticity bounds.

This result gives new hope for future model-building with massive gravity.

Chap. 6 revisits the curvature-squared correction to Einstein gravity first

discussed in Chap. 4, but from a very different perspective. Rather than

bound the coupling of the curvature-squared operator using analyticity, in

Chap. 6 we consider how to build the ultraviolet completion of the operator

“from scratch” in an arbitrary unitary tree-level theory. By enumerating such

completions of the curvature-squared operator and requiring the principle

of quantum mechanical unitarity, we demonstrate that the coupling of this

operator must be positive, again providing a robust diagnostic for building

models of modifications of general relativity by quantum gravity.

After having considered various applications of perturbative quantum grav-

ity to the swampland program, in Chap. 7 we turn our attention to the

representation of perturbation theory for pure Einstein gravity itself. In partic-
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ular, we consider the symmetry of the double copy, a famous set of relations

equating scattering amplitudes for gravitons to the sum of squares of scattering

amplitudes for gluons in gauge (Yang-Mills) theory [45, 46]. This amazing

relation for graviton scattering amplitudes suggests a hidden symmetry within

general relativity: a twofold copy of Lorentz (rotation, translation, and boost)

symmetry. In the canonical representation of the graviton perturbations [47–49],

the Feynman rules become extremely complicated as one goes to higher-point

graviton interaction vertices, containing an exponential number of terms and

lacking any simple structure. Moreover, the canonical perturbation expansion

of general relativity shows no sign of this twofold Lorentz symmetry. However,

in Chap. 7, we discover a reformulation of canonical quantum gravity, a field

redefinition and gauge-fixing of the graviton perturbation theory that makes

the twofold Lorentz symmetry manifest and furthermore reduces drastically

the number of terms in the perturbation expansion at a given order [6]. This

result has potential utility in a number of applications for perturbative gravity.

While previous chapters have focused on quantum field theoretic aspects

of perturbative quantum gravity, we now turn to nonperturbative questions

arising from the combination of general relativity with quantum mechanics.

One of the most exciting developments in physics of the past couple decades

has been the notion of holography [50, 51], which in its modern form is the

idea that a full quantum gravity theory in a given region can be represented

by the dynamics of a certain non-gravitational quantum field theory on the

boundary of the region, i.e., in one dimension lower. Arising from black hole

physics and made concrete in the famous anti-de Sitter/conformal field theory

(AdS/CFT) correspondence [52–54], holography has proven a fruitful field of

study in high-energy physics, yielding insights not only into string theory,

but having interesting interactions with quantum information theory [7, 8],
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condensed matter physics [10], cosmology, and, as we will see, even classical

general relativity [9].

In AdS/CFT, quantum gravity on a background spacetime of constant

negative curvature (anti-de Sitter space) is represented by a conformal field

theory on the boundary. Notably, a wormhole in the bulk geometry, consisting

of two black holes connected by a nontraversable Einstein-Rosen (ER) bridge

[55], is represented in the conformal field theory as a particular quantum

state consisting of a large number of entangled energy eigenstates on either

side of the wormhole [56]. Inspired by this example, Ref. [57] proposed a

mapping in quantum gravity between entangled qubits (quantum mechanical

computational bits)—so-called Einstein-Podolsky-Rosen (EPR) states [58]—

and wormholes (ER bridges), resulting in the ER=EPR correspondence. In

Chaps. 8 through 10, we conduct several nontrivial tests and applications of

the ER=EPR correspondence in the classical limit. In particular, if true, the

ER=EPR correspondence should result in a mapping between certain theorems

in quantum mechanics and results in general relativity. Interestingly, in Chap. 8

we indeed find such a mapping, demonstrating that the no-cloning theorem in

quantum mechanics, which prevents perfect quantum duplication of arbitrary

states, is equivalent under ER=EPR to the no-go theorem preventing change

of the topology of spacetime in general relativity.

In Chap. 9, we push this test of ER=EPR further, finding that the ER=EPR

correspondence can be consistent with the linearity property of quantum

mechanics. For a given state that consists of two entangled qubits, linearity of

quantum mechanics implies that there exists no observation that can decide

conclusively whether the state is entangled; one can project onto particular

chosen entangled states, but not the entire set of entangled states. Similarly,

we prove the ER=EPR analogue of this statement in classical general relativity,
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implying that the topology of spacetime is not an observable in quantum gravity.

In particular, one cannot detect definitively whether a given black hole interior

is a wormhole or not. Thus, the ER=EPR correspondence appears to be well

defined in the classical limit.

Another quantum mechanical statement that the ER=EPR correspondence

should obey is conservation of entanglement: given two sets of entangled qubits

that evolve unitarily but only interact among themselves and not with each

other, the entanglement between the two should be conserved. Using this

statement, we demonstrate in Chap. 10 that the ER=EPR correspondence

predicts a new area theorem in general relativity: for two arbitrary collections

of wormholes and black holes, interacting arbitrarily among themselves but

not with each other, there should be a surface whose area is constant in time.

We discover such a surface and prove the new area theorem purely within

classical general relativity, giving a new conserved quantity for black hole and

wormhole dynamics. It is striking that this new area theorem, present within

the century-old theory of general relativity, was found due to considerations of

the ultimate nature of spacetime and the quantum properties of gravity.

A theme that the AdS/CFT correspondence suggests is the importance of

emergence and entanglement for understanding quantum gravity. In hologra-

phy, an additional dimension of space, along with gravitation, emerges from

a non-gravitational theory in a lower-dimensional spacetime. As such, the

investigation of the phenomenon of emergent space and gravity is a compelling

problem, to which Chaps. 11 and 12 of this thesis are devoted. In Chap. 11,

we consider a particular proposal, closely related to AdS/CFT, for how an

additional dimension of space emerges from the entanglement structure of a

quantum state in a conformal field theory. In particular, recent work on tensor

networks, a computational construction originally designed for efficiently finding
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the ground state of certain quantum systems, suggests a potential link between

a particular tensor network, the Multiscale Entanglement Renormalization

Ansatz (MERA), and anti-de Sitter space. In Chap. 11, we closely investigate

this possibility, deriving a set of consistency conditions for a correspondence

between the MERA and anti-de Sitter space, which is useful as a guide to

future exploration of this intriguing proposition for the emergence of space.

Continuing in our exploration of the connections between gravity and entan-

glement, we next consider the possible emergence of gravity from entanglement

entropy in the context of entropic gravity in Chap. 12. In particular, we focus

on entropic gravity theories in which gravity emerges from constraints relating

entanglement to areas in the geometry [59, 60], inspired by black hole thermo-

dynamics and holography, asking the question of whether there is a consistent

microscopic definition of entropy in these models [11]. We find that the classic

model of entropic gravity, which we call thermodynamic gravity and in which

Einstein’s equation emerges as an equation of state from constraints on a

dynamical lightsheet in a fixed spacetime background, is inconsistent. However,

we find that holographic gravity, in which the constraint leading to Einstein’s

equation comes from stationarity of entropy in equilibrium for variations of the

spacetime and quantum state over a family of nearby configurations, can be

consistently defined in terms of the vacuum-subtracted entanglement entropy,

the Casini entropy [61].

Having examined various consequences following from the application of

quantum mechanics to general relativity, we now turn to the application

of properties of general relativity to questions about the beginning of the

universe. Cosmic inflation, the proposal that the universe underwent a period

of exponential expansion in the first fraction of a second, is well known for

solving various conundrums in cosmology and is typically implemented by
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positing a theory of a scalar field that governs the dynamics of the universe at

early times [62, 63]. Most notably, inflation solves the horizon problem, the

mystery of why the cosmic microwave background is of uniform temperature

across the entire sky, despite the fact that the corresponding regions of space,

in the absence of inflation, would not have been in causal contact at the time

of the formation of the cosmic microwave background.

Using the fact that general relativity, as a classical field theory, possesses a

Hamiltonian constraint, Hawking et al. [64] showed that, for a homogeneous,

isotropic universe with dynamics dominated by a scalar field, the natural

measure on phase space can be turned into a probability distribution on the

set of trajectories. One feature of this measure is that it selects universes that

are spatially flat, but because of the divergence of the distribution, cannot

make predictions among the subset of flat universes, like our own. In Chap. 13,

we solve this problem, finding the unique classically conserved measure for

spatially-flat cosmologies with scalar-field dynamics. This result has significant

implications for differentiating between competing theories of inflation with

similar observable predictions, quantifying the notion of tuning for cosmology

[12].

We then demonstrate an example application of the result of Chap. 13

in Chap. 14, by directly comparing the amount of expansion resulting from

two different models of inflation, with quadratic and cosine potentials. In

particular, the results of Chap. 14 favor large-field inflation, by demonstrating

that, under the classical probability distribution, quadratic inflation more

naturally produces the amount of expansion required for our own universe than

does the small-field inflation one obtains from a cosine potential [13]. As the

current golden age of observational cosmology yields new results from terrestrial

and space-based observations of the cosmic microwave background [65], such
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comparisons will become ever more crucial, to constrain the possibilities for

model-building for the dynamics of the very early universe.

The work in this thesis demonstrates the wide array of areas of investigation

in current high-energy theoretical physics research into the nature of gravity,

from effective field theory and the landscape of possible laws of physics, to

holography and the relation between quantum entanglement and spacetime, to

the universe itself. The future of work in this field is bright indeed, with many

connections forming between different subfields of high-energy theory and new

possibilities for future work constantly appearing on the horizon.
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Chapter 2
Naturalness and the
Weak Gravity Conjecture

The weak gravity conjecture (WGC) is an ultraviolet consistency condition

asserting that an Abelian force requires a state of charge q and mass m with

q > m/mPl. We generalize the WGC to product gauge groups and study its

tension with the naturalness principle for a charged scalar coupled to gravity.

Reconciling naturalness with the WGC either requires a Higgs phase or a low

cutoff at Λ ∼ qmPl. If neither applies, one can construct simple models that

forbid a natural electroweak scale and whose observation would rule out the

naturalness principle.

This chapter is from Ref. [1], C. Cheung and G. N. Remmen, “Naturalness
and the Weak Gravity Conjecture,” Phys. Rev. Lett. 113 (2014) 051601,
arXiv:1402.2287 [hep-ph].

2.1 Introduction

The naturalness principle asserts that operators not protected by symmetry are

unstable to quantum corrections induced at the cutoff. As a tenet of effective

field theory, naturalness has provided a key motivation for new physics at the

electroweak scale. However, the discovery of the Higgs boson [14, 15] together

with null results from direct searches has led many to revisit naturalness as

a fundamental principle. Rather than amend naturalness to fit the data, we

instead explore its interplay with established concepts in quantum field theory.

Our focus will be the weak gravity conjecture (WGC) [30], which states

that a consistent theory of gravity coupled to an Abelian gauge theory must

http://dx.doi.org/10.1103/PhysRevLett.113.051601
http://arxiv.org/abs/1402.2287
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contain a state of charge q and mass m satisfying2.1

q > m/mPl, (2.1.1)

i.e., gravity is the weakest force. While Eq. (2.1.1) is certainly true of elec-

tromagnetism, Ref. [30] convincingly argued that it is a universal consistency

condition of all healthy quantum field theories.

However, in theories with fundamental scalars Eq. (2.1.1) runs afoul of nat-

uralness because it bounds a quadratically divergent mass by a logarithmically

divergent charge. For small charge, Eq. (2.1.1) forbids a natural spectrum in

which scalars have masses near the cutoff. We illustrate this contradiction with

scalar quantum electrodynamics (QED) coupled to general relativity, but this

tension is a ubiquitous feature of any model with a hierarchy problem and a

small charge. We also generalize Eq. (2.1.1) to the case of multiple forces and

particles.

As we will show, reconciling naturalness with Eq. (2.1.1) requires a revision

of the original theory: either the gauge symmetry is spontaneously broken or

new degrees of freedom enter prematurely at the cutoff

Λ ∼ qmPl. (2.1.2)

Ref. [30] conjectured Eq. (2.1.2) with the stronger interpretation that Λ signals

the complete breakdown of four-dimensional quantum field theory. Supporting

this claim with compelling string theoretic examples, Ref. [30] fell short of a

general argument. However, if one asserts the primacy of naturalness, then our

logic provides a reason from quantum field theory for new states at Λ.

To illustrate these ideas we present simple, concrete extensions of the

standard model (SM) in which a natural value of the electroweak scale—at the

Planck scale—is incompatible with Eq. (2.1.1) due to a new millicharged force.
2.1In this chapter, we define the Planck mass, mPl, such that Eq. (2.1.1) is saturated for an

extremal black hole.
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These models offer the unique opportunity to test naturalness experimentally.

Indeed, either naturalness reigns, in which case Eq. (2.1.2) demands a low

cutoff, or it fails. Absent additional ultralight states, a discovery of this

millicharged force would then invalidate naturalness and mandate an unnatural

electroweak scale. In particular, Eq. (2.1.1) would disallow a natural electroweak

scale and the hierarchy problem would arise from as-yet-unknown ultraviolet

dynamics. More generally, a fifth force discovery of any kind would invalidate

the interpretation of Λ advocated in Ref. [30] as the cutoff of four-dimensional

quantum field theory. If, as conjectured in Ref. [30], this breakdown is a

universal feature of all string compactifications, such an observation would also

falsify string theory.

2.2 Evidence for the WGC

Let us summarize the justification for the WGC [30]. Consider a U(1) gauge

theory with charged species labeled by i, each representing a particle (anti-

particle) of charge qi (−qi) and mass mi. We define dimensionless charge-to-

mass ratios,

zi = qimPl/mi, (2.2.1)

so Eq. (2.1.1) implies that there exists some particle i with zi > 1. The authors

of Ref. [30] offered theoretical evidence in support of Eq. (2.1.1). They presented

many examples from field theory and string theory, all satisfying Eq. (2.1.1).

Further, they argued that Eq. (2.1.1) reconciles the inherent inconsistency of

exact global symmetries with the naively innocuous q → 0 limit of a gauge

theory. This limit yields an exact global symmetry; however, such charges are

not conserved by quantum gravity [66, 67] because, in accordance with no-hair

theorems [68], a stationary black hole is fully characterized by its mass, spin,
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and charge.

Of course, examples and consistency with no-hair theorems only provide

circumstantial evidence for Eq. (2.1.1). Importantly, Ref. [30] also argues

for Eq. (2.1.1) via reductio ad absurdum, drawing only on general relativity,

conservation of charge and energy, and minimal assumptions about the ultimate

theory of quantum gravity. Consider a black hole of charge Q and mass M

decaying solely to particles of species i, which can occur via Hawking radiation

or Schwinger pair production [69, 70]. By charge conservation, Q/qi particles

are produced. Conservation of energy dictates that the total rest mass of the

final state, miQ/qi, be less than M . In terms of the black hole charge-to-mass

ratio, Z = QmPl/M , this implies zi > Z. An extremal black hole corresponds

to Z = 1 and is stable unless some state i exists for which zi > 1. If Eq. (2.1.1)

fails, the spectrum contains a large number of stable black hole remnants, in

tension with holographic bounds [51, 71] and afflicted with various quantum

gravitational and thermodynamic pathologies [72, 73].

2.3 The Limits of Naturalness

The WGC is straightforward at tree-level, but radiative corrections introduce

subtleties. In fermionic QED, q and m run with renormalization scale, as does

their ratio, naively making q/m ambiguous; however, as Ref. [30] notes, the

appropriate scale to evaluate q/m is the physical mass of the particle. This is

the mass scale that is relevant to the kinematics of extremal black hole decay,

which provides the justification for the WGC.

However, the radiative stability question becomes more interesting in scalar

QED:

L = −1
4F

2
µν + |Dµφ|2 −m2|φ|2 − λ

4 |φ|
4, (2.3.1)
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where Dµ = ∂µ + iqAµ is the gauge covariant derivative. As for any effective

field theory, we assume an ultraviolet cutoff, Λ, above which new physics enters.

Since φ is a fundamental scalar, its mass is radiatively unstable and corrected

by m2 → m2 + δm2 where

δm2 = Λ2

16π2 (aq2 + bλ). (2.3.2)

Here a and b are dimensionless numerical coefficients. We assume that δm2 is

positive so that the theory remains in the Coulomb phase. In a natural theory,

the physical mass of φ cannot be parametrically smaller than its radiative

corrections. Equivalently, the counterterm for the scalar mass should not

introduce a delicate cancellation. This is formally equivalent to requiring that

the coefficients a and b take on O(1) values.

Let us set the physical mass squared for φ to its natural value, δm2, which

the WGC forbids from exceeding its charge in Planck units. The charge-to-mass

ratio of φ is

z = 4πmPl

Λ
1√

a+ bλ/q2
, (2.3.3)

where the WGC implies that z > 1. If q2 � λ, then

Λ <
4πmPl√

a
, (2.3.4)

which is the reasonable requirement that the cutoff not exceed the Planck scale.

Turning to the opposite hierarchy, q2 � λ, which is also radiatively stable,

we find that the WGC implies

Λ < 4πmPl

√
q2

bλ
. (2.3.5)

As q2/λ→ 0, a sensible cutoff requires b→ 0, indicating mandatory fine-tuning

in order to satisfy the WGC. We are left with a remarkable conclusion: scalar

QED with q2 � λ and natural masses fails Eq. (2.1.1) and is thus inconsistent

with a quantum theory of gravity.
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We have not traded a mass scale hierarchy problem for an equivalent

hierarchy problem of couplings. Small charges are radiatively stable and thus

technically natural. In principle, q2 � λ is no worse than the small electron

Yukawa coupling.

To reconcile naturalness with Eq. (2.1.1), one alternative is to argue that

the original theory—scalar QED with q2 � λ—is impossible. For example, this

would be true if nature does not permit fundamental scalars or if a hierarchy

among couplings is somehow strictly forbidden. However, there are far less

drastic options, elaborated below, if one modifies the original scalar QED

theory.

i) Radiative corrections induce the Higgs phase. It is possible that

quantum effects generate a tachyon for φ, Higgsing the theory. Charge becomes

ill defined; the charge and mass eigenbases need not commute, leaving q/m

ambiguous. Further, the WGC is not justified in the Higgs phase. The original

argument for the WGC [30] relied on stable extremal black holes. However, no-

hair theorems imply that there are no stationary black hole solutions supporting

classical hair from a massive photon [74], independent of the size of the black

hole relative to the Higgs scale. If a black hole accretes a massive-U(1)-charged

particle, it briefly supports an associated electric field, but after a time of order

the photon Compton wavelength, it balds [75] when the gauge field is radiated

away to infinity or through the horizon.

ii) New physics enters below the Planck scale. The simplest way to

reconcile the WGC with naturalness is for the effective field theory to break

down at a cutoff defined by Eq. (2.3.5). There could be new light states

regulating quadratic divergences of φ, effectively lowering Λ. This option

resolves the contradiction tautologically by eliminating the hierarchy problem

altogether. However, a more interesting alternative occurs when the new states
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do not couple to φ. The quadratic divergence of φ is robust and m is large.

If one of these new states satisfies Eq. (2.1.1), then φ is irrelevant: the WGC

and naturalness are reconciled. Thus, asserting naturalness offers Eq. (2.3.5)

as a more precise version of the low cutoff conjecture of Ref. [30] stated in

Eq. (2.1.2).

2.4 More Forces, More Particles

Extending our results to various charged species of different spins, the WGC

implies that at least one state in the spectrum must satisfy Eq. (2.1.1) after

taking into account radiative corrections. Naturalness is violated in parameter

regions with a hierarchy between charges and couplings that generate quadratic

divergences (quartic couplings, Yukawa couplings).

The story becomes more interesting for product gauge symmetries. Consider

a gauge group ∏N
a=1 U(1)a and particles i with charges qia and masses mi. We

represent the charges, ~qi = qia, and charge-to-mass ratios, ~zi = qiamPl/mi, as

vectors of SO(N), the symmetry transforming the N photons among each

other. If present, photon kinetic mixing can be removed by a general linear

transformation on the photons, which is equivalent to redefining charge vectors

of states in the theory.

To generalize the WGC for multi-charged particles, Eq. (2.1.1) is inadequate

and requires upgrading to a constraint on ~qi and mi. Ref. [30] briefly alluded to

this scenario, but detailed analysis will reveal quantitative differences between

the WGC as applied to a single U(1) versus many. By symmetry, the proper

generalized WGC must be SO(N) invariant. Naively, the WGC could require

at least one species i with |~zi| > 1. However, this is insufficient—it guarantees

the existence of one particle of large total charge, but preserves stability for

orthogonally-charged extremal black holes. A stricter alternative is that for
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Figure 2.1. Vectors representing charge-to-mass ratios for two species charged
under two Abelian gauge symmetries. When the convex hull defined by these vectors
contains the unit ball, then extremal black holes can decay to particles and the
condition of the WGC is satisfied.

each U(1) there exists a species i charged under that U(1) with |~zi| > 1.

Curiously, this is still actually weaker than the true generalized WGC.

To determine the proper generalized WGC, we revisit black hole decay

kinematics. Consider a black hole of charge ~Q, mass M , and charge-to-mass

ratio ~Z = ~QmPl/M decaying to a final state comprised of ni particles of species

i. Charge and energy conservation imply ~Q = ∑
i ni~qi and M >

∑
i nimi. If

σi = nimi/M is the species i fraction of the total final state mass, then ~Z =∑
i σi~zi and 1 > ∑

i σi; decay requires that ~Z be a subunitary weighted average

of ~zi. This criterion has a geometric interpretation in charge space. Draw the

vectors ±~zi corresponding to the charge-to-mass ratio of each fundamental

particle in the spectrum. A weighted average of ~zi defines the convex hull

spanned by the vectors, delineating the space of ~Z that is unstable to decay. Any

state outside the convex hull is stable. Since extremal black holes correspond

to |~Z| = 1, the generalized WGC requires that the convex hull spanned by ±~zi

contain the unit ball.

Consider a model of two Abelian factors and two charged states. The left

and right panels of Fig. 2.1 represent two possible choices for the charge-to-mass

ratios of the particles. Black holes of all possible charges are represented by the
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unit disc. The left panel of Fig. 2.1 depicts a theory that is consistent with the

WGC: the unit disc is contained in the convex hull. Extremal black holes, the

boundary of this disc, can decay. However, the right panel of Fig. 2.1 depicts a

theory that violates the WGC: there are regions of the unit disc not within

the convex hull, corresponding to stable black hole remnants. Remarkably,

this theory fails the WGC despite the fact that |~z1| > 1 and |~z2| > 1. Simple

geometry shows that the WGC imposes the more stringent constraint:

(~z 2
1 − 1)(~z 2

2 − 1) > (1 + |~z1 · ~z2|)2. (2.4.1)

For example, given orthogonal charges of equal magnitude, |~z1| = |~z2| = z

and ~z1 ⊥ ~z2, Eq. (2.4.1) implies z >
√

2, manifestly stronger than the z > 1

condition required for theories with a single U(1). Note that the WGC places

constraints on ~z1 and ~z2 that are not mathematically independent. Were a

particular value of ~z1 experimentally observed, this would fix a bound ~z 2
2 >

(1− 1/~z 2
1 )−1.

A similar analysis can be applied for N Abelian factors and N charged states.

Suppose each particle is charged under a single U(1), with equal magnitude

charge-to-mass ratios, so zia = δiaz for some z. The convex hull defined by

±~zi is an N -dimensional cross-polytope of circumradius z. The largest ball

contained in the cross-polytope has radius z/
√
N . Requiring that the radius of

this ball be greater than unity then implies z >
√
N , parametrically stronger

than the condition required for a single Abelian factor.

The WGC constraint grows at large N for fixed physical Planck scale

mPl. However, the presence of N additional species generally renormalizes the

strength of gravity [28, 76, 77] as δm2
Pl ∼ NΛ2/16π2. If corrections enhance

mPl by a factor of
√
N , all factors of N encountered in our earlier analyses

cancel. That is, in a theory with fixed Lagrangian parameters and cutoff, the

limit from the WGC is N -independent at large N . A similar phenomenon
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was discussed in Ref. [30] for N Abelian factors Higgsed to a U(1) subgroup.

The large-N limit introduces a ZN2 symmetry, which is subject to the large-N

species bounds considered in Ref. [76].

The multi-charge generalized WGC has implications for naturalness. Con-

sider a U(1)N gauge theory with scalars φi of charges ~qi and masses mi,

L = −1
4
∑
a

F 2
µνa +

∑
i

|Dµφi|2 −m2
i |φi|2 −

λi
4 |φi|

4, (2.4.2)

where Dµφi = (∂µ+ i∑a qiaAµa)φi. Radiative corrections send m2
i → m2

i +δm2
i ,

where

δm2
i = Λ2

16π2 (ai~q 2
i + biλi) (2.4.3)

and ai and bi are O(1) ultraviolet-sensitive coefficients. The charge-to-mass

ratio vector for φi is

~zi = 4πmPl

Λ
~qi
|~qi|

1√
ai + biλi/~q 2

i

. (2.4.4)

A necessary albeit insufficient condition for the WGC is that, for each U(1),

there is a state i charged under that Abelian factor such that |~zi| > 1. This

implies

Λ < 4πmPl ×



1
√
ai

, ~q 2
i � λi

√
~q 2
i

biλi
, ~q 2

i � λi

. (2.4.5)

As for the single Abelian case, ~q 2
i � λi corresponds to the reasonable require-

ment of a sub-Planckian cutoff, while ~q 2
i � λi implies tension with naturalness.

However, the most stringent requirement of the WGC—that the convex hull

spanned by ±~zi contain the unit ball—places a stronger limit than Eq. (2.4.5)

by a factor of order
√
N for fixed mPl.
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2.5 The Hierarchy Problem

We have presented explicit models in which naturalness contradicts Eq. (2.1.1).

We now construct theories in which natural values of the electroweak scale—at

the cutoff—are similarly incompatible. In these models, strict adherence to

naturalness implies either a Higgs phase or a parametrically low cutoff given

by Eq. (2.1.2).

The obvious path is to relate the electroweak scale to the mass m of a

particle that carries a tiny charge q. The SM gauge couplings are O(1), so we

require an additional U(1) gauge symmetry beyond the SM. It is tempting to

charge the Higgs, but this will spontaneously break the U(1), invalidating the

applicability of the WGC.

However, we can charge the SM fermions under a very weakly gauged

unbroken U(1)B−L symmetry. Current limits on U(1)B−L require q . 10−24 [78,

79] and will likely be improved by several orders of magnitude by astrophysical

[80], lunar ranging [81], and satellite-based [82–84] tests of apparent equivalence

principle violation. To cancel anomalies we introduce a right-handed neutrino

νR that combines with the left-handed neutrino νL to form a U(1)B−L preserving

Dirac mass term of the form mν ν̄LνR + h.c., where mν ∼ yνv is controlled

by the electroweak symmetry breaking scale. The particle with the largest

charge-to-mass ratio is the lightest neutrino. Assuming its mass is of order the

neutrino mass scale, mν . 0.1 eV [85, 86], we fix the charge to a technically

natural albeit tiny value: q ∼ mν/mPl ∼ 10−29. For this value of q, Eq. (2.1.1)

is just marginally satisfied by the lightest neutrino. While such a charge is

permitted in quantum field theory, it may be difficult to engineer in string

theory if q arises from a string coupling constant requiring dilaton stabilization

at large field values. Similar issues arise in theories of large extra dimensions
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and it is a detailed question of string moduli stabilization whether this is

possible. In any case, at fixed Yukawa coupling yν , were the electroweak scale

any higher than its measured value, Eq. (2.1.1) would fail. In this model,

regions of parameter space favored by naturalness—and an electroweak scale

at the cutoff—are inconsistent with Eq. (2.1.1). Strictly speaking, this logic

hinges on the absence of additional U(1)B−L charged states lighter than the

neutrino. Depending on the cosmological history, however, such particles may

be constrained experimentally by primordial nucleosynthesis.

Our model offers a direct experimental test of naturalness by virtue of a

very specific prediction: a new gauge boson very weakly coupled to the SM.

As discussed earlier, the assumption of naturalness mandates either a Higgs

phase or a low cutoff. The discovery of a fifth force would rule out the former,

while current sensitivities would for the latter imply Λ . keV from Eq. (2.1.2).

In the absence of such ultralight states, the observation of a U(1)B−L gauge

boson at q ∼ 10−29 would then simultaneously falsify the naturalness principle

and suggest an ultraviolet-dependent reason for the why the weak scale takes

an unnatural value. Moreover, given present sensitivities, a fifth force discovery

of any kind would falsify string theory to the extent to which it predicts the

strong interpretation of Λ as the scale at which four-dimensional quantum field

theory breaks down [30].

This mechanism can generally be incorporated into any theory where the

electroweak scale sources the mass of a U(1) millicharged state, e.g., dark

matter [87] charged under an unbroken U(1) dark force. For weak scale dark

matter, a charge of q ∼ 10−16 is sufficient to saturate Eq. (2.1.1).
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Chapter 3
Infrared Consistency and the
Weak Gravity Conjecture

The weak gravity conjecture (WGC) asserts that an Abelian gauge theory

coupled to gravity is inconsistent unless it contains a particle of charge q and

mass m such that q ≥ m/mPl. This criterion is obeyed by all known ultraviolet

completions and is needed to evade pathologies from stable black hole remnants.

In this chapter, we explore the WGC from the perspective of low-energy effective

field theory. Below the charged particle threshold, the effective action describes

a photon and graviton interacting via higher-dimension operators. We derive

infrared consistency conditions on the parameters of the effective action using

i) analyticity of light-by-light scattering, ii) unitarity of the dynamics of

an arbitrary ultraviolet completion, and iii) absence of superluminality and

causality violation in certain nontrivial backgrounds. For convenience, we begin

our analysis in three spacetime dimensions, where gravity is non-dynamical

but has a physical effect on photon-photon interactions. We then consider

four dimensions, where propagating gravity substantially complicates all of

our arguments, but bounds can still be derived. Operators in the effective

action arise from two types of diagrams: those that involve electromagnetic

interactions (parameterized by a charge-to-mass ratio q/m) and those that do

not (parameterized by a coefficient γ). Infrared consistency implies that q/m

is bounded from below for small γ.

This chapter is from Ref. [2], C. Cheung and G. N. Remmen, “Infrared
Consistency and the Weak Gravity Conjecture,” JHEP 1412 (2014) 087,
arXiv:1407.7865 [hep-th].

http://dx.doi.org/10.1007/JHEP12(2014)087
http://arxiv.org/abs/1407.7865
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3.1 Introduction

The weak gravity conjecture (WGC) [30] asserts a powerful restriction on any

Abelian gauge theory coupled consistently to gravity. In particular, it mandates

the existence of a state of charge q and mass m satisfying3.1

q ≥ m. (3.1.1)

Informally, the WGC states that “gravity is the weakest force” because it bounds

the gravitational charge of a state from above by its electric charge. The WGC

is a beautiful and sharply defined criterion demarcating the landscape from

the swampland.

The authors of Ref. [30] supported their conjecture with numerous exam-

ples from field theory and string theory, all satisfying the WGC. Moreover,

they offered an elegant argument by contradiction in favor of the WGC. By

conservation of charge and energy, the state with the largest charge-to-mass

ratio cannot decay, so violation of the WGC implies the absolute stability of

extremal black holes, which exactly saturate Eq. (3.1.1). However, stable black

hole remnants are thought to be pathological [51, 71–73], so the authors of

Ref. [30] argued that the WGC is mandatory in any theory with an Abelian

gauge symmetry.

In this chapter, we explore the WGC from the viewpoint of effective field

theory. Our central question is simple: does violation of the WGC induce a

pathology in the infrared? To seek an answer, we consider energies far below

the charged particle threshold, where the dynamics are described by photons

and gravitons interacting via higher-dimension operators:
3.1Throughout this chapter, we use natural units for mass and charge in which 4πG = ε0 = 1,

with (+,−,−, . . .) metric signature and curvature tensors Rµν = Rρµρν and Rρµσν =
∂σΓρµν − ∂νΓρµσ + ΓρασΓαµν − ΓρανΓαµσ, all for arbitrary spacetime dimension D.
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L = −1
4FµνF

µν − 1
4R

+ a1(FµνF µν)2 + a2(FµνF̃ µν)2

+ b1FµνF
µνR + b2FµρF

ρ
ν Rµν + b3FµνFρσR

µνρσ

+ c1R
2 + c2RµνR

µν + c3RµνρσR
µνρσ,

(3.1.2)

where F̃µν = εµνρσF
ρσ/2. We have dropped terms like (∇µFνρ)2 and (∇µF

µν)2,

which in the absence of charged sources can be written in terms of the operators

already included.

Electromagnetic interactions induce contributions to ai and bi that depend

on the charges and masses of every state in the spectrum. Each contribution

grows with charge and scales inversely with mass, so they are dominated by the

state in the spectrum with the largest charge-to-mass ratio, which we will write

as z = q/m. Crucially, the operator coefficients in the effective Lagrangian

(3.1.2) are sensitive to the same quantity as the WGC, which posits that

z ≥ 1. (3.1.3)

Because the photon-graviton effective action is z-dependent, there is hope that

an analysis of the infrared dynamics might shed light on the WGC.

From a purely low-energy perspective, it would seem reasonable for the

landscape of high-energy completions to span all values of the parameters in

the effective action. However, as discussed in Ref. [31], this is a misconcep-

tion: some effective theories are intrinsically pathological and never emerge

from consistent ultraviolet dynamics. This occurs, for example, in the Euler-

Heisenberg Lagrangian [88–90], which is Eq. (3.1.2) in the limit that gravity is

decoupled. When ai < 0, the theory admits superluminal photon propagation

and non-analyticity in the light-by-light scattering amplitude. Unsurprisingly,

ai ≥ 0 in all known ultraviolet completions. More recently, bounds on graviton

interactions were derived in Ref. [37].

The purpose of this chapter is to apply similar methods to determine
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infrared consistency conditions on the effective action describing the low-energy

interactions of photons and gravitons. In particular we derive constraints on

the parameters of Eq. (3.1.2) from three independent criteria:

i) Analyticity. We study the analytic properties of the light-by-light

scattering amplitude. Forward dispersion relations constrain the effective

theory parameters.

ii) Unitarity. We construct a spectral representation parameterizing an ar-

bitrary ultraviolet completion. Forbidding ghosts and tachyons constrains

the effective theory parameters.

iii) Causality. We compute the speed of light in certain nontrivial back-

grounds. Absence of superluminality and causality violation constrains

the effective theory parameters.

As a warmup, we study the photon-graviton effective theory in three spacetime

dimensions (3D), where gravity is purely topological [91]. While the graviton is

non-propagating, it still mediates contact interactions for the photon. Remark-

ably, arguments from analyticity, unitarity, and causality all imply an identical

constraint on the parameters of the effective theory:

a′ ≥ 0, (3.1.4)

where a′ = a1 + b1 − b3 + c1 + c2 + 3c3. We can, however, learn more by

inputting additional assumptions about the ultraviolet completion. For example,

consider the case where the dominant contributions to ai and bi originate from

diagrams involving electromagnetic interactions of a fermion with charge-to-

mass ratio z. As we will see, Eq. (3.1.4) then implies a constraint on a two-

dimensional parameter space spanned by z and a coefficient γ parameterizing

purely gravitational corrections to the effective action. The theory automatically
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satisfies our consistency conditions if γ exceeds a certain critical value. However,

below this critical value, the theory is consistent only for certain values of z.

In particular, for small γ, infrared consistency implies that z ≥ 1, a 3D version

of the WGC.

Subsequently, we move on to four spacetime dimensions (4D), where dy-

namical gravity introduces a litany of subtleties, which we discuss at length in

the body of this chapter. For now, let us simply summarize our results. As we

will see, unitarity arguments imply that

a′1 ≥ 0 and a′2 ≥ 0, (3.1.5)

where a′1 = a1 − b2/2 − b3 + c2 + 4c3 and a′2 = a2 − b2/2 − b3 + c2 + 4c3.

Meanwhile, the absence of superluminal photon propagation in certain nontrivial

backgrounds implies that

a′1 + a′2 ≥ 0, (3.1.6)

which is also a consequence of the unitarity bounds in Eq. (3.1.5). Analyticity

arguments, on the other hand, are suspect in 4D because they rely crucially

on the forward light-by-light scattering amplitude, which is ill defined due to

singular t-channel graviton exchange [31]. Nevertheless, if one can assume

that dispersion relations apply to contributions to the forward amplitude from

higher-dimension operators, then remarkably, Eq. (3.1.6) can also be derived

as a consequence of analyticity. In this sense, arguments from analyticity,

unitarity, and causality in 4D all point to the set of mutually consistent bounds

in Eqs. (3.1.5) and (3.1.6).

These bounds imply 4D constraints on the parameter space defined by

z and the coefficients γ that parameterize purely gravitational effects. Our

results in 4D are summarized in Fig. 3.3. In all cases, when γ is small, infrared

consistency implies a lower bound on z that is numerically stronger than the
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WGC. Curiously, in this regime we find that Eq. (3.1.6) results in the exact

same bound for fermions and scalars: z ≥ 2.

The remainder of the chapter is structured as follows. In Sec. 3.2, we

derive constraints on the photon-graviton effective action in 3D coming from

analyticity, unitarity, and causality. We then present the analogous arguments

for the photon-graviton effective action in 4D in Sec. 3.3. Finally, we conclude

and discuss future directions in Sec. 3.4.

3.2 Three Dimensions

3.2.1 Setup and Bounds (3D)

To begin, we re-express Eq. (3.1.2) in a form convenient for studying the

dynamics of interacting photons. Specifically, we eliminate all dependence on

the spacetime curvature in favor of the electromagnetic field strength. We start

by rewriting the Riemann tensor in terms of the Ricci scalar, Ricci tensor, and

Weyl tensor, which in D dimensions is3.2

Cµνρσ = Rµνρσ −
1

D − 2(gµ[ρRσ]ν − gν[ρRσ]µ)

+ 1
(D − 1)(D − 2)Rgµ[ρgσ]ν ,

(3.2.1)

where in 3D the Weyl tensor identically vanishes and Eq. (3.2.1) implies that

CµνρσC
µνρσ = R2 − 4RµνR

µν +RµνρσR
µνρσ, (3.2.2)

so the Gauss-Bonnet term vanishes identically in 3D. Next, we eliminate

all dependence on the Ricci tensor and Ricci scalar in the higher-dimension

operators by rewriting them via the tree-level Einstein field equations,

Rµν −
1
2gµνR = 2Tµν , (3.2.3)

3.2Throughout this chapter, square brackets denote un-normalized antisymmetrization, viz.
T[µν] = Tµν − Tνµ.
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which at the order of the Lagrangian (3.1.2) is equivalent to a field redefinition

of the graviton. Meanwhile, the energy-momentum tensor is

Tµν = −FµρF ρ
ν + 1

4gµνFρσF
ρσ, (3.2.4)

so Eq. (3.1.2) can be expressed solely in terms of the electromagnetic field

strength. In particular, Eqs. (3.2.3) and (3.2.4) imply that R2 = RµνR
µν =

(FµνF µν)2.

At leading order in derivatives, the only invariants constructed from the

electromagnetic field strength are (FµνF µν)2 and FµρF ρ
ν F µ

σF
νσ. In 3D, these

are algebraically related by FµρF
ρ

ν F µ
σF

νσ = (FµνF µν)2/2. Thus, the final

form of the photon-graviton effective Lagrangian in 3D is remarkably simple:

L = −1
4FµνF

µν − 1
4R + a′(FµνF µν)2. (3.2.5)

Here we have defined a new higher-dimension operator coefficient,

a′ = a1 + b1 − b3 + c1 + c2 + 3c3, (3.2.6)

written in terms of the original parameters in the Lagrangian (3.1.2) after

discarding the operator (FµνF̃ µν)2, which does not exist in 3D.

Next, we exploit a nice feature of 3D, namely, that a photon is equivalent

to a scalar. To simplify our calculations, we dualize the photon according to

Fµν = iεµνρ∂
ρφ, (3.2.7)

where εµνρ is the 3D Levi-Civita tensor and the overall coefficient is fixed so

that φ is a canonically normalized state with positive norm. After dualization,

Eq. (3.2.5) becomes

L = 1
2∂µφ∂

µφ− 1
4R + 4a′(∂µφ∂µφ)2, (3.2.8)

which is our final form for the photon-graviton effective Lagrangian in 3D. The

underlying gauge symmetry of the photon is encoded in the shift symmetry of

φ.



34

+

+ . . . + . . .

+ . . .

↵ �

�

Figure 3.1. Diagrams involving photons (single wavy), gravitons (double wavy),
and charged matter (solid) that contribute to light-by-light scattering, organized in
terms of scaling with z = q/m, as defined in Eq. (3.2.10). Here, γ parameterizes
purely gravitational corrections.

As we will derive shortly, the constraints from analyticity, causality, and

unitarity in 3D all imply the exact same constraint,

a′ ≥ 0. (3.2.9)

How might this bound constrain the spectrum of the ultraviolet completion?

As noted earlier, the coefficients ai and bi in Eq. (3.1.2) receive calculable con-

tributions from every charged particle in the spectrum, but they are dominated

by the state with the largest charge-to-mass ratio, defined to be z = q/m.

Without loss of generality, we can thus expand a′ in powers of z as

a′ = αz4 + βz2 + γ. (3.2.10)

Primordially, α, β, and γ arise from diagrams with four, two, and zero insertions

of the electromagnetic coupling, respectively, as shown in Fig. 3.1.

By definition, α and β are contributions coming from diagrams that contain

electromagnetic interactions. For example, integrating out a charged fermion

in 3D yields calculable threshold corrections to the higher-dimension operator
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coefficients [92, 93],

a1 = q4

1920πm5

(b1, b2, b3) =
(
− q2

1152πm3 ,
13q2

2880πm3 , −
q2

2880πm3

)
.

(3.2.11)

In 3D, q has mass dimension 1/2. By substituting Eq. (3.2.11) into Eq. (3.2.6)

and comparing to Eq. (3.2.10), we straightforwardly obtain α and β. Despite

the complicated numerical factors in Eq. (3.2.11), we find that α/β = −1.

Meanwhile, since γ is independent of q, it necessarily parameterizes all con-

tributions arising solely from gravitational interactions. These include the

combination of coefficients c1 + c2 + 3c3 in Eq. (3.2.6). Because γ is incalculable

within the low-energy effective theory, it should be thought of as a high-energy

boundary condition encoding the gravitational dynamics of the ultraviolet

completion. Finally, rewriting Eq. (3.2.9) in terms of z and γ, we find that

z2(z2 − 1) ≥ −γm× 1920π. (3.2.12)

If γ ≥ 1/7680πm, then this bound is satisfied for any value of z. This is a

sufficient albeit not necessary condition for satisfying bounds from analyticity,

unitarity, and causality.

On the other hand, it is interesting to consider the case in which the

gravitational corrections are small, so γ ∼ 0. In this case, our bounds imply

that

z ≥ 1, (3.2.13)

which is the 3D analogue of the WGC in Eq. (3.1.1). This result is interesting

because the argument for Eq. (3.1.1) from Ref. [30] derives from pathologies

of stable extremal black holes, which do not exist in asymptotically-flat 3D

spacetime. In this sense, infrared consistency conditions have more general

applicability than the extremal black hole arguments of Ref. [30].

A priori, the 3D effective theory could arise from the compactification of
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a higher-dimensional theory. Of course, even then, the infrared consistency

condition in Eq. (3.2.9) would hold. However, if the compactification scale were

less than m/q, then interactions generated from integrating out the radion and

the Kaluza-Klein modes would dominate over those generated by the charged

states. In this case, z would contribute negligibly to the effective action and

infrared consistency would simply bound the parameter γ.

3.2.2 Analyticity (3D)

In this section, we exploit the analytic properties of the light-by-light scattering

amplitude to constrain the 3D effective Lagrangian in Eq. (3.2.8). Following

the procedure of Ref. [31], we consider the scattering amplitude

M(s, t) = 8a′(s2 + t2 + u2), (3.2.14)

where the Mandelstam variables satisfy s+ t+ u = 0. The forward scattering

amplitude is thenM(s) =M(s, t→ 0) = 16a′s2. Next, to extract the operator

coefficient we compute the contour integral ofM(s)/s3 around a contour C

encircling the origin:

16a′ =
˛
C

ds
2πi
M(s)
s3 =

˛
C′

ds
2πi
M(s)
s3

=
(ˆ −s0
−∞

+
ˆ ∞
s0

)
ds
2πi

Disc[M(s)]
s3 + boundary integral.

(3.2.15)

Following Ref. [31], we have used the Cauchy integral theorem to deform C

into a new contour C ′ composed of lines running just above and below the real

axis plus a large circular boundary contribution at infinity. The discontinuity

function is

Disc[M(s)] =M(s+ iε)−M(s− iε) = 2iIm[M(s)], (3.2.16)

where the difference of terms arises from the contour integration above and

below the real axis and we used analyticity of M(s) to apply the Schwarz
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reflection principle,M(s∗) =M(s)∗. Deforming the contour is mathematically

permitted, providedM(s) is analytic in the bulk of the complex s plane and in

the neighborhood of s = 0. The former is guaranteed by the usual stipulation

that all non-analyticities of the S-matrix, e.g., poles and branch cuts, occur near

the real axis. The latter is ensured by an additional physical input, which is that

the scattering amplitude does not have branch cuts on the real axis extending

to s = 0. At one-loop order in the effective action, light-by-light scattering

will include massless branch cuts from a photon loop and two insertions of

the (FµνF µν)2 operator. However, as discussed in Ref. [31], such cuts can be

avoided by a slight deformation of the contour after introducing a regulator

mass for the photon. Moreover, there are no branch cuts from gravitons, which

are non-dynamical in 3D. For concreteness, we define s0 to be the mass squared

of the lowest-lying degree of freedom produced from light-by-light scattering,

soM(s) is analytic in the region |s| < s0.

The contour integral over C ′ includes a contribution from the discontinuity

across the real axis as well as a contribution from infinity. In D dimensions,

unitarity and polynomial boundedness of amplitudes implies the Froissart

bound for large |s|, |M(s)| . |s logD−2 s| [94, 95], so the boundary term is zero.

Evaluating the contour integral along the axis yields

(ˆ −s0
−∞

+
ˆ ∞
s0

)
ds
2πi

Disc[M(s)]
s3 = −

ˆ ∞
s0

ds
2πi

Disc[M(−s)]
s3

+
ˆ ∞
s0

ds
2πi

Disc[M(s)]
s3

= 2
ˆ ∞
s0

ds
2πi

Disc[M(s)]
s3 .

(3.2.17)

Because the external states are identical, crossing symmetry implies that

M(s + iε) = M(−s − iε), so Disc[M(−s)] = −Disc[M(s)]. Inserting the
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optical theorem, Im[M(s)] = sσ(s), the dispersion relation becomes3.3

16a′ = 2
π

ˆ ∞
s0

dsσ(s)
s2 ≥ 0, (3.2.18)

where σ(s) is the total cross-section. In the last step we have used the fact

that the total cross-section is non-negative, implying that a′ ≥ 0.

The above arguments apply provided that high-energy scattering amplitudes

comply with the optical theorem, the Froissart bound, and the standard

analyticity properties of the S-matrix. The first and third conditions hold under

the assumptions of unitarity and locality, respectively, while the second requires

both. In Ref. [96], it was noted that locality may break down when quantum

gravitational dynamics become important; in particular, black holes may induce

non-localities at super-Planckian energies, which violate the Froissart bound and

the polynomial boundedness of amplitudes [96], albeit in unphysical regions

of complex momentum space [97]. However, these caveats are immaterial

because, as previously noted, black holes do not exist in asymptotically-flat 3D

spacetime, so our arguments apply. In 4D, the issue is more complex, but we

postpone a dedicated discussion to Sec. 3.3.2.

3.2.3 Unitarity (3D)

We now derive effective theory bounds by imposing unitarity on a general pa-

rameterization of the ultraviolet completion. Our analysis follows the approach

of Ref. [35]. As a consequence of the shift symmetry of φ, the leading coupling

to high-energy degrees of freedom is uniquely

χµν∂
µφ∂νφ, (3.2.19)

where χµν is a field representing arbitrary ultraviolet dynamics. Integrating

out these states generates the leading four-derivative operator, (∂µφ∂µφ)2. By

neglecting higher-order interactions of φ with χµν , we are implicitly assuming
3.3Note that in 3D,M(s) and σ(s) have mass dimensions +1 and −1, respectively.
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a perturbative ultraviolet completion. Couplings of the form χµ∂

µφ are also

allowed in principle but can be eliminated via the transverse condition ∂µχµ = 0.

Moreover, couplings of the form ∂µχν∂
µφ∂νφ can be neglected because they

produce subleading six-derivative operators.

We now decompose χµν into components,

χµν = χ(2)
µν + ηµνχ

(0), (3.2.20)

where χ(2)
µν is by definition traceless. In our conventions, all coupling constants

have been absorbed into the overall normalization of the fields, so the leading

interactions are of unit strength, χ(2)
µν ∂

µφ∂νφ + χ(0)∂µφ∂
µφ. Without loss of

generality, the nonperturbative spectral representation of the χµν propagator

in D dimensions is given by

〈χ(0)(k)χ(0)(k′)〉 = iδD(k + k′)
ˆ ∞

0
dµ2 ρ(0)(µ2)

k2 − µ2 + iε

〈χ(2)
µν (k)χ(2)

ρσ (k′)〉 = iδD(k + k′)
ˆ ∞

0
dµ2 ρ(2)(µ2)

k2 − µ2 + iε
Πµνρσ,

(3.2.21)

where ρ(0) and ρ(2) are spectral densities describing an arbitrary collection of

single- or multi-particle intermediate states. As usual, these expressions are

obtained by inserting a complete set of states into the two-particle correlation

function, implying positive definite spectral densities in the absence of tachyon

or ghost instabilities. Note also that since we are ultraviolet-completing a local

operator, i.e., one that is regular as k → 0, the spectral density must vanish in

the neighborhood of µ2 = 0.

As is well known, the spectral representation of a massive spin-2 state is

strongly constrained by unitarity. In D dimensions, the absence of tachyons or

ghosts implies that [38]

Πµνρσ = 1
2(ΠµσΠνρ + ΠµρΠνσ)− 1

D − 1ΠµνΠρσ, (3.2.22)

where for convenience we have defined the projection operator,
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Πµν = ηµν − kµkν/µ2, (3.2.23)

such that kµΠµν = 0 when k2 = µ2 is on-shell. Note that the transverse

condition, kµΠµνρσ = 0, applies on-shell so as to eliminate gauge degrees of

freedom. Not coincidentally, Eq. (3.2.22) is precisely the propagator numerator

for a massive graviton.

At low momentum transfer we integrate out χµν , yielding the 3D effective

operator,

χµν∂
µφ∂νφ→ (∂µφ∂µφ)2

ˆ ∞
0

dµ2 ρ
(0)(µ2)/2 + ρ(2)(µ2)/4

µ2 . (3.2.24)

Eq. (3.2.24) shows that the coefficient of (∂µφ∂µφ)2 is positive for any weakly-

coupled ultraviolet completion consistent with a positive spectral density. Thus,

unitarity implies that a′ ≥ 0 for the effective Lagrangian defined in Eq. (3.2.8).

Conversely, a′ < 0 signals an instability coming from a tachyon or ghost

intermediate state.

The above arguments apply assuming a perturbative ultraviolet completion

of the effective theory. This allowed us to ignore operators involving ever higher

powers of the field. As discussed in Sec. 3.2.2, while it may be problematic to

extrapolate any argument to energies far above the Planck scale, this is not an

issue in asymptotically-flat 3D spacetime, since black holes are not permitted.

3.2.4 Causality (3D)

Let us now investigate the causal structure of the 3D photon-graviton effective

theory. We expand around nontrivial backgrounds for the photon and graviton,

φ = φ+ ϕ and gµν = gµν + hµν . (3.2.25)

Throughout this chapter, any barred variable represents a field or combination

of fields evaluated on its background value. Here ϕ denotes photon fluctuations,
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while in 3D, the graviton is non-dynamical so hµν = 0. To simplify our

analysis we introduce vielbein coordinates defined by ηab = eµae
ν
bgµν , where

ηab = diag(+1,−1,−1) is the flat space metric. We use Latin and Greek indices

to denote vielbein and metric coordinates, respectively. Importantly, the speed

measured in the vielbein frame corresponds to the physical speed measured by

an observer in the coordinates of the local Lorentz frame. In terms of these

coordinates, the equation of motion for ϕ in a background is

η̃ab∂aϕ∂bϕ = 0, (3.2.26)

where η̃ab is defined as the effective metric in the vielbein frame, obtained from

Eq. (3.2.8),

η̃ab = ηab + 16a′∂aφ∂bφ. (3.2.27)

We study the geometric-optics limit in which ϕ is a plane wave perturbation of

four-momentum ka = (k0, ~k), with wavelength far shorter than the characteristic

length scale of the spacetime curvature. In this case, the dispersion relation

for the photon is simply

η̃abkakb = 0. (3.2.28)

For now, let us focus on the photon speed in a local neighborhood; we will

consider the global effects of gravity shortly.

The local speed of photon fluctuations varies depending on the choice

of background. The simplest possibility is a constant electromagnetic field,

represented by a constant condensate that breaks Lorentz invariance: ∂aφ =

wa = (w0, ~w). The effective metric is then η̃ab = ηab + 16a′wawb. Expanding at

leading order in the small parameter a′, we obtain the propagation speed of

photons,

v = k0

|~k|
= 1− 8a′(w0 − ~w · k̂)2, (3.2.29)
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defining k̂ = ~k/|~k|. Superluminal photon propagation occurs when a′ < 0.

Another interesting background is a thermal gas of photons, which we con-

sider henceforth. For a thermal system, background fields should be evaluated

as stochastic expectation values, so in general ∂aφ∂bφ 6= ∂aφ ·∂bφ. In particular,

for a photon gas the electromagnetic field has zero average background value,

∂aφ = 0, but nonzero variance, ∂aφ∂bφ 6= 0. In 3D, the pressure p and energy

density ρ satisfy an equation of state p = ρ/2, where ρ = ζ(3)T 3/π for a gas at

temperature T [98, 99]. For a scalar field, the energy-momentum tensor is

T ab = ∂aφ∂bφ− 1
2η

ab∂cφ∂
cφ, (3.2.30)

the background expectation value of which is T ab = diag(ρ, p, p) in a thermal

gas. From this we deduce that ∂cφ∂cφ = −2T aa = −2(ρ− 2p) = 0, so

∂aφ∂bφ = (3δ0
aδ

0
b − ηab)

ζ(3)
2π T 3. (3.2.31)

Putting everything together, we obtain the effective metric for photon propa-

gation,

η̃ab = ηab + (3δ0
aδ

0
b − ηab)

8ζ(3)
π

a′T 3. (3.2.32)

The presence of Kronecker delta functions signals the fact that a thermal

background breaks Lorentz invariance while preserving isotropy. Expanding at

leading order in a′, we find that the speed of signal propagation is

v = k0

|~k|
= 1− 12ζ(3)

π
a′T 3. (3.2.33)

As before, superluminal propagation occurs when a′ < 0.

Traditionally, superluminal propagation is taken to be a definitive signal

of an underlying pathology. However, this diagnosis neglects an important

distinction between superluminal propagation in all reference frames versus

a preferred frame. The present construction is of the latter type, which as

discussed in Ref. [31] introduces oddities in the definition of initial conditions,
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but is not, strictly speaking, inconsistent.

To demonstrate a true breakdown of causality, we must construct a closed

signal trajectory in spacetime, i.e., a closed causal curve (CCC). To begin,

consider a thermal gas of photons localized to a finite bubble in spacetime.

The interior of the bubble is described by a zero-curvature, 3D Friedmann-

Robertson-Walker (FRW) metric

ds2 = a(t)2ηµνdxµdxν , (3.2.34)

written in a form that is manifestly conformally flat. Inside the bubble, photons

deviate from the light-cone by an amount prescribed by the vielbein speed in

Eq. (3.2.33). Meanwhile, the vacuum region exterior to the bubble is locally

flat because the Weyl tensor vanishes identically in 3D. Consequently, photons

are exactly luminal outside the bubble.

What about the boundary of the bubble? Since the interior and exterior

spacetimes are conformally flat, regularity of the spacetime across the boundary

implies that, in the thin-shell limit, the boundary region itself is parametrically

close to conformal flatness. Moreover, one can imagine a boundary formed

from “stiff” matter with ρ = p, for which the Cotton tensor vanishes [100],

thus ensuring conformal flatness exactly.3.4 In any case, a bubble of thermal

photons is well described by a metric that is globally conformally flat,

ds2 = Ω2ηµνdxµdxν , (3.2.35)

where Ω = 1 in the exterior and Ω = a(t) in the interior. A feature of conformal

flatness is that the speeds of signals as measured in vielbein coordinates and

metric coordinates are the same. That is, light signals move at speed v = dx/dt,

where v is given by Eq. (3.2.33).3.5 In the end, this implies that engineering a
3.4The signal itself can be transferred across the boundary either by another particle species

that does not interact with the boundary material or by photons through a very small
aperture in the circular shell.

3.5This is in marked contrast to the gravitational redshift of signals in spacetimes that are
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CCC in a conformally-flat spacetime reduces to a special relativistic problem.

As is well known, however, a CCC in special relativity requires two frames in

relative motion, while the above construction picks out a single preferred frame.

To build a CCC we must instead consider two bubbles of thermal photons,

both at temperature T and in relative motion. The associated background is

described by Eq. (3.2.35), only with a more complicated form for the conformal

factor.

Now consider the setup illustrated in Fig. 3.2: two bubbles of equal radii `

separated by a distance L and moving in opposite directions at zero impact

parameter and constant speed u. Light signals sent between observers at the

center of each bubble will have an average speed

vavg = 1− ε, (3.2.36)

as measured in their respective frames. Here, corrections to the speed of light

are controlled by a small parameter, ε ∼ a′T 3`/L. Note that the Friedmann

equations imply that the interior of each bubble will evolve on a timescale

∼ ρ−1/2 in natural units. However, these effects can be neglected by choosing

L2T 3 � 1, which is always possible for sufficiently small T . Consequently, we

can always treat the temperature as roughly constant over the entire signal

trip.

For a′ < 0, it is then straightforward to construct a CCC. Explicitly, each

observer can send a signal that in the reference frame of the other observer

propagates at an average superluminal speed defined by Eq. (3.2.36). By

transmitting a signal from one bubble to the other and then back, it is possible

to form a CCC. This is analogous to the so-called “tachyonic antitelephone”

from special relativity [101–103]. Likewise, causality violation will occur here

provided the relative speed of the two observers (i.e., the relative speed of the

not conformally flat, such as a signal propagating radially away from a black hole.
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L

ℓ

Figure 3.2. Setup for the construction of a CCC in 3D, using superluminal photons
in a theory that violates Eq. (3.2.9). The construction, illustrated here in a constant-
time slice of the two spatial dimensions, consists of two circular bubbles of thermal
radiation, each of radius ` and separation L� `, with relative speed u < 1 (green
arrow). Signals (red dashed arrows) sent back and forth would be superluminal
within the bubbles, creating a CCC for large u.

bubbles) satisfies

u >
2vavg

1 + v2
avg
' 1− 1

2ε
2. (3.2.37)

A diagram of this CCC is nicely depicted in Fig. 2 of Ref. [31], albeit in a

slightly different context (Lorentz-violating condensate bubbles passing with

finite impact parameter) and without including the effects of gravity. Forbidding

the existence of causality violation from a CCC thus requires a′ ≥ 0.

The above arguments apply provided there is no subtlety in constructing

this particular background of thermal photons. Naively, one may worry about

exceeding the limits of the photon-graviton effective theory due to the relative

boost between the bubbles of gas. However, this is not an issue because

the bubbles need not overlap and hence do not back-react. While arbitrary

configurations of moving masses in 3D sometimes entail topological subtleties

[104–106], our CCC construction does not rely on them for causality violation.

A detailed study of these issues goes beyond the scope of the current work.
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3.3 Four Dimensions

3.3.1 Setup and Bounds (4D)

In this section, we derive bounds on the photon-graviton effective action in 4D.

As in Sec. 3.2.1, we rewrite the spacetime curvature in terms of the electro-

magnetic field strength. To start, we eliminate RµνρσR
µνρσ from Eq. (3.1.2) in

favor of the 4D Gauss-Bonnet term,

R2 − 4RµνR
µν +RµνρσR

µνρσ, (3.3.1)

which is in turn a total derivative. We also use the definition of the Weyl tensor

in Eq. (3.2.1) to rewrite the operator FµνFρσRµνρσ in terms of FµνFρσCµνρσ,

FµρF
ρ

ν Rµν , and FµνF µνR. Next, we substitute the energy-momentum tensor

(3.2.4) in for the Ricci scalar and Ricci tensor in the higher-dimension operators

using the tree-level Einstein field equations (3.2.3), which at the present order

in couplings is again equivalent to a field redefinition. With the useful identity

in 4D,

2(FµνF µν)2 + (FµνF̃ µν)2 = 4FµρF ρ
ν F µ

σF
νσ, (3.3.2)

we obtain our final form for the effective Lagrangian,

L = −1
4FµνF

µν − 1
4R+ a′1(FµνF µν)2 + a′2(FµνF̃ µν)2 + b3FµνFρσC

µνρσ, (3.3.3)

where we have defined new higher-dimension operator coefficients,

a′1 = a1−b2/2−b3 +c2 +4c3 and a′2 = a2−b2/2−b3 +c2 +4c3. (3.3.4)

In Eq. (3.3.3), all explicit curvature dependence has been removed except for

the Weyl tensor, which in 4D is nontrivial. In the classical theory, the Weyl

tensor represents the component of the gravitational field that propagates freely

in the absence of sources and thus decouples from matter at leading order in
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Einstein’s equations. Later, we will see how this is manifested in the forward

scattering amplitudes, which at leading order are explicitly dependent on a′i

but not b3.

Constraining the parameters in Eq. (3.3.3) using analyticity, unitarity, and

causality is substantially more difficult in 4D due to dynamical gravity. We

will elaborate on these arguments later on, but let us briefly collect our final

results here. We derive bounds coming from unitarity:

a′1 ≥ 0 and a′2 ≥ 0, (3.3.5)

while the absence of superluminality in certain backgrounds implies that

a′1 + a′2 ≥ 0. (3.3.6)

Interestingly, if one blithely applies analyticity arguments to the higher-

dimension operator contributions, one also obtains Eq. (3.3.6). Just as in

Sec. 3.2.1, it is convenient to expand a′i in terms of their contributions from

electromagnetic and gravitational interactions:

a′i = αiz
4 + βiz

2 + γi, (3.3.7)

where αi, βi, and γi are generated by diagrams like the ones shown in Fig. 3.1.

Contributions coming from integrating out a charged fermion [93] or charged

scalar [107–109] are

(a1, a2) =
(

q4

1440π2m4 ,
7q4

5760π2m4

)
[fermion]

(b1, b2, b3) =
(
− q2

576π2m2 ,
13q2

1440π2m2 , −
q2

1440π2m2

)
[fermion]

(a1, a2) =
(

7q4

23040π2m4 ,
q4

23040π2m4

)
[scalar]

(b1, b2, b3) =
(

q2

1152π2m2 ,
q2

1440π2m2 ,
q2

2880π2m2

)
[scalar],

(3.3.8)

where for the scalar we have assumed minimal coupling to gravity. Given these

coefficients, the unitarity bounds in Eq. (3.3.5) imply that
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Figure 3.3. Bounds on the 4D photon-graviton effective theory derived from
integrating out a fermion (left) or scalar (right) and expressed in terms of the
contributions coming from electromagnetism (parameterized by z = q/m) and pure
gravity (parameterized by γ). The cross-hatched regions are forbidden by arguments
from unitarity, which apply to γ = γ1 (red �) and γ = γ2 (blue �), and arguments
from analyticity and superluminality, which both apply to γ = γ1 + γ2 (green �).
The WGC forbids z < 1, which overlaps with much of the region also forbidden by
infrared consistency.

z2
(
z2 − 11/2

)
≥ −γ1 × 1440π2 [fermion]

z2
(
z2 − 22/7

)
≥ −γ2 × 5760π2/7 [fermion]

z2
(
z2 − 16/7

)
≥ −γ1 × 23040π2/7 [scalar]

z2
(
z2 − 16

)
≥ −γ2 × 23040π2 [scalar],

(3.3.9)

while the bounds from analyticity and superluminality in Eq. (3.3.6) are

z2
(
z2 − 4

)
≥ −(γ1 + γ2)× 5760π2/11 [fermion]

z2
(
z2 − 4

)
≥ −(γ1 + γ2)× 2880π2 [scalar].

(3.3.10)

Curiously, for small values of γi, both fermions and scalars in 4D are subject

to the same bound:

z ≥ 2. (3.3.11)

All of our 4D constraints are summarized in Fig. 3.3. As in Sec. 3.2.1, the

coefficients γi parameterize all corrections coming from purely gravitational

interactions. In 4D, this includes the contribution from c2 + 4c3 in Eq. (3.3.4),
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which runs logarithmically due to graviton loops [110] and is thus controlled

by an ultraviolet-sensitive boundary condition. As in 3D, for sufficiently large

values of γi these bounds are automatically satisfied. Alternatively, we can

consider the case where the purely Planck-suppressed corrections are negligible,

in which case γi is small and our infrared consistency conditions bound z

strictly from below.

It is reasonable to assume that a theory that satisfies our consistency

conditions, Eqs. (3.3.9) and (3.3.10), at a given energy scale will continue to

do so deeper into the infrared. Interestingly, this implies that γi should not

decrease in the infrared, i.e., the sign of the beta function for γi should be

negative on general grounds. This is confirmed by explicit computation of the

one-loop divergences in the photon-graviton effective theory [110].

3.3.2 Analyticity (4D)

Let us endeavor to apply the analyticity argument of Sec. 3.2.2 to light-by-light

scattering in 4D. Using Eq. (3.3.3), we read off the Feynman rules for the

photon-graviton theory: there is the usual photon-photon-graviton vertex from

the Einstein-Maxwell terms, a higher-order photon-photon-graviton vertex from

the b3 term, and new quartic photon vertices from the a′1 and a′2 terms. Putting

these together, we find that the tree-level amplitudes for certain helicity states

are

M(1+2+3+4+) =M(1−2−3−4−) = 8(a′1 − a′2)(s2 + t2 + u2)

M(1+2+3−4−) =M(1−2−3+4+) = 2s4

stu
+ 8(a′1 + a′2)s2

M(1+2−3+4−) =M(1−2+3−4+) = 2t4
stu

+ 8(a′1 + a′2)t2

M(1+2−3−4+) =M(1−2+3+4−) = 2u4

stu
+ 8(a′1 + a′2)u2.

(3.3.12)

Here, we have used a helicity basis defined with all momenta incoming, so
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the second and fourth lines of Eq. (3.3.12) correspond to forward amplitudes.

Notably, at leading order in the higher-dimension operator coefficients, all

forward amplitudes depend explicitly on a′i but not b3, which controls the

irreducible interactions between the electromagnetic field strength and the

Weyl tensor. This is quite reasonable on physical grounds because, in the

classical limit, the Weyl tensor does not have a minimal coupling to the energy-

momentum tensor. Quantum mechanically, this is manifested as the fact that

the Weyl tensor mediates forward light-by-light scattering only at second order

in b3, i.e., coming from two insertions of the higher-dimension operator.

Critically, the scattering amplitudes have terms that are singular in the

s-, t-, and u-channels due to leading-order graviton exchange. In the forward

limit, the t-channel diagrams scale as ∼ s2/t and formally diverge at forward

scattering. In this limit, the partial wave expansion does not converge, the

Froissart bound is invalid, and the dispersion relation reasoning from Sec. 3.2.2

does not apply. Hence, dynamical gravity creates a considerable obstacle to

any argument from analyticity [31].

There is no immediate justification for simply dropping these singular

contributions. Nevertheless, it is interesting to compute the bound that would

arise from applying the analyticity argument of Sec. 3.2.2 to the non-singular

contributions coming from higher-dimension operators. Notably, a crucial

ingredient of the analyticity argument is the requirement that contributions to

the scattering amplitude from ultraviolet dynamics be even in s. As a result,

contributions to the dispersion relation from negative s can be directly related to

the cross-section at positive s. In 3D, this was automatically satisfied because

the scattering amplitude was a crossing-symmetric function characterizing

indistinguishable scalars. In contrast, the 4D scattering amplitudes describe

photons with distinguishable helicity labels. To form an object suitable for
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analyticity bounds, we consider the sum of all forward amplitudes, Msym,

which is by construction symmetric under the exchange of 1↔ 3 and 2↔ 4:

Msym =M(1+2+3−4−) +M(1−2−3+4+)
+M(1+2−3−4+) +M(1−2+3+4−)

= 4(s4 + u4)
stu

+ 16(a′1 + a′2)(s2 + u2)

t→0= −8s2

t
− 8s+ 32(a′1 + a′2)s2 +O(t).

(3.3.13)

The first two terms of the last line come from single graviton exchange due to the

Einstein-Maxwell photon-photon-graviton vertex. If we drop this contribution,

then the dispersion relation argument of Sec. 3.2.2 implies that the coefficient

of s2 inMsym is non-negative, so

a′1 + a′2 ≥ 0. (3.3.14)

Because the t-channel graviton singularity remains a critical obstruction to

this argument, the inequality in Eq. (3.3.14) should not yet be considered a

rigorous bound. Nevertheless, it has been noted that singular contributions

can be consistently subtracted from a dispersion relation [31, 111], provided

the theory has a weak coupling parameter that can discriminate between

the contribution from leading-order exchange of massless particles and that

from higher-dimension operators. For the photon-graviton effective action, the

natural choice for a weak coupling parameter is the gravitational constant,

G. However, by sending G→ 0, we also eliminate the very higher-dimension,

gravitationally-induced interactions that we seek to bound. Thus, we have not

identified such a weak coupling parameter here, though it may be possible.

