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In this paper, we study a particular mirror construction to the complete intersection of
two cubics in P°, due to Libgober and Teitelbaum. Using variations of geometric invariant
theory and methods of Favero and Kelly, we prove a derived equivalence of this mirror

to the Batyrev-Borisov mirror of the complete intersection.

1 Introduction

Libgober and Teitelbaum [20] proposed a mirror to a Calabi-Yau complete intersection

V, of two cubics in P° defined as the zero locus for the two polynomials
Q,,= XS —i—X‘;’ +Xg — 3Ax3Xyx5, Qgp, = Xg —i—Xg —}-Xg — 3AXpX|Xy.

Their proposed mirror Wiy, is a (minimal) resolution of singularities of the variety
Vir, with defining equations Q, ;,Q,; but in the quotient space P5 /Gg,, where Gg, is
a specified order 81 subgroup of PGL(5,C). They showed topological evidence that V,
and Wyp; are a mirror pair, proving on the level of Euler characteristics that x (V) =
—x Wz ;). In [13], Filipazzi and Rota verify a state space isomorphism between the two

Calabi-Yau varieties by providing an explicit mirror map.
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2100 A. Malter

Batyrev and Borisov in [3] introduced a mirror construction for Calabi-Yau
intersections in Fano toric varieties using polytopes, showing mirror duality for (1, q)-
Hodge numbers. This mirror construction agrees with constructions by Green-Plesser
[16] and Berglund-Hiibsch [4] for Fermat hypersurfaces. However, the Batyrev-Borisov
mirror to two cubics in P° differs from the one given above by Libgober and Teitelbaum.

In this paper, we establish a connection between the mirrors of Libgober—
Teitelbaum and Batyrev-Borisov for two cubics in P° in the context of Homological
Mirror Symmetry, using variations of geometric invariant theory (VGIT). In particular, we
show that the bounded derived category of coherent sheaves of the Libgober-Teitelbaum
mirror is derived equivalent to that of a complete intersection Z C Xy, in the Batyrev—
Borisov mirror family. Note that there exists a toric stack Xy with coarse moduli space
Xy (see 2.1 for the toric stack construction and 3.1 for the fan associated to this toric

stack). On the level of stacks, we will prove the following result.

Theorem 1.1. Let A € C such that A8 # 0, 1. Consider the two polynomials

_ 3.3 3.3 3.3
Dy = XpXg +X7X7 + X5Xg — 3AX3 X4 X XgX7Xg,

3.3, .3.3 | 3.3

P2, = X3Xg + X3 Xj0 + X5X11 — 3AXoX1XpXgX10X1 -

Let Z, = Z(p, ,,P2,) € Xy and Vyz, = Z(Q, ;,Q;,) € [P° /Gg,]. Then
DP(coh V;y ;) ~ DP(coh Z,).

This result is expected in the context of Kontsevich's Homological Mirror Sym-
metry Conjecture. As both Vi, and Z; are conjectured to be (homological) mirrors
of the complete intersection of two cubics, we expect their corresponding derived
categories to be equivalent to each other and to the Fukaya category of the zero locus
Z(Q,,,0,,) € P°.

There has been work to unify various (toric) mirror constructions [1-4, 6] in the
literature via derived equivalence [8, 9]. This paper adds a new construction to this
that has been elusive in the past. In particular, this is the first application of partial
compactifications in VGIT quotients to prove the equivalence of derived categories for
complete intersections, and not hypersurfaces, for Calabi-Yau varieties.

We start by giving some background on the mathematical tools necessary to

prove Theorem 1.1 in Section 2. This includes a short introduction to the relevant tools
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Libgober-Teitelbaum and Batyrev-Borisov 2101

in toric geometry, the Batyrev-Borisov mirror construction, and VGIT quotients as
outlined in [11]. In Section 4, we then study the link between the Batyrev-Borisov mirror

construction and the mirror given by Libgober-Teitelbaum, proving Theorem 1.1.

2 Background

In this section, we give the necessary background on the Batyrev-Borisov mirror
construction, the Libgober-Teitelbaum construction, and the tools used to connect those
two. All the varieties considered in this paper will be defined over the complex numbers.

More detailed expositions can for example be found in [5], [7], [9], and [20].

2.1 The Cox construction for toric stacks
Let M be a lattice of rank d and N its dual lattice, with the pairing
()M xN — Z.

We extend this to a pairing between My := M ®, R and Ny := N ®; R in the natural way.
To associate a variety Xy, to a fan X, we can use the Cox construction (see §5 of
[7]). Start by noting that each ray p of the fan ¥ corresponds to a divisor D, on Xy (see

§4 of [7]). Then we have the following exact sequence:

0— M-5 @ ZDp—>cokerL—>O, (1)
peX(1)

where ((m) := div(x™) = Zpez(l)(m,up)Dp.

We will write Z*® := @D exq)ZD,. Since C* is a divisible group and hence an
injective Z-module, the functor Hom,(—, C*) is exact, so applying it to (1) yields the exact

sequence:
1 — Homy/(coker(, C*) — HomZ(ZE(l),C*) — Homy,(M,C*) — 1. (2)

Define
Gy, := Homy/(coker, C¥). (3)

Note that Hom,(Z*,C*) ~ (C*)*®) and Hom,, (M, C*) >~ T),, where Ty is the torus of the

variety. Hence, we may rewrite (2) as
1 - Gy —» (CH*V 5 Ty — 1. (4)

When describing Gy, explicitly, the following lemma is useful.
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2102 A. Malter

Lemma 2.1 (Lemma 5.1.1(c) in [7]). Let Gz € (C*)*®) be as in (4). Given a basis e, ..., e,

of M, we have

Gy = i(tp) e (CHZW ‘ [T =1for1 <i< n] .
o

We now have both an affine space C*) and a group Gy, which can be shown
to be reductive, thus only further require an exceptional set Z in order to construct the
toric variety Xy as a geometric quotient. For each ray p € X(1), introduce a variable x,,
and consider the total coordinate ring of Xy,

S:=Clx, | p € ().
For each cone o € I, let x° = [1,¢00)X,- We define the irrelevant ideal
B(X)=(x°|oex)CS.

Since T < o, we have that x° is a multiple of x%. Thus, we only need to consider maximal
cones to generate the irrelevant ideal. Define Z(X) = Z(B(X)) € C*V, We then have:

Theorem 2.2 (Theorem 5.1.11 in [7]). Let X5, be a toric variety without torus factors,

associated to a fan . Then
Xy =~ (CEDN\Z(2)) / Gy.

Most of the discussion to follow happens on the level of stacks, so we define the

toric stacks relevant for us here.

Definition 2.3. Let X be a fan. Define the Cox fan Cox(T) € R*W to be
Cox(X%) := {Cone(e, | p € 0)|o € T}.

Denote by n the number of rays in the fan ¥. Then the Cox fan of ¥ is a subfan
of the standard fan corresponding to the toric variety A". Thus, Uy, := X( (5 1S an open

subset of A". Consider the group Gy, as defined in Equation (3).

Definition 2.4. We call Uy the Cox open set associated to ¥ and define the Cox stack

associated to X to be

Xy = [Us/Gx]
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In the smooth and orbifold cases, we have the following result relating Xs. to
XE-

Theorem 2.5 ([12]). If T is simplicial, then Ay is a smooth Deligne-Mumford stack with

coarse moduli space Xy,. When ¥ is smooth (or equivalently X5 is smooth) Ay, = X5..

2.2 Polytopes and the Batyrev-Borisov construction

We now define reflexive polytopes and nef partitions. We can use them to introduce the
Batyrev-Borisov duality, following [3, 5].

Definition 2.6. A polytope A in My, is a convex hull of a finite set of points in My. If this
finite set can be chosen to only consist of lattice points of M, we call A a lattice polytope.

Definition 2.7. Let A be a full dimensional lattice polytope in My with O an interior

lattice point. Its dual polytope AV is given by
AV :={neNg|(m,n)>—-1Vme A}
We call A reflexive if the dual polytope is also a lattice polytope.

Given a lattice polytope A, we can associate a toric variety to it by considering
its normal fan ¥, with its corresponding toric variety Xy, .

The polytope A corresponds to the anticanonical divisor of Xy, in that the lattice
points of A correspond to the global sections of the anticanonical divisor. This in turn
allows one to construct a Calabi-Yau hypersurface in Xy by considering the zero section
of the global section; however, we want to construct Calabi-Yau complete intersections.

To do so, we must construct a nef partition of the polytope A.

Definition 2.8. Let A C My, be a reflexive lattice polytope. A nef partition of length r of A is
a Minkowski sum decomposition A = A; +---+ A, where A;,..., A, are lattice polytopes
with 0 € Ai'

Consider a reflexive polytope A € My with nef partition A = A; +---+ A,. Then,

for 1 <j < r,we define
V;:={n € Ny | {m,n) > —§;; for alme A, forl <i<r}

We note that these polytopes are all lattice polytopes, and define the polytope V as their
Minkowski sum V :=V; 4+ .-+ V,. We call Vy, ..., V, the dual nef partition to A,,..., A

re
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2104 A. Malter

To understand the statement of Batyrev-Borisov duality, we note that a lattice
polytope A corresponds to a d-dimensional Gorenstein Fano toric variety X,. Each of
the polytopes A; corresponds to a divisor D; on X,. The nef partition A = A; +--- + A,
decomposes the anticanonical sheaf O(—Ky,) as tensor product @i_; O, (D;). Now
the lattice points inside the A; correspond to global sections of these line bundles.
Taking the zero sets of such sections, we can associate to each polytope a family of
hypersurfaces. By intersecting these, a nef partition corresponds to a family of (d — r)-
dimensional Calabi-Yau complete intersections in X,. Similarly, the dual nef partition
V =V, +---4V, gives a family of (d —r)-dimensional Calabi-Yau complete intersections

in Xy.

Remark 2.9. The generic complete intersection in the family associated to the dual nef
partition Vi, ..., V, may be singular.

In [2], Batyrev formulates the original construction in a way that fixes this
problem. In this case, one uses a maximal projective crepant partial desingularization
(MPCP-desingularization), which reduces to a combinatorial manipulation of the normal
fan to V.

For every maximal cone of the normal fan, we choose a regular triangulation
of it. Therefore, all maximal cones should contain exactly the minimal number of rays
dictated by the dimension, since a triangulation uses simplices. Doing this for all
maximal cones gives exactly a maximal projective triangulation. When speaking of Xy,
we will thus think of a MPCP-desingularization of the variety associated to the normal

fan of V, obtained in this way.

Batyrev and Borisov prove the following result, showing that their construction

produces topological mirror duality for (1, g)-Hodge numbers.

Theorem 2.10 (Theorem 9.6 in [3]). Let V be a Calabi-Yau complete intersection of r
hypersurfaces in P¢ and d —r > 3 and W be a MPCP-desingularization of the Calabi-Yau

complete intersection W C Xy,. Then
hi(Qp) =h?79(Q}) for0<g<d-r.

2.3 Toric vector bundles and GIT quotients

We first discuss how to construct toric vector bundles. Recall that a Cartier divisor

D=3 ,a,D, on a toric variety Xy, corresponds to the line bundle £ = Oy, (D), which is
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the sheaf of sections of a rank 1 vector bundle 7 : V, — X5. The variety V, is toric and
7 is a toric morphism. This is shown by directly constructing the fan of V, in terms of

¥ and D, which we do now. Given a cone o € X, set
6 = Cone ((0,1), (u,,—a,) | p € o(1)).

Then ¢ is a strongly convex rational polyhedral cone in N x R for all cones ¢ € £. Now
let £ x D be the collection consisting of cones & for o € ¥ and their faces. This is a fan in
Ny x R and the projection 7 : N x Z — N is compatible with ¥ x D and X, thus inducing

a toric morphism

7w Xsyp— Xy

Proposition 2.11 (Proposition 7.3.1 in [7]). 7 : X5, — X5 is a rank 1 vector bundle

whose sheaf of sections is Oy, (D).

The variety Xy, is sometimes also denoted by Xy, p.
For decomposable vector bundles of rank higher than 1, we can repeatedly apply
Proposition 2.11 to construct the total space of the vector bundle, following [10]. Taking

r torus-invariant Weil divisors D; = > _s a;,D,, we define

PET FipTp!
op,,..D _Cone({up—alpel_..._arper|pea(1)}U{ei|ie{1,...,r}})CNREBRr.
Let Xp, . p, be the fan generated by the cones o, and their proper faces, and call

Proposition 2.12 (Proposition 4.13 in [10]). Let D, ..., D, be divisors on X5. There is an

isomorphism of stacks
X5 p,,..p, = 10t (Ox; (D)) .

Geometric invariant theory (GIT), developed by Mumford, is a powerful tool in
modern algebraic geometry. We will here discuss the toric version of it, following §14 of
[7].

Roughly speaking, GIT deals with ways to take almost geometric quotients of spaces by
some reductive groups acting on them. As a model for this, recall the Cox construction
in §2.1. It gives a toric variety as almost geometric quotient Xy, ~ (CEV\Z(X)) / Gs.

Fundamentally, we start with C**) and remove a special Zariski closed subset in order
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2106 A. Malter

to obtain an almost geometric quotient. GIT provides the machinery to do so, but the
way is often not unique. The subsets that are removed depend on a choice of stability
parameterised by a choice of line bundle. The different choices can give different
quotients that are birational.

In GIT, deciding which points are removed is done by a lifting of the G-action on

C" to the rank 1 trivial vector bundle C" x C — C". Define the character group of G to be
G={x:G—> C*|xisa homomorphism of algebraic groups}.
A character x € G then gives the action of G on C" x C defined by

g(plt)z(gpIX(g)t)r ge GI (p/t) e(crx(c'

This lifts the G-action on C" and furthermore all possible liftings arise this way.

Let £, or O(x) denote the sheaf of sections of C" x C with this G-action. It is
called the linearised line bundle with character x. For d € Z, the tensor product O(x)®? is
the linearised line bundle with character Xd. Note that, if one forgets the G-action, then
O(x) ~ Ocr as line bundles on C". Thus, a global section s € I'(C", O(x)) can be written

as
s:C" > C'xC
p = (p, Fg(p)),

for some unique F; € Clx,, ..., x,].

Definition 2.13. Fix G € (C*)" and x € G, with linearised line bundle O(x). Given a

global section s of O(yx), we denote
(Cs:={peC" |s(p) #0}.

This is an affine open subset of C”, as s(p) # 0 means Fy(p) # 0. Furthermore, G acts on

(C"); when s is G-invariant. We define:

A. p e CTis semistable with respect to x if there existd > 0 and s € I'(C", O(x%))¢
such that p € (C");.

B. p e C7 is stable with respect to y if there exist d > 0 and s € I'(C", O(x%))¢
such that p € (C7);, the isotropy subgroup G, is finite, and all G-orbits in
(C")4 are closed in (CT),.

C. The set of all semistable (resp. stable) points with respect to y is denoted
(€3’ (resp. (CT)3).
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Given a group G C (C*)" and x € G, we next need to define the GIT quotient
cr /G- Consider the graded ring R, = SN (o O(x )6,

Definition 2.14. For G € (C*" and x € G, the GIT quotient C” /4G is
C"/,G = Proj(R,).

An important property of GIT quotients is that in principle, this is the same as

taking the quotient of (C")}* under the action of G.

Proposition 2.15 (Proposition 14.1.12.c)in[7]). For G C (C*)" and x € @, the GIT quotient
C"/,G is a good categorical quotient of (C")$’ under the action of G, that is, C" /,G =~
(Ch-aes

Theorem 14.2.13 of [7] shows, using a polyhedron associated to the character yx,
that the GIT quotient C" / , G is a toric variety.

2.4 GKZ Fans

Let G € (C*)". Studying the GIT quotient C" /, G as x varies gives rise to the GKZ fan of
a toric variety, which has the structure of a generalised fan.

Definition 2.16. A generalised fan ¥ in Ny is a finite collection of cones ¢ C Ny such
that:

A. Every o € ¥ is a rational polyhedral cone.
B. Forall o € X, each face of o is also in X.

C. For all 0;,0, € X, the intersection o, N o, is a face of each.

This agrees with the usual definition of a fan, with the exception that cones are
not necessarily strongly convex. Consider the cone oy = (), .y 0. It has no proper faces
and is thus a subspace of N. We consider the lattice N = N/(oyNN). To associate a toric
variety for the generalised fan ¥, one constructs the fan > where each cone comes from
a cone of ¥ quotiented by 0. This is a fan in the usual sense, and hence we can associate
a toric variety to it as usual. Then Xy, := X5.

We will now discuss the notion of a GKZ fan, following both [7] and [11]. Consider
a toric variety X. It can be written as a GIT quotient (C"\Z) / , G. Recall the character

group G of G. Each choice of character X € G determines an open subset U, = ((Cr)f(s, the

#7202 YoIe| €0 UO Jasn 3auoliqigienusz-As3a Ad Gr9¢y | 2/6602/€/720z/2101e/uiwi/wod dno-olwapede//:sdiy wody papeojumod



2108 A. Malter

semi-stable locus of X with respect to x. Several different characters can give the same
semi-stable locus. Thinking of the vector space Hom(G, Ty) ®, Q as parameter space for
linearisations, we investigate where the semi-stable locus Uy, is the same as U, for a
given character x. It turns out that dividing the vector space into chambers where U,
remains the same gives the space a natural fan structure. This fan-structure X, is
called the GKZ fan. Maximal cones are called chambers and codimension one cones are
called walls.

Consider an arbitrary fan ¥, we can construct the GKZ fan as follows. Take the
group G = Gy C (C*)" acting on X5 to be the group in Equation (3). There is a well-known
bijection between chambers of GKZ fans and regular triangulations of a certain set of

points, constructed as follows. In the general setting, apply Hom(—, C*) to the sequence
0 G% ©) 2% coker(ig) — 0

to obtain the sequence

Hom(coker(ig), C*) 2% 7" %% Hom(G,C*) — o.

Let v;(G) be the element of Hom(coker(i;), C*)" given by composing p’rzj with the
projection of Z" onto its i*! factor. Compare this sequence with the sequence (1). We in fact
reversed the process of obtaining (4) from (1). Starting with the correct group acting on
the space, we thus recover the map corresponding to: as p/rgj. Hence, the v(G) correspond
to the primitive generators u, of the rays of X. Then the set we will triangulate is the
convex hull of the set v(G) = {v;(G), ..., v.(G)}.

Theorem 2.17 (Proposition 15.2.9 in [7]). There is a bijection between chambers of the
GKZ fan for the action of G on C" and regular triangulations of the set Conv(v(G)). In

particular, there are only finitely many chambers of the GKZ fan.

Thus we can enumerate the chambers of the GKZ fan, say by oy, ...,0,. For any
of those chambers, we can choose a character in its interior and consider the semi-
stable locus with respect to it. As this locus does not depend on the choice of character,
but solely on the choice of chamber, denote the open affine associated to chamber o,
by Up. By the above theorem, it will also correspond to a specific triangulation Ty of

Conv({v,(G), ..., v.(G)}).
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2.5 Categories of singularities and some results on the equivalence of derived categories

In this section, we introduce the categories of singularities (as outlined in [21]) and their
equivalences to derived categories through VGIT, reviewing §4 of [11].