More generally, it may be feasible to extract rigorous effective theory bounds

from theories with t-channel singularities, but we leave this formidable task for

future work.

As discussed in Sec. 3.2.2, the analyticity argument involves additional
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subtleties related to taking a contour in the complex s plane to super-Planckian

scales, which a priori could involve issues with black hole formation and asso-

ciated non-localities. However, as t → 0, the impact parameter exceeds the

Schwarzschild radius for the scattering particles, implying no black hole produc-

tion in the forward limit [97, 112]. Pathologies associated with nonperturbative

gravitational interactions are thus avoided. In any case, the same assumptions

used in our analyticity bounds, which were mentioned in Sec. 3.2.2, have been

used previously to constrain string theories from low-energy scattering [31, 113].

In general, this is justified because string amplitudes are analytic and highly

convergent at large s [114, 115].

3.3.3 Unitarity (4D)

Next, let us apply the unitarity argument of Sec. 3.2.3 to 4D. In principle,

one can define general spectral representations parameterizing the ultraviolet-

completing dynamics of (FµνF µν)2, (FµνF̃ µν)2, and FµνFρσC
µνρσ. The only

substantive difference from the 3D case is the third operator, which depends

on the spacetime curvature in a way that cannot simply be eliminated using

Einstein’s equations. In what follows, we will be interested in bounding the

coefficients of the first and second operators.

At leading order, the photon couples to the ultraviolet states according to

F µνF ρσχµνρσ and F µνF̃ ρσψµνρσ, (3.3.15)

where χµνρσ and ψµνρσ are parity-even and -odd fields that couple to the photon.

Note that these fields have the skew and interchange index symmetries of the

Riemann tensor: χµνρσ = −χνµρσ = −χµνσρ and χµνρσ = χρσµν and similarly

for ψµνρσ. As in Sec. 3.2.3, χµνρσ and ψµνρσ parameterize an arbitrary set of

intermediate single- or multi-particle states, so our unitarity argument remains

quite general.
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While there can also exist couplings of the form χµνF

µν , they can be

eliminated by the transverse condition, ∂µχµν = 0. Likewise, couplings of the

form ∂µ∂ν∂ρχσF
µνF ρσ and ∂µχνρσF µνF ρσ need not be considered because they

yield operators that are of higher order in the derivative expansion. Because

the photon-graviton effective action includes the operator FµνFρσCµνρσ, it is

also possible, in principle, that χµνρσ couples directly to Cµνρσ. However, as

shown in Sec. 3.3.2, interactions mediated through the Weyl tensor do not

affect the low-energy forward scattering amplitudes at leading order in the

higher-dimension operator coefficients. Hence, at this order, any coupling

between χµνρσ and Cµνρσ cannot contribute to the coefficients of (FµνF µν)2 and

(FµνF̃ µν)2 and can be neglected.

As before, we expand χµνρσ into its components,

χµνρσ = χ(4)
µνρσ + 1

4(ηµ[ρχ
(2)
σ]ν − ην[ρχ

(2)
σ]µ) + 1

2χ
(0)ηµ[ρησ]ν , (3.3.16)

and similarly for ψµνρσ, where χ(2)
µν and χ(4)

µνρσ are by definition traceless. Also

as in Sec. 3.2.3, we choose a normalization in which all coupling constants are

absorbed into the fields and the photon interacts via χ(4)
µνρσF

µνF ρσ+χ(2)
µνF

µ
ρF

νρ+

χ(0)FµνF
µν .

The spectral decompositions for χ(0) and χ(2)
µν are the same as in Eq. (3.2.21),

while for χ(4)
µνρσ,

〈χ(4)
µνρσ(k)χ(4)

αβγδ(k′)〉 = iδD(k + k′)
ˆ ∞

0
dµ2 ρ(4)(µ2)

k2 − µ2 + iε
Πµνρσαβγδ, (3.3.17)

where ρ(4) is the spectral function for the four-index state. A priori, the tensor

numerator Πµνρσαβγδ consists of arbitrary combinations of ηµν and kµ; however,

it is actually very constrained. By construction, Πµνρσαβγδ is traceless with

index (anti-)symmetry properties consistent with those of χ(4)
µνρσ. In addition,

just as for the spin-2 case, there are general arguments that fix the form of
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Πµνρσαβγδ. As discussed in Refs. [116, 117], the tensor numerators of higher-spin

propagators are functions of the projection operator Πµν defined in Eq. (3.2.23).

This ensures that the transverse condition kµΠµνρσαβγδ = 0 applies on-shell.

This is analogous to the usual transverse conditions required for theories of

massive higher-spin fields. We have checked that the only projection operator

that satisfies the requisite trace, index symmetry, and transverse conditions can

indeed be written in terms of combinations of Πµν and is moreover comprised

of two such linearly independent tensor structures, shown in Eqs. (3.A.1) and

(3.A.2) of App. 3.A. Last of all, unitarity implies that [20]

Πµνρσαβγδ =
∑
i

εiµνρσε
∗
iαβγδ, (3.3.18)

so the tensor numerator is equal to the sum over polarization tensors labeled by

i, with normalization εiµνρσε∗µνρσj = δij. However, the tensor numerator shown

in Eqs. (3.A.1) and (3.A.2) of App. 3.A identically satisfies Π µνρσ
µνρσ = 0,

indicating that χ(4)
µνρσ carries states of negative norm. Thus, we conclude that

χ(4)
µνρσ is unphysical and should be eliminated altogether.

Nonetheless, χ(0) and χ(2)
µν are still propagating and unitarity dictates that

their spectral functions ρ(0) and ρ(2) be positive. At low energies, integrating

them out yields

χµνρσF
µνF ρσ → (FµνF µν)2

ˆ ∞
0

dµ2 ρ
(0)/2 + ρ(2)/12

µ2

+ (FµνF̃ µν)2
ˆ ∞

0
dµ2 ρ

(2)/8
µ2 .

(3.3.19)

Thus, the contributions to (FµνF µν)2 and (FµνF̃ µν)2 are both positive.

An analogous argument applies to the parity-odd field, ψµνρσ. To see this,

we define

ψµνρσF
µνF̃ ρσ = χ̃µνρσF

µνF ρσ, (3.3.20)

where χ̃µνρσ = εαβρσψµναβ/2 is a parity-even field with the exact same symme-
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tries as χµνρσ. Running through the same logic as above implies that integrating

out ψµνρσ induces positive coefficients for (FµνF µν)2 and (FµνF̃ µν)2. Putting it

all together, we find that unitarity implies

a′1 ≥ 0 and a′2 ≥ 0 (3.3.21)

for a weakly-coupled ultraviolet completion free of ghosts or tachyons.

3.3.4 Causality (4D)

We now turn to the problem of calculating the speed of photon propagation

in a nontrivial 4D background. As before, we implement perturbation theory

around a background electromagnetic and gravitational field,

Aµ = Aµ + aµ, gµν = gµν + hµν , (3.3.22)

where the graviton is fully dynamical in 4D. Similarly, the electromagnetic field

strength can be expanded as Fµν = F µν + fµν , with fµν = ∇µaν − ∇νaµ =

∂µaν − ∂νaµ, where the final equality follows from the cancellation of the

connection coefficients in the covariant derivatives.

Expanding perturbatively in the photon is straightforward for (FµνF µν)2

and (FµνF̃ µν)2, but a slight subtlety arises for FµνFρσCµνρσ. In particular,

this operator carries dependence on graviton fluctuations, which naively can

be eliminated in favor of the photon using the linearized Einstein field equa-

tions. However, as discussed in Secs. 3.3.2 and 3.3.3, this does not actually

happen because the Weyl tensor does not couple minimally to the energy-

momentum tensor. Thus, the graviton dependence in FµνFρσC
µνρσ can be

dropped, although this operator still contributes to the photon dispersion rela-

tion through the Weyl tensor background value, Cµνρσ. This is nicely consistent

with the analyticity arguments of Sec. 3.3.2 because of the close relationship

between light-by-light scattering and the propagation of photons in a fixed

electromagnetic background [31].
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Let us consider a photon fluctuation described by a plane wave with circular

polarization εa and momentum ka. Throughout this chapter, we work in Lorenz

gauge, kaεa = 0. As before, we go to a geometric-optics limit in which the

wavelength of the photon is far shorter than the typical scale of spacetime

curvature [118]. In this regime, the dispersion relation is

η̃abkakb = 0, (3.3.23)

where at leading order in the couplings a′i and b3 the effective metric is

η̃ab = ηab + 32
(
a′1FacFbd + a′2F̃acF̃bd

)
εc∗εd + 8b3Cacbdε

c∗εd. (3.3.24)

Since the speed of propagation depends on the photon polarization, nontrivial

electromagnetic fields induce birefringence.

In analogy with Sec. 3.2.4, it is natural to consider a constant electro-

magnetic background, F ab 6= 0, defined in vielbein coordinates. However, an

additional complication arises due to dynamical gravity: a nontrivial electro-

magnetic background induces photon-graviton mixing of the form F
c

a fbch
ab.

This effect has been neglected in the literature on higher-order corrections

to the photon dispersion relation [93, 119], most likely because it is Planck-

suppressed. However, these corrections can easily dominate over contributions

from higher-dimension operators in the photon-graviton effective action. For

example, in the range where the WGC is marginally satisfied, m/q is of order

the Planck scale and the effects of photon-graviton mixing will dwarf those of

the higher-dimension operators.

To sidestep the issue of photon-graviton mixing, we focus on a background

of thermal photons at temperature T . Since the background field values are

thermally averaged, FabFcd 6= F ab · F cd. In particular, for a photon gas, the

electromagnetic field has zero average value, F ab = 0, but nonzero variance,

FabFcd 6= 0. Photon-graviton mixing is identically zero because it scales as a
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single power of F ab. Strictly speaking, this applies to quanta at wavelengths

longer than ∼ 1/T , so the effects of the background photon gas can be coarse-

grained on scales relevant to photon-graviton mixing. In practice, this allows us

to discard all terms in the action that are odd in the background field strength,

F ab. In this regime, the photon and graviton propagate independently, albeit

with a modified dispersion relation induced by the ambient photon gas. To

calculate the photon dispersion relation, we then simply extract the part of the

effective action (3.3.3) that is quadratic in the photon fluctuation. Note that

while the energy of the propagating photon that we consider is, by construction,

less than the temperature, the wavelength can still easily be much shorter than

the typical scale of spacetime curvature induced by the photon gas. The thermal

background sources a conformally-flat FRW metric, which acts effectively as

flat space for photon propagation at leading order due to classical conformal

invariance of electromagnetism in 4D; in any case, just as in Sec. 3.2.4, a

conformally-flat metric in any dimension reduces the question of causality

to a special relativistic problem, since coordinate speeds and vielbein speeds

coincide.

In 4D, the energy density ρ and pressure p are related by p = ρ/3, where

ρ = π2T 4/15. Using the fact that T ab = diag(ρ, p, p, p) together with Eq. (3.2.4),

we find the simple expression

FabFcd = F̃abF̃cd = π2

45T
4(δacδbd − δadδbc), (3.3.25)

where δab is again the Kronecker delta function. As in Eq. (3.2.31), Eq. (3.3.25)

breaks Lorentz invariance due to the existence of the preferred rest frame of

the photon gas. Inputting this expression into the effective metric (3.3.24), we

find

v = k0

|~k|
= 1− 32π2

45 (a′1 + a′2)T 4, (3.3.26)
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independent of the direction of propagation or polarization, where we have

used that Cabcd = 0 because the background FRW metric is conformally flat.

In the limit that gravity is decoupled, our expression for the photon velocity

agrees with Ref. [120], which considered a thermal photon background in flat

space. Note, however, that our formula does not agree with Ref. [93], which

computed the photon velocity in a FRW universe but neglected to include the

corrections coming from (FµνF µν)2 and (FµνF̃ µν)2. In conclusion, we require

that

a′1 + a′2 ≥ 0 (3.3.27)

to forbid superluminal propagation within the photon gas.

The relationship between superluminality and causality violation is, however,

quite subtle in curved spacetime. A famous example is the seminal work of

Ref. [93], which computed the speed of photons near a Schwarzschild black

hole, taking into account corrections from the gravitational Euler-Heisenberg

Lagrangian obtained by integrating out the electron. Curiously, the authors

of Ref. [93] found that orbitally-traversing photons polarized in the radial

direction propagate superluminally. However, this superluminal propagation

cannot be an authentic signal of causality violation since the theory is literally

real-world electrodynamics. While there is no universally-accepted resolution

to this puzzle, it is important to note that an explicit CCC was not constructed

in Ref. [93].3.6 Despite the existence of local superluminal propagation, it is

therefore clear that spacetime curvature can compensate for these effects in such

a way that actual information flow remains causal. This is a prime example of

the fallacy of interpreting superluminality as a telltale sign of acausal signal
3.6It has been argued (see Ref. [121] and references therein) that the superluminality derived

in Ref. [93] is harmless because causality is dictated by high-frequency photon modes that
lie outside the regime of the photon-graviton effective theory. However, this interpretation
implies non-analyticity of the photon propagator and violation of the Kramers-Kronig
dispersion relation.
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propagation.

Our ideal goal is then to engineer a CCC in 4D that is analogous to the

construction in Sec. 3.2.4, consisting of two bubbles of thermal photon gas in

relative motion. However, since 4D gravity is dynamical, a non-vanishing Weyl

tensor is induced in the vacuum region exterior to the photon gas. As shown in

Eq. (3.2.37), if photons are only slightly superluminal, then a CCC requires a

huge relative boost. In turn, the curvature outside the bubbles will be large and

thus important for the propagation of photons during their traversal between

the bubbles. Indeed, these metric effects will generally dominate over those

induced by higher-dimension operators in the effective action. In addition,

at such large relative boosts, it is no longer a good approximation to treat

the bubbles as independent because they back-react. Of course, none of these

effects arise in 3D, where the metric is locally flat in vacuum. Nonetheless, as we

shall see, superluminal photon propagation can be linked to sharp pathologies

via more elaborate constructions involving black holes.

In particular, consider a Schwarzschild black hole in the Hartle-Hawking

vacuum [122]. This describes a black hole in equilibrium with an exterior

thermal bath, so the event horizon is static.3.7 Outside the black hole, the

energy-momentum tensor is approximately described by a thermal gas at

Hawking temperature T . For a sufficiently massive black hole, T can easily

lie below the cutoff of the photon-graviton effective theory. The thermal

background outside the black hole causes the speed of light to vary in accordance

with our earlier discussion of FRW. However, there is an additional subtlety here

in that, unlike the FRW case, the Schwarzschild geometry is not conformally

flat, so we must account for the coupling of propagating photons to the

background Weyl tensor in Eq. (3.3.24). As shown in Ref. [93], however, this
3.7Without this stipulation, Hawking evaporation causes the event horizon to move faster

than the tiny corrections to the speed of light that we consider here.
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contribution does not affect the speed of radially-propagating photons, so the

Weyl component of the Schwarzschild metric can be ignored. Another subtlety

is that very close to the horizon, the Hartle-Hawking vacuum actually implies

deviations from thermality [123]. Because of these differences, Eq. (3.3.26) does

not, strictly speaking, apply; that is, the numerical details of the superluminality

bound (3.3.27) may be somewhat different. In any case, these detailed near-

horizon corrections affect our results quantitatively but not qualitatively.

Consider the case in which the superluminality bound fails. In this case,

photons will traverse slightly outside of the light-cone defined by the spacetime

metric, due to the ambient Hawking radiation. Note that this setup differs

crucially from that of Ref. [93]. In particular, the authors of Ref. [93] did not

consider the effects of Hawking radiation, so modifications to the photon speed

arose solely from the non-vanishing Weyl tensor in the vacuum Schwarzschild

spacetime. As a result, Ref. [93] found that radially-propagating photons were

luminal, so light cannot escape the event horizon. On the other hand, in our

construction radial photons are superluminal if the bound fails, because the

Hawking radiation modifies the photon speed in all directions. Consequently, a

signal sent from inside the horizon can propagate radially to the outside in finite

time as measured by an exterior observer. This phenomenon is in tension with

black hole complementarity [124], in which the exterior and interior regions are

treated as separate but equivalent Hilbert spaces. That is, if one were able to

send signals from behind the horizon of a black hole, then the usual challenges

to unitarity that come from black hole information theory [125] would no longer

be so elegantly solved by complementarity.

Alternatively, one can interpret deviations from luminal photon propagation

as a modification of the effective horizon of the black hole. For example, take the

case where Eq. (3.3.27) (or its near-horizon analogue) is violated and the photon
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is superluminal due to the ambient Hawking radiation. The effective horizon

tilts in the space-like direction, shifting to a radius smaller than the usual

Schwarzschild radius. Because the effective horizon shrinks, Hawking-radiated

photons are emitted at a higher temperature. As the temperature increases, the

velocity shift of the photon then increases, thus shrinking the effective horizon

even more. In principle, this suggests an instability in the position of the

effective black hole horizon. In contrast, if the bound is satisfied, then photon

propagation is subluminal, the effective horizon grows, and Hawking-radiated

photons exit at a lower temperature. In this case, the ambient photon gas is

colder and the photon speed moves closer to unity. Hence, in this scenario the

position of the effective horizon is stable.

Last of all, let us consider the maximally-extended Schwarzschild solution

[126]. This background supports two asymptotically-flat spacetime regions,

I and III, exterior to the two-sided black hole. One interpretation of this

spacetime is that it describes a wormhole linking two black hole mouths

[127]. When the superluminality bound fails, the concomitant faster-than-light

propagation enables observers in regions I and III to communicate by sending

signals through region II,3.8 as shown in Fig. 3.4. Physically, this implies that

the Einstein-Rosen bridge is traversable by photons and thus regions I and

III are in causal contact. In contrast with usual constructions of traversable

wormholes, this setup does not require the existence of exotic matter and

associated violations of the averaged null energy condition [128]. As discussed

in Ref. [129], if the wormhole mouths are in relative motion, it is possible to

construct a CCC, in this case not traversable by matter following timelike

or null trajectories, but rather by the superluminal photons that result from
3.8As for the one-sided black hole, we require that both wormhole mouths have static event

horizons, which can be achieved by putting each in equilibrium with a thermal bath
enclosing the mouth.
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I
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IV

Figure 3.4. Conformal diagram for a maximally-extended Schwarzschild black hole.
The effective horizon (dotted black) shrinks in a theory failing our superluminality
bound. Superluminal photon propagation (red dashed arrow) allows observers in
regions I and III to communicate.
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Figure 3.5. Conformal diagram (left) and embedding diagram of a spacelike slice
(right) of the maximally-extended Schwarzschild black hole, describing wormhole
mouths in relative motion. In a theory with superluminal propagation, the effective
horizon (dotted black) shrinks and the wormhole becomes traversable by a signal
sent from region III to I (red dashed arrow). The codimension-one surfaces (dashed
green) at large spatial distance from the mouths are identified, albeit boosted relative
to one another (green arrows). Also shown is a particular tangent codimension-three
spacelike surface (dashed blue).

violation of the near-horizon version of Eq. (3.3.27), which is equally destructive

to causality. See Fig. 3.5 for an illustration of this setup.

Note, however, that a wormhole can only support a true causal paradox

if there is a boost between the wormhole mouths. In essence, the CCC

construction is similar to that of Sec. 3.2.4, with the difference being that here we

consider signals sent through the wormhole between two observers, one located

just outside of each wormhole mouth. In particular, if the mouths are in relative
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motion at velocity u, then Eq. (3.2.37) must be satisfied, where vavg is the

effective speed at which a light signal appears to propagate between the mouths

as seen in the exterior spacetime, i.e., the speed of information propagation

as measured by external observers located near each wormhole mouth. For

vavg only slightly superluminal, an enormous boost is required, inducing large

back-reaction on the metric and invalidating our starting background. However,

the wormhole mouths can be taken to be parametrically far apart; since the

time the signal takes to go through the wormhole throat is independent of

the distance between the mouths, vavg can be made arbitrarily superluminal,

overcoming any gravitational redshift effect in the exterior spacetime. With

vavg parametrically large, the required boost u can be very small, yielding

negligible back-reaction and gravitational radiation while still allowing for the

formation of a CCC.

From the perspective of AdS/CFT [52, 54], signal propagation through a

traversable wormhole is puzzling and likely pathological [37]. As observed in

Ref. [130], traversable wormholes correspond to non-local dynamics in the dual

CFT. More concretely, our particular setup can be embedded in the construction

of Ref. [131]: a maximally-extended Schwarzschild black hole geometry in

asymptotically-AdS spacetime, dual to two entangled non-interacting CFTs

on a sphere. In this geometry, the ability to send signals between regions

I and III is dual to non-unitary evolution of the CFT, thus disrupting the

canonical notions of entanglement entropy between the two CFTs [132, 133].

Moreover, in light of the ER=EPR conjecture [57], communication between

mouths of an Einstein-Rosen bridge is dual to pathological information transfer

via entanglement. While this scenario is deserving of a more thorough analysis,

it lies beyond the scope of the present work.

We have outlined a variety of causal and quantum gravitational pathologies
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that suggest that a superluminality bound like Eq. (3.3.27) is a requirement

of any consistent low-energy effective theory. Assuming we are permitted to

locate regions I and III of the extended Schwarzschild solution within the same

asymptotic spacetime, then corrections to photon propagation that violate the

superluminality bound transform the Einstein-Rosen bridge into a traversable

wormhole and a CCC can be formed.

3.4 Summary and Future Directions

In this chapter, we have derived infrared consistency conditions on the photon-

graviton effective action in Eq. (3.1.2) in 3D and 4D. These bounds are deduced

from considerations of analyticity of light-by-light scattering, unitarity of the

ultraviolet completion, and superluminality of photon fluctuations in nontrivial

backgrounds. The 3D setup is a convenient starting point, where gravity is

non-dynamical but still has a physical effect on photon-photon interactions. In

4D, many of the arguments are complicated (or, in the case of analyticity, even

obstructed) by dynamical gravity. Our bounds on the photon-graviton effective

action are summarized in Eqs. (3.1.4), (3.1.5), and (3.1.6) in Sec. 3.1. We then

specialize to the case where electromagnetic corrections to the effective action

come from a particle of charge-to-mass ratio z = q/m. Our infrared consis-

tency conditions are then a constraint on a combination of z and coefficients

parameterizing unspecified gravitational corrections, as shown in Eqs. (3.2.12),

(3.3.9), and (3.3.10) and in Fig. 3.3.

The present work leaves a number of interesting avenues for future research.

For example, as noted in Ref. [1], the WGC is not sharply defined in a theory

with a Higgsed Abelian force carrier. In particular, in the Higgs phase, states of

different charge can mix, so q andm are non-commuting operators, thus making

the WGC ill defined. Furthermore, the original justification of the WGC—that
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is, the pathology of exactly stable extremal black holes—is murky in the Higgs

phase since a charged black hole can shed charge associated with a massive

U(1) and subsequently decay. On the other hand, the photon-graviton effective

action is still well defined irrespective of whether the photon is massive or

massless. As a result, it is especially interesting to consider infrared consistency

conditions in the presence of a nonzero photon mass. For a Proca theory, we

can simply add a physical mass. A more interesting case would be to introduce

dynamical gauge symmetry breaking with a physical Higgs field.

Another direction for future work relates to the more complicated scenario of

multiple Abelian forces. As shown in Ref. [1], it is straightforward to apply the

logic of extremal black hole decay to theories with multiple forces and charged

particles. The generalization of the WGC then becomes a simple geometric

condition on the vectors describing the charge-to-mass ratios of particles in

the theory. This generalization demands a more stringent constraint than

Eq. (3.1.1) applied to each charge axis. Given this understanding, it would

be interesting to see if similar geometric constraints arise from studying the

low-energy effective action describing multiple photons interacting with the

graviton. In principle, such an action will have many more free parameters

than Eq. (3.1.2), but likewise many more constraints coming from analyticity,

unitarity, and causality.

Last of all, we have not pursued possible constraints on the photon-graviton

action from thermodynamic considerations. As discussed in Ref. [134], vari-

ations in the speed of light can allow for violation of the second law of ther-

modynamics when considering Hawking radiation in a black hole background.

Since the speed of photon propagation is modified by higher-dimension op-

erators, it may be possible to derive additional substantive constraints from

thermodynamic reasoning.
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The boundary between the landscape of healthy ultraviolet-completable

theories and the swampland of pathological effective theories offers a promising

arena for new physics insights. As we have shown, the particular criterion

asserted by the WGC may be studied from purely low-energy reasoning given

the nontrivial requirements of infrared consistency. In particular, we have

determined regions in the effective theory that are forbidden by violations of

analyticity, unitarity, and causality. Rescuing the forbidden regions of parameter

space would require loopholes in all three arguments, or alternatively, reasons

to countenance all of these pathologies.
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3.A Propagator Numerator

In Eq. (3.3.17), we introduced a spectral representation for the field χ(4)
µνρσ. We

now show that the tensor numerator of this spectral representation, Πµνρσαβγδ,

is highly constrained. To begin, note that χ(4)
µνρσ does not correspond to a

canonical spin-4 state, which is traditionally represented by a four-index, fully

symmetric tensor [116, 117, 135, 136]. Like the Riemann tensor, χ(4)
µνρσ is

instead antisymmetric in its first and second pairs of indices separately and

symmetric on the exchange of these pairs. The projection operator Πµνρσαβγδ

inherits these index symmetry properties and tracelessness, and is furthermore

symmetric on the interchange of the entire first and second sets of four indices.

To determine Πµνρσαβγδ, we start with an ansatz tensor that is an arbitrary

function of ηµν and kµ. Imposing the transverse condition kµΠµνρσαβγδ = 0

on-shell, it is straightforward to show that Πµνρσαβγδ is necessarily a function

of the projection operator Πµν in Eq. (3.2.23). Altogether, these restrictions

only allow for two possible tensor structures:

ΠµρΠνβΠσδΠαγ + ΠνσΠµβΠρδΠαγ + ΠµρΠναΠσγΠβδ + ΠνσΠµαΠργΠβδ

+ ΠνρΠµγΠσβΠαδ + ΠµσΠνγΠρβΠαδ + ΠνρΠµδΠσαΠβγ + ΠµσΠνδΠραΠβγ

− ΠνρΠµβΠσδΠαγ − ΠµσΠνβΠρδΠαγ − ΠνρΠµαΠσγΠβδ − ΠµσΠναΠργΠβδ

− ΠµρΠναΠσδΠβγ − ΠνσΠµαΠρδΠβγ − ΠµρΠνβΠσγΠαδ − ΠνσΠµβΠργΠαδ

+ ΠνρΠµαΠσδΠβγ + ΠµσΠναΠρδΠβγ + ΠνρΠµβΠσγΠαδ + ΠµσΠνβΠργΠαδ

+ ΠµρΠνδΠσβΠαγ + ΠνσΠµδΠρβΠαγ + ΠµρΠνγΠσαΠβδ + ΠνσΠµγΠραΠβδ

− ΠνρΠµδΠσβΠαγ − ΠµσΠνδΠρβΠαγ − ΠνρΠµγΠσαΠβδ − ΠµσΠνγΠραΠβδ

− ΠµρΠνγΠσβΠαδ − ΠνσΠµγΠρβΠαδ − ΠµρΠνδΠσαΠβγ − ΠνσΠµδΠραΠβγ

− ΠµαΠνβΠργΠσδ + ΠµβΠναΠργΠσδ + ΠµαΠνβΠρδΠσγ − ΠµβΠναΠρδΠσγ

− ΠµγΠνδΠραΠσβ + ΠµδΠνγΠραΠσβ + ΠµγΠνδΠρβΠσα − ΠµδΠνγΠρβΠσα

+ 2(ΠµρΠνσΠαδΠβγ − ΠµρΠνσΠαγΠβδ − ΠµσΠνρΠαδΠβγ + ΠµσΠνρΠαγΠβδ)
(3.A.1)
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and

ΠµαΠνβΠργΠσδ − ΠµβΠναΠργΠσδ − ΠµαΠνβΠρδΠσγ + ΠµβΠναΠρδΠσγ

+ ΠµγΠνδΠραΠσβ − ΠµδΠνγΠραΠσβ − ΠµγΠνδΠρβΠσα + ΠµδΠνγΠρβΠσα

+ ΠµαΠνγΠρδΠσβ − ΠµγΠναΠρδΠσβ − ΠµαΠνγΠρβΠσδ + ΠµγΠναΠρβΠσδ

+ ΠµαΠνδΠρβΠσγ − ΠµδΠναΠρβΠσγ − ΠµαΠνδΠργΠσβ + ΠµδΠναΠργΠσβ

+ ΠµγΠνβΠρδΠσα − ΠµβΠνγΠρδΠσα − ΠµγΠνβΠραΠσδ + ΠµβΠνγΠραΠσδ

+ ΠµδΠνβΠραΠσγ − ΠµβΠνδΠραΠσγ − ΠµδΠνβΠργΠσα + ΠµβΠνδΠργΠσα.
(3.A.2)

Consequently, Πµνρσαβγδ must be an arbitrary linear combination of these two

tensors. As noted in the body of the text, however, the forms of these tensors

imply that Π µνρσ
µνρσ = 0, which cannot be equal to a sum over polarization

tensors and is thus in violation of unitarity.
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Chapter 4
Quantum Gravity Constraints from
Unitarity and Analyticity

We derive rigorous bounds on corrections to Einstein gravity using unitarity and

analyticity of graviton scattering amplitudes. In D ≥ 4 spacetime dimensions,

these consistency conditions mandate positive coefficients for certain quartic

curvature operators. We systematically enumerate all such positivity bounds in

D = 4 and D = 5 before extending to D ≥ 6. Afterwards, we derive positivity

bounds for supersymmetric operators and verify that all of our constraints

are satisfied by weakly-coupled string theories. Among quadratic curvature

operators, we find that the Gauss-Bonnet term in D ≥ 5 is inconsistent unless

new degrees of freedom enter at the natural cutoff scale defined by the effective

theory. Our bounds apply to perturbative ultraviolet completions of gravity.

This chapter is from Ref. [3], B. Bellazzini, C. Cheung, and G. N. Remmen,
“Quantum Gravity Constraints from Unitarity and Analyticity,” Phys. Rev.
D93 (2016) 064076, arXiv:1509.00851 [hep-th].

4.1 Introduction

Low-energy effective theory describes quanta interacting indirectly through

kinematically inaccessible states. The dynamics are characterized by an effective

action that typically includes all interactions permitted by symmetry with

couplings of order unity. However, in certain cases, self-consistency at long

distances imposes nontrivial constraints on the coefficients of effective operators.

This is famously true in the theory of pions, where the operator coefficients

of certain higher-derivative operators are required to be strictly positive to

http://dx.doi.org/10.1103/PhysRevD.93.064076
http://dx.doi.org/10.1103/PhysRevD.93.064076
http://arxiv.org/abs/1509.00851
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ensure causal particle propagation together with unitarity and analyticity of

scattering amplitudes at complex momenta [31, 111, 113, 137, 138].

As low-energy criteria, causality, unitarity, and analyticity impose con-

straints that are independent of the detailed ultraviolet dynamics. Conse-

quently, these consistency conditions offer special utility in the context of

quantum gravity, where the ultraviolet completion is not known with certainty.

For instance, such bounds have been derived for the effective theory of gravitons

and photons [2], where consistency necessitates large charge-to-mass ratios

precisely of the form of the weak gravity conjecture [30].

Notably, a proper diagnosis of causality violation in curved spacetime is

subtle since particle propagation can be locally superluminal even in healthy

theories. For example, it has long been known that photons with certain

polarizations travel superluminally in the vicinity of a black hole in the effective

theory of photons and gravitons describing our actual universe [93]. Instead, a

more global measure of causality, e.g., the existence of closed timelike curves,

is necessary to establish a true pathology. On the other hand, unitarity and

analyticity offer alternative criteria that are mathematically rigorous and

applicable in the flat-space limit.

In this chapter, we systematically derive new constraints on curvature

corrections in gravity from unitarity and analyticity. The graviton effective

theory is described by the action4.1

S =
ˆ

dDx
√
−g

∞∑
n=1
Ln, (4.1.1)

where Ln are contributions to the action entering at order 2n in the derivative

expansion and
4.1In this chapter, we work in mostly-plus signature and write κ =

√
8πG, Rµν = Rρµρν , and

Rµνρσ = ∂ρΓµνσ + · · · .
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L1 = R

2κ2 and L2 = λ(RµνρσR
µνρσ − 4RµνR

µν +R2) (4.1.2)

are the Einstein-Hilbert and Gauss-Bonnet terms. We assume the Gauss-

Bonnet form for L2 throughout this chapter since this is the unique ghost-free

quadratic curvature invariant [139, 140] in D dimensions. Moreover, we restrict

our analysis to effective theories in which L4 takes the form

L4 =
7∑
i=1

ciOi, (4.1.3)

expressed in terms of the minimal basis of quartic Riemann operators in

Ref. [141],

O1 = RµνρσRµνρσR
αβγδRαβγδ O2 = RµνρσR δ

µνρ R
αβγ

σRαβγδ

O3 = RµνρσR αβ
µν R γδ

αβ Rρσγδ O4 = RµνρσR αβ
µν R γδ

ρα Rσβγδ

O5 = RµνρσR αβ
µν R γ δ

ρ α Rσγβδ O6 = RµνρσR α β
µ ρ R

γ δ
α β Rνγσδ

O7 = RµνρσR α β
µ ρ R

γ δ
α ν Rβγσδ.

(4.1.4)

Note that linear dependences arise among operators as the dimensionD of space-

time decreases. At quadratic order, L2 is unphysical in D ≤ 3, a total derivative

in D = 4, and dynamical in D ≥ 5. Meanwhile, at quartic order, the number

of algebraically independent4.2 operators Oi in D = 4, 5, 6, 7, 8 is 2, 4, 6, 6, 7,

respectively [141], with one linear combination—the eight-dimensional Euler

density—a total derivative in D = 8 and hence dynamical only in D ≥ 9 [143].

Our analysis hinges on the on-shell four-point graviton scattering ampli-

tude, M , whose forward limit is intimately linked to the total cross-section by

well-known analyticity arguments [31, 138]. By marginalizing over the exter-

nal graviton polarizations, we can then systematically derive a rigorous and

inclusive set positivity bounds on the coefficients of operators in the graviton
4.2Applying leading-order equations of motion to Ln is equivalent to a field definition modulo

new terms generated in Ln+1. Repeating this procedure at each order, we can freely
impose R = Rµν = 0 in a pure gravity theory [142].
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effective action. Throughout this chapter, we assume a perturbative ultraviolet

completion of gravity, so there exists a well-defined expansion in ~.

We begin with an analysis of quartic curvature corrections, proving that

in D = 4 the coefficients of the (R2)2 and (RR̃)2 operators are positive. Our

results precisely match those of Ref. [144], which derived bounds from the

condition of locally subluminal graviton propagation. We then generalize our

arguments to D = 5 and D ≥ 6. Subsequently, we obtain positivity constraints

on supersymmetric operators in generalD, which in the literature are sometimes

denoted t8t8R
4 and t8(R2)2. As a consistency check, we verify that all our

constraints are satisfied in the bosonic, type II, and heterotic string theories.

Moving on to quadratic curvature corrections, we argue that unitarity and

analyticity exclude theories in which λ� 1 with no new degrees of freedom

present at or below the mass scale Λ ∼ |λκ2|−1/2, the natural cutoff associated

with the Gauss-Bonnet term and the derivative expansion. Our results precisely

accord with those of Maldacena et al. [37], who demonstrated that this class

of theories is inconsistent with global causality.

The remainder of this chapter is organized as follows. In Sec. 4.2, we review

the arguments of Ref. [31] whereby unitarity and analyticity impose rigorous

positivity bounds on operator coefficients in effective theories. Afterwards,

in Sec. 4.3 we apply these methods to establish the positivity of certain

coefficients of quartic curvature operators, starting in D = 4 and D = 5 and

then generalizing to D ≥ 6. We then apply our bounds to supersymmetric

theories and string theories. Finally, we study quadratic curvature operators

in Sec. 4.4 and conclude in Sec. 4.5.
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4.2 Analyticity Argument

In this section we review how operator coefficients in effective field theories are

constrained by the analyticity of scattering amplitudes at complex momenta.

Our analysis follows that of Ref. [31], which derived positivity bounds on

operator coefficients by relating the low-energy limit of forward amplitudes to

strictly positive integrals of cross-sections.

Our object of interest is the on-shell amplitude M describing four-point

graviton scattering in D dimensions. Here, the choice of the external polariza-

tions is built into the functional form ofM , as is the case for helicity amplitudes

in D = 4. From this viewpoint, helicity is just a quantum number labeling the

external states, no different from baryon or lepton number. Sometimes it will be

useful to viewM as a function of the external particle labels, M = M(1, 2, 3, 4),

and other times as a function of the kinematic invariants, M = M(s, t, u),

where

s = −(k1 + k2)2, t = −(k1 + k3)2, u = −(k1 + k4)2, (4.2.1)

working in the convention where all momenta are incoming, so k1+k2+k3+k4 =

0.

To derive constraints from analyticity, we will be interested in scattering

amplitudes that are simultaneously forward and invariant under crossing in

the t-channel. Formally, t-channel crossing symmetry implies invariance under

swapping particle labels 1↔ 3 or 2↔ 4 while leaving the functional form of

M—which encodes the polarization choices—fixed, so

M(1, 2, 3, 4) = M(3, 2, 1, 4) = M(1, 4, 3, 2) = M(3, 4, 1, 2). (4.2.2)

For external gravitons, crossing symmetry is ensured if the exchanged states are

indistinguishable. This happens in D = 4 if the states have identical helicity
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and more generally in D dimensions if the states have the same polarization

relative to their momenta. Mathematically, M is crossing symmetric provided

the momentum and polarization of particle 1 are related by an improper Lorentz

transformation to those of particle 3, and likewise for particles 2 and 4. In

terms of kinematic invariants, a crossing symmetric amplitude then satisfies

M(s, t) = M(−s− t, t), (4.2.3)

where the momenta are swapped but the polarizations relative to momenta—

which in D = 4 are the helicities—are untouched.

Meanwhile, the forward limit of the amplitude, M(s, t→ 0), corresponds to

an identification of particles 1↔ 3 and 2↔ 4. This is achieved simultaneously

with crossing symmetry if we restrict to the following kinematic regime:

forward and

crossing symmetric
=⇒

(k3, ε3)↔ (−k1, ε1) and

(k4, ε4)↔ (−k2, ε2),
(4.2.4)

where ε1 and ε2 are real linear polarizations. We choose a basis of linear

polarizations because an amplitude with fixed external circular polarizations

cannot be simultaneously crossing symmetric and forward.

The forward and crossing symmetric amplitude, M(s, t → 0), can then

be expanded in a power series in s and t. While analytic singularities in s

or t arise, their form is severely restricted by the locality of the underlying

theory. As noted earlier, we assume throughout this chapter a perturbative

ultraviolet completion of gravity, so we are justified in considering only the

leading contribution in the ~ expansion, i.e., tree-level exchange.

At tree level, analytic singularities in kinematic invariants enter at worst

as simple poles. Moreover, a t-channel singularity in the forward limit can

only arise from non-local terms corresponding to graviton exchange induced by

the leading Einstein-Hilbert interactions, so the general form for the forward
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amplitude is

M(s, t→ 0) =
∞∑
n=0

fns
n +O(s2/t). (4.2.5)

The first term is regular, as it is generated by heavy particle exchange, while

the second term is singular because it comes from t-channel graviton exchange

scaling as ∼ s2/t. The form of Eq. (4.2.5) together with the crossing symmetry

relation of Eq. (4.2.3) implies that

M(s, t→ 0) = M(−s, t→ 0) +O(s), (4.2.6)

where the first term arises because the limit of a regular function is the

function evaluated at the limit of its arguments, while the second term is a

residual contribution from applying crossing symmetry to the singular O(s2/t)

contribution.

The parameters fn depend on the coefficients of operators in the effective

action of the low-energy theory. To determine analyticity constraints, we

consider the order n residue of M(s, t→ 0) in the complex s plane, yielding

fn = 1
2πi

˛
C

ds
sn+1

[
M(s, t→ 0) +O(s2/t)

]
, (4.2.7)

where C denotes a small contour encircling the origin.

As previously noted [2, 31], the O(s2/t) singular contribution is formally

infinite in the strictly forward limit and therefore a major obstacle to deriving

bounds from analyticity. Nevertheless, for n 6= 2 this term is eliminated by

the residue theorem. While forward singularities of order sn/t can arise from

loop-level graviton exchange diagrams, we are working at leading order in the

~ expansion so these contributions are formally subdominant. On the other

hand, n = 2 is more subtle, but we will show that in certain parameter regimes

the O(s2/t) term can be subdominant to the rest of the amplitude, allowing for

a bound to be placed. In any case, we leave a detailed discussion of these issues

for later sections and for now simply drop the O(s2/t) contribution. Terms
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subleading in the forward limit of the Einstein-Hilbert amplitude must by

power counting go as O(s) and will thus be eliminated in the contour integral

for all n ≥ 2.

By Cauchy’s theorem, we can blow up C into a new contour C ′ that runs just

above and below the real s axis, plus a circular boundary contour at infinity,

yielding

fn = 1
2πi

(ˆ −s0
−∞

+
ˆ ∞
s0

)
ds
sn+1 Disc[M(s, t→ 0)] + boundary integral, (4.2.8)

where s0 is any scale above zero and below the first massive threshold in

the ultraviolet completion. We note that Disc[M(s, t→ 0)] = M(s + iε, t→

0) −M(s − iε, t → 0). By the Schwarz reflection principle, M(s∗, t → 0) =

M(s, t→ 0)∗, so

Disc[M(s, t→ 0)] = 2iIm[M(s, t→ 0)]. (4.2.9)

The crossing symmetry relation in Eq. (4.2.6) then implies that

Disc[M(−s, t→ 0)] = −Disc[M(s, t→ 0)], (4.2.10)

dropping the O(s) term that arose from the O(s2/t) singularity.

Throughout this chapter we assume that |M(s)| is less divergent than |s|n

at large s so that the boundary term in Eq. (4.2.8) can be dropped.4.3 This is

a physically reasonable assumption applicable to any ultraviolet completion in

which the large s behavior of the amplitude at fixed finite physical t� s grows

more slowly in s than the Einstein-Hilbert contribution, which scales as s2/t.

A theory that fails this criterion would actually have worse ultraviolet behavior

than Einstein gravity. Operationally, this translates into the assumption that

|M(s)| grows more slowly than |s|2 at large s. For example, this can be verified
4.3Strictly speaking, positivity bounds only require that the boundary term be non-negative,

which is sometimes true given specific assumptions about the ultraviolet [145]. We do not
consider this possibility here.
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explicitly in the Regge behavior of string theory amplitudes, which scale as

sα(t)/t where α(t) < 2 for t < 0 [31].

Combining Eq. (4.2.8) with Eqs. (4.2.9) and (4.2.10) yields

fn = (−1)n + 1
π

ˆ ∞
s0

ds
sn+1 Im[M(s, t→ 0)]. (4.2.11)

For n odd, this result trivially implies fn = 0 as required by crossing symmetry

of M , while for n even, it imposes a positivity condition. In particular, we use

the optical theorem to write Im[M(s, t→ 0)] = sσ(s), where σ(s) is the total

cross-section.4.4 Crucially, in an interacting theory with new heavy states, σ(s)

is strictly positive, so

fn = 2
π

ˆ ∞
s0

dsσ(s)
sn

> 0, (4.2.12)

thus establishing positivity of fn for even n.

Here fn corresponds to the sn contribution to the low-energy amplitude,

which is proportional to the operator coefficients of Ln. By power counting, we

know that the low-energy amplitude can be expanded in powers of Mandelstam

variables, so

M =
∞∑
n=1

Mn, (4.2.13)

where the leading contribution arises from the Einstein-Hilbert action, which

in the forward limit gives an amplitude

M1(s, t→ 0) = −ε1µνεµν1 ε2ρσε
ρσ
2
κ2s2

t
+O(s), (4.2.14)

where the O(s) terms are regular in the forward limit. The remaining contri-

butions Mn are generated by Ln. In the subsequent sections, we derive precise

analyticity bounds for the quartic and quadratic curvature corrections, L4 and
4.4While the total cross-section diverges in the presence of a t-channel singularity, ImM(s, t→

0) and by extension σ(s) = ImM(s, t→ 0)/s are really proxies for the finite sum over all
residues of heavy states in the complex s plane. By factorization, each contribution is
positive since M(hh→ hh) ∼ −M(hh→ X)M(X → hh)/(s−m2 + iε) on the s-channel
resonance of a massive state X of mass m.
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L2.

4.3 Bounds on Quartic Curvature Corrections

In this section we derive bounds on L4, which encodes quartic curvature

corrections to Einstein gravity. The leading contributions from L4 are quartic

graviton vertices, which contribute to graviton scattering amplitudes via contact

interactions. Since these corrections are free from kinematic singularities,

their forward limit is regular. Thus, to obtain a forward, crossing symmetric

amplitude, we simply set t = 0, ε3 = ε1, and ε4 = ε2, as derived in Eq. (4.2.4).

After a lengthy calculation, we compute the quartic corrections to the

graviton scattering amplitude in the forward limit to be

M4(s, t→ 0) = κ4s4

2
[
(2c6 + c7)(ε1µνε µν

1 ε2ρσε
ρσ

2 )

+ (32c1 + 4c2 + 2c6)(ε1µνε µν
2 )2

+ (4c2 + 16c3 + 2c6)(ε µν
1 ε2νρε

ρσ
1 ε2σµ)

+ (4c2 + 8c4 + 2c7)(ε µν
1 ε1νρε

ρσ
2 ε2σµ)

]
.

(4.3.1)

Eq. (4.2.12) bounds f4, corresponding to the coefficient of the s4 contribution

to the amplitude, to be positive. To determine the constraint on the coeffi-

cients of L4, we should marginalize over all possible values of the independent

polarizations, ε1 and ε2.

To determine the full set of bounds, it will be convenient to map the

question of positivity to a linear algebra problem. To do so, we work in the

center-of-mass frame, where the polarization tensors, ε ν
1µ and ε ν

2µ are real,

symmetric (D − 2)-by-(D − 2) matrices satisfying the usual tracelessness and

normalization conditions,

Tr (ε1) = Tr (ε2) = 0 and Tr (ε1 · ε1) = Tr (ε2 · ε2) = 1. (4.3.2)
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Furthermore, we can define Hermitian matrices H+ = {ε1, ε2}/2 and H− =

i[ε1, ε2]/2 encoding the polarization information, which enter the amplitude in

terms of the invariants

x = Tr (H+)Tr (H+), y = Tr (H+ ·H+), z = Tr (H− ·H−). (4.3.3)

We can then express the analyticity bound as

0 <(2c6 + c7)
+ (32c1 + 4c2 + 2c6)x
+ (8c2 + 16c3 + 8c4 + 2c6 + 2c7)y
+ (−16c3 + 8c4 − 2c6 + 2c7)z,

(4.3.4)

for all (x, y, z) spanned by the graviton polarizations ε1 and ε2. What is the

allowed space of (x, y, z)? An obvious set of necessary conditions are

0 ≤ x, y, z ≤ 1 and y + z ≤ 1, (4.3.5)

from familiar linear algebra inequalities. In generalD, finding the space spanned

by the allowed (x, y, z) is a highly nontrivial problem in matrix inequalities.

In the next subsections, we will study various physically well-motivated

scenarios, including general theories in D = 4 and supersymmetric theories in

arbitrary D.

4.3.1 Theories in D = 4

The number of linearly independent curvature invariants monotonically in-

creases with the dimension of spacetime. In D = 4, there are only two

independent quartic curvature invariants. Hence, L4 in Eq. (4.1.4) collapses to

L4 = c1O1 + c̃1Õ1, (4.3.6)

where O1 is defined as in Eq. (4.1.4) but Õ1 is unique to D = 4,

O1 = RµνρσRµνρσR
αβγδRαβγδ and Õ1 = RµνρσR̃µνρσR

αβγδR̃αβγδ,(4.3.7)
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where R̃µνρσ = R αβ

µν εαβρσ/2 is the dual Riemann tensor. The operator Õ1

can be written as a linear combination of any two the operators in Eq. (4.1.4)

modulo contributions proportional to R and Rµν , which can be eliminated by

the equations of motion. For example,

Õ1 = 4O2 − 4O3 = −4O2 + 8O4 = · · · , (4.3.8)

corresponding to a choice of operator coefficients, (c1, 4c̃1,−4c̃1, 0, 0, 0, 0),

(c1,−4c̃1, 0, 8c̃1, 0, 0, 0), etc. The ellipses in Eq. (4.3.8) denote equivalent repre-

sentations in terms of other operators, which are not unique due to the linear

dependence in D = 4 of all but two of the operators in Eq. (4.1.4).

In D = 4, the invariants (x, y, z) are constructed from real, symmetric,

traceless 2-by-2 matrices, which we can parameterize by

ε1 = ~ε1 · ~σ/
√

2
ε2 = ~ε2 · ~σ/

√
2,

(4.3.9)

where ~ε1 and ~ε2 are real unit polarization vectors and ~σ are the Pauli matrices.

Since ε1 and ε2 are real and symmetric, they only have components in σ1 and

σ3, since σ2 is imaginary and anti-symmetric. From standard matrix identities,

we see that {ε1, ε2} = ~ε1 · ~ε2 and [ε1, ε2] = i(~ε1 × ~ε2) · ~σ. Defining θ to be the

angle between ~ε1 and ~ε2, we obtain

(x, y, z) = cos2 θ (1, 1
2 , 0) + sin2 θ (0, 0, 1

2), (4.3.10)

which defines an interval whose endpoints are (1, 1
2 , 0) and (0, 0, 1

2). Inserting

these (x, y, z) values, along with the coefficient choice given by Eqs. (4.3.6) and

(4.3.8), the bound (4.3.4) takes the suggestive form

c1 cos2 θ + c̃1 sin2 θ > 0, (4.3.11)

which obviously implies positivity of both coefficients separately,

c1 > 0 and c̃1 > 0, (4.3.12)

which correspond to parallel or perpendicular polarization vectors, respectively.
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Our results exactly coincide with those derived from requiring subluminal

graviton propagation [144].

4.3.2 Theories in D = 5

In D = 5, there are four linearly independent quartic curvature invariants. For

the sake of generality we use the basis of Eq. (4.1.4) with the linear dependences

among operators assumed. For this analysis, we ascertain the physically allowed

region for the invariants (x, y, z), which in D = 5 are constructed from real,

symmetric, traceless 3-by-3 matrices. This requirement constrains (x, y, z) to

lie in the plane 1 + 2x− 6y − 2z = 0. Specifically, (x, y, z) are restricted to a

planar triangular region,

(x, y, z) =
3∑
i=1

τivi, (4.3.13)

defined by three vectors

v1 = (0, 0, 1
2), v2 = (1, 1

2 , 0), and v3 = (0, 1
6 , 0) (4.3.14)

for the real parameters τ1, τ2, τ3 ≥ 0 such that τ1 + τ2 + τ3 = 1. The vertices

(4.3.14) of this triangle can be reached by choices of physical polarizations. In

particular,

v1 : ε1 = 1√
2

1 0 0
0 −1 0
0 0 0

 , ε2 = 1√
2

0 1 0
1 0 0
0 0 0

 ,

v2 : ε1 = 1√
2

1 0 0
0 −1 0
0 0 0

 , ε2 = 1√
2

1 0 0
0 −1 0
0 0 0

 , (4.3.15)

v3 : ε1 = 1√
2

1 0 0
0 −1 0
0 0 0

 , ε2 = 1√
6

1 0 0
0 1 0
0 0 −2

 .
Plugging in Eqs. (4.3.13) and (4.3.14) back into Eq. (4.3.4), we obtain
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τ1(−8c3 + 4c4 + c6 + 2c7)
+ τ2(32c1 + 8c2 + 8c3 + 4c4 + 5c6 + 2c7)
+ 1

3τ3(4c2 + 8c3 + 4c4 + 7c6 + 4c7)

 > 0, (4.3.16)

where we have repackaged the terms independent of (x, y, z) in Eq. (4.3.4) into

the coefficients τ1, τ2, τ3 by re-expressing 1 as τ1 + τ2 + τ3. Thus, the necessary

and sufficient set of bounds on quartic curvature corrections in D = 5 are

−8c3 + 4c4 + c6 + 2c7 > 0
32c1 + 8c2 + 8c3 + 4c4 + 5c6 + 2c7 > 0

4c2 + 8c3 + 4c4 + 7c6 + 4c7 > 0,
(4.3.17)

coming from analyticity of the four-point graviton scattering amplitude.

4.3.3 Theories in D ≥ 6

Consider finally the general case of D ≥ 6. It is a nontrivial linear algebra

problem to determine the parameter space of (x, y, z) corresponding to physical

polarization configurations. Each physically allowed point (x, y, z) yields a

positivity bound via Eq. (4.3.4). The set of all positive linear combinations of

such bounds is given by plugging into Eq. (4.3.4) the set of all points in the

convex hull S spanning physically allowed values of (x, y, z). Fully characterizing

all such (x, y, z) is beyond the scope of the present work. However, we can

derive a general collection of necessary conditions from a subset of extremal

vertices on the boundary of S. The details of the calculation are given in

App. 4.A, but the vertices are

v1 =
(
0, 0, 1

2

)
v2 =

(
1, 1− 3

D−2 + 1
D−3 , 0

)
v3 =

(
0, D−4

2(D−2) , 0
)

(4.3.18)

v4 =
(
1, 1

D−2

[
1 + 4(D mod 2)

(D−1)(D−3)

]
, 0
)

v5 = (0, 0, 0) .
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These vectors can be realized by physical polarization choices. The bounds

associated with the (x, y, z) values in Eq. (4.3.18) are necessary for analyticity

of four-point scattering amplitudes and moreover are a subset of the minimal

basis of sufficient bounds. Numerical evaluation, via the explicit computation

of x, y, and z for pseudorandom, traceless, unit-norm matrix pairs of various

dimensions, shows that the convex hull defined by the vertices in Eq. (4.3.18) is

in fact equal to the full hull S for even D but is slightly smaller than S in odd

D. Note that the vectors (4.3.18) are a generalization of those we saw in earlier

sections, so v1, v2, and v3 coincide with the vectors from D = 5. Moreover,

each corner corresponds to a certain extreme configuration of polarizations.

For example, v1 corresponds anticommuting polarizations as in Eq. (4.3.14),

while v2, v3, v4, and v5 correspond to commuting polarizations. For the latter,

the polarizations are mutually diagonalizable and can without loss of generality

be represented as traceless diagonal matrices. See App. 4.A for details.

Plugging the vectors in Eq. (4.3.18) into the bound in Eq. (4.1.4), we obtain

the positivity bounds

−8c3 + 4c4 + c6 + 2c7 > 0
2
(
1− 3

D−2 + 1
D−3

)
(4c2 + 8c3 + 4c4 + c6 + c7)

+32c1 + 4c2 + 4c6 + c7 > 0(
D−4
D−2

)
(4c2 + 8c3 + 4c4 + c6 + c7) + 2c6 + c7 > 0(

2
D−2

) [
1 + 4(D mod 2)

(D−1)(D−3)

]
(4c2 + 8c3 + 4c4 + c6 + c7)

+32c1 + 4c2 + 4c6 + c7 > 0
2c6 + c7 > 0,

(4.3.19)

which are a stringent set of requirements on quartic curvature corrections to

general relativity in D ≥ 6, necessary to guarantee analyticity of scattering

amplitudes.
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4.3.4 Supersymmetric Theories

We now consider supersymmetric quartic curvature corrections. Conveniently,

Ref. [146] derived a basis for independent off-shell supersymmetric quartic

curvature invariants,

L4 = AOA +BOB + COC , (4.3.20)

where OA, OB, and OC are proportional to more familiar looking forms denoted

in the literature [146, 147] by t8t8R4, t8(R2)2, and ε10ε10R
4, respectively. In

terms of the basis defined in Eq. (4.1.4), these supersymmetric operators are

OA = O1 − 16O2 + 2O3 − 32O5 + 16O6 + 32O7

OB = −O1 + 8O2 − 2O3 + 4O4

OC = O1 − 16O2 + 2O3 + 16O4 − 32O5 + 16O6 − 32O7,

(4.3.21)

corresponding to the following choice of operator coefficients:

c1 = A−B + C c2 = −16A+ 8B − 16C
c3 = 2A− 2B + 2C c4 = 4B + 16C
c5 = −32A− 32C c6 = 16A+ 16C
c7 = 32A− 32C.

(4.3.22)

Plugging this choice into Eq. (4.3.4), we obtain

A+B(y + z) > 0. (4.3.23)

Note that C drops out of the calculation completely, since at quartic order in

graviton perturbations it is a total derivative in all dimensions [143]. Recall

from App. 4.A that while simple matrix identities imply that y + z ≤ 1, no

point in the hull S actually saturates this bound. For example, in D = 4,

Eq. (4.3.10) implies that y + z = 1
2 , so A + 1

2B > 0. In D = 5, Eq. (4.3.14)

implies that 1
6 ≤ y+ z ≤ 1

2 , so A+ 1
6B > 0 and A+ 1

2B > 0. Finally, in D ≥ 6,

inputting the vertices in Eq. (4.3.18) into Eq. (4.3.23) yields the complete set

of positivity bounds for quartic curvature operators in supergravity theories.

In summary, we find
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A+ 1
6B > 0 (D = 5)
A > 0 (D ≥ 6)

A+
(
1− 3

D−2 + 1
D−3

)
B > 0, (any D)

(4.3.24)

noting that in D = 4 and D = 5, the final bound reduces to A+ 1
2B > 0.

4.3.5 String Theories

As a consistency check, we now apply our bounds to string theory, which

is arguably the leading candidate for the ultraviolet completion of gravity.

Conveniently, quartic curvature corrections have been been dutifully computed

at tree-level in the existing literature for the bosonic [148, 149], type II [150–

152], and heterotic string [151, 152]. The type I string is dual to the heterotic

string and has the same low-energy effective action [24, 147], so we need not

consider it as a separate case. The resulting effective theory is described by

L4 = AOA +BOB + COC + ∆O∆, (4.3.25)

where OA, OB, and OC are the supersymmetric operators from the previous

section and O∆ is a non-supersymmetric operator defined as

O∆ = −O1 + 10O2 +O4. (4.3.26)

In various string theories, the operator coefficients are

A B C ∆

bosonic ζ(3) 0 −ζ(3) 16

type II ζ(3) 0 −ζ(3) 0

heterotic ζ(3) 1 −ζ(3) 0

(4.3.27)

where each entry is normalized by a factor of α′3/1024κ2.

As expected, since the type II and heterotic string theories are supersym-

metric, their coefficients in Eq. (4.3.27) satisfy the bound for supersymmetric

theories in Eq. (4.3.24). Since the bosonic string is non-supersymmetric, the
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bound is more complicated. In particular, plugging the corresponding operator

coefficients into Eq. (4.3.4), we obtain

ζ(3) + 2(x+ 11y + z) > 0, (4.3.28)

which is indeed positive, as x, y, z ≥ 0. Thus, we have verified that quartic

curvature corrections in bosonic, type II, and heterotic string theory are

consistent with unitarity and analyticity.

4.4 Bounds on Quadratic Curvature Corrections

Next, we consider analyticity constraints on L2, which characterizes quadratic

curvature corrections in the graviton effective theory. As shown in Ref. [139],

the Gauss-Bonnet term

L2 = λ(RµνρσR
µνρσ − 4RµνR

µν +R2) (4.4.1)

does not introduce ghost modes in any dimension D, so in this basis the

graviton propagator is unmodified. To avoid ghost pathologies, we only consider

curvature invariants of this form. For D = 4, the Gauss-Bonnet term is

furthermore a total derivative and thus does not affect local dynamics. As

recently shown [153], however, the Gauss-Bonnet term is critical for computing

and interpreting the leading ultraviolet divergences of pure gravity.

Expanding to leading order in the Gauss-Bonnet coefficient λ, we compute

the quadratic curvature correction to the graviton scattering amplitude in the

forward limit,

M2(s, t→ 0) =

4λκ4s2
[
εµν1 ε3µνε

ρσ
2 ε4ρσ + εµν1 ε3νρε

ρσ
2 ε4σµ + εµν1 ε3νρε

ρσ
4 ε2σµ

+ 2
t

(
kµ2k

ν
4ε

ρ
2ν ε4ρµε1αβε

αβ
3 + kµ1k

ν
3ε

ρ
1ν ε3ρµε2αβε

αβ
4

)]
,

(4.4.2)
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where we have expanded formally in t-dependence arising from propagator

denominators, but we have yet to evaluate the numerators in the forward limit.

The first line of Eq. (4.4.2) is manifestly regular in the forward limit t = 0,

so for these terms we can simply set ε3 = ε1 and ε4 = ε2. On the other hand,

the second line of Eq. (4.4.2) is naively singular since 1/t diverges as t → 0.

However, this singularity is canceled by the numerator factor, which vanishes

in the forward limit as ε3 → ε1 and ε4 → ε2. It will be convenient to rewrite

this expression in terms of the momentum transfer,

q = k1 + k3 = −(k2 + k4), (4.4.3)

where t = −q2. For real kinematics, q is spacelike and vanishes in the forward

limit. Note that qµqν/q2 is simply a projection operator in the direction of the

spacelike exchanged momentum.

We note that k3 is simply a real spatial rotation of −k1, and likewise for

k4 and k2. By symmetry, this then implies that εµν1 k3ν = εµν3 k1µ = εµν1 qµ and

εµν2 k4µ = εµν4 k2µ = −εµν2 qµ at leading order in q. Rewriting Eq. (4.4.2) in terms

of q, we then have

M2(s, t→ 0) =

4λκ4s2
[
ε1µνε

µν
1 ε2ρσε

ρσ
2 + 2εµν1 ε1νρε

ρσ
2 ε2σµ

− 2qµqν
q2

(
ε ρ

2µ ε2ρνε1αβε
αβ

1 + ε ρ
1µ ε1ρνε2αβε

αβ
2

)]
,

(4.4.4)

which is regular because the projection operator qµqν/q2 is finite in the forward

limit. To obtain a bound on λ, we consider all possible choices for the external

momenta and polarizations and impose positivity bounds on the forward

amplitude in Eq. (4.4.4).

As expected, quadratic curvature corrections to graviton scattering scale as

M2 ∼ λκ4s2, so to extract an analyticity bound we should apply Eq. (4.2.12)

for a second-order residue, corresponding to n = 2. Unfortunately, this choice
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also extracts the t-channel singular contribution from leading-order graviton

exchange, M1 ∼ −κ2s2/t. In the forward limit, this contribution is formally

infinite. Of course, in any physical experiment there is an infrared scale µ

that regulates these contributions from long distance physics. This would arise,

e.g., from a finite detector resolution or beam width [154]. As is common

practice for infrared divergences in scattering amplitudes, we introduce a mass

regulator, sending t → t − µ2 in the denominator. This approach was also

used in Ref. [31] to make sense of a theory of interacting massless scalars with

trilinear couplings. Note that as in gauge theory, the mass µ2 is a formal

regulator that leaves the number degrees of freedom untouched—so the vDVZ

discontinuity [39, 40], which arises for a physical graviton mass included via a

Fierz-Pauli Lagrangian term, does not apply here.

While µ2 tames the formal infrared divergences, for λ . 1 the forward

amplitude will be dominated by finite but large contributions from Einstein-

Hilbert interactions because |M1| � |M2| in this regime.4.5 However, by explicit

calculation, we can see from Eq. (4.2.14) thatM1 ∼ +κ2s2/µ2, which is positive.

So while positivity is satisfied, we learn nothing beyond what is already borne

out from scattering via the leading Einstein-Hilbert term.

To place a bound on the coefficient λ, we must then restrict to a parameter

regime where |M1| . |M2|, so the contributions from graviton exchange are

subdominant to those from the Gauss-Bonnet term. This implies that 1/µ2 .

|λκ2|. Together with the requirement that |s| � µ2, necessary to treat µ as a

regulator, this forces us to consider the regime√
|s| � µ & Λ, (4.4.5)

where Λ ∼ |λκ2|−1/2 is the scale of the would-be natural cutoff associated with
4.5Note that taking t strictly to zero is not required to derive a positivity bound [155] and

positivity holds for any non-negative t below µ2 [156]. However, we will not need this
more general result for our purposes.
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the derivative expansion. We assume throughout this chapter that Λ� κ

2
2−D

so that it is below the Planck scale in D dimensions.

Of course, Eq. (4.4.5) points to a naively pathological region of the effective

field theory, given the reasonable expectation of new degrees of freedom of mass

m where m ∼ Λ. Moreover, Eq. (4.4.5) indicates that the infrared regulator µ

must be larger than some other energy scale Λ. Nevertheless, one can a priori

envision an ultraviolet completion in which m� Λ, so new degrees of freedom

enter at a parametrically higher scale. In that case, Λ is not the scale of any

physical states in the theory and is merely the combination of parameters that

appears in the higher-dimension operator. Indeed, at the level of the scattering

amplitude, there are no discontinuities that appear around Λ to signal new

degrees of freedom.

Thus, µ remains smaller than any physical mass scale in the theory and

indeed can be treated consistently as an infrared regulator. In the absence

of new states at Λ, the Gauss-Bonnet term acts effectively as a primordial

contact operator over a wide range of scales. Precisely such a scenario was

considered in Ref. [37], where it was found that such a low-energy effective

theory is acausal without new states at or below m . Λ. Other authors [157]

have likewise argued that a pure Gauss-Bonnet theory is inconsistent with

black hole thermodynamics. We will likewise find a pathology in this theory

coming from unitarity and analyticity.

To apply constraints from unitarity and analyticity, we must first ensure

that the low-energy theory is sensible enough that we can even speak of a

long-distance scattering amplitude. Indeed, Eq. (4.4.5) is plainly strange since

|s| � Λ2 violates the derivative expansion. This was required in order for the

Gauss-Bonnet interactions to dominate over the Einstein-Hilbert action, as

was also assumed in Ref. [37]. Naively, one would expect a gross departure
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from perturbative unitarity, e.g., probability amplitudes greater than one as

well as a breakdown of the loop expansion. Nevertheless, there is a wide range

of scales where neither sickness actually arises. This hinges on the fact that

the theory depends on Λ as well as κ, the gravitational coupling constant.

In particular, note that amplitudes can still be perturbatively small in the

regime specified by Eq. (4.4.5). For example, M2 ∼ κ2s2/Λ2 is still sensible

provided κ is sufficiently small, corresponding to the weak gravity limit. We can

make this more precise by considering the leading effect of the Gauss-Bonnet

term, which is a cubic vertex of the schematic form λκ3∂4h3. Inserting this

vertex into low-energy amplitudes, we find that the theory remains under

perturbative control provided λκ3 (∼ κ/Λ2) times the appropriate powers of

energy is sufficiently small. In D dimensions this implies that

|s| �
(

Λ2

κ

) 4
2+D

(4.4.6)

to safely reside within the regime of perturbativity.4.6 Moreover, Eq. (4.4.6)

also ensures a perturbative loop expansion, since radiative corrections always

introduce additional insertions of the Gauss-Bonnet interactions.

For our purposes, we assume a weak gravity limit defined by Eq. (4.4.6), so

the low-energy theory is perturbatively unitary. When then apply the method

of Sec. 4.2, where the contour around the origin in the complex s plane is

widened so as to satisfy Eq. (4.4.5), ensuring that s is large compared to the

scale of the infrared cutoff and that the Gauss-Bonnet term dominates the

amplitude. Note also that the initial contour encircles a region below the heavy

particle threshold, m� Λ.

To see how a pathology arises, it will be convenient to define coordinates

transverse to the incoming momenta, (x1, x2, . . . xD−2). Without loss of general-
4.6A similar statement applies to pions, which have quartic vertices of the form ∂4π4/Λ2v2

where v is the breaking scale and Λ controls the derivative expansion. The theory maintains
perturbative control provided s� Λv.
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ity, we take the forward limit such that the infinitesimal momentum transfer lies

in the x1 direction, which we henceforth refer to as the “direction of approach.”

In turn, qµqν/q2 is a projection operator onto this direction. Next, we define a

particular subset of polarizations in the transverse plane, defined by rank-two

diagonal matrices of the form

d(i,j) = 1√
2

diag(0, . . . , 0,
xi︷︸︸︷
1 , 0, . . . , 0,

xj︷︸︸︷
−1 , 0, . . .), (4.4.7)

with zero entries except in the xi and xj directions. As the only preferred

direction is x1, labeling the direction from which we approach the forward limit,

the relevant physical polarizations are d(1,2), d(2,3), and d(3,1). The forward limit

of the quadratic correction to the graviton scattering amplitude in Eq. (4.4.4)

for various polarization combinations is

M(s, t→ 0) = 2λκ4s2 ×


0, ε1 = ε2 = d(1,2)

4, ε1 = ε2 = d(2,3)

−1, ε1 = d(1,2) and ε2 = d(1,3).

(4.4.8)

In the first case, ε1 = ε2 = d(1,2), corresponding to polarizations that have

support in the direction of approach. In the case of D = 4, this is required

because the transverse space only has two dimensions. As expected, the

amplitude vanishes in this regime because the Gauss-Bonnet term is a total

derivative in D = 4. Meanwhile, the second case, ε1 = ε2 = d(2,3) occurs when

both polarizations are orthogonal to the direction of approach. Of course, this

requires dimensions D ≥ 5. Finally, in the last case, ε1 = d(1,2) and ε2 = d(1,3),

the polarizations occupy different planes but share support in the direction of

approach, which is only possible in D ≥ 5.