Let X be a variety and G an algebraic group acting on X (on the left).

Definition 2.18. An object of DP(coh[X/G]) is called perfect if it is locally quasi-
isomorphic to a bounded complex of vector bundles. We denote the full subcategory
of perfect objects by Perf([X/Gl). The Verdier quotient of DP(coh[X/G]) by Perf([X/G]) is
called the category of singularities and denoted

D, (IX/Gl) := D (coh[X/Gl)/ Perf(IX/Gl).

By the following observation of Orlov’s, the category can be viewed as studying

the geometry of the singular locus.

Proposition 2.19 (Orlov, [21]). Assume that coh[X/G] has enough locally free sheaves.
Leti: U — X be a G-equivariant open immersion such that the singular locus of X is

contained in i(U). Then the restriction,
U Dy (IX/Gl) — Dy (IU/GD),
is an equivalence of categories.

Next, consider a G-equivariant vector bundle £ on X. Denote by Z the zero locus
of a G-invariant section s € H?(X, £). Then (—, s) induces a global function on tot£V. Let
Y be the zero section of this pairing and consider the fibrewise dilation action on the

torus G,,. Then we have the following result.

Theorem 2.20 (Isik [19], Shipman [25], Hirano [17]). Suppose the Koszul complex on s is

exact. Then there is an equivalence of categories
Dy, (I¥/(G x G,,)]) = D" (cohlZ/Gl).
Combining the previous two results gives the following.

Corollary 2.21 (Corollary 3.4in [11]). Let V be an algebraic variety with a G x G,,, action.

Suppose there is an open subset U C V such that U is G x G,,, equivariantly isomorphic

#7202 YoIe| €0 UO Jasn 3auoliqigienusz-As3a Ad Gr9¢y | 2/6602/€/720z/2101e/uiwi/wod dno-olwapede//:sdiy wody papeojumod



2110 A.Malter
to Y as above and that U contains the singular locus of X. Then

Dy, ([V/(G x G,,)]) = D" (cohlz/G)).

We will move towards making these results applicable to the objects studied in
this paper, adapting [11]. Consider an affine space X := A"*! with coordinates x;, u; for
1 <i=<n,1<j<t. Let T denote the standard open torus G?n“ and consider a subgroup
S C T, with S the connected component that contains the identity.

Recall the notion of GKZ fans from §2.4. We adjust the notation so that S above
corresponds to the group G from §2.4. We will now explain how to construct varieties
corresponding to the chambers of the GKZ fan, and the goal of this setup is to apply

Corollary 2.21 and VGIT to provide equivalences between derived categories.

Definition 2.22. Let G be a group acting on a space X and f a global function on X. f is
said to be semi-invariant with respect to a character x if, for any g € G, f(g-x) = x(9)f (x).

To apply Corollary 2.21, we will add a G,,-action, which is S-invariant and G, -
semi-invariant, acting with weight 0 on the x; and 1 on the u;. We refer to this action as
R-charge. Consider the action of S on the scheme Spec Clu;]. It corresponds to a character
y; of S. Let fi,...,f; be a collection of S-semi-invariant functions in the x; with respect
to yj_l. Then define a function, called superpotential, by

t
wi= 2 ufy
j=1

The superpotential w is S-invariant and x-semi-invariant with respect to the projection
character x : S x G,, - G,,, hence w is homogeneous of degree 0 with respect to the
S-action and of degree 1 with respect to the R-charge. Let Z(w) € X be its zerolocus and

define Y, =2Z(w)NU,. Then we have the following result.

Theorem 2.23 (Theorem 3 in [18]). If S is quasi-Calabi-Yau, there is an equivalence of

categories
Dgg([¥,/S x G,]) = Dy (IY,/S x Gyl

forall 1 < p,q < k, where k is the number of chambers in the GKZ fan.

We will use this result to show a useful equivalence of derived categories. We

start by explicitly describing the open sets U, corresponding to a chamber op of the

#7202 YoIe| €0 UO Jasn 3auoliqigienusz-As3a Ad Gr9¢y | 2/6602/€/720z/2101e/uiwi/wod dno-olwapede//:sdiy wody papeojumod



Libgober-Teitelbaum and Batyrev-Borisov 2111

GKZ fan, defined in §2.4. For 1 < p < k, we associate an irrelevant ideal Ip to o, by

considering the (regular) triangulation 7, that the chamber corresponds to. So, let
I,:= <HXi H uj ‘ U v;(S) U U V4 (S) is the set of vertices of a simplex in 7;>
gl jeJ iel jeJ

Then U, = X\ Z(Z,). Another ideal we will need is a subideal of 7,,, given similarly to Z,
by requiring J to be the full set {1,...,t}, that is,

t
jp = <H X; U v;(S) U U V1 (S) is the set of vertices of a simplex in 7;)>
i¢l iel Jj=1

This ideal is therefore generated by those simplices whose sets of vertices contain all v, ;
for 1 <j < t. Using this subideal, we get a new open set Vp =X\ Z(Jp) C Up. Since jp
hasno U; in its generators, we can see it as ideal jlf inClxy,...,x,], giving an open subset
of A™ by vy = A" \Z(j;). This set gives us a toric stack X, := [V};/S]. Now suppose J, is
non-zero. Then the last two quantities defined are nonempty, and one can show [V,,/Slis a
vector bundle over Xp, with the inclusion of rings Clx;,...,x,] = Clxy,...,x,, Uy, ..., ul

restricting to a S-equivariant morphism
X /0] —
V,/S] — [V,/S] = X,,.

This morphism gives the following proposition.

Proposition 2.24 (Proposition 4.6 in [11]). Suppose J, is non-zero. The morphism

V,/Sl — X, realizes [V,/S] as the total space of a vector bundle

t
[V,/S] = tot P O)).

j=1

Furthermore, the R-charge action of G,, is the dilation action along fibers. Finally, for
each j, the function f; gives a section of O(yj_l) and the superpotential w = Zuj i

restricts to the pairing with the section @j}-.

In particular, from this we can view the function Gafj as a section of Vp, which
defines, for all p, a complete intersection Zp = Z(eafj) - Xp. Finally, we introduce
the Jacobian ideal dw, generated by the partial derivatives of w with respect to the

coordinates x;, U;.
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Proposition 2.25 (Proposition 4.7 in [11]). Suppose jp is non-zero. If Ip c /ow,J,,
then

D, ([Y,/S x G,,]) = D’ (coh Z,).

This finally leads us to the following result, which we will use in §4.

Corollary 2.26. Assume S satisfies the quasi-Calabi-Yau condition and that 7, and J

are non-zero. Ipr C /ow, jp and Iq C /ow, jq for some 1 < p,q <r, then

Db(cthp) =~ DP(coh Z,).

3 The Libgober-Teitelbaum and the Batyrev-Borisov Constructions
3.1 The Batyrev-Borisov construction in P°

We now construct a Batyrev-Borisov mirror to a complete intersection of two cubics
in P5. We will do this by giving a nef partition of the anticanonical polytope of P,
which corresponds to a complete intersection. Then we will apply the Batyrev—-Borisov
construction to that nef partition, obtaining a polytope V corresponding to the mirror.
Fix the lattice M = Z° and its dual lattice N.

Remark 3.1. Due to the way we will derive certain fans in this section via methods
inspired by mirror symmetry (see § 3.3.1) our first fan lives in My and not in the

conventional Ny.

Define the rays pg, . .., py; in My @ R? with primitive generators
Uy =(3,0,0,-1,-1,0,1), Uyp=(2,-1,-1,0,0,1,0),
uy; =(0,3,0,-1,-1,0,1), Uz =(-1,2,-1,0,0,1,0),
uE:(OIOIBI_lr_IIOII)/ u/)is:(_ll_llzlololllo)l

upiaz(_ll_lr_]-r\?'/orl/o)/ up*g=(0/0!012!_11011)r

up—4=(—1,—1,—1,0,3,1,0), UWZ(O,O,O,—LZ,O,I),
uE: (—1,—1,—1,0,0,1,0), uPT: (0,0101_11_1101 1)!
u, =(0,0,0,0,0,1,0), u,, = (0,0,0,0,0,0, 1),

Notation 3.2. For 0 <j < 11, we denote by Uy, the lattice point in M obtained from Uy

by projecting onto the first 5 coordinates. Denote by p; the ray generated by u o in My.
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Table 1 Maximal cones of Xy

POP1P2PI9PL10 POPL1P6LIL10 P3L4P607L9 P1P6P7L9L10 P4P6P709L10 POP2PELIL10
P2P608L9L10 P3P4P608L9 P4P60809L10 P1P2P709L10 P2P70809L10 P3P4P708L10
P5P70809L10 P1P2P70L10P11 P2P708L10P11 P4P50708L10 P5P708L10P11 POLP1P209L11
POL1P2L10L11 03040506 07 £0PL1P6L9P11 P1P60709P11 P3 05060709 05060709011
£OL1P6L10L11 P1P6L7L10L11 40506 07010 P50607010L11 £30405 06 08 P0P20609011
£206 0809011 P3 05060809 05060809011 £0PL206010L11 P20608010L11 04050608010
P5P608L10P11 P3P4P507P8 P1P2P709PL11 P2P7P809L11 P3P5P708L9 P50P7P8PIP11

Proposition 3.3. Consider the fan Xy with rays py, ..., p;; defined above and maximal
cones listed in Table 1. Then a general complete intersection in the toric variety Xy
corresponding to the fan ¥y, is a Batyrev-Borisov mirror to a complete intersection of

two cubics in P°.

Proof. The anticanonical sheaf of P® is Ops(6), corresponding to the divisor class
The anticanonical polytope for P° is given by

A—Kps ={m e Mg|(m,u,) > —1 forp € Xps(1)} C My,

p>

which is the convex hull of the six points

’

(51_11_11_11_1)1 (_1151_11_11_1)1 (_11_1151_11_1)1
(_11_11_1151_1)1 (_11_11_11_115)1 (_1 _11_11_11_1)‘

A nef partition with respect to the origin of the polytope A—Kps is given by the polytopes
A, A, associated to the divisors T, + T, + T, and T3 + T, + T5, since the Minkowski sum
A, + A, is equal to A,KPS. These polytopes are

A, = Conv((2,-1,-1,0,0),(-1,2,-1,0,0),(-1,-1,2,0,0),
(-1,-1,-1,3,0),(-1,-1,-1,0,3),(-1,—-1,-1,0,0)),

A, = Conv((0,0,0,-1,2),(0,0,0,2,-1),(0,0,3,-1,-1),
©,3,0,-1,-1),(3,0,0,—-1,-1),(0,0,0, -1, —-1)).
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Next, we shall compute the dual nef partition, as defined in §2. We have:

Vv, = Conv((1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,0,0))
VZ COIlV((O, 0/ Or 01 l)l (01 Or 01 ].,0), (Or 01 Or 01 O)I (_lr _lr _11 _11 _1))

Their Minkowski sum V C Ny, is then the convex hull of the 15 points

(1,0,0,0,0), 0,1,0,0,0), 0,0,1,0,0), (0,0,0,1,0),
(OIOIOIOI 1)! (110101 ]-IO)I (11010101 1)! (011101110)1
(01110101 1)! (Ololllllo)l (010111011)1 (_11_11_11_11_1)1

(Ol_ll_lr_lr_l)l (_1101_11_11_1)7 (_11_1101_11_1)'

A SAGE computation shows the normal fan of V, X, € My, has rays pg,...,p;; from
Notation 3.2. The maximal-dimensional cones are the following 15 cones:

P0P10209010/ £0L1030406070L9L10: £00203 04060809010 £1020304070809010,
P1P2P405P7P8L10P11, POP1P2PIP11, P0P1P2P10P11/ P3P4L506 07
P0P1P3P5060709P11, POL1P2P50607L10L11  P3PAL5L6L8/ £0020305060809L11
P0P204050608010L11, P304050708, £1020305070809010£11-

We listed the cones by giving the rays generating them. For instance, pg0; 050909 Stands
for the cone Cone (pg, P, 02, Pg: P1p)- Note here that some of these maximal cones contain
more rays than the others. So, as described in Remark 2.9, we want a MPCP-resolution
of the variety associated to the above fan. To do this, we subdivide each of the maximal
cones that has more than 5 rays. This procedure involves choice, as each cone can be
subdivided in 24 ways (being a total of 24° possible choices!). However, all these choices
are related by GIT, so any choice gives us a mirror family, all of which are birational.
Following this procedure, the Table 1 (see below) gives the 42 maximal cones in the fan
corresponding to a MPCP-resolution of the variety associated to the fan Xy,. Define the
fan Xy to be the fan consisting of those 42 5-dimensional cones and all of their faces.
Determining the variety Xy explicitly is not straightforward, but also not necessary for

our purposes, so long as we have the fan Xy. |

Fori=20,...,11, call D; the torus-invariant divisor on Xy corresponding to the
ray p; of X 5. Let D, = Dy + D) + D, + Dy + D, + D}, and D}, = D}, + D; + D + D+ D, + Dj,.

Corollary 3.4. Let Xy p D, be the fan with rays py,...,p;;, 7,7, and cones over
those rays inherited from Xy. Then 2v.0,.D, is a fan corresponding to tot(Ox, (-Dj) &
Ox, (=Dp)).

Proof. Apply Proposition 2.11 twice to get the result (recalling that we can do this by
Proposition 2.12). n
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3.2 Libgober and Teitelbaum’s Mirror

We now recall the family Libgober and Teitelbaum give as a mirror to the generic
complete intersection of two cubics in P2, To start, define v, C P° to be the vanishing set

of the following two polynomials:
Q,, = X5+ X3 + X3 — 3AXzX,Xs, Q,, = X3+ x5 + X3 — 3rXpX, X, (5)

For generic A, this gives a smooth complete intersection in P°, which is a Calabi-
Yau threefold.

Let ¢,, denote a primitive n-th root of unity. Let «,8,8,¢ € Z (mod 3) and n € Z
(mod 9) with 3u = @ + 8 = § + ¢. Define the diagonal matrix

Gaseqe = diag (c564, elel, ey 600" 656", &™)

and let Gg; C PGL(5, C) denote the order 81 group generated by the g, 45 . ,- Note that Gg;
acts on P° by restricting the natural action of PGL(5, C) on P°. The polynomials Qy,;,0,;
are invariant with respect to the action of Gg;, hence Gg; acts on V.

Note that Gg, is of isomorphism type (Z /3 Z)? x (Z /9Z) and can be generated by
(Cgitg L L,1L1), (1,1, 1,857, 6, 1) and (&g, &9 Goi g 1189 189 -

Let Vir, be the quotient of V, by the action of Gg, and let Wy ; be a minimal

resolution of singularities of V;r ,, which is a Calabi-Yau manifold.

3.3 Expressing Libgober-Teitelbaum torically

In the following, we aim to give a toric description of V;r,. First we give a fan for the
toric variety X;; := P® /Gg, and then employ methods of §7.3 of [7] to construct a vector

bundle over X;r that has the global section Q; , ® Q, ;.

Proposition 3.5. Consider the 1-dimensional cones py, ..., p5 With corresponding prim-

itive generators

upo 2(310101_11_1)1 uﬂl :(013101_11_1)1 uPZ =(0I0l31_1l_1)l

up3 :(_11_11_11310)1 up4 :(_11_11_11013)1 up5 :(_11_1:_11010)'

Consider the collection C of sets of the form
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Let X; € My be the fan consisting of maximal cones
{Cone(C)IC € C})

and all their faces.
Then the toric stack associated to X; is the stack corresponding to the Libgober-
Teitelbaum construction, A}, = [C®\{0}/ (C* xGgy)], with C* acting by (Ax,...,Axg) ~

(xg.--.,X5) and Gg; acting as described above in § 3.2.

Proof. We use the Cox construction described in §2.1. By Lemma 2.1, we obtain the

following system of equations characterising elements of G := Gy,

tatats = to (6)
__ 43

tatyts = t3 (7)
__ 43

talyts =t (8)
__ 43

tolit, =3 (9)

tot t, = t5 (10)

0*1%2 — “4

First, we note that we have a copy of C* in G, given by {¢t-(1,1,1,1,1,1) | t € C*},
so to compute G we consider the group H of cosets of C*. We will explicitly describe
H and subsequently use the direct product theorem to compute G. Consider an element
(to. ..., t5) € G. By an appropriate choice of coset representative of (ty, t1,ty, t3, t4,t5) - C*,
we may assume [[>_ot; = 1.

Using equations (6), (7), and (8), we have t3 = t3 = t3, and thus t, = (Jt,, ¢ = {ftz
for some «, B € Z5. Using equations (6)-(10), we have that tgtitg = tSt?t% = tgti = tgtg,

which implies
t2=t3=15. (11)

Hence, similarly to above, we obtain t; = §§8t5, ty = {3 ‘ts for some §, ¢ € Zs.

By combining (8), (9), and (10), we obtain

583 = tot totatats = 1. (12)
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Equation (12) implies 2 = (t;')%, thus t5 = ¢} - t,* for some v € Z,. Using t; = ¢; °t5 and

ty = {3 ‘t5 and equation (8), we obtain
—(8+ -3, —(+
t:23 = t3t4t5 = tgg‘s (6+e) — t2 CS ( 5)'

Hence 38 = 1. So we can write ¢, = ;{8 for somel e Z;g.

We now claim that ¢, can be assumed to be a ninth root of unity and ¢5 to be
its inverse, that is, t, = ¢, t5 = ¢y " for some u € Zgy. Indeed, note that (f5,...,%) €
(1,1,1,1,1,1) - C* € G, so we can scale an element (¢t;,...,t;) € G by sixth roots of
unity, leaving the product H?:l t; invariant. The claim follows by multiplication with
an appropriate sixth root of unity.

Expressing all the ¢; in terms of t,, the assumption 1 = H?:l t; implies 1 =

i3 P=0=¢ or, equivalently,

a+pB=686+¢ (mod 3).

Finally, using (8) gives gg’“ = §3_5+8§‘9_3” and therefore 593“ = ¢3¢, Thus H, the group
of cosets of C*, is isomorphic to Gg;, where Gg, is the same group described in §2. In
particular, all elements of G are of the form g- A withg € Gg;, A €(1,1,1,1,1,1) - C* and
Gg; N{(1,1,1,1,1,1) - A|xr € C*} = {(1,1,1,1,1,1)}. Hence, by the direct product theorem,
G = C* xGg;.

The Cox fan of X;; can be described as follows. It has six rays e 1€, It 18

o7
straightforward to see that the maximal cones are all 5-dimensional cones generated
by any 5 of the rays above. Therefore, we obtain Uy , = A%\ {0}. Thus, the Cox stack

associated to X, is
Xy = Uy, /Gl = [C®\{0}/ (C* xGg,)],
with the prescribed action, as required. |

Remark 3.6. We note that by Theorem 2.5 the coarse moduli space of the stack X} is

X;r. since X;; is simplicial.

Starting with the fan ¥;; of X;;, we apply Proposition 2.11 twice to construct a
vector bundle. Let D; be the Weil divisor corresponding to the ray p; in ¥;;. Let D, =
Dy + Dy + D, and Dy = Dy + D, + Dy,
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Corollary 3.7. Denote by the rays py, ..., ps, 7; and r, the rays (These are the same as on

page 40.) generated by the primitive generators:

u%=(3r010r_1l_1/011)r upTz(OISIO!_ll_llOrl)r up7=(010731_11_110! 1)!
uﬁz(_ll_lr_lr\?’/orl/o)/ umz(_lr_ll_llolslllo)l uﬁz(_ll_ll_llorollro)!
u, =(0,0,0,0,0,1,0), u, =(0,0,0,0,0,0,1).