The upshot of Eq. (4.4.8) is that in D ≥ 5, different polarization configu-

rations can yield opposite signs for the corrections to the forward scattering

amplitude. As a result, this excludes both signs of λ and thus forbids it entirely.
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Of course, we made the assumption of Ref. [37] that the Gauss-Bonnet term is

an effectively primordial contact operator insofar as new degrees of freedom

enter only at a scale far above the naive cutoff. Hence, the positivity violation

in Eq. (4.4.8) simply implies that this assumption is false. We conclude that a

primordial Gauss-Bonnet term is forbidden and new degrees of freedom are

required at or below the cutoff Λ.

4.5 Conclusions

In this chapter, we have derived rigorous bounds on the coefficients of quar-

tic and quadratic curvature corrections in the low-energy effective theory of

gravitons. Our results hinge on very general principles: quantum mechanical

unitarity and analyticity of scattering amplitudes. Consequently, these con-

straints apply to any consistent perturbative ultraviolet completion of gravity.

For the quartic curvature operators defined in Eqs. (4.1.3), (4.1.4), (4.3.6), and

(4.3.7), we derived the positivity bounds in Eq. (4.3.12) in D = 4, Eq. (4.3.17)

in D = 5, and Eq. (4.3.19) in arbitrary D ≥ 6. We also presented constraints

on supergravity theories and checked that all of our results are consistent

with known calculations in weakly-coupled string theories. For the quadratic

curvature correction in Eq. (4.4.1), we showed that both signs of its coeffi-

cient λ are inconsistent unless new degrees of freedom enter at the natural

cutoff Λ ∼ |λκ2|−1/2 specified by the effective theory. In short, a primordial

Gauss-Bonnet term is forbidden.

Many possibilities remain for future work. While four-point graviton scat-

tering cannot probe curvature operators beyond quartic order, little is known

of higher-point amplitudes. Such amplitudes are functions of many more

kinematic invariants and should thus enforce commensurately more positivity

constraints. Another issue meriting further study is that of cubic curvature
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operators. Here, positivity bounds encounter technical challenges due to the

vanishing of the associated amplitude in the forward limit [156, 158]. As noted

in Ref. [158], this problem is closely related to the a-theorem in D = 6.

Distinguishing low-energy effective theories that are consistent with ul-

traviolet completion from those that are not presents a significant challenge.

Systematizing this procedure is important for delineating the space of possi-

ble physical laws, but has also become important for model-building in more

phenomenological contexts [1] and in inflation [159–163]. In this chapter, the

low-energy tools of analyticity and unitarity enabled us to find solutions to this

problem in gravitational theories, allowing us to constrain higher-curvature

corrections to gravity in our own universe—applying our quartic curvature

results to D = 4—and further discover bounds applicable in any consistent

theory.

4.A Bounding Invariants in General Dimension

We have shown that the graviton scattering amplitude can be expressed in

terms of invariant products of graviton polarizations ε1 and ε2, which are real,

symmetric, traceless (D − 2)-by-(D − 2) matrices with unit normalization. To

recapitulate from Sec. 4.3, given the Hermitian matrices

H+ = {ε1, ε2}/2 and H− = i[ε1, ε2]/2, (4.A.1)

we can define the invariants

x = Tr (H+)Tr (H+), y = Tr (H+ ·H+), z = Tr (H− ·H−). (4.A.2)

The space of physical polarizations ε1 and ε2 then maps onto a physical region

in (x, y, z), which through Eq. (4.3.4) implies positivity constraints on operator

coefficients in the effective theory.
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What are the bounds on (x, y, z)? We first note that since H+ and H− are

Hermitian, their squares are positive semidefinite, so x, y, z ≥ 0. Moreover,

a straightforward application of the Cauchy-Schwarz inequality implies x =

Tr (ε1 · ε2)Tr (ε1 · ε2) ≤ Tr (ε1 · ε1)Tr (ε2 · ε2) = 1, with equality if and only if

ε1 = ±ε2, and similarly y + z = Tr (ε1 · ε1 · ε2 · ε2) ≤ Tr (ε1 · ε1)Tr (ε2 · ε2) = 1.

There are, however, many additional constraints on (x, y, z), which we now

discuss.

Crucially, a weighted average of any number of positivity bounds yields

another valid positivity bound. This implies that a space of necessary conditions

can be derived by constructing a convex hull S in (x, y, z) that contains the

physically allowed region. Without loss of generality, S is

S = (x, y, z) =


n∑
i=1

τivi

∣∣∣∣∣∣ τi ≥ 0 and
n∑
i=1

τi = 1

 , (4.A.3)

where vi denote extremal points. In this Appendix, we will construct the subset

of the vi that are on the edges of the unit cube in (x, y, z); let the convex hull

described by these vertices be S̃. In even dimension, numerical evaluation

suggests that S = S̃, while in odd D > 6, it is possible for points to lie slightly

outside S̃.

Let us first consider the case where ε1 and ε2 are anticommuting, so x =

y = 0 and we wish to maximize z. Going to a basis in which ε1 is diagonal, we

find that antisymmetry of ε1 · ε2 implies that for each i, j,

(ε1ii + ε1jj)ε2ij = 0 (4.A.4)

and

z = −Tr (ε1 · ε2 · ε1 · ε2) =
∑
i,j

ε21iiε
2
2ij. (4.A.5)

Since Eq. (4.A.4) implies ε1iiε2ii = 0 for each i, the normalization condition∑
i,j ε

2
2ij = 1 implies by Eq. (4.A.5) that nonzero diagonal terms in ε2 can only

decrease z. We therefore take ε2 to have vanishing diagonal. Similarly, since
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i ε

2
1ii is fixed to unity, we should require that, for each i for which ε1ii 6= 0,

there exists j such that ε2ij 6= 0; letting ε1i0i0 be non-vanishing for some i0

even if ε2i0j = 0 for all j would decrease z by Eq. (4.A.5). Writing ∑j ε
2
2ij = ρi,

where ∑i ρi = 1 by the normalization constraint, we can then consider z to be

a weighted average over the ε21ii. Thus, z is maximized when we weight the

average most in favor of the i for which ε21ii is maximal. Suppose there are N

such i, which we can without loss of generality take to be 1 through N , for which

ε21ii takes its maximal value, i.e., ε21i∗i∗ = maxi ε21ii ≡ ε2 for all i∗ ∈ {1, ..., N}.

Then z is maximized when we have ρi = 1/N for i ∈ {1, ..., N} and ρi = 0

otherwise, for which we obtain z = ε2. Finally, it remains to determine the

maximal possible value of ε2. Since ε1 is of unit norm, its maximal value is

attained when we load as much of the normalization into as few of the ε21ii

as possible. By tracelessness of ε1, at least two of the ε1ii must be nonzero.

Thus, ε2 takes its maximum value of 1/2 when ε1 ∝ σ3 in some 2-by-2 block,

up to permutation of coordinate labels. That is, a choice of polarizations that

maximizes z for x = y = 0 is

ε1 = 1√
2σ3 ⊕ 0D−4 and ε2 = 1√

2σ1 ⊕ 0D−4, (4.A.6)

which yields the point

v1 =
(
0, 0, 1

2

)
. (4.A.7)

Let us henceforth consider the case where z = 0 and explore in x, y.

This means that the (real, symmetric) matrices ε1,2 commute and so are

simultaneously diagonalizable. Taking x = 1, we can ask how large y can

be, which will give a vertex of S. Since ε1 = ±ε2 for x = 1, we have y =

Tr (ε1 · ε1 · ε1 · ε1). That is, y has positive first and second derivatives in each of

the |ε1ii| values; y is therefore maximized when one of the |ε1ii| is as large as

possible and the others are equal and small. (If the smaller numbers in the list
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were unequal, we could always make y larger by shifting some weight back to

the element in the list with the largest absolute value.) That is, a choice of

polarizations maximizing y for x = 1 and z = 0 is

ε1 = ε2 = 1√
(D−2)(D−3)

diag(1, 1, . . . ,−(D − 3)), (4.A.8)

which corresponds to the vertex

v2 =
(
1, 1− 3

D−2 + 1
D−3 , 0

)
. (4.A.9)

Next, still taking z = 0, we consider a different extreme, setting x = 0

and maximizing y. Again simultaneously diagonalizing ε1 and ε2, we have

y = ∑
i ε

2
1iiε

2
2ii. Analogously with the case of v1, we can write ρi = ε21ii and

consider y to be a weighted average over the ε22ii. Let maxi ε22ii ≡ ε2 and,

without loss of generality, suppose that ε22ii = ε2 for i ∈ {1, ..., N} for some

N . Then y is maximized if we take ρi = 1/N for i ∈ {1, ..., N} and ρi = 0

otherwise, in which case y = ε2. Now, by the unit normalization of ε2, ε2 is

maximized when as much of the normalization as possible is loaded into as few

terms as possible, i.e., N is minimized. Since ε1 is traceless, at least two of the

ρi are nonzero, so N ≥ 2. The maximum value of ε2 thus occurs when N = 2,

which fixes ε1 ∝ σ3 ⊕ 0D−4. We now must maximize the common absolute

value of the first two entries in ε2ii, subject to the constraints that ∑i ε2ii = 0,∑
i ε

2
2ii = 1, and, since x = 0, ∑i ε1iiε2ii = 0. This last constraint implies

that the first two entries in ε2ii have the same sign. Thus, y is maximized for

x = z = 0 for the choice of polarizations

ε1 = 1√
2σ3 ⊕ 0D−4

ε2 =
√

2
(D−2)(D−4)diag

(
D−4

2 , D−4
2 ,−1, . . . ,−1

)
,

(4.A.10)

for which we find the vertex

v3 =
(
0, D−4

2(D−2) , 0
)
. (4.A.11)

Note that the polarization configuration in Eq. (4.A.10), and hence the vertex
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in Eq. (4.A.11), requires D ≥ 5.

On the other hand, we can minimize y/x for z = 0. Using symmetry

and reality to diagonalize H+ = diag~h+, we have x = |~h+ · ~n|2, where ~n =

(1, 1, . . . , 1), so the Cauchy-Schwarz inequality implies

x ≤ |~h+|2|~n|2 = (D − 2)y. (4.A.12)

Eq. (4.A.12) is saturated when H+ ∝ 1D−2. If D is even, this choice is possible

with

ε1 = ε2 = 1√
D−2diag (1,−1, 1,−1, . . .) , (4.A.13)

which yields

(x, y, z) =
(
1, 1

D−2 , 0
)
. (4.A.14)

Let us now consider the odd-dimensional case where z = 0 and x = 1. Simulta-

neously diagonalizing ε1 and ε2, we have y = ∑
i ε

4
1ii. Again, y has positive first

and second derivatives in |ε1ii|, so it is minimized when the |ε1ii| are all equal.

In odd dimension, this is not possible while retaining tracelessness, so the best

one can do, making the |ε1ii| as equal as possible, is the choice

ε1 = ε2 =
√

D−3
(D−1)(D−2)diag

(
1, . . . , 1︸ ︷︷ ︸
D−1

2

,−D−1
D−3 , ...,−

D−1
D−3

)
, (4.A.15)

which results in the vertex

(x, y, z) =
(
1, 2

D−1 + 2
D−3 −

3
D−2 , 0

)
. (4.A.16)

We can combine Eqs. (4.A.14) and (4.A.16) to write the vertex of S as

v4 =
(
1, 1

D−2

[
1 + 4(D mod 2)

(D−1)(D−3)

]
, 0
)
. (4.A.17)

We note that for both D = 4 and D = 5, v2 and v4 are the same point.

Moreover, v3 generalizes the third vertex applicable in D = 5, while the

polarization choice for v3 does not apply in D = 4. In D ≥ 6, there is one

remaining linearly independent vertex, which can be obtained by choosing
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ε1 · ε2 = 0D−2, e.g.,

ε1 = 1√
2σ3 ⊕ 0D−4 and ε2 = 1√

20D−4 ⊕ σ3, (4.A.18)

which results in the point

v5 = (0, 0, 0). (4.A.19)

Together, Eqs. (4.A.7), (4.A.9), (4.A.11), (4.A.17), and (4.A.19) are the vertices

of S̃ given in Eq. (4.3.18). They correspond via Eq. (4.3.4) to a set of linearly

independent bounds (4.3.19) that must be satisfied in any gravity theory in

D ≥ 6.
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Chapter 5
Positive Signs in Massive Gravity

We derive new constraints on massive gravity from unitarity and analyticity

of scattering amplitudes. Our results apply to a general effective theory

defined by Einstein gravity plus the leading soft diffeomorphism-breaking

corrections. We calculate scattering amplitudes for all combinations of tensor,

vector, and scalar polarizations. The high-energy behavior of these amplitudes

prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in

agreement with existing literature. We then derive consistency conditions from

analytic dispersion relations, which dictate positivity of certain combinations of

parameters appearing in the forward scattering amplitudes. These constraints

exclude all but a small island in the parameter space of ghost-free massive

gravity. While the theory of the “Galileon” scalar mode alone is known to be

inconsistent with positivity constraints, this is remedied in the full massive

gravity theory.

This chapter is from Ref. [4], C. Cheung and G. N. Remmen, “Positive Signs
in Massive Gravity,” JHEP 04 (2016) 002, arXiv:1601.04068 [hep-th].

5.1 Introduction

Local symmetry breaking is a central concept in quantum field theory with a

rich theoretical structure and ubiquitious applications to natural phenomena.

While this subject is textbook material in the context of gauge theories, its

gravitational analogue remains an active field of study. In particular, theories

of massive gravity have spawned an extensive body of literature analyzing its

http://dx.doi.org/10.1007/JHEP04(2016)002
http://arxiv.org/abs/1601.04068
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formal aspects and phenomenology (see Ref. [38] and references therein).

In this chapter, we present new constraints on the parameter space of

massive gravity coming from the consistency of scattering amplitudes. For the

sake of generality, we assume an effective theory for massive gravity comprised

of general relativity plus soft diffeomorphism-breaking corrections proportional

to the graviton mass [38]. The theory contains five degrees of freedom: two

tensors, two vectors, and one scalar, which is known in the literature as the

“Galileon.” Importantly, we work in unitarity gauge so that the tensor, vector,

and scalar modes are manipulated together as a multiplet rather than as

decoupled states in the limit of Goldstone equivalence [42].

To eliminate ghost modes, we restrict to the parameter space of ghost-free

massive gravity [43, 44], which is the nonlinear generalization of the Fierz-

Pauli tuning for the graviton mass. Notably, ghost-free massive gravity has a

parametrically higher cutoff than a generic massive gravity theory [43] and the

resulting action has two free coupling constants, (c3, d5) [38].

After an intensive computation, we arrive at lengthy expressions for the

general tree-level amplitude for the scattering of massive gravitons. As we will

show in detail, analyticity and unitarity place positivity constraints on the

coefficients that appear in the forward amplitude. Imposing positivity on all

possible graviton scattering processes, we sculpt an allowed region in (c3, d5). For

external states that are described by pure tensor, vector, or scalar polarizations—

which we dub “definite-helicity” states—we obtain the excluded colored regions

shown in Fig. 5.2. Expanding to the scattering of arbitrary superpositions of

tensors, vectors, and scalars—which we dub “indefinite-helicity” states—we

derive more stringent constraints, leaving a compact allowed region in (c3, d5)

permitted by unitarity and analyticity shown in Fig. 5.3.

While this result excludes much of the parameter space of massive gravity,
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it is actually a boon to the Galileon, which as a stand-alone effective theory

actually fails analyticity bounds [31, 156, 164]. However, since this failure is

marginal, corrections to the limit of Goldstone equivalence can tip the balance

to restore analyticity in the theory. Thus, non-analyticity of the original

Galileon may be corrected by embedding it into the full theory of massive

gravity.

The structure of this chapter is as follows. In Sec. 5.2, we describe a general

effective theory for massive gravity. Next, we compute the massive graviton

scattering amplitudes in Sec. 5.3 and verify that they are consistent with

existing literature. Finally, in Sec. 5.4 we present our new bounds from analytic

dispersion relations, discuss implications in Sec. 5.5, and conclude in Sec. 5.6.

5.2 Effective Theory for Massive Gravity

We consider a general effective theory for massive gravity defined by the

Einstein-Hilbert term plus soft diffeomorphism-breaking operators [38]. This

starting point is familiar from other contexts, e.g., soft breaking of gauge

symmetry or supersymmetry. In such instances, hard symmetry breaking

should be avoided since it is radiatively unstable. The action for the massive

gravity effective theory is

S = m2
Pl

2

ˆ
d4x
√
−g

[
R− m2

4 V (g, h)
]
. (5.2.1)

The metric is gµν = ηµν + hµν , where ηµν is the flat metric, in this chapter

using mostly-plus signature, and hµν corresponds to the graviton. Here m is

the soft breaking parameter, to be identified with the graviton mass shortly.

Throughout this chapter, mPl = 1/
√

8πG is the reduced Planck mass.

The graviton potential terms take the general form
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V (g, h) = V2(g, h) + V3(g, h) + V4(g, h) + · · ·
V2(g, h) = + b1〈h2〉+ b2〈h〉2

V3(g, h) = + c1〈h3〉+ c2〈h〉2〈h〉+ c3〈h〉3

V4(g, h) = + d1〈h4〉+ d2〈h3〉〈h〉+ d3〈h2〉2 + d4〈h2〉〈h〉2 + d5〈h〉4,

(5.2.2)

where angle brackets denote full metric contractions: 〈h〉 = gµνhµν , 〈h2〉 =

gµνhνρg
ρσhσµ, etc.

We assume the Fierz-Pauli form for the graviton mass terms,

b1 = −b2 = 1, (5.2.3)

so the linearized theory describes a massive graviton with five polarizations:

two tensors, two vectors, and one scalar. Without the Fierz-Pauli tuning in

Eq. (5.2.3), the Hamiltonian loses a constraint, activating a scalar ghost degree

of freedom [38].

At the nonlinear level, however, numerous pathologies arise. For example,

Boulware and Deser [41] observed that a dangerous ghost degree of freedom is

reintroduced in nontrivial backgrounds. Moreover, the high-energy behavior

of the amplitude signals a parametrically low cutoff Λ5 [42], where for later

convenience we define

Λn = (mn−1mPl)1/n. (5.2.4)

More recently, it was observed that the Boulware-Deser ghost can be eliminated

with the proper choice of parameters [43, 44, 165]. In particular, working in

the high-energy theory of scalars, the couplings at each power in the graviton

can be chosen to yield total derivative interactions. For example, in Eq. (5.2.2)

this parameter choice corresponds to

c1 = 2c3 + 1
2 , c2 = −3c3 −

1
2 , d1 = −6d5 + 3

2c3 + 5
16 ,

d2 = 8d5 −
3
2c3 −

1
4 , d3 = 3d5 −

3
4c3 −

1
16 , d4 = −6d5 + 3

4c3,
(5.2.5)
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with c3 and d5 free parameters. The resulting theory is a nonlinear generalization

of the Fierz-Pauli term. Moreover, the theory enjoys a parametrically higher

cutoff Λ3 [42, 43], since the parameter choice eliminates dangerous scalar

self-interactions.

5.3 Calculation of Scattering Amplitudes

For our analysis, we have computed the general tree-level amplitude for massive

graviton scattering. In what follows, we describe the setup and notation of

our amplitudes calculation, followed by a set of consistency checks for our final

expressions.

5.3.1 Setup and Notation

A massive graviton has a momentum vector kµ satisfying kµkµ = −m2. To

construct a basis of polarization tensors, we decompose the space orthogonal

to kµ in terms of a basis of three polarization vectors εiµ satisfying

kµεiµ = 0 (5.3.1)

and split according to transverse (i = 1, 2) and longitudinal (i = 3) polarizations.

For example, in a frame in which kµ = (ω, 0, 0, k) and ω =
√
k2 +m2, the

polarization vectors satisfy

ε1µ = (0, 1, 0, 0)
ε2µ = (0, 0, 1, 0)

ε3µ = 1
m

(k, 0, 0, ω),
(5.3.2)

with the normalization εiµεjµ = δij . By construction, at high energies ε3µ ∼ kµ/m,

which is the Goldstone equivalence limit.

Next, we construct a basis of five polarization tensors εiµν , which are sym-

metric and satisfy the transverse traceless conditions

kµεiµν = εi µµ = 0, (5.3.3)
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normalized to εiµνεjµν = δij. Here the tensor (i = 1, 2), vector (i = 3, 4), and

scalar (i = 5) polarizations are5.1

ε1µν = 1√
2

(ε1µε1ν − ε2µε2ν), ε2µν = 1√
2

(ε1µε2ν + ε2µε
1
ν),

ε3µν = i√
2

(ε1µε3ν + ε3µε
1
ν), ε4µν = i√

2
(ε2µε3ν + ε3µε

2
ν),

ε5µν =
√

3
2

(
ε3µε

3
ν −

1
3Πµν

)
,

(5.3.4)

where we have defined the projection operator

Πµν = ηµν + kµkν
m2 . (5.3.5)

The polarizations satisfy the completeness relation,
∑
i

εiµνε
i∗
ρσ = 1

2 (ΠµρΠνσ + ΠµσΠνρ)−
1
3ΠµνΠρσ, (5.3.6)

where the right side is the massive graviton propagator numerator. We will

often denote the tensor, vector, and scalar polarizations schematically as T , V ,

and S, respectively. The last is also known in the literature as the Galileon

[156, 164, 166, 167].

In terms of the explicit frame used in Eq. (5.3.2), the polarization tensors

are

ε1µν = 1√
2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , ε2µν = 1√
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

ε3µν = i√
2m


0 k 0 0
k 0 0 ω
0 0 0 0
0 ω 0 0

 , ε4µν = i√
2m


0 0 k 0
0 0 0 0
k 0 0 ω
0 0 ω 0

 ,

ε5µν =
√

2
3

1
m2


k2 0 0 kω
0 −m2/2 0 0
0 0 −m2/2 0
kω 0 0 ω2

 ,

(5.3.7)

5.1The overall phase of each polarization is unphysical, but we include a factor of i in the
vector polarizations to manifest their odd parity under charge conjugation.
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which can come in handy for explicit calculations.

The general scattering amplitude of massive gravitons,M(ABCD), depends

on the Mandelstam invariants (s, t) together with four external polarization

tensors,

εAµν =
∑
i

αiε
i
µν , εBµν =

∑
i

βiε
i
µν ,

εCµν =
∑
i

γiε
i
µν , εDµν =

∑
i

δiε
i
µν ,

(5.3.8)

where α, β, γ, δ are unit vectors.

To determine constraints, we restrict to forward, crossing-symmetric ampli-

tudes. The forward limit implies t = 0, which is a regular kinematic regime, as

the graviton mass regulates all infrared singularities. Meanwhile, the constraint

of crossing symmetry requires that

εC∗µν = εAµν and εD∗µν = εBµν . (5.3.9)

Thus, the general scattering amplitude is a function of (s, t, α, β, γ, δ) while

the forward, crossing-symmetric amplitude is a function of (s, α, β). In order

to maintain crossing symmetry simultaneously with the forward limit, we must

assume linear polarizations for the external states [3], which means that the

vectors α and β are real.

We have calculated the massive graviton scattering amplitude at general

kinematics using the above definitions of the external polarization tensors,

together with the Feynman rules extracted from Eq. (5.2.2) after going to

canonical normalization where hµν is rescaled by mPl/2. As our amplitudes

expressions are prohibitively long, we have included them as supplemental

material in Ref. [4].
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5.3.2 Consistency Checks

To verify consistency we have studied the high-energy behavior for “definite-

helicity” gravitons, which are strictly T , V , or S. From power counting, we

know that the massive graviton modes enter the action as T ∼ ∂V ∼ ∂∂S, so

the high-energy behavior of amplitudes at fixed angle is

M(TTTT ) ∼ s, M(TV TV ) ∼ s2, M(TSTS) ∼ s3,

M(V V V V ) ∼ s3, M(V SV S) ∼ s4, M(SSSS) ∼ s5.
(5.3.10)

Our explicit amplitude expressions agree with this scaling.

In particular, the amplitude for scalar scattering, M(SSSS), is the worst-

behaved at high energies and violates unitarity at scales of order Λ5. We find

that

M(SSSS) = −5(1− 6c1 − 4c2)2

432Λ10
5

stu(s2 + t2 + u2) + · · · , (5.3.11)

in agreement with Ref. [168], which calculated this amplitude including just

the Fierz-Pauli term. By choosing 1− 6c1 − 4c2 = 0, we can raise the cutoff

from Λ5 to Λ4, so

M(SSSS) = 3− 16d1 − 32d3

144Λ8
4

(s2 + t2 + u2)2 + · · · . (5.3.12)

By choosing 3 − 16d1 − 32d3 = 0, we can then further raise the cutoff from

Λ4 to Λ3. Notably, these choices of parameters are consistent with Eq. (5.2.5),

which we expected due to the improved cutoff in ghost-free massive gravity.

This agreement is a nontrivial check that our calculation of the scattering

amplitudes is correct.

Plugging in all the parameters of ghost-free massive gravity from Eq. (5.2.5),

we find improved high-energy behavior scaling as
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M(TTTT ) ∼ s, M(TV TV ) ∼ s2, M(TSTS) ∼ s2,

M(V V V V ) ∼ s3, M(V SV S) ∼ s3, M(SSSS) ∼ s3.
(5.3.13)

From our explicit amplitudes, we find that there is no possible combination

of parameters in the action (5.2.2) whereby the high-energy scaling of all

amplitudes is s2; if such a combination existed, it would raise the cutoff further.

In particular, M(V SV S) always scales as ∼ s3 or worse. This agrees with

Ref. [169], which argued that high-energy scaling of ∼ s2 is impossible.

After plugging in Eq. (5.2.5), the leading behavior of the all-scalar amplitude

is

M(SSSS) = −1− 4c3 + 36c2
3 + 64d5

6Λ6
3

stu+ · · · , (5.3.14)

which vanishes for (c3, d5) = (1/6,−1/48), a parameter choice that indeed

results in non-interacting scalars in the decoupling limit of the Λ3 theory [43].

As a highly nontrivial consistency check, we have verified that the leading

high-energy behavior of M(SSSS) in Eq. (5.3.14) is equal to the scattering

amplitude for pure Galileons—including signs and numerical factors—as is

mandated by the Goldstone equivalence theorem.

For the remainder of this chapter, we assume the parameter choice in

Eq. (5.2.5), corresponding to ghost-free massive gravity.

5.4 Derivation of Constraints

In this section, we briefly review the mechanics of analytic dispersion relations

for amplitudes and their relation to positivity. We then present our results

constraining the parameter space of massive gravity.



108

5.4.1 Analytic Dispersion Relations

For our analysis, we apply analytic dispersion relations to the amplitudeM(s, t),

for now dropping the labels for the external polarizations. As noted previously,

the forward amplitude M(s, 0) is well defined since t-channel singularities are

regulated by the graviton mass m. To begin, consider the contour integral

f = 1
2πi

˛
Γ

ds M(s, 0)
(s− µ2)3 , (5.4.1)

where µ2 corresponds to an arbitrary mass scale chosen in the interval 0 <

µ2 < 4m2. The reason for this stipulation will become clear shortly.

At tree-level, M(s, t) has singularities from massive graviton exchange at

s, t, u = m2, which in the forward limit generate simple poles at s = m2 and

s = 3m2. Beyond tree-level, branch cuts arise from multi-particle production,

which in the forward limit run from s = 4m2 to +∞ and from s = 0 to −∞.

The contour Γ in Eq. (5.4.1) is chosen to be a circle of radius at least m2 and

at most 2m2, centered on s = 2m2, so that the contour contains the points

s = m2, s = 3m2, and s = µ2, as depicted in Fig. 5.1.

We now use Cauchy’s theorem to deform the contour Γ into a new contour

Γ′ shown in Fig. 5.1, which runs just above and below the real s axis for s < 0

and s > 4m2, plus a boundary contour at infinity. Assuming the Froissart

unitarity bound [170, 171], the forward amplitude grows sufficiently slowly

with s that the boundary contribution at infinity vanishes [3, 31]. Thus,

f = 1
2πi

˛
Γ′

ds M(s, 0)
(s− µ2)3 = 1

2πi

(ˆ 0

−∞
+
ˆ ∞

4m2

)
dsDiscM(s, 0)

(s− µ2)3 , (5.4.2)

where DiscM(s, 0) = M(s + iε, 0) −M(s − iε, 0) for real s and infinitesimal

positive ε. For the integral over the negative real s axis, we switch variables to

u = 4m2 − s, yielding
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Figure 5.1. Diagram of the analytic structure of the forward amplitude in the
complex s plane. The simple poles at s = m2 and 3m2 and the branch cuts starting
at s = 4m2 and 0 correspond to resonances and multi-particle thresholds in the
s- and u-channels, respectively. The scale µ2 in the dispersion relation is chosen
here to be at the symmetric point µ2 = 2m2. The contours Γ and Γ′ referred to in
Eqs. (5.4.1) and (5.4.2) are also depicted.

f = 1
2πi

ˆ ∞
4m2

duDiscM(4m2 − u, 0)
(4m2 − u− µ2)3 + 1

2πi

ˆ ∞
4m2

dsDiscM(s, 0)
(s− µ2)3

= 1
2πi

ˆ ∞
4m2

ds
[

1
(s− µ2)3 + 1

(s+ µ2 − 4m2)3

]
DiscM(s, 0) (5.4.3)

= 1
π

ˆ ∞
4m2

ds
[

1
(s− µ2)3 + 1

(s+ µ2 − 4m2)3

]
ImM(s, 0).

In the second line, we applied the definition DiscM(4m2 − u, 0) = M(4m2 −

u + iε, 0) −M(4m2 − u − iε, 0), followed by crossing symmetry, M(u, 0) =

M(4m2 − u, 0), thus yielding DiscM(4m2 − u) = M(u − iε) −M(u + iε) =

−DiscM(u), and then relabeled u to s as a dummy variable. In the third line,

we used the Schwarz reflection principle M(s∗, 0) = [M(s, 0)]∗, so for real s we

have DiscM(s, 0) = 2i ImM(s, 0). Finally, by applying the optical theorem,

ImM(s, 0) = sσ(s)
√

1− 4m2/s, we obtain our final expression,

f = 1
π

ˆ ∞
4m2

ds σ(s)
[

s

(s− µ2)3 + s

(s+ µ2 − 4m2)3

]√
1− 4m2

s
> 0, (5.4.4)
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where for an interacting theory the total cross-section σ(s) is strictly positive.

Since the integration region is restricted to s > 4m2 and we stipulated earlier

that 0 < µ2 < 4m2, the expressions in brackets and under the radical are

strictly positive so f is as well.

We have applied well-known analytic dispersion relations to prove that

f > 0. Crucially, from Eq. (5.4.1) we can derive f purely from the low-energy

effective theory, so

0 < f =
 Res

s=m2

[
M(s, 0)

(s− µ2)3

]
+ Res

s=3m2

[
M(s, 0)

(s− µ2)3

]

+ Res
s=µ2

[
M(s, 0)

(s− µ2)3

]
EFT

,

(5.4.5)

where for emphasis we have included a subscript indicating that all quantities

should be computed within the low-energy effective theory, not the full theory.

There is, however, a shortcut to this calculation: since the poles of the low-

energy scattering amplitude are known, we know by Cauchy’s theorem that

Eq. (5.4.5) can be calculated in a single step by computing the negative of its

residue at large s,

f = −
(

Res
s=∞

[
M(s, 0)

(s− µ2)3

])
EFT

> 0, (5.4.6)

which is our final expression for f .

Conveniently, we can show that f is µ2-independent for ghost-free massive

gravity. In particular, we saw earlier that fixed-angle scattering in ghost-free

massive gravity scales as s3. The only crossing-symmetric invariant at this

order, stu, vanishes in the forward limit, so forward scattering scales as s2. At

large s we can expand 1/(s − µ2) = 1/s + O(µ2/s2), in which case only the

µ2-independent piece of Eq. (5.4.6) contributes. We have verified this to be

the case in our explicit amplitudes.

Now we can reintroduce the dependence on the external polarization data.
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Since the general amplitude is a quartic form in the polarizations (α, β, γ, δ),

the forward, crossing-symmetric amplitude is a real quartic form in (α, β). As

f is a residue of the latter, it takes the form

f(α, β) =
∑
ijkl

f(ijkl)αiβjαkβl > 0. (5.4.7)

Obviously, f(ijkl) is symmetric under i↔ k and j ↔ l due to the structure of

the quartic form and also under ik ↔ jl from exchange of the two incoming

particles; that is,

f(ijkl) = f(kjil) = f(ilkj) = f(jilk). (5.4.8)

In principle, these symmetries leave f(ijkl) with 120 independent components,

but as we will see, many of these are zero for the physical amplitude.

In the next subsection, we present f(ijkl) and map the positivity bound

from analytic dispersion relations onto the parameter space of massive gravity.

We begin by studying “definite-helicity” gravitons described by pure tensor,

vector, or scalar polarizations. Afterwards, we consider the “indefinite-helicity”

case in which we are scattering superpositions of these states.

5.4.2 Bounds from Definite-Helicity Scattering

To begin, we consider the scattering of definite-helicity gravitons, corresponding

to external polarizations that are purely tensor, vector, or scalar. Remarkably,

for most combinations of definite-helicity modes, we find that the relative

angles between polarizations drop out of our expressions. Writing

f(1111) = f(1212) = f(2222) = f(TTTT )
f(1313) = f(1414) = f(2323) = f(2424) = f(TV TV )

f(1515) = f(2525) = f(TSTS)
f(3333) = f(4444) = f(V V V V )+

f(3434) = f(V V V V )−
f(3535) = f(4545) = f(V SV S)

f(5555) = f(SSSS),

(5.4.9)
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expressed in terms of f for various scattering combinations of T , V , and S, we

find, via explicit calculation, that

f(TTTT ) = 1
Λ4

2

f(TV TV ) = 5− 12c3

4Λ4
2

f(TSTS) = 5− 12c3

3Λ4
2

f(V V V V )+ = 5 + 72c3 − 240c2
3

16Λ4
2

f(V V V V )− = 23− 72c3 + 144c2
3 + 192d5

16Λ4
2

f(V SV S) = 91− 312c3 + 432c2
3 + 384d5

48Λ4
2

f(SSSS) = 14− 12c3 − 36c2
3 + 96d5

9Λ4
2

.

(5.4.10)

Note that only in the case of all-vector scattering does f depend on the

relative angle between external polarizations. For this reason, we had to define

both f(V V V V )+ and f(V V V V )−, corresponding vector polarizations that are

parallel and orthogonal, respectively. In contrast, the all-tensor case f(TTTT ),

for example, is independent of the relative angle between the incoming tensor

polarizations.

To obtain new positivity bounds, we simply demand that f > 0 for all

polarization combinations in Eq. (5.4.10). These constraints can be cast as

an excluded region in (c3, d5) space, as shown in Fig. 5.2. As one can see,

considering the scattering of modes that are pure tensor, vector, or scalar is

alone enough to rule out much of the parameter space of massive gravity, except

for a strip in d5 for certain values of c3. In order to obtain the most stringent

possible bounds, we turn to the question of scattering indefinite-helicity states

in the next subsection, which will restrict the allowed parameter space to the

region inside the black curve in Fig. 5.2.
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Allowed
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Figure 5.2. Regions in the (c3, d5) parameter space of ghost-free massive gravity
excluded by analyticity bounds on scattering of definite-helicity gravitons. The
tensor, vector, and scalar modes are denoted by T , V , and S, respectively, and the ±
delineation indicates vector polarizations that are parallel or orthogonal, respectively.
Ultimately, by considering indefinite-helicity scattering, we will further restrict the
allowed region of parameter space to that within the black curve. The dot marks the
parameter choice (c3, d5) = (1/6,−1/48), which corresponds to a free scalar sector
in the decoupling limit.

5.4.3 Bounds from Indefinite-Helicity Scattering

In general, it is possible to scatter arbitrary superpositions of tensor, vector,

and scalar modes, corresponding to generic real unit vectors α and β. Our

calculation shows that all f(ijkl) vanish except for those in Eq. (5.4.9), together

with

f(1133) = f(1144) = f(2233)

= f(2244) = −3(1− 4c3)2

8Λ4
2

f(1155) = f(2255) = −1 + 8c3 − 24c2
3 − 16d5

2Λ4
2

f(1335) = −f(1445) = f(2345) (5.4.11)

= f(2435) =
√

3(1− 12c3)2

96Λ4
2
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f(1353) = −f(1454) = f(2354) =
√

3(1− 8c3 + 48c2
3 + 64d5)

16Λ4
2

f(3344) = −9 + 72c3 − 192c2
3 − 96d5

16Λ4
2

f(3355) = f(4455) = −17 + 136c3 − 336c2
3

32Λ4
2

,

along with the f(ijkl) related to these by the symmetries in Eq. (5.4.8). Varying

(α, β) corresponds to different scattering experiments in which the scattered

particles are various superpositions of polarizations. Imposing analyticity

constraints on the amplitude for all possible scattering processes—that is,

marginalizing over all possible choices of (α, β)—implies positivity bounds on

the massive graviton parameter space that are much stronger than the bounds

derived in the previous subsection.

For example, consider gravitons that are maximal superpositions of scalar

and tensor,

αi = βi = 1√
2

(cosφ, sinφ, 0, 0, 1). (5.4.12)

For any value of φ, the corresponding scattering amplitude yields

f(α, β) = 35 + 60c3 − 468c2
3 − 192d5

36Λ4
2

. (5.4.13)

Requiring positivity of f then excludes arbitrarily large values of d5, irrespective

of c3. In terms of the (c3, d5) parameter space, this example bound already

eliminates all but a compact region of the semi-infinite strip of the parameter

space permitted by the definite-helicity graviton scattering bounds shown in

Fig. 5.2.

To place the most stringent bounds from analytic dispersion relations, we

must find all points in (c3, d5) for which f is positive for all (α, β). That is,

we must marginalize over all choices of external polarizations. Unfortunately,

there is no analytic prescription for determining the positivity of quartic forms.

While this algebraic problem is strongly NP-hard [172], it can be recast as a
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dynamical problem [173] that is numerically tractable. In particular, let us

repackage (α, β) into a new ten-dimensional “coordinate,”

XI = (α1, α2, α3, α4, α5, β1, β2, β3, β4, β5), (5.4.14)

relaxing the normalization constraint α2 = β2 = 1. Next, we assume that XI

evolves in time t according to an equation of motion,

dXI

dt = − ∂f

∂XI

. (5.4.15)

This immediately implies that

df
dt = −

∑
I

∂f

∂XI

∂f

∂XI

≤ 0, (5.4.16)

so f is non-increasing over time. Meanwhile, we know that as long as XI 6= 0,

then ∂f/∂XI 6= 0 since f is quartic in XI . It thus follows that df/dt < 0

strictly everywhere away from XI = 0, i.e., f will decrease monotonically at

all XI except the origin. If there is a direction in which f is unbounded from

below, then time evolution will drive it arbitrarily negative. On the other hand,

a positive definite f will of course remain positive forever. As a result, f is

positive definite if and only if f is stable under the time evolution of XI .

Concretely, for a given numerical choice of (c3, d5), we initialize a random

value of XI(tinit), evolve in time to XI(tfinal), and then check whether f(tfinal)

is negative. If so, then the polarization choices given by XI(tfinal), suitably

normalized, contradict the analyticity argument. Thus the parameter point

(c3, d5) is inconsistent and we discard it. If f(tfinal) ≥ 0, the parameter point

remains a possible viable theory. Iterating many times, we are able determine

a definitive region in (c3, d5) that is excluded by analytic dispersion relations

for all possible graviton scattering configurations.

The result of this calculation is that (c3, d5) are confined to a small compact

region, as shown in Fig. 5.3. Here each colored point corresponds to a point in
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Figure 5.3. Region of (c3, d5) parameter space for ghost-free massive gravity
excluded by analyticity bounds on scattering of indefinite-helicity gravitons. Each
colored point corresponds to a theory excluded by a scattering process that violates
analytic dispersion relations. As noted in text, such violations can be diagnosed
by evolving a particular dynamical system that tends toward scattering processes
of gravitons of similar polarization. The specific color—plotted in blue, green, and
red—corresponds to the power of each polarization in tensors (α2

1 + α2
2 and β2

1 + β2
2),

vectors (α2
3 +α2

4 and β2
3 + β2

4), and scalars (α2
5 and β2

5). The allowed region is shown
in white and the black dot marks the choice that corresponds to a free Galileon.

parameter space for which our algorithm has determined a violation of analytic

dispersion relations. The color of the point encodes the power distribution in

the tensor, vector, and scalar components of the corresponding polarization

excluding the point. Interestingly, we find that for many of the points that

violate positivity, the numerical algorithm tends to converge to scattering

processes in which the two scattered gravitons have the same power distribution.

5.5 Implications for Massive Gravity

Our bounds exclude most of the parameter space for ghost-free massive gravity,

subject to the assumptions of analyticity and unitarity of the theory. While

this is in part a negative result, the existence of a finite allowed region is

actually encouraging, especially given the checkered history of the scalar mode
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of massive gravity—the so-called Galileon.

As demonstrated early on, the Galileon is a remarkable effective theory in

and of itself [164]. The model is uniquely fixed by an extended shift symmetry

that highly constrains allowed interactions, limiting the action to a set of five

Galilean-invariant operators in four dimensions. The Galileon is by construction

ghost-free, which is natural since it describes the scalar mode of ghost-free

massive gravity. Moreover it supports interesting cosmological solutions [174–

176] and has scattering amplitudes with unique infrared properties [177].

On the other hand, it has long been known that the Galileon actually violates

positivity bounds derived from analytic dispersion relations [31, 156, 164]. The

reason is simple: the extended shift symmetry of the Galileon simply forbids

interactions of the form (∂S)4, which induce s2 contributions to the amplitude.

Galileon interactions are instead of the form (∂S)2(∂∂S)2, which mandates

strict s3 behavior of the fixed-angle amplitude, with no subleading corrections.

In turn, the only crossing-symmetric invariant of this type is stu, which is zero

in the forward limit. Consequently, f(SSSS) = 0, which is not strictly positive,

contradicting Eq. (5.4.4).5.2 Thus, the pure Galileon theory is marginally

excluded by analyticity bounds.

These results are consistent with our own because the Galileon only describes

the scalar mode of massive gravity in the limit of Goldstone equivalence.

In contrast, our results automatically incorporate all contributions coming

from the tensor and vector modes as well. More importantly, our calculation

implicitly includes subleading corrections to Goldstone equivalence that scale

as higher powers in m2/s relative to the pure Galileon result. Thus, while the

leading behavior of Eq. (5.3.14) scales as stu as expected, there are subleading

corrections at order s2 that are nonzero. Since the pure Galileon is only
5.2Note that in certain conformal variations of the Galileon [156], the theory is modified,

permitting (∂S)4 corrections that allow accordance with analyticity constraints.
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marginally inconsistent with analyticity bounds, the right choice of (c3, d5)

can tip the scales. In this sense, our calculation shows explicitly that the

pathologies of the Galileon are remedied when embedded in a full theory of

massive gravity.

5.6 Conclusions

In this chapter, we have used the principles of unitarity and analyticity of

scattering amplitudes to bound the general effective theory of a massive graviton.

We have shown that the consistency of massive graviton scattering significantly

constrains the parameter space of ghost-free massive gravity. Analyticity bounds

have been analyzed in other contexts, both in non-gravitational [31, 138] and

more recently gravitational [2, 3, 31] theories. Such analyses provide useful

criteria for charting the boundary between the landscape and the swampland.

As the principles from which these bounds are derived are infrared properties,

they apply to any well-behaved ultraviolet completion obeying the canonical

axioms of field theory, irrespective of what the ultimate theory of quantum

gravity may be.
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Chapter 6
Positivity of Curvature-Squared
Corrections in Gravity

We study the Gauss-Bonnet (GB) term as the leading higher-curvature cor-

rection to pure Einstein gravity. Assuming a tree-level ultraviolet completion

free of ghosts or tachyons, we prove that the GB term has a non-negative

coefficient in dimensions greater than four. Our result follows from unitarity of

the spectral representation for a general ultraviolet completion of the GB term.

This chapter is from Ref. [5], C. Cheung and G. N. Remmen, “Positivity
of Curvature-Squared Corrections in Gravity,” Phys. Rev. Lett. 118 (2017)
051601, arXiv:1608.02942 [hep-th].

6.1 Introduction

Effective field theory lore states that, in constructing a Lagrangian, one should

include all operators allowed by symmetry and power counting with arbitrary

coefficients. Naively, this implies an immense freedom for low-energy model-

building. However, not all quantum effective field theories are created equal:

some are compatible with ultraviolet completion, while others reside in the

so-called swampland [27, 29, 31], impervious to string-theoretic completion or,

worse, any completion conforming to the usual axioms of quantum field theory.

An ongoing effort has been undertaken to demarcate the boundaries of

healthy effective field theories, with constraints derived from both top-down

and bottom-up reasoning. An iconic example of the former is the weak gravity

conjecture [30], which was deduced from string-theoretic examples and black

hole thought experiments. In the latter approach, one conceives bounds purely

http://dx.doi.org/10.1103/PhysRevLett.118.051601
http://dx.doi.org/10.1103/PhysRevLett.118.051601
http://arxiv.org/abs/1608.02942
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within the logic of low-energy effective theory, e.g., from considerations of

causality, unitarity, and locality/analyticity for long-distance observables such

as scattering amplitudes and particle trajectories [2–4, 31, 34–37, 111, 113, 138,

145, 156, 159, 178, 179].

In this chapter, we derive a simple bound on curvature-squared correc-

tions to Einstein gravity. Taking a low-energy perspective, we study grav-

ity as an effective field theory described by the Einstein-Hilbert action,6.1

S =
´

dDx√−g R/2κ2, whose higher-curvature corrections a priori include

RµνρσR
µνρσ, RµνR

µν , and R2. However, the usual invariance under field redefi-

nitions implies that leading corrections in the derivative expansion are defined

only up to equations of motion, so those operators involving R and Rµν can

be discarded. Hence, the only nontrivial leading correction to pure Einstein

gravity is effectively RµνρσR
µνρσ, which up to equations of motion is equivalent

to the Gauss-Bonnet (GB) term

∆S=
ˆ

dDx
√
−g λ

(
RµνρσR

µνρσ− 4RµνR
µν +R2

)
. (6.1.1)

The GB term is a total derivative in D = 4, so we take D > 4 throughout this

chapter. The GB term is ghost-free [139] and is ubiquitous in string-theoretic

completions of gravity.

The coupling constant λ is an important low-energy probe of the ultraviolet

completion of general relativity. The sign of λ is also of particular interest

from holographic considerations, being related to the viscosity-to-entropy ratio

of the dual conformal field theory (see Ref. [180] and references therein).

More importantly, λ ≥ 0 appears to be a generic prediction of string theory:

λ = 0 in type II superstring theory [150], while λ > 0 for the bosonic [139],

heterotic [151], and type I [147] string.
6.1In this chapter, we use mostly-plus signature for the metric, adopt sign conventions
Rµν = Rρµρν and Rµνρσ = ∂ρΓµνσ + · · · for the curvature tensor, and define κ =

√
8πG.
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Here, we explore theories in which the GB term is generated by weakly-

coupled dynamics below the Planck scale, corresponding to large λ in natural

units. Furthermore, we assume that “primordial” contributions to the GB

term—i.e., contributions present in the ultraviolet but unaccompanied by new

states—are subdominant. This assumption is reasonable because a primordial

GB term will violate unitarity below the Planck scale. In addition, Ref. [37]

demonstrated how a primordial GB term violates causality unless new states

are introduced. Moreover, it can incur potential violations of analyticity [3] and

the second law of black hole thermodynamics [157]. All of these issues strongly

motivate consideration of a GB term generated dominantly by weakly-coupled

ultraviolet dynamics.

Within these assumptions, we will prove that λ ≥ 0 for any unitary tree-

level ultraviolet completion of the GB term. To do so, we first enumerate

interactions that couple gravitons to massive states in order to generate the GB

term at tree level. We then introduce a general spectral representation for the

two-point function for these massive degrees of freedom. Finally, we show how

unitarity of the spectral representation fixes the sign of the curvature-squared

operator coefficient in the gravitational effective theory.

6.2 Coupling to Massive States

In this section, we study the structure of weakly-coupled ultraviolet dynamics

that generates curvature-squared corrections to gravity at low energies. As

noted earlier, we can freely substitute the tree-level equations of motion—i.e.,

Einstein’s equations—into the leading curvature corrections in Eq. (6.1.1). In

practice, this means that the GB term is, at leading order in the derivative

expansion, equivalent to the Riemann-squared operator and the Weyl-squared

operator,
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CµνρσC
µνρσ = RµνρσR

µνρσ − 4
D − 2RµνR

µν + 2
(D − 1)(D − 2)R

2, (6.2.1)

where the Weyl tensor is

Cµνρσ = Rµνρσ −
1

D − 2
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 1

(D − 1)(D − 2)Rgµ[ρgσ]ν

(6.2.2)

and square brackets on indices denote antisymmetrization without normaliza-

tion, i.e., A[µν] = Aµν −Aνµ. In the presence of massless matter or gauge fields,

this equivalence holds modulo additional interactions involving the stress-energy

tensor.

This all implies that the low-energy coefficients of the GB term, the Riemann-

squared term, and the Weyl-squared term are equal. For technical simplicity,

we therefore recast the action as

S =
ˆ

dDx
√
−g

(
R

2κ2 + λCµνρσC
µνρσ

)
(6.2.3)

using the freedom of equations of motion. Let us note that the above action

applies to a low-energy theory comprised purely of massless gravitons. If

there are additional spectator massless matter fields or gauge fields, there will

be additional terms involving the stress-energy tensor that do not affect our

arguments.

Throughout our analysis in this chapter, we assume a weakly-coupled

ultraviolet completion of gravity. In turn, this assumption implies that high-

energy graviton scattering is unitarized by tree-level exchanges of heavy states.

The reason for this is as follows. In any theory that is weakly coupled from the

ultraviolet to the infrared, there is, by definition, a well-defined ~ expansion

at all scales. Crucially, in general relativity, diffeomorphism symmetry relates

the kinetic term for the graviton to its interactions within the Einstein-Hilbert
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term. Since the former is manifestly an O(1/~) tree-level effect, then so, too, is

the latter, which means that it can only be unitarized by tree-level exchanges.

A similar line of reasoning applies to the nonlinear sigma model, which is

why unitarization of pion scattering at weak coupling can only be achieved via

tree-level Higgs exchange. More generally, while the weak coupling assumption

could potentially be relaxed through an accounting of loop corrections as in

Ref. [113], such an approach would apply to the derivation of positivity bounds

via scattering amplitudes and analytic dispersion relations (e.g., Ref. [3]), as

opposed to the unitarity-based methods of the present chapter.

In contrast to the leading-order gravity action, operators like the GB term

are separately diffeomorphism invariant and are not directly connected to the

Einstein-Hilbert term via symmetry. Hence, even at weak coupling, the GB

operator can be ultraviolet-completed at tree or loop level. An analogous

statement is true for Euler-Heisenberg higher-dimension operators in gauge

theory: since they are not connected directly to the gauge kinetic term, they

can arise from tree-level exchange or at loop order.

Nevertheless, since high-energy graviton scattering is unitarized at tree level,

it is well motivated to focus on tree-level ultraviolet completions of the GB term.

Indeed, this is how the GB term arises in the low-energy gravitational effective

actions of string theories. Thus, from here on we assume that Eq. (6.1.1) arises

from the exchange of heavy states at tree level.

Next, let us systematically enumerate all possible ultraviolet-completing

dynamics for the GB term. Denoting a heavy state by χ, we must identify all

diffeomorphism-invariant couplings between χ and gravitons. These interactions

could involve one, two, or more powers of χ, which we now consider.

For interactions that are linear in χ, any derivatives on χ can always be

shuffled onto the gravitons via integration by parts. Since χ is like a matter
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field, it by construction transforms as a tensor and thus necessarily couples

to some combination of gravitons that also transforms as a tensor.6.2 If this

tensor of gravitons has no derivatives, then in the flat-space limit χ appears as

a tadpole in the Lagrangian, so the corresponding term is eliminated once we

expand around the proper vacuum. On the other hand, if this tensor has exactly

one derivative, then the resulting operator must be a total derivative since

the metric is covariantly constant. Finally, if this tensor has two derivatives,

then it has mass dimension two and thus just the right power counting to

induce a curvature-squared operator. Indeed, any more derivatives will generate

operators of higher order than curvature-squared in the derivative expansion.

The only possible tensors of mass dimension two constructed from the

metric are the Riemann tensor and its contractions [181]. Hence, any graviton

interactions that are linear in χ must take the form

y Cµνρσχ
µνρσ, (6.2.4)

where χµνρσ is a field representing all the massive states that generate the GB

term and y is a coupling constant. Analogous operators involving Rµν and R

can be discarded by equations of motion.

Without loss of generality, we can take χµνρσ in Eq. (6.2.4) to possess all of

the index properties of the Weyl tensor, namely, the requisite (anti-)symmetries,

the first Bianchi identity, and on-shell tracelessness. Any components of χµνρσ

that violate these symmetry properties are automatically projected out by the

Weyl tensor in Eq. (6.2.4).

Note that Eq. (6.2.4) induces mixing between the graviton and the heavy

state. However, since this preserves diffeomorphism invariance, the resulting
6.2By tensor, we simply mean an object that transforms covariantly under nonlinear coordinate

transformations. Since the metric gµν is a tensor, it is convenient to parameterize all
dependence of the graviton through gµν , its associated curvature tensors, and covariant
derivatives ∇µ.
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massless eigenstate should still be interpreted as the massless graviton.

On the other hand, interactions that are quadratic in χ will automatically

produce new heavy states in pairs. To generate an effective operator involving

only gravitons, we can close the loop of heavy states, but this interaction goes

beyond tree level and is thus suppressed at weak coupling. An important

exception to this occurs if χ mixes with the graviton, in which case we must

introduce Eq. (6.2.4) anyway. Similar arguments apply for interactions with

higher powers of χ, but the final result is the same: any weakly-coupled

ultraviolet completion of the GB term will involve the operator in Eq. (6.2.4).

6.3 Spectrum of Massive States

Next, we construct a general Källén-Lehmann spectral representation [182, 183]

for the heavy states χ following the analysis of Refs. [2, 34, 35]. By expanding

the metric gµν around a flat background ηµν , we can represent the χ two-point

function in D dimensions as

〈χµνρσ(k)χαβγδ(k′)〉 = iδD(k + k′)
ˆ ∞

0
dµ2 ρ(µ2)
−k2 − µ2 + iε

Πµνρσαβγδ, (6.3.1)

where k2 is contracted with the flat metric. Here, Πµνρσαβγδ is the propagator

numerator for χµνρσ and ρ(µ2) is the spectral density encoding arbitrary ul-

traviolet dynamics in terms of a distribution of poles corresponding to each

massive state. Since we are working at tree level, ρ(µ2) is just a sum over delta

functions, so the spectral representation is merely a simple way to package a

set of resonances.

The absence of tachyons implies that µ2 ≥ 0. As we will soon see, the

propagator numerator Πµνρσαβγδ is highly constrained by its symmetries and

unitarity. In turn, ρ(µ2) ≥ 0 is required if the theory is to be ghost-free
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[182, 183]. The fact that the spectrum is gapped implies regularity of the

two-point function as k → 0, so the spectral density should vanish as µ2 → 0.

Unitarity requires that the on-shell propagator numerator be a sum over

the tensor product of the physical polarizations [20]. That is, when the on-shell

condition k2 = −µ2 is satisfied, the propagator numerator is

Πµνρσαβγδ =
∑
i

εiµνρσε
∗
iαβγδ, (6.3.2)

where εiµνρσ are the physical polarization states of χµνρσ, indexed by i and

normalized so that εiµνρσε∗µνρσj = δij. By definition, the polarization tensors

transform in representations of the SO(D−1) little group for the massive state

χµνρσ. Consequently, the polarizations must reside in the subspace transverse

to the momentum of χµνρσ. From Eq. (6.3.2), this implies the transversality

condition for on-shell kµ,

kµΠµνρσαβγδ = 0 (6.3.3)

and similarly for all other contractions.

Note that χµνρσ is not a canonical spin-four state [116, 117, 135, 136] since

it is not fully symmetric. Rather, as we noted in the previous section, χµνρσ

can without loss of generality be taken to have the index properties of the Weyl

tensor, which are then inherited by the corresponding polarizations as well as

the propagator numerator by Eq. (6.3.2). For example, on-shell tracelessness of

χµνρσ implies that, when the on-shell condition is satisfied, Πµνρσαβγδ vanishes

when any two indices among the first set of four are contracted and similarly

for the second set. Because we do not a priori know the form of the propagator

numerator, we must construct it purely from its symmetries and the on-shell

transversality and tracelessness conditions.

The most general construction begins by considering Πµνρσαβγδ to be an

arbitrary eight-index tensor built out of ηµν and kµ. Then, in general D, we
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impose the requisite symmetries coming from the index properties of the Weyl

tensor and symmetry on exchange of the two copies of χµνρσ: antisymmetry on

the first and second pairs of indices, symmetry under the exchange of the first

and second index pairs, symmetry under the exchange of the first and second

sets of four indices, the first Bianchi identity Πµ[νρσ]αβγδ = Πµνρσα[βγδ] = 0, on-

shell tracelessness on each set of four indices (for arbitrary metric contraction

of two indices), and on-shell transversality per Eq. (6.3.3). We discover that

these conditions are enough to fix the propagator numerator Πµνρσαβγδ up to

some as-yet-unspecified coefficient β:

Πµνρσ
αβγδ = β

[
2(D − 2)(D − 3)Πµ

[αΠν
β]Π

ρ
[γΠ

σ
δ]

+ 2(D − 2)(D − 3)Πµ
[γΠ

ν
δ]Π

ρ
[αΠσ

β]

+ (D − 2)(D − 3)Π[µ
δΠ

ν]
[αΠ[ρ

β]Π
σ]
γ

− (D − 2)(D − 3)Π[µ
γΠ

ν]
[αΠ[ρ

β]Π
σ]
δ

− 3(D − 2)Π[µ
[αΠν][ρΠβ][γΠ

σ]
δ]

− 3(D − 2)Π[µ
[γΠ

ν][ρΠδ][αΠσ]
β]

+ 12Πµ[ρΠσ]νΠα[γΠδ]β

]
,

(6.3.4)

where we found that the result could be written in terms of the Proca propagator

numerator

Πµν = ηµν + kµkν
µ2 . (6.3.5)

The appearance of this dependence on the projection operator Πµν is not

surprising given the transversality condition (6.3.3). However, we emphasize

that we did not assume beforehand that Πµνρσαβγδ could be expressed as a

function of the Proca propagator numerator.

Now, by the completeness relation (6.3.2), the full trace of the propagator

numerator counts the number of physical degrees of freedom, so we must

have Π µνρσ
µνρσ > 0. Specifically, the number of independent physical degrees

of freedom in χµνρσ is just the number of possible polarizations. This is the
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number of tensors εiµνρσ with the symmetries of the Weyl tensor that respect the

transversality condition. Working through the combinatorics is straightforward

and one finds that the number of physical degrees of freedom is

N = 1
12(D + 1)D(D − 1)(D − 4). (6.3.6)

On the other hand, from Eq. (6.3.4), we find the beautiful expression

Π µνρσ
µνρσ = 2β(D + 1)D(D − 1)(D − 2)(D − 3)(D − 4), (6.3.7)

which for D > 4 is positive if and only if β > 0. Requiring that Π µνρσ
µνρσ = N ,

we have

β = 1
24(D − 2)(D − 3) . (6.3.8)

Equivalently, we recall that a propagator numerator, when taken on shell,

is a projector onto the space orthogonal to kµ [16] and onto tensors with

the requisite index symmetries. Requiring that the propagator numerator be

idempotent as a projection operator thus fixes the normalization.

6.4 Integrating Out Massive States

We can now compute the higher-curvature corrections induced by integrating

out χ. As noted earlier, interactions between gravitons and two or more powers

of χ can contribute to higher-curvature corrections given the mixing term

in Eq. (6.2.4). Thus, to study graviton scattering at low energies, it would

be necessary to do a proper accounting of all the interactions involving χ

beyond even Eq. (6.2.4). As this is rather cumbersome, it is more convenient

to compute the off-shell two-point function for the graviton. This low-energy

operator receives contributions from Eq. (6.2.4), but crucially is independent

of the interactions nonlinear in χ.
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Armed with a general parameterization of the couplings and spectrum of

the massive states, we can now integrate them out. Using Eqs. (6.3.4) and

(6.3.8), one finds
CµνρσΠµνρσαβγδC

αβγδ k→0= CµνρσC
µνρσ. (6.4.1)

Since we are computing the two-point function for gravitons, we are implicitly

expanding Cµνρσ at linear order in gravitons. Integrating out χµνρσ at low

momentum transfer, we obtain the effective operator
y2

2 CµνρσC
µνρσ

ˆ ∞
0

dµ2

µ2 ρ(µ2). (6.4.2)

We then deduce the coefficient of the Weyl-squared operator in Eq. (6.2.3),

λ = y2

2

ˆ ∞
0

dµ2

µ2 ρ(µ2) ≥ 0. (6.4.3)

Thus, since the spectral function is non-negative by unitarity, the sign of

the coefficient λ of the GB operator is non-negative in a consistent tree-level

ultraviolet completion in D > 4.

This bound is consistent with results from string theory [139, 147, 150, 151].

Moreover, our bound constitutes a requisite consistency condition for any

candidate tree-level theory of quantum gravity. Proving positivity of the GB

coefficient using a different approach—analytic dispersion relations—is the

subject of current ongoing research [184], though subtleties exist in applying

analyticity bounds to graviton amplitudes [3, 31]. While standard axioms

of quantum field theory, e.g., locality, may be violated in quantum gravity,

dispersion relations themselves seem to remain robust [97].

Delineating the boundary between the swampland and the landscape can

provide insights for model-building and for our broader understanding of

gravitational ultraviolet completion of quantum field theories. Open problems

include finding ways to apply infrared consistency bounds in nonperturbative

contexts, as well as connecting bounds obtained from infrared- and ultraviolet-

dependent reasoning.
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Chapter 7
Twofold Symmetries of the
Pure Gravity Action

We recast the action of pure gravity into a form that is invariant under a

twofold Lorentz symmetry. To derive this representation, we construct a

general parameterization of all theories equivalent to the Einstein-Hilbert

action up to a local field redefinition and gauge fixing. We then exploit

this freedom to eliminate all interactions except those exhibiting two sets

of independently contracted Lorentz indices. The resulting action is local,

remarkably simple, and naturally expressed in a field basis analogous to the

exponential parameterization of the nonlinear sigma model. The space of

twofold Lorentz invariant field redefinitions then generates an infinite class of

equivalent representations. By construction, all off-shell Feynman diagrams are

twofold Lorentz invariant while all on-shell tree amplitudes are automatically

twofold gauge invariant. We extend our results to curved spacetime and

calculate the analogue of the Einstein equations. While these twofold invariances

are hidden in the canonical approach of graviton perturbation theory, they are

naturally expected given the double copy relations for scattering amplitudes in

gauge theory and gravity.

This chapter is from Ref. [6], C. Cheung and G. N. Remmen, “Twofold Sym-
metries of the Pure Gravity Action,” JHEP 01 (2017) 104, arXiv:1612.03927
[hep-th].

http://dx.doi.org/10.1007/JHEP01(2017)104
http://arxiv.org/abs/1612.03927
http://arxiv.org/abs/1612.03927
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7.1 Introduction

The scattering amplitudes program has revealed extraordinary structures un-

derlying long-studied quantum field theories. One such class of miracles

reformulates gravity as the “square” of gauge theory. Discovered by KLT [45]

and generalized by BCJ [46], this relationship is encoded in concrete formulae

expressing the scattering amplitudes of pure gravity as sums over products of

the scattering amplitudes of Yang-Mills theory,

AGR ∼
∑

AYMĀYM, (7.1.1)

where the barred and unbarred factors need not be the same amplitude. This

duality appears in various guises in a variety of contexts, both in field theory

and string theory (see Ref. [185] and references therein). Remarkably, the

double copy structure also persists in classical field theory, where certain gauge

theory backgrounds map directly to solutions of general relativity [186–191].

Pragmatically, these squaring relations simplify certain gravity calculations

by connecting them directly to known computations in gauge theory [192].

From a top-down perspective, however, this correspondence suggests a very

surprising fact about the underlying symmetries of gravity. In particular, since

the right-hand side of Eq. (7.1.1) is a sum over products of Lorentz scalars, it

is separately invariant under Lorentz transformations acting individually on

each Yang-Mills factor. To see this explicitly, consider graviton polarizations

expressed as a bivector,

εab̄ = εaε̄b̄, (7.1.2)

where AYM and ĀYM depend only on ε and ε̄, respectively. Denoting the

momenta contracted with unbarred and barred indices by k and k̄, respectively,

it follows that the right-hand side of Eq. (7.1.1) exhibits a formal twofold

invariance under a pair of Lorentz transformations,
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ka → Λ b
a kb and k̄ā → Λ̄ b̄

ā k̄b̄, (7.1.3)

together with a pair of Ward identity transformations,

εa → εa + ka and ε̄ā → ε̄ā + k̄ā. (7.1.4)

The fact that the physical scattering amplitudes of pure gravity can be expressed

as products of Yang-Mills amplitudes hints at an underlying “twofold Lorentz

symmetry” of pure gravity,

SO(D − 1, 1)× SO(D − 1, 1). (7.1.5)

It should be possible to manifest such a property at the level of the action. Such

a formulation would manifest “index factorization,” i.e., where all interactions

of the graviton field hab̄ involve indices contracted with ηab and ηāb̄, thus

forbidding contractions between barred and unbarred indices. This condition

places stringent restrictions on the allowed interaction terms. For example,

something as innocuous as the trace of the graviton, h a
a = hab̄η

b̄a, is not twofold

Lorentz invariant since εaε̄a = εaε̄b̄η
b̄a contracts barred and unbarred indices.

The canonical procedure for graviton perturbation theory grossly violates

index factorization and, in turn, twofold Lorentz symmetry. In particular, the

Einstein-Hilbert (EH) action in D spacetime dimensions is7.1

S =
ˆ

dDx
√
−g

(
R

16πG + LGF

)
, (7.1.6)

where LGF denotes the Faddeev-Popov gauge-fixing term. To compute graviton

scattering amplitudes in perturbation theory, we typically define

gab = ηab + hab (7.1.7)

and expand the action in powers of the graviton perturbation hab. Terms
7.1In this chapter, we work in mostly-plus signature and use the conventions Rab = Rcacb

and Rabcd = ∂cΓabd − ∂dΓabc + ΓaceΓebd − ΓadeΓebc. We denote the determinant of a metric as
the metric’s label with no indices, e.g., g = det gab, etc. For notational reasons, we will
adopt Latin indices throughout this chapter.
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involving the trace of the graviton, together with other nonfactorized structures,

induce propagators and interaction vertices that explicitly violate the twofold

Lorentz symmetry.

Nevertheless, in the seminal work of Ref. [193], Bern and Grant showed

how the KLT relations can be reverse-engineered to perturbatively construct

an action for pure gravity compatible with manifest index factorization. They

achieved this feat up to fifth order in graviton perturbations, leaving open the

question of an all-orders generalization. Furthermore, to derive this action

from the original EH action required the introduction of a dilaton, which when

integrated out induced non-local graviton interactions.

In this chapter, we recast the EH action for pure gravity into a form that

is local and manifestly twofold Lorentz invariant at all orders in graviton

perturbations. To do so, we exploit the fact that the usual EH action of

conventional graviton perturbation theory is not particularly meaningful: the

freedom of nonlinear field redefinitions and gauge fixing permits one to rewrite

the action in an infinite number of different ways, all describing equivalent

physics. By exploring this full freedom, we derive a local representation of the

EH action that is compatible with index factorization at all nonlinear orders and

requires no additional dynamical or auxiliary fields beyond the graviton. The off-

shell Feynman propagators and vertices are trivially twofold Lorentz invariant

and the resulting tree-level on-shell scattering amplitudes are twofold gauge

invariant. The resulting action is derived most naturally in an “exponential

basis” for the graviton, reminiscent of the common parameterization of Nambu-

Goldstone bosons in the nonlinear sigma model.

By recasting this action in terms of fields on a doubled spacetime of

dimension 2D, we automate the bookkeeping of the barred and unbarred

indices at the expense of introducing a two-form field, which decouples from
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all tree-level graviton scattering amplitudes. We comment on the link between

these representations and those that arise from double field theory [194–200],

where Einstein gravity coupled to a dilaton and two-form arises as the low-

energy effective field theory of string theory at leading order in the derivative

expansion.

An obvious corollary is that our action also generates, via further field

redefinitions, an infinite class of equivalent twofold Lorentz invariant actions.

Again utilizing this freedom of graviton field basis, we study alternative ver-

sions of this action, going from the exponential basis to the analogue of the

“Cayley basis” [201] for the nonlinear sigma model. Here, we find that graviton

perturbation theory simplifies substantially and manifests some unexpected

additional symmetries.