Consider the collection S of sets of the form
{p;1iel, I <{0,...,5} |I| =5}U{r, 1p}.
Let X;7 p, p, be the fan in My @ R? consisting of the maximal cones
{Cone(S)|S € S}

and all their faces. Then:

(@)  Xrp,p, is a fan corresponding to tot(Oy,, (—Dy) & Ox, . (—=D,));
(b)  The vector bundle Oy, (D;) ® Oy, (D,) has the global section Q, , ® Q, ;.

Proof. Applying Proposition 2.11 twice yields (a).

We now turn to (b) and show that Q,;, € [I'(Xyp, O, (Dp) and Q,, €
['(Xpr, Oy, (Dy)). We start by noting that on X, we have div(x?) = 3D;, so div(x?) —3D; >
0, that is, xJ € ['(Xpp, Oy, (3D;)). Similarly, xox,x, € T'(Xpp, Oy, (D,)) and X3x,x5 €
I Xy, Ox,, (D).

To show the linear equivalence of two divisors, it suffices to consider their differ-
ence and show it is principal. We recall that div(x™) = Zpez(l)(up, n)D,, corresponding
to the map : in the exact sequence (1). So, for instance 3D, — 3D, = diV(Xa3X:13), which
is the character associated to the lattice point (-1,1,0,0,0). Hence, 3D; — 3D, = 0 in
Cl(X;r), that is, 3D, ~ 3D,. Similarly, 3D, ~ 3D, and 3D; ~ 3D, ~ 3Dj;. Using the
lattice points (—1,0,0,0,0) and (0,0,0,—1,0), respectively, we also see that 3D, ~ D,
and 3D3 ~ D,.

Thus

(’)XLT(3DO) ~ (’)XLT(3D1) ~ OXLT(3D2) ~ OXLT(Db)
and
OXLT(3D3) ~ OXLT(3D4) ~ OXLT(3D5) ~ (’)XLT(Da),

implying Q, ; € I'(Xyr, Oy, (D,)) and Q, ; € I'(Xyr, Oy, (Dp)), as required. |
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3.3.1 Intuition for constructing Xy torically

We now explain how we found an explicit description for the fan X;,. We start by
considering the standard fan X5 < Ny for P5 in the standard basis. It is the fan
consisting of the cones generated by any proper subset of the six rays v,...,vs with

primitive generators

u, = (1,0,0,0,0, u, =(0,1,0,0,0, u, =(0,0,1,0,0),
uv3=(01010/110)r u])4:(010!010!1)! uv5=(_11_11_11_11_1)~

Denote by Ty, ..., T5 the six primitive Weil divisors corresponding to the rays u u

vo!*cr Pugr

respectively. Then

O(_ (To + T1 + Tz)) = O(_ (T3 + T4 + T5)) = O(_S)r
— —

=Ty =Ty

and we can use the methods of §7.3 of [7] again to construct a fan of tot(Ops(—3) @
Ops(—3)). This yields the fan Zps . , in N & R? with the 8 rays 7,...,75,7; and 1,
having primitive ray generators

Uy = (1,0,0,0,0,1,0), u;; =(0,0,0,0,1,0,1),

Uy =(0,1,0,0,0,1,0),  up=(-1,-1,-1,-1,-1,0,1),

uy = (0,0,1,0,0,1,0), u, =(0,0,0,0,0,1,0),

uyz = (0,0,0,1,0,0,1), u,, =1(0,0,0,0,0,0,1).

w57 - - - Ungs u,z) along Uy, and U,

The fan X5 . is the star subdivision of Cone(u, u—,u..,
Lalp 1

(noting the abuse of notation by which u, represent the same vector in both lattices
M, N). The dual cone to Zps 7 7, in My & R? is spanned by the 12 rays py, ..., p;; defined
in § 3.1 (page 39).

We recall that each lattice point in the interior of the dual cone corresponds to a

global function of X5 5T, T by associating m to the monomial

m,u
x™ = H Xf, o,
pez]PS,Tl,Tz (1)

Now a section s; @ s, € I'(P°, O(3) @ O(3)) will correspond to a global function
on tot (O(—3) @ O(—3)) of the form u;s; + u,s,, where u, is the variable corresponding
to u., . Recalling the polynomials Q; from (5) in §3.2, we would like to express the global

function F := u,Q, ; +u,Q,, as alinear combination of global functions of the form x™.
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We do this by finding the lattice points in the dual cone corresponding to each monomial
inF.

By splitting it up into its monomials, u,Q;,; corresponds to the 4 points
@,0,0,-1,-1,0,1),(0,3,0,—-1,-1,0,1), (0,0,3,-1,-1,0,1), and (0,0,0,0,0,0, 1).
Similarly, u;Qy corresponds to the points (-1,-1,-1,3,0,1,0), (-1,-1,-1,0,3,1,0),
(-1,-1,-1,0,0,1,0), and (0,0,0,0,0,1,0).

We find that these 8 points are the primitive generators for the rays of ;7 p,
(see Corollary 3.7).

Quotienting My & R? by the rays associated to the bundle coordinates (i.e., the
lattice points that are the elements of the dual basis dual to u,, and u,,) corresponds to a
toric morphism XZLT,Da,Db — Xy, We emphasize that the dual cone to Cone(ElP,s'Ta,Tb(l))
is given by Conv(us,...,us7). Here, we take a subcone generated by a subset of

po’

{um, R um}.

3.3.2 Expressing the zero locus of Q1 , Q2
We remark that the cone |7 p, p, | is not a reflexive Gorenstein cone, hence the Batyrev-
Borisov construction does not apply to it.

The variety Vi, C X;r is the zero locus of the polynomials Q, ;,Q,;, where
Q,,;,®Q,, is a section of the vector bundle constructed above in Corollary 3.7. Proceeding
in the same way as in §3.3.1, we consider lattice points on the cone | X,z p, p, 1" S Ny ®R?
to get global functions of XELT,Da,Db' The cone |27 p, p,|” is the cone over the convex hull

of the following 12 points:

(1,0,0,0,0,1,0), 0,1,0,0,0,1,0), 0,0,1,0,0,1,0),
(0,0,0,1,0,0,1), (0,0,0,0,1,0,1), 2,-1,-1,0,0,0,3),
(-1,2,-1,0,0,0,3), (-1,-1,2,0,0,0,3), (1,1,1,3,0,3,0),
1,1,1,0,3,3,0), (-1,-1,-1,-1,-1,0,1), (-2,-2,-2,-3,-3,3,0).

The points corresponding to the monomials in u;Q, ; + u,Q,;, and hence to the
section Q, ;, ® Q,,, are the lattice points u;; and u,, in (13). Later on, describing Vi by

these 8 points will allow us to work with DP(coh V), using results in [11].

Remark 3.8. In their recent work [23, 24], Rossi proposes a generalisation of the
Batyrev-Borisov mirror construction, called framed duality (f-duality). f-duality gives an
algorithm to obtain mirror candidates of hypersurfaces and complete intersections in
toric varieties. Applying f-duality to V;; C P° /Gg; produces V, C P®, which in turn

gives the same mirror as the Batyrev—Borisov construction when applying f-duality to it.
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Theorem 1.1 suggests that different mirror candidates obtained via f-duality may be

derived equivalent and prompts the question under what conditions this is the case.

4 A Derived Equivalence Between the Constructions by Libgober-Teitelbaum and
Batyrev-Borisov

Here, we will prove the main result, Theorem 1.1.

4.1 Picking a partial compactification

Looking at the dual of the fan ¥;; 5 1, asin Corollary 3.7, we recall from §3.3.2 that the

global function u,Q; ; + u,Q, ; corresponds to the points

(t0,00,01,0), (1,000,710, (0,01,0,0,1,0),
(0101011101011)1 (0!010!0/]-!0/]-)/ (_11_11_11_11_11011)1
,0,0,0,0,0,1), (0,0,0,0,0,1,0).

Consider the GKZ fan of tot(OXV(—D’b) &) (’)XV(—D;)). We note that the chambers
of this GKZ fan correspond to regular triangulations of the polytope 8 = Conv(¢), where
¢ is the collection of the following 14 points:

Py= (3,0,0,-1,—-1,0,1), Pz= (2,—1,—1,0,0,1,0),
P, = (0,3,0,-1,-1,0,1), P,= (-1,2,—1,0,0,1,0),
P,= (0,0,3,-1,-1,0,1), Py= (-1,-1,2,0,0,1,0),
Py= (-1,-1,-1,3,0,1,0), Py= (0,0,0,2,—1,0,1),
P,= (-1,-1,-1,0,3,1,0), P,,= (0,0,0,—1,2,0,1),
Ps= (-1,-1,-1,0,0,1,0), P;, = (0,0,0,—1,—1,0,1),
S, = (0,0,0,0,0,1,0), S,= (0,0,0,0,0,0,1).

In the (regular) triangulations of I3, we look for a subtriangulation corresponding
to X7 p, p, as then we obtain a partial compactification of tot(Oy,.(—Dp,) @ Ox,,.(=D,))

from Corollary 3.7.

Proposition 4.1. There exists a chamber o7y in the GKZ fan of tot(Ox, (—D}) ® Oy (—D}))
(from Corollary 3.4) so that the triangulation 7 corresponding to the chamber o} (in the

sense of 2.17) has the following properties:

e 7T contains the following set of simplices, listed via their vertices:

To :={{P;,S1,S, i€} | IC{0,2,...,5},lI| = 5}.
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e Any simplex T € T \ 7, fulfills either of the two following conditions:

A. S,,P;,P;,Pg ¢ Tand 33 <j < 6 such that P;, Pg.; ZT.
B. S,,Pg,Pyo,P;; ¢ Tand 30 <j <2 such that Pj,Pﬁﬂ- ZT.

Moreover, the toric variety X5 corresponding to the chamber o;; is a partial

compactification of the variety tot(Oy, (—Dp) ® Oy, .(—D,)) from Corollary 3.7.

The first property of 7 means that the associated variety X5 is a partial
compactification of X;, so proving the existence of the triangulation 7 is sufficient to
prove the Proposition. The second property of 7 is not a natural one to consider, but will
become necessary to apply results from §2.5.

The proposition can be checked via a simple SAGE program [26] using the
TOPCOM package [22]; however, we include an explicit proof on how such a triangulation
can be constructed.

To prove the proposition, we break the statement up into 3 steps.

Step 1: We start by defining an explicit regular polyhedral subdivision S of B
containing 7.

Step 2: We prove that the polyhedral subdivision S can be refined to a regular
triangulation 7 of ’B containing 7.

Step 3: We show that any regular triangulation obtained this way fulfills the condi-

tions outlined in the Proposition.

4.1.1 Step 1:
We note that 7, is a regular triangulation of the set of points Py,...,P5,S;,S,. It is in
fact a star subdivision with respect to S;, S, of the convex hull Conv(P,,...,Ps,S;,S,).

Indeed, an example of an explicit weight function w giving the triangulation 7, is
w(S;) = w(S,) = 1,w(P;) = 2 for 0 < i < 5. To complete Step 1, we extend this weight
function to all 14 points of €.

Consider the weight function w(P;)) = 2 for 0 < i < 5, w(S;) = w(S,) = 1 and

w(P;) =5 for 6 <j < 11. The convex hull of the points
Z; = (P, w(F;)), Rj = (Sj,W(Sj)), 0O<i<ll,j=1,2)

then forms a polyhedron Q in R®. To obtain the regular subdivision of 93 corresponding
to the weight function w, we need to project the lower facets of the polyhedron Q down to
R’ along the last coordinate. A lower facet is defined to be a facet of Q where the inward

pointing normal has a positive last coordinate.
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Table 2 Dictionary of points contained in each lower facet of Q

Facet contains

FO le"'IZ5lR1/R2

Fsg Zo,...,24,R1,R2p

Fe Z1,...,Z5,R1,27,Z3

Fy Z0,29,...,25,R1,26,Zg

Fg Z0,21,23,24,25,R1,26,27
Fy Z0,21,22,24,25,R2,Z10, 211
FlO ZO,ZI,ZZ,Z3,Z5,R2,ZQ,211
F11 20,...,24,Ro,29,219.

We claim there are exactly 12 lower facets of Q. We write each lower facet F; in

the form u; - x + a; = 0 where u; is the inward pointing normal of the i** facet. Take H;

to be the halfspace corresponding to the lower facet F;, that is, the halfspace given by

u; - x +a > 0. The normals and additive constants are:

H,:(5,—1,-1,0,0,0,0,3)x —3 >0
H,:(-1,5,—-1,0,0,0,0,3)x —3 >0
H,:(-1,-1,5,0,0,0,0,3)x —3 >0
H;:(1,1,1,6,0,0,0,3)x —3 >0
H,:(1,1,1,0,6,0,0,3)x —3 > 0

Hy : (—5,—5,—5,—6,—6,0,0,3)x —3 > 0
Hg:(3,-1,-1,0,0,0,2,1)x—1>0
H,:(-1,3,-1,0,0,0,2,1)x —1 >0
Hg:(-1,-1,3,0,0,0,2,1)x—1>0
Hy:(1,1,1,4,0,0,—2,)x+1 >0
Hyp:(1,1,1,0,4,0,—2,1)x+1>0

Hy, :(—3,-3,-3,-4,-4,0,—-2,1)x + 1 > 0.

An easy computation shows that all 14 points lie in the intersection of the

relevant half-spaces. This is a direct consequence of the fact that @ € H; fori=0,...,11.

Table 2 shows which points lie on each lower facet.

To obtain the polyhedral subdivision S of 8 corresponding to the weight function w,
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Table 3 Polyhedra in the regular subdivision

Fo= Conv(Py,...,Ps,S1,52)

F5 = Conv(Py,...,Ps,S51,52)

Fg = Conv(Py,...,Ps,S1,P7,Pg)

Fr = Conv(Pg, Py, ...,Ps,S1,Pg, Pg)

Fg = Conv(Py, Py, P3, P4, P5, S1, Pg, P7)
Fg = Conv(Py, P, P2, P4, P5,S2, P10, P11)
Fio = Conv(Py,...,P3,P5,S9,Pg,P11)
Fi1 = Conv(Py, ..., Ps,S2,Pg,P1o).

we now project these facets down to R’ along the last coordinate. Denoting by ﬁi the
polyhedron obtained by projecting the facet F;, we obtain the set of 12 polyhedra given
in Table 3. We note here that when projecting, all points that lied on the facet F; lie in
the polyhedron E, by convexity of the polyhedron Q in R8.

It remains to show that the above collection F; contains all the lower facets of Q.
Showing that there is no other lower facet of Q apart from F,...,F;; is equivalent to
showing that |J F; + ((0,...,0, D)r., contains the entire polyhedron Q. Since all vertices
of Q lie inside each half-space Hi:it suffices to show that the union of the projections
?i contains the convex hull of Py, ..., P;;,S;,S,, that is, contains B. This is equivalent to
saying that they give a polyhedral subdivision (regularity is given by construction).

So we aim to prove the following claim.
Lemma 4.2. For F; and ‘p as above, we have | i1, F; = p.
To prove Lemma 4.2, we will need the following result.

Lemma 4.3. Suppose we are given a set of m inequalities L; < R; with ZJ-TZI Li < C <
ZJ-'ZI R;, then there exists an m-tuple of real numbers a; such that Li < a; < R; and

J J
eril aj =C.

Proof. To show that the claim holds, we define a;j(x) = Lj + x(R; — L). This is a linear
function such that, for all x € [0, 1],Lj < a;(x) < R;. Define f(x) = > aj(X).f is itself linear
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and thus continuous in x, with £(0) = Z]"il L;<C< eril R; = f(1). By the intermediate
value theorem, there is an x, € [0, 1] such that f(x) = Zj"il aj(xg) = C. Setting a; = a;(xc)

gives the m-tuple, proving the claim. |

Proof of Lemma 4.2. The first thing to note is that
P = Conv(Py,...,P;,S;,Sy) = Conv(Py,...,Pp).

So we will show that |J}1, F; = Conv(Py, ..., P;,).

We start by showing that U?:o ?i = Conv(Py,...,P5,S;,S,), which is equivalent
to saying that ?0, ... ,?5 form a polyhedral subdivision of Conv(Py,...,Ps,S;,S,).

The inclusion C is immediate from Table 3, so it remains to check the opposite
inclusion. Any point X € Conv(Py,...,Ps,S;,S,) can be written as X = Z?:o AP+ Sy +
K9S, for some A, u; € Rog with 3°4; 4+ 1y + uy = 1. Note also that Z?:o P; = 3(5; +Sy).
Now define j such that A; = min,_;_g{2;}. Then

5
X =" = AP+ B+ 1))S; + (84 + 12)S,
i=0

= D (4= AP+ (Bh; + 11))S) + (B + 112)S,.
0<i<5
i£]
Since A= ming_; s{A;} < A; for0 < i <5, we have that (1; — Aj) >Q0for0 <1i<5.As

A My, Mg = 0, we also have 34; + uy, 32 + uy > 0. Also,

5
D Oy = A+ Ghy )+ Gty = D diF g+ =1,
0<i<5 =0
i#]

and thus X € 17"] This shows (J7_, F; = Conv(Py, ..., P5, Sy, S,).

To show U11=10 ﬁi = B, we note again that the inclusion C is immediate. For the
opposite inclusion 2, take a general point X in 3. Then X can be written as X = Zil:lo AP,
with2; > 0for0 <i<1land > 4 = 1.

Without loss of generality, assume that (Ag +1; + Ag) > (g + A;¢ + Ay;) (the case
where the inequality is reversed is analogous). We will now show that if X ¢ |J?_,F; =
Conv(Py,...,Ps,S;,S,), then X € U?:e ﬁi (if the inequality had been reversed, then X
would be in J}1 F)).
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Let

vi= hithreri— 3 ((he+hg+hg) = Ggtiyg+iy)) for0<i<2

Vv; = )“i+)\‘6+i f0r35155,
ty = ((he + 27 +2rg) = Gog + 219+ 211))
/¢L2 = 0.
Then
5 11
Z ViP; + 1y Sy + 1Sy = Z)‘ipi
i=0 i=0
and
5 11
Zvi+ﬂl +/L2 ZZALZ 1.
i=0 i=0
Note p1; > 0 by assumption and p, = 0. Thus,if v; > 0for 0 < i < 5, X is expressed
as an element of Conv(P,,...,P5,S;,Sy) = U?:o E using the above equations. Otherwise,

we will claim that X € U?:sﬁi- For 3 <i < 5, we have v; > 0 as both }; and XA¢_; are > 0.
We turn our attention to the v; fori =0, 1, 2.