The remainder of this chapter is organized as follows. In Sec. 7.2, we discuss

a systematic procedure parameterizing the space of local field redefinitions

and gauge-fixing conditions in pure gravity. Afterwards, we show in Sec. 7.3

how this exercise yields a simple action that exhibits index factorization and

thus twofold Lorentz invariance. This form is naturally written in terms of

a spacetime of doubled dimension. We then discuss the graviton propagator,

as well as a more general class of twofold Lorentz invariant theories related

by field redefinitions. Next, we generalize this formalism to curved spacetime

in Sec. 7.4, establishing index factorization for any Ricci-flat spacetime and

deriving the corresponding Einstein equations. We conclude and discuss future

directions in Sec. 7.5.

7.2 Building the Action

In this section, we define the space of local actions equivalent to the EH

action modulo field redefinitions and gauge fixing. For a particular choice,
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the EH action can be recast into a form that manifests index factorization

and is thus compatible with twofold Lorentz invariance. Here, we will study

graviton perturbation theory as an expansion about flat spacetime in Cartesian

coordinates,

ηab = diag(−1, 1, . . . , 1). (7.2.1)

In Sec. 7.4, we will generalize our results to arbitrary backgrounds and curvi-

linear coordinate systems.

7.2.1 Index Factorization

To begin, we identify which terms are compatible and incompatible with index

factorization. For later convenience, we define powers of the graviton tensor by

hnab = hab1η
b1a1ha1b2η

b2a2 · · ·han−2bn−1η
bn−1an−1han−1b

= h a1
a h a2

a1 · · ·h
an−1
an−2 han−1b,

(7.2.2)

together with a shorthand for the trace,

[hn] = hnabη
ba. (7.2.3)

We can now determine when these products of the graviton tensor are compat-

ible with index factorization. Many operators are comprised of gravitons built

from objects of the form

[h2n] = even cycle or [h2n+1] = odd cycle, (7.2.4)

where we have suppressed all derivatives and their contractions. The odd cycles

necessarily violate index factorization. This is obvious because an odd number

of graviton tensors appear with an odd number of barred indices and an odd

number of unbarred indices. Thus, contracting all the indices will necessarily

involve the contraction of at least one barred and one unbarred index. In

contrast, the even cycles are compatible with index factorization, since there

exists a consistent assignment of barred and unbarred indices.
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As noted before, however, odd cycles appear ubiquitously in the conventional

approach to graviton perturbation theory, which is derived by expanding the

EH action in the field basis in Eq. (7.1.7). For example, the volume element is

given by

√
−g = exp

(
1
2

∞∑
n=1

(−1)n−1

n
[hn]

)
, (7.2.5)

which has an infinite number of odd cycles that are incompatible with index

factorization. Hence, to construct a representation with manifest index factor-

ization it is necessary to go beyond the standard prescription. To do so, we

rewrite the EH action in an arbitrary local graviton field basis and gauge-fixing,

which we now discuss.

7.2.2 Field Basis and Gauge Fixing

To construct an arbitrary field basis, we consider all possible local field redefi-

nitions of the graviton defined in Eq. (7.1.7). Due to a theorem of Haag [202]

(see also Ref. [203] and references therein), field redefinitions leave all scattering

amplitudes invariant, provided the asymptotic states remain unaltered. For

example, the local field redefinition of a scalar,

φ→ α1φ+ α2φ
2 + α3φ

3 + · · · , (7.2.6)

leaves scattering amplitudes unchanged provided α1 = 1 so that the linearized

field is the same. For the graviton, the analogous field redefinition is

hab → α1hab + α2ηab[h]
+α3h

2
ab + α4hab[h] + α5ηab[h2] + α6ηab[h]2

+α7h
3
ab + α8h

2
ab[h] + α9hab[h2] + α10hab[h]2

+ α11ηab[h3] + α12ηab[h2][h] + α13ηab[h]3

+ · · · ,

(7.2.7)

where α1 = 1. Here we will restrict to field redefinitions without any derivatives

in order to maintain the familiar two-derivative form of the graviton interactions.
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In general, it is straightforward but tedious to enumerate the various tensor

structures at higher orders in the graviton. At O(hn), there are ∑n
j=0 p(j)

possible terms in the nonlinear field redefinition, where p(j) is the number of

partitions of j.

Next, we consider gauge fixing, which also comes with an immense freedom.

Using the Faddeev-Popov gauge-fixing procedure, we define

LGF = −ηabFaFb, (7.2.8)

for a local but otherwise arbitrary gauge-fixing vector,

Fa = ∂bhcd(β1 ηabηcd + β2 ηacηbd +
β3 habηcd + β4 hacηbd + β5 ηabhcd + β6 ηachbd

+ β7 ηabηcd[h] + β8 ηacηbd[h] + · · · ),
(7.2.9)

which can be thought of as a highly nonlinear generalization of harmonic gauge.

At O(hn) in the nonlinear gauge-fixing vector, there are 2∑n
j=1 j p(n − j)

possible terms.

As noted earlier, the α and β parameters that appear in the field basis

and gauge-fixing have absolutely no effect on physical scattering amplitudes.

However, as a check of our calculation, we have also explicitly computed the

three-particle and four-particle scattering amplitudes and verified that they

are indeed independent of α and β.

7.3 Factorizing the Action

The α and β parameters of the field basis and gauge-fixing alter the action but

have no effect on physical observables. Next, we can examine the action at each

order in graviton perturbations, fixing the α and β parameters so as to precisely

eliminate all appearances of odd cycles, as defined in Eq. (7.2.4). This is a

necessary condition for manifest index factorization. By explicit computation,
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we have verified that this criterion can be satisfied at least up to fifth order in

the graviton. Perhaps surprisingly, we have also found that a special choice

of the α and β parameters follows a simple pattern that straightforwardly

generalizes to all orders in perturbation theory, taking a simple analytic form.

One can then prove that this choice of nonlinear field redefinition and gauge-

fixing allows for index factorization of the action at all orders in the graviton.

It is to this special class of field redefinitions and gauge-fixing that we now

turn.

7.3.1 Definition of the Action

We focus on a special field basis for the graviton defined by

gab = ηab + πab + 1
2!π

2
ab + 1

3!π
3
ab + · · · , where πab = hab−

1
D − 2ηab[h]. (7.3.1)

It will often be convenient to invoke the shorthand notation

gab = (eπ)ab and gab = (e−π)ab, (7.3.2)

where by construction gabg
bc = δca. We emphasize here that gab and gab are

matrix inverses, not related by raising and lowering with respect to ηab. The

utility of an exponential basis for gravity, in that it treats the metric and its

inverse symmetrically in the perturbation expansion, was understood previously

in Ref. [204]. Our Faddeev-Popov gauge-fixing term is

LGF = − 1
64πG(D − 2)e

[h]/(D−2)(e−h)ab∂a[h]∂b[h]. (7.3.3)

Using Eqs. (7.3.1) and (7.3.2), we see that we can write the gauge-fixing term

in the compact form

LGF = −D − 2
64πG gabωaωb, (7.3.4)

where we have defined the vector

ωa = ∂a log
√
−g = − 1

D − 2∂a[h]. (7.3.5)
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We will postpone further discussion of the physical meaning of this gauge

condition to Sec. 7.4. For now, let us simply view LGF in Eq. (7.3.4) as

a particular choice of the coefficients in the general gauge-fixing vector in

Eq. (7.2.9). However, note that the above gauge-fixing term does not eliminate

the full gauge freedom: the propagator is not yet invertible, although we will

see in Sec. 7.3.3 how this is remedied by an additional gauge fixing.

Putting everything together, we find that EH action in Eq. (7.1.6) is

drastically simplified, in part because derivatives act nicely on the exponential

form of Eq. (7.3.1). The resulting action is independent of the spacetime

dimension D and can be written compactly as

S = 1
16πG

ˆ
dDx ∂aσce∂bσde

(1
4σ

abδcd −
1
2σ

cbδad

)
, (7.3.6)

expressed in terms of a new exponential field,

σab = ηab + hab + 1
2!h

2
ab + 1

3!h
3
ab + · · · , (7.3.7)

which we will often express in the shorthand

σab = (eh)ab and σab = (e−h)ab, (7.3.8)

where σabσbc = δca. Note that to obtain Eq. (7.3.6) we applied the useful

identity σab∂cσab = ∂c[h], valid in Cartesian coordinates so the metric has unit

determinant.

Eq. (7.3.6) is a primary result of this chapter, so let us pause to discuss

some salient points. First, since we derived this action directly from the EH

action, it is a completely equivalent description of pure gravity expanded around

flat spacetime. Consequently, the scattering amplitudes computed with this

action are exactly equal to those obtained in conventional graviton perturbation

theory.

Second, Eq. (7.3.6) is constructed so that every interaction is compatible

with index factorization. Consequently, it is always possible to assign distinct
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sets of barred and unbarred indices that are separately contracted. For example,

our field basis is chosen to precisely eliminate the √−g = e−[h]/(D−2) factor,

which was a persistent source of odd cycles in the action. This factor is precisely

canceled by the factors of [h] in the definition of πab in Eq. (7.3.1). Formally, two

sets of independently contracted indices exhibit an enhanced twofold Lorentz

symmetry. However, these are not, at least in this particular form, symmetries

in the literal sense because they act as rigid transformations on the barred and

unbarred indices, as for, e.g., an internal symmetry. In terms of the scattering

amplitudes relations in Eq. (7.1.1), this restriction of the enhanced symmetry

comes from the fact that the two Yang-Mills amplitudes are separately Lorentz

invariant, but crucially must have the same external momenta. As we will soon

see, by introducing auxiliary extra dimensions one can promote this property

of index factorization into a bona fide symmetry of the action.

Third, it is remarkable how the exponential field defined in Eq. (7.3.7)

arises naturally from our prescription for eliminating odd cycles. This object

is curiously reminiscent of the exponential parameterization of the nonlinear

sigma model. It is tempting to imagine that this form of the EH action

implies some form of underlying spontaneous symmetry breaking within gravity.

However, as we will see later, there are many alternative field bases that are

not exponential.

Fourth, Eq. (7.3.6) is extremely simple compared to the standard action

for graviton perturbations, which is derived by inserting the field basis of

Eq. (7.1.7) into Eq. (7.1.6). Expanding Eq. (7.3.6) in perturbations, we find

that

S = 1
16πG

ˆ
dDx

∑
n

On, (7.3.9)

where the first few orders of the operators On are
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O2 = + 1
2∂chab∂

bhac − 1
4∂chab∂

chab

O3 = + 1
4h

ab∂ahcd∂bh
cd − 1

2h
ab∂chad∂bh

cd

O4 = + 1
8habh

cd∂bhce∂dh
ae − 1

8h
abhac∂bhde∂

chde

− 1
12h

abhcd∂chbe∂
ehad + 1

24h
abhcd∂ehcb∂ehad

+ 1
6h

abhac∂
chde∂ehdb + 1

24h
abhac∂

dhec∂ehdb (7.3.10)

− 1
24h

abhac∂
ehdc∂ehdb

O5 =− 1
12h

abhachde∂
chfe∂dhfb + 1

24h
abhachdb∂

chef∂dhef

+ 1
24h

abhcdhef∂cheb∂fhad + 1
24h

abhach
de∂dhfb∂eh

fc

− 1
24h

abhcdhef∂ehad∂fhcb + 1
24h

abhach
de∂chfe∂

fhdb

− 1
24h

abhach
de∂eh

fc∂fhdb −
1
24h

abhachdb∂
dhef∂

fhec.

It is straightforward to check that in all of these interactions it is always possible

to assign independent sets of barred and unbarred indices that never contract

with one another.

While Eq. (7.3.6) is compatible with index factorization, it is certainly not

ideal that checking this requires running through each interaction term one

at a time and intelligently assigning barred and unbarred indices. Indeed, the

situation would be substantively improved with a formalism that does not

require a case-by-case analysis of each term, instead treating indices as barred

and unbarred from the very beginning. We construct just such a representation

in the next subsection.

7.3.2 Adding Auxiliary Dimensions

To automate the proper contraction of barred and unbarred indices, we intro-

duce an additional set of auxiliary dimensions. In particular, let us extend the
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D dimensions of spacetime into 2D dimensions, where

xA = (xa, x̄ā) and ∂A = (∂a, ∂ā) (7.3.11)

and the original D-dimensional spacetime corresponds to the restriction to the

“diagonal” spacetime

xa = x̄ā. (7.3.12)

Here, indices in 2D-dimensional spacetime are contracted with the metric

tensors

ηAB =
[
ηab 0
0 ηāb̄

]
and ηAB =

[
ηab 0
0 ηāb̄

]
, (7.3.13)

so all terms are automatically twofold Lorentz invariant with respect to barred

and unbarred indices.

Next, we repackage the graviton into a tensor in 2D-dimensional spacetime,

HAB =
[

0 hab̄
hāb 0

]
, (7.3.14)

where the two off-diagonal blocks are transposes of each other. The structure

of this representation explicitly breaks the underlying SO(2D− 2, 2) symmetry

of the doubled 2D-dimensional spacetime down to the symmetry in Eq. (7.1.5).

Since barred and unbarred indices are distinct, hab̄ is automatically lifted to a

general D-dimensional matrix. The usual physical graviton modes correspond

to the symmetric components of this tensor. As we will see shortly, the

antisymmetric component can be neglected at tree level for graviton scattering

amplitudes. In terms of this new field, we define the exponential field

ΣAB = (eH)AB and ΣAB = (e−H)AB. (7.3.15)

A simple computation shows that

ΣAB =
[

(cosh h)ab (sinh h)ab̄
(sinh h)āb (cosh h)āb̄

]
, (7.3.16)

where, in our shorthand,
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(cosh h)ab = ηab + 1
2!h

2
ab + 1

4!h
4
ab + · · · ,

(sinh h)ab̄ = hab̄ + 1
3!h

3
ab̄ + 1

5!h
5
ab̄ + · · ·

(7.3.17)

are even and odd functions in the graviton, respectively. Because these terms

have distinct parity, we can, in analogy with Eq. (7.2.2), define

h2n
ab = hab̄1η

b̄1ā1hā1b2η
b2a2 · · ·ha2n−2b̄2n−1η

b̄2n−1ā2n−1hā2n−1b

= h ā1
a h a2

ā1 · · ·h
ā2n−1
a2n−2 hā2n−1b

(7.3.18)

for even powers of the graviton, while for odd powers of the graviton,

h2n+1
ab̄

= hab̄1η
b̄1ā1hā1b2η

b2a2 · · ·hā2n−1b2nη
b2na2nha2nb̄

= h ā1
a h a2

ā1 · · ·h
a2n
ā2n−1ha2nb̄

(7.3.19)

and similarly for the other tensors. By construction, we see that the barred

and unbarred indices are never contracted with each other.

In terms of these new variables, the action takes the form

S = 1
16πG

ˆ
dDx dDx̄ δD(x− x̄)×

× ∂AΣCE∂BΣDE
( 1

16ΣABδCD −
1
4ΣCBδAD

)
,

(7.3.20)

where the numerical factors are slightly different from those in Eq. (7.3.6) due

to additional factors of two coming from the trace over the 2D-dimensional

spacetime. Notably, Eq. (7.3.20) has several properties not manifest in the

usual representation of the EH action, which we now discuss.

First and foremost, the action is manifestly invariant under a twofold

Lorentz symmetry that acts separately on x and x̄. Due to the δ function in

Eq. (7.3.20), i.e., the fact that the action is only integrated over the diagonal

combination x = x̄, the two corresponding conserved currents are one and

the same. In particular, they produce the usual single conservation of energy,

momentum, and angular momentum in D-dimensional spacetime. To see the

index factorization explicitly, we can again expand the action in perturbations
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to obtain

O2 = + 1
4∂chab̄∂

ahcb̄ + 1
4∂c̄hab̄∂

b̄hac̄ − 1
8∂chab̄∂

chab̄ − 1
8∂c̄hab̄∂

c̄hab̄

O3 = + 1
4h

ab̄∂ahcd̄∂b̄h
cd̄ − 1

4h
ab̄∂dhac̄∂b̄h

dc̄ − 1
4h

ab̄∂d̄hcb̄∂ah
cd̄

O4 =− 1
16h

ab̄hcb̄∂ah
dē∂chdē −

1
16h

ab̄hac̄∂b̄h
dē∂ c̄hdē

+ 1
16hab̄h

cd̄∂ahed̄∂ch
eb̄ + 1

16hab̄h
cd̄∂ b̄hcē∂d̄h

aē

− 1
24hab̄hcd̄∂

cheb̄∂eh
ad̄ − 1

24hab̄hcd̄∂
b̄hcē∂ēh

ad̄

+ 1
48h

ab̄hcd̄∂ehcb̄∂
ehad̄ + 1

48h
ab̄hcd̄∂ēhcb̄∂

ēhad̄

+ 1
12h

ab̄hcb̄∂
ched̄∂ehad̄ + 1

12h
ab̄hac̄∂

c̄hdē∂ēhdb̄

− 1
96h

ab̄hcb̄∂
ehcd̄∂ehad̄ −

1
96h

ab̄hcb̄∂
ēhcd̄∂ēhad̄

+ 1
48h

ab̄hac̄∂
dhec̄∂ehdb̄ + 1

48h
ab̄hcb̄∂

d̄hcē∂ēhad̄ (7.3.21)

− 1
96h

ab̄hac̄∂
ehdc̄∂ehdb̄ −

1
96h

ab̄hac̄∂
ēhdc̄∂ēhdb̄

O5 = + 1
24h

ab̄hac̄hdb̄∂
c̄hef̄∂dhef̄ −

1
24h

ab̄hac̄hdē∂
c̄hfē∂dhfb̄

+ 1
24h

ab̄hcd̄hef̄∂b̄hcf̄∂ehad̄ −
1
24h

ab̄hcb̄hdē∂
chdf̄∂ ēhaf̄

+ 1
48h

ab̄hcb̄h
dē∂dhaf̄∂ēh

cf̄ + 1
48h

ab̄hac̄h
dē∂dhfb̄∂ēh

fc̄

− 1
24h

ab̄hcd̄hef̄∂ehad̄∂f̄hcb̄ + 1
48h

ab̄hcb̄h
dē∂chdf̄∂

f̄haē

− 1
48h

ab̄hcb̄h
dē∂dh

cf̄∂f̄haē + 1
48h

ab̄hac̄h
dē∂ c̄hfē∂

fhdb̄

− 1
48h

ab̄hac̄h
dē∂ēh

fc̄∂fhdb̄ −
1
48h

ab̄hac̄hdb̄∂
c̄hfē∂

fhdē

− 1
48h

ab̄hac̄hdb̄∂
dhef̄∂

f̄hec̄.

As expected, the barred and unbarred indices are all contracted consistently.

Second, the action (7.3.20) is manifestly invariant under a Z2 parity that

swaps the two D-dimensional spacetimes,

xa ↔ x̄ā

hab̄ ↔ hāb.
(7.3.22)
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In terms of the full 2D-dimensional objects, this Z2 parity acts as

H ↔ τHτ and η ↔ τητ = η, (7.3.23)

where we have defined the swap operator

τAB =
[

0 1

1 0

]
. (7.3.24)

The symmetric and antisymmetric components of hab̄ are manifestly even and

odd under this parity, respectively. The former corresponds to the usual physical

graviton modes, while the latter is an additional two-form field. However, since

the antisymmetric component is odd under the Z2 parity, it enters the action in

pairs and thus does not contribute to tree-level graviton scattering amplitudes.

Thus, since Eq. (7.3.20) is expressed in terms of a general graviton tensor hab̄,

it is, strictly speaking, only equivalent to pure gravity at tree level.

The above construction is very much reminiscent of one discovered previously

in the context of double field theory and there is a close link between our

approaches. Double field theory [194–200] is derived from the massless modes

of closed string field theory on a doubled torus exhibiting a manifest O(D,D)

T-duality group. The resulting low-energy effective theory is comprised of

the graviton plus additional massless degrees of freedom: a dilaton and Kalb-

Ramond two-form field necessary to maintain diffeomorphism invariance of

the full space. Similarly motivated by Ref. [193], Hohm [197] constructed a

form of the double field theory action that maintains index factorization as a

low-energy remnant of the underlying T-duality. The resulting action is quite

similar to our Eq. (7.3.20), except that is has both a massless dilaton and

two-form. In this sense, our result is a derivation of a consistent truncation

of this action in which the dilaton is not present. Conversely, the fact that

our results are applicable in standard general relativity, i.e., without a dilaton,

mean that they are directly relevant for calculations pertinent to our own
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universe, e.g., scattering amplitudes in Einstein gravity and gravitational wave

computations.

7.3.3 Scattering Amplitudes

The action in Eq. (7.3.20) is a rewriting of the EH action that manifests

index factorization and twofold Lorentz symmetry. We now study how these

properties are encoded in scattering amplitudes. All interaction vertices will be

twofold Lorentz invariant even off-shell. To determine the symmetries of the

propagator, we study the kinetic term in momentum space. Sending ∂ → ip,

we obtain

O2 = 1
4hab̄hcd̄K

ab̄cd̄, where Kab̄cd̄ = −p2ηacηb̄d̄ + ηacpb̄pd̄ + papcηb̄d̄.

(7.3.25)

We can systematically determine the zero eigenvectors of the kinetic term by

solving

0 = Kab̄cd̄hcd̄ = −p2hab̄ + had̄pd̄p
b̄ + papch

cb̄, (7.3.26)

where indices are raised and lowered with ηab and ηāb̄. Dotting this equation

into pa, we obtain

0 = pah
ad̄pd̄p

b̄, (7.3.27)

which is trivially satisfied for the antisymmetric component of hab̄. This

equation also vanishes for the symmetric component of hab̄ when it takes the

form of a transverse diffeomorphism, hab = ∂aξb + ∂bξa with ∂b∂aξa = 0. The

existence of zero eigenmodes of the kinetic term implies that hab̄ does not yet

have an invertible kinetic term.

To remedy this, recall that the antisymmetric component of hab̄ enters the

action in pairs on account of the underlying Z2 parity, so it decouples from tree-

level graviton scattering. We must also, however, modify the gauge-fixing of
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the symmetric piece in order to produce an invertible kinetic term. In principle,

there are many prescriptions for doing so. Here we consider a gauge-fixing that

is manifestly twofold Lorentz symmetric at the expense of the Z2 parity, so

Kab̄cd̄
ξ = −p2ηacηb̄d̄ +

(
1 + 1

ξ

)
ηacpb̄pd̄ +

(
1− 1

ξ

)
papcηb̄d̄, (7.3.28)

where we take ξ → 0 in the analogue of Landau gauge for gauge theory. The

corresponding propagator, ∆ab̄cd̄, satisfies

Kab̄cd̄
ξ ∆cd̄ef̄ = iδaeδ

b̄
f̄ , (7.3.29)

from which we obtain

∆ab̄cd̄ = − i

p2

(
ηacηb̄d̄ − (1 + ξ)ηac

pb̄pd̄
p2 − (1− ξ)papc

p2 ηb̄d̄

)
. (7.3.30)

At zeroth order in ξ, the Z2 parity of the propagator is restored, yielding a

simple and convenient propagator for explicit computations. Contributions

first order in ξ also vanish because the underlying Z2 parity of the interactions

eliminates all odd powers of ξ dependence from the tree-level graviton scattering

amplitude. Note that to obtain consistent answers, it is crucial to use the

fully gauge-fixed propagator in Eq. (7.3.30) with the the factorized action in

Eq. (7.3.20) and its perturbative expansion. That is, dropping the delineation

between barred and unbarred indices will yield inconsistent results. In this

sense, the two-form is critical for the gauge-fixing introduced in Eq. (7.3.28),

even though it does not appear as an external state in graviton scattering

amplitudes. We have checked explicitly that the Feynman diagrams constructed

from the propagator in Eq. (7.3.30) and the interaction vertices of Eq. (7.3.20)

produce the correct three-, four-, and five-point amplitudes, even for finite ξ.

More generally, in this gauge, all off-shell Feynman diagrams are invariant

under twofold Lorentz symmetry as well as Z2 exchange. Furthermore, the
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resulting tree-level scattering amplitudes are invariant under the twofold Ward

identities defined in Eq. (7.1.4). The reason for this is simple: the symmetric

combination of gauge transformations is an invariance of graviton scattering,

while the antisymmetric combination decouples because this mode only enters

in pairs and thus does not contribute to pure graviton scattering at tree level.

Finally, let us emphasize that the action presented here is distinct from

the action constructed perturbatively up to fifth order in Ref. [193]. This is

evident from our propagator, which is different from the propagator assumed

in Ref. [193].

7.3.4 Alternative Representations

We have presented a simple representation of the EH action that manifests

index factorization and in turn twofold Lorentz symmetry. Now, by again

exploiting the freedom to choose a field basis, we can generate an infinite

class of physically equivalent actions that manifest the same symmetries. In

particular, we can consider field redefinitions of the form

hab̄ → α1hab̄ + α3h
3
ab̄ + α5h

5
ab̄ + · · · , (7.3.31)

where again we have α1 = 1 to maintain the form of the asymptotic states.

Here, the field redefinition involves only odd powers of the graviton defined

by Eq. (7.3.19), so that barred and unbarred indices are properly contracted.

More generally, one can consider an arbitrary sum over hn
ab̄

for odd n, with

each term multiplied by [hm] for some even m, which preserves the ability to

consistently factorize indices.

In general, this additional set of field redefinitions can further simplify

various parts of the action. For example, to eliminate the appearance of

hyperbolic functions in Eq. (7.3.16), we could send

hab̄ → (sinh−1 h)ab̄ = hab̄ −
1
6h

3
ab̄ + 3

40h
5
ab̄ + · · · , (7.3.32)
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so that the EH action is just as in Eq. (7.3.20), except with a new field defined

as

ΣAB →
[

(
√

1 + h2)ab hab̄
hāb (

√
1 + h2)āb̄

]
. (7.3.33)

In what follows, we discuss an alternative field basis for the action that results

in even simpler expressions for graviton perturbation theory.

In particular, inspired by the so-called Cayley basis for the nonlinear sigma

model action [201], it is natural to consider the field redefinition

hab̄ → log
(

1 + 1
2h

1− 1
2h

)
ab̄

= hab̄ + 1
12h

3
ab̄ + 1

80h
5
ab̄ + · · · , (7.3.34)

for which the field in the doubled spacetime becomes

ΣAB =
 (1+h2/4

1−h2/4

)
ab

(
h

1−h2/4

)
ab̄(

h
1−h2/4

)
āb

(
1+h2/4
1−h2/4

)
āb̄

 . (7.3.35)

The first few terms in the perturbation expansion are

O2 = + 1
2∂chab∂

bhac − 1
4∂chab∂

chab

O3 = + 1
4h

ab∂ahcd∂bh
cd − 1

2h
ab∂chad∂bh

cd

O4 = + 1
8habh

cd∂bhce∂dh
ae − 1

8h
abhac∂bhde∂

chde

+ 1
4h

abhac∂
chde∂ehdb + 1

8h
abhac∂

dhec∂ehdb

− 1
8h

abhac∂
ehdc∂ehdb

O5 =− 1
8h

abhachde∂
chfe∂dhfb + 1

16h
abhachdb∂

chef∂dhef

+ 1
8h

abhach
de∂dhfb∂eh

fc − 1
8h

abhach
de∂eh

fc∂fhdb

− 1
8h

abhachdb∂
dhef∂

fhec,

(7.3.36)

after dropping the distinction between barred and unbarred indices.

We immediately note that the Cayley-like basis yields fewer terms than our

action in Eq. (7.3.6)—for which the first few orders are given in Eq. (7.3.10)—

and far fewer terms than occur in the canonical graviton perturbation theory of



150
the EH action. In particular, at O(hn) for n = 2, 3, 4, 5, the canonical graviton

perturbation yields 4, 13, 35, 76 terms in the action, respectively, counted such

that no single graviton is acted upon with two derivatives.

A unique aspect of the Cayley-like basis (7.3.34) is that it makes the action

invariant up to a sign-flip under the duality of small and large graviton pertur-

bations. Specifically, consider a metric perturbation hab that has a nonsingular

matrix inverse h−1
ab . Then, in the Cayley-like basis, the transformation

hab
2 →

(
hab
2

)−1

(7.3.37)

merely induces a sign in the field

σab → −σab (7.3.38)

and thus sends the action to minus itself, which simply flips the sign of ~ and

is thus an invariance of the interactions. This invariance, which is unique to

the Cayley-like basis, is reminiscent of T-duality, but is more general in the

sense that it applies to arbitrary invertible metric perturbations, while more

specific in that it applies to the pure gravity theory considered in this chapter.

7.4 Generalizing to Curved Spacetime

In Secs. 7.2 and 7.3, we presented a factorized form of the pure gravity action

expanded around a flat background. We will now generalize this construction

to curved spacetime, first in terms of the full metric and then for perturbations

around a nontrivial background. Afterwards, we derive the corresponding

factorized Einstein equations.

7.4.1 Lifting to Curved Spacetime

Although the action in Eq. (7.3.6) was derived by expanding about flat space-

time, it remains valid to all orders in the graviton perturbation. This implies
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that this action encodes the physics of large graviton field variations away

from flat spacetime, i.e., a curved background. In particular, by combining

Eq. (7.3.1) with Eq. (7.3.7), we see that the nonlinear field defined earlier is

simply

σab =
√
−g gab. (7.4.1)

Remarkably, this combination of fields arises naturally from the EH action in

curved spacetime. After some rearrangement, one can show that

√
−g R =

√
−g

[
∂agce∂bg

de
(1

4g
abδcd −

1
2g

cbδad

)
− gab∂a∂b(log

√
−g)

]
+ · · ·

=
√
−g

[
∂a

(
gce√
−g

)
∂b
(√
−g gde

)(1
4g

abδcd −
1
2g

cbδad

)

+D − 2
4 gab∂a(log

√
−g)∂b(log

√
−g)

]
+ · · · ,

(7.4.2)

which is naturally a function of σab and σab and where ellipses denote total

derivative contributions. Something similar arises when we expand in graviton

perturbations around a background spacetime g̃ab. To see this, we lift the

nonlinear field into curved spacetime, defining
√
−g̃ σab =

√
−g gab. (7.4.3)

Furthermore, we define ωa as before and ω̃a analogously,

ωa = ∂a log
√
−g and ω̃a = ∂a log

√
−g̃, (7.4.4)

as well as their difference,

Ωa = ωa − ω̃a, (7.4.5)

which enters the curved-background generalization of Eq. (7.3.4),

LGF = −D − 2
64πG gabΩaΩb. (7.4.6)

Let us comment on the physical interpretation of this gauge-fixing. At the

level of the gravity action, the gauge condition is a constraint on the full metric
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gab or, equivalently, on the metric perturbation hab in a given field basis. The

gauge-fixing Lagrangian LGF itself can be viewed as being added simply to

cancel expressions in the non-gauge-fixed equations of motion that vanish when

the gauge condition is satisfied. In our case, the gauge condition associated

with LGF is

Ωa = ∂a log
√
−g
−g̃

= 0, (7.4.7)

which is different from the commonly used harmonic gauge condition,

∂b(gab
√
−g) = 0. A gauge condition on the metric can be recast as a condition

on the choice of coordinate system xa, regarded as a set of D scalar functions

on spacetime. In harmonic gauge, this corresponds to ∇b∇bxa = 0. The

coordinate condition corresponding to our gauge condition in Eq. (7.4.7), in

terms of the coordinates xa for the spacetime gab and x̃a for the background

spacetime g̃ab, is

∇b∇ax
b = ∇̃b∇̃ax̃

b, (7.4.8)

using that ∇b∇ax
b = −ωa. Here, ∇̃a is the covariant derivative on the back-

ground metric g̃ab and ∇a is the covariant derivative defined with respect to

the full perturbed metric gab.

Armed with the necessary definitions, we are ready to write the gravity

action in terms of our field redefinition and gauge-fixing, generalized to an

arbitrary background spacetime. First, we note that Eqs. (7.4.2) and (7.4.6)

imply that Eq. (7.1.6) is, up to a total derivative,

S = 1
16πG

ˆ
dDx
√
−g̃

[
∂aσce∂bσ

de
(1

4σ
abδcd −

1
2σ

cbδad

)
− σab∂aω̃b

]
. (7.4.9)

A useful identity for this simplification is σab∂cσab = (2−D)ωc +Dω̃c, which

makes use of the fact that gab∂cgab = 2ωc. To derive an expression that is

manifestly covariant with respect to the background spacetime, we recast
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partial derivatives in terms of covariant derivatives and Christoffel symbols of

the background metric. We then obtain an action that is a nice generalization

of Eq. (7.3.6) to an arbitrary curved background spacetime,

S = 1
16πG

ˆ
dDx
√
−g̃

[
∇̃aσce∇̃bσ

de
(1

4σ
abδcd −

1
2σ

cbδad

)
+ σabR̃ab

]
, (7.4.10)

where R̃ab is the Ricci tensor of the background spacetime. This action reverts

back to Eq. (7.3.6) in the flat-spacetime limit.

Note that Eq. (7.4.10) applies independently of the precise field basis for

the graviton perturbations, merely requiring the existence of an object σab

consistent with Eq. (7.4.3), as well as the gauge fixing in Eq. (7.4.6). For

concreteness, we now give an explicit field basis for the graviton, for which the

required object exists and thus for which Eq. (7.4.10) is the action. Lifting

Eqs. (7.2.7) and (7.3.1) to curved spacetime, we define the full metric gab to be

gab = g̃ab +πab + 1
2!π

2
ab + 1

3!π
3
ab + · · · , where πab = hab−

1
D − 2 g̃ab[h] (7.4.11)

and where we have defined

hnab = hab1 g̃
b1a1ha1b2 g̃

b2a2 · · ·han−2bn−1 g̃
bn−1an−1han−1b

= h a1
a h a2

a1 · · ·h
an−1
an−2 han−1b,

(7.4.12)

with traces [hn] = hnabg̃
ba. We now define an exponential field

σab = g̃ab + hab + 1
2!h

2
ab + 1

3!h
3
ab + · · · = (eh)ab (7.4.13)

and similarly redefine σab = (e−h)ab with indices in its expansion contracted

using g̃ab. With these definitions, along with the useful relation √−g =
√
−g̃ e−[h]/(D−2), the nonlinear field σab satisfies the property desired in

Eq. (7.4.3). Hence, the action for the graviton, to all orders in perturbation

theory, expanded about an arbitrary background spacetime as in Eq. (7.4.11)

and gauge-fixed according to Eq. (7.4.6), is given in Eq. (7.4.10). In this field

basis, the gauge condition (7.4.7) becomes ∂a[h] = 0.
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Generically, a nonzero value of R̃ab will violate index factorization since

σabR̃ab unavoidably contracts left and right indices in all odd powers of hab

in σab. For example, this will occur in (anti-)de Sitter space, where R̃ab ∝ g̃ab.

However, for a background vacuum solution R̃ab = 0, the action (7.4.10)

factorzies when expressed in terms of 2D-dimensional spacetime, so

S = 1
16πG

ˆ
dDx dDx̄ δD(x− x̄)

√
−g̃×

× ∇̃AΣCE∇̃BΣDE
( 1

16ΣABδCD −
1
4ΣCBδAD

)
,

(7.4.14)

where ∇̃A = (∇̃a, ∇̃ā). This action applies for any background vacuum solu-

tion to the Einstein equations, including the Schwarzschild and Kerr metrics,

Taub-NUT space, gravitational wave backgrounds, etc. In all of these cases,

Eq. (7.4.14) provides an all-orders factorized representation of the perturbation

theory. As a special case, Eq. (7.4.14) can accommodate any background

metric on Minkowski spacetime, e.g., curvilinear coordinates, as opposed to the

strict Cartesian coordinate system necessary for the formulation in Eq. (7.3.20).

In addition to the nice factorization properties, the action is very simple in

perturbation theory; indeed, the slow scaling of the number of terms discussed

in Sec. 7.3.4 is equally applicable to Eq. (7.4.14). Hence, our result may have ap-

plicability to the treatment of black hole perturbations, nonlinear gravitational

wave effects, etc.

In general, a nontrivial background energy-momentum tensor T̃ab will source

the Ricci curvature R̃ab, thus violating index factorization. However, it is

simple to see that one particular matter source actually remains compatible

with twofold Lorentz symmetry: a massless, minimally-coupled free scalar. For

a background source φ̃, the energy-momentum tensor and Ricci tensor are

T̃ab = ∂aφ̃∂bφ̃−
1
2 g̃ab∂cφ̃∂

cφ̃ and R̃ab = 8πG∂aφ̃∂bφ̃. (7.4.15)
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Moreover, the matter action, in the full perturbed spacetime metric with the φ̃

background, is

Smatt = −1
2

ˆ
dDx
√
−g gab∂aφ̃∂bφ̃ = −1

2

ˆ
dDx
√
−g̃ σab∂aφ̃∂bφ̃. (7.4.16)

In this case, the contribution to the action (7.4.10) from σabR̃ab and the

matter action Smatt are both separately compatible with index factorization

and moreover exactly cancel each other. The individual index factorization of

the two terms and the cancellation between Smatt and σabR̃ab both stem from

the fact that the matter Lagrangian for the free massless scalar is linear in the

metric gab, which allows for the background value of the scalar action to be

equal to √−g gabR̃ab. In this case, the background value of the scalar becomes

irrelevant to the gravity action, which in factorized form reduces to that given

in Eq. (7.4.14).

7.4.2 Equations of Motion

As we saw previously, the twofold Lorentz invariance of the action is directly

manifest in the corresponding Feynman diagrams. Moreover, this property

should be exhibited by the equations of motion, i.e., the Einstein equations. In

this section, we compute the Einstein equations, to all orders in perturbation

theory in our chosen field basis, about an arbitrary curved spacetime background.

A priori, one can compute the equations of motion corresponding to field

variations of gab, σab, or hab, but all of these are related to each other by an

appropriate Jacobian.

The Einstein equations with respect to gab are of the standard form,

Rab −
1
2Rgab = 8πGTab, (7.4.17)

where we have defined the stress-energy tensor
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Tab = − 2√
−g

δ(√−gLmatt)
δgab

(7.4.18)

for matter Lagrangian Lmatt. Now, let us relate the usual Einstein equations

to the equation of motion corresponding to the variation of σab. The Jacobian

relating σab and gab is

Jabcd =
√
−g
−g̃

δgab

δσcd
= 1

2
(
δac δ

b
d + δadδ

b
c

)
− 1
D − 2g

abgcd, (7.4.19)

which has the structure of the graviton propagator numerator in harmonic

gauge. To obtain the equations of motion for σab, we multiply Eq. (7.4.17) by

the Jacobian, yielding

J cdab

(
Rcd −

1
2Rgcd

)
= 8πGJ cdabTcd

=⇒ Rab = 8πG
(
Tab −

1
D − 2Tgab

)
,

(7.4.20)

which are just another form of the Einstein equations. Varying the action

(7.4.10) with respect to σab, we obtain the equations of motion to all orders in

perturbation theory,

Rab = 1
2∇̃c

(
σcd∇̃aσbd + σcd∇̃bσad − σcd∇̃dσab

)
+ 1

2
(
σceσdf − σcfσde

)
∇̃dσac∇̃fσbe + 1

4∇̃aσcd∇̃bσ
cd + R̃ab.

(7.4.21)

A useful trick for handling the inverse matrix σab in the equations of motion is

to introduce a constraint term λab (σacσcb− δba), where λ is a Lagrange multiplier.

As consistency check, we can instead write Rab explicitly in terms of gab for

the perturbation expansion about flat spacetime, substituting in our field

redefinition from Eq. (7.3.1). Indeed, in this case we obtain the same result as

the flat-background limit of Eq. (7.4.21).

Let us momentarily consider the linearized Einstein equations in the flat-

spacetime limit,
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−�hab + ∂a∂ch
c
b + ∂b∂ch

c
a = 16πG

(
Tab −

1
D − 2Tηab

)
, (7.4.22)

where � = ηab∂b∂a. The left-hand side of Eq. (7.4.22) is nearly the same as

the general, non-gauge-fixed linearized field equations in the so-called trace-

reversed basis [118], but is missing the term −ηab∂c∂dhcd, which violates index

factorization and which was removed by our gauge-fixing procedure. Note that

we have not eliminated all of the available gauge freedom, since we can shift

the coordinate functions xa by a perturbation δxa satisfying ∇b∇aδx
b = 0.

Equivalently, as noted in Sec. 7.3.3, we can send hab → hab + ∂aξb + ∂bξa, as

long as ∂aξa = constant, so that ∂a[h] = 0 and the gauge condition (7.4.7)

remains satisfied. In particular, for a radiative solution in which Tab = 0, we

can choose ξa such that �ξa = −∂bhab, in which case we find that, after the

shift, the perturbation satisfies ∂ahab = 0. Hence, the vacuum equation reduces

to the usual wave equation �hab = 0.

We now turn back to the general case of the Einstein equation for per-

turbation theory in an arbitrary background spacetime. To be as general as

possible, we will for now ignore the issue of factorization and merely consider

some implications of Eq. (7.4.21), the equation of motion for the gravity action

(7.4.10). While Eq. (7.4.10) appears with a tadpole in the graviton, habR̃ab,

this is precisely canceled by additional tadpole terms generated by the matter

action. This is mandated by the equations of motion for the background,

R̃ab −
1
2R̃ g̃ab = 8πG T̃ab, (7.4.23)

where R̃ = R̃abg̃
ba. So as long as the background spacetime satisfies the Einstein

equation, the tadpole in the action in Eq. (7.4.10) is canceled.

For backgrounds with vanishing R̃ab, we can also write the equations of

motion associated with the action in Eq. (7.4.14) in terms of the fields ΣAB



158
on the doubled spacetime, so that the factorization of indices in hab̄ occurs

automatically. Doing so, we can rewrite Eq. (7.4.21) as

[RAB]x=x̄ =
[

1
4∇̃C

(
ΣCD∇̃BΣAD + ΣDC∇̃AΣDB −

1
2ΣCD∇̃DΣAB

)
+ 1

8
(
ΣECΣFD − ΣFCΣED

)
∇̃DΣAC∇̃FΣEB

+ 1
8∇̃AΣCD∇̃BΣCD

]
x=x̄

,

(7.4.24)

where RAB is the lift of the Ricci tensor into the 2D-dimensional space. We

thus have a factorized form of the Einstein equations, valid to all orders in

perturbation theory about an arbitrary curved vacuum background spacetime.

Note, however, that if one simply varies the doubled-spacetime action in

Eq. (7.4.14) with respect to ΣAB, the resulting expression contains various

errors in factors of two compared to the correct expression in Eq. (7.4.24),

since the Lagrangian is integrated only over the diagonal spacetime x = x̄. If

one substitutes explicit expressions for ΣAB in terms of hab̄ and then drops all

bars, setting x = x̄, then Eq. (7.4.24) reduces to Eq. (7.4.21) with R̃ab = 0 as

required.

7.5 Conclusions

In this chapter, we have described a systematic search for a pure gravity action

exhibiting the twofold Lorentz symmetry suggested by the double copy relations.

This property is manifested by two sets of indices, barred and unbarred, that

are independently contracted and naturally parameterized by an auxiliary

set of extra spacetime dimensions. By exploring the space of nonlinear field

redefinitions and local gauge-fixing of the Einstein-Hilbert action discussed in

Sec. 7.2, we derived the twofold Lorentz invariant action described in Sec. 7.3.

This action extends to an infinite family of actions related by twofold Lorentz
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invariant field redefinitions. Some choices, e.g., the case of the Cayley-like basis

explored in Sec. 7.3.4, possess enhanced simplicity in terms of the reduced

number of Lorentz invariant structures present in the action at each order in

perturbation theory.

Because our results for flat-spacetime perturbation theory apply to all orders

in the graviton field, they can be extended to curved spacetime. In Sec. 7.4, we

derived a simple action for graviton perturbations around an arbitrary curved

spacetime background in our field basis. Furthermore, we found that this action

exhibited the same factorization properties for arbitrary Ricci-flat background

spacetimes. We derived the Einstein equations in index-factorized form to all

orders in the graviton about an arbitrary vacuum background and explored

several interesting features they possess.

This work leaves a number of promising directions for future research.

First of all, while we introduced auxiliary spacetime dimensions simply as a

convenient bookkeeping tool, it is likely that these can be derived from a truly

extra-dimensional construction. One path would be to understand how our

action somehow arises as a truncation of double field theory that lifts the dilaton

from the spectrum. Alternatively, one could introduce dynamics governing

fluctuations of the D-dimensional region within the doubled spacetime or smear

out the delta function in Eq. (7.3.20), modifying the theory in the ultraviolet.

Second, it would be illuminating to study the properties of graviton scatter-

ing amplitudes computed with this class of twofold Lorentz invariant actions.

Indeed, it has long been known that the properties of on-shell graviton scat-

tering amplitudes enjoy improved high-momentum behavior from the study

of BCFW recursion relations [205, 206] for general gauge and gravity theories

[207, 208]. As discussed in Ref. [207], these properties can be understand from

a “spin Lorentz symmetry” that can be derived from the high-energy limit of
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these theories. From this perspective, the results of this chapter are a nonlinear

generalization of this property beyond the high-energy limit.

Last but not least, a critical open question is whether and how our results

relate directly to the double copy construction for scattering amplitudes in gauge

theory and gravity. Here, it would be extraordinary to somehow reformulate

our family of twofold Lorentz invariant gravity actions as two bona fide gauge

theory copies. The naive prescription—to simply substitute hab̄ ∼ AaĀb̄ at the

level of Feynman vertices—is ambiguous since there are an infinite number

of pure gravity actions from which one can start. Nevertheless, we believe

that a formulation likely exists, in part because the analogous puzzle has

been understood for the double copy of effective field theories, where new

representations of the nonlinear sigma model and special Galileon theories

[209] manifest these dualities as a symmetry of a cubic action. In any case,

this chapter represents an initial step towards understanding the gauge and

gravity double copy at the level of the action.
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Chapter 8
Splitting Spacetime and Cloning
Qubits: Linking No-Go Theorems
across the ER=EPR Duality

We analyze the no-cloning theorem in quantum mechanics through the lens of

the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality

between entanglement and wormholes. In particular, we find that the no-cloning

theorem is dual on the gravity side to the no-go theorem for topology change,

violating the axioms of which allows for wormhole stabilization and causality

violation. Such a duality between important no-go theorems elucidates the

proposed connection between spacetime geometry and quantum entanglement.

This chapter is from Ref. [7], N. Bao, J. Pollack, and G. N. Remmen, “Splitting
Spacetime and Cloning Qubits: Linking No-Go Theorems across the ER=EPR
Duality,” Fortsch. Phys. 63 (2015) 705, arXiv:1506.08203 [hep-th].

8.1 Introduction

The connection between entanglement and geometry is an unexpected stepping-

stone on the path to an understanding of quantum gravity. Historically origi-

nating from black hole thermodynamics [210, 211] and later in the context of

the holographic principle [50, 51], the AdS/CFT correspondence [52–54], en-

tropy bounds [71], and the Ryu-Takayanagi formula [132], the relation between

quantum entanglement and spacetime geometry is increasingly thought to be

an important feature of a consistent theory of quantum gravity. Underscoring

this view is recent work on deriving the Einstein equations holographically

from entanglement constraints [212] and perhaps even spacetime itself from

http://dx.doi.org/10.1002/prop.201500053
http://arxiv.org/abs/1506.08203
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qubits [10, 213]. However, significant puzzles remain. The classic black hole

information paradox [125, 214] has given way to new questions about black

hole interiors and their entanglement with Hawking radiation [215, 216]. One

of the most drastic, albeit promising, proposals to arise from these debates is

the so-called ER=EPR duality [57].

The ER=EPR correspondence [57] is a compelling [217, 218] proposal for

an exact duality between Einstein-Podolsky-Rosen (EPR) pairs [58], that is,

qubits entangled in a Bell state [219], and nontraversable wormholes, that is,

Einstein-Rosen (ER) bridges [55, 126, 127]. More specifically, the ER=EPR

proposal generalizes the notion of entangled black hole pairs at opposite ends

of an ER bridge, by asserting that every pair of entangled qubits is connected

by a Planck-scale quantum wormhole. The proposal, if true, would have

profound implications for AdS/CFT and suggest a solution to the firewall

paradox of Ref. [215], not to mention the fundamental shift it would induce in

our understanding of both quantum mechanics and general relativity.

The ER=EPR correspondence might allow the exploration of gravitational

analogues of fundamental properties of quantum systems (and vice versa). In

particular, we can check whether there is a precise correspondence between

no-go theorems in quantum mechanics and similar no-go theorems in gravity.

Arguably the most celebrated no-go theorem in quantum mechanics is the

no-cloning theorem [220], which prohibits the duplication of quantum states.

In this chapter, we investigate the manifestation of the no-cloning theorem

on the gravitational side of the ER=EPR duality. In particular, we show that vi-

olation of the no-cloning theorem is dual under ER=EPR to topology-changing

processes in general relativity, which, via classical topology-conservation theo-

rems [221–227], lead to causal anomalies through violation of the Hausdorff

condition (which leads to the breakdown of strong causality), creation of closed
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timelike curves (CTCs), or violation of the null energy condition (NEC) (which

allows for wormhole traversability and hence CTCs). While the validity of

ER=EPR requires both unitarity and wormhole nontraversability, it is inter-

esting that these two requirements seem to be fundamentally related: the

no-cloning theorem and the topology-conservation theorem, both of which are

related to causality, are in fact dual no-go theorems under ER=EPR.

8.2 Quantum Cloning

Here, we reconstruct the standard argument for why the no-cloning theorem

prohibits superluminal signaling [228]. Assume that cloning of states is allowed,

that is, that there exists an operation that takes an arbitrary state |Ψ〉 in a

product state with some |0〉 state and replaces the |0〉 state with |Ψ〉:

|Ψ〉A |0〉B → |Ψ〉A |Ψ〉B . (8.2.1)

Suppose that there exists an EPR spin pair, the state (|00〉+ |11〉)/
√

2. We

give one spin to each of a pair of individuals, Alice and Bob, who may then

move to arbitrary spacelike separation. Alice now makes a decision as to the

classical bit she wishes to communicate: to send a “1,” she measures in the σz

basis, while to send a “0,” she does nothing.

Bob now proceeds to clone his qubit as in Eq. (8.2.1). Note that each of

his cloned qubits remains maximally entangled with Alice’s qubit, in violation

of monogamy of entanglement, while remaining unentangled with each other.

By measuring enough of his own qubits in the σz basis, Bob can determine,

to any desired degree of confidence, whether Alice performed a measurement

or not: his measurements will all yield the same result if Alice performed a

measurement, but will be equally and randomly split between the two outcomes

if she did not. As this experiment does not depend on their separation, Bob’s
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utilization of cloning and their shared entanglement has allowed Alice to send

one classical bit to Bob acausally.

8.3 Black Hole Cloning

In order to geometrically interpret the no-cloning theorem using the ER=EPR

proposal, we need a system with both a high level of entanglement (like the

EPR pair just considered) and a robust geometric description. One such system

is the eternal AdS-Schwarzchild black hole, which is described in AdS/CFT

by two noninteracting large-N CFTs in a thermally entangled state on the

boundary sphere [56, 131]:

|Ψ〉 = 1√
Z

∑
n

e−βEn/2 |n〉L ⊗ |n〉R , (8.3.1)

where |n〉L(R) is the nth eigenstate on the left (respectively, right) CFT with

energy En, β is the inverse temperature, and Z is the partition function. In

this state, the reduced density matrices ρL,R of either side are identically

thermal. If both exterior regions of the geometry are considered [56, 131, 229],

this state describes a spacetime consisting of two separate AdS-Schwarzchild

regions that are spatially disconnected outside the horizon but linked by an ER

bridge between a maximally entangled8.1 pair of black holes with temperature

β−1. This is a concrete realization of ER=EPR: to reiterate, the two black

holes are both maximally entangled (EPR) and connected by a nontraversable

wormhole (ER). It will be convenient to consider the slight generalization of

this setup in which the two black holes share the same asymptotic space. As

discussed in Ref. [57], such black hole pairs can be naturally obtained as an

instanton solution in a geometry with a constant magnetic field.
8.1Strictly speaking, the state is only truly maximally entangled when ρL = ρR = 1, i.e.,

when β → 0, but we adopt the terminological abuse of Ref. [57].
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Figure 8.1. Illustration of the black hole cloning thought experiment in the context
of the ER=EPR conjecture. If Bob has access to a device that can clone quantum
states, he can transform black hole B, which is entangled with A, into two black
holes B and B′, each connected to A via an ER bridge.

We now consider repeating the experiment in the previous section using

entangled black holes instead of qubits, as depicted in Fig. 8.1. Alice and

Bob, who live in an asymptotically-AdS spacetime, are each given access to a

Schwarzschild black hole, with the two black holes, labeled A and B respectively,

maximally entangled and therefore connected by a nontraversable wormhole.

If Bob now clones all the degrees of freedom on his stretched horizon [124], he

is left with two black holes B and B′, each of which is connected by an ER

bridge to Alice’s black hole. That is, cloning is dual to change of spacetime

topology under ER=EPR.

8.4 Changing Spacetime Topology

We now turn to the question of whether the double-wormhole geometry of

Fig. 8.1 suffers from any inconsistencies in general relativity. Throughout this

chapter, we assume that the Einstein equations hold and that the spacetime

can be well described by a semiclassical geometry (which corresponds to a

choice of how Bob implements the cloning).

The simplest interpretation of the geometry M in Fig. 8.2 is that, since

horizon pairs AB and AB′ are each in the thermofield double state (8.3.1), the

geometries of both wormholes are the same. In this case, the geometry after

Bob performs the cloning simply consists of two separate sheets, each a copy of
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Figure 8.2. Penrose diagram for the topology-change process depicted in Fig. 8.1,
with spatial slices Σ1 (blue) and Σ2 (orange) shown as embedding diagrams. The
spacetime region M (green) is indicated; the compact region K with nontrivial
topology is bounded by horizons A, B, and B′. All of the spatial infinities i0 are
identified, as the black holes share the same asymptotically-AdS spacetime. The
diagonal stripes at the bottom of the Penrose diagram indicate that the half of the
spacetime containing the past horizons is not shown.

the original ER bridge, glued together along horizon A. Note that in this case

M contains bifurcate geodesics: any timelike geodesic intersecting horizon A

after the cloning occurs will split into two timelike geodesics, one going along

the sheet containing B and the other along the sheet containing B′. These

timelike bifurcate curves indicate a breakdown of the Hausdorff condition, the

requirement that for any two points x 6= y, there exist disjoint open sets X 3 x

and Y 3 y.8.2 Since the bifurcate timelike curve in question has bounded (being

a geodesic, zero) acceleration and moreover the non-Hausdorff boundary of M
8.2Bifurcating geodesics imply failure of the Hausdorff condition, but the converse is not

necessarily true; see, for example, the discussion of Taub-NUT space in Refs. [68, 225].
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(horizon A) is codimension 1, it follows by a theorem of Håjíček [225] that M

is not strongly causal. Strong causality is the requirement that for all points

p ∈ M there is an open neighborhood P 3 p such that any timelike curve

passing through P does so only once; this is a weaker condition than global

hyperbolicity, so the setup depicted in Fig. 8.2 leads, via Håjíček’s theorem, to

breakdown of Cauchy evolution [230]. Intuitively, this happens because once a

timelike curve intersects horizon A it becomes impossible to predict its future.

If we wish to avoid immediately abandoning strong causality, we must relax the

assumption that the geometry after cloning is merely a two-sheeted copy of the

original ER bridge and instead turn to the question of whether the topology

change induced by cloning is alone sufficient to guarantee a pathology for a

spacetime that remains Hausdorff.

The topology change in question occurs in a localized region of spacetime.

Let us define a partial Cauchy surface [223] to be a spacelike slice through the

entire spacetime such that any causal (timelike or null) curve intersects the

surface at most once. A 3-surface Σ is called externally Euclidean if there exists

compact Γ ⊂ Σ such that Σ− Γ is diffeomorphic to Euclidean space minus a

3-ball, i.e., Σ− Γ ' S2 ⊗ R. Given these definitions, we can draw two disjoint

externally Euclidean partial Cauchy surfaces Σ1 and Σ2, where Σ1 passes

through horizons A and B before the cloning and Σ2 passes through horizons A,

B, and B′ after the cloning, as shown in Fig. 8.2. Importantly, Σ1 and Σ2 are

not diffeomorphic, Σ1 6' Σ2. Taking A, B, and B′ to be centered on a line on Σ2

and quotienting by the rotation group SO(2) around this line, Σ1/SO(2) and

Σ2/SO(2) are 2-manifolds with genera 1 and 2, respectively, and are therefore

not topologically equivalent. The four-dimensional spacetime region whose

boundary is Σ1∪Σ2, called M in Fig. 8.2, is externally Lorentzian: there exists

a compact manifold K such thatM−K ' S2⊗R⊗ [0, 1], a timelike foliation of
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spacelike slices S2⊗R. Then Geroch’s topology-conservation theorem [221–223]

implies that, since Σ1 6' Σ2, M must contain a CTC.

While the existence of a CTC somewhere in spacetime is already problematic,

we can state a stronger result. We note that Σ1 is a Cauchy surface for M −K,

that is, for all p ∈ M −K, every future- and past-inextendible causal curve

through p intersects Σ1. Let us assume the generic condition, which asserts

that every causal geodesic with tangent vector kµ passes through some point

for which

kαkβk[µRν]αβ[ρkσ] 6= 0. (8.4.1)

This means that every timelike or null geodesic experiences a tidal force at

some point.8.3 Then Tipler’s topology-conservation theorem [223, 224] implies

that since Σ1 6' Σ2, the NEC8.4 must fail. That is, the topology change dual

to cloning under ER=EPR implies that there must exist fields in the theory

for which one can arrange an energy-momentum tensor Tµν such that

Tµνk
µkν < 0 (8.4.2)

along some null vector kµ.

Although violations of the NEC (see also Ref. [231]) have been shown to

occur at a quantum level [232], it has not been shown that such violation is

sufficient to allow unusual semiclassical gravitational behavior [57, 129]. How-

ever, the NEC violation in the present thought experiment implies macroscopic

topology change that results from Bob’s cloning procedure with, for example,

astrophysical-scale entangled black holes. We conclude that violation of the

no-cloning theorem is dual under ER=EPR to topology change and problems
8.3If the spacetime under consideration has some special symmetry allowing Eq. (8.4.1) to

fail for some geodesic, we can enforce the generic condition by simply adding gravitational
waves (that is, nonzero Weyl tensor) sufficiently weak to avoid nonnegligible back-reaction
on the rest of our argument.

8.4While Ref. [223] states the theorem in terms of the weak energy condition, this can be
strengthened to the NEC as stated in Ref. [224].
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with causality, leading to CTCs (by Geroch’s theorem) or strong violation of

the NEC (by Tipler’s theorem).

It is worth noting that the topology theorems do not rule out sensible

processes like black hole pair production in the context of ER=EPR. If we

consider entanglement as a conserved quantity [233], then creation of a pair of

entangled black holes does not change the topology, as the ER bridge between

them is formed in ER=EPR from the Planckian wormholes connecting the

entangled vacuum. Moreover, the process of black hole pair creation is not well

described semiclassically, so our results do not apply in that case; in contrast,

the cloning process examined in this chapter can be treated in the setting

of semiclassical geometry. Unlike pair production, cloning does violate the

axioms of the topology-conservation theorems precisely because it involves

non-unitarily creating entanglement (and therefore wormholes) that did not

previously exist.

8.5 Wormholes and Causality

We have shown that violation of the no-cloning theorem is dual under ER=EPR

either to immediate breakdown of Cauchy evolution or to severe violation

of the NEC [Eq. (8.4.2)]. The latter implies the condition that allows for

stabilization of wormholes; specifically, one must have violation of the averaged

NEC [128, 129]. That is, a traversable ER bridge requiresˆ ∞
0

Tµνk
µkνdλ < 0 (8.5.1)

for some null geodesics with affine parameter λ and tangent vector kµ. Ref. [129]

exhibits a construction of a traversable ER bridge that just satisfies Eq. (8.5.1)

within the wormhole while retaining non-negative total energy.

The connection between wormhole stabilization and the NEC is highly
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relevant in the context of the ER=EPR correspondence, as the argument

in Ref. [57] regarding the impossibility of using wormholes (and by duality,

entanglement) to transmit information is critically dependent on the ER bridges

pinching off too quickly to allow for signal traversal [127]; a stabilized wormhole

would falsify this line of reasoning. Said another way, violation of the NEC

plus the existence of wormholes leads to traversable wormholes, which would

lead to causality violation. In particular, given a traversable ER bridge, one

can immediately form a causal paradox (i.e., a closed signal trajectory) by

simply moving the wormhole mouths far apart and giving them a small relative

boost [2, 129]. The connection between topology change and causality violation

in the gravitational sector is now explicit and is satisfyingly analogous to

the connection between unitarity/no-cloning and causality on the quantum

mechanical side of the ER=EPR duality.

8.6 Perspectives for Future Work

As we have seen, spacetime topology change leads inexorably to violation

of causality, via either breakdown of the Hausdorff condition or creation of

traversable wormholes. Using ER=EPR to translate this result to quantum

mechanics, we find that violation of the axioms of the topology-conservation

theorems is dual to violation of monogamy of entanglement (i.e., cloning) and

the existence of wormholes is dual to the existence of entanglement entropy.

The logical flow of our reasoning is:

C & ∃ QE =⇒ SLS
l l l

∆T & ∃WH ���NEC=⇒ TWH
⇓(

���NEC & ∃ CTCs
)
||��SC.

(8.6.1)
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Here, C denotes “quantum cloning,” “QE” quantum entanglement, “SLS”

superluminal signaling, “T” topology, “WH” wormholes, “TWH” traversable

wormholes, and “SC” strong causality. The single-lined arrows in Eq. (8.6.1)

indicate duality of specific statements under ER=EPR, double-lined arrows

indicate logical implication, and strikethroughs indicate violation.

It is striking that on both the general relativistic and quantum mechanical

sides of the duality, violation of the no-go theorem leads to problems for

causality. The unexpected connection between cloning and topology change

offers support for the ER=EPR correspondence, which provides a natural

explanation for their relation.

A promising avenue for future research is the investigation of whether other

no-go theorems in quantum mechanics and gravity neatly correspond under

ER=EPR. The no-deleting theorem corresponds to the topology theorem in

exactly the same way as the no-cloning theorem, while the no-communication

theorem is equivalent to the assertion of nontraversability of wormholes. On the

gravity side, violation of Hawking’s area theorem, i.e., the generalized second

law of thermodynamics, requires either breakdown of cosmic censorship or of

the null energy condition [234], the latter allowing wormhole traversal [129].

In ER=EPR, this corresponds to violation of the no-communication theorem

[57] and, in AdS/CFT, would correspond to violation of unitarity in the dual

CFT state of Eq. (8.3.1) [2]. Whether all known gravitational or quantum

mechanical no-go theorems map onto each other in this way is a fascinating

open question. More generally, the connections among infrared constraints

on ultraviolet physics, such as unitarity and causality [2, 31, 134, 235], will

continue to play an important role in understanding quantum gravity.
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Chapter 9
Wormhole and Entanglement
(Non-)Detection in the ER=EPR
Correspondence

The recently proposed ER=EPR correspondence postulates the existence of

wormholes (Einstein-Rosen bridges) between entangled states (such as EPR

pairs). Entanglement is famously known to be unobservable in quantum

mechanics, in that there exists no observable (or, equivalently, projector) that

can accurately pick out whether a generic state is entangled. Many features

of the geometry of spacetime, however, are observables, so one might worry

that the presence or absence of a wormhole could identify an entangled state

in ER=EPR, violating quantum mechanics, specifically, the property of state-

independence of observables. In this note, we establish that this cannot occur:

there is no measurement in general relativity that unambiguously detects the

presence of a generic wormhole geometry. This statement is the ER=EPR dual

of the undetectability of entanglement.

This chapter is from Ref. [8], N. Bao, J. Pollack, and G. N. Remmen, “Worm-
hole and Entanglement (Non-)Detection in the ER=EPR Correspondence,”
JHEP 11 (2015) 126, arXiv:1509.05426 [hep-th].

9.1 Introduction

Black holes are the paradigmatic example of a system where both field-theoretic

and gravitational considerations are important. Black hole thermodynamics

and the area theorem [210, 211] already provided a relationship between

entanglement and geometry, while the classic black hole information paradox

http://dx.doi.org/10.1007/JHEP11(2015)126
http://arxiv.org/abs/1509.05426
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[214] and its potential resolution via complementarity [124, 236, 237] pointed

at the subtlety of the needed quantum mechanical description. In the last few

years, the firewall paradox [215] has heightened the tension between these two

descriptions, prompting a number of proposals to modify the standard picture

to a greater or lesser extent.

One set of proposals [238–242] modifies quantum mechanics to allow for

state-dependence of the black hole horizon, so that an infalling observer does

not encounter a firewall even though the state of the black hole horizon can be

written as a superposition of basis states that each have high energy excitations

[243]. In order to avoid this problem, the presence or absence of a black hole

firewall must become a nonlinear observable, contrary to standard quantum

mechanics. In a recent paper, Marolf and Polchinski [244] have pointed out

that this nonlinearity cannot be “hidden”; if it is strong enough to remove a

firewall from a generic state, it must lead to violations of the Born Rule visible

from outside the horizon.

In this chapter, we consider a different idea inspired by the firewall paradox,

the ER=EPR correspondence [57], which asserts the existence of an exact

duality between Einstein-Podolsky-Rosen (EPR) pairs, i.e., entangled qubits,

and Einstein-Rosen (ER) bridges [55, 126, 127], i.e., nontraversable wormholes.

This duality is supposed to be contained within quantum gravity, which is

in itself meant to be a bona fide quantum mechanical theory in the standard

sense. The ER=EPR proposal is radical, but it is not obviously excluded by

either theory or observation, and indeed has passed a number of nontrivial

checks [217, 218, 245–247]; if true, it has the potential to relate previously

unconnected statements about entanglement and general relativity in a manner

reminiscent of the AdS/CFT correspondence [52–54]. In a previous paper [7],

we pointed out that in ER=EPR the no-cloning theorem is dual to the general
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relativistic no-go theorem for topology change [221, 223]; violation on either

side of the duality, given an ER bridge (two-sided black hole), would lead to

causality violation and wormhole traversability.

In light of the result of Ref. [244], one might be worried that ER=EPR is in

danger. It is well known that entanglement is not an observable, in the sense

we will make precise below; we cannot look at two spins and determine whether

they are in an arbitrary, unspecified entangled state with one another. Yet

ER=EPR implies that the two spins are connected by a wormhole, so that the

geometry of spacetime differs according to whether or not they are entangled.

If this difference in geometry could be observed, entanglement would become a

(necessarily nonlinear) observable as well and the laws of quantum mechanics

would be violated, contrary to the assumption that the latter are obeyed by

quantum gravity.

In this chapter, we show that ER=EPR does not have this issue. Unlike

the modifications to quantum mechanics considered by Ref. [244], wormhole

geometry can be hidden. In particular, we show that in general relativity no

measurement can detect whether the interior of a black hole has a wormhole

geometry. More precisely, observers can check for the presence or absence

of specific ER bridge configurations, but there is no projection operator (i.e.,

observable) onto the entire family of wormhole geometries, just as (and, in

ER=EPR, for the same reason that) there is no projection operator onto the

family of entangled states.

The remainder of this chapter is organized as follows. We first review the

basic quantum mechanical statement that entanglement is not an observable.

Next we introduce the maximally-extended AdS-Schwarzschild geometry in

general relativity and, using AdS/CFT, on the CFT side. As a warmup, we first

show that no single observer can detect the presence of a wormhole geometry.
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We then turn to more complicated multiple-observer setups and show, as

desired, that they are unable to detect the presence of nontrivial topology in

complete generality.

9.2 Entanglement is Not an Observable

The proof that one cannot project onto a basis of entangled states [248] proceeds

as follows. Assume the existence of a complete basis set of entangled states

|ψEi〉, distinct from the basis set of all states. A projection onto this basis

could be written in the form

P̂E =
∑
i

|ψEi〉 〈ψEi | . (9.2.1)

Note, however, that the set of all entangled states has support over the en-

tire Hilbert space, as the entangled states can be written as linear sums of

unentangled states:

|ψEi〉 =
∑
j∈Bi
|ψj〉 (9.2.2)

for some set Bi. Therefore, the projector onto the set of all entangled states

does not project out any states in the Hilbert space. Said another way, the

set of all entangled states is not a set that is closed under superposition, thus

preventing a projection thereupon. Since no projector exits, entanglement is

therefore not an observable.

9.3 Setup

We consider the maximally-extended AdS-Schwarzschild geometry [249, 250],

which, following Ref. [57], we will interpret as an Einstein-Rosen bridge con-

necting two black holes. The metric for the AdS-Schwarzschild black hole in D

spacetime dimensions is [251, 252]
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ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
D−2, (9.3.1)

where dΩ2
D−2 is the surface element of the unit (D− 2)-dimensional sphere and

f(r) is defined to be

f(r) = 1− 16πGDM

(D − 2)ΩD−2rD−3 + r2

L2 , (9.3.2)

writing GD for Newton’s constant in D dimensions, ΩD−2 = 2π(D−1)/2/Γ[(D −

1)/2] for the area of the unit (D − 2)-sphere, and L for the AdS scale. The

horizon rH is located at the point where f(rH) = 0. The tortoise coordinate can

be defined as r∗ =
´

dr/f(r), the ingoing and outgoing Eddington-Finkelstein

coordinates v = t+ r∗ and u = t− r∗, with which we can define the lightcone

Kruskal-Szekeres coordinates

(I) U = −e−f ′(rH)u/2 V = ef
′(rH)v/2

(II) U = e−f
′(rH)u/2 V = ef

′(rH)v/2

(III) U = e−f
′(rH)u/2 V = −ef ′(rH)v/2

(IV) U = −e−f ′(rH)u/2 V = −ef ′(rH)v/2.

(9.3.3)

Regions I through IV are depicted in Fig. 9.1 and define the maximally-

extended AdS-Schwarzschild black hole geometry. Defining T = (U + V )/2

and X = (V − U)/2, the horizon is located at T = ±X, that is, at UV = 0,

while the singularity is located at T 2 − X2 = 1. The one-sided AdS black

hole occupies Region I and half of Region II, i.e., V > 0, X > 0. In these

coordinates, the metric becomes

ds2 = −4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 dUdV + r2dΩ2
D−2

= 4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 (−dT 2 + dX2) + r2dΩ2
D−2,

(9.3.4)

where r is now defined implicitly in terms of U and V via

UV = T 2 −X2 = ±ef ′(rH)r∗ , (9.3.5)

where the sign is − for Regions I and III and + for Regions II and IV.
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Figure 9.1. The maximally-extended AdS-Schwarzschild geometry, with Kruskal-
Szekeres coordinates T,X and lightcone coordinates U, V indicated. Of course, the
singularity actually appears as a hyperbola in T,X. This diagram is a conformally-
transformed sketch to indicate the general relationship among the coordinates; see
Ref. [253] for more discussion. Regions I through IV are defined by Eq. (9.3.3).

We now turn to the CFT interpretation of the geometry. In the Maldacena

and Susskind proposal of ER=EPR [57], it is pointed out that, in AdS/CFT,

the state |ψ(t)〉 in the CFT corresponds at different times to different causal

diamonds in the eternal, maximally-extended AdS-Schwarzschild geometry.

Different spatial slices through a given causal diamond that intersect the

boundaries at fixed points are related to each other by the Wheeler-deWitt

equation in the bulk. If one is outside a black hole in AdS, without knowing

a priori which time slice one is on, then the different |ψ(t)〉 are simply a one-

parameter family of states |ψα〉, where α has replaced t and is now just the

label for the state of the CFT at time t = 0; all of the |ψα〉 describe pairs of

black holes containing some sort of ER bridge. The various geometries are

shown in Fig. 9.2.

Famously, the maximally-extended AdS black hole can be described on the

CFT side of the AdS/CFT correspondence by the thermofield double state

of two noninteracting large-N CFTs on the boundary sphere. We take the

interpretation [57] of the state as two entangled black holes that both evolve

forward in time, that is,
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Figure 9.2. (left) The state |ψ0〉, corresponding to a wormhole geometry where
the ER bridge intersects the boundary at T = 0. (right) The family of states |ψα〉,
α > 0, for which the ER bridge intersects the boundary at T > 0.

|ψ(t)〉 = 1√
Z

∑
n

e−βEn/2e−2iEnt |n̄〉L ⊗ |n〉R , (9.3.6)

where |n〉L and |n〉R are the nth eigenstates of the left and right CFTs, respec-

tively, with eigenvalue En, a bar denotes the CPT conjugate, and β is the

inverse temperature. We note that the CFT time t in Eq. (9.3.6) is the r →∞

limit of the Schwarzschild time t that appears in Eq. (9.3.1). By considering

the surface of constant Kruskal time T that intersects the r =∞ boundary at

Schwarzschild time t, we can instead parameterize the CFT state corresponding

to the eternal AdS black hole as |ψ(T )〉. Equivalently, we can write as |ψT 〉

the family of ER bridges indexed by T , which correspond at the fixed Kruskal

time T = 0 to the CFT state |ψ(T )〉. The black hole described by |ψT0〉 is

given by the metric (9.3.4) with T replaced with T − T0 in Eq. (9.3.5). The

analogous states with two one-sided black holes on the boundary CFTs will be

called |φT 〉, where

|φt〉 = 1√
Z

(∑
m

e−βEm/2e−iEmt |m̄〉L

)
⊗
(∑

n

e−βEn/2e−iEnt |n〉R

)
. (9.3.7)
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9.4 The Single-Observer Case

To gain intuition for the setup, in this section we restrict ourselves to mea-

surements that a single (test particle) observer can perform in an otherwise

empty (AdS-)Schwarzschild spacetime. Such observers are forbidden from

receiving information from or coordinating with other observers; that is, we

first investigate the aspects of the geometry that can be probed by a single

causal geodesic. We will refer to this class of observers as isolated observers.

The simplest way for an isolated observer to verify the existence of an ER

bridge would be to pass through it, i.e., to traverse the wormhole. It turns out,

however, that this process is disallowed both by classical general relativity and,

via ER=EPR, by quantum mechanics.

In general relativity, the nontraversability of wormholes follows immediately

from a more fundamental result, the topological censorship theorem [226], which

is the statement that in a globally hyperbolic, asymptotically flat spacetime

satisfying the null energy condition (NEC), any causal curve from past null

infinity to future null infinity is diffeomorphic to an infinite causal curve in

topologically trivial spacetime (such as Minkowski space). In other words,

no causal observer’s worldline can ever probe nontriviality of topology of

spacetime.9.1 Probing the nontrivial topology of an ER bridge simply means

passing through the wormhole, which is therefore forbidden given the NEC.

In a previous paper [7], we showed that violation of the NEC in ER=EPR

necessarily leads to violation of the no-cloning theorem and the breakdown
9.1Of course, nonisolated observers can determine topological characteristics of their spacetime,

for example by seeing the same stars on opposite sides of the sky and thereby determining
that spatial sections of their spacetime are toroidal. However, they must receive information
from outside their worldline—in this case, photons emitted by distant stars that travel
on topologically distinct geodesics—to do so. Furthermore, the topological censorship
theorem guarantees that if the spacetime is asymptotically flat, satisfies the NEC, and
allows Cauchy evolution, then any handles must collapse to a singularity before an observer
can travel around them.
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of unitary evolution. Traversable wormholes are therefore also forbidden by

quantum mechanics given ER=EPR, as they would correspond to a breakdown

of unitarity by allowing superluminal signaling.

The next simplest means of verifying the existence of an ER bridge would

be to detect the nontrivial topology of the wormhole without traversing it. In

the present context, we see that detecting the nontrivial topology is equivalent

under ER=EPR to detecting the existence of entanglement—more precisely,

to constructing a linear operator that detects if an unknown state is entangled

with anything else. But it is well known that such an operator is forbidden

by the linearity of quantum mechanics, as Ref. [244] discusses. Briefly, this

is because projection operators cannot project onto a subspace unless that

subspace is closed under superposition. An attempt to project onto the set of

all entangled states will therefore fail due to the set of all entangled states not

being closed under superposition; such a projector will inevitably project onto

the entire Hilbert space of all states. On the gravity side, this leads to a result

stronger than the nontraversability of wormholes: not only does ER=EPR

forbid an observer from traversing wormholes, it forbids an isolated observer

from verifying their existence even once inside them.

This result can be straightforwardly verified in general relativity by ex-

amining the applicable metrics. Importantly, the metric given in Eqs. (9.3.4)

and (9.3.5) for the maximally-extended geometry has several isometries: it is

invariant under the exchange (U, V )↔ (−U,−V ) and also under the exchanges

(T,X)↔ (T,−X) and (T,X)↔ (−T,X). That is, Regions I and II in Fig. 9.1

are the same as Regions III and IV, respectively, and moreover the entire metric

is symmetric under spatial (X) or temporal (T ) reversal. In particular, the

regions present in both this geometry and the one-sided black hole geometry

(Region I and half of Region II, i.e., V > 0, X > 0) are completely identical in
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Figure 9.3. The procedure described in the text for detecting a wormhole. Alice
and Bob emerge from the white hole portion of the AdS-Schwarzschild geometry,
then meet again inside the black hole.

the two cases. It is this property that implies that an observer on a geodesic

entering a one-sided black hole cannot distinguish it from a two-sided black

hole via any local measurement of curvature.

We have therefore shown that a single (isolated) observer cannot observe

whether a given black hole hosts an ER bridge, even by jumping into it. We

next consider observables that require multiple communicating observers to

implement.

9.5 The Multiple-Observer Case

One can ask the question of whether two (or, for that matter, many) observers

can detect the existence of entanglement or, equivalently, of nontrivial topology.

The setup of the experiment is as follows. Consider a maximally-extended, eter-

nal AdS-Schwarzschild geometry, as depicted in Fig. 9.3. Allow two observers,

Alice and Bob, to initially begin in the white hole portion of the geometry. (We

will consider the case of more than two observers later in this section.) Now let



182

Figure 9.4. Unlike in Fig. 9.3 above, here the geometry is shifted to some |ψα〉 for
some sufficiently large α 6= 0; Alice and Bob hit the singularity before they can meet
and are therefore unable to verify the existence of a wormhole.

the observers exit the white hole9.2 to the two different asymptotic regions not

contained in the black hole. Next, they both jump into their respective black

holes and compare notes. In such a way, they could potentially determine if

there was entanglement before hitting the singularity.

The problem with this construction is that it doesn’t definitively tell the

observers if there was entanglement or not. Indeed, Alice and Bob could jump

into the |ψ0〉 ER bridge at sufficiently late time T that they are unable to

communicate (since one or both of them will hit the singularity before being

able to do so); equivalently, the geometry could be |ψα〉 for α too large (instead

of |ψ0〉), as depicted in Fig. 9.4. The same argument that states that no

linear operator permits the observers from detecting whether or not there

is entanglement precludes this verification procedure from succeeding with
9.2We note that the white holes mentioned in our construction are for convenience only; it

suffices for Alice and Bob to have communicated at some past time and simply to have
moved out of causal contact. Indeed, it is possible for Alice and Bob to both exist in the
same asymptotically AdS vacuum, as long as a wormhole exists connecting their locations.
It is, however, necessary for them to enter the wormhole in order to attempt to detect
information regarding the entanglement in this picture.
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probability 1. But how is it possible to reconcile the fact that Alice and Bob

can sometimes verify the existence of an ER bridge with the impossibility of

projecting onto a generic family of states?

To be concrete, suppose that Alice and Bob are in some geometry in the

set of all |ψα〉 (for α unknown) and travel on outgoing nearly null trajectories

beginning in the white hole at (T,X) = (−q, 0), with Alice (Bob) entering

Region III (respectively, I) at (T,X) ' (−q/
√

2,∓q/
√

2), turning around at

(T,X) ' (0,∓q), and entering Region II through their respective black holes at

(T,X) ' (q/
√

2,∓q/
√

2). Now, if they do not hit a singularity, their geodesics

will cross again at (T,X) ' (q, 0). That is, their geodesics will cross if they

are in the state |ψα〉, i.e., the state in which T is shifted by α, for α < 1− q.

If α > 1 − q for a |ψα〉 state or if they had instead been in any one of the

|φα〉 states, they would hit the singularity without their paths ever crossing.

(Recall that for X = 0, the singularity is located at T = ±1 for the |ψ0〉

geometry.) Hence, Alice and Bob are able to verify if they are in the set

Sq = {|ψα〉 |α < 1− q}.

However, this thought experiment does not require the existence of a

projection operator onto the entire family Sq. Instead, after their geodesics

cross, Alice and Bob can actually determine in which of the |ψα〉 they are. All

null geodesics from the horizon to the singularity are isomorphic and experience

the same pattern of values of the curvature tensor on the way in. That is, a

family of null geodesics with, e.g., constant V = V0 can be labeled by the time

t at which they cross a surface at fixed proper distance from the horizon in

Region I, which is the only difference among the geodesics; since the metric

(9.3.1) is independent of t, all of these geodesics experience the same inward

journey. Hence, before meeting Bob inside Region II, there is no distinguishing

event by which Alice can measure α. However, the value of the Riemann tensor
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at the moment Alice’s and Bob’s geodesics cross is unique for each |ψα〉.

In particular, at the moment their geodesics cross, Alice and Bob can

measure the tidal forces acting in their local Lorentz frames by computing some

component of the Weyl tensor. At (T,X) = (q, 0), Eq. (9.3.5) implies that, in

Region II, r∗ and hence r is a monotonic function of (q − α). (Recall that for

|ψα〉 all equations describing the metric are shifted by T → T − α.) Let us

define a local Lorentz frame in coordinates (t̂, r̂, θ̂), where θ̂ is the orthonormal

coordinate in the D − 2 angular directions. When their paths cross, Alice and

Bob can measure the r̂θ̂r̂θ̂ component of the Weyl tensor, which is

Wr̂θ̂r̂θ̂ = − 1
L2 −

(
D − 3
D − 2

) 8πGDM

ΩD−2rD−1 . (9.5.1)

Note that this quantity monotonically increases as r [and so in (q − α)]. This

implies that Alice and Bob can determine α by measuring tidal forces at the

moment when their geodesics cross; there is a bijection between α and the

size of the tidal force. This measurement thus acts as a projection operator

Pα = |ψα〉 〈ψα|. This is analogous to the possibility of being able to detect if

two qubits are in some particular entangled state, rather than absolutely any

entangled state whatsoever.

The key point here is that if the observers hit the singularity before ex-

changing a signal, i.e., if the wavefunction is one of the |ψα〉 for which α > 1−q,

then Alice and Bob are unable to confirm the existence of the ER bridge. If

α < 1− q, the experiment Alice and Bob perform actually determines α. This

procedure therefore fails to determine if the region behind a horizon contains

a generic wormhole: it can sometimes reveal its existence, but not rule out

its presence. It therefore does not implement a projector onto the set of all

wormhole states. Thus, no contradiction with linearity of quantum mechanics

arises in ER=EPR from the ability of Alice and Bob to jointly explore the

wormhole geometry.
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A priori, one could wonder whether even more general configurations of

more than two observers could make the existence of wormhole topology into

an observable. Note that it is not consistent to consider a setup in which there

is an infinite set of observers (or signals) entering a horizon at earlier and earlier

times, as this would violate the necessary assumption of weak backreaction and

hence invalidate the AdS-Schwarzschild spacetime ansatz. Hence, in a given

slicing of spacetime, there must be an initial observer to enter the horizon. A

prototypical setup for the thought experiment with more than two observers can

therefore be rephrased as follows. After meeting and arranging the experiment,

Bob and Alice go their separate ways. Bob jumps into his horizon, crossing it

at spacetime point p = (T,X) ' (q, q)/
√

2 as before. This time, however, Alice

remains outside her horizon and instead sends into her black hole multiple light

pulses at regular intervals, with the first light pulse she emits (after leaving Bob)

entering her wormhole mouth at p′ = (T,X) ' (q′,−q′)/
√

2. The multiple

light pulses are equivalent to having multiple observers enter the black hole at

different times. However, one can choose a slicing of spacetime in which p and

p′ are on the same spacelike sheet; that is, one can simply apply a boost to

equate the spatial components of p and p′. Since a boost can be independently

applied to each asymptotically AdS spacetime, it follows that the case in which

Bob is also replaced by multiple observers can be similarly simplified. As a

result, the multiple observer setup reduces to the two observer setup, which we

showed previously cannot definitively answer the question of whether there is

a wormhole geometry.

Thus, even with multiple observers, the measurement of whether or not

there is an ER bridge in general is not a valid observable, any more than

the question of whether two qubits are arbitrarily entangled is a quantum

mechanical observable.
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9.6 Conclusions

The ER=EPR proposal is a compelling but surprising idea about quantum

gravity, identifying features of ordinary quantum mechanics with geometrical

and topological features of spacetime. As an extraordinary claim, it is necessary

that it be subjected to rigorous theoretical tests to ascertain whether it suffers

from any inconsistencies. One such potential issue, which we have addressed in

this chapter, is whether ER=EPR implies a serious modification of quantum

mechanics, namely, the introduction of state dependence. The argument that

ER=EPR implies state dependence rests on the observation that the correspon-

dence identifies entanglement with wormholes. Famously, entanglement is not

a quantum mechanical observable, so this leads to the question of whether the

observation of a wormhole contradicts, under ER=EPR, linearity of quantum

mechanics.

In this chapter, we have argued that ER=EPR does not contradict this

principle of quantum mechanics precisely because the general question of the

existence or nonexistence of a wormhole is also not an observable. We showed

that neither a single observer nor a group of observers is able to definitively

establish whether a pair of event horizons is linked by an ER bridge. A single

observer can never detect the (nontraversable) wormhole’s existence, which

mirrors the fact that, given a single qubit, one cannot tell if it is entangled by

anything else. On the other hand, by exploring the spacetime, two or more

observers working in concert can decide if they are in a particular ER bridge

geometry, but cannot project onto the entire family. Under ER=EPR, this

statement mirrors the fact that one can project two qubits onto a particular

entangled state but not onto the family of all possible entangled states.

Many options are available for future investigation. The ER=EPR corre-
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spondence has been subjected to some tests [7, 217, 218, 245–247], but the

challenge of seeing the duality between wormholes and any arbitrary form of

quantum entanglement remains, as does the very definition of what is meant

by a “wormhole” in ER=EPR for theories without a weakly-coupled holo-

graphic gravity dual. Other open issues include the investigation of whether

firewalls are truly nongeneric in ER=EPR [55] and whether the correspondence

can be concretely realized outside of asymptotically AdS spacetime. The an-

swers to these questions and others will likely provide important insight in

future investigations in the connections between entanglement and spacetime

geometry.
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Chapter 10
Entanglement Conservation,
ER=EPR, and a New Classical Area
Theorem for Wormholes

We consider the question of entanglement conservation in the context of the

ER=EPR correspondence equating quantum entanglement with wormholes.

In quantum mechanics, the entanglement between a system and its comple-

ment is conserved under unitary operations that act independently on each;

ER=EPR suggests that an analogous statement should hold for wormholes.

We accordingly prove a new area theorem in general relativity: for a collection

of dynamical wormholes and black holes in a spacetime satisfying the null

curvature condition, the maximin area for a subset of the horizons (giving the

largest area attained by the minimal cross-section of the multi-wormhole throat

separating the subset from its complement) is invariant under classical time

evolution along the outermost apparent horizons. The evolution can be com-

pletely general, including horizon mergers and the addition of classical matter

satisfying the null energy condition. This theorem is the gravitational dual of

entanglement conservation and thus constitutes an explicit characterization of

the ER=EPR duality in the classical limit.

This chapter is from Ref. [9], G. N. Remmen, N. Bao, and J. Pollack, “En-
tanglement Conservation, ER=EPR, and a New Classical Area Theorem for
Wormholes,” JHEP 07 (2016) 048, arXiv:1604.08217 [hep-th].

http://dx.doi.org/10.1007/JHEP07(2016)048
http://arxiv.org/abs/1604.08217
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10.1 Introduction

All of the states of a quantum mechanical theory are on the same footing

when considered as vectors in a Hilbert space: any state can be transformed

into any other state by the application of a unitary operator. When the

Hilbert space can be decomposed into subsystems, however, there is a natural

way to categorize them: by the entanglement entropy of the reduced density

matrix of a subsystem constructed from the states. Entanglement between two

subsystems is responsible for the “spooky action at a distance” often considered

a characteristic feature of quantum mechanics: measuring some property of a

subsystem determines the outcome of measuring the same property on another

entangled subsystem, even a causally disconnected one.

It is well known that this seeming non-locality does not lead to violations

of causality. It cannot be used to send faster-than-light messages [228] and

in fact it is impossible for any measurement to determine whether the state

is entangled (see, e.g., Ref. [248]). Similarly, it is impossible to alter the

entanglement between a system and its environment (that is, to change the

entanglement entropy of the reduced density matrix of the system) by acting

purely on the degrees of freedom in the system or by adding more unentangled

degrees of freedom. A number of well-established properties, such as monogamy

[254] and strong subadditivity [255], constrain the entanglement entropy of

subsystems created from arbitrary factorizations of the Hilbert space.

Although entanglement entropy is a fundamental quantity, it is typically

very difficult to compute in field theories, where working directly with the

reduced density matrix can be computationally intractable, although important

progress has been made in certain conformal field theories [256, 257] and

more generally along lightsheets for interacting quantum field theories [258].
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The AdS/CFT correspondence [52–54], however, allows us to transform many

field-theoretic questions to a gravitational footing. In particular, the Ryu-

Takayanagi formula [132] equates the entanglement entropy of a region for a

state in a conformal field theory living on the boundary of an asymptotically

AdS spacetime to the area of a minimal surface with the same boundary as

that region in the spacetime corresponding to that CFT state. Using this

identification of entropy with area, a number of “holographic entanglement

inequalities” have been proven [259, 260], some reproducing and some stronger

than the purely quantum mechanical entanglement inequalities.

Motivated in part by AdS/CFT, as well as a number of older ideas in

black hole thermodynamics [210, 211] and holography [50, 51, 261], Maldacena

and Susskind have recently conjectured [57] an ER=EPR correspondence, an

exact duality between entangled states (Einstein-Podolsky-Rosen [58] pairs)

and so-called “quantum wormholes,” which reduce in the classical general

relativistic limit to two-sided black holes (Einstein-Rosen [55] bridges, i.e.,

wormholes). In a series of recent papers, we have considered the implications

of this correspondence in the purely classical regime. In this limit, if the

ER=EPR duality holds true, certain statements in quantum mechanics about

entangled states should match directly with statements in general relativity

about black holes and wormholes [262], with the same assumptions required on

both sides. We indeed previously found two beautiful and nontrivial detailed

correspondences: the no-cloning theorem in quantum mechanics corresponds

to the no-go theorem for topology change in general relativity [7] and the

unobservability of entanglement corresponds to the undetectability of the

presence or absence of a wormhole [8].

In this chapter, we extend this correspondence to a direct equality between

the entanglement entropy and a certain invariant area, which we define, of a
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geometry containing classical black holes and wormholes. We follow a long

tradition of clarifying general relativistic dynamics using area theorems [68, 263–

266], which hold that various areas of interest satisfy certain properties under

time evolution. Our strategy is to show that the area in question remains

unchanged under dynamics constituting the gravitational analogue of applying

tensor product operators to an individual system and its complement. We

show that, just as entanglement entropy cannot be changed by acting on the

subsystem and its complement separately, this area is not altered by merging

pairs of black holes or wormholes or by adding classical (unentangled) matter.

The area we consider is chosen to be that of a maximin surface [267, 268] for a

collection of wormhole horizons, a time-dependent generalization of the Ryu-

Takayanagi minimal area, which again establishes that the entanglement entropy

is also conserved under these operations. At least for asymptotically AdS

spacetimes, our result constitutes an explicit characterization of the ER=EPR

correspondence in the classical limit. Moreover, our theorem is additionally

interesting from the gravitational perspective alone, as it constitutes a new

area law within general relativity.

This chapter is structured as follows. In Sec. 10.2, we review the simple

quantum mechanical fact that entanglement is conserved under local operations.

In Sec. 10.3, we define the maximin surface and review its properties. In

Sec. 10.4, we prove our desired general relativistic theorem. Finally, we discuss

the implications of our result and conclude in Sec. 10.5.

10.2 Conservation of Entanglement

Consider a Hilbert space H that can be written as a tensor product of two

factors HL and HR to which we will refer as “right” and “left,” though they

need not have any spatial interpretation. For a state |ψ〉 ∈ H, let us define
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the reduced density matrix associated with HL as ρL = TrHR |ψ〉 〈ψ| and use

this to define the entanglement entropy between the right and left sides of the

Hilbert space:

S(L) = S(R) = −TrHLρL log ρL. (10.2.1)

It is straightforward to see that adding more unentangled degrees of freedom

to HL will not affect the entanglement entropy, as by construction this does

not introduce new correlations between HL and HR. This is particularly clear

to see by using the equivalence of S(L) and S(R) for pure states, as adding in

further unentangled degrees of freedom will maintain the purity of the joint

system.

Now let us consider the effect on S(L) of applying a unitary U = UL ⊗ UR

to |ψ〉. As TrHRU = UL, we can consider only the action of UL on ρL, as UR

acts trivially in HL. This transforms S(L) into

S(L) = −TrHLULρLU
†
L log

(
ULρLU

†
L

)
. (10.2.2)

One can at this point expand the logarithm by power series, with individual

terms of the form

Sn(L) = −TrHLcnULρLU
†
L

(
1− ULρLU

†
L

)n
(10.2.3)

for some real cn. For each term in the expansion of the product, all but the first

UL and the last U †L will cancel as U †LUL = 1. Finally, by cyclicity of the trace,

the remaining UL and U †L will also cancel, leaving Sn(L) invariant. Thus, S(L)

remains invariant under unitary transformations of the form U = UL ⊗ UR.

This is the statement of conservation of entanglement.

10.3 The Maximin Surface

A holographic characterization of the entanglement entropy begins with its

calculation on a constant-time slice, where the Ryu-Takayanagi (RT) formula
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[132] holds:

S(H) = AH
4G~ . (10.3.1)

This relates the area AH of the minimal surface subtending a region H to the

entanglement entropy of that region with its complement. When the region

is a complete boundary, this reduces to the minimal surface homologous to

the region. For example, in a hypothetical static wormhole geometry, the

entanglement entropy between the two ends would be given by the minimal

cross-sectional area of the wormhole.

This method of computing entanglement entropy on a constant-time slice

for static geometries was generalized by the Hubeny-Rangamani-Takayanagi

(HRT) proposal [267]. The key insight here was that in general there do not

exist surfaces that have minimal area in time, as small perturbations can

decrease the area. The new proposal was that the area now scales as the

smallest extremal area surface, as opposed to the minimal area. The homology

condition mentioned previously remains in this prescription.

The maximin proposal [268] gives an explicit algorithm for the implementa-

tion of the HRT prescription. In the following definitions, we will closely follow

the conventions used by Wall [268]. We define C[H,Γ] to be the codimension-

two surface of minimal area homologous to H anchored to ∂H that lies on any

complete achronal (i.e., spacelike or null) slice Γ. Note that C[H,Γ] can refer

to any minimal area surface that exists on Γ. Next, the maximin surface C[H]

is defined as any of the C[H,Γ] with the largest area when optimized over all

achronal surfaces Γ. When multiple such candidate maximin surfaces exist, we

refine the definition of C[H] to mean any such surface that is a local maximum

as a functional over achronal surfaces Γ. In the HRT proposal, the entanglement

of H with its complement in the boundary is given by S(H) = area[C[H]]/4G~.

As an example, for a wormhole geometry in which we are computing the
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entanglement entropy between the two horizons of the ER bridge, ∂H is trivial

and the homology condition means that C[H,Γ] is the surface of minimal

cross-sectional area on an achronal surface Γ in the interior causal diamond of

the horizons. Then the maximin surface C[H] is a C[H,Γ] with Γ chosen such

that the area is maximized.

Such surfaces can be shown to exist for large classes of spacetimes and in

particular C[H] can be proven to be equal to the extremal HRT surface for

spacetimes obeying the null curvature condition, which is given by

Rµνk
µkν ≥ 0, (10.3.2)

where kµ is any null vector and Rµν is the Ricci tensor.10.1 As HRT is a covariant

method of calculating entanglement entropy, the maximin construction is

therefore manifestly covariant as well.

Maximin surfaces in general have some further nice properties, proven in

Ref. [268]: they have smaller area than the causal surface (the edge of the causal

domain of dependence associated with bulk causality), they move monotonically

outward as the boundary region increases in size, they obey strong subadditivity,

and they also obey monogamy of mutual information, but not necessarily other

inequalities that hold for constant-time slices [259, 260, 268]:

S(AB) + S(BC) ≥ S(B) + S(ABC),
S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC)

(10.3.3)

for disjoint regions A, B, and C. The above statements are all proven in detail

for maximin surfaces in Ref. [268].
10.1For spacetimes satisfying the Einstein equation Rµν − Rgµν/2 = 8πGTµν for energy-

momentum tensor Tµν , the null curvature condition is equivalent to the null energy
condition Tµνkµkν ≥ 0.
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10.4 A Multi-Wormhole Area Theorem

We are now ready to find the gravitational statement dual to entanglement

conservation. Let us take as our spacetime M the most general possible setup

to consider in the context of the ER=EPR correspondence: an arbitrary,

dynamical collection of wormholes and black holes in asymptotically AdS

spacetime. We work in D spacetime dimensions. Throughout this chapter, we

will assume that M obeys the null curvature condition (10.3.2). The degrees of

freedom associated with the Hilbert space H = ⊗iHi can be considered to be

localized on the union of the stretched horizons, with each horizon comprising

one of the Hi factors. We choose our spacetime setup such that the wormholes

are past-initialized, by which we mean that for t ≤ 0 the wormholes are far

apart and the spacetime around the wormholes is in vacuum, with negligible

back-reaction. Suppose we arbitrarily divide this system into two subsystems

by labeling each horizon as “left” or “right.” The left and right Hilbert spaces

factorize as HL = ⊗iHL,i and HR = ⊗iHR,i, where HL(R),i contains the degrees

of freedom associated with horizon i in the left (right) set. Now, some of the

black holes in the left subset may be entangled with each other and so be

described by ER bridges among the left set. A similar statement applies to

the right set. Importantly, there may be horizons in the left set entangled

with horizons in the right set, describing ER bridges across the left/right

boundary. For the sake of tractability, we consider horizons that are only

pairwise entangled and that begin in equal-mass pairs in the asymptotically

AdS spacetime; this stipulation can be made without loss of generality provided

we consider black holes smaller than the AdS length and do not consider changes

to the asymptotic structure of the spacetime (see, e.g., Ref. [269]). (To treat

wormholes with mouths of unequal masses, we could start in an equal-mass
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configuration and add matter into one of the mouths.) We thus take any two

horizons i and j that are entangled to be in the thermofield double state at

t = 0,

ΠiΠj |ψ〉 (t = 0) = |ψi,j〉 (t = 0) = 1√
Z

∑
n

e−βEn/2 |n̄〉i ⊗ |n〉j , (10.4.1)

where Πi is a projector onto the degrees of freedom associated with Hi, 1/β is

the temperature, and |n〉i is the nth eigenstate of the CFT corresponding to

the degrees of freedom in Hi with eigenvalue En.

Let us define a time slicing of the spacetime M into spacelike codimension-

one surfaces Σt parameterized by a real number t that smoothly approaches

the standard AdS time coordinate in the limit of spacelike infinity, where the

metric is asymptotically AdS. The Σt are chosen to pass through the wormholes

without coordinate singularities along the horizon (cf. Kruskal coordinates);

see Fig. 10.1 for an example geometry. For the wormholes spanning the left

and right subsets, we write as Li and Ri the null codimension-one surfaces that

form the outermost left and right apparent horizons, respectively, and define

L = ∪iLi and R = ∪iRi. Note that, since new apparent horizons can form

outside of the initial apparent horizons, Li and Ri are each not necessarily

connected, but are the piecewise-connected union of the outermost connected

components of the apparent horizons. On a given spacelike slice, an apparent

horizon is a boundary between regions in which the outgoing orthogonal null

congruences are diverging (untrapped) or converging (trapped) [68]. Of course,

the indexing i may become redundant if horizons merge among the Li or

Ri. Let us define the restriction of the outermost apparent horizons to the

constant-time slice Σt as the spacelike codimension-two surfaces Lt,i = Li ∩ Σt

and Rt,i = Ri ∩Σt and similarly Lt = L∩Σt and Rt = R∩Σt. Without loss of

generality, we will use the initial spatial separation of the wormholes along with
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Figure 10.1. Penrose diagram, for an example spacetime M , of a slice through a
particular wormhole i joining a left and right horizon. (Showing the full geometry
would require a multi-sheeted Penrose diagram to accommodate the multiple worm-
holes.) The spacelike codimension-one surface Σ0 is shown in burgundy. The initial
bifurcation codimension-two surface Bi is illustrated by the orange dot. Apparent
horizons are denoted by the orange lines, with the outermost apparent horizons Li
and Ri being the solid lines. For t ≤ 0, the setup is past-initialized and the metric
is given to good approximation by the eternal black hole in AdS, where the past
event horizon of the white hole is indicated by the dashed black lines. The dotted
black lines denote the future event horizon of M . As the spacetime at negative t is
known, we do not show the entire Penrose diagram in this region, as indicated by
the diagonal gray lines.

diffeomorphism invariance to choose the Σt and the parameterization of t such

that Σ0 intersects the codimension-two bifurcation surfaces Bi ≡ L0,i = R0,i

at which all the wormholes have zero length. The past-initialization condition

then means that the wormholes are far apart in the white hole portion of

the spacetime, which corresponds to t ≤ 0. Throughout this chapter, we will

assume that M ∪ ∂M is globally hyperbolic; equivalently [230], we will assume

that the closure of Σ0 is a Cauchy surface for M ∪ ∂M .

Now, for each t > 0, let us define a D-dimensional region of spacetime Wt

as the union over all achronal surfaces with boundary Lt ∪Rt; that is, Wt is

the causal diamond associated with Lt ∪Rt. A single wormhole has topology

SD−2 ⊗ R when restricted to Σt. The initial spacetime W0 is special: it is a

codimension-two surface that is just the union over all the Bi, with topology

(SD−2)⊗N , where N is the number of wormholes connecting the left and right
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subsets.

For a given Wt, let us define a slicing of Wt, parameterized by α, with

achronal codimension-one surfaces Γt(α), where the boundary of Γt(α) is

anchored at Lt ∪Rt for all α and where α increases monotonically as we move

from the past to the future boundary of Wt. Now, we can imagine slicing Γt(α)

into codimension-two surfaces and write as Ct(α) the surface with minimal

area [i.e., the minimal cross-sectional area of Γt(α)]; see Fig. 10.2. We can

now define the maximin surface Ct for Wt as a surface for which the area of

Ct(α) attains its maximum under our achronal slicing Γt(α), maximized over

all possible such slicings. That is, Ct is a codimension-two surface with the

maximum area, among the set of the surfaces of minimal cross-sectional area,

for all achronal slices through Wt.

The main result that we will prove is that the area of the maximin surface

Ct is actually independent of t, equaling just the sum of the areas of the initial

bifurcation surfaces Bi.10.2 In most cases, the maximin surface Ct will actually

be the union of the initial bifurcation surfaces Bi, independent of t. In other

words, the maximin area is invariant among all of the different causal diamonds

Wt. Interpreting the area of the maximin surface as an entropy, this is the

gravitational analogue of entanglement conservation. We will first prove a few

intermediate results.

Proposition 10.1. The area of the maximin surface Ct is upper bounded by

the sum of the areas of the initial bifurcation surfaces Bi.

Proof. Consider the rightward outgoing orthogonal null congruence B̃i, a null

codimension-one surface starting on Bi and satisfying the geodesic equation.
10.2In Ref. [270] it was shown for the special cases of the Schwarzschild-AdS and the single,

symmetric, Vaidya-Schwarzschild-AdS geometries that the initial bifurcation surface is
the extremal surface in the HRT prescription. Our theorem in this chapter generalizes
this result to an arbitrary, dynamical, multi-wormhole geometry in asymptotically AdS
spacetime that is past-initialized and that obeys the null curvature condition.
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Figure 10.2. Penrose diagram (top), for the example geometry of Fig. 10.1, of
the segment of the region Wt∗ (green shading), for some t∗, that passes through a
particular wormhole i joining a left and right horizon. The apparent horizons (orange
lines, with solid lines for the outermost apparent horizons Li and Ri), bifurcation
surface Bi (orange dot), spacelike codimension-one surface Σ0 (burgundy line), and
past event horizons for the white hole (dashed black lines) are illustrated as in
Fig. 10.1. The spacelike codimension-one surface Σt∗ is shown as a blue line. The
purple dotted line denotes the truncated null surface B̃t∗,i formed from the rightward
outgoing orthogonal null congruence B̃i originating on Bi, used in Proposition 10.1.
The codimension-two boundaries of Wt∗ along wormhole i, Lt∗,i and Rt∗,i, are
indicated by the blue dots. The achronal codimension-one surfaces Γt∗(α) foliating
Wt∗ are indicated within wormhole i by the green lines; the codimension-two surfaces
Ct∗(α) of minimal area for some slices Γt∗(α) are indicated within wormhole i by red
dots. The particular surface Γt∗(0), constructed in Eq. (10.4.8), is shown (for the
portion restricted to wormhole i) by the dashed and dotted green lines, corresponding
to Σ0 ∩Wt∗ (the horizontal section) and M+ ∩ J̇−[Σt∗\Wt∗ ] = L̃ ∪ R̃ (the diagonal
sections), respectively. The burgundy dots denote the pieces of L̃0 and R̃0 in the
vicinity of wormhole i. The embedding diagram (bottom) shows a particular slice
Γt∗(α) through Wt∗ for some α, where, as in the Penrose diagram, the codimension-
two boundaries Lt∗,i and Rt∗,i are shown in blue and the surface Ct∗(α) of minimal
cross-sectional area, restricted to wormhole i, is shown in red.

Choosing some particular t∗ arbitrarily, we truncate the null geodesics gen-

erating B̃i whenever a caustic is reached or when they intersect either the

future singularity or the future null boundary of Wt∗ ; we further extend the
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null geodesics into the past until they intersect the past null boundary of Wt∗ .

We will hereafter write the truncated null surface as B̃t∗,i. Let λ be an affine

parameter for B̃t∗,i that increases toward the future and vanishes on Bi; let us

write B̃t∗,i(λ) for the spatial codimension-two surface at fixed λ. The rotation

ω̂µν in a space orthogonal to the tangent vector kµ = (d/dλ)µ satisfies [271]

Dω̂µν
dλ = −θω̂µν , (10.4.2)

where θ = ∇µk
µ is the expansion. Since θ vanishes on Bi, ω̂µν vanishes

identically on B̃t∗,i. The Raychaudhuri equation is therefore

dθ
dλ = − 1

D − 2θ
2 − σ̂µν σ̂µν −Rµνk

µkν , (10.4.3)

where σ̂µν is the shear and Rµν is the Ricci tensor. We note that if the null

curvature condition (10.3.2) is satisfied, then θ is non-increasing, as σ̂µν σ̂µν

is always non-negative. Since the apparent horizon consists of marginally

outer trapped surfaces (i.e., surfaces for which the outgoing orthogonal null

geodesics have θ = 0), it must be either null or spacelike, so any orthogonal

null congruence starting on the apparent horizon remains either on or inside

the apparent horizon in the future [68]. In particular, B̃t∗,i ⊂ Wt∗ .

Now, we can also write θ as d log δA/dλ, where δA is an infinitesimal cross-

sectional area element of B̃t∗,i(λ). That is, area[B̃t∗,i(λ)] has negative second

derivative in λ. Since θ vanishes on the bifurcation surface Bi = B̃t∗,i(0), we

have that area[B̃t∗,i(λ)] is monotonically non-increasing in λ. Moreover, since

for all λ < 0 there exists t < 0 such that B̃t∗,i(λ) ⊂ Σt, the past-initialization

condition means that area[B̃t∗,i(λ)] = area[Bi] for all λ < 0. Hence, for all λ

we have

area[B̃t∗,i(λ)] ≤ area[Bi]. (10.4.4)

By the past-initialization condition, there are no caustics to the past of Bi.

Further, by definition, the wormhole does not pinch off until the singularity
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is reached, so some subset of the generators of B̃i must extend all the way

through Wt∗ without encountering caustics. Writing Γt∗(α) as a foliation of

Wt∗ by achronal slices, we thus have that B̃t∗,i(λ) ∩ Γt∗(α) is never an empty

set for all α, i.e., for all λ there exists α such that B̃t∗,i(λ) ⊂ Γt∗(α). Moreover,

we can reparameterize and identify the affine parameters for each i of the B̃t∗,i

such that for each λ there exists α for which ∪iB̃t∗,i(λ) ⊂ Γt∗(α); for such α,

∪iB̃t∗,i is a complete cross-section of Γt∗(α), possibly with redundancy due to

merging horizons. We choose our slicing Γt∗(α) such that there exists some α∗

for which Γt∗(α∗) contains the maximin surface Ct∗ for Wt∗ , so

Ct∗ = Ct∗(α∗) such that area[Ct∗(α∗)] = max
α

area[Ct∗(α)], (10.4.5)

where Ct∗(α) is the codimension-two cross-section of Γt∗(α) with minimal area.

Since B̃t∗,i is only completely truncated at future and past boundaries of

Wt∗ , it follows that for every α there must exist λ such that Γt∗(α) ⊃ B̃t∗,i(λ).

By the definition of Ct∗(α), we have (for such λ) that

area[Ct∗(α)] ≤
∑
i

area[B̃t∗,i(λ)]. (10.4.6)

Putting together Eqs. (10.4.4) and (10.4.6), taking the maximum over λ and

α on both sides, applying Eq. (10.4.5), and using the fact that t∗ was chosen

arbitrarily, we have a t-independent upper bound on the area of the maximin

surface Ct:

area[Ct] ≤
∑
i

area[Bi]. (10.4.7)

Let us now construct a lower bound on the area of the maximin surface

Ct. We can do this by examining an achronal codimension-one surface through

Wt and computing its minimal cross-sectional area; judiciously choosing the

achronal surface optimizes the bound. In particular, for some arbitrary t∗,
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consider Γt∗(0) passing through ∪iBi, where we choose the slicing such that

Γt∗(0) = (Σ0 ∩Wt∗) ∪
(
M+ ∩ J̇−[Σt∗\Wt∗ ]

)
, (10.4.8)

where M+ is the restriction of M to t ≥ 0, J−[A] denotes the causal past of

a set A, and the dot denotes its boundary. That is, Γt∗(0) consists of the

codimension-one null surfaces forming the t ≥ 0 portion of the boundary of Wt∗

towards the past, plus a codimension-one segment of Σ0 containing ∪iBi; see

Fig. 10.2. Let us label the left and right boundaries of Σ0 ∪Wt∗ (equivalently,

the left and right portions of the intersection of Σ0 and J̇−[Σt∗\Wt∗ ]) as L̃0

and R̃0, respectively.

We will show in two steps that the minimal cross-sectional area of Γt∗(0)

is just ∑i area[Bi]. We will first consider the cross-sectional area of slices of

Σ0 ∩Wt∗ and then examine the changes in cross-sectional area along slices of

M+ ∩ J̇−[Σt∗\Wt∗ ].

Proposition 10.2. The minimal cross-sectional area of Σ0∩Wt∗ is
∑
i area[Bi].

Proof. By the requirement that the wormholes be past-initialized, the metric

on Σ0 is, up to negligible back-reaction, just a number of copies of the metric

on the t = 0 slice of the single maximally-extended AdS-Schwarzschild black

hole; for this metric the tKS = 0 and tS = 0 slices are the same, where tKS is the

Kruskal-Szekeres time coordinate and tS is the Schwarzschild time coordinate

[8]. Taking the t-slicing to correspond to the Kruskal-Szekeres coordinates in

the vicinity of each wormhole, therefore, the metric on Σ0 ∩Wt∗ is

ds2
Σ0∩Wt

= 4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 dX2 + r2dΩ2
D−2 = dr2

f(r) + r2dΩ2
D−2, (10.4.9)

where on Σ0, the Kruskal X coordinate describing distance away from the

wormhole mouth at Bi is X = ±ef ′(rH)r∗/2, with the sign demarcating the left

and right side of Bi and the tortoise coordinate being r∗ =
´

dr/f(r). The



203
function f(r) is

f(r) = 1− 16πGDM

(D − 2)ΩD−2rD−3 + r2

`2 , (10.4.10)

where ΩD−2 is the area of the unit (D − 2)-sphere, GD is Newton’s constant

in D dimensions, M is the initial mass of each wormhole mouth, ` is the AdS

length, and rH is the initial horizon radius, defined such that f(rH) = 0. For

r > rH, f(r) is strictly positive, so r∗ and X are monotonic in r. As we move

from Bi at X = 0 towards L̃0 or R̃0 at XL and XR, the area of the cross-section

of Σ0 ∩Wt∗ for the surface parameterized by X(φ) [or equivalently r(φ)], for

(D−2) angular variables φ, attains its minimum at Bi, where r(φ) is identically

rH, its minimum on Σ0 ∩Wt∗ .

We now turn to the behavior of the cross-sectional area ofM+∩J̇−[Σt∗\Wt∗ ].

Proposition 10.3. The cross-sectional area of M+ ∩ J̇−[Σt∗\Wt∗ ] is nonde-

creasing towards the future.

Proof. Let us label the left and right halves of M+ ∩ J̇−[Σt∗\Wt∗ ] as L̃ and R̃,

so the boundary of L̃ is just L̃0 ∪ Lt∗ and similarly for R̃. We note that both

L̃ and R̃ are generated by outgoing null geodesics. Suppose that some segment

of M+ ∩ J̇−[Σt∗\Wt∗ ] has area decreasing towards the future. We can without

loss of generality restrict to the left null surface, which we then assume has

decreasing area along some segment.

We first observe that since the apparent horizons are null or spacelike and

since L̃ is part of the null boundary of the past of a slice through the outermost

apparent horizon, all outer trapped surfaces must lie strictly inside L̃ ∩ Σt for

all spacelike slices Σt for t ∈ [0, t∗].

Let us define an affine parameter λ̃ for L̃, for which λ̃ = 0 on L̃0 and λ̃ = 1

on Lt∗ , and consider the expansion θ̃ = ∇µk̃
µ, where k̃µ = (d/dλ̃)µ. In order

for the area to be strictly decreasing, there must be some open set U for which
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θ̃(λ̃) < 0 for λ̃ ∈ U . By continuity of the spacetime, there must exist t̃, where

we can choose the affine parameterization such that Σt̃ ⊃ L̃(λ̃) for some λ̃ ∈ U ,

such that Σt̃ contains a region V ⊃ L̃(λ̃) for which θ̃ ≤ 0 for all outgoing

orthogonal null congruences originating from V . Then V is an outer trapped

surface not strictly inside L̃ ∩ Σt̃. This contradiction completes the proof.

Thus, we have constructed a lower bound for the area of Ct.

Proposition 10.4. The area of Ct is lower bounded by the sum of the areas

of the initial bifurcation surfaces Bi.

Proof. To prove a lower bound on the maximin area, area[Ct∗ ], it suffices to

exhibit an achronal surface through Wt∗ for which the minimal cross-sectional

area is equal to the desired lower bound. Such a surface is given by Γt∗(0) in

Eq. (10.4.8): by Proposition 10.2, ∑i area[Bi] is the minimal cross-sectional

area of Σ0 ∩ Wt∗ and, in particular, ∑i area[Bi] ≤ area[L̃0] + area[R̃0]. By

Proposition 10.3, the minimal cross-sectional area of M+ ∩ J̇−[Σt∗\Wt∗ ] is

area[L̃0] +area[R̃0]. Thus, Γt∗(0) is an achronal slice through Wt∗ with minimal

cross-sectional area equal to ∑i area[Bi].

Finally, as an immediate corollary, we have the gravity dual of entanglement

conservation.

Theorem 10.1. For the family of spacetime regions Wt defined as the causal

diamonds anchored on the piecewise-connected outermost apparent horizons Lt

and Rt for an arbitrary set of dynamical, past-initialized wormholes and black

holes satisfying the null curvature condition, the corresponding maximin surface

Ct dividing the left and right collections of wormholes has an area independent

of t, equaling the sum of the areas of the initial bifurcation surfaces for the

wormholes linking the left and right sets of horizons.
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Proof. By Proposition 10.1, area[Ct] ≤

∑
i area[Bi], while by Proposition 10.4,

area[Ct] ≥
∑
i area[Bi]. Hence,

area[Ct] =
∑
i

area[Bi]. (10.4.11)

Thus, the maximin surface dividing one collection of wormhole mouths

from another has an area that is conserved under arbitrary spacetime evolution

and horizon mergers as well as arbitrary addition of matter satisfying the

null energy condition. Viewing the maximin surface area as the entanglement

entropy associated with the left and right sets of horizons in accordance with

the HRT prescription, we have proven a statement in general relativity that is

a precise analogue of the statement in Sec. 10.2 of conservation of entanglement

under evolution of a state with a tensor product unitary operator.

10.5 Conclusions

The proposed ER=EPR correspondence is surprising insofar as it identifies

a generic feature (entanglement) of any quantum mechanical theory with a

specific geometric and topological structure (wormholes) in a specific theory

with both gravity and spacetime (quantum gravity). Until an understanding is

reached of the geometrical nature of the “quantum wormholes” that should

be dual to, e.g., individual entangled qubits, it will be difficult to directly

establish the validity of the ER=EPR correspondence as a general statement

about quantum gravity. In a special limiting case of quantum gravity—namely,

the classical limit, which gives general relativity—this task is more tractable.

In this chapter, we have provided a general and explicit elucidation of the

ER=EPR correspondence in this limit. For a spacetime geometry with an

arbitrary set of wormholes and black holes, we have constructed the maximin
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area of the multi-wormhole throat separating a subset of the wormholes from

the rest of the geometry, the analogue of the entanglement entropy of a reduced

density matrix constructed from a subset of the degrees of freedom of a quantum

mechanical state. We then proved that the maximin area is unchanged under

all operations that preserve the relation between the subset and the rest of

the geometry, the equivalent of quantum mechanical operations that leave the

entanglement entropy invariant. We have therefore completely characterized

the ER=EPR relation in the general relativistic limit: the entanglement entropy

and area (in the sense defined above) of wormholes obey precisely the same

rules.

In addition to providing an examination of the ER=EPR duality, our result

constitutes a new area theorem within general relativity. The maximin area

of the wormhole throat is invariant under dynamical spacetime evolution and

the addition of classical matter satisfying the null energy condition. The

dynamics of wormhole evolution were already constrained topologically (see

Ref. [7] and references therein), but this result goes further by constraining

them geometrically. Note that throughout this chapter we have worked in

asymptotically AdS spacetimes in order to relate our results to a boundary

theory using the language of the AdS/CFT correspondence, but our area

theorem is independent of this asymptotic choice provided that all of the black

holes are smaller than the asymptotic curvature scale.

In the classical limit, we have characterized and checked the consistency of

the ER=EPR correspondence in generality. However, extending these insights

to a well-defined notion of quantum spacetime geometry and topology remains

a formidable task. Understanding the nature of the ER=EPR duality for fully

quantum mechanical systems suggests a route toward addressing the broader

question of the relationship between entanglement and geometry.
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Chapter 11
Consistency Conditions for an
AdS/MERA Correspondence

The Multiscale Entanglement Renormalization Ansatz (MERA) is a tensor

network that provides an efficient way of variationally estimating the ground

state of a critical quantum system. The network geometry resembles a dis-

cretization of spatial slices of an AdS spacetime and “geodesics” in the MERA

reproduce the Ryu-Takayanagi formula for the entanglement entropy of a

boundary region in terms of bulk properties. It has therefore been suggested

that there could be an AdS/MERA correspondence, relating states in the

Hilbert space of the boundary quantum system to ones defined on the bulk

lattice. Here we investigate this proposal and derive necessary conditions for

it to apply, using geometric features and entropy inequalities that we expect

to hold in the bulk. We show that, perhaps unsurprisingly, the MERA lattice

can only describe physics on length scales larger than the AdS radius. Further,

using the covariant entropy bound in the bulk, we show that there are no

conventional MERA parameters that completely reproduce bulk physics even

on super-AdS scales. We suggest modifications or generalizations of this kind

of tensor network that may be able to provide a more robust correspondence.

This chapter is from Ref. [10], N. Bao, C. Cao, S. M. Carroll, A. Chatwin-
Davies, N. Hunter-Jones, J. Pollack, and G. N. Remmen, “Consistency Condi-
tions for an AdS Multiscale Entanglement Renormalization Ansatz Correspon-
dence,” Phys. Rev. D91 (2015) 125036, arXiv:1504.06632 [hep-th].

http://dx.doi.org/10.1103/PhysRevD.91.125036
http://arxiv.org/abs/1504.06632
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11.1 Introduction

The idea that spacetime might emerge from more fundamental degrees of

freedom has long fascinated physicists. The holographic principle suggests that

a (D + 1)-dimensional spacetime might emerge from degrees of freedom in a

D-dimensional theory without gravity [50, 51]. While a completely general

implementation of this idea is still lacking, the AdS/CFT correspondence

provides a specific example in which to probe the holographic emergence of

spacetime. AdS/CFT is a conjectured correspondence between D-dimensional

conformal field theories (CFTs) in Minkowski space and (D + 1)-dimensional

asymptotically anti-de Sitter (AdS) spacetimes [52–54]. An intriguing aspect

of this duality is the Ryu-Takayanagi formula [132, 272], according to which

the entanglement entropy of a region B on the boundary is proportional to the

area of a codimension-two extremal surface B̃ embedded in the bulk curved

spacetime whose boundary is B:

S(B) = area(B̃)
4G + corrections. (11.1.1)

In other words, given a CFT state, one may think of bulk distance and geometry

(at least near the boundary) as being charted out by the entanglement properties

of the CFT state.

A central question in this picture of spacetime emerging from entanglement

is: What is the precise relationship between bulk degrees of freedom and

boundary degrees of freedom? Expressed in a different way, what is the full

map between states and operators in the boundary Hilbert space and those in

the bulk? While investigations of AdS/CFT have thrown a great deal of light

on this question, explicit simple models are still very helpful for studying it in

more detail.

Meanwhile, from a very different perspective, tensor networks have arisen
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as a useful way to calculate quantum states in strongly-interacting many-

body systems [273]. One significant example is the Multiscale Entanglement

Renormalization Ansatz (MERA) [274], which is relevant for critical (gapless)

systems, i.e., CFTs. Starting from a simple state in a low-dimensional Hilbert

space, acting repeatedly with fixed tensors living on a network lattice produces

an entangled wave function for the quantum system of interest; varying with

respect to the tensor parameters efficiently computes the system’s ground state.

Working “backwards” in the MERA, starting with the ground state and

gradually removing entanglement, produces a set of consecutively renormalized

quantum states. This process reveals a renormalization direction along the

graph, which may be thought of as an emergent radial direction of space.

As pointed out by Swingle [275], the MERA graph can serve as a lattice

discretization of spatial slices of AdS. Furthermore, one can use the MERA

to calculate the entanglement entropy of regions of the original (boundary)

critical system; this calculation amounts to tracing over bonds in the tensor

network that cross the causal cone of the boundary region. The causal cone

is a sort of extremal surface for the MERA, motivating comparison to the

Ryu-Takayanagi formula.

It is therefore natural to conjecture that the MERA provides a concrete

implementation of the emergence of spacetime, in the form of a correspondence

between boundary and bulk regions reminiscent of AdS/CFT [275]. Such an

AdS/MERA correspondence would be extremely useful, since the basic building

blocks of the MERA are discrete quantum degrees of freedom from which

quantities of physical interest may be directly calculated. Some specific ideas

along these lines have recently been investigated [276–279].

In this chapter, we take a step back and investigate what it would mean

for such a correspondence to exist and the constraints it must satisfy in
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order to recover properties we expect of physics in a bulk emergent spacetime.

After reviewing the MERA itself and possible construals of the AdS/MERA

correspondence in the next section, in Sec. 11.3 we then derive relationships

between the MERA lattice and the geometry of AdS. We find that the MERA

is unable to describe physics on scales shorter than the AdS radius. In Sec. 11.4

we explore constraints from calculating the entanglement entropy of regions

on the boundary, in which we are able to relate MERA parameters to the

central charge of the CFT. Finally, in Sec. 11.5 we apply the covariant entropy

(Bousso) bound to regions of the bulk lattice. In the most naive version of

the AdS/MERA correspondence, we find that no combination of parameters is

consistent with this bound, but we suggest that generalizations of the tensor

network may be able to provide a useful correspondence.

11.2 AdS/MERA

Let us begin by recalling the definition and construction of the MERA. We will

then introduce the AdS/MERA correspondence and discuss the motivation for

and consequences of this proposal.

11.2.1 Review of the MERA

The MERA is a particular type of tensor network that provides a computation-

ally efficient way of finding the ground states of critical quantum many-body

systems, i.e., CFTs, in D dimensions. (For a recent review of tensor net-

works in general, see Ref. [273]. Detailed analyses of the MERA are given in

[274, 280, 281] and references therein.) In this chapter, we restrict our attention

to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 11.1. The quantum system

being modeled by the MERA lives at the bottom of the diagram, henceforth
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|0〉 |0〉|0〉 |0〉 |0〉 |0〉|0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉|0〉 |0〉

|0〉

(a)

j1 j2

i2i1

U
j1j2
i1i2

(b)

|0〉

i1 i2

j

W
j
i1i2

(c)

Figure 11.1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1).
(b) The squares represent disentanglers: unitary maps that, from the moving-upward
perspective, remove entanglement between two adjacent sites. (c) The triangles
represent isometries: linear maps that, again from the moving-upward perspective,
coarse-grain two sites into one. Moving downward, we may think of isometries as
unitary operators that, in the MERA, map a state in V ⊗ |0〉 into V ⊗ V . The i and
j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

“the boundary” in anticipation of the AdS/MERA connection to be explored

later. We can think of the tensor network as a quantum circuit that either runs

from the top down, starting with a simple input state and constructing the

boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor

k, defining the number of sites in a block to be coarse-grained; in Fig. 11.1

we have portrayed the case k = 2. The squares and triangles are the tensors:

multilinear maps between direct products of vector spaces. Each line represents

an index i of the corresponding tensor, ranging over values from 1 to the “bond

dimension” χ. The boundary Hilbert space Hboundary = V ⊗Nboundary is given by
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a tensor product of Nboundary individual spaces V , each of dimension χ. (In

principle the dimension of the factors in the boundary could be different from

the bond dimension of the MERA, and indeed the bond dimensions could vary

over the different tensors. We will assume these are all equal.)

As its name promises, the MERA serves to renormalize the initial boundary

state via coarse-graining. If we were to implement the MERA for only a

few levels, we would end up with a quantum state in a smaller Hilbert space

(defined on a fixed level of the tensor network), retaining some features of the

original state but with some of the entanglement removed. However, we can

also run the MERA backwards, to obtain a boundary state from a simple initial

input. By varying the parameters in the individual tensors, we can look for an

approximation of the ground state of the CFT on the boundary. Numerical

evidence indicates that this process provides a computationally efficient method

of constructing such ground states [281, 282].

The tensors, or gates, of the MERA come in two types. The first type are

the disentanglers, represented by squares in Fig. 11.1. These are unitary maps

U : V ⊗ V → V ⊗ V, as in Fig. 11.1b. The name comes from thinking of moving

upward through the network, in the direction of coarse-graining, where the

disentanglers serve to remove local entanglement; as we move downward, of

course, they take product states and entangle them. The second type of tensors

are the isometries, represented by triangles. From the moving-downward

perspective these are linear maps W : V → V ⊗ V; moving upward, they

implement the coarse-graining, see Fig. 11.1c. The isometries are subject to the

further requirement that W †W = IV , where IV is the identity map on V , and

WW † = PA , where PA is a projector onto some subspace A ⊂ V⊗V. From the

top-down perspective, we can also think of the isometries as bijective unitary

operators WU : V ⊗ V → V ⊗ V, for which a fixed “ancilla” state (typically the
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ground state |0〉) is inserted in one of the input factors, as shown in Fig. 11.1c.

More generally, isometries could map q < k sites onto k sites, W : V ⊗q → V ⊗k.

The MERA is not the simplest tensor network which implements coarse-

graining. For instance, the tree tensor network [283] (also considered in a

holographic context in Ref. [276]), similar to MERA but without any disen-

tanglers, also implements coarse-graining. However, tensor networks without

disentanglers fail to capture the physics of systems without exponentially-

decaying correlations, and consequently cannot reproduce a CFT ground state.

An example that invites analysis with a MERA is the transverse-field

Ising model [284]. In 1 + 1 dimensions, the model describes a chain of spins

with nearest-neighbor interactions subject to a transverse magnetic field. Its

Hamiltonian is

Ĥ = −J
∑
i

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi , (11.2.1)

where σ̂zi and σ̂xi are Pauli operators and where J and h set the strength of the

nearest-neighbor interactions and the magnetic field, respectively. Notably, the

system achieves criticality at J = h, where a quantum phase transition occurs

between ordered (J > h) and disordered (J < h) phases. In this example, the

open legs at the bottom of the MERA describe the state of the one-dimensional

lattice of spins. A single application of disentanglers and isometries can be

thought of as a true real-space renormalization, producing a lattice of spins

that is less dense than the preceding lattice by a factor of q/k.

In general, much information is required to describe an arbitrary MERA.

In principle, the Hilbert spaces, the disentanglers, and the isometries could

all be different. Also, for k > 2, there is no canonical way of laying out

the disentanglers and isometries; the circuit itself must be specified. We will

restrict ourselves to the case q = 1, so that isometries have 1 upward-going leg

and k downward-going legs. Further, without loss of generality, we take the
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2a
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z
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L1

L2

dimV = χ

(b)

Figure 11.2. (a) A k = 2 MERA, and (b) the same MERA with its disentanglers
and isometries suppressed. The horizontal lines in the graph on the right indicate
lattice connectivity at different renormalization depths, and the vertical lines indicate
which sites at different depths are related via coarse-graining due to the isometries.
Each site, represented by a circle, is associated with a Hilbert space V with bond
dimension χ. In the simplest case, a copy of the same Hilbert space is located at
each site. When assigning a metric to the graph on the right, translation and scale
invariance dictate that there are only two possible length scales: a horizontal proper
length L1 and a vertical proper length L2.

same vector spaces, disentanglers, and isometries everywhere in the MERA,

a simplification that is enforced by the symmetries of the boundary ground

state. These symmetries—namely, translation- and scale-invariance—dictate

that the MERA parameters and structure be homogeneous across the whole

tensor network.

For geometric considerations, it is useful to abstract away all of the infor-

mation about unitary operators and to draw a MERA as a graph as shown

in Fig. 11.2. In such a graph, we only indicate the connectivity of sites at

any given level of coarse-graining as well as the connectivity of sites under

renormalization group flow.
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11.2.2 An AdS/MERA Correspondence?

The possibility of a correspondence between AdS and the MERA was first

proposed by Swingle in Ref. [275], where it was noted that the MERA seems

to capture certain key geometric features of AdS. At the most basic level, when

viewed as a graph with legs of fixed length, a MERA may be thought of as

a discretization of the hyperbolic plane, which is a spatial slice of AdS3. In

this discretization, the base of the MERA tree lies on the boundary of the AdS

slice and the MERA lattice sites fill out the bulk of the slice [275, 285].

Interestingly, the structure of a MERA is such that it seems to go beyond

a simple discretization of the hyperbolic plane. Certain discrete paths in

the MERA naturally reproduce geodesics of the hyperbolic plane [213, 275].

Moreover, this phenomenon makes it possible to understand the computation

of CFT entanglement entropy using a MERA as a discrete realization of the

Ryu-Takayanagi formula [286]. These and other examples [213, 275] seem to

suggest that a MERA may in fact be elucidating the structural relationship

between physics on the boundary of AdS and its bulk.

In this work we take the term “AdS/MERA correspondence” to mean more

than simply a matching of graph geometry and continuous geometry. In the

spirit of the AdS/CFT correspondence, we suppose that (at least some aspects

of) both boundary and bulk physics are described by appropriate Hilbert

spaces Hboundary and Hbulk respectively, which must have equal dimensions.

A full AdS/MERA correspondence would then be a specification of these

Hilbert spaces, as well as a prescription which makes use of the MERA to

holographically map states and operators in Hboundary to corresponding states

and operators in Hbulk and vice-versa. To preserve locality in the bulk and

the symmetries of AdS, it is natural to identify Hbulk with the tensor product

of individual spaces Vbulk, each located at one site of the MERA. If it exists,
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this correspondence provides a formulation of bulk calculations in terms of

the MERA. An AdS/MERA correspondence should allow us to, for example,

calculate bulk correlation functions, or bulk entanglement entropies using tools

from or the structure of the MERA.

There is one straightforward way to construct such a mapHboundary ↔ Hbulk.

We have noted that the isometriesW : V → V ⊗V can be thought of as unitaries

WU : V ⊗V → V ⊗V by imagining that a fixed ancillary state |0〉 is inserted in

the first factor; for a k-to-one MERA, one would insert k − 1 copies of the |0〉

ancilla at each site to unitarize the isometries. From that perspective, running

upwards in the tensor network provides a map from the MERA ground state on

the boundary to a state |0〉⊗(k−1)Nbulk ∈ V ⊗(k−1)Nbulk , where at each isometry

there is a copy of V ⊗(k−1) and Nbulk denotes the number of bulk lattice sites,

excluding the boundary layer. As we ultimately show in Sec. 11.5, one has

Nboundary = (k− 1)Nbulk. We can then identify Hboundary = Hbulk = V ⊗Nboundary

and think of the tensor network as a quantum circuit providing a map between

arbitrary states Hboundary → Hbulk. In this construction, the MERA ground

state on the boundary gets mapped to the factorized bulk state |0〉⊗(k−1)Nbulk ,

but other boundary states will in general produce entangled states in the bulk

(keeping the tensors themselves fixed).

Something very much like this construction was proposed by Qi [276], under

the name “Exact Holographic Mapping” (EHM). That work examined a tensor

network that was not quite a MERA, as no disentanglers were included, only

isometries. As a result, while there is a map Hboundary → Hbulk, the boundary

state constructed by the tensor network does not have the entanglement

structure of a CFT ground state. In particular, it does not seem to reproduce

the Ryu-Takayanagi formula in a robust way. Alternatively, we can depart

from Qi by keeping a true MERA with the disentanglers left in, in which case
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the bulk state constructed by the quantum circuit has no entanglement: it

is a completely factorized product of the ancilla states. Such a state doesn’t

precisely match our expectation for what a bulk ground state should look like,

since there should be at least some entanglement between nearby regions of

space.

Therefore, while it is relatively simple to imagine constructing a bulk

Hilbert space and a map between it and the boundary Hilbert space, it is not

straightforward to construct such a map that has all of the properties we desire.

It might very well be possible to find such a construction, either by starting

with a slightly different boundary state, or by adding some additional structure

to the MERA.

For the purposes of this chapter we will be noncommittal. That is, we

will imagine that there is a bulk Hilbert space constructed as the tensor

product of smaller spaces at each MERA site, and that there exists a map

Hboundary → Hbulk that can be constructed from the MERA, but we will not

specify precisely what that map might be. We will see that we are able to derive

bounds simply from the requirements that the hypothetical correspondence

should allow us to recover the properties we expect of bulk physics, including

the background AdS geometry and features of semiclassical quantum gravity

such as the Bousso bound on bulk entropy.

11.3 MERA and Geometry

If a MERA is a truly geometrical object that describes a slice of AdS, then

the graph geometry of a MERA should give the same answers to geometric

questions as the continuous geometry of a slice of AdS. Here, we reconsider

the observation by Swingle [213, 275] that certain trajectories on the MERA

coincide with trajectories in AdS and we investigate the constraints that this
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correspondence places on the graph metric of the MERA. We find that a MERA

necessarily describes geometry on super-AdS length scales, moreover, there is

no redefinition of the MERA coordinates that results in the proper distance

between MERA sites mapping to any sub-AdS length scale.

11.3.1 Consistency Conditions from Matching Trajectories

In order to speak of graph geometry, one must put a metric on the MERA

graph, i.e., one must assign a proper length to each bond in the graph of

Fig. 11.2. Presumably, the metric should originate from correlations between

the sites in the MERA. In the absence of an explicit identification of the origin

of the graph metric, however, at least in the case of a MERA describing the

ground state of a CFT, it is sensible to identify two length scales. Explicitly,

we must assign a proper length L1 to horizontal bonds and a proper length L2

to vertical bonds. Indeed, translational and conformal invariance guarantee

that these are the only two length scales in any graph metric one can assign to

a MERA for which an AdS/MERA correspondence exists. In particular, the

ground state of a CFT is translation invariant, so each horizontal bond in the

finest (UV-most) lattice should have the same proper length so as to respect

this symmetry. Self-similarity at all scales then requires that any horizontal

bond at any level of renormalization have this same proper length. There

is no a priori reason why the vertical bonds should share the proper length

of the horizontal bonds and indeed we will see that their proper length will

be different. However, again by self-similarity and translation invariance, all

vertical bonds must be assigned the same proper length.

The observation in Ref. [275] that certain paths in the MERA graph coincide

with corresponding paths in slices of AdS is what established the possibility of

an AdS/MERA correspondence. Here we will carefully examine these paths

and determine what constraints the requirements that they match place on
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Figure 11.3. A horizontal line (γ1) and a geodesic (γ2) in a spatial slice of AdS3.

MERA parameters, i.e., on the bond lengths L1 and L2 and on the rescaling

factor k.

Consider a constant-time slice of AdS3 with the following metric:

ds2 = L2

z2 (dz2 + dx2). (11.3.1)

We will compare the proper lengths of straight horizontal lines and geodesics

in the AdS slice to the proper lengths of the corresponding paths in the MERA

graph. In the AdS slice, let γ1 be a straight horizontal line (dz = 0) sitting

at z = z0 with coordinate length x0. Let γ2 be a geodesic whose endpoints lie

near the boundary z = 0 and are separated by a coordinate distance x0 at the

boundary. In this choice of coordinates, such a geodesic looks like a semicircle

(see Fig. 11.3). It is a straightforward computation to show that the proper

lengths of these curves are

|γ1|AdS = L

z0
x0 and |γ2|AdS = 2L log

(
x0

a

)
. (11.3.2)

Note that there is a UV cutoff at z = a� x0 and that we have neglected terms

of order a/x0.

We fix L1 and L2 by comparing γ1 and γ2 to horizontal lines and “geodesics”

in the MERA, respectively. Consider two sites in a horizontal lattice at depthm

(i.e., m renormalizations of the UV-most lattice) and separated by a coordinate

distance x0 in the coordinate system shown in Fig. 11.2. By fiat, this lattice
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sits at z0 = kma. The number of bonds between the two sites at depth m is

x0/(kma) (see Fig. 11.2 for the case k = 2). It follows that the proper length

of the line connecting the two points is just

|γ1|MERA = L1 · (number of bonds between endpoints)

= L1
x0

z0

∣∣∣∣
z0=kma

.
(11.3.3)

To have |γ1|AdS = |γ1|MERA, we should therefore set L1 = L.