For 0 <i <2,v; > 0is equivalent to
1
3 (Mg + 27+ 2g) = (hg + 210 +A11)) < Ay + Agpss

so the condition that all v; are non-negative is equivalent to

1 .
3 (()‘6 +A;+Ag) — (g + A0+ )”11)) = Ofililfz{)‘i + Agpit

Therefore, X € |J}_oF; = Conv(P,, ..., P5,S;,S,) if
1 :
2 (()‘6 + A7 +Ag) = (kg + 410 + )»11)) < min {4; + Ag ).
3 0<i<2

Suppose this condition does not hold, that is,

mi Z{Ai + gy} <

0o<i<

%((k6+)~7 +)~8)—()~9+)\10+)‘11))' (14)

Without loss of generality, we may assume that Ay + Ag = ming_;»{}; + Ag;}
(by symmetry, the other cases are analogous). We will show that X € ?6. Any point Y in

Fg = Conv (P,,...,Ps,S,,P;,Pg) can be written as

8

i=1 =7
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If we find v;, 1, such that this sum is equal to 3} 1;P; = X, we are done as we will have
expressed X as an element of Fy.

Given a choice of real numbers o, a; with o; + ay = 1, define

V= A+ o;(Bhg+ 24+ (kg +Ag+ A1) — (Ag+2Ag) forl<i<z2,
v; = A+ g for3 <i <5,
= 3k + 3k,

Veii = rgpit+ ai(—3hg — 2hg — (hg + A1g + A11)) forl <i<2.

Substituting these values into the expression for Y gives

5 8 11
i=1 i=7 i=0
as well as
11
Dovitm=2 =1
i=0

For this choice of v;’s and 4, to define an element ¥ € Fg, we require v; > 0 for all i and

w1y > 0. We note that, as Ay, g > 0, we have p; > 0.

Therefore, what remains to prove is that there exist «;, o, € R with o) + «,
such that v; > 0 fori e {1,...,5,7,8}. Fori = 1, 2, we can arrange the inequalities v; > 0

and vg; > 0 to give

A Ag — Ay Agai
3hg + 2hg + (Ag + Ayg + A7) 3hg + 24g + (Ag + Ayg + A7)

This works provided 34 + 2Ag + (Ag + A9 + A;;) # O but if that term was zero, then by
non-negativity of the 1; we would have Ay = Ag = Ag = --- = A;; = 0 and thus X € Fg. So
if there exists a pair («;, ,) with (15) holding for i = 1,2 and «; + @, = 1, then X € F;.
Note that for all i,

Mo tre — A - Me+i
3hg+ 20+ (Ag+ Ao+ A1) ~ 3hg+ 245+ (g + Ao+ A1)

as Ay +Ag = minoiifz{ki + Agai)-
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Furthermore,
0 <Ag+A;+Ay+Ag+Aig+2Aig
& 20 +2hg <Bhg+ Ay 4 Ay + 205+ Ao+ Aig+ Ay
< > hothe— A <3hg+2hg+ (g + g+ A1)

2 Aot+re—A; <
< lel 3ho+206+(Ag+A10+A11)  — 1

Lastly, we are given that Ag+Ag = ming_;o{A;+4gy;} < 3 (kg + A7 +Ag) — (hg + A0 + A11)).

This leads to the following sequence of implications:

1
Aot+re <3 ((ke+A7+2g) = (g + 219+ 211))
=4 3)”0+2)‘6+)‘9+)‘10+)‘11 <Ay +Ag

2 Abti
< .
< 1 = Zl=1 3xo+2r6+(Ag+A10+A11) "
In summary, we have shown that fori = 1, 2, we have

Mo tre — A - Mo+
3hg+ 20 + (Ag+ Ao+ A1) ~ 3hg+ 2hg+ (g + A9+ A1)

and that

2
D Mo+ Ae — A <1<y Moti _
£~ 3hg + 2hg + (kg + 1o +A11) S Bhg + 2k + (kg + g + 1)
Applying Lemma 4.3 gives us the existence of a pair «;, «, as required, concluding

the proof to Lemma 4.2. [ |

The Lemma 4.2 shows that we have indeed found all lower facets of the polyhe-
dron Q, meaning that the collection Fl e r?n gives a regular polyhedral subdivision &

of 9B, thus concluding Step 1.

4.1.2 Step 2:

This is true by general convex geometry (using the poset of refinements and the
secondary polytope). By Theorem 2.4 in Chapter 7 of [14], the poset of (non-empty) faces
of the secondary polytope () is isomorphic to the poset of all regular subdivisions
of B, partially ordered by refinement (see also Theorem 16.4.1 in [15]). The vertices
of T (P) correspond to regular triangulations. Thus, our regular subdivision obtained
by projection must correspond to some face of X(3) and any vertex of that face will

correspond to a regular triangulation refining it.
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4.1.3 Step 3:

Consider a regular triangulation 7 obtained by refining S. By definition, it is a regular
triangulation of 3. Recall Table 3. Denote by C; the collection of points used to define the
polyhedron F; in the table. Note that F, ..., F5 are the simplices in 7y, and therefore any
simplices in 7 \ 7, do not originate from refining any of fo, . ,?5.

Thus, the last step of the proof reduces to showing that none of the polyhedra
fi, 0 < i < 11, contain any of the points we did not define it by, that is, E ne = ;.
Indeed, in that case we note that, by consulting Table 3, the polyhedra E each fulfill at
least one of the conditions A or B in the proposition. If ?i N ¢ = C;, then all simplices in
a refinement of F, are defined as the convex hull of a subset of C; (as there is no interior
point to refine upon), thus inheriting the properties A or B from ?i-

Showing that E N¢ = C; for 6 <i < 11 reduces to a simple computation. We shall
do the computation for ?6, as the remaining cases are analogous by symmetry.

We need to show that Py, Pg, Py, Py, Py, S; ¢ Fg. Any point X in Fg can be written

as
)\1P1+“.+)\5P5+MISI+)\'7P7+)\’8P8:(_)"3_)\’4_)‘5_)‘7_)\‘8'
3h; — Ay — Ay —Ag +2hy — Ag,Bhy — Ay — Ay — A5 — Ay + 2hg, —A; — Ay + 3As,

A +Ay+3hg kg +Ag+hg+ 1y + Ay 4+ Ag, Ay +4y), (16)

with A;,u; = 0 and > A; + u; = 1. We note that the last two coordinates of X are
A3 + g 4+ Ag + 1y + Ay + Ag and A; + A,, respectively. Assume P, € Fg and had an
expression as in Equation (16). Then, as 1;,,u; > 0, we can see by looking at the last
two coordinates that A; = A, = Ay = u; = A; = g = 0O and ; + A, = 1. But
then the first coordinate is A; -0+ 4, - 0 = 0 # 2, hence we get a contradiction
and P, ¢ Fg. By an analogous reasoning, for S,,Pg,P;y,P;; we obtain that all but
X1,Ay would need to be 0 again and the sum of these two would need to be 1,
which means that not both the second and third coordinate (being 34, 31,) can be 0.
Hence S,, Py, Py, P;; & fﬁ.

Finally, we need to show P; ¢ F,. Assume we had an expression for P, as in
Equation (16). Since A; > 0, considering the last two coordinates gives A; = A, = 0 (since
A; = 0) and Ay + A4 + A5 + u; + A7 + g = 1. But then the first coordinate is —(15 +
Ay 4+ A5 + Ay + Ag) < 0 < 2, a contradiction. Thus Py ¢ Fg, and thus F; N € = Cg as
claimed.

The other cases are analogous by symmetry. Thus we finished Step 3, hence

proving Proposition 4.1.
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4.2 The ideals associated to the partial compactification

Recalling the notation from section 2.5, we denote by x; the variablein Clx, ..., x7;, Uy, Uy]
corresponding to the point P; and by u; the variable corresponding to S;. These 14

variables correspond to the rays of the fan Xy p; p, from Corollary 3.4.

Lemma 4.4. There exists a global function on Xy 5, D, that has the form

3.3 3,3 3,3
W = U (CopXgXg + C1X]1X5 + CoXpXg — A X3X X5XgX7Xg)

(17)
+ Uy (C3X3X3 + C4X3X30 + CsXaX]) — BhpXoX) XpXgX10X1 1),
for some ci,kj e C.
Proof. Consider the hyperplane
H:={(m,t,,t,) e My ®R? | t, +t, = 1) (18)

in My ®R2. The cone 1%v,p,.0, | is given by the cone over the convex hull of the following

8 points on H:

(Olorolorllorl)r (_11_11_11_11_11011)1 (OIOIOIIIOIOI 1)1 (01011/010/110)1
©,1,0,0,0,1,0), (0,0,0,0,0,0,1), (1,0,0,0,0,1,0), (0,0,0,0,0,1,0).

Recall that there is a correspondence between points in the dual cone |X;7p, p, 1"
and global functions on X, p, . Note that, when one constructs a superpotential for
Xir.p,p, Using this correspondence with the 8 points above, one obtains the super-
potential w = u;Q,; + u,Q,,. To see the global function on X900, it suffices to
compute what monomials these 8 points correspond to on XV,D;,D;,- This gives the

8 monomials in (17). [ |

For our purposes of comparing the Batyrev-Borisov construction with the one
by Libgober-Teitelbaum, we choose ¢; =1 and A; = A, =: A.

We fix a triangulation 7 fulfilling the properties of Proposition 4.1. Let X = C!*
and consider the group Gy, corresponding to the fan 2v.0,.D, with its action on X. From

the triangulation 7, we obtain the ideals:

7:= <HXi H uj ‘ U up, U U Uy give the set of vertices of a simplex in T>,
gl jeJ iel jeJ

2
J = <HXi U Up, U U Uy give the set of vertices of a simplex in T> .
igl iel j=1
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Before we can apply Proposition 2.25 and Corollary 2.26, we need to ensure the
condition Z € /ow, J holds.

Lemma 4.5. For any triangulation 7 as in Proposition 4.1, defining 7, 7 and w as above
with A% £ 0,1, we have Z € /7, 9w. Therefore, this choice of superpotential fulfills the

condition of Proposition 2.25.