Similarly, consider two lattice sites on the UV-most lattice separated by

a coordinate distance x0. If we assume that x0 � a, then the shortest path

(geodesic) in the MERA connecting the two lattice sites is the path that goes up

in the renormalization direction and then back down again. The two sites are

separated by x0/a bonds on the UV-most lattice, so logk(x0/a) renormalization

steps are needed to make the sites either adjacent or superimposed. This means

that the geodesic that connects the endpoints is made up of 2 logk(x0/a) bonds

(as we have to go up and then back down again, giving the factor of 2). It

follows that the proper length of the geodesic is

|γ2|MERA = L2 · (number of bonds in the geodesic)

= 2L2 logk
(
x0

a

)
.

(11.3.4)

To have |γ2|AdS = |γ2|MERA, we should therefore set L2 = L log k.

11.3.2 Limits on Sub-AdS Scale Physics

One aspect of the matching of geodesics that is immediately apparent is that

the MERA scales L1 and L2 that parameterize the proper distance between

lattice sites are of order the AdS scale L or larger, as was also noted in

Refs. [275, 285]. This runs counter to the typical expectation that, in a

discretization of spacetime, one expects the granularity to be apparent on the

UV, rather than the IR, scale. That is, sub-AdS scale locality is not manifested

in the MERA construction and must be encoded within each tensor factor
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[213].

One could try to evade this difficulty by attempting to redefine the MERA

coordinates (x, z)MERA (those of Fig. 11.2) as functions of the AdS coordinates

(x, z)AdS (those of Fig. 11.3) and taking a continuum limit; above, we assumed

that the two sets of coordinates were simply identified. That is, suppose

xMERA = f(xAdS) and zMERA = g(zAdS). (For example, one could consider

f(x) = εx for small ε and imagine taking the continuum limit, with the aim of

making L1 much smaller than the AdS scale.) If a is still the UV cutoff on the

AdS side, then in the MERA we have f(a) as the UV-most lattice spacing and

g(a) as the UV cutoff in the holographic direction. Consider the computation

of |γ1|. From the AdS side, we have |γ1|AdS = LxAdS
0 /zAdS

0 . On the MERA side,

the number of sites spanned by xMERA
0 = f(xAdS

0 ) is xMERA
0 /kmf(a), while the

holographic coordinate is zMERA
0 = kmg(a). Hence,

|γ1|MERA = L1
f(xAdS

0 )
f(a)

g(a)
g(zAdS

0 ) . (11.3.5)

Equating |γ1|AdS = |γ1|MERA ≡ |γ1|, we have

g(zAdS
0 ) ∂

∂xAdS
0
|γ1| = L1

f ′(xAdS
0 )

f(a) g(a) = L
g(zAdS

0 )
zAdS

0
. (11.3.6)

Since the right side of the first equality only depends on xAdS
0 and the sec-

ond equality only depends on zAdS
0 , but we can vary both parameters inde-

pendently, both expressions must be independent of both AdS coordinates.

Hence, we must have f(x) = εxx and g(z) = εzz for some constants εx

and εz. Plugging everything back into Eq. (11.3.5) and comparing with

|γ1|AdS, we again find that L1 = L, so no continuum limit is possible. Sim-

ilarly, in computing |γ2|, we note that the number of bonds between the

endpoints on the UV-most lattice level is xMERA
0 /f(a), so the geodesic connect-

ing the endpoints has 2 logk(xMERA
0 /εxa) bonds. On the other hand, we have

|γ2|AdS = 2L log(xAdS
0 /a) = 2L log(xMERA

0 /εxa). That is, in equating |γ2|AdS



222
and |γ2|MERA, we must again set L2 = L log k. We thus also find that no

continuum limit is possible in the holographic direction. That is, we have

shown that there is a constant normalization freedom in the definition of each

of the coordinate distances on the AdS and MERA sides of any AdS/MERA

duality, but such a coordinate ambiguity is unphysical and does not allow one

to take a continuum limit. One still finds that the physical MERA parameters

L1 and L2 are AdS scale. This means that there truly is no sense in which a dis-

crete MERA can directly describe sub-AdS scale physics without the addition

of supplemental structure to replace the individual tensors. This fact limits

the ability of the MERA to be a complete description of the gravity theory

without such additional structure. It might be the case that one needs a field

theoretic generalization of the MERA, such as continuous MERA (cMERA)

[287–289] or some local expansion of the individual tensors into discrete tensor

networks with a different graph structure to describe sub-AdS physics, but

such a significant generalization of the tensor network is beyond the scope of

this work and in any case would no longer correspond to a MERA proper.

11.4 Constraints fromBoundaryEntanglementEntropy

Because the MERA can efficiently describe critical systems on a lattice, quan-

tities computed in the MERA on scales much larger than the lattice spacing

should agree with CFT results. In this section, we will compute the entan-

glement entropy of `0 contiguous sites in the MERA and exploit known CFT

results to obtain constraints on the properties of the MERA. In particular,

we will find an inequality relating the MERA rescaling factor k and bond

dimension χ to the CFT central charge c. This constraint is interesting in

its own right, but it will prove critical in the next section when we begin to

compute bulk properties.
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11.4.1 MERA and CFT Entanglement Entropy

For a (1 + 1)-dimensional CFT in a pure state, the von Neumann entropy of a

finite interval B, which is typically referred to as the entanglement entropy, is

known to be [256, 257]

S(B) = c

3 log `0 , (11.4.1)

where the length of the interval is much smaller than the system size. Here,

`0 is the length of the interval in units of the UV cutoff. In the notation of

the last section, we have `0 = x0/a. In the special case that the CFT is dual

to AdS in 2 + 1 dimensions, the central charge is set by the Brown-Henneaux

formula [290],

c = 3L
2G. (11.4.2)

Also note that the length of the geodesic that connects the two ends of B

(the curve γ2 in Fig. 11.3) is given in Eq. (11.3.2) by |γ2| = 2L log `0. The

Brown-Henneaux relation allows us to reproduce the Ryu-Takayanagi formula

[132, 291] from the entanglement entropy,

S(B) = area(B̃)
4G , (11.4.3)

where B̃ = γ2 is the extremal bulk surface with the same boundary as B. For

a boundary with one spatial dimension and a bulk with two spatial dimensions,

any simply-connected region B is an interval, the extremal bulk surface is a

geodesic, area(B̃) is a length, and G has mass dimension −1.

The MERA calculation of the entanglement entropy of `0 sites in the CFT

has an analogous geometric interpretation. Suppose one is given the MERA

representation of a lattice CFT ground state, i.e., one uses a MERA to generate

the CFT state. Denote by SMERA(`0) the entanglement entropy of the resulting

state restricted to `0 sites. In Ref. [286], it is shown that for a specific, optimal
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Figure 11.4. Causal cone (shaded) for a set of `0 = 6 sites in a MERA with k = 2.
The width `m of the causal cone at depth m is `1 = 4, `2 = 3, `3 = 3, `4 = 3, etc.
The crossover scale for this causal cone occurs at m̄ = 2. Between the zeroth and
first layer, ntr

1 = 2 bonds are cut by the causal cone. Similarly, ntr
2 = 2, ntr

3 = 3, etc.

choice of `0 sites, for `0 parametrically large, the following bound is placed on

SMERA(`0) for a MERA with k = 2:

SMERA(`0) ≤ 2 log2 `0 logχ. (11.4.4)

Parsing the equation above, this bound essentially counts the number of bonds

that the causal cone of the `0 sites in question crosses (∼ 2 log2 `0) and logχ is

the maximum entanglement entropy that a single bond can possess when the

rest of the MERA is traced out.

The causal cone of a region B consisting of `0 contiguous UV sites in a

MERA resembles a bulk extremal surface for the boundary region B. Given `0

sites in the UV, their causal cone is defined as the part of the MERA on which

the reduced density matrix (or in other words, the state) of B depends. An

example of a causal cone is illustrated in Fig. 11.4.

In particular, note that the number of bonds that a causal cone crosses

up to any fixed layer scales like the length of the boundary of the causal cone

up to that layer. It is in this sense that Eq. (11.4.4) is a MERA version of
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Ryu-Takayanagi. Also note that the width of the causal cone shrinks by a

factor of ∼ 1/k after every renormalization step until its width is comparable

to k. As such, if one denotes the width of the causal cone at a layer m by `m,

then `m is roughly constant for all m greater than some m̄ (see Fig. 11.4). The

scale m̄ is called the crossover scale.

For general k, it is also possible to formulate a bound similar to Eq. (11.4.4)

for the entanglement entropy of `0 sites. For parametrically large `0, we find

that

SMERA(`0;B) ≤ 4(k − 1) logk `0 logχ . (11.4.5)

We demonstrate this bound in App. 11.A using techniques that are similar to

those developed in Ref. [286]. In particular, note that we do not allow ourselves

to choose the location of the `0 sites in question. As such, we remind ourselves

that SMERA can depend on the location of the region B (and not only its size)

by including it in the argument of SMERA. This is also the reason why our

Eq. (11.4.5) is more conservative than the optimal bound given in Eq. (11.4.4).

11.4.2 Constraining SMERA

Let us examine Eq. (11.4.5) a bit more closely. As discussed in App. 11.A,

4(k − 1) is an upper bound on the number of bonds that the causal cone could

cut at any given depth m below the crossover scale m̄. (The crossover scale

m̄ is attained after roughly logk `0 renormalization steps.) For a given causal

cone, i.e., for `0 sites at a given location with respect to the MERA, let us

parameterize our ignorance by writing

SMERA(`0;B) ≤ 4fB(k) logk `0 logχ , (11.4.6)

where fB(k) grows no faster than (k − 1) and counts the (average) number of

bonds cut by the causal cone at any depth up to the crossover scale. Explicitly,
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fB(k) ≡ 1
4m̄

m̄−1∑
m=0

ntr
m , (11.4.7)

where ntr
m denotes the number of bonds that the causal cone cuts at the mth

level.

Each cut bond contributes at most logχ to the entropy (the case of maximal

entanglement). As such, it is instructive to introduce a parameter ηB ∈ [0, 1]

that describes the degree of entanglement of the sites in the causal cone. In

doing so we may rewrite the inequality (11.4.6) as an equality:

SMERA(`0;B) = 4fB(k) logk `0 · ηB logχ. (11.4.8)

The quantity ηB logχ is the average entanglement entropy per cut bond in the

causal cone of B. Equivalently, Eq. (11.4.8) may be taken as the definition of

ηB.

This definition of ηB of course depends on the location of B and only

applies to bonds that are cut by the causal cone of B. In what follows, it

will be advantageous to have a notion of average entanglement entropy per

bond that applies to all bonds in the MERA. To this end, start with a lattice

consisting of `tot sites in total and consider the limit in which the size of a

region B is unbounded but where the ratio `0/`tot is held constant (so that

B does not grow to encompass the whole domain of the CFT). In this limit,

SMERA(`0;B) → SMERA(`0) and fB(k) → f(k) should be independent of the

exact location of B, i.e., SMERA should exactly agree with Eq. (11.4.1). Let us

consequently define the average entanglement entropy per bond in the MERA:

η logχ = lim
`0→∞

SMERA(`0)
4f(k) logk(`0) . (11.4.9)

The quantity η is then a property of the MERA itself.

Intuitively, one would not expect each individual bond in the MERA to

be maximally entangled and so it should be possible to constrain η more
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Figure 11.5. A pair of isometries with their ancillae explicitly indicated for a
MERA with (a) k = 2 and (b) general k. The thick bonds below the isometries,
the state of which is denoted by ρ1, are unitarily related to the bonds that exit the
isometries and the ancillae, the state of which is denoted by ρ2.

tightly than η ≤ 1. This expectation is made more precise via the following

considerations. To begin, consider a MERA with k = 2 and examine a pair

of isometries at a fixed depth m. As indicated in Fig. 11.5a, let ρ2 denote the

density matrix of the bonds and ancillae emanating from the two isometries

and let ρ1 denote the density matrix of the four highlighted bonds below the

isometries. We again assume that the ancillae are initialized to the pure product

state composed of factors of |0〉. Taking into account the ancillae, or in other

words promoting the isometries to unitaries, we see that ρ1 and ρ2 are related

by a unitary transformation, so S(ρ1) = S(ρ2). By assumption, the state of

each ancilla is |0〉, so ρ2 = ρ̃2⊗|0〉 〈0|⊗ |0〉 〈0| for some density matrix ρ̃2. This

in turn implies that S(ρ2) = S(ρ̃2) ≤ 2 logχ. From the definition of η above,

the entanglement entropy of a single bond is asymptotically given by η logχ,

so S(ρ1) ' 4η logχ. It therefore follows that η ≤ 1/2.

For general k, the argument is nearly identical. We again begin by con-

sidering a pair of isometries at a given level m (see Fig. 11.5b). Analogously

with the k = 2 case, let ρ2 denote the density matrix of the two bonds and
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2k− 2 ancillae emanating from the two isometries and let ρ1 denote the density

matrix of the 2k highlighted bonds below the isometries. There is only one

disentangler that straddles both of the isometries in question for any layout

of the MERA. As such, at most k of the lower bonds enter a disentangler

from below and the rest directly enter the isometries. Here as well ρ1 and

ρ2 are related by a unitary transformation so that S(ρ1) = S(ρ2). Similarly,

ρ2 = ρ̃2 ⊗ (|0〉 〈0|)⊗2k−2 for some density matrix ρ̃2, so S(ρ2) = S(ρ̃2) ≤ 2 logχ.

The region described by ρ1 always consists of 2k bonds, so we may again

asymptotically write S(ρ1) ' 2kη logχ. It therefore follows that kη ≤ 1, and

since f(k) ≤ (k − 1), we may write

ηf(k) ≤ k − 1
k

. (11.4.10)

We note that, in computational practice, one typically does not use the “worst-

case scenario” construction explored in App. 11.A; a more conventional con-

struction would result in a tighter bound on f(k) and hence a stricter inequality

than Eq. (11.4.10). For our purposes, however, we will remain as conservative

as possible and therefore use the inequality (11.4.10) in our subsequent bounds.

11.4.3 Matching to the CFT

Finally, we obtain a constraint on k, χ, and η in terms of the central charge

c by collecting the results of this section. Let us work in the limit where the

interval is much larger than the lattice spacing, logk `0 � 1. We have seen

that this is precisely the regime in which η and f(k) are well-defined quantities

independent of the choice of B. It is also the regime in which we can equate

the CFT entropy S(`0) = (c/3) log `0 with the MERA entropy (11.4.8). Doing

so, the central charge is given by

c = 3L
2G = 12η f(k) logχ

log k . (11.4.11)

Then in light of Eq. (11.4.10), we find that
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c ≤ 12
(
k − 1
k log k

)
logχ . (11.4.12)

To recapitulate, given a CFT with central charge c and a MERA represen-

tation of its ground state, a necessary condition for a consistent AdS/MERA

correspondence is that the MERA parameters k and χ satisfy the constraint

(11.4.12). Importantly, this implies that, for a well-defined semiclassical space-

time (for which c� 1), the bond dimension χ must be exponentially large in

the size of the AdS scale compared to the Planck scale.

Let us also note that we can still obtain a bound from Eq. (11.4.11), albeit

a weaker one, without using the result of Eq. (11.4.10). Recall that this latter

result relies on having unentangled ancillae in the MERA. This is not necessarily

the case for other tensor network bulk constructions, as we will subsequently

discuss. As such, if we disregard the result of Eq. (11.4.10), we still have

by virtue of their definitions that f(k) ≤ k − 1 and η ≤ 1. The following

weaker but more general bound on the central charge therefore follows from

Eq. (11.4.11) for such generalized tensor networks:

c ≤ 12
(
k − 1
log k

)
logχ. (11.4.13)

11.5 Constraints from Bulk Entanglement Entropy

In addition to the compatibility conditions from geodesic matching and bound-

ary entanglement entropy, it is well motivated to seek out any other possible

quantities that can be computed in both the MERA and AdS/CFT frameworks,

so as to place further constraints on any AdS/MERA correspondence. One

important example of such a quantity is the entropy associated with regions in

the bulk, as opposed to on the boundary.
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11.5.1 The Bousso Bound

The notion of placing bounds on the entropy of regions of spacetime in a

quantum gravity theory has been explored for many years, first in the context

of black hole thermodynamics [59] and the Bekenstein bound [292] and later in

more general holographic contexts, culminating in the covariant entropy bound,

i.e., the Bousso bound [258, 265].

The statement of the Bousso bound is the following: given a spacelike

surface B of area A, draw the orthogonal null congruence on the surface and

choose a direction in which the null generators have non-positive expansion. Let

the null geodesics terminate at caustics, singularities, or whenever the expansion

becomes positive. The null hypersurface swept out by these null geodesics is

called the lightsheet. Then the entropy S going through the lightsheet is less

than A/4G.

Let our spacelike surface B be a 2-ball of area A on a spacelike slice of AdS

and choose as the lightsheet the ingoing future-directed null congruence. This

lightsheet will sweep out the entire interior of B and will terminate at a caustic

at the center of B. Since the system is static, the entropy S passing through

this lightsheet is the entropy of the system on B, which by the Bousso bound

satisfies

S(B) ≤ A

4G . (11.5.1)

It is natural to cast the Bousso bound as a constraint on the dimension of

the bulk Hilbert space. As argued in Ref. [71], the thermodynamic entropy of

a system about which we only know the boundary area A is just the logarithm

of the dimension of the true Hilbert space of the bulk region in question (as

opposed to the naive Hilbert space in quantum field theory), which the Bousso
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bound implies is less than A/4G.11.1 As such, if we denote the Hilbert space of

B by HB, let us replace Eq. (11.5.1) with the slightly more concrete statement

log dimHB ≤
A

4G. (11.5.2)

11.5.2 A MERA Version of the Bousso Bound

Our aim is to compute both sides of the inequality (11.5.2) using the MERA.

For this calculation, it is instructive to change our parameterization of the

hyperbolic plane from coordinates (x, z), which take values in the half-plane

z > 0, to coordinates (ρ, θ), which take values in a disk 0 ≤ ρ < 1, 0 ≤ θ < 2π.

Embeddings of the MERA in a disk are often depicted in the literature, e.g.,

[295]; here we make this coordinate transformation explicit, since we wish to

carefully study the geometric properties of the MERA.

To begin, consider a MERA consisting of a single tree that contains a finite

number of layers m. This situation is illustrated in Fig. 11.6a for k = 2 and

m = 4. Note that such a MERA begins with a top-level tensor at the mth level

that seeds the rest of the MERA in the IR.

The base of the MERA is made up of km sites. Without loss of generality,

let us locate the leftmost site of the base of the MERA at x = 0, so that the

UV-most sites sit at coordinates (x, z) = (na, a), where n = 0, 1, 2, . . . , (km−1)

as shown in Fig. 11.6b. Let us also assume periodic boundary conditions for

this MERA and hence identify x = 0 and x = kma.

Next, define the coordinates (ρ, θ) as follows:

ρ = kma− z
kma

,

θ = 2π x

kma
.

(11.5.3)

11.1Moreover, it is known that there exists an asymptotically-AdS bulk configuration that
saturates the Bousso bound, namely, the BTZ black hole [293, 294], which further implies
that log dimHB in fact equals A/4G. However, we will not need this stronger assertion
in what follows. A similar but unrelated result equating the area of a region with its
entanglement entropy in vacuum was obtained in Ref. [261].
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Figure 11.6. (a) A k = 2 MERA consisting of m = 4 layers and with periodic
boundary conditions, (b) the corresponding embedding in (x, z) coordinates, and (c)
the embedding in (ρ, θ) coordinates.

In these coordinates, the metric reads

ds2 = L2

(1− ρ)2

dρ2 +
(

dθ
2π

)2
 , (11.5.4)

cf. Eq. (11.3.1). This embedding of the MERA is shown in Fig. 11.6c; the

top-level tensor always sits at ρ = 0 and the lower layers of the MERA are

equally spaced on circles of radii 1/2, 3/4, 7/8, . . . that are centered at ρ = 0.

More generally, one could construct a top-level tensor that has T legs,

each of which begets a tree of sites. In this case, x = 0 and x = Tkm−1a are
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Figure 11.7. Disk parameterization of the Poincaré patch of AdS in which a MERA
has been embedded. The top tensor of the MERA shown has T = 6. The shaded
region is a ball B, which is this case contains NB = 1 generation.

identified, so one should define the angular variable as θ ≡ 2πx/(Tkm−1a). The

metric (11.5.4) is correspondingly modified and reads

ds2 = L2

(1− ρ)2

dρ2 + T 2

k2

(
dθ
2π

)2
 . (11.5.5)

This situation is depicted in Fig. 11.7. (If T = k, however, then it is not

necessary to introduce any new structure in addition to the disentanglers and

isometries that were already discussed, i.e., one may take the top-level tensor

to be one of the isometries.)

We may immediately compute the right-hand side of Eq. (11.5.2). Let the

ball B be centered about ρ = 0, and suppose B contains the top-level tensor,

the sites at the top tensor’s legs, and then the first NB generations of the

MERA emanating from these sites, as indicated in Fig. 11.7. The boundary

of B is a circle at constant ρ, so its circumference according to the MERA is

A = TkNBL. As such, we may write

A

4G = TkNBL

4G = TkNBc

6 , (11.5.6)

where in the second equality we used the Brown-Henneaux relation, Eq. (11.4.2).
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How one evaluates the left-hand side of Eq. (11.5.2) using the MERA is

not as immediate. Recall that HB is the Hilbert space of bulk states. The

MERA, however, does not directly prescribe the quantum-gravitational state

in the bulk; it is not by itself a bulk-boundary dictionary. As we mentioned in

Sec. 11.2.2, the minimal assumption that one can make is to posit the existence

of a bulk Hilbert space factor Vbulk associated with each MERA site that is

not located at the top tensor. To keep the assignment general, we assign a

factor VT to the top tensor. The dimensionality of each Vbulk factor should be

the same in order to be consistent with the symmetries of the hyperbolic plane.

The assumption of a Hilbert space factor at every MERA site is minimal in the

sense that it introduces no new structure into the MERA. A true AdS/MERA

correspondence should dictate how states in the bulk Hilbert space are related

to boundary states. However, for our analysis, it is enough to simply postulate

the existence of the bulk Hilbert space factors Vbulk and VT, each of which

may be thought of as localized to an AdS-scale patch corresponding to the

associated MERA site.

In addition to the site at the top tensor, the number of regular MERA sites

that the ball B contains is given by

NB = T
NB∑
i=0

ki = T

(
kNB+1 − 1
k − 1

)
. (11.5.7)

As such, the Hilbert space of bulk states restricted to B is HB = (Vbulk)⊗NB⊗VT.

Next, suppose that dim Vbulk = χ̃ and that dim VT = χ̃T, where, like χ, χ̃ and

χ̃T are some fixed, NB-independent numbers. Then dimHB = χ̃T(χ̃NB). Note

that one would expect χ and χ̃ to have a very specific relationship in a true

bulk/boundary correspondence, the nature of which will be explored later in

this section. Combining Eqs. (11.5.6) and (11.5.7), the dimensionality of HB is

upper bounded as follows:
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log dimHB ≤
A

4G =⇒ T

(
kNB+1 − 1
k − 1

)
log χ̃+log χ̃T ≤

TkNB c

6 . (11.5.8)

After isolating c in Eq. (11.5.8) and using the result of Eq. (11.4.11), we find

that

c = 12ηf(k) logχ
log k ≥ 6

(
kNB+1 − 1
kNB(k − 1) log χ̃+ 1

TkNB
log χ̃T

)
. (11.5.9)

Next, let us consider this inequality in the limit of large NB. A motivation

for this limit is the fact that the natural scale of validity of an AdS/MERA

correspondence is super-AdS, as was established in Sec. 11.3. Moreover, by

virtue of its definition, there is always an ambiguity of order the AdS scale in

the radius of the ball B. That is, the region in AdS denoted by B is only well

defined in the MERA if B is large compared to the AdS scale L. Taking the

limit of large NB, Eq. (11.5.9) reduces to

ηf(k) ≥ k log k
2(k − 1)

(
log χ̃
logχ

)
. (11.5.10)

By using the bound on ηf(k) given by Eq. (11.4.10), we arrive at a constraint

on k, χ, and χ̃:

k2 log k
2(k − 1)2

(
log χ̃
logχ

)
≤ 1. (11.5.11)

In principle, the above inequality could be satisfied for any k, provided that

the dimension χ̃ of the factors Vbulk can be arbitrarily chosen with respect to

the bond dimension χ. However, the essence of holography, that the bulk and

boundary are dual descriptions of the same degrees of freedom and therefore

have isomorphic Hilbert spaces [54], implies a relation between χ and χ̃. Namely,

for a MERA with a total of N levels of sites in the bulk strictly between the

UV-most level and the top-level tensor, the number of bulk sites Nbulk that are

not located at the top tensor is given by Eq. (11.5.7) with NB = N , and the
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number of sites in the boundary description is Nboundary ≡ TkN+1. The bulk

Hilbert space thus has dimension χ̃Nbulkχ̃T and the boundary Hilbert space

has dimension χNboundary . Equating11.2 the dimension of the bulk and boundary

Hilbert spaces then yields

log χ̃
logχ = 1

Nbulk

(
TkN+1 − log χ̃T

logχ

)
N large→ k − 1, (11.5.12)

where we took the limit of N large, consistent with Eq. (11.5.10) and in keeping

with the expectation that the UV cutoff be parametrically close to the boundary

at ρ = 1. Putting together Eqs. (11.5.11) and (11.5.12), we obtain a constraint

on k alone:

k2 log k
2(k − 1) ≤ 1. (11.5.13)

This constraint cannot be satisfied for any allowed value of the rescaling factor

k, which must be an integer greater than or equal to 2. We thus learn that

a conventional MERA cannot yield a consistent AdS/MERA correspondence.

The MERA cannot simultaneously reproduce AdS geodesics, respect the Ryu-

Takayanagi relation, and (using the only construction for the bulk Hilbert space

available to the MERA by itself) satisfy the Bousso bound. That is, there

exists no choice of MERA parameters that can faithfully reproduce geometry,

holographic properties, and bulk physics.

If we relax this bound and, instead of Eq. (11.4.10), only observe the weaker,

natural bounds η ≤ 1 and f(k) ≤ k − 1 as discussed at the end of Sec. 11.4.3,

the constraint (11.5.13) is correspondingly modified:

k log k
2(k − 1) ≤ 1. (11.5.14)

In contrast to Eq. (11.5.13), this latter bound can be satisfied, but only for
11.2We recognize that there are other proposals [277, 296] that do not require an exact

equivalence between the bulk and boundary Hilbert spaces, but, even in these cases, there
is the requirement of an exact equivalence between the logical qubits on the boundary
with the Hilbert space of the bulk.
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k = 2, 3, or 4. As such, other AdS/tensor network correspondences, in

which the ancillae are perhaps entangled and therefore do not describe a

conventional MERA, are not ruled out. Note that we never needed to compute

bulk entanglement entropy explicitly—and therefore did not need to treat

separately the possibility of entanglement among ancillae—because we cast the

Bousso bound as a constraint on the size of the bulk Hilbert space itself. The

appearance of η in Eq. (11.5.10) corresponds to entanglement in the boundary

theory as computed by the tensor network; Eqs. (11.5.10) and (11.5.12) still

apply.

11.6 Conclusion

The notion of emergence of spacetime based on a correspondence between AdS

and a tensor network akin to AdS/CFT is a tantalizing one. A necessary step

in such a program is the evaluation and comparison of calculable quantities

on both sides of the duality. In this work, we have subjected the proposed

AdS/MERA correspondence to such scrutiny. To summarize, let us restate our

three main findings:

1. In matching the discrete graph geometry of the MERA to the continuous

geometry of a spatial slice of AdS, we demonstrated that the MERA

describes geometry only on scales larger than the AdS radius. Concretely,

as shown in Sec. 11.3, the proper length assigned to the spacing between

adjacent sites in the MERA lattice must be the AdS scale.

2. By requiring that the entropy of a set of boundary sites in the MERA

(whose computation is a discrete realization of the Ryu-Takayanagi for-

mula) be equal to the CFT ground state entropy of the same boundary

region in the thermodynamic limit, we obtained a constraint on the
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parameters that describe a MERA in terms of the CFT central charge

[Eqs. (11.4.12) and (11.4.13)], which implies that the bond dimension χ

must be exponentially large in the ratio of the AdS scale to the Planck

scale.

3. In the natural construction of a bulk Hilbert space (Hbulk) using the

MERA, we used the Bousso bound to constrain the dimension of Hbulk.

When combined with our previous results, we found that any strict

AdS/MERA correspondence cannot satisfy the resulting constraint,

Eq. (11.5.13). Upon relaxing the definition of the MERA or allow-

ing for additional structure, however, we obtained a looser constraint,

Eq. (11.5.14), which may not rule out some other AdS/tensor network

correspondences.

In particular, more general correspondences between AdS and MERA-like tensor

networks, in which we allow the ancillae to be entangled when reproducing the

CFT ground state [and for which Eq. (11.5.14) applies in place of Eq. (11.5.13)]

are not ruled out by our bounds, provided that the rescaling factor k = 2, 3, or

4. Further, it is interesting to note that our bounds extend to states other than

the vacuum that are described by a MERA. One such example, namely, states

at finite temperature dual to black holes in AdS, is discussed in App. 11.B

below.

While the consistency conditions that we found are specific to the MERA

tensor network, many of the ideas and techniques that we used apply equally

well to other tensor networks. In the EHM, for instance, the type of bulk

Hilbert space dimensionality arguments that we made based on the covariant

entropy bound may be directly transferred to the EHM. The same stringent

final constraints that we derived do not apply to the EHM, however, since it

is unclear to what extent the EHM reproduces the Ryu-Takayanagi formula
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(which renders the results of Sec. 11.4 inapplicable). Our bulk Hilbert space

arguments similarly apply to the holographic error-correcting code proposal

in Ref. [277], which furthermore purports to reproduce a version of the Ryu-

Takayanagi formula. It is presently unknown, however, whether the boundary

state of a holographic code can represent the ground state of a CFT, so an

identification of entropies similar to the identification SMERA = SCFT, upon

which our boundary entropy constraints so crucially depend, cannot yet be

made.

In closing, we have found several consistency conditions that any AdS/

MERA correspondence must satisfy. The totality of these constraints rules

out the most straightforward construal of an AdS/MERA correspondence.

Other interesting holographic correspondences that are described by tensor

networks more general than the MERA and that respect all of our bounds may

indeed be possible. Our consistency conditions are nice validity checks for these

correspondences when applicable and in other cases they may inspire similar

consistency conditions. The program of identifying the emergence of spacetime

from the building blocks of quantum information is an ambitious one; stringent

consistency conditions, such as those presented in this chapter, are important

for elucidating the subtleties in this quest and providing guidance along the

way.
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11.A Entropy Bound for General MERAs

Following the method presented in Ref. [286], let us compute an upper bound

for the entanglement entropy of a region B consisting of `0 sites in a MERA

with rescaling factor k. We will use the notation of Ref. [286] throughout this

chapter.

First, recall the result from Ref. [286] that the entanglement entropy of a

region consisting of `0 sites is bounded by

SMERA(`0;B) ≤ (`m′ +N tr
m′) logχ. (11.A.1)

The quantity `m′ is the width of the causal cone at depth m′ and N tr
m′ =∑m′−1

m=0 n
tr
m is the total number of sites that are traced out along the boundary

of the causal cone. In other words, N tr
m′ is the number of bonds that are cut

by the causal cone up to a depth m′ (cf. Fig. 11.4). The quantity logχ is

the maximum entanglement entropy that each site that is traced out could

contribute to SMERA(`0;B). Note that Eq. (11.A.1) holds for all m′ ≥ 0.

The width of the causal cone for a given m′ depends sensitively on the

structure of the MERA. In particular, the number of sites that are traced out

at each renormalization step depends on the choice of disentanglers, as well as

how they are connected to the isometries. For instance, in a MERA with a

rescaling factor k, any given disentangler could have anywhere from 2 up to

k incoming and outgoing legs. (It should be reasonable to require that any

disentangler can have no more than k incoming and k outgoing legs so that

it straddles no more than two isometries.) It is thus clear that the number of

bonds that one cuts when drawing a causal cone, and hence the entanglement

entropy of the region subtended by that causal cone, depends on the choice of

disentanglers and connectivity.

Nevertheless, we can compute an upper bound for SMERA(`0;B) by consid-
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k − 1k − 1

Figure 11.8. Left side of a causal cone that cuts the maximum possible number of
bonds over the course of one renormalization step. The rectangles are disentanglers
that accept k bonds as input and the triangles are isometries that coarse-grain k
bonds into one. The causal cone is the shaded region. If this situation is mirrored on
the right side of the causal cone, then 4(k − 1) bonds are cut in this renormalization
step.

ering a worst-case scenario for the number of bonds cut by the causal cone. We

begin by asking: What is the largest number of bonds that a causal cone could

cut in one renormalization step at a depth m′? The layout of disentanglers

and isometries that produces this situation is shown at one side of a causal

cone in Fig. 11.8. If the causal cone at the bottom of the renormalization step

incorporates a single bond that goes into a disentangler accepting k bonds,

then the causal cone must cut the other k − 1 bonds entering the disentangler.

Then if this disentangler is arranged so that its leftmost outgoing bond is the

first bond to enter an isometry from the right, the causal cone must cut the

other k − 1 bonds entering the isometry. If this arrangement is mirrored on

the other side of the causal cone, we see that 4(k − 1) bonds are cut by the

causal cone in this renormalization step, i.e., ntr
m′ = 4(k − 1).

Recall that for any finite `0, after a fixed number of renormalization steps,

the width of the causal cone remains constant for any further coarse-grainings.

The depth at which this occurs is called the crossover scale and is denoted by

m̄. Therefore, the causal cone will cut the largest possible number of bonds

when the arrangement described above and depicted in Fig. 11.8 occurs at

every step up until the crossover scale. Then, by Eq. (11.A.1), the entropy
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bound is given by

SMERA(`0;B) ≤ (`m̄ + 4(k − 1)m̄) logχ, (11.A.2)

where `m̄ is the width of the causal cone at the crossover scale.

For any given causal cone in a MERA with scale factor k ≥ 2, the maximum

number of additional sites the causal cone can pick up at some level m′

is 4(k − 1). Therefore, for a causal cone that contains `m′ sites at depth

m′, the number of sites in the causal cone after one renormalization step

`m′+1 ≤ d(`m′ + 4(k − 1))/ke ≤ `m′/k + 5. Applying the relation recursively,

we find that the number of sites `m′ at any layer m′ < m̄ is bounded,

`m′ ≤
`0

km′
+ 5

m′∑
m=1

1
km
≤ `0

km′
+ 5 . (11.A.3)

Setting m′ = m̄, it trivially follows that the crossover scale obeys m̄ ≤ logk `0.

Furthermore, we notice that this is the scale at which the entanglement entropy

is minimized if we trace over the remaining sites. In other words, the number

of bonds cut by going deeper into the renormalization direction is no less than

the bonds cut horizontally, so 4(k − 1) ≥ `m̄.11.3 Applying the bounds for m̄

and `m̄ on Eq. (11.A.2), we arrive at an upper bound on SMERA(`0;B) for a

k-to-one MERA,

SMERA(`0;B) ≤ 4(k − 1)(1 + logk `0) logχ. (11.A.4)

When `0 is parametrically large, we neglect the O(1) contribution to the bound

on SMERA(`0;B), which yields Eq. (11.4.5).
11.3Alternatively, we can see this from a heuristic argument by noting that the crossover scale

is the scale at which the causal cone has a constant width for further coarse-grainings,
i.e., (`m̄ + 4(k − 1))/k ≈ `m̄. Therefore, `m̄ . 4 ≤ 4(k − 1).
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11.B BTZ Black Holes and Thermal States in

AdS/MERA

Thus far, we have found constraints on the structure of a MERA that can

describe CFT states dual to the AdS3 vacuum. One might ask whether these

results extend to other constructions that exist in three-dimensional gravity.

Although pure gravity in AdS3 has no local or propagating degrees of freedom,

there exist interesting nonperturbative objects, namely, BTZ black holes [293].

In this appendix, we extend our constraints on boundary entanglement entropy

to these objects.

The non-rotating, uncharged BTZ black hole solution is given in Schwarz-

schild coordinates by

ds2 = −(r2 − r2
+)

L2 dt2 + L2

(r2 − r2
+)dr2 + r2dφ2 , (11.B.1)

with a horizon at r = r+. Noting that Euclidean time is compactified by

identifying τ ∼ τ + 2πL2/r+, the horizon temperature of the black hole is given

by T = r+/2πL2. Additionally, the Bekenstein-Hawking entropy of the black

hole is

SBH = Area
4G = πr+

2G . (11.B.2)

Let us now consider applying a MERA with rescaling factor k and bond

dimension χ to a CFT at a finite temperature, where instead of minimizing

the energy of the boundary state, one minimizes the free energy. In the CFT,

turning on a temperature introduces a scale, going as the inverse temperature,

which screens long-range correlations. Thus, the state will have classical

correlations in addition to entanglement and the effect of a finite temperature

on the entanglement entropy is the appearance of an extensive contribution.

As one runs the MERA and coarse-grains, the thermal correlations that cannot

be removed become more relevant. The MERA, which is unable to remove the



244
ρ ρ ρ ρ

1

Z
exp









−
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Figure 11.9. The MERA, when applied to a thermal CFT state Z−1 exp(−ĤCFT/T ),
where Z = tr(exp(−ĤCFT/T )), truncates after a finite number of layers. The
boundary state at the top of the truncated MERA effectively factorizes into a
product of maximally mixed states ρ = I/χ.

extensive contribution, truncates at a level with multiple sites. The schematic

entanglement renormalization process is illustrated in Fig. 11.9. The state at

the top level effectively factorizes, where each factor appears maximally mixed

[213, 275]. A tractable realization of this tensor network structure recently

appeared in Ref. [297], which found a MERA representation of a thermal state.

Keeping in mind that the holographic dual of a finite-temperature state in

the CFT is a black hole in AdS, where the temperature of the CFT corresponds

to the Hawking temperature of the black hole, we note that the truncated

MERA is suggestive of a black hole horizon [275]. If the MERA is to be

interpreted as a discretization of the geometry, then the geometry has ended at

some scale. Also, as we approach the horizon, the amount of Hawking radiation

that we see increases and the temperature measured by an observer at the

horizon diverges. The density matrix of some system in the infinite-temperature

limit is given by the product of a maximally mixed state at each site, just
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like the state at the top of the MERA. It is important to note that, as was

pointed out in Ref. [297], in order to reproduce the correct thermal spectrum

of eigenvalues, a small amount of entanglement must be present between the

sites at the horizon. If the bond dimension were taken to be infinite, then the

sites at the horizon truly would factorize. But for a finite bond dimension,

one should really think of the horizon as a high-temperature state, with sites

effectively factorized.

For small regions on the boundary, the length of the subtending bulk

geodesic is subextensive and so the Ryu-Takayanagi formula maintains that the

boundary region’s entanglement entropy is subextensive as well. However, if we

consider a large enough region on the boundary, the geodesic will begin to probe

the horizon of the black hole. The geodesic will run along the black hole horizon

and pick up an extensive contribution to the entropy. We consider a boundary

theory living on a lattice consisting of nb sites, with total system coordinate

length xsys = nba. In the limit as r approaches the boundary in the metric

(11.B.1), we see that Txsys = r+/L, as was pointed out in Refs. [132, 291]. We

further note that this implies that the system coordinate size is of order AdS

radius, xsys = 2πL.

Let us now view the MERA of Fig. 11.9 as a discretization of a BTZ

spacetime and repeat the analysis of Sec. 11.3. In this discretization, the layers

of the MERA lie along circles of fixed radius r in the coordinates of Eq. (11.B.1).

Again, we ask what proper length L1 separates sites in any given layer of the

MERA.

First, note that a path at fixed r0 that subtends an angle φ0 has proper

length r0φ0. At the boundary of the MERA, we consider a region defined by

0 ≤ φ ≤ φ0 = 2πx0/xsys, where x0 is the coordinate length of the interval,

consisting of `0 lattice sites. The boundary of the MERA is at a fixed radius
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r = rb. Naturally, the boundary radius rb can be interpreted as a UV cutoff

and is related to the lattice spacing a by rb = L2/a [132]. By equating the

proper distance of the region in the MERA, `0L1, with that at the boundary of

the BTZ spacetime, rbφ0, we find the proper length between horizontal bonds

to be L1 = L.

With the foresight that the top of the MERA is suggestive of a black hole

horizon with proper length 2πr+, the number of sites at the final layer is

therefore nh = 2πr+/L. This further tells us that the MERA truncates after a

finite number of layers m, given by

m = logk
(
nb

nh

)
= logk

1
2πTa . (11.B.3)

This coincides with the conclusion in Refs. [297, 298] that the MERA rep-

resentation of a thermal state is obtained after O(logk(1/T )) iterations of

coarse-graining.

Now consider a region B on the boundary consisting of `0 sites and for which

the corresponding geodesic contains a segment running along the BTZ horizon.

The subextensive contribution to the entropy in the MERA is exactly as before,

in which we pick up at most logχ from each bond we cut with the causal cone

of the region B. Furthermore, we will now pick up an extensive contribution

from the horizon, where the number of horizon sites within the causal cone is

`h and each such site in the product state on the horizon contributes maximally

to the entropy by an amount logχ. Combining the contributions, we find

SMERA(B) = 4ηBfB(k) logk
(
`0

`h

)
logχ+ `h logχ . (11.B.4)

Recall that the entanglement entropy of a single interval B of coordinate

length x0 in a CFT at finite temperature [257] is given, up to a non-universal

constant, by

SCFT(B) = c

3 log
( 1
πaT

sinh πx0T
)
, (11.B.5)
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where x0 is much smaller than the total system size xsys. The standard field-

theoretic derivation of the above entropy is done by computing the Euclidean

path integral on an n-sheeted Riemann surface and analytically continuing to

find the von Neumann entropy. The same result can be derived by computing

geodesic lengths on spatial slices of BTZ spacetimes and making use of the

Ryu-Takayanagi formula.

When T → 0 in Eq. (11.B.5), we recover the usual result (11.4.1). In

the T →∞ limit, the von Neumann entropy gives the usual thermal entropy

as entanglement vanishes. Taking Tx0 � 1, the leading and subleading

contributions to the entanglement entropy are

SCFT = c

3πx0T + c

3 log 1
2πaT , (11.B.6)

where the first term is the thermal entropy for the region B.

Now let us consider a finite-temperature CFT that is dual to a BTZ black

hole with horizon temperature T = r+/2πL2. In terms of geometric MERA

parameters, we find that Eq. (11.B.6) becomes

SCFT = c

6 `h + c

3m log k . (11.B.7)

Here we used the fact that `h = x0r+/L
2 as well as Eq. (11.B.3), where we

note that m can also be written as logk(`b/`h). The result (11.B.7) coincides

precisely with the extensive and subextensive contributions calculated using

the MERA in Eq. (11.B.4) provided that c/ logχ ∼ O(1). Therefore, we find

that the truncated MERA correctly captures the entanglement structure of

thermal CFT states and their dual BTZ spacetimes. These conclusions are in

agreement with those in Refs. [285, 298].

As a check of the claim that c and logχ should be of the same order, we can

compare the horizon entropy given by the contribution from the sites at the

final layer with the Bekenstein-Hawking entropy (11.B.2) of a BTZ black hole.
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There are nh sites comprising the horizon, each with Hilbert space dimension

χ. The system is in the infinite-temperature limit—and hence described by a

maximally mixed density matrix, with entropy contribution logχ from each

site—so

Shorizon = nh logχ . (11.B.8)

Making use of the Brown-Henneaux relation and requiring that the entropy

(11.B.8) coincide with the Beckenstein-Hawking entropy, we again find that

c/ logχ ∼ O(1). More specifically, taking the counting to be precise, we find

that

c/ logχ = 6 , (11.B.9)

which is qualitatively in agreement with the previous conclusion (11.4.12) that

the Hilbert space dimension must be exponentially large in c.

With this relation, the extensive terms in Eqs. (11.B.4) and (11.B.7) agree

precisely. Further identifying the subextensive terms, we find ηBfB(k) =

(log k)/2. If we then impose the constraint (11.4.10), we find that

k log k
2(k − 1) ≤ 1 . (11.B.10)

This last inequality exactly reproduces Eq. (11.5.14) and thus constrains k to

be 2, 3, or 4. Interestingly, we have found the weaker of the two bounds derived

in Sec. 11.5, without needing to consider the Bousso bound.

As desired, the truncated MERA computation of entanglement entropy

agrees with the expected entanglement entropy given by the application of

the Ryu-Takayanagi formula to the length of the minimal surface in a BTZ

spacetime. The fact that the results of matching boundary entanglement

entropy given in Sec. 11.4 further hold in BTZ spacetimes might not be too

surprising given that such spacetimes are quotients of pure AdS3.
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Chapter 12
What is the Entropy in
Entropic Gravity?

We investigate theories in which gravity arises as a consequence of entropy.

We distinguish between two approaches to this idea: holographic gravity, in

which Einstein’s equation arises from keeping entropy stationary in equilibrium

under variations of the geometry and quantum state of a small region, and

thermodynamic gravity, in which Einstein’s equation emerges as a local equation

of state from constraints on the area of a dynamical lightsheet in a fixed

spacetime background. Examining holographic gravity, we argue that its

underlying assumptions can be justified in part using recent results on the form

of the modular energy in quantum field theory. For thermodynamic gravity,

on the other hand, we find that it is difficult to formulate a self-consistent

definition of the entropy, which represents an obstacle for this approach. This

investigation points the way forward in understanding the connections between

gravity and entanglement.

This chapter is from Ref. [11], S. M. Carroll and G. N. Remmen, “What is the En-
tropy in Entropic Gravity?,” Phys. Rev. D93 (2016) 124052, arXiv:1601.07558
[hep-th].

12.1 Introduction

The existence of a profound relationship between gravity and entropy has been

recognized since the formulation of the laws of black hole mechanics [210] and

the derivation of the Bekenstein-Hawking entropy [211, 299]. More recently,

ideas such as the holographic principle [50, 51], black hole complementarity [124],

http://dx.doi.org/10.1103/PhysRevD.93.124052
http://arxiv.org/abs/1601.07558
http://arxiv.org/abs/1601.07558
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the gauge/gravity correspondence [52–54], and the firewall puzzle [215, 216]

have provided further hints that a deep relationship between gravitation and

entropy will be present in the ultimate theory of quantum gravity.

In the quest to explore this connection and further our understanding of

quantum gravity, there have been several proposals for directly linking gravity

and entanglement. These proposals fall essentially into two distinct types,

which we dub holographic gravity (HG) and thermodynamic gravity (TG). The

labels are not perfect, as HG is related to thermodynamics and TG is related

to holography, but they will serve as a useful shorthand for the two approaches.

In holographic gravity, one considers variations of the spacetime geometry

and quantum state within a region, posits a relationship between the change

in entanglement entropy and the change in the area of the boundary, and then

uses these constraints to derive the Einstein equation in a bulk spacetime. This

approach was used successfully in Refs. [212, 300] in an AdS/CFT context (see

also Ref. [301]) and in Ref. [60] in a more general setup based on local causal

diamonds. In holographic gravity, gravity emerges as a dual description of the

entanglement entropy of the degrees of freedom in a local region.

In thermodynamic gravity, there is no variation over different states. Rather,

one fixes a dynamical spacetime and a particular energy-momentum background.

One then posits a relationship between some entropy flux (defined using the

energy-momentum tensor) and some cross-sectional area (e.g., of a given null

surface). Using this area-entropy relation, one derives the Einstein equations.

This was the method of Ref. [59], as well as Refs. [302–305]. While these

approaches are similar in spirit, Verlinde [302] emphasizes the existence of an

entropic force from the gradient of the entropy, while Jacobson [59] derives the

Einstein equation directly as a local equation of state.

Open questions are present in both HG and TG approaches. For definiteness,
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we will focus on Jacobson’s version of HG in Ref. [60] and of TG in Ref. [59].

In the HG case, we clarify the underlying assumptions of the theory and

present arguments in their favor. In particular, we show how new results on

entanglement entropy and the modular Hamiltonian in quantum field theory

[258, 265] can be used to justify a crucial infrared assumption in HG. On

the other hand, we find that TG exhibits a tension related to the fact that

the “entropy” is not well defined in this theory. We will argue that it is

difficult to find a self-consistent definition of the entropy in TG approaches.

Our results indicate that holographic gravity is successful and points the way

toward promising future results; reassuringly, holographic gravity is most closely

related to AdS/CFT, in that it makes gravity in the bulk of a region dual to

entanglement constraints on the boundary, in a sense that we will explore later.

The remainder of this chapter is organized as follows. In Sec. 12.2 we first

review the holographic formulation of entropic gravity, identify its axioms, and

examine its derivation of the Einstein equation. Afterwards, we demonstrate

that the axioms of this theory can be justified in part using recent results

in quantum field theory. In Sec. 12.3 we examine the formulation of the

thermodynamic approach to entropic gravity and demonstrate the origin of

the difficulties it experiences in defining the entropy. Finally, we summarize

and discuss future directions in Sec. 12.4.

12.2 Holographic Gravity

After reviewing the motivation for relating entropy, particularly that of entan-

glement, with gravitation, we codify the axioms of holographic gravity and

demonstrate the derivation of the Einstein equation. We then investigate how

to justify and make rigorous each of the postulates underlying HG.
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12.2.1 Motivation

We start with the underlying motivation of the holographic approach to entropic

gravity. One of the most important facts that we (believe we) know about

quantum gravity is the proportionality relationship between entropy S and

horizon area A [299, 306],12.1

S = A

4G~ . (12.2.1)

The derivation of this fact is phenomenological: the energy E of the black

hole is given by its mass, Hawking used quantum field theory in curved

spacetime to calculate the temperature T = ~/8πGM , and then we can use

the thermodynamic relation 1/T = ∂S/∂E to define the entropy. One expects

that this entropy represents the logarithm of the underlying degrees of freedom

in the true theory of quantum gravity; this expectation has been successfully

borne out in certain stringy models of black holes [307, 308].

In the black hole case, it is clear what the entropy is actually the entropy of:

the black hole, or at least the degrees of freedom that macroscopically appear

to us as a black hole. That is a system that can be objectively defined in a way

upon which all observers would agree. But the same formula (12.2.1) applies

to the horizon of de Sitter space, as shown by Gibbons and Hawking [309]. The

de Sitter horizon is an observer-dependent notion; given any worldline extended

to future infinity, the horizon separates events within the causal diamond of

that worldline from those outside. This suggests that the identification of

the entropy as belonging to the system described by the horizon applies more

universally than to fixed objects like black holes and indeed may apply to

horizons in general.

Another clue comes from the existence of Rindler horizons in Minkowski
12.1Throughout this chapter, we leave ~ explicit in expressions leading to the derivation of

the Einstein equation, as a bookkeeping device for semiclassicality.
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space. Starting from the vacuum state of a general interacting quantum field

theory, the Bisognano-Wichmann theorem guarantees that the density matrix

restricted to the wedge z > |t| is that of a thermal state with respect to the

boost Hamiltonian [310, 311]. The boundary of the wedge acts as a horizon

for observers who are moving with a constant acceleration along the z-axis. In

3+1 dimensions, the area of this horizon is infinite, so it is unsurprising that

the von Neumann entropy of the corresponding density matrix is also infinite.

We can ask, however, about the entropy density per unit horizon area. This is

also infinite, which can be attributed to the contributions of ultraviolet modes

of the field. Imposing an arbitrary short-distance cutoff, we find that there is

a constant, fixed amount of entropy per unit horizon area. Since the original

calculation was carried out in flat-spacetime quantum field theory, it is natural

to suppose that the true entropy density would be finite in a quantum theory

of gravity.12.2

Together, these facts suggest that there is a universal relationship: to any

horizon, we can associate an entropy proportional to its area. This observation

was the inspiration for entropic gravity in Refs. [59, 60]. It remains to formulate

a precise prescription for what kind of entropy is actually involved. The natural

candidate in the quantum context is the von Neumann entanglement entropy,

−Tr ρ log ρ for some density matrix ρ. Taking a vacuum spacetime region and

cutting off modes at some fixed short distance, we obtain an entanglement

entropy that is proportional to the area of the boundary of the region being

considered [261, 312]. The entanglement entropy further appears in the recent

proofs of versions of the covariant entropy bound within quantum field theory

[258, 265]. Moreover, the Ryu-Takayanagi formula [132, 272] in AdS/CFT
12.2As noted in Ref. [60], we can say that gravity cuts off the number of degrees of freedom

and renders the entropy finite or that demanding a finite horizon entropy implies the
existence of gravity. Requiring finite entropy at least implies some ultraviolet cutoff for
the applicability of quantum field theory.
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relates the entanglement entropy in a boundary region with the area of an

extremal surface in the bulk. The conjectured ER=EPR duality [57] (see

also Refs. [7–9]) further underscores this connection. Taking these results as

motivation, holographic gravity seeks to relate the Einstein equations themselves

to constraints on entanglement entropy and areas in a sense that we will make

precise.

12.2.2 Formulation of Holographic Gravity

Let us now review the approach to HG laid out in Ref. [60]. Fix an arbitrary

background D-dimensional spacetime geometry M and a spacelike slice Σ.

Choose a point p ∈ Σ and define a ball B as the set of points p′ ∈ Σ such that

the geodesic distance in Σ between p and p′ is less than `. Next, define the

causal diamond D(B) associated with B as the union of the past and future

domains of dependence of B; that is, the set of all points x ∈M such that all

inextendible timelike curves through x necessarily intersect B; see Fig. 12.1.

We write as V the volume of B and A the area of ∂B. For a sufficiently small

causal diamond, the background metric approaches the Minkowski form. There

is a unique conformal isometry generated by the Killing vector

ζ = 1
2` [(`2 − u2)∂u + (`2 − v2)∂v], (12.2.2)

where u = t− r and v = t+ r for time coordinate t and radial coordinate r.

Writing the quantum state of the system on Σ as |ψ〉, we can define the

reduced density matrix on B as

ρB = Tr Σ−B |ψ〉 〈ψ| . (12.2.3)

We define the entanglement entropy associated with B as

SB = −Tr ρB log ρB, (12.2.4)

i.e., the entanglement of the state on B with that on Σ − B. We posit that
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∂BB

ζ

ℓ p

D(B)

Figure 12.1. A small causal diamond D(B) for a spacelike ball B with boundary
∂B. The ball is defined as all points in some spacelike surface that are less than or
equal to a distance ` from some point p. The vector field ζ generates a conformal
isometry within D(B), assumed to be approximated by a maximally symmetric
spacetime.

the Hilbert space of states on B can be factorized into infrared and ultraviolet

contributions,

HB = HUV ⊗HIR. (12.2.5)

The infrared states are ordinary field-theory states in a spacetime background

(including semiclassical gravitational perturbations), while the ultraviolet con-

tributions represent short-distance physics, including specifically quantum-

gravitational degrees of freedom. Writing ΛUV for the scale of the UV comple-

tion, which we take to be below the Planck scale, then HIR and HUV contain

degrees of freedom with energies below and above ΛUV, respectively. The size `

of the causal diamond is taken to be larger than the Planck length but smaller

than 1/ΛUV. Tracing out the UV degrees of freedom, we are left with an

infrared density matrix

ρIR = Tr UVρB. (12.2.6)

We then define the (field-theoretic) modular Hamiltonian K on B via the
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implicit relation

ρIR = e−K

Tr e−K . (12.2.7)

In Minkowski space, the causal diamond D(B) can be mapped via a con-

formal transformation to the Rindler wedge [313]; writing xµ = (t, r, ~y) for

the (radial) coordinates of the ball, Xµ = (X0, X1, ~Y ) for the (Cartesian)

coordinates of the Rindler wedge X1 > 0, and defining Bµ = (0, 1, 0, ..., 0)/2`,

the conformal transformation is

xµ = Xµ −BµX2

1− 2X ·B +B2X2 + 2`2Bµ, (12.2.8)

where X2 = XµXµ and similarly for B2. With U = X0−X1 and V = X0 +X1,

the Rindler wedge corresponds to the intersection of V > 0 and U < 0,

which maps to the causal diamond D(B) = {v < `} ∩ {u > −`}. For the

Rindler wedge, the Bisognano-Wichmann theorem [311] guarantees that the

density matrix is thermal with respect to the Hamiltonian generating time

translation. Thus, for a conformal field theory (CFT), which is invariant under

this transformation of the geometry, the modular Hamiltonian K is just the

Hamiltonian generating flow along ζ from Eq. (12.2.2), namely,

KCFT = 2π
~

ˆ
B

T µνζµdΣν , (12.2.9)

where dΣµ is the surface element orthogonal to B and Tµν is the energy-

momentum tensor.

We now consider a variation of the spacetime M and of the quantum state

ρB on B. We will write this variation via

δg,ρ : variation of state ρB and geometry g

that keeps the volume V of B fixed.
(12.2.10)

Under this variation, the area A at fixed V changes by δg,ρA|V and the quan-

tum state ρB on B changes by δg,ρρB. Moreover, there is a change in the

entanglement entropy δg,ρSB as well as a change in the expectation value of the
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modular Hamiltonian, δg,ρ〈K〉, which is in general a highly non-local quantity.

The modular Hamiltonian does not correspond a priori to any intuitive sense

of energy; it is just an operator one can define using the reduced density

matrix. Note that all of the above variations are not dynamical variations

that occur with time; rather, we are considering varying the entire history

of the configuration, examining the consequences for various quantities for

infinitesimally separated configurations of geometry and fields. For example,

for a CFT, plugging in the Killing field (12.2.2) into Eq. (12.2.9) and requiring

a sufficiently small causal diamond ` � LT , where LT is the characteristic

length scale of changes in Tµν , we have the modular energy

δg,ρ〈KCFT〉 = 2π
~

ΩD−2`
D

D2 − 1 δg,ρ〈T00〉, (12.2.11)

where ΩD−2 = 2π(D−1)/2/Γ[(D − 1)/2] is the area of the unit (D − 2)-sphere.

We are now ready to state the postulates of the holographic gravity theory

given in Ref. [60]. They are as follows:

1. Entanglement separability. The entropy SB can be written as a simple

sum SUV + SIR, where UV and IR denote the entanglement entropies

in the UV (quantum gravitational) and IR (quantum field-theoretic)

degrees of freedom. Equivalently, the quantum mutual information

IB = SUV +SIR−SB is negligible. That is, there is minimal entanglement

among degrees of freedom at widely separated energy scales.12.3

2. Equilibrium condition. The entanglement entropy of the causal di-

amond is stationary with respect to variations of the state and metric,

i.e.,
12.3This formulation of postulate 1. is actually somewhat stronger than necessary; for

holographic gravity it is sufficient that merely the entropy variation δg,ρSB factorize as
in Eq. (12.2.12). However, the justification for this weaker version of postulate 1. will
ultimately be the same as the stronger version we state above.
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δg,ρSB = δg,ρSUV + δg,ρSIR = 0, (12.2.12)

and the geometry of the causal diamond is that of a maximally symmetric

spacetime (Minkowski, de Sitter, or anti-de Sitter).

3. Area-entropy relation. The variation of the UV entropy of the causal

diamond is proportional to its area change at fixed volume,

δg,ρSUV = η δg,ρA|V , (12.2.13)

for some universal constant η. That is, δS satisfies a local, bulk version

of holography. This is Jacobson’s generalization of the area law for

black hole entropy and is the crucial substantive assumption underlying

holographic gravity.

4. Modular energy: CFT form. The modular energy, defined to be the

variation in the expectation value of the modular Hamiltonian, for an

arbitrary quantum field theory is given by the form in Eq. (12.2.11),

possibly modified by some scalar operator X,

δg,ρ〈K〉 = 2π
~

ΩD−2`
D

D2 − 1 δg,ρ (〈T00〉+ 〈X〉g00) . (12.2.14)

While the first three postulates are assumptions about ultraviolet behavior, the

fourth is strictly an infrared statement and we will argue that, in its null-limit

form, it can be derived rather than postulated. Note that in postulate 3., we

expect η = 1/4G~, the same constant that appears in the Bekenstein-Hawking

formula [299].

Reference [60] shows how postulates 1. through 4. can be used to derive

the Einstein equations. Our purpose in this section is to illustrate how some of

these postulates can be justified rigorously, rather than taken as assumptions.
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While we leave the geometric details of how the postulates imply the Einstein

equations to Ref. [60], we sketch the main points. First, writing as usual

SIR = −Tr ρIR log ρIR, (12.2.15)

we have the entanglement first law [314]

δg,ρSIR = −Tr [(δg,ρρIR) log ρIR]− Tr (ρIRρ
−1
IR δg,ρρIR)

= Tr (Kδg,ρρIR)
= δg,ρ〈K〉.

(12.2.16)

Further, the area variation at constant V for a maximally symmetric spacetime

in which Gµν = −f gµν for some arbitrary constant f is

δg,ρA|V = −ΩD−2`
D

D2 − 1 (G00 + f g00). (12.2.17)

Equating Eqs. (12.2.16) and (12.2.14) via postulate 4., setting Eq. (12.2.17) to

δSUV/η via postulate 3., and then putting everything together via postulates

1. and 2., we have

0 = δg,ρSB = ΩD−2`
D

D2 − 1

[
−η(G00 + f g00) + 2π

~
δg,ρ (〈T00〉+ 〈X〉g00)

]
.

(12.2.18)

Rearranging and requiring that this relation hold for all possible spatial slicings

(i.e., in arbitrary reference frames) requires

Rµν −
1
2Rgµν + f gµν = 2π

~η
δg,ρ (〈Tµν〉+ 〈X〉gµν) . (12.2.19)

Now, since we must have ∇µTµν = 0 for energy-momentum conservation, but

∇µRµν = ∇νR/2 by the Bianchi identity, f can be identified as 2πδg,ρ〈X〉/~η+Λ

for arbitrary constant Λ, yielding Einstein’s equation in semiclassical terms,

Rµν −
1
2Rgµν + Λgµν = 2π

~η
δg,ρ〈Tµν〉 = 8πG δg,ρ〈Tµν〉, (12.2.20)

where in the final equality we plugged in η = 1/4G~ as expected for consistency

with the Bekenstein-Hawking formula. Note that the δg,ρ〈Tµν〉 appearing on

the right-hand side is really just the expectation value of the energy-momentum
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tensor under consideration, since without the variation, i.e., in vacuum, the

causal diamond is assumed to be described by a maximally symmetric spacetime

with vanishing Tµν .

The way in which the Einstein equation arose in the above derivation was

by the imposition of a relationship between the change of entanglement entropy

and area for variations over the spacetime configuration and quantum state. It

is not a dynamical constraint within a single solution, but rather a relationship

between infinitesimally separated spacetime histories and geometries. Mathe-

matically, how this constraint leads to the Einstein equation is the same as how

the Einstein equation was derived [212, 300] in the context of AdS/CFT via the

Ryu-Takayanagi formula [132, 272]. That is, AdS/CFT itself, in Refs. [212, 300],

provides another realization of holographic gravity. The version of the theory

in Ref. [60] attempts wider applicability, by applying holographic formulas to

causal diamonds in an arbitrary spacetime. It is therefore crucial to investigate

the extent to which the postulates of the theory can be justified. We conduct

such an investigation in the next subsection, providing a nontrivial check of

the health of HG.

12.2.3 Justifying the Assumptions of Holographic Gravity

Postulates 1. through 3. above deal with the ultraviolet degrees of freedom

in the ultimate theory of quantum gravity. Hence, they either must be taken

as axioms of the theory or shown to be true in a more general ultraviolet

completion of gravity (e.g., through holography and string theory). Despite

this ultraviolet character, there are motivations for postulates 1. through 3.,

which we will briefly mention. More importantly, we offer a derivation of a

null-limit version of postulate 4., allowing it to be removed as an independent

assumption in HG.
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Postulate 1., requiring minimal entanglement between infrared and ultra-

violet degrees of freedom, is a basic feature of effective field theory [315], so

the first postulate amounts to the assertion that effective field theory is (at

least approximately) valid for the field-theoretic degrees of freedom. That

is, for renormalization group flow to work in the usual manner, we require a

decoupling between the low- and high-momentum states. We do not expect

significant mutual information between the low-energy degrees of freedom in a

Wilsonian effective action and those in the ultraviolet completion. This was

explicitly found to be the case for interacting scalar quantum field theories in

Ref. [315].

Postulate 2. is really the entropic foundation of the theory, being the

assertion of a condition on the spacetime geometry that will ultimately lead

to the Einstein equation. In essence, postulate 2. is the assertion that the

vacuum should look as simple as possible, namely, that a small region should

be well described by a Gibbs state. For a fixed energy expectation value, the

Gibbs state has the maximum entropy, so δSB = 0. Moreover, for the Gibbs

distribution, expectation values of quantum mechanical quantities related to

the entanglement entropy map onto those from classical thermodynamics [316].

Viewed in this sense, the causal diamond represents a canonical ensemble [60],

with fixed degrees of freedom and volume. Hence, classically, its entropy for a

given expectation value of Tµν is maximized in equilibrium. The requirement

that the causal diamond be described by a maximally symmetric spacetime

means that there is not power in spacetime fluctuations at arbitrarily small

scales. If this were not the case, then introducing fluctuations would produce a

large backreaction that would spoil the equilibrium condition. The content of

postulate 2. is therefore the assertion that the semiclassical Einstein equations

hold if and only if the causal diamond is in thermodynamic equilibrium.
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Postulate 3. is related to the Ryu-Takayanagi relation [132, 272], with

which Refs. [212, 300] derived the Einstein equations in a holographic context

in a manner closely related to that of Ref. [60]. References [212, 300] can be

regarded as another example of HG, in which bulk gravitation is again found to

be dual to a constraint on entanglement entropy in some boundary degrees of

freedom. The boundaries of the causal diamond can be viewed as the Rindler

horizons of a set of appropriately accelerating observers. The area of ∂B is

just the area of this horizon. Postulate 3. does not require assigning a change

in entropy with time to a dynamical change in area. Rather, it just requires

identifying the area of the causal diamond with the entanglement entropy and

then doing this for an entire family of infinitesimally separated causal diamond

configurations. The motivations for assigning an entropy to an area for this

apparent horizon in the first place were discussed in Sec. 12.2.1.

Postulate 4. is of a different character. Unlike the ultraviolet-dependent

postulates 1. through 3., postulate 4. is an assertion about the form of the

modular Hamiltonian for the field-theoretic degrees of freedom. Thus, postulate

4. is amenable to analysis and, as a consistency test of the holographic gravity

of Ref. [60], we can investigate whether postulate 4. can be justified, rather

than taken as an assumption. A holographic justification of postulate 4. for

spacelike slicing was considered in Ref. [317], in which the subtleties of the

construction in Ref. [60] for operators of particular conformal dimensions is

discussed in detail. However, we will show that postulate 4. may be justified

more simply in the null limit by using the conformal symmetry of the causal

diamond and the lightsheet results of Ref. [258].

A priori, postulate 4. suffers from two potential weaknesses. First, it is

unclear why the modular energy of a generic quantum field theory should take

the form appropriate for a CFT. Second, Ref. [60] derived the Einstein equations
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only for small variations about the vacuum in the field-theoretic density matrix

ρIR, for which the entanglement first law (12.2.16) holds. However, small

variations to the geometry, in which gravitational backreaction is negligible,

do not necessarily correspond to small variations in ρIR. For example, two

massive particles in a Bell pair state certainly gravitate, but their long-range

entanglement does not correspond to a small perturbation about the vacuum

state of ρIR. Thus, the question remains of how to retain the success of HG in

obtaining the Einstein equation for large changes to the quantum state without

using the entanglement first law. Both of these challenges can be addressed

using recent results proven in quantum field theory.

To address the second issue, we consider the computation of the modular

energy and entanglement entropy for an interacting CFT in D > 2, which

was computed for a null slab in Refs. [258, 265]. For an arbitrary state ρIR

defined on a spatial region (for example, one of the spatial slices of our causal

diamond), we can define the Casini entropy

∆S = −Tr ρIR log ρIR + TrσIR log σIR, (12.2.21)

which is just the vacuum-subtracted von Neumann entropy, and the modular

energy,

∆K = TrKρIR − TrKσIR, (12.2.22)

where the modular Hamiltonian K is defined as in Eq. (12.2.7) but with respect

to the vacuum density matrix σIR. Note that in the limit in which the field-

theoretic density matrix for this state is infinitesimally close to the vacuum

state σIR, we have ∆S → δS and ∆K → δK and the entanglement first law

guarantees δS = δK. Using the replica trick [318, 319] to compute the nth

Rényi entropy for an arbitrary spatial region by inserting defect operators on

the boundaries, Ref. [258] shows through an argument involving the operator
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product expansion in the null limit that the only operators that can contribute

to ∆K or ∆S are single-copy scalar operators with twist τ in the range
1
2(D − 2) < τ ≤ D − 2. (12.2.23)

For spin-zero operators, τ is just the scaling dimension. By single-copy, we

mean that the operator appears inside just one of the copies of the CFT in the

replica trick; in that case, the contribution of this operator to the entanglement

entropy is proportional to the expectation value of the operator inside a single

copy of the CFT [258]. That is, single-copy operators contribute linearly in

the density matrix to SIR.

Finally, the modular Hamiltonian is the unique operator on B that matches

SIR at linear order for arbitrary perturbations of the density matrix. Thus,

single-copy operators contribute equally to ∆S and ∆K, so taking the null

limit of any spatial surface and computing ∆S and ∆K, we have

∆S = ∆K [null limit]. (12.2.24)

One can show that, evaluated on any fixed spatial slice, ∆K−∆S = D(ρIR|σIR),

the relative entropy between the state and the vacuum, which is always non-

negative. However, in the null limit, Ref. [258] showed that in an interacting

conformal field theory, no operators in the algebra can be localized to a null

surface, which allows the excited state and the vacuum to differ while remaining

indistinguishable. Moreover, the null limit is sensitive only to the UV structure

of the theory. For quantum field theories with an interacting UV fixed point,

Ref. [258] thus showed that the ∆S = ∆K result of Eq. (12.2.24) continues

to hold (provided the quantum field theory does not have finite wave function

renormalization, as for, e.g., superrenormalizable theories). The result is

therefore quite general. Equation (12.2.24) applies to any quantum state that

backreacts weakly on the geometry and thus strengthens the argument for
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HG in Ref. [60]. No longer is it necessary to rely on the entanglement first

law (12.2.16) and consider only small perturbations about the vacuum density

matrix in postulate 4.; we are now free to consider arbitrary states.

To mitigate the first issue raised regarding postulate 4., namely the question

of why the modular energy for a generic quantum field theory should be related

to that of a CFT, Ref. [60] considered a quantum field theory with a UV fixed

point and required that the size of the causal diamond be smaller than every

length scale in the quantum field theory, i.e.,

`� 1
maximi

, (12.2.25)

where mi are the masses of states in the quantum field theory. That is, we

are required to take the causal diamond to be smaller than the cutoff of the

quantum field theory, ΛUV � `. Naively, this leads to doubtful consistency of

treating the spacetime semiclassically; we do not want to be required to take

the causal diamond to be Planck-scale. However, we typically expect the scale

of a perturbative UV completion of gravity to be parametrically smaller than

the Planck scale, as indeed is the case in string theory [30].

In any case, we can dramatically relax the stipulation of Eq. (12.2.25) by

evaluating ∆K in the null limit. Let us choose a sequence of spacelike slices Bξ

through the diamond, ξ ∈ [0, 1], defined by the orbit of ζ in Eq. (12.2.2), where

we start with B0 = B and end with B1, the upper null surface of the diamond.

Now, ζ is not a member of the Poincaré group; it is a conformal Killing vector

and in particular contains a dilation. The proper distance across Bξ tends to

zero as we send ξ → 1, that is, as we flow along ζ. Acting with ζ on a given

field configuration with small momentum on B0 takes us to larger and larger

momenta and we experience renormalization group flow as we move through

different values of ξ. For a CFT, ζ acts trivially, but for a general interacting

quantum field theory with a UV fixed point [60, 258], flow along ζ means are
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probing higher and higher energy scales within the theory, eventually reaching

a regime in which the CFT approximation is valid. Thus, Eqs. (12.2.9) and

(12.2.14) become in the null limit

∆K = 2π
~

ΩD−2`
D

D2 − 1 Tuu, (12.2.26)

where we still assume that Tµν varies with a length scale LT larger than

`. Moreover, we can write the area variation (12.2.17) in terms of its null

components as ζ lines up with ∂u in the null limit. Hence, Eq. (12.2.18) still

applies, but for the uu components. Following the logic through as before, we

again obtain the Einstein equation

Gµν + Λgµν = 8πGTµν . (12.2.27)

We therefore see the infrared assumption underlying holographic gravity,

that the modular energy takes the CFT form given in Eq. (12.2.14), need not

be separately postulated, but can be justified by examining the null limit. The

null surfaces themselves are not special or preferred, but the use of the null

limit rendered tractable the explicit computation of the entanglement entropy

and modular energy for generic interacting quantum field theories with an

ultraviolet fixed point. Moreover, we seem to have a specific and self-consistent

formulation of what kind of entropy we are talking about in holographic gravity:

the Casini entropy evaluated on the null boundary of a small causal diamond.

12.3 Thermodynamic Gravity

In Sec. 12.2, we demonstrated that the holographic gravity of Ref. [60] can be

made well defined, putting its axioms on a more solid footing. In this section,

we turn to the question of whether the same can be done for the thermodynamic

gravity of Ref. [59]. We will argue that there does not exist any self-consistent

definition of entropy in this approach.
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In the cases relating entropy and area that we discussed in Sec. 12.2.1, the

area is a constant along the horizon. To work our way toward a truly dynamical

theory of gravity, we must be able to handle more general cases, including time-

dependent spacetimes. Holographic gravity accommodates this requirement by

varying the spacetime history: in that case, general relativity can be shown

to be equivalent to constraints relating the variation in entanglement entropy

and area of a small causal diamond. However, the HG approach does not allow

gravity to truly emerge as an equation of state, since the area and entropy

variations are not dynamical changes within a single background spacetime.

TG takes the other approach. That is, we can start with the null generators of

a local Rindler horizon, but the corresponding cross-sectional area will generally

change with time. Thermodynamic gravity [59] therefore posits that the change

in entropy behind such a horizon is proportional to the change in that area.

This is a natural generalization of the area law itself. We will argue that

it is then hard to associate this quantity with a well-defined entropy of any

particular local system.

12.3.1 Formulation of Thermodynamic Gravity

Consider an arbitrary spacetime and identify some point p. Restrict to a

sufficiently small region such that we can define a spacelike foliation with

respect to a time coordinate t. Our point p is located at time coordinate t1

on a spacelike codimension-one hypersurface Σ1. Choose a codimension-two

approximately-flat spacelike surface P1 containing p. Approximate flatness

means that the null congruences normal to P1 have vanishing expansion θ and

shear σµν at p to first order in the distance from p. Fix a closed orientable

smooth spacelike codimension-two surface B1 containing P1 and choose a future-

directed inward null direction normal to B1, which defines a null congruence

originating from B1. Denote the spacelike region of Σ1 that lies inside B1
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Figure 12.2. Spacetime diagram of the flux through a segment H of a lightsheet.
Starting with some point p, we fix an approximately-flat spacelike surface P1 3 p
and a boundaryless surface B1 ⊃ P1. Consider future-directed inward null geodesics
orthogonal to P1, with affine parameter λ. Flowing along the geodesics by some
fixed parameter value, the area A1 of the initial surface element P1 evolves into a
new area A2, which we can use to define the area decrement δA ≡ A1 − A2. An
amount of heat δQ passes through H, which by the Clausius relation is equal to TδS.
The regions R1 and R2 denote the parts of the spacelike hypersurfaces Σ1 and Σ2
that lie inside the spacelike codimension-two surfaces B1 and B2, respectively.

by R1. Choose an affine parameter λ along the congruence, with tangent

vector kµ = (d/dλ)µ, letting λ equal zero at p and increase toward the future.

Points in the congruence make up the “lightsheet” H emanating from P1. At a

not-much-later time t2, the intersection of the null congruence from B1 with a

spacelike hypersurface Σ2 defines a spacelike codimension-two surface B2, such

that P1 evolves to P2. The region inside B2 is denoted by R2. The setup is

portrayed in Fig. 12.2.

The lightsheet H is a horizon in the sense that it serves as a local Rindler

horizon for appropriately accelerating observers. (In Ref. [59], the construc-

tion was formulated over the past horizon instead of the future horizon, but

this distinction makes no difference to our arguments.) We can define an
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approximate boost Killing vector χµ = κλkµ, where κ is the acceleration of the

associated Rindler trajectory. The surface element for the local Rindler horizon

is dΣµ = kµdλ dA, where dA is the codimension-two spacelike cross-sectional

area element. This can be used to define a heat flux across the lightsheet

δQ ≡
ˆ
H
Tµνχ

µdΣν = κ

ˆ
H
Tµνk

µkνλ dλ dA. (12.3.1)

Viewing our system as the set of degrees of freedom on R1 in Fig. 12.2, δQ

defines the heat leaving the system through H. The temperature associated

with this process is just the Unruh temperature [310] for the Rindler trajectory,

T = ~κ/2π.

The area decrement of the lightsheet as δQ flows through it is

δA ≡ A1 − A2 = −
ˆ
H
θ dλ dA, (12.3.2)

where A1 is the initial area of the codimension-two surface P1, A1 =
´
P1

dA,

and A2 is the area of the codimension-two surface P2 at the other end of H.

The expansion θ is defined to be θ ≡ ∇µk
µ. Carefully treating the range of

integration of λ will play an important role in our discussion in Sec. 12.3.2.

Having made these preliminary definitions, we are ready to state the as-

sumptions of thermodynamic gravity. They are the following:

1. Clausius relation. There exists an entropy change δS associated with

the flow of heat through the lightsheet H, which in local thermodynamic

equilibrium is given by

δS = δQ/T. (12.3.3)

2. Local holography. For any lightsheet H of the form shown in Fig. 12.2,

the entropy change δS is proportional to the change in area δA with

some universal constant η,

δS = η δA. (12.3.4)
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Note that the use of the Clausius relation (12.3.3) implies that the entropy

δS under consideration should correspond to some notion of entropy for a system

that can be locally defined. The local holography assumption, meanwhile, is

motivated by black hole thermodynamics, upon which entropic gravity is based.

Therefore, we should expect that η is the same coefficient as in the Bekenstein-

Hawking formula [299], 1/4G~. Were we to find that η 6= 1/4G~ is required

for consistency with Eqs. (12.3.3) and (12.3.4) and Einstein’s equation, this

would undermine the original motivation for TG. This is the problem we will

uncover in Sec. 12.3.2.

Putting these assumptions together, we can derive Einstein’s equation.

First, from the Raychaudhuri equation,

dθ
dλ = − 1

D − 2θ
2 − σµνσµν −Rµνk

µkν , (12.3.5)

which is just a geometric statement in terms of the expansion, shear, and

Ricci tensor Rµν , Ref. [59] writes θ = −λRµνk
µkν for a small segment of the

lightsheet and inserts this result into Eq. (12.3.2) to obtain

δA =
ˆ
H
Rµνk

µkνλ dλ dA. (12.3.6)

Using local holography (12.3.4) and the Clausius relation (12.3.3) to equate

this to δQ/T , one can invoke the freedom in the choice of kµ to equate the

integrands, obtaining

η(Rµν + f gµν) = 2π
~
Tµν (12.3.7)

for some scalar quantity f . Since we must have ∇µTµν = 0 for energy-

momentum conservation, but ∇µRµν = ∇νR/2 by the Bianchi identity, f

can be identified, yielding Einstein’s equation,

Rµν −
1
2Rgµν + Λgµν = 2π

~η
Tµν = 8πGTµν , (12.3.8)

where Λ is the cosmological constant. We find that η must indeed be equal to
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1/4G~, as expected for consistency with the Bekenstein-Hawking formula.

We see that the assumptions of the Clausius relation (12.3.3) and local

holography (12.3.4) are, together, sufficient to derive Einstein’s equation, at

least up to a normalization. Less clear is the nature of the quantity δS—in

particular, precisely what this is supposed to be the entropy of. Formally, the

only role of δS in this derivation is to motivate equating η δA with δQ/T ; once

that happens, δS disappears from the discussion. But if we were simply to

assume η δA = δQ/T from the start, that would be tantamount to assuming

Einstein’s equation. The substantive content of TG, therefore, rests on the

existence of a consistent and well-defined local construction for the entropy δS

associated with lightsheet segments anywhere in spacetime. We now turn to

an investigation of what that construction might be.

12.3.2 Entanglement Entropy of a Null Region

Some form of the von Neumann entanglement entropy is a natural candidate

for the quantity δS that plays a crucial role in TG. We first need to specify

the precise system whose entanglement entropy we are calculating. Factors of

Hilbert space are usually associated with regions of spacelike surfaces, but local

holography refers to the entropy associated with part of a null surface. The

simplest option would be to introduce some spacelike slicing, zoom in on a small

neighborhood so that the spacetime looks approximately static, and compute

the von Neumann entropy on the small spacelike region; subsequently, one could

enforce local holography on the small lightsheet through which the orthogonal

timelike congruence originating from the small spacelike region passes. However,

this prescription does not prove suitable: while the von Neumann entropy is

subextensive, energy-momentum is extensive. That is, considering two adjacent

regions A and B, we have SAB ≤ SA + SB, with strict inequality if A and B

are entangled; however, the masses of A and B, and hence the concomitant
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Figure 12.3. A finite lightsheet H considered as the null limit of a parameterized
collection of spacelike regions Γ(ζ). The large spacelike region Σ maps to the large
null surface L. The affine parameter generating H runs from 0 to ε.

first-order area decrements of a lightsheet passing through them, add linearly.

Thus, the use of the von Neumann entropy on spacelike surfaces cannot provide

a consistent formulation of thermodynamic gravity.

We therefore turn to the null limit. Consider a spacelike region Σ, with

a point p ∈ P1 on its boundary, as shown in Fig. 12.3. It contains a smaller

spacelike region Γ with p also on its boundary. The large null surface to the

future of Σ is labeled L and a small lightsheet H, as defined in Sec. 12.3.1, can

be thought of as the null limit of a series of spacelike regions Γ(ζ). There are

then two different ways to associate an entropy with H: i) the entanglement

entropy associated with the region itself and ii) the difference in entanglement

entropies between those of the large null surfaces L and L−H, which emanate

from P1 and P2, respectively. We will consider each possibility in turn.

Let us first see whether the entropy appearing in TG could be the entan-

glement entropy associated with the region H. Let ρΣ be the density matrix

of the system on the spacelike region Σ and let σΣ be the vacuum density
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matrix. Let σΓ ≡ Tr Σ−ΓσΣ and ρΓ ≡ Tr Σ−ΓρΣ. We are immediately forced to

identify some way to regulate the von Neumann entropy, which naively diverges.

Consider the vacuum von Neumann entropy in the null limit, limΓ→H S(σΓ).

If we simply impose an ultraviolet cutoff, the entanglement entropy S(σΓ)

associated with a vacuum region is still large [261, 312], going as A/ε2, where

A is the area of the boundary of Γ and ε is the cutoff length. By the local

holography postulate (12.3.4), we must have δS = η δA, where δA is the area

decrement along H, which must vanish in the Minkowski vacuum. While the

details of a UV cutoff may have bearing on the renormalization of Newton’s

constant (see Ref. [320] and references therein) and therefore of η, no such effect

could reconcile a finite value of δS with an exactly vanishing δA. Thus, we

cannot use the UV-regulated von Neumann entropy in the null limit as δS in

entropic gravity, since doing so would require violation of either the postulate

of local holography or flatness of the vacuum spacetime. We must therefore

adopt the prescription of Casini [61], subtracting the entanglement entropy

associated with the vacuum as in Eq. (12.2.21), producing the appropriate

regulated version of the von Neumann entropy that vanishes in vacuum.

We compute the Casini entropy ∆SΓ of the small spacelike region as the

difference of the von Neumann entropies for ρΓ and σΓ as in Eq. (12.2.21),

∆SΓ ≡ S(ρΓ) − S(σΓ), and then take the null limit to define the entropy on

the small lightsheet, ∆SH ≡ limΓ→H ∆SΓ. Next, let us define a modular

Hamiltonian KΓ on Γ via

σΓ ≡
e−KΓ

Tr e−KΓ
(12.3.9)

and use this to define ∆KΓ as in Eq. (12.2.22). Despite the non-locality ofK, the

modular energy becomes more tractable in the null limit, ∆KH ≡ limΓ→H∆KΓ,

as we saw in Sec. 12.2.3.

It was shown in Refs. [258, 265] for interacting quantum field theories that
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∆SΓ and ∆KΓ become equal as the null limit is taken and, in particular,

∆SH = ∆KH = 2π
~

ˆ
dA
ˆ ε

0
dλ g(λ, ε)Tµνkµkν , (12.3.10)

where g(λ, ε) is a real function whose precise values depend on the interacting

quantum field theory being considered. Note that g(λ, ε) is not automatically

theory-independent, as in the causal diamond case: the causal diamond was

related by a global conformal transformation (12.2.8) to the Rindler wedge,

while this is not so for the lightsheet H. However, Ref. [258] showed that

g(λ, ε) is computable in particular cases and moreover satisfies certain general

properties for all interacting quantum field theories, which will be sufficient for

our purposes.

The function g(λ, ε), whose properties we discuss in detail below, plays a

crucial role here. Equations analogous to Eq. (12.3.10) appear as expressions

for the heat transfer in Refs. [59, 321], but with g(λ, ε) replaced simply by λ.

[This similarity suggests that we should view Eq. (12.3.10) as corresponding

to the Clausius relation, indicating that this formulation of the entropy is

appropriate for application to TG.] For the Rindler Hamiltonian, which inspires

this form, λ is perfectly appropriate for a semi-infinite lightsheet, but we are

now computing the entropy for the finite segment of lightsheet H, for which

the entropy takes the form of Eq. (12.3.10), as shown in Refs. [258, 265]. That

makes all the difference: g(λ, ε) initially increases as λ, but then decreases as

ε− λ at the other end of the segment. As a result, the integral in Eq. (12.3.10)

differs from the Rindler Hamiltonian by a theory-dependent constant factor of

order unity. This discrepancy implies that we cannot simultaneously choose our

normalization so as to correctly recover Newton’s constant in both Einstein’s

equation and in the area-entropy formula.

Reference [258] derived a number of properties that the function g(λ, ε)

appearing in Eq. (12.3.10) must obey, amounting essentially to the requirement
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Figure 12.4. Schematic form of the function ḡ(λ̄), proportional to the g(λ, ε) used
in the expression for the null Casini entropy in Eq. (12.3.10). It is symmetric between
λ̄ = 0 and λ̄ = 1, with slope between 1 and −1 and a negative second derivative
everywhere.

that it have the form illustrated in Fig. 12.4. More specifically, defining

λ̄ ≡ λ/ε ∈ [0, 1], we have g(λ, ε) = εḡ(λ̄), with ḡ(λ̄) = ḡ(1− λ̄), and

ḡ(λ̄)→ λ̄ for λ̄→ 0,
ḡ(λ̄)→ 1− λ̄ for λ̄→ 1.

(12.3.11)

Putting together the required properties of ḡ, Ref. [258] showed that
∣∣∣dḡ/dλ̄∣∣∣ ≤

1. Note in particular that the integral
´ 1

0 dλ̄ ḡ(λ̄) is less than 1/4.

Now let us consider the area variation of H. As in Ref. [59], we can choose

H such that θ and σµν vanish at first order near p. We can evaluate the change

in the cross-sectional area of H by integrating the Raychaudhuri equation

(12.3.5) for a finite lightsheet, keeping careful track of the ranges of integration.

We find that the area decrement along H is

∆A = −
ˆ

dA
ˆ ε

0
dλ θ(λ) =

ˆ
dA
ˆ ε

0
dλ
ˆ λ

0
dλ̂ Rµν(λ̂)k̂µk̂ν . (12.3.12)

We can now test whether the null Casini entropy ∆SH, which is the

regularized von Neumann entropy from Eq. (12.2.21) evaluated in the null

limit, can be the basis of a consistent formulation of TG. First, we need only

consider the limit of a very small lightsheet, since we wish only to recover

the local equations of motion, i.e., Einstein’s equation. That is, we can take
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∆A and ∆SH in Eqs. (12.3.12) and (12.3.10) in the limit of very small ε and

cross-sectional area A to define δA and δS for use in the assumption of local

holography in Eq. (12.3.4). From Eq. (12.3.12), we have

δA ≡ lim
ε→small

lim
A→small

∆A = 1
2ε

2ARµν(p)kµkν , (12.3.13)

where we used the fact that in the limit of a small lightsheet the Ricci tensor

could be taken to be a constant evaluated at p. Similarly, using Eq. (12.3.10),

we find for the entropy that

δS ≡ lim
ε→small

lim
A→small

∆SH = 2π
~
ε2ATµν(p)kµkν

ˆ 1

0
dλ̄ ḡ(λ̄). (12.3.14)

Local holography posits that δS = η δA for some constant η. For consistency

with the Bekenstein-Hawking formula, we expect η to equal 1/4G~, but for now

we will keep it undetermined. Setting Eq. (12.3.13) proportional to Eq. (12.3.14)

implies [
4π
~η

ˆ 1

0
dλ̄ ḡ(λ̄)

]
Tµν(p)kµkν = Rµν(p)kµkν . (12.3.15)

Let us write η = 1/4GS~ and write Newton’s constant in Einstein’s equation

as GN. Then requiring consistency of Eq. (12.3.15) with Einstein’s equation

and rearranging, we have

GS = GN

2
´ 1

0 dλ̄ ḡ(λ̄)
≥ 2GN, (12.3.16)

noting, as we previously observed, that the integral over ḡ(λ̄) is less than 1/4.

That is, in terms of the constant in Einstein’s equation, we have

η ≤ 1
8GN~

. (12.3.17)

This is inconsistent, by an order-unity factor, with the area-entropy coefficient

from black hole thermodynamics, which would be η = 1/4GN~. So we see that,

while thermodynamic gravity is motivated by the area-entropy equivalence

for black holes, enforcing δS = δA/4G~ would lead to the wrong constant in
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Einstein’s equation. Moreover, this constant appears in a theory-dependent

way via the function ḡ. On the other hand, one could insist that the correct

coefficient be obtained in Einstein’s equation. By Eq. (12.3.16), this would

require δS = δA
´ 1

0 dλ̄ ḡ(λ̄)/2G~, which would constitute a theory-dependent

modification of the local holography postulate with a coefficient that now no

longer corresponds to the area-entropy relation from black hole thermodynamics.

In other words, one could require that Einstein’s equation and the 1/4G~

coefficient in the local holography postulate have Newton’s constants that

differ by the order-unity factor given in Eq. (12.3.16). A question for future

work on TG would then be the identification of a justification, independent of

Einstein’s equation, of why the local holography postulate must take precisely

this modified form.

The reason for the inconsistency of Einstein’s equation and the expected

area-entropy ratio in the formulation of TG we have considered here stems

from the fact that, despite the similarity between Eqs. (12.3.1) and (12.3.10),

there is a crucial factor-of-g difference. In Ref. [59], the heat transfer was taken

to be given by the Rindler form (12.3.1), where g is just λ; interpreted as a

modular Hamiltonian, this is the appropriate form for a semi-infinite lightsheet.

However, only finite lightsheets [59, 321] can be considered in the formulation

of TG, so that θ and σµν remain subdominant in the Raychaudhuri equation.

There is an important distinction between the formulation of TG here and

the causal-diamond derivation of HG in the previous section. The transfor-

mation (12.2.8) that brings a Rindler wedge to the causal diamond is a true

conformal transformation for the spacetime. In contrast, to bring a semi-infinite

lightsheet to a finite segment requires a transformation λ→ 1/λ that is confor-

mal on two-dimensional subspaces, but not on the spacetime as a whole. For

general theories (in particular, those that are not ultralocal), this leads to the
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need for the function g(λ, ε), which was not present for the causal-diamond

formulation.

12.3.3 Loopholes and Alternatives

A possible concern about this analysis might be that the Casini entropy (12.3.10)

is calculated in terms of the field-theoretic degrees of freedom alone. That is, one

might imagine positing the existence of hidden, quantum-gravitational degrees

of freedom that would provide additional entropy so that δS equals δA/4G~,

with the aim of getting both the correct coefficients in the area-entropy relation

and in Einstein’s equation.

However, this proves to not be possible. The general form of the Casini

entropy must be given by a relation of the form (12.3.10), linear in the energy-

momentum tensor, if we are to use δS ∝ δA to derive Einstein’s equation

with Tµν on the right-hand side. Positing new degrees of freedom can only

affect the calculation of the theory-dependent coefficient g(λ, ε). But attaining

η = 1/4G~ would require |dḡ/dλ̄| to exceed unity. It is shown in Ref. [258]

that this is impossible on very general grounds, regardless of any details about

quantum field theory: exceeding this limit would violate strong subadditivity

of von Neumann entropy or monotonicity of quantum relative entropy. Hence,

positing non-field-theoretic degrees of freedom in the density matrix describing

the lightsheet system is insufficient to simultaneously recover Einstein’s equation

and rectify the contradiction with the area-entropy formula we derived in

Eq. (12.3.17). We are forced to conclude that the entropy in thermodynamic

gravity cannot be the vacuum-subtracted von Neumann (i.e., Casini) entropy

of the lightsheet segment H.

An alternative tack for formulating TG would be to use the Casini entropy,

but define the quantity δS in a slightly different way. Rather than associating

it directly with the quantum state on the null region H, we could let it be the
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difference in Casini entropies between the large lightsheet L emanating from

p and the lightsheet with H removed, δS = ∆SL −∆SL−H. Note that this is

in general a distinctly different quantity from that investigated above, since

∆SH ≥ ∆SL −∆SL−H by subadditivity. For convenience, we will take L to

be a semi-infinite null surface; because we are only interested in an entropy

difference, the conclusions in this section are the same for any L much longer

than H. One might imagine that this alternate formulation, with semi-infinite

lightsheets, would allow the Rindler form of the integrand in the expression

for the entropy and possibly rescue thermodynamic gravity; however, this will

prove to not be the case.

Let us specialize to spacetimes in which gravitational backreaction is small.

(Including corrections to the Rindler Hamiltonian induced by spacetime curva-

ture would only be relevant at higher order in Newton’s constant.) Generalizing

the arguments of Ref. [258] to semi-infinite null surfaces, with affine parameter

λ̂ going from λ0 to infinity, we have

∆S(λ0) = ∆K(λ0) = 2π
~

ˆ
dA
ˆ ∞
λ0

(λ̂− λ0)Tµν k̂µk̂νdλ̂, (12.3.18)

where k̂µ = (d/dλ̂)µ. Then we can define the change in the null Casini entropy,

δS = ∆SL−∆SL−H = ∆S(α)−∆S(β). Here, we have labeled the null regions

by the value of the affine parameter from which they emanate, where in the λ̂

parameterization, H is defined as λ̂ ∈ [α, β].

However, this final formulation of the entropy as the null Casini entropy

cannot be the correct definition of entropy in thermodynamic gravity. Let us

define an affine parameterization that starts at λ = 1 at λ̂ = α, so λ = λ̂/α.

Defining kµ as the tangent four-vector to λ, (d/dλ)µ, we have

∆S(β) = 2π
~

ˆ
A(βλ′/α)

dA
ˆ ∞

1
(λ′ − 1)Tµν(βλ′/α)k′µk′νdλ′, (12.3.19)
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where λ′ = αλ/β and k′µ = (d/dλ′)µ. We can make the approximation that

Tµν changes slowly with the affine parameter and that α and β are close, so

that Tµν(βλ′/α) ' Tµν(λ′). Further, we can take the cross-sectional area of

the lightsheet to be small, so that Tµν is approximately constant over the

cross-section at a fixed affine parameter. We thus have

δS ' 2π
~

ˆ ∞
1

(λ− 1)[A(λ)−A(βλ/α)]Tµν(λ)kµkνdλ, (12.3.20)

where in the final line we dropped the primes, since λ is a dummy variable.

Now, from Eq. (12.3.13), we have

A(λ)−A(βλ/α) ' 1
2

(
β

α
− 1

)2

A(λ)Rµν(λ)kµkν , (12.3.21)

Plugging this result into Eq. (12.3.20) and then substituting in Einstein’s

equation (12.3.8), which implies Rµνk
µkν = 8πGTµνkµkν , we obtain

δS = 1
8G~

(
β

α
− 1

)2 ˆ ∞
1

(λ− 1)A(λ)[Rµν(λ)kµkν ]2dλ. (12.3.22)

We see that Eq. (12.3.22) cannot be arranged in a form that looks like δS = η δA

as in Eq. (12.3.4). In particular, Eq. (12.3.22) is second-order rather than linear

in the curvature and therefore in the area decrement δA. Though Eq. (12.3.18)

looks similar to Eq. (12.3.1), one cannot naively conclude that the difference

between the values of ∆S(λ0) for λ0 = α versus β in Eq. (12.3.18) can be taken

as simply an integral over λ ∈ [α, β]; such an operation is not valid when the

integrand itself has explicit dependence on its end points, as is the case in

Eq. (12.3.18). We have found that by taking δS to be the difference in the null

Casini entropies of overlapping null surfaces, we obtain an expression (12.3.22)

for δS that is fundamentally incompatible with the local holographic postulate

(12.3.4) that is one of the axioms of TG.

Hence, neither the null-limit Casini entropy of a small null region nor the
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difference in null-limit Casini entropies of two large null regions provides an

acceptable definition of entropy in the thermodynamic formulation of entropic

gravity.

12.4 Conclusions

The idea that gravity can be thought of as an entropic force is an attractive one.

In this chapter we have distinguished between two different ways of implement-

ing this idea: holographic gravity, which derives the Einstein equation from

constraints on the boundary entanglement after varying over different states

in the theory, and thermodynamic gravity, which relates the time evolution

of a cross-sectional area to the entropy passing through a null surface in a

specified spacetime. We argued that holographic gravity is a consistent formu-

lation and indeed that recent work on the modular Hamiltonian in quantum

field theory provides additional support for its underlying assumptions. The

thermodynamic approach, on the other hand, seems to suffer from a difficulty

in providing a self-consistent definition for what the appropriate entropy is

going to be.

In the title of this chapter, we asked, “What is the entropy in entropic

gravity?” We are now equipped to answer this question. In what we have called

“holographic gravity,” the vacuum-subtracted von Neumann entanglement

entropy (the Casini entropy), evaluated on the null surfaces of the causal

diamond, provides an appropriate formulation for an entropic treatment of

gravitation. This can help guide further attempts to understand the underlying

microscopic degrees of freedom giving rise to gravitation in general spacetime

backgrounds.



282

Chapter 13
Attractor Solutions in
Scalar-Field Cosmology

Models of cosmological scalar fields often feature “attractor solutions” to which

the system evolves for a wide range of initial conditions. There is some tension

between this well-known fact and another well-known fact: Liouville’s theorem

forbids true attractor behavior in a Hamiltonian system. In universes with

vanishing spatial curvature, the field variables φ and φ̇ specify the system

completely, defining an effective phase space. We investigate whether one

can define a unique conserved measure on this effective phase space, showing

that it exists for m2φ2 potentials and deriving conditions for its existence in

more general theories. We show that apparent attractors are places where

this conserved measure diverges in the φ-φ̇ variables and suggest a physical

understanding of attractor behavior that is compatible with Liouville’s theorem.

This chapter is from Ref. [12], G. N. Remmen and S. M. Carroll, “Attrac-
tor Solutions in Scalar-Field Cosmology,” Phys.Rev. D88 (2013) 083518,
arXiv:1309.2611 [gr-qc].

13.1 Introduction

Two of the favorite moves in the repertoire of the modern theoretical cosmologist

are (1) positing one or more scalar fields whose energy density exerts an

important influence on the evolution of the universe and (2) claiming (or at

least aspiring to be able to claim) that certain conditions or behaviors qualify

as “natural.” These tendencies meet in the notion of cosmological attractors:

dynamical conditions under which evolving scalar fields approach a certain

http://dx.doi.org/10.1103/PhysRevD.88.083518
http://arxiv.org/abs/1309.2611
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kind of behavior without finely-tuned initial conditions [322–333], whether in

inflationary cosmology or late-time quintessence models. In dynamical systems

theory, attractor behavior describes situations where a collection of phase-

space points evolve into a certain region and never leave. This is incompatible

with Liouville’s theorem, which states that the volume of a region of phase

space is invariant under time evolution. Hamiltonian systems, of which scalar-

field cosmologies (Einstein’s equation plus a dynamical scalar field, restricted

to homogeneous configurations) are examples, obey Liouville’s theorem, and

therefore cannot support true attractor behavior.

So what is going on? In this chapter, we reconcile the appearance of at-

tractor solutions in scalar-field cosmologies with their apparent mathematical

impossibility by making two points. First, we point out the fact (well-known,

although rarely stated explicitly) that the combined gravity/scalar-field equa-

tions exhibit an apparently accidental simplification in the case of flat universes.

This simplification allows us to express the complete evolution in terms of

an effective two-dimensional “phase space” with coordinates φ and φ̇, even

though the true phase space is four-dimensional (since the scale factor and

its conjugate momentum are independent variables). Of course, φ and φ̇

aren’t canonical coordinates on phase space, so the measure dφ̇ ∧ dφ isn’t very

physically meaningful.

Our second point is that it is seemingly possible to define a conserved

measure on the φ-φ̇ effective phase space, although this measure looks very

different from dφ̇∧ dφ. We cannot rigorously prove its existence in general, but

we can show that it corresponds to a Lagrangian on effective phase space if it

does exist; in the simple example of a canonical scalar field with a quadratic

potential, we show that a unique measure on effective phase space exists and

derive some of its properties. By construction, there can be no “attractor”
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solutions with respect to this measure. Nevertheless, we suggest there is a

relevant sense in which attractor solutions are physically meaningful, if certain

functions of the phase-space variables are directly observable. Finally, we

comment on the connection between this classical analysis and the boundary

induced on phase space by the Planck scale.

13.2 Phase Space, Measures, and Attractors

We start by reviewing scalar-field cosmology in phase space, following Gibbons,

Hawking, and Stewart (GHS) [64]. There are subtleties due to the fact that

GR is a constrained system. In this section, we also discuss the intuitive idea

of an attractor and contrast it with Hamiltonian behavior.

Because a phase space Γ of dimension 2n is a symplectic manifold, there is

a closed two-form defined on Γ,

ω =
n∑
i=1

dpi ∧ dqi. (13.2.1)

This symplectic form defines the Liouville measure,

Ω = (−1)n(n−1)/2

n! ωn. (13.2.2)

Liouville’s theorem from classical mechanics states that this measure is con-

served along the Hamiltonian flow vector XH. That is, given trajectories that

initially cover some region S ⊂ Γ and that evolve under XH to cover region S ′,

we have ˆ
S

Ω =
ˆ
S′

Ω. (13.2.3)

Equivalently, the Lie derivative of Ω vanishes along XH,

£XHΩ = 0. (13.2.4)

Because the metric component g00 is not a propagating degree of freedom

in the Einstein-Hilbert action, general relativity is a constrained system, in
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which the Hamiltonian H is set to a boundary-condition-dependent constant

along physical trajectories. That is, trajectories are confined to a hypersurface

in Γ of dimension 2n− 1 for which H = H?; we will call this the Hamiltonian

constraint surface,

C = Γ/ {H = H?} . (13.2.5)

The Hamiltonian flow vector, describing Hamiltonian evolution of trajectories

in C, is

XH = ∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
, (13.2.6)

where (qi, pi) are the canonical coordinates and their conjugate momenta. The

space of trajectories (as opposed to states) can be defined by taking the quotient

M = C/XH. (13.2.7)

Previously, Gibbons, Hawking, and Stewart [64] contructed the unique

measure on M for FRW universes. The GHS measure is unique in that it is

positive, independent of parameterization, and respects the symmetries of the

problem without introducing additional structures. It is obtained from the

symplectic form ω by identifying the nth coordinate of phase space Γ as time

t, so that

ω = ω̃ + dH ∧ dt =
n−1∑
i=1

dpi ∧ dqi + dH ∧ dt. (13.2.8)

The corresponding measure, a (2n− 2)-form, is

Θ = (−1)(n−1)(n−2)/2

(n− 1)! ω̃n−1. (13.2.9)

The metric describing an FRW universe is

ds2 = −N2dt2 + a2 (t)
(

dr2

1− κr2 + r2dΩ2
)
, (13.2.10)

where a (t) is the scale factor, normalized to unity at some time t0, and N is the

lapse function. The curvature parameter κ ∈ R has dimensions of [length]−2.
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We may also define k = κR2

0 ∈ {0,±1}, where R0 is the radius of curvature of

the universe when a(t0) = 1.

Studying the dynamics of the FRW scale factor coupled to some matter

source is known as the minisuperspace approximation. The minisuperspace

Lagrangian for gravity plus a scalar field with potential V (φ) is

L = 3M2
Pl

(
Naκ− aȧ2

N

)
+ a3

[
φ̇2

2N −NV (φ)
]
. (13.2.11)

The canonical momenta, defined as pi = ∂L/∂q̇i, are

pN = 0, pa = −6N−1M2
Plaȧ, and pφ = N−1a3φ̇. (13.2.12)

Note that N is a Lagrange multiplier: it is non-dynamical and will not be a part

of the phase space. Performing a Legendre transformation, the Hamiltonian,

in units where MPl =
√
~c/8πG = 1, is

H = N

[
− p2

a

12a +
p2
φ

2a3 + a3V (φ)− 3aκ
]

= −3a3N

{(
ȧ

a

)2
+ κ

a2 −
1
3

[1
2 φ̇

2 + V (φ)
]}

.

(13.2.13)

The equation of motion for N sets it equal to an arbitrary constant, which we

choose to be unity henceforth. Varying the action with respect to N gives the

Hamiltonian constraint for FRW universes, H? = 0, which is equivalent to the

Friedmann equation,

H2 = 1
3

[1
2 φ̇

2 + V (φ)
]
− κ

a2 , (13.2.14)

where the Hubble parameter is H ≡ ȧ/a. Thus, Γ is four-dimensional, with

(φ, pφ, a, pa) being a possible parameterization. The Hamiltonian constraint

surface C, once a value of κ is chosen, is three-dimensional. The space of

trajectories M is two-dimensional. The GHS measure can be written as the

Liouville measure with the Hamiltonian constraint:

Θ = (dpa ∧ da+ dpφ ∧ dφ)|H=0 . (13.2.15)



287
A true attractor in phase space can be thought of as a region toward which

phase-space trajectories converge when plotted in canonical coordinates. More

formally, an attractor is defined [334] as a region A ⊂ Γ with the following

properties:

1. A is compact;

2. Given a trajectory {P(t, x0)} ⊂ Γ beginning at P(t0, x0) = x0 ∈ A,

P(t, x0) ∈ A for all t > t0;

3. There exists a basin of attraction, a neighborhood B of A such that for

all xB ∈ B and for any neighborhood N of A, there exists tN such that

P(t, xB) ∈ N for all t > tN ;

4. Properties 2. and 3. are not satisfied by any A′ ( A.

There are other, related, definitions of attractors in the mathematical literature

[335]; in particular, a definition in terms of Lyapunov stability is possible (cf.

Sec. 13.6, below).

An immediate consequence of Liouville’s theorem is that no true attractor

can exist in the phase space of a system described by a Hamiltonian [336]; see

also Ref. [118], Sec. 22.6. Intuitively, if a bundle of trajectories converges

along a particular axis in phase space in a given coordinate system, it must

compensatingly spread out along other axes, to conserve the total phase-space

measure. Though we may wish to describe such behavior as an “attractor,”

it is always possible to remove this apparent convergence by a canonical

change of coordinates: in essence, there is no coordinate-independent notion

of an attractor in the full four-dimensional phase space describing scalar-field

cosmology in an FRW universe [337].

Despite the fact that it does not rigorously exist, however, the intuitive

idea of an attractor appears in the literature on scalar-field cosmology, though
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Figure 13.1. Apparent attractor solutions for an m2φ2 potential, with equation of
motion φ̈+

√
3/2

√
m2φ2 + φ̇2φ̇+m2φ = 0. Solid: the apparent attractors; dotted:

numerical solutions for random initial conditions. Plots are in φ-φ̇ space, in units
whereMPl = 1; the scalar mass is chosen to be m = 0.2MPl. At large field values, the
solutions are approximated by the lines φ̇ = ±

√
2/3m, while for small field values,

all solutions converge on the origin.

a definition of what is meant by an “attractor” is often left implicit. This often

occurs as a result of plotting trajectories in some non-canonical phase-space

variables, most commonly φ versus φ̇ [322, 323, 331]. However, as one can see

in Figs. 13.1 and 13.2, apparent attractor behavior in (φ, φ̇) coordinates need

not correspond to attractor behavior when plotted in (φ, pφ). Furthermore,

recall that the full phase space Γ is four-dimensional, not two-dimensional: a

and pa are suppressed in Figs. 13.1 and 13.2, and initially nearby trajectories

would generally spread in these variables. In other papers, the notion of an

“attractor” is used in a manifestly coordinate-dependent manner, with respect

to some physical observables that either become smaller with time [332] or for

which differences between initially different trajectories vanish rapidly in some

particular coordinates [327–329].

It is easy to see why such behavior is described as attractor-like: one simply

looks at the plots, perhaps implicitly assuming a “graph paper measure” dφ̇∧dφ.

Though this assumption seems natural, it is a coordinate-dependent artifact,

as φ and φ̇ are not canonically conjugate. It is our aim in this work to make

all of these notions more rigorous, examining both the issue of the measure
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Figure 13.2. Numerical solution for evolution of an FRW universe with an m2φ2

potential, with initial conditions (φ, φ̇) = (6, 0.25) at a (t = 0) = 1, plotted in (φ, pφ)
coordinates, where pφ = a3φ̇ is the canonical momentum conjugate to φ. Units are
chosen such that MPl = 1, with the scalar mass m = 0.2MPl. The apparent attractor
behavior seen in Fig. 13.1 disappears in these coordinates.

on the space of field variables and the definition of apparent attractor-like

behavior. Our results should help to create a common, more mathematically

valid, and less ad hoc language for comparing results between different models

of scalar-field cosmology.

13.3 Effective Phase Space for a Single Scalar Field

In this section, we identify a sense in which φ and φ̇, though not canonically

conjugate, are special coordinates for universes with zero spatial curvature.

That is, we will show that the full four-dimensional phase space Γ is larger

than necessary to fully capture the dynamics of scalar-field cosmology for flat

universes; φ-φ̇ space can be regarded as an effective phase space, in a sense

that will be made precise. We proceed first by defining the notion of a vector

field invariant map, making as general and coordinate-independent definitions

as possible. In essence, given a map between two manifolds and a vector field

on the first manifold, the map is vector field invariant if it provides a way of

uniquely specifying a vector field on the second manifold. We will find that

the map from Γ to φ-φ̇ space for flat universes is vector field invariant with

respect to the Hamiltonian flow vector.
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13.3.1 Vector Field Invariant Maps

Before investigating whether there is a sense in which the non-canonical co-

ordinates (φ, φ̇) constitute a parameterization with any special mathematical

properties, we first require some definitions and notation. Given two man-

ifolds M and N , a mapping ψ : M → N , and f ∈ F (N), where F (N)

is the space of smooth real-valued functions with domain N , the pullback

ψ? : F (N)→ F (M) of f by ψ is defined by:

ψ∗f = (f ◦ ψ) : M → R. (13.3.1)

We can think of f as specifying a coordinate on N and the pullback as specifying

a coordinate on M . Now, at a given point p ∈ M , we may regard a vector

X (p) as a function Xp : F (M)→ R. If we think of g ∈ F (M) as specifying a

coordinate (also called g) onM , then Xp (g) gives the value of the g-component

of the vector at p. A vector field X on M is the assignment of a vector Xp

to each point p ∈ M in a continuous and smooth fashion. Given the map

ψ : M → N and a function f : N → R, the pushforward of X at ψ (p) ∈ N is

(ψ∗X)ψ(p) (f) = Xp (ψ∗f) . (13.3.2)

We note that the pushforward ψ∗ is a map from the tangent space at p,

TpM , into Tψ(p)N and that ψ∗X : F (N) → R. In this sense, we can write

ψ∗ (X) = X ◦ ψ∗. For further reference, see Appendix C of Ref. [338] and

Appendix A of Ref. [271].

We may now define “vector field invariance,” a way of formalizing the idea

that a many-to-one map creates a unique vector field. Suppose we have a

map ψ : M → N and vector field X on M . For each point q ∈ N , write the

preimage in M as ψ−1 (q) = {p ∈ M | ψ (p) = q}. Then say that the map ψ

is vector field invariant with respect to X if for any function f ∈ F (N) and

for all q ∈ N , Xp(ψ∗f) = Xp′(ψ∗f) for all p, p′ ∈ ψ−1 (q). If a map ψ is vector
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field invariant with respect to X, we may write Xp(ψ∗f) = X̃q(f) without

ambiguity for p ∈ ψ−1 (q). Then we have a unique vector field X̃ on N . We

can say that X̃ is the vector field induced by X on N under the (vector field

invariant) map ψ.

The images of integral curves that are distinct under a vector field invariant

map do not intersect. If we have a vector field invariant map ψ : M → N ,

whereM has vector field X, then the images of integral curves of X are integral

curves of X̃ in N . Therefore, by uniqueness, given two integral curves in M

not mapped onto each other in N by ψ, their images in N cannot intersect. If

M is the phase space for some Hamiltonian system and ψ : M → N is vector

field invariant with respect to the Hamiltonian flow vector, one can therefore

think of N as an effective phase space.

13.3.2 A Map for FRW Universes

We will now show that, for scalar-field cosmology in a flat universe, the choice

of φ and φ̇ as coordinates allows one to eliminate a and ȧ and thus reduce

the dynamical phase space to two dimensions. Consider a map χ from the

Hamiltonian constraint three-manifold C to a two-manifold K, where χ−1 (q) is

the set of all points in C with equal values of φ and φ̇. That is, K is isomorphic

to φ-φ̇ space. We will show that in a flat universe (κ = 0) with a scalar field

described by a potential V (φ) and a canonical kinetic term, the map χ is

vector field invariant with respect to the Hamiltonian flow vector XH.

It is sufficient to exhibit one such map χ, as all other maps such that the

preimage of q ∈ K is the set of all points in C with equal values of φ and φ̇

can be obtained from χ via a bijection. Without loss of generality, we may

therefore specify coordinates (φ, φ̇, a, H) on the full phase space Γ, which

are inherited by C, so that C is parameterized by four coordinates related by

the Hamiltonian constraint. Note, however, that none of our conclusions are
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dependent on choosing a and H as the other two coordinates. That is, the

notion of vector field invariance of χ : C → K is a statement only about φ and

φ̇, independent of the other coordinates. With the Hamiltonian (13.2.13) and

flow vector (13.2.6), we have

X
(φ)
H = pφ

a3 ,

X
(pφ)
H = −a3V ′ (φ) ,

X
(a)
H = −pa6a,

X
(pa)
H = − p2

a

12a2 +
3p2

φ

2a4 − 3a2V (φ) + 3κ.

(13.3.3)

Using the expressions for pa and pφ in Eq. (13.2.12) to rescale and eliminate a

and ȧ in favor of φ and φ̇, we have

X
(φ)
H =φ̇,

X
(φ̇)
H = 1

a3X
(pφ)
H = −V ′ (φ) ,

X
(H)
H =− 1

6a2X
(pa)
H = 1

2H
2− 1

4 φ̇
2+ 1

2V (φ)− κ

2a2 .

(13.3.4)

Therefore, for κ = 0, the φ-, φ̇-, and H-components of the vector field are

independent of a. Further, from the Friedmann equation (13.2.14), H can be

written as a function of φ and φ̇ for κ = 0. Thus, for a flat universe, the φ-,

φ̇-, and H-components of the Hamiltonian vector field XH can be written in

terms of φ and φ̇ alone. This is the slightly more careful version of our previous

statement that φ and φ̇ allow a and ȧ to be eliminated from the dynamics.

Now, consider the map χ : C → K defined by χ(a, φ, φ̇,H) = (φ, φ̇). Under

such a map, the condition for vector field invariance for a given vector field X

is simply the condition that the φ-, φ̇-, and H-components of X can be written

in terms of only φ and φ̇. Hence, we conclude that the map χ is vector field

invariant with resepect to the Hamiltonian vector field XH for a flat universe.

We have shown, for a universe of zero spatial curvature, that there is a

sense in which (φ, φ̇) become effective phase-space coordinates. This formalizes
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the intuitive idea that the equations of motion can be written purely in terms

of these variables. There exists a vector field invariant map with respect to the

Hamiltonian flow vector, from the full three-dimensional constraint surface C to

a two-dimensional manifold K: we find that K is isomorphic to φ-φ̇ space. This

is a nontrivial property—it is not in general true, given a three-dimensional

surface with a Hamiltonian vector field, that a vector field invariant mapping

to a two-dimensional manifold exists. The criterion κ = 0 is necessary for

(φ, φ̇) to be an effective phase space; indeed, trajectories can cross in φ-φ̇ space

if κ 6= 0. Furthermore, the projection of Γ onto two canonical coordinates

does not constitute construction of an effective phase space; this fact can be

illustrated dramatically by considering orbits in (φ, pφ) for an m2φ2 potential

(see Fig. 13.2). In this sense, φ and φ̇ are special coordinates with which to

parameterize the phase space of scalar-field cosmology.

13.3.3 The Geometrical Picture

One can develop more intuition about the notion of vector field invariance by

considering the geometry of the Hamiltonian constraint submanifold embedded

in the full phase space, for a specific model with V (φ) = m2φ2/2. The

four-dimensional phase space Γ is foliated into three-dimensional Hamiltonian

submanifolds C, each with a unique value of κ, with the Friedmann equation

(13.2.14) giving the constraint.

Consider a Hamiltonian submanifold C for some choice of curvature κ. Re-

stricted to a particular value of the scale factor a, the Hamiltonian submanifold

becomes a two-dimensional surface Ca immersed within a three-dimensional

space Γa. We can think of C as being the disjoint union of the Ca. Formally

speaking, C is formed by the fibration of the family of manifolds Ca over the

positive real line R+ parameterized by a: in general, this produces a non-

factorizable three-manifold within Γ, since the Ca are often different in size
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and shape for different values of a. As one can see in Fig. 13.3, all the Ca

are the same if κ = 0. This is due to the fact that for the choice κ = 0, the

Hamiltonian constraint (13.2.14) is independent of a in (a,H, φ, φ̇) coordinates:

H2 = 1
3

[1
2 φ̇

2 + V (φ)
]
. (13.3.5)

More precisely, parameterizing Ca = Γa ∩ C with the other three coordinates

on Γ (excluding a), we find that, for κ = 0, Ca contains the same set of

points, a cone in Γa, regardless of the choice of a. Hence, one can pick a

two-manifold Ca? for any choice of scale factor a? and find that C is a product

space: C = Ca? × R+. This is the sense in which a ceases to be a dynamical

variable for flat universes.

As previously, let K ∼= R2 denote φ-φ̇ space and consider the vector field

invariant map χ : C → K defined by χ(a,H, φ, φ̇) = (φ, φ̇), where C is the

Hamiltonian submanifold for a flat universe. More generally, we could let K

be any space isomorphic to φ-φ̇ space and let χ be any function for which the

preimage of a point in K is the set of all points in C with a particular value of

φ and φ̇. It was previously shown that χ is vector field invariant with respect

to the Hamiltonian flow vector XH. From Fig. 13.3 we can see why this is true.

The Hamiltonian flow vector describes a vector field on C; on each manifold Ca,

the H-, φ-, and φ̇-components of XH give a vector field, which we can imagine

describing flow tangent to each of the slices shown in Fig. 13.3. The projection

of the vector field from a slice Ca down into the horizontal plane in Fig. 13.3

corresponds to the pushforward of the vector field from Ca to K. If this vector

field in K is the same no matter which slice Ca we chose, then χ is vector field

invariant with respect to XH. This is manifestly true for the flat universe case,

because C factors as shown above. It is also clear from Fig. 13.3 that this is

not true for κ 6= 0: the manifold Ca changes dramatically as a is varied, so the

vector field that we push forward to K will be different for different a.
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Figure 13.3. Plots of the Hamiltonian three-surface C for V (φ) = m2φ2/2, in
(a,H, φ, φ̇) coordinates, at slices of various values of the scale factor a. Top row:
κ = 0.5, middle row: κ = 0, bottom row: κ = −0.5. Units used are MPl = 1 and
m = 0.2.

At this point we may ask again: is this property of φ and φ̇ really distinctive?

That is, does a different choice of coordinates on Γ, say (a, pa, φ, pφ) give the

same result: a map of the form ψ from (a, pa, φ, pφ) to (φ, pφ) that, provided

κ = 0, is vector field invariant with respect to XH? We saw in Fig. 13.2 that

this is not the case, but it is useful to consider why vector field invariance fails

for φ-pφ space from the geometrical point of view. As we see in Fig. 13.4, even

in the κ = 0 case, the partition of the manifold C into Ca yields an inequivalent

set of points in Γa for different values of a when parameterized by (pa, φ, pφ),

so that C is merely a fibration of the Ca over R+. Another way of saying this

is that in (a, pa, φ, pφ) coordinates, C is non-factorizable even in the κ = 0

case. Hence, drawing components of the Hamiltonian flow vector field on the

partition of C, we see that a projection into the φ-pφ plane will give a vector
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Figure 13.4. Plots of the Hamiltonian constraint manifold C for V (φ) = m2φ2/2,
in (a, pa, φ, pφ) coordinates, in two-dimensional slices Ca at various values of the
scale factor a. Top row: κ = 0.5, middle row: κ = 0, bottom row: κ = −0.5. Units
used are MPl = 1 and m = 0.2.

field that is different at different values of a: that is, ψ : (a, pa, φ, pφ)→ (φ, pφ)

is not vector field invariant with respect to XH. In this way, we have shown

that the property of vector field invariance that χ possesses is nontrivial and

not a generic property of any map from C onto a two-dimensional manifold: φ

and φ̇ are coordinates with a special property.

13.4 Constructing a Measure on Effective Phase Space

We now have in hand an effective phase space K for flat scalar-field cosmology,

namely, φ-φ̇ space. Its properties are defined generally through the formalism

of a vector field invariant map and it contains all of the dynamical variables

describing the evolution of a flat FRW universe dominated by a scalar field.

However, while K captures the entire dynamics of the system (every point
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is part of a unique trajectory), it is not naturally a symplectic manifold, the

coordinates (φ, φ̇) are not canonically conjugate, and there is no reason to

expect the naive measure dφ̇ ∧ dφ to be conserved. We now ask whether these

features can be corrected, by finding a measure on this effective phase space

that actually is conserved.

While the Liouville measure (13.2.15) is appropriate for the full phase space

Γ, we are interested now in finding a measure on the effective phase space.

Taking a constructive approach, we first examine the constraint imposed by

conservation of the measure under Hamiltonian evolution of trajectories, calling

such a measure a “conserved measure.” We then examine the question of

whether the effective phase space itself has a Lagrangian description, that is,

whether the equation of motion in terms of φ and φ̇ alone can be derived from

a Lagrangian LK defined on K. If such a Lagrangian exists, it allows us to

define a conjugate momentum πφ ≡ ∂LK/∂φ̇. The measure dπφ ∧ dφ on K is

then automatically conserved under the Hamiltonian flow. We show that the

converse is also true; if there is a conserved measure, there is a corresponding

Lagrangian description. Finally, for the special case of an m2φ2 potential, we

examine the behavior of the measure at early and late times and prove that

the measure on K exists.

13.4.1 Conservation under Hamiltonian Flow

As shown in Ref. [339], the GHS measure (13.2.15) diverges for flat universes

(κ = 0); see also Ref. [340]. Specifically, as Ωk, the fraction of the critical

energy density parameterized by curvature, approaches zero, Θ ∝ |Ωk|−5/2. In

this sense, as Carroll and Tam [339] note, the flatness problem in cosmology is

illusory, a consequence of implicitly assuming a flat measure on the space of FRW

solutions; all universes but a set of measure zero are spatially flat, according to

the GHS measure. This divergence was briefly noted by Gibbons, Hawking,
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and Stewart [64]. The GHS measure is only well defined for Hamiltonian

systems with an odd number of constraints (i.e., the Hamiltonian submanifold

corresponds to a single constraint). However, it is important to note that the

specification of a flat universe does not increase the number of constraints,

since this just amounts to selecting a particular value of κ in Eq. (13.2.14).

See discussion in Sec. 13.3.3 for details of the phase-space topology.

Given the observed (near-)flatness of our own universe [65], it is well moti-

vated to consider the question of the measure on the subspace of Γ corresponding

to flat universes. Because of its divergent behavior for κ = 0, the GHS measure

cannot help us in this case. Earlier attempts to regularize the measure, for

example by considering an ε-neighborhood around the zero-curvature Hamilto-

nian constraint surface [339] or by identifying universes with similar curvatures

[340] have not proven satisfactory;13.1 see also Refs. [341, 342]. A different

approach seems to be required. As we have seen, the scale factor a becomes

non-dynamical for κ = 0 and the scalar coordinates φ and φ̇ constitute an

effective phase space, by virtue of the vector field invariant mapping discussed

in Sec. 13.3. Though the GHS and Liouville measures give us no information

in this subspace, we can use the principles and reasoning of the full phase-space

argument to motivate the treatment of the measure question on effective phase

space. As noted in Sec. 13.2, it is conventional to implicitly assume a flat mea-

sure dφ̇∧ dφ in effective phase space when making statements about attractors,

number of e-foldings, etc. Considering the measure question in effective phase

space allows us to assess the validity of this assumption.

For simplicity of notation, let the vector field X̃H induced from the Hamil-

tonian evolution vector XH under the mapping χ : C → K ∼= (φ, φ̇) be written

in K as v. Define x = φ and y = φ̇. The measure on a two-dimensional space
13.1We thank Alan Guth for conversations on this point.



299
is a two-form σ, which we can always write as

σ = f(x, y)dx ∧ dy (13.4.1)

for some function f(x, y). We seek a measure that is conserved with evolution

along v:

£vσ = £v [f (x, y) dx ∧ dy] = 0. (13.4.2)

We can compactly express the condition (13.4.2) as the vector equation

∇ · (fv) = 0. (13.4.3)

Note that this is equivalent to one of the Euler equations of fluid dynamics for

a steady flow, ∂ρ/∂t = 0, where ρ is the density of the fluid and v its velocity

field:

∂ρ

∂t
+∇ · (ρv) = 0. (13.4.4)

This is simply the statement of conservation of mass. Hence, our conserved

two-form can be thought of as the density of fluid in a steady-flow system. The

probability of a given bundle of trajectories is conserved under Hamiltonian

evolution, just as the mass of a parcel of fluid is conserved as it flows.

For a single scalar with a canonical kinetic term, the vector field v can

be found from XH as follows. Setting X(pφ)
H given in Eq. (13.3.3) equal to

∂tpφ [recalling from Eq. (13.2.12) that pφ = a3φ̇], we have the Klein-Gordon

equation

φ̈+ 3Hφ̇+ V ′ (φ) = 0. (13.4.5)

With H as given by the Friedmann equation (the Hamiltonian constraint)

(13.3.5), we have

φ̈ = −
√

3φ̇
√

1
2 φ̇

2 + V (φ)− V ′ (φ) = vφ̇. (13.4.6)

The vector field in φ-φ̇ space is therefore



300

v =
y, −√3y

√
V (x) + 1

2y
2 − V ′ (x)

 . (13.4.7)

13.4.2 Existence of a Lagrangian

We now have an equation of motion (13.4.6) for φ, obtained from the Friedmann

and Klein-Gordon equations and defined by a potential V (φ). We are looking

for a Lagrangian on the effective phase space K ∼= (x, y) from which an

equivalent equation of motion can be derived. One reason for considering a

Lagrangian description is that the direct approach, i.e., finding a closed-form

solution to the Euler equation (13.4.3) for the vector field (13.4.7), is highly

nontrivial for a typical potential.

The existence of a Lagrangian given an equation of motion is a famous

question known as the inverse problem of the calculus of variations, which was

finally solved by Douglas in 1941 [343]. See Ref. [344] for further reference.

Suppose we have an equation of motion in a single variable

ẍ = F (x, ẋ) . (13.4.8)

Then Douglas’ theorem states that there exists a Lagrangian for which the

Euler-Lagrange equation gives the correct equation of motion (13.4.8) if and

only if there exists a function f satisfying the Helmholtz condition

df
dt + ∂F

∂ẋ
f = 0, (13.4.9)

or equivalently, with y = ẋ,

∂f

∂t
+ ∂

∂x
(ẋf) + ∂

∂y
(Ff) = 0. (13.4.10)

For the problem at hand, defining φ = x and φ̇ = y as before, Eq. (13.4.6)

can be written

F (x, y) = −
√

3y
√

1
2y

2 + V (x)− V ′ (x) = ẍ. (13.4.11)



301
Noting from Eq. (13.4.7) that v = (y, F ), we are able to write the Helmholtz

condition in the form

∂f

∂t
+ ∂

∂x
(vxf) + ∂

∂y
(vyf) = ∂f

∂t
+∇ · (fv) = 0. (13.4.12)

This is precisely the Euler equation for fluid flow (13.4.4), with f taking the

place of the density. If there is a measure f dφ̇ ∧ dφ on φ-φ̇ space conserved

along the Hamiltonian flow vector, then ∇ · (fv) = 0. Thus, we have proven

the following:

There exists a Hamiltonian-flow conserved measure on φ-φ̇ space

if and only if the equation of motion φ̈ +
√

3φ̇
√
φ̇2/2 + V (φ) +

V ′ (φ) = 0 possesses a Lagrangian description in effective phase

space. More specifically, there exists a time-independent measure

on φ-φ̇ space if and only if the Helmholtz condition is satisfied by a

time-independent function f(φ, φ̇).

In other words, a Lagrangian description of the equation of motion (13.4.11) [cf.

Eq. (13.4.6)] exists if and only if the Helmholtz condition (13.4.9) is satisfied.

In turn, the Helmholtz condition is satisfied if and only if there is a function f

satisfying the Euler equation (13.4.4) for fluid flow with the Hamiltonian vector

field (13.4.7). Whether or not there is such a function is difficult to establish

in general, although we will give an argument in the case of m2φ2 potentials.

13.4.3 The Conjugate Momentum and the Measure

If the Helmholtz condition (13.4.9) is satisfied, then the equation of motion

can be written in the form

A
(
t, φ, φ̇

)
φ̈+B

(
t, φ, φ̇

)
= 0, (13.4.13)

where

∂B

∂φ̇
=
(
∂

∂t
+ φ̇

∂

∂φ

)
A. (13.4.14)
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Explicitly, given f satisfying Eq. (13.4.12) and with A = f(t, φ, φ̇) and B =

−f(t, φ, φ̇)F (φ, φ̇), where F is given in Eq. (13.4.11), it can be shown that

Eq. (13.4.14) is satisfied and that Eq. (13.4.13) corresponds to the correct

equation of motion (13.4.6). Then as shown in Ref. [344], the Lagrangian can

be constructed explicitly:

LK
(
t, φ, φ̇

)
= G

(
t, φ, φ̇

)
+ C (t, φ) , (13.4.15)

where

G
(
t,φ,φ̇

)
= φ̇

ˆ 1

0
dτ ′
[
φ̇

ˆ 1

0
dτA

(
t,φ,τ φ̇

)](
t,φ,τ ′φ̇

)
,

C(t,φ)=φ

ˆ 1

0
dτ W (t,τφ) , and

W (t,φ)=−B − ∂G

∂φ
+ ∂2G

∂φ̇∂t
+ ∂2G

∂φ∂φ̇
φ̇.

(13.4.16)

We can then extract the momentum πφ conjugate to φ in φ-φ̇ space via

πφ = ∂LK
∂φ̇

= ∂G

∂φ̇
. (13.4.17)

Then the Liouville measure on φ-φ̇ space is

dπφ ∧ dφ = ∂2G

∂φ̇2
dφ̇ ∧ dφ. (13.4.18)

With A = f , it can be shown from Eq. (13.4.16) that ∂2
φ̇
G = f and hence

dπφ ∧ dφ = f dφ̇ ∧ dφ. (13.4.19)

In the previous section, we demonstrated that finding a Lagrangian produc-

ing the equation of motion on φ-φ̇ space was the same problem as constructing

a Hamiltonian-flow conserved measure on that space. The result we have

proven in this section states something stronger:

The natural Liouville measure dπφ ∧ dφ on effective phase space

that one obtains from the effective Lagrangian, if it exists, is the

same measure that one finds by explicitly constructing a nontrivial

two-form f dφ̇ ∧ dφ conserved under Hamiltonian evolution.
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We note that these results are applicable to any single-field V (φ) model with

canonical kinetic term, or with slight generalization, to any dynamical problem

in a single variable.

13.5 The Measure on Effective Phase Space for
Quadratic Potentials

It is illustrative to explicitly investigate the behavior of the measure on effective

phase space for a specific model,

V (φ) = 1
2m

2φ2. (13.5.1)

Ideally, one would like to obtain a closed-form expression for the measure; how-

ever, solving the partial differential equation explicitly proves to be prohibitive.

We obtain expressions for the behavior of the measure in two limits, H � m

and H � m, which can be viewed as corresponding to early and late times.

Finally, we use the Cauchy-Kowalevski theorem to prove that a unique measure

obeying the constraint (13.4.3) exists, up to overall normalization.

13.5.1 Constraining the Behavior of the Measure

It is convenient at this point to reparameterize the vector field in terms of polar

coordinates. Again setting x = φ and y = φ̇, let

r =
√
y2 +m2x2 =

√
6H (13.5.2)

and

tan θ = y

mx
. (13.5.3)

Then the vector field (13.4.7) can be written as

v = −
√

3
2r

2 sin2 θ r̂−

mr +
√

3
2r

2 sin θ cos θ
 θ̂, (13.5.4)

where r̂ = x̂m−1 cos θ + ŷ sin θ and θ̂ = −x̂m−1 sin θ + ŷ cos θ are unit vectors

under the appropriate scaling of axes. The constraint (13.4.3) for a time-
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independent measure f may be expressed as an explicit partial differential

equation

− 1
r

√
3
2 sin2 θ∂r

(
r3f

)
−m∂θf −

√
3
2r∂θ (f sin θ cos θ) = 0. (13.5.5)

Late universe limit

The late-universe, H → 0 limit corresponds to r → 0. Suppose first that f

does not diverge in this limit. Then as v · r̂ = −
√

3/2r2 sin2 θ < 0 for all r, θ,

it follows that for any circular disk R of radius r? centered at the origin,

ˆ
R

∇·(fv)dA =
˛
∂R

(fv)·n̂d` = −
√

3
2

ˆ 2π

0
f (r?, θ) r3

? sin2 θ dθ. (13.5.6)

Since the expression on the right-hand side is negative, ∇·(fv) is not identically

zero. If, however, f diverges as r → 0, we must include another boundary term:

effectively, the disk becomes an annulus, with the point at r = 0 removed. In

general, this does not allow us to show that ∇ · (fv) 6≡ 0. Thus, we conclude

that f must diverge as r → 0.

Near the origin, where r is small, physically corresponds to small Hubble

parameter in units of the scalar field mass, H � m. In this limit, we may take

the leading order in r in Eq. (13.5.5), as this will dwarf all other terms:

∂θ (mf) −−→
r→0

0. (13.5.7)

This means that f is well behaved in its angular coordinate near the origin:

we do not have any ambiguity in defining f as r → 0 as would occur for, e.g.,

f → sin θ. Near the origin, we have f → p (r), where p (r) is the leading (i.e.,

most divergent) part of f . In general,

f (r, θ) = p (r) + q (r, θ) , (13.5.8)

where q is subleading as r → 0.
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Thus, Eq. (13.5.5) implies that for small r,

sin2 θ
(
r3p′ + 3r2p

)
+
√

2
3mr∂θq + r2p

(
cos2 θ − sin2 θ

)
= 0, (13.5.9)

as all other terms, e.g., ∂r(r3q), are of lesser order in r. A solution also has the

requirement that q (r, θ) be periodic in θ. We obtain a solution to Eq. (13.5.9)

if

r3p′ + 3r2p = 0 (13.5.10)

and √
2
3mr∂θq + r2p

(
cos2 θ − sin2 θ

)
= 0, (13.5.11)

which imply

p = C

r3 (13.5.12)

and

q = −
√

3
2
C

mr2 sin θ cos θ. (13.5.13)

Thus, there exists a solution to Eq. (13.5.5) such that as r → 0,

f → C

 1
r3 −

√
3
2

sin θ cos θ
mr2

 . (13.5.14)

As the small r form (13.5.14) of the measure is divergent, with degree greater

than 2, it is not normalizable over a region containing the point φ = φ̇ = 0.

However, as we shall see in Sec. 13.5.2, excising the origin and considering the

measure on the punctured plane allows us to prove that the measure exists and

is well defined for (φ, φ̇) 6= (0, 0).

A question that remains is whether this solution is unique, i.e., whether a

nontrivial solution to Eq. (13.5.5) must have the behavior (13.5.14) near the

origin. Writing any near-origin solution as f (r, θ) = p (r)+q (r, θ) as above and

demanding that q (r, θ) be periodic in θ implies that ∂θq must also be periodic



306
and have zero mean, i.e., T−1 ´ T

0 (∂θq) dθ −−−→
T→∞

0. But from Eq. (13.5.9) we

have

∂θq = −
√

3
2

1
m

[
rp
(
cos2 θ − sin2 θ

)
+ sin2 θ

(
r2p′ + 3rp

)]
. (13.5.15)

At fixed r, this expression has zero mean only if r2p′ + 3rp = 0. Hence, the

solution in Eqs. (13.5.12) and (13.5.13) is unique. That is, any nontrivial

solution to Eq. (13.5.5) must have the form (13.5.14) as r → 0.

Early universe limit

In the large r limit, which corresponds to H � m, we take the vector field

(13.5.4) at leading order in r:

v ≈ −
√

3
2r

2 sin2 θ r̂−
√

3
2r

2 sin θ cos θ θ̂. (13.5.16)

Hence, the Euler constraint (13.4.3) [explicitly, Eq. (13.5.5)] requires, for large

r, that the measure satisfy

∂θf = −r tan θ∂rf − (2 tan θ + cot θ) f. (13.5.17)

For f to be periodic in θ with period 2π for fixed r, we must have ∂θf periodic

in θ with zero mean (i.e., ∂θf oscillates about zero). This requirement is

satisfied by the odd functions tan θ and 2 tan θ+ cot θ, so ∂rf must be periodic

in θ with period 2π. We therefore take f (r, θ) separable as an ansatz:

f (r, θ) = R (r) Θ (θ) . (13.5.18)

Hence,

0 = r
∂rR

R
+ 3 + ∂θ (Θ sin θ cos θ)

Θ sin2 θ
, (13.5.19)

which has solutions

R = Crγ−3 (13.5.20)

and
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Θ = C csc θ cosγ−1 θ, (13.5.21)

where γ ∈ R is arbitrary. Demanding that f be positive everywhere, we have

the leading order behavior

f → Crγ−3
∣∣∣∣∣cosγ−1 θ

sin θ

∣∣∣∣∣ as r →∞. (13.5.22)

The large r behavior for finite massm is a weighted sum or integral of this family

of solutions, determined by matching onto the measure for intermediate values

of r. The coefficients of the sum must be found numerically for a particular

value of m. Note that the r →∞ behavior of f given in Eq. (13.5.22) diverges

near y → 0. This corresponds to the apparent attractor solution plotted in Fig.

13.1: on large scales in effective phase space, the vector field points toward

the φ axis, toward the apparent attractors near φ̇ = ±
√

2/3m. Any trajectory

that starts out at large r is driven toward one of these attractor curves, which

on large scales (equivalently, for small m) are very near φ̇ = 0. Hence, the

behavior of this solution is physically sensible. Imposing the condition γ < 1

makes the radial integral over large r convergent; this restriction could be

viewed as physically reasonable, as evolving any universe backward must result

in H →∞, i.e., the big bang, in finite time.

The measure near the apparent attractor

Comparing the r → 0 behavior (13.5.14) and the r → ∞ behavior (13.5.22)

of the measure, we see that in both limits, f diverges wherever trajectories

converge in φ-φ̇ space: for the early universe (large r) this occurs along the

apparent attractor solution, approximated by φ̇ ≈ 0, while for small r this occurs

at the origin, which corresponds to reheating. Therefore, it is well motivated to

suppose that any solution to the full constraint equation ∇ · (fv) = 0 diverges

along the full apparent attractor (Fig. 13.1), i.e., the curves in φ-φ̇ space
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satisfying

dφ̇
dφ = −

√
3
2

√
m2φ2 + φ̇2φ̇+m2φ

φ̇
(13.5.23)

with initial condition φ̇ = ±
√

2/3m, φ → ∓∞. It is interesting to note the

following similarity between the expressions (13.5.22) and (13.5.14) for the

measure in the early and late universe. Defining d as the distance to the

apparent attractor in the φ-φ̇ plane and considering successive ringdown orbits,

it is possible to show that f ∼ 1/rd during reheating. Similarly, the γ = 1

solution to Eq. (13.5.22) also corresponds to 1/rd in the early universe. It is

not clear and appears unlikely that these attractor solutions can be written in

analytical form, which would imply that there is no analytical expression for

the Lagrangian or measure.

13.5.2 Existence of the Measure for m2φ2 Potentials

A natural question to ask, given the constraint imposed on a time-independent

measure on the effective phase space K, is whether a nontrivial solution exists,

i.e., does there exist a probability distribution f satisfying ∇ · (fv) = 0 for v

given in Eq. (13.4.7)? In general, the answer to this question is dependent on

the potential V (φ), but in light of the results (13.5.14) and (13.5.22), we will

see that we can answer the question in the affirmative for an m2φ2 potential.

As in Eq. (13.5.5), we express the partial differential equation that f must

satisfy in polar coordinates in effective phase space. Define a function

g (r, θ) = r3 sin2 θ [f (r, θ)− fε] , (13.5.24)

where fε ≡ f (r → ε) is a constant, for some small ε > 0. This expression is

well defined because, as shown in Eq. (13.5.7), we must have f (r, θ) −−→
r→0

f (r),

independent of θ. We are thinking of the solution for g as a Cauchy problem,

with initial data
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g (r = ε, θ) = 0 (13.5.25)

and evolution in r rather than t.

The constraint equation (13.5.5) for f becomes, in terms of g,

∂rg = sin2 θ∂r
(
r3f

)
= −

√
2
3mr∂θf − r

2∂θ (f sin θ cos θ)

= −
√

2
3
m

r2∂θ
(
g csc2 θ

)
− 1
r
∂θ (g cot θ) .

(13.5.26)

Defining

a (r, θ) = −
√

2
3
m

r2 csc2 θ − 1
r

cot θ (13.5.27)

and

b (θ, g) =
1
r

+ 2
√

2
3
m

r2 cot θ
 g csc2 θ, (13.5.28)

the constraint becomes

∂rg = a (r, θ) ∂θg + b (θ, g) . (13.5.29)

A measure on φ-φ̇ space exists if and only if there is a solution g to the evolution

equation (13.5.29) with initial data (13.5.25).

The function a is analytic in the entire upper half-plane R2
+ (0 < θ < π,

corresponding to φ̇ > 0). The function b is analytic in terms of r in R2
+ and

is analytic in terms of g near g = 0. Since the upper half-plane is open,

the Cauchy-Kowalevski theorem [345] guarantees that there exists a unique

analytic solution to the evolution equation (13.5.29) in R2
+. We note that the

specification of the initial data (13.5.25), in setting the constant fε, amounts

to simply selecting the constant C such that f → Cr−3 [cf. Eq. (13.5.14)] near

the origin. This argument also holds separately for the lower half-plane R2
−

(π < θ < 2π, corresponding to φ̇ < 0). The divergence in a and b at φ̇ = 0 is

a coordinate singularity if φ 6= 0; the vector field is finite and trajectories are
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smooth as they cross the φ axis. We can impose continuity of the measure to

select the same normalization in the upper and lower half-planes. The Cauchy-

Kowalevski theorem thus guarantees existence and uniqueness everywhere for

r > ε. Strictly speaking, for any particular, finite ε, there will be higher-order

corrections to the form Cr−3 of the measure (i.e., terms less divergent than

r−3), as computed in Eq. (13.5.14). However, the overall normalization C

remains well defined, since we can also use the Cauchy-Kowalevski theorem to

guarantee uniqueness upon evolving the measure inward for r < ε. We can now

consider a family of such Cauchy problems, for different values of ε but all with

the same value of C. This family of measures is uniformly convergent as ε→ 0,

converging to the form Cr−3 near the origin. Thus, the Cauchy-Kowalevski

theorem guarantees the existence, and uniqueness up to normalization, of the

measure on the entire punctured plane R2\{(φ = 0, φ̇ = 0)}. In summary, we

have proven the following result:

Up to normalization, there exists a unique conserved measure on

the effective phase space (φ, φ̇) for scalar-field cosmologies with

m2φ2 potentials, excluding the origin.

It is well founded to conjecture that the effective phase-space measure always

exists for any reasonable potential V (φ). A requisite property of the potential

is that, if the the measure diverges on a set contained in a neighborhood W

(e.g., during reheating), there is a unique solution in an open neighborhood

U\W , cf. Eq. (13.5.14). This is equivalent to the statement that the measure

on K does not behave chaotically as the boundary of U with W is varied.

13.6 The Physical Meaning of Attractors

We have seen that it is possible to define a conserved measure on K, the

effective φ-φ̇ phase space of scalar-field cosmology in a flat universe. This was
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shown for V (φ) = m2φ2/2, and seems likely to hold for other smooth potentials

in single-field models. Because Liouville’s theorem is obeyed with respect to

such a measure (unlike the naive measure dφ̇ ∧ dφ), true attractor behavior

is impossible. The apparent attractor behavior familiar in cosmology is an

artifact of using the φ-φ̇ coordinates, which are not canonically conjugate. It

is nevertheless worth asking whether there are other ways of thinking about

attractors that are physically meaningful. In this section we suggest two

possibilities.

The first possibility rests on the idea that φ and φ̇, while not canonically

conjugate, are nevertheless the directly physically observable features of the

scalar field. In this sense they define preferred coordinates in which to follow

the evolution. If one accepts that notion, we can define an apparent attractor as

a region in phase space for which Lyapunov exponents are highly negative along

particular axes. With trajectories x (t) in phase space labeled by coordinates

xα indexed by α, we define the Lyapunov exponent [346] along each coordinate

axis,

λα = lim
t→∞

lim
δxα(0)→0

1
t

log |δx
α (t)|

|δxα (0)| , (13.6.1)

where δxα (t) is the separation between two trajectories, in the α-coordinate,

at time t. (Note that λα is a function of position in phase space.) Then

|δxα (t)| ∼ eλαt |δx (0)| . (13.6.2)

By Liouville’s theorem, the sum of the Lyapunov exponents in canonically

conjugate coordinates is zero and, in fact, a canonical transformation of the

coordinates on phase space can be made such that all the Lyapunov exponents

vanish [337]. However, in the case of the linear attractors for m2φ2 potentials

located near φ̇ = ±
√

2/3m, the Lyapunov exponent in the φ̇ direction is

negative, forcing trajectories to appear (in φ-φ̇ space) to converge (cf. Fig
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13.1). This definition of an apparent attractor is consistent with the common

motivation for using φ-φ̇ space in the first place: the coordinates are physically

intuitive and trajectories exhibit “attractor-like” behavior. In contrast, plotting

in (φ, πφ), where πφ is the canonical momentum (13.4.17) associated with

φ under the Lagrangian on effective phase space (Sec. 13.4.3), will cause

the apparent attractor behavior to vanish. In (φ, πφ) coordinates, bundles

of trajectories will not shrink, but will instead contract along one axis while

expanding along the other. While the Lyapunov exponent characterization

is manifestly coordinate-dependent, it has the virtues of being intuitive and

capturing the sense in which the word “attractor” is used in much of the

literature, cf. Ref. [333].

Another point worth emphasizing is that our analysis here has been entirely

classical. In real cosmological evolution, there will be a boundary in phase

space past which a classical picture is inadequate; we expect that this would

occur at least when any physical quantity (the Hubble constant, the radius

of curvature, or the field energy) reached the Planck scale. If one had a true

theory of cosmological initial conditions that implied a probability measure for

trajectories near this boundary, that would presumably supersede the classical

Liouville-type measures we have been focusing on in this chapter. In the

absence of such a theory, of course, it makes more sense to use such well-defined

classical measures rather than to place too much emphasis on the naive choice

dφ̇ ∧ dφ.

13.7 Conclusions

It is common in literature on inflation (as well as quintessence models) to make

use of the idea of attractor solutions. However, this notion is not well defined

for a Hamiltonian system. In this chapter, we have attempted to clarify the
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relationship between the dissipationless dynamics of scalar-field cosmology and

apparent attractor behavior.

We showed that, in a universe with vanishing spatial curvature, there is

a sense in which φ and φ̇ become effective phase-space variables. Namely,

the map from the four-dimensional phase space to φ-φ̇ space is vector field

invariant under the Hamiltonian flow vector. As a result, trajectories do not

cross in φ-φ̇ space and, in this mapping, the phase space is effectively two-

dimensional and we observe the appearance of attractor-like behavior. In

making (coordinate-dependent) observations about “attractors,” many authors

plot in (φ, φ̇) coordinates, despite their noncanonicity, and suppress the other

two phase-space dimensions.

We explored the existence of a conserved measure on the effective phase

space. The GHS measure, while possessing many useful properties, diverges for

flat universes and so can give no information about the measure on the effective

phase space of (φ, φ̇). Such a measure can be constructed “from scratch” by

finding a two-form σ = f(φ, φ̇)dφ̇ ∧ dφ on φ-φ̇ space that is conserved under

Hamiltonian flow (that is, whose Lie derivative along the Hamiltonian flow

vector vanishes). Using Douglas’ theorem and the Helmholtz condition, we

proved that, for V (φ) inflation, such a measure constructed in this way exists

if and only if there is a Lagrangian description of the system in the two-

dimensional effective phase space. Furthermore, using this Lagrangian, one can

define a momentum conjugate to φ in the effective phase space, πφ = ∂LK/∂φ̇

(not to be confused with pφ, the momentum conjugate to φ in the full four-

dimensional phase space), and use this to define a measure dπφ∧dφ. We proved

that this measure is identical to the measure f dφ̇∧dφ that one constructs “from

scratch”; demanding conservation under Hamiltonian flow is enough to specify

the measure. For the specific model of inflation with a quadratic potential,



314
we found the behavior that the effective phase-space measure must possess in

the late (H � m) and early (H � m) limits and used the Cauchy-Kowalevski

theorem to prove that a unique analytic solution for the measure exists up

to normalization, provided φ and φ̇ do not both vanish. It is reasonable to

conjecture that a similar existence/uniqueness result should hold for a large

class of potentials.

Finally, we discussed the meaning of apparent attractors. While the dy-

namics of scalar-field cosmology is conservative, evolution can nevertheless

approach certain characteristics if we express it in terms of preferred variables.

It can happen, for example, that the Lyapunov exponents can be negative

along certain axes. By Liouville’s theorem, these more general formulations of

apparent attractors are necessarily coordinate-dependent.

The idea of attractor-like behavior is central to the intuitive idea of infla-

tionary cosmology: the development of a smooth, flat FRW universe from a

large set of initial conditions. Despite the fact that this behavior cannot occur

in canonical phase-space variables, it is useful to consider how the notion of an

apparent attractor can best be defined to capture this intuition. This helps

clarify the idea of naturalness in cosmological evolution.
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Chapter 14
How Many e-Folds Should We
Expect from High-Scale Inflation?

We address the issue of how many e-folds we would naturally expect if inflation

occurred at an energy scale of order 1016 GeV. We use the canonical measure

on trajectories in classical phase space, specialized to the case of flat universes

with a single scalar field. While there is no exact analytic expression for the

measure, we are able to derive conditions that determine its behavior. For

a quadratic potential V (φ) = m2φ2/2 with m = 2 × 1013 GeV and cutoff

at MPl = 2.4 × 1018 GeV, we find an expectation value of 2 × 1010 e-folds

on the set of Friedmann-Robertson-Walker trajectories. For cosine inflation

V (φ) = Λ4[1− cos(φ/f)] with f = 1.5× 1019 GeV, we find that the expected

total number of e-folds is 50, which would just satisfy the observed requirements

of our own universe; if f is larger, more than 50 e-folds are generically attained.

We conclude that one should expect a large amount of inflation in large-field

models and more limited inflation in small-field (hilltop) scenarios.

This chapter is from Ref. [13], G. N. Remmen and S. M. Carroll, “How Many
e-Folds Should We Expect from High-Scale Inflation?,” Phys. Rev. D90 (2014)
063517, arXiv:1405.5538 [hep-th]. Note that, while the specific observations
of the BICEP2 experiment [347] have been largely attributed to galactic dust
rather than cosmological tensor perturbations [348] in the time since Ref. [13]
was published, the results of this chapter remain completely applicable to a
large class of inflationary models as a means of quantifying tuning for different
theories of inflation given cosmological observations.

http://dx.doi.org/10.1103/PhysRevD.90.063517
http://dx.doi.org/10.1103/PhysRevD.90.063517
http://arxiv.org/abs/1405.5538
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14.1 Introduction

The possible detection of tensor perturbations in the cosmic microwave back-

ground (CMB) by the BICEP2 experiment [347] suggests that inflation occurred

at a high energy scale [349]: EI = 2× 1016 GeV, just two orders of magnitude

below the reduced Planck scaleMPl = 1/
√

8πG = 2.4×1018 GeV. Knowing this

parameter with some confidence allows both for much more focused inflationary

model-building and for quantitative exploration of some of the conceptual

issues underlying the inflationary paradigm. In this chapter, we address one of

the latter: given an inflaton potential that is able to reproduce the measured

cosmological parameters, how much inflation is likely to have occurred? In the

present chapter, we answer this question, finding that the expected number

of e-folds of inflation depends dramatically on the general type of inflaton

potential chosen.

The amount of inflation that occurs is measured by the number of e-folds,

N =
ˆ af

ai

d log a =
ˆ tf

ti

H dt. (14.1.1)

Here, ai and af are the values of the scale factor at the beginning and end of

inflation, while ti and tf are the corresponding proper times. We can define

the period during which inflation is occurring as that for which the universe

is accelerating, ä > 0. In conventional inflationary models, it is necessary

to achieve at least 50 e-folds to successfully address the horizon problem. It

is generally accepted that this requirement can be met by a wide variety of

potentials.

We would like to know not only whether a certain potential can possibly

produce sufficient amounts of inflation, but whether such an outcome is actually

likely. Presumably, a complete theory of cosmological initial conditions in the

context of quantum gravity would provide a unique answer to this question,



317
but we don’t have such a theory at present. What we do have are classical

models of inflaton dynamics coupled to general relativity. Any classical theory

comes with a natural measure on phase space, the Liouville measure. Gibbons,

Hawking, and Stewart (GHS) showed how to use this measure to define a

canonical measure on cosmological trajectories (rather than individual points

in phase space) [64]. In this measure, we can calculate the fraction of universes

with given properties, such as “more than 50 e-folds of inflation.” Given the

current state of the art, this is the best we can do to decide whether such

solutions are likely or not.

The GHS measure comes with a technical problem when applied to (ho-

mogeneous, isotropic) Friedmann-Robertson-Walker (FRW) cosmologies: it

diverges as the spatial curvature approaches zero, assigning almost all measure

to flat universes. Different proposals have been advanced for dealing with this

divergence, including removing the region of infinite measure by hand [340]. As

noted in Refs. [12, 339], the divergence for flat universes is an indication that,

in the canonical measure, almost all cosmological spacetimes are flat. For this

reason, and also given the physical relevance of spatially-flat solutions [65], it is

on these that we concentrate our efforts. In a previous paper [12], we developed

a formalism for defining the Hamiltonian-conserved measure on the effective

two-dimensional phase space for a canonical scalar field with a potential in a

flat FRW cosmology. Although we did not prove the uniqueness of this measure

in arbitrary theories, we could establish it for quadratic potentials and expect

it to hold for well-behaved potentials more generally.

In this chapter, we employ the formalism developed in Ref. [12] to study

high-scale inflation. We focus on two representative models: quadratic inflation

and cosine (“natural”) inflation. We find dramatically different quantitative

results for the two cases. In quadratic inflation, given that the potential is
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chosen to fit observed cosmological parameters, we find that large amounts of

inflation are favored by the canonical measure—billions of e-folds of inflation —

provided we extrapolate the quadratic potential up to the Planck scale H = MPl

and allow the inflaton field φ to run over a super-Planckian range ∼ 105MPl.

Moreover, we find that almost all trajectories experience well more than 50

e-folds. For cosine potentials, by contrast, the expected amount of inflation

under the canonical measure is relatively small: if the symmetry-breaking

parameter f is set to the reduced Planck scale, MPl = 2.4 × 1018 GeV, we

expect of order one e-fold, with the probability of attaining as many as 50

e-folds being exponentially small. These numbers depend sensitively on f ;

once it is above 1019 GeV, as favored by the BICEP2 result [347, 350], the

probability of getting more than 50 e-folds rises above 50%.

This last result is interesting, since cosine potentials feature “hilltops” from

which trajectories with arbitrarily large numbers of e-folds can originate. Our

analysis demonstrates that, while such lingering solutions are allowed, they

contribute a relatively small amount to the measure on the space of trajectories.

We conjecture that this behavior reflects a more general difference between

potentials that rise up to the Planck scale, in which we expect large amounts

of inflation, and models with potential maxima below the Planck scale, where

the expected number of e-folds will be comparatively small.

Any analysis of this form necessarily comes with caveats. As noted, we

are using a classical measure, whereas a particular theory of initial conditions

(e.g., a proposal for the wave function of the universe) will presumably make

its own predictions. More seriously, our analysis applies only to universes

that are assumed to be homogeneous from the start. Once perturbations are

included, it is clear that most universes should be wildly inhomogeneous; the

existence of the sufficiently smooth initial conditions necessary for inflation to
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begin is highly non-generic [339, 351]. Given the evidence that inflation did

happen, we consider the expected number of e-folds according to the canonical

measure to be a useful diagnostic of which models are robust and which are

more delicate. An ultimate justification for why inflation occurs in the first

place awaits further insight.

This chapter is organized as follows. In Sec. 14.2 we first review the

formalism of Refs. [12, 64] for finding the canonical measure on phase space, as

well as the sense in which phase space becomes effectively only two-dimensional

for flat FRW cosmologies. The connection between the measure on effective

phase space and the measure on the space of possible trajectories of evolution

of a FRW universe is presented. Next, in Sec. 14.3 we derive some general

properties of the measure for arbitrary slow-roll and hilltop potentials. Finally,

we examine representative models of each class, quadratic inflation and cosine

inflation, in Secs. 14.4 and 14.5, making statistical calculations on the ensemble

of all FRW universes and finding the expected number of e-folds of inflation

attained.

14.2 The Probability Distribution on the Set of
Universes

14.2.1 The Hamiltonian-Conserved Measure

We are interested in the theory of a homogeneous scalar field in an expanding

FRW universe. The action is

S =
ˆ

d4x
√
−g

[
M2

Pl
2 R− 1

2g
µν∂µφ∂νφ− V (φ)

]
. (14.2.1)

The metric can be written

ds2 = −N2(t)dt2 + a2(t)
(

dr2

1− κr2 + r2dΩ2
)
, (14.2.2)
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where N is the lapse function and the curvature parameter κ is an arbitrary

real parameter with mass dimension 2. The number κ is fixed for a given FRW

universe and we can write k = κR2
0 ∈ {−1, 0, 1}, where R0 is the radius of

curvature of the universe at unit scale factor. Taking φ(t) to depend only on

time, the Hamiltonian is

H = −3a3NM2
Pl

{
ȧ2

a2 + κ

a2−
1

3M2
Pl

[1
2 φ̇

2+V (φ)
]}

= N

[
− p2

a

12aM2
Pl

+
p2
φ

2a3 + a3V (φ)− 3aκM2
Pl

]
,

(14.2.3)

where pa and pφ are the momenta conjugate to the scale factor and scalar field,

respectively. The scalar equation of motion is

φ̈+ 3Hφ̇+ V ′(φ) = 0, (14.2.4)

where V ′(φ) = dV/dφ. The Hamiltonian constraint, which comes from varying

with respect to N , is the Friedmann equation,

H2 = 1
3M2

Pl

[1
2 φ̇

2 + V (φ)
]
− κ

a2 , (14.2.5)

where H = ȧ/a is the Hubble parameter.

Any classical theory comes with a preferred choice of measure on phase

space: the Liouville measure, which is preserved under time evolution. In

cosmology our interest is less in a measure on individual points in phase space

and more in a measure on trajectories through time or specific cosmological

evolutions. Gibbons, Hawking, and Stewart [64] showed how to construct

such a measure for a scalar field coupled to general relativity. The phase

space is naively four-dimensional, with coordinates given by a and φ and

their conjugate momenta. But the Hamiltonian constraint, implemented by

the Friedmann equation, cuts this down to three dimensions. The space of

trajectories (equivalent under the equations of motion to the space of initial

conditions) is one lower, leaving us with a two-dimensional space. GHS were
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able to construct a unique measure on this space that is positive and invariant

under time evolution (for further discussion see Refs. [12, 339, 340]).

As Ref. [339] shows, the GHS measure [64] has an interesting property: on

a transverse surface in phase space defined by fixed Hubble parameter, the

measure diverges for small curvature κ as |Ωk|−5/2. This behavior has the

good feature that it implies that the collection of non-flat FRW universes is a

set of measure zero under the GHS measure; that is, the flatness problem in

cosmology is solved by the GHS measure, since almost all trajectories are flat.

However, from the point of view of understanding the set of flat FRW universes

itself, this behavior poses a technical challenge. It is difficult to regularize the

divergence in the GHS measure to construct a well-defined measure within the

space of flat universes.

In our previous paper, we showed how to find a measure on the space of

flat universes by constructing it by hand, subject to the requirement that it be

conserved under time evolution [12]. We note from Eqs. (14.2.4) and (14.2.5)

that the scale factor a disappears from the equations of motion when κ = 0.

The effective phase space is therefore only two-dimensional; specifying the two

quantities φ and φ̇ completely determines the solution (although they are not

conjugate variables). The set of trajectories in effective phase space is therefore

one-dimensional. In Ref. [12] we formalized the notion of an effective phase

space via the property of vector field invariance between two manifolds. We

argued that there exists a unique measure on this space that is conserved under

Hamiltonian flow, in analogy with the conventional Liouville measure, which

one can use to construct a measure on the space of flat universes.

The time evolution given by Eq. (14.2.4) can be characterized by a vector

field v on φ-φ̇ space, with components

v =
(
φ̇,−V ′ (φ)− 3Hφ̇

)
. (14.2.6)
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The Hubble parameter (and thus the scale factor, up to an irrelevant scaling)

is then fixed by Eq. (14.2.5). We seek a two-form

σ = σ(φ, φ̇) dφ̇ ∧ dφ (14.2.7)

that is conserved under evolution,

£vσ = 0. (14.2.8)

Using the definition of the Lie derivative and rearranging, we can equivalently

write in component form

∂µ(σvµ) = 0, (14.2.9)

where ∂µ ≡ ∂/∂xµ and xµ = (φ, φ̇). A two-form σ for which σ satisfies the

Hamiltonian-conservation constraint (14.2.9)—the same as the Euler equation

for stationary fluid flow—is the natural measure on the effective phase space,

exactly in analogy with the Liouville measure. We will call the function σ,

which forms the probability distribution on effective phase space in a given

coordinate system, the measure density.

At this point, it is natural to ask whether there is a Lagrangian descrip-

tion LΦ of the trajectories on the effective phase space Φ. Using Douglas’s

theorem and the Helmholtz conditions, we showed [12] that there exists a

time-independent Lagrangian description of the equation of motion (14.2.4)

on effective phase space if and only if there exists a Hamiltonian-conserved

measure: in fact, finding the Lagrangian gives a measure satisfying Eq. (14.2.9)

and vice versa. Further, defining πφ = ∂LΦ/∂φ̇ as the conjugate momentum

on Φ, one finds that the Liouville measure dπφ ∧ dφ on effective phase space

under LΦ is just equal to σdφ̇∧dφ, obtained merely by demanding conservation

under Hamiltonian evolution.14.1 For the specific example of m2φ2 inflation, we
14.1The corresponding Hamiltonian on effective phase space, HΦ = πφφ̇− LΦ, is of course

not subject to any additional Hamiltonian constraint as in the full phase space; that
is, the Friedmann equation is merely a redefinition of coordinates on Φ and does not
constrain HΦ. With this definition, the measure can be written as dHΦ ∧ dt.
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proved that such a measure exists and is unique; such an existence/uniqueness

result likely holds for any reasonably well-behaved potential V (φ).

14.2.2 The Space of Trajectories

Given the appropriate measure on our effective phase space, one can use this

to determine the natural measure on the space of trajectories. In general,

given some arbitrary measure density on a two-dimensional manifold and a

one-parameter collection of curves that cover the manifold, there is not a well-

defined probability distribution on the set of curves. However, the Hamiltonian-

conserved measure density on effective phase space is not an arbritary function

vis-à-vis the family of trajectories. Following Refs. [12, 64], we can construct

a measure on the space of trajectories in terms of a one-dimensional measure

on any curve transverse to those trajectories, by demanding that the physical

result be independent of our choice of transverse curve.

We begin by choosing some curve in the φ-φ̇ effective phase space on which

to evaluate the measure density σ(φ, φ̇). For simplicity, we’ll imagine choosing

H = constant surfaces, but any other slicing transverse to the trajectories that

evolves monotonically in time would work just as well.14.2 We can reparam-

eterize φ-φ̇ space in terms of H and another coordinate, which we will call

θ. For the bundle of trajectories that, on the H1 surface, is centered at θ1

and spans dθ1, we write the measure as P (θ1)|H1
dθ1. Suppose this bundle of

trajectories evolves to H = H2, on which surface it is centered at θ2 and spans

dθ2. We could equivalently write its probability measure as P (θ2)|H2
dθ2. Of

course, the functional forms of P (θ1)|H1
and P (θ2)|H2

can be very different.

However, this is the same bundle of trajectories, so for the measure on the

space of trajectories to be well defined, we require
14.2Note that, regardless of the potential, the scalar equation assures that H evolves mono-

tonically in time, with Ḣ = −φ̇2/2M2
Pl.
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P (θ1)|H1
dθ1 = P (θ2)|H2

dθ2. (14.2.10)

Now, we note that, given a parcel on effective phase space covering the

region dθ1dH1 that evolves to dθ2dH2, we have

σ (H1, θ1) dθ1dH1 = σ (H2, θ2) dθ2dH2. (14.2.11)

This is just the statement of Liouville’s theorem for effective phase space, i.e.,

the requirement that σ satisfy (14.2.9). Hence, the correct way to compute

P (θ)|H , the probability distribution on the space of trajectories, parameterized

by the coordinate θ with which the trajectory intersects the H surface, is

P (θ)|H ∝ σ (H, θ) dH. (14.2.12)

We can divide through by dt, since t evolves uniformly for all trajectories. We

therefore have

P (θ)|H = σ (H, θ) |Ḣ|´
σ (H, θ′) |Ḣ|dθ′

. (14.2.13)

Note that we suppressed the arguments (H, θ) of Ḣ.

Eq. (14.2.13) is the important expression for this chapter. The measure on

the space of trajectories is constructed by finding a conserved measure density

σ on the effective phase space and evaluating |Ḣ| times this measure along a

surface of constant H.

As a consistency check, we can derive Eq. (14.2.13) in a slightly different

way. If we had written the effective phase space measure in the coordinates

(t, θ) as σ̃(t, θ)dθ ∧ dt = −σ(H, θ)dθ ∧ dH (with the minus sign compensating

for the fact that H decreases with t, so that σ and σ̃ are positive) we could

have equivalently defined the measure on the space of trajectories by explicitly

performing the integration over t:

P (θ0)|H0
∝
ˆ ∞

0
σ̃ (t, θ (t)) dt, (14.2.14)
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where the path (t, θ(t)) is chosen such that θ(t0) = θ0 and H(t0) = H0 for some

t0. Since t evolves uniformly for all trajectories, we have

P (θ0)|H0
∝ σ̃ (t0, θ0)|H(t0)=H0

= σ (H0, θ0) |Ḣ|, (14.2.15)

in agreement with Eq. (14.2.13).

We are now equipped to make quantitative statements about probabilities

of different FRW trajectories for universes with zero curvature and compare

these predictions for different models of inflation.

14.3 The Effective Phase Space Measure for Generic
Potentials

Before examining specific models of inflation, it will first be informative to

examine the behavior of the effective phase space measure σ, without assuming

an explicit functional form of the potential, in two representative classes of

inflation: slow roll down a potential and quasi-de Sitter inflation near a local

maximum in a potential, i.e., a hilltop. The cases are distinct because the fixed

point in effective phase space corresponding to a stationary field at a potential

maximum is a distinguished trajectory by itself and must be treated carefully.

For this analysis it will be useful to define dimensionless coordinates

x = φ

MPl
and y = φ̇

M2
Pl
, (14.3.1)

which form a vector

x = (x, y). (14.3.2)

We then define a dimensionless speed in effective phase space

ṽ ≡ ẋ
MPl

=
(
y,−Ṽ ′(x)−

√
3y
√
y2/2 + Ṽ (x)

)
, (14.3.3)

defining Ṽ (x) ≡ V (φ (x)) /M4
Pl as a dimensionless potential and notation

Ṽ ′(x) ≡ dṼ /dx.
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It will also be useful to define a norm for vectors and covectors using a flat

fiducial metric:

|c| ≡ [(c1)2 + (c2)2]1/2. (14.3.4)

The definition of the norm is simply a mathematical convenience; the fiducial

metric should not be regarded as a physical metric on effective phase space.

It will be convenient in the analysis below, where we derive conditions on the

behavior of the measure density, although these conditions would hold even

without using the norm notation. Of course, the physical content of the results

is independent of the choice of metric, though the expressions themselves would

look different for various choices of norm. As usual, placing bars around scalar

quantities, e.g., |∂µṽµ|, simply denotes absolute value.

Define the first potential slow-roll parameter

εV ≡
M2

Pl
2

[
V ′ (φ)
V (φ)

]2

= 1
2

[
Ṽ ′ (x)
Ṽ (x)

]2

(14.3.5)

and the first Hubble slow-roll parameter:

ε ≡ − Ḣ

H2 = φ̇2

2H2M2
Pl

= 3 y2

y2 + 2Ṽ (x)
. (14.3.6)

Substituting Eq. (14.3.6) into Eq. (14.3.3) and rearranging, one finds

|ṽ|2

Ṽ (x)2 = 4ε2y−2 + 18ε
(3− ε)2 + 2εV + 6s

√
2εV
√

2ε
3− ε . (14.3.7)

Here, s ≡ sgn[yṼ ′(x)] = ±1 indicates whether the potential is increasing

(s = +1) or decreasing (s = −1) in the direction along which the field is

evolving; we will generally have s = −1 during inflation. Furthermore, after

simplifying with Eq. (14.2.5), we have

∂µṽ
µ

|y|
= − 3√

2ε
−
√
ε

2 , (14.3.8)

where ∂µ denotes partial differentiation with respect to the dimensionless

coordinates xµ in Eq. (14.3.1). Note that Eqs. (14.3.7) and (14.3.8) are exact
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expressions: no slow-roll approximation has yet been made.

14.3.1 Slow Roll down a Potential

As we discussed in Ref. [12], slow-roll behavior corresponds to apparent attrac-

tors in effective phase space—places where the conserved measure grows large.

In this subsection we consider monotonic slow-roll behavior, characterized by

two conditions imposed on Eqs. (14.2.4) and (14.2.5):

φ̇2 � |V (φ) | so H2 ' 1
3M2

Pl
V (φ)

|φ̈| � |Hφ̇|, |V ′ (φ) | so 3Hφ̇ ' −V ′ (φ) .
(14.3.9)

Then ε ≈ εV ≡ ε� 1 and we have from Eq. (14.3.7):

|ṽ|2

Ṽ (x)2 '
4ε2
9y2 + 4(1 + s)ε. (14.3.10)

Further, imposing H2 �M2
Pl, so ε� y2,

|ṽ| ' |y| '
√

2
3εṼ (x). (14.3.11)

Similarly, in the slow-roll regime,

∂µṽ
µ ' − 3|y|√

2ε
' −

√
3Ṽ (x). (14.3.12)

Note that the second slow-roll condition in Eq. (14.3.9) does not necessarily

apply near a hilltop, as |Hφ̇| � |φ̈| can fail. This is an important distinction;

as we will see, behavior of the measure density near a hilltop in effective phase

space is very different from what we find for trajectories that are uniformly

slowly rolling down a potential. Our slow-roll conditions in this subsection are

most compatible with potentials with V ′′(φ) > 0, such as monomial models, in

which hilltop behavior is manifestly absent.

Now, we examine what implications our analysis has for the form of the mea-

sure σ = σ(x, y)dy∧dx on effective phase space. With the requirement (14.2.9)

that the measure be conserved under Hamiltonian evolution, Eqs. (14.3.11)

and (14.3.12) imply that
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(∂µ log σ)ṽµ
|ṽ|

= |∂µṽ
µ|

|ṽ|
' 3√

2ε
(14.3.13)

near the slow-roll regime and for H2 � M2
Pl. Note that the left side of

Eq. (14.3.13) is just the gradient of log σ along a slow-roll curve; thus, the

closer to slow roll we approach and the farther along a slow-roll trajectory we

progress, the larger σ becomes. In particular, for a slow-roll trajectory that

evolves from x1 to x2 in effective phase space, we have

σ(x2)
σ(x1) ' exp

3
ˆ

C

d`√
2ε(x)

 , (14.3.14)

where C is the segment of the slow-roll curve in the plane between x1 and x2

and d` is the line element along this curve, defined with respect to the fiducial

metric. Hence, we generically expect that any region in effective phase space

satisfying our slow-roll conditions (14.3.9) will have large measure density σ

on effective phase space, relative to nearby regions. Of course, the measure

density on effective phase space can be large in regions that fail the slow-roll

conditions, such as during reheating, in which apparent attractor solutions

traverse long paths in compact regions of effective phase space and trajectories

appear to converge. All of these statements are made with regard to the phase

space measure, not the measure on the space of trajectories; the factor of |Ḣ|

in Eq. (14.2.13) makes this an important distinction.

14.3.2 Inflation on a Hilltop Potential

In a model of inflation governed by a potential with a hilltop (a local maximum),

there are two types of classical solutions that differ qualitatively from the usual

picture of the inflaton field rolling down the potential and reheating: 1) fixed

point trajectories, i.e., exactly de Sitter solutions, which start with φ̇ = 0

at the top of the potential and inflate forever; and 2) roll-up trajectories,

which start from somewhere on the slope of the potential and asymptotically
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approach the fixed point. The fixed point is the location (φ, φ̇ = 0), equivalently

(x, y = 0) ≡ x0 in effective phase space, for which φ is at the hilltop of V (φ).

We would like to elucidate the behavior of the phase space measure density

σ(x, y) in the region of effective phase space near the fixed point.

Near the fixed point, φ̇2 � V (φ), so Eq. (14.3.8) implies |∂µṽµ| →

(3Ṽ (x))1/2, as in Eq. (14.3.12); moreover, ṽ→ 0. With Eq. (14.2.9) requiring

conservation of the measure under Hamiltonian evolution, the Cauchy-Schwarz

inequality implies:

|∂µṽµ|σ ≤ |∂σ||ṽ|, (14.3.15)

where we use the vector notation ∂ for ∂µ. Since |∂µṽµ| is finite and |ṽ| → 0,

requiring that σ be smooth implies

σ(x)→ 0 as x→ x0. (14.3.16)

Even if we relaxed the assumption of regularity, we can still show that σ is small

near the fixed point. We observe, given a smooth, slowly-varying potential

V (φ), that any fixed point in effective phase space will be at the terminus

of an apparent attractor, that is, a region where both slow-roll conditions

(14.3.9) are met. As trajectories flow from near the fixed point along the

apparent attractor, the first condition is always met, while the second becomes

an increasingly good approximation. Hence, our conclusion from the slow-roll

regime becomes applicable and so Eq. (14.3.14) implies that the effective phase

space measure near the fixed point is exponentially suppressed compared with

the measure further down the slow-roll apparent attractor. Other than the

fixed point trajectory itself—which is irrelevant to inflation, since the field does

not evolve—there is, relative to the slow-roll regime, very little measure near

the hilltop. Recall that slicing effective phase space into sets of constant H

to parameterize the space of trajectories incurs an additional factor of |Ḣ| to
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convert the phase space measure density into the probability distribution on the

trajectories; this suppresses the measure assigned to the roll-up trajectories even

more. However, we have shown here that roll-up trajectories are suppressed in

the canonical measure on effective phase space, even without the help of this

additional factor. Since the measure is conserved under Hamiltonian evolution,

any roll-up trajectory, i.e., the FRW evolution that comes arbitrarily close to

de Sitter, is a set of measure zero.

14.4 Quadratic Inflation

14.4.1 Preliminaries

As a representative example of slow-roll inflation with V ′′(φ) > 0, we consider

monomial inflation with a quadratic potential,

V (φ) = 1
2m

2φ2. (14.4.1)

If the recent BICEP2 discovery of B-mode polarization [347] is the result of

primordial gravitational waves, then this simple model is in good agreement

with the observed tensor perturbations. A canonical model in the inflationary

literature [352, 353] and one of theoretical interest [354], the set of quadratic

and related potentials is an important area of current investigation [355, 356],

given the status of observations [65, 347].

It will eventually be useful to redefine our dimensionless coordinates x

differently from those in Eq. (14.3.1):

x = φ√
6MPl

and y = φ̇√
6mMPl

. (14.4.2)

We define polar coordinates (z, θ):

z ≡
√
x2 + y2 = H

m
(14.4.3)

and
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Figure 14.1. Trajectories in effective phase space for quadratic inflation. The field
value and velocity are parameterized by the variables x and y, defined in Eq. (14.4.2).
The dark nearly-horizontal lines indicate the apparent attractors, where the conserved
measure grows large. For clarity we used the (unrealistic) value of m = 0.2MPl to
make this plot.

tan θ = y

x
= φ̇

mφ
, (14.4.4)

so φ̇ =
√

6mMPlz sin θ and φ =
√

6MPlz cos θ.

Using Eq. (14.2.4), we can plot trajectories in the φ-φ̇ plane and see explicitly

the effective phase space behavior, as shown in Fig. 14.1. In particular, note

the apparent attractor solutions that appear at y = ±1/3, corresponding to

φ̇ = ±
√

2/3mMPl. Of course, in a strict phase-space sense, these “attractors”

are illusory [12]. In the Liouville measure, phase-space density is conserved.

The apparent attractor behavior actually indicates that the measure density

grows large in that region.

The apparent attractor solution at φ̇ = ±
√

2/3mMPl intersects the H =

constant ellipse at

| sin θ| = m

3H . (14.4.5)

In the early universe (H � m), we therefore have θ ' 0 or π on the apparent

attractor.
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14.4.2 Counting e-Folds

For the quadratic potential (14.4.1), one has the potential slow-roll parameter

from Eq. (14.3.5):

εV = 2
(
MPl

φ

)2

. (14.4.6)

Inflation (and counting of e-folds N) ends when εV = 1, which occurs at

φf =
√

2MPl.

For slow roll, H2 ' V/3M2
Pl, the scalar equation (14.2.4) becomes 3Hφ̇ '

−V ′ and so Hdt ' ±dφ/
√

2εVMPl. Thus, when the field value is φ, the number

of e-folds remaining before the end of inflation is

N (φ) =

∣∣∣∣∣∣
ˆ √2MPl

|φ|

1√
2εV

dφ′
MPl

∣∣∣∣∣∣ = 1
4

(
φ

MPl

)2

− 1
2 , (14.4.7)

which is accurate as long as the slow-roll conditions (14.3.9) are satisfied. While

exact number of e-folds, defined in Eq. (14.1.1) using the full expression for

Hdt given in Eq. (14.2.5), would have corrections near the end of inflation

where the slow-roll conditions begin to break down, we shall see that this will

not appreciably affect the total number of e-folds that we ultimately compute.

Consider a trajectory that starts at angle θ on the surface where H = MPl.

We will call this the Planck surface; of course, one could choose a different

ultraviolet cutoff ΛUV � m for the effective field theory, on which to start

evaluating trajectories at time t = 0. In that case, one could simply replace

MPl by ΛUV as appropriate in all of our e-fold counting. For simplicity we will

choose ΛUV = MPl. The initial field value for φ is then
√

6(cos θ)M2
Pl/m.

In the H � m region of φ-φ̇ space, trajectories snap quickly to the apparent

attractor, with φ̇ changing much faster than mφ. That is, using the scalar

equation, we have
ẋ
m

=
(
y,−x− 3y

√
x2 + y2

)
. (14.4.8)
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Thus, when z =

√
x2 + y2 � 1, we have ẏ � ẋ, as claimed. Hence, x(t = 0),

to a very good approximation, is equal to x at the time when the trajectory

starts the slow-roll process. Therefore, we can write the total number of e-folds

that this trajectory (parameterized by θ on the Planck surface) undergoes as

Ntot = 3
2

(
MPl

m

)2
cos2 θ − 1

2 '
3
2

(
MPl

m

)2
cos2 θ. (14.4.9)

Maximal inflation occurs when θ ' 0 or π, i.e., the trajectory starts out near

the apparent attractor at the Planck scale, which gives

Nmax = 3
2

(
MPl

m

)2
(14.4.10)

e-folds of inflation. Comparing the analytical prediction (14.4.9) with numerical

simulation, we find very good agreement.

14.4.3 How Many e-Folds Should We Expect in Quadratic
Inflation?

We know from Eq. (14.4.9) how to predict the total number of e-folds of inflation

a trajectory will undergo based on a particular parameterization of the family

of trajectories, namely, by the angular coordinate θ with which the trajectory

intersects a surface of particular energy density, in this case H = MPl. We

would now like to ask the question of how many e-folds we should expect, using

the prescription for finding the appropriate measure (14.2.13) on the space of

trajectories, as described in Sec. 14.2.2.

First, we need to find the measure σ on effective phase space for quadratic

inflation. In the (z, θ) coordinates defined in Eqs. (14.4.3) and (14.4.4), we can

write the velocity (14.2.6) of trajectories in effective phase space as

v = ẋ = −3mz2 sin2 θẑ−m
(
z + 3z2 sin θ cos θ

)
θ̂, (14.4.11)

where (
ẑ
θ̂

)
=
(

cos θ sin θ
− sin θ cos θ

)(
x̂
ŷ

)
. (14.4.12)
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In the early universe, when H � m (such as on the Planck ellipse H = MPl),

we have z � 1. Thus, v becomes approximately

v ' −3mz2 sin2 θẑ− 3mz2 sin θ cos θθ̂, (14.4.13)

and so the requirement (14.2.9) for σ to be conserved under Hamiltonian

evolution becomes

∂θσ = −z tan θ∂zσ − (2 tan θ + cot θ)σ. (14.4.14)

The general solutions for σ take the form [12]

σ =
∑
γ

Cγz
γ−3

∣∣∣∣∣cosγ−1 θ

sin θ

∣∣∣∣∣ , (14.4.15)

for z � 1, where γ, Cγ ∈ R. We note that σ diverges along the sin θ = 0 axis,

corresponding to the buildup of trajectories along the apparent attractor; in

an exact numerical solution, the distribution σ would become large on the

apparent attractor solution, as is clear from Fig. 14.1, using the fluid flow

analogy. For the potential (14.4.1), we proved in Ref. [12] that the measure

σ has a unique solution; hence, many possible solutions in Eq. (14.4.15) are

spurious or unphysical.

As we can see from flow of the vector field shown in Fig. 14.1, we should

require that σ be finite everywhere except on the apparent attractor solution;

imposing this condition requires γ ≥ 1. Further, at fixed θ, trajectories become

more squeezed together as z decreases, since more and more time evolution is

compressed into a smaller and smaller range of H. Hence, we should require σ

to be a non-increasing function of z at fixed θ, so γ ≤ 3. Imposing the further

requirement that σ be infinitely differentiable everywhere except the apparent

attractor solution selects γ = 3 as the physical solution, so we end up with

σ(H = MPl, θ) ∝
∣∣∣∣∣cos2 θ

sin θ

∣∣∣∣∣ . (14.4.16)

In Sec. 14.2.2 we demonstrated how to obtain the measure on the space of
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trajectories from σ, cf. Ref. [64]. Specifically, the probability distribution on

the space of trajectories, parameterized by θ on some surface of constant H, is,

up to normalization, given by σ (H, θ) |Ḣ|. Using Eq. (14.2.4), we have in the

(z, θ) coordinates:

Ḣ = − φ̇2

2M2
Pl

= −3m2z2 sin2 θ. (14.4.17)

Thus, the probability distribution on the space of trajectories on the Planck

surface (where z = MPl/m = constant), parameterized by the coordinate θ, is

P (θ)|H=MPl
= 3

4
∣∣∣cos2 θ sin θ

∣∣∣ . (14.4.18)

The overall normalization has been fixed by requiring
´

dθ P (θ) = 1.

Finally, we can now compute the expected total number of e-folds of inflation,

using the canonical measure (14.4.18) and our e-fold counting (14.4.9):

〈Ntot〉 =
ˆ 2π

0
N (θ) P (θ)|H=MPl

dθ

= 9
8

(
MPl

m

)2 ˆ 2π

0
cos4 θ |sin θ| dθ

= 9
10

(
MPl

m

)2

= 3
5Nmax.

(14.4.19)

Now, assuming a quadratic potential (14.4.1), the amplitude of observed

CMB scalar perturbations is

∆2
s (kCMB) = 1

6π2

(
m

MPl

)2
N2

CMB, (14.4.20)

where NCMB ≈ 50 is the number of e-folds between horizon exit of CMB scales

and the end of inflation. Using the Planck observations [65] for the amplitude

of scalar perturbations, we have m = 7 × 10−6MPl = 2 × 1013 GeV, which

implies that for quadratic inflation we expect

〈Ntot〉 = 2× 1010. (14.4.21)

That is, typical universes under the canonical measure (14.4.18) with the
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inflaton mass we obtain by positing a quadratic potential (14.4.1) and requiring

consistency with Planck [65] undergo much more than the required number

of e-folds needed to solve the horizon problem; hence, one can view our

observed universe as natural in the theory of quadratic inflation, with regard

to the canonical measure (with the caveats about inhomogeneities noted in the

Introduction).

Looking at the conclusion another way, we note that the probability for

Ntot to be greater than some particular value N0 is just the probability that

cos2 θ > (2/3)(m/MPl)2N0 ≡ cos2 ζ. (14.4.22)

Thus,

Pr (Ntot > N0) = 4× 3
4

ˆ ζ

0
cos2 θ sin θdθ

= 1−
(2

3

)3/2 ( m

MPl

)3
N

3/2
0

= 1−
(
N0

Nmax

)3/2
,

(14.4.23)

where Nmax is defined in Eq. (14.4.10). That is, if m = 2 × 1013 GeV, the

probability of having fewer than 50 e-folds of inflation is of order 10−13. Differ-

entiating Eq. (14.4.23), the measure on the space of trajectories can be written

in terms of the number Ntot of e-folds ultimately achieved, between zero and

Nmax:

P (Ntot) dNtot = 3
2N3/2

max
N

1/2
tot dNtot. (14.4.24)

Universes that undergo 50 or more e-folds of inflation, like our own, are

overwhelmingly generic from the perspective of the canonical measure for

high-scale quadratic inflation.

The specific number 〈Ntot〉 = 2 × 1010 is suggestive, but it shouldn’t be

taken too literally. In quadratic inflation, the field has a value φ ∼ 10MPl at the

epoch when currently observable large-scale perturbations are being generated;
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our calculation fearlessly extrapolates the functional form of the potential

to values of order 105MPl, where there is little reason for it to be trusted.

Nevertheless, we expect that our result has a robust physical interpretation for

more general potentials: in large-field inflation, when the potential increases to

the Planck limit, it is natural to achieve a large amount of inflation. There

are certainly some trajectories that spend little or no time on the apparent

attractor, remaining dominated by kinetic energy all the way up to Planck

densities. Our results suggest that, in large-field inflation, such trajectories are

extremely unlikely, as generic evolution quickly snaps to the apparent attractor,

yielding many e-folds of inflation.

14.5 Cosine (Natural) Inflation

14.5.1 Preliminaries

We now turn to the model of cosine or “natural” inflation [357, 358], in which

the inflaton φ could be a pseudo-Nambu-Goldstone boson θ = φ/f with a

global shift symmetry broken at scale f . The global symmetry is explicitly

broken at scale Λ, giving the boson a mass, via a potential

V (φ) = Λ4 [1− cos (φ/f)] . (14.5.1)

Cosine inflation is representative of the general class of hilltop inflation models:

the inflaton potential has a region where V ′′(φ) < 0. Qualitatively, this model

has similarities and differences with monomial inflation models. Like monomial

inflation, it can exhibit slow-roll behavior. Unlike monomial models, however,

hilltop models have trajectories in which the inflaton stays near the top of the

potential for a parametrically long time and pure de Sitter space is allowed if

the field sits exactly at the potential maximum. Such trajectories would seem

to allow hilltop models to achieve a very large number of e-foldings without the
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concomitant large excursion in field values endemic to monomial models and

potentially troublesome from the effective field theory perspective. Ultraviolet

completions of cosine inflation models have been investigated [359–361], which

improve the applicability of effective field theoretic reasoning. Cosine inflation

models are of significant current interest [350] and generically have regions of

parameter space that can achieve agreement with observations from BICEP2

[347] and Planck [65]. In cosine inflation, the field can without loss of generality

be restricted to the interval between ±πf , with the periodic identification

φ ∼ φ+ 2πf as an equivalence class.

As for quadratic inflation, we will find dimensionless coordinates useful

(different from Eqs. (14.3.1) and (14.4.2)):

x =
√

2
3
f

MPl
sin (φ/2f) and y = fφ̇√

6Λ2MPl
. (14.5.2)

Because of the restricted range of the field, x is isomorphic to φ, so our

discussion about vector field invariance from Ref. [12] applies and (x, y) forms

an effective phase space. Note that x ∈ [−
√

2/3f/MPl,
√

2/3f/MPl], with the

identification x ∼ x+ 2
√

2/3f/MPl. As before, define polar coordinates

z ≡
√
x2 + y2 = f

Λ2H (14.5.3)

and

tan θ = y

x
= φ̇

2Λ2 sin (φ/2f) . (14.5.4)

Because x can only take values between ±
√

2/3f/MPl, the Planck surface

H = MPl subtends a finite set of angles [θ0, π − θ0] ∪ [π + θ0, 2π − θ0], where

cos θ0 =

√
2
3

f
MPl

f
Λ2MPl

=
√

2
3

Λ2

M2
Pl
� 1, (14.5.5)

i.e., θ0 is close to π/2 or 3π/2.

In (x, y) coordinates, the velocity vector v = ẋ, using Eq. (14.2.4), is
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Figure 14.2. Trajectories in effective phase space for cosine inflation. The field
value and velocity are parameterized by the variables x and y, defined in Eq. (14.5.2).
The dark spirals indicate the apparent attractors, where the conserved measure
grows large. For this plot we used f = 3MPl, Λ = 0.1MPl.

fv
Λ2 = y

√√√√1− 3
2
M2

Pl
f 2 x

2 x̂−

3y
√
x2 + y2 + x

√√√√1− 3
2
M2

Pl
f 2 x

2

ŷ, (14.5.6)

or equivalently, in polar coordinates (z, θ),

fv
Λ2 = −3z2 sin2 θ ẑ−

3z2 sin θ cos θ + z

√√√√1− 3
2
M2

Pl
f 2 z

2 cos2 θ

θ̂, (14.5.7)

where x̂, ŷ, ẑ, and θ̂ are related as in Eq. (14.4.12). Plotting integral curves of

this vector field, one can visualize trajectories in effective phase space, shown

in Fig. 14.2. As for quadratic inflation, there is an apparent attractor, but for

φ near ±f , lingering behavior near the hilltop is also possible.

14.5.2 Counting e-Folds

With the potential slow-roll parameter εV defined as in Eq. (14.3.5), for the

cosine inflation potential (14.5.1) one has

εV = M2
Pl

2f 2
sin2 (φ/f)

[1− cos (φ/f)]2
= 1− b2x2

3x2 , (14.5.8)
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for convenience defining a constant

b ≡
√

3/2MPl/f. (14.5.9)

Inflation—and counting of e-folds—ends when εV = 1, which occurs at |x| =

(3 + b2)−1/2.

For slow roll and assuming φ̈ is small compared to other terms in the scalar

equation (14.2.4), we have H2 ' V/3M2
Pl and 3Hφ̇ ' −V ′, so

Hdt ' ± dφ√
2εVMPl

= ± 3|x|dx
1− b2x2 , (14.5.10)

after using Eqs. (14.5.2) and (14.5.8).14.3 Thus, when the field value is x, the

number of e-folds remaining before the end of inflation is

N (x) =

∣∣∣∣∣∣∣
ˆ (3+b2)−1/2

|x|

3x′dx′
1− b2(x′)2

∣∣∣∣∣∣∣
= 3

2b2 log
 1

(1− b2x2)
(
1 + 1

3b
2
)
 .

(14.5.11)

We would like to parameterize the number of e-folds a trajectory undergoes

based upon its coordinate θ on the Planck surface, not its coordinate x when it

enters the slow-roll regime. From the vector field in Eqs. (14.5.6) and (14.5.7),

we see that when z =
√
x2 + y2 � 1 and y � x (which is true on the Planck

surface) we have ẏ � ẋ. Therefore, as for quadratic inflation, we are able to

approximate x (Planck surface) ' x (enter slow roll) for a given trajectory.14.4

The total number of e-folds attained by a trajectory that starts out at angle θ

on the Planck surface is then
14.3Though in general a hilltop trajectory can violate the condition that 3Hφ̇ ' −V ′, one can

show that, for the potential (14.5.1), the total number of e-folds we compute is accurate
even without this assumption. See footnote 14.5.

14.4Note that this approximation leads us to assign nonzero measure to the set of trajectories
that come arbitrarily close to the fixed point. It therefore assigns nonzero measure where
the roll-up trajectory intersects the Planck surface, which we argued in Sec. 14.3 is not
strictly correct. However, if anything, this assumption should overestimate the expected
total number of e-folds.
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Ntot (θ) = 3
2b2 log

 1(
1− cos2 θ

cos2 θ0

) (
1 + 1

3b
2
)
 , (14.5.12)

where θ0 is defined in Eq. (14.5.5). Note that when x approaches 1/b, i.e., when

θ approaches θ0, Ntot diverges, as we would expect. In our approximation that

x(Planck surface) ' x(enter slow roll), x(Planck surface) = 1/b is identified as

the roll-up trajectory discussed in Sec. 14.3.2.

14.5.3 How Many e-Folds Should We Expect in Cosine Inflation?

From Eq. (14.5.12), we know, given a trajectory that intersects the Planck

surface with angular coordinate θ, how many e-folds that trajectory will

ultimately undergo. As in Sec. 14.4.3, we now turn to the question of how many

e-folds we should expect under the canonical measure (14.2.13) on the space

of trajectories. As shown in Sec. 14.2.2, we must first find the Hamiltonian-

conserved measure—a measure whose density satisfies the condition (14.2.9)

—on effective phase space.

In our z coordinates (14.5.2), the H = MPl surface corresponds to

z = MPlf

Λ2 � 1. (14.5.13)

As we have previously noted, had we used a different ultraviolet cutoff ΛUV,

other than MPl, all of the results that follow would be the same, with MPl

replaced by ΛUV, so our conclusions would not qualitatively change. Taking

the large-z limit of Eq. (14.5.7), we have

v ' −3Λ2

f
z2 sin2 θẑ− 3Λ2

f
z2 sin θ cos θθ̂, (14.5.14)

which is identical to Eq. (14.4.13) up to a multiplicative factor. That is, we

have turned the large-H behavior of cosine inflation into the large-H behavior

of quadratic inflation, through the judicious choice of coordinates (14.5.2). The

effective phase space measure density therefore takes the same general form
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(14.4.15) and on physical grounds we can restrict to the γ = 3 case for the

reasons discussed in Sec. 14.4.3, so that the measure density becomes as in

Eq. (14.4.16).

There is nevertheless an important difference between the quadratic and

cosine inflation scenarios, since φ is restricted to a small window in the latter.

This implies that the normalization of Eq. (14.4.16) will be different. As we

have noted, this restriction translates into a restriction of values of θ on the

Planck surface to a small range near π/2 and near 3π/2, with width given in

Eq. (14.5.5). Hence, σ does not diverge on the H = MPl surface for cosine

inflation. In the z coordinates, we have as in Eq. (14.4.17)

Ḣ = −3Λ4

f 2 z
2 sin2 θ. (14.5.15)

The probability distribution over the space of trajectories, parameterized by

the angle θ on the H = MPl surface, is therefore

P (θ)|H=MPl
= 3

4 cos3 θ0

∣∣∣cos2 θ sin θ
∣∣∣ , (14.5.16)

with θ0 defined in Eq. (14.5.5) as before. The normalization once again comes

from demanding that the total probability equal unity.

Having found the canonical measure (14.5.16) on the space of trajectories,

we can now use our e-fold counting (14.5.12) to compute the expectation value

for the total number of e-folds attained by a FRW universe in the cosine

inflation model:

〈Ntot〉 = 2
ˆ π−θ0

θ0

Ntot (θ) P (θ)|H=MPl
dθ

= 9
2b2

ˆ 1

0
log

 1
(1− u2)

(
1 + 1

3b
2
)
u2du

= f 2

3M2
Pl

[
8− 6 log 2− 3 log

(
1 + M2

Pl
2f 2

)]

'
(8

3 − 2 log 2
)
f 2

M2
Pl
,

(14.5.17)
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Figure 14.3. Expected number of e-folds 〈Ntot〉, as computed in Eq. (14.5.17) using
the canonical measure on the space of trajectories, for cosine inflation with potential
V (φ) = Λ4[1− cos(φ/f)].

which is plotted in Fig. 14.3; the constant b was defined in Eq. (14.5.9).14.5 For

example, setting f = 1.2× 1019 GeV (the unreduced Planck mass) gives

〈Ntot〉 = 32. (14.5.18)

This implies an insufficient amount of inflation to address the horizon problem,

but clearly 〈Ntot〉 can be increased by a small boost in f .

Interestingly, 〈Ntot〉 is independent of Λ, only depending on f . This can

be understood as follows: for small φ � f , cosine inflation is equivalent to

quadratic inflation, with mass Λ2/f taking the place of m. Then the expected

number of e-folds should be of order Nmax (14.4.10), multiplied by a factor of

cos2 θ0, as given in Eq. (14.5.5), to account for the limited allowed range of

φ, cf. Eq. (14.4.9); this reasoning would lead one to expect 〈Ntot〉 ∼ f 2/M2
Pl,

which is indeed what we find. We find that f > 6.3MPl = 1.5× 1019 GeV is

needed in order to have 〈Ntotal〉 > 50.
14.5An exact expression for Hdt (14.5.10) would have ε in place of εV . Taking into account

relaxation of the slow-roll conditions near the hilltop, one can show that, if f �MPl, then
the total e-fold count we estimate should be increased by a factor of at most MPl/

√
6f .

However, this would still lead to less than one e-fold of inflation expected under the
canonical measure in the f . MPl case. Moreover, one can show that, even near the
hilltop, the approximation εV ' ε is very accurate in the f &MPl case.
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Recently, in light of results from Refs. [65, 347], much attention has been

devoted to cosine inflation. By varying f/MPl, a one-parameter family of

predictions is obtained that is able to achieve agreement with either the Planck

or BICEP2 results [350]. In particular, f ∼ 5 − 10 × MPl was found to

be in better agreement14.6 with the Planck observations [65], while larger f

(which brings the predictions closer to those of quadratic inflation) is in better

agreement with BICEP2.

What we have found is that smaller values of f are, in the sense of the

canonical measure, highly unlikely to give a universe consistent with the

observed uniformity of the CMB. In particular, if f ≤MPl = 2.4×1018 GeV, we

have less than one e-fold of inflation. More quantitatively, we can compute the

probability of attaining a given number N0 of e-folds as a function of f/MPl.

From our expression (14.5.12) for Ntot as a function of θ on the Planck surface,

we find that this is just the probability that

cos2θ>cos2θ0

[
1− 3

3 + b2 exp
(
−2b2

3 N0

)]
≡ cos2δ. (14.5.19)

That is, evaluating the integral 4× (3 sec3 θ0/4)
´ δ
θ0

cos2 θ sin θdθ = Pr(Ntot >

N0), we find

Pr (Ntot > N0) = 1−
1−

(
1 + M2

Pl
2f 2

)−1

exp
(
−M

2
Pl
f 2 N0

)3/2

. (14.5.20)

The result is plotted in Fig. 14.4 for N0 = 50. We find that, if f ≤ 2MPl =

4.9× 1018 GeV, the probability under the canonical measure of attaining 50 or

more e-folds of inflation is less than 10−5. While the details of Eq. (14.5.20)

break down if f .MPl due to corrections to the slow-roll approximation near

the hilltop, the expected total number of e-folds (14.5.17) remains valid and the

probability of attaining more than 50 e-folds for f .MPl remains infinitesimal.
14.6Note that this range of f could also be written as f ∼ 1− 2×mPl, where mPl = 1/

√
G =

1.2× 1019 GeV is the unreduced Planck mass.
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Figure 14.4. The probability of obtaining 50 or more e-folds of inflation as a function
of f for cosine inflation with potential V (φ) = Λ4[1− cos(φ/f)], as computed using
the canonical measure on the space of trajectories and starting on the H = MPl
surface.

That is, for f .MPl, the overwhelming majority of universes will under-inflate.

On the other hand, if f = 100MPl = 2.4×1020 GeV, we find that the probability

of a universe attaining at least 50 e-folds of inflation is approximately 0.99964.

Hence, the probability of a FRW universe undergoing sufficient inflation to

explain the observed uniformity of the CMB is sensitively dependent on f/MPl

in cosine inflation, with larger values of f & O (few)×MPl ∼ 1019 GeV much

preferred.

If f is too small in cosine inflation, then our universe is finely tuned from

the perspective of the canonical measure. Hence, models of cosine inflation

with f on the order of 1018 GeV or less do not solve the cosmological fine-

tuning problems that are the original purpose of inflationary theory. For

cosine inflation to truly be natural in the cosmological sense, f must be above

1019 GeV. On the other hand, this result helps motivate the possibility that

our universe did experience just the right amount of inflation but not too

much, suggesting that there may be observable relics of the pre-inflationary

universe that might be observable on very large angular scales. Interestingly,
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in the large-f limit that is favored by the canonical measure, the observational

predictions of cosine inflation merge with those of quadratic inflation.

As with the quadratic case, we expect our results for cosine inflation to be

indicative of a more general lesson for hilltop (small-field) models. Unlike the

large-field case, where the potential rises all the way to the Planck density, in

cosine inflation the maximum is well below that scale. There are trajectories

that linger for an arbitrarily large number of e-folds in the slow-roll regime

near the top of the hill, but there are also trajectories that exhibit a kinetic-

dominated phase of evolution prior to a finite period of slow roll. Our result

shows that it is the latter category that are most likely, as quantified by the

conserved measure on effective phase space.

14.6 Conclusions

The recent BICEP2 discovery, if verified, suggests that high-scale cosmic in-

flation is the correct theory of the very early universe. With characteristic

energy of order 1016 GeV, observational signatures of inflation open the door

to physics on the threshold of the Planck scale. Many models of inflation are

currently being investigated for their ability to fit precision CMB observations.

The current success of relatively simple models of inflation, driven by a sin-

gle scalar field with a potential and a canonical kinetic term, is impressive.

Given the large set of possible inflaton potentials, it is of vital importance to

develop useful theoretical tools that enable observations to discriminate among

competing models.

The theory of cosmic inflation was originally posited to solve problems of

fine-tuning of initial conditions, such as the uniformity of the CMB temperature,

lack of observed monopoles, and smallness of curvature. Given the current

wealth of precise cosmological measurements, it is well motivated to apply the
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same question of genericness to various proposed models of inflation. That is,

given a particular model, does it generically produce the observed properties

of our universe? In particular, does it typically produce the requisite number

of e-folds (40 − 60) to account for the uniformity of the CMB? Inherent in

such questions is the idea of a measure: a probability distribution on the set of

all possible FRW universes. Following GHS [64], in Ref. [12] we developed a

formalism for constructing such a measure on the subset of flat universes (on

which the GHS measure diverges).

In the present chapter, we investigated the behavior of the effective phase

space measure for two general classes of potentials important for single-field

inflation: slow roll down a potential and lingering behavior near a potential

hilltop. In the former case, we showed that the effective phase space measure

generically becomes large, while in the latter case it generically becomes small.

That is, trajectories that linger arbitrarily long near quasi-de Sitter space at a

potential hilltop are disfavored by the canonical measure, while trajectories that

slow roll and eventually reheat are favored. We next quantitatively examined the

statistical conclusions offered by the canonical measure for two representative

inflaton potentials: quadratic inflation and cosine inflation. Interestingly, the

statistical expectation for the amount of inflation experienced in these two

cases differed dramatically. For quadratic inflation, we found that, given an

inflaton mass consistent with the observed amplitude of scalar perturbations

[65], nearly all trajectories undergo 50 e-folds of inflation. In fact, generic

trajectories experience billions of e-folds. On the other hand, for cosine inflation

with symmetry-breaking parameter f , typical trajectories under-inflate unless

f & 1019 GeV. Above this scale, 50 e-folds are generically attainable and the

observational cosmology predictions of cosine inflation merge with those of the

quadratic potential.
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From our demonstration with these two examples, we illustrated the utility

of the canonical measure in elucidating differences in physical predictions

among models of inflation. While a given potential may have some trajectory—

some possible history of a FRW universe —that undergoes enough inflation to

correspond to our observed universe, that does not mean that this trajectory

is generic. Indeed, in some models, such as cosine potentials with f . MPl,

the vast majority of trajectories, as weighted by the canonical measure, do

not undergo sufficient inflation, despite the existence of a small subset of

finely-tuned trajectories that do. The canonical measure allows one to quantify

the amount of tuning required in a given model to reproduce our universe.14.7

The degree of tuning required on the space of trajectories to produce at least

50 e-folds of inflation (or whatever other observed quantity one is computing)

should correspond inversely with the degree of credence given a particular

model, modulo theoretical bias. That is, given two potentials, one generically

attaining many e-folds and another in which only a small subset (as computed

in the canonical measure) of trajectories attain 50 e-folds, the former model

should be favored: one could say that such a model is more “natural,” in the

sense that it requires less fine-tuning to match observations. This approach

is an interesting parallel to current discussions in particle physics regarding

naturalness of the electroweak scale and the amount of tuning required in

various models, such as supersymmetry.

The contrapositive of this line of thinking is also illuminating. If future

cosmological observations point to a particular inflaton potential for which

our universe is not generic under the canonical measure, that would shed

light on even higher-scale physics. Such a circumstance would tell us that our

universe is tuned—on a non-generic trajectory—from the point of view of the
14.7All of these statements are made under the assumption of homogeneity, ignoring perturba-

tions. Given a universe in which inflation occurs at all, this is a very good approximation.
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classical measure. This would indicate the importance of intrinsically quantum

gravitational processes or some ultimate theory of initial conditions.

As we enter an era of precision inflationary cosmology, models of inflation

will be subjected to increasingly refined measurement. In the effort to determine

which models best reflect reality, the notion of naturalness, in the sense of

genericness under the canonical measure on the space of trajectories, can be

very useful. The methods developed in this chapter provide for quantitative

probabilistic comparison among models of inflation, providing a new means of

shedding light on the earliest moments of our universe.
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