Proof. To show the containment Z C /0w, 7, we prove that all the generators of Z are
in «/ow, J. The ideal 7 is, by definition, generated by the monomials that correspond to
the simplices in the triangulation 7. For a simplex T € 7, both S; and S, are vertices.
Thus, by definition, the monomial associated to T is in 7 and hence in Jow, J.

For any simplex T € T \ 7, either condition (4) or (B) of Proposition 4.1 holds.
We claim that the monomial associated to a simplex T fulfilling either of those two
conditions is an element of ~/dw and therefore an element of /aw, 7.

We note that if T € 7 \ 7, fulfills condition (A4), that is, does not contain any of
the points S;.Pg, P;, Pg and there is a pair of points of the form Per6+j with 3 <j <5 also
not contained, then by definition u,x;xg, ;Xgx;xg divides the monomial associated to T.

Similarly, if T fulfilled condition (B) iljlstead, UyXjXg, jXgX X1y (for some 0 < j < 2) would
divide the monomial generator of 7 associated to T.

To show that any monomial associated to a simplex in 7'\ 7, is in Vow € Vow, T,
it is thus sufficient to prove that the six monomials u,XyxgXgX;0X;;, UsX X7XgX10X1],
Uy Xy XgXgX0X 1, U X3XgXeX7Xg, Uy XsX0XeXXg and U, XsX,;XgX,Xg are elements of +/dw.

By symmetry of the x; in w, we note that it is sufficient to show that
UyXgXgXgX 10X, € ~dw. Start by explicitly writing down the ideal (dw), that is, the

ideal generated by the partial derivatives of w.

(ow) = <3u1X0X6 3)\u2X1X2X9X10X11,3u1X1X7 3AUL XX XgX (X1,
3u X2X8 3)\u2X0X1X9X10X11,3u2X3X9 3AU X4 X XgX7Xg,
3Uyx3x3) — 3AU X3 X5 XX7Xg, SUpXEXE| — 3MU X3X4XX7Xg,
3u1X0X6 3AU X3 X X5 X7Xg, 3u1X1 X7 3AU X3 X XsX5Xg,
3u1X2X8 3AU X3 Xy Xs X X7, 3u2)(3x9 BAUL XXXy X 0X11,
3u2X4X10 3AUL XX XXX 1, 3u2X5X1 1 — 3AULXpX 1 XpXgX1 (),
X0X6 +x3x3 + X2X8 3)»X3X4X5X6X7X8,X3X9 + X4X10 + X5X11 3AXgX Xy XgX 19X 1)
We see that 3u, x2x3 ; — 3hu, WAL € (dw) for 0 < I < 2. Notice that since

ac—bd =c(a—b)+b(c—d),if a— b,c — d are elements in an ideal, then so is ac — bd.

#7202 YoIe| €0 UO Jasn 3auoliqigienusz-As3a Ad Gr9¢y | 2/6602/€/720z/2101e/uiwi/wod dno-olwapede//:sdiy wody papeojumod



2132 A. Malter

Hence by iterating this we obtain that

27u§X(2)X%X%X2X§Xg — 27)L3ugx(%x%x§xgxf0x?l € (0w).

Similarly,
27udx3x3x2x3x3,x3, — 2703 udxEx5x2xIx5x3 € (dw).
Therefore,
27)%ududx? .. .Xéxg Lxd = DA uudxd . .Xéxg X3 € (dw)
= 2721 - 2Oududxd .. . x2x3 ... x3, € (dw)
= u?ugxg . .X%Xg . .X?l € (dw)
= (U UyXy ... X11)3 € (dw). (19)
Consider (,?TWI, giving
X3X3 + X3%5 + X3X5 — 3AXyX4XgXgX,Xg € (AW). (20)
Furthermore, we note that Z?:o Xi% € (w), and thus
2
D Buyxlxd,; — 3huyXoX, XyXgX 0X) € (IW). (21)
i=0

By (20), we have that x3x,X5X¢X7Xg + (0W) = %(X%Xg + erxg + ngg) + (dw). We use this
to substitute into (19) to obtain that

3,3,3,3.3.3 .3 3,3 3.3 1 3 .3\\3
UpXgX]X5XgX 10X 1 (U (XpXg + X7X7 + X5X5))° € (dw).

2723

Performing the same style of substitution with (21), we obtain

3.3,3,3.3.3 3 333333 .3 _ 6
UpXX1 X, XgX10X11 UpX0X1 X XgX10X]) = (UpXoX XpXgX 10X 1) € (IW).

Thus u,xpx;XyXgX;0X;; € VOW.
. ow .
By comparing the elements x, 57, u,XoX; XXX 0X;; € ~0w, we obtain that

3.3 . . . . . .
u;X;Xg € ~/ow, implying u,x,xg € vow. This, in turn, implies that u,xyx;xgx,0X;; €
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+~/dw, by inspection of gTV‘; € (dw) C +ow. Similarly, u,xyx,x9%,9x;; € vVOw. We also
have u,xsx,; € +/dw by an analogous computation. Finally, §% = x3x3 + x3x3 + x5x§ —
3AX3X X5 XgX7Xg € ~/ OW.

Therefore, one can intuit and then compute that

4_ 3.2 3.3.3 _3
(UyXpXgXgX 10X 1) = —UZX]XgX7XgX10X]] + (UpXpX1XgX19X11)

3,2, 3.3.3 _3
— UpX)XpXgXgX X  (UpXXyXgX 0X11)

3 2 4.4 4
+ 3AUL X X3 X X5 X7 XgXgX X1 * (UpX5X 1)

+ USXoXaXaXToXT1 - (XoX5 + X3X35 + X5X3 — 3AX3X,X5XgX7Xg) € Vow.

(22)
Thus, we have shown that u,xyxgXgX;0X;; € +/dw. By symmetry, any simplex
fulfilling properties (A) or (B) corresponds to a monomial in 0w, 7. Hence, any
monomial associated to a simplex T € 7 \ 7; is an element of Jow, 7, concluding the
proof that Z € /ow, 7. [ ]

Corollary 4.6. Consider the GKZ fan of tot (Ox, (—Dj}) ® Oy, (—D)) and the group Gy

from above. There is a chamber o, with affine open U, such that:

() [U,/Gsxlis a partial compactification of tot (O, (—Dj) ® Oy, (=D,)).

(ii) There is a superpotential corresponding to the eight points in |EV,DZZ,D;) VNH
taking the form w = u, (x3x3 + X3x5 + X3x3 — 3AX3X,4XgXgXXg) + Uy (X3X3 +
xX3x30 + X5K7) — BAXoX) XpXgX1 Xy ))-

(iii) With Ip, jp as defined in §2.5, we have Ip C /0w, jp.

Proof. Proposition 4.1 proves (i), Lemma 4.4 proves (ii), and finally Lemma 4.5 shows
(iii). ]

4.3 Relating Xy and Xi7

Recall that the partial compactification of the total space tot (Ox,, (—Dj) @ Ox,,.(—D,)) in
Corollary 4.6 corresponds to a chamber oy of the GKZ fan of tot((’)Xv(—D;)) ® OXV(—D&)).
We then know that it is birationally equivalent to tot(Ox,  (—D}) @ Ox, (—Dp)).

Thus, we want to now explicitly find a triangulation of 8 corresponding to the

Batyrev-Borisov mirror family. There, the superpotential will take the form

W = U (X3Xg + XoX5 + X5X3 — 3MXgX,X5XgX7Xg) + Uy (X3Xg + XaXoy + Xox3,

— 3AXX X XgX10X11)-
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Note that, by Lemma 4.4, this is the form the superpotential should take in the

Batyrev-Borisov mirror. In other words, we need a chamber g in the GKZ fan

corresponding to tot(Ox, (—=Dy) ® Ox,(—Dy)), where a general section of Oy, (-D;) @
Ox,(=Dg) will yield a complete intersection in Xy, and thus a Batyrev-Borisov

mirror.

Lemma 4.7. Consider the GKZ fan of tot (Ox, (—Dj}) & Oy, (—D,)) and recall the group

Gy from above. There is a chamber o, with affine open U, such that:

(i) [U,/Gxl =tot (Ox,(—=D}) ® O (—Dp)).
(ii) A superpotential corresponding to the eight lattice points of |EV,D£Z,D;) |VNH is
of the form w = u; (x3x3 +X3X3 + X3X3 — 3AXy X, X5XgX,Xg) + Uy (X3X3 + X3X5 +

3,3
X5X7) — 3AXoX1 XpXgX10X11)-

(iii) For Iq,Jq as defined in §2.5,Iq C /0w, Jq.

Proof. This proof will construct the triangulation 7,

o, We consider the 42 maximal cones from Table1l. For each of those cones

0,1 < 1 < 42, we associate a simplex given as convex hull of the 5 vertices

corresponding to the chamber

corresponding to the 5 rays of o; plus the two vertices corresponding to the
bundle coordinates, that is, (0,0,0,0,0,1,0) and (0,0,0,0,0,0,1). So for example
the first cone, with rays pg, 002,09, 019, Will correspond to the simplex with
vertices (3,0,0,-1,-1,1,0), (0,3,0,-1,-1,1,0), (0,0,3,-1,-1,1,0), (0,0,0,0,0,1,0),
(0,0,0,0,0,0,1), (0,0,0,2,-1,1,0), (0,0,0,—1,2,1,0). Another way to formulate this is
that we take the star subdivision of the cones from Table 1 on the two bundle points
S, S,.

Regularity of this triangulation of the 14 points is an easy consequence
of its construction as a star subdivision, hence it corresponds to some chamber

o, in the GKZ-fan. Indeed, the star subdivision can be obtained by giving the

p(i)ints S;,S, a weight of 1 and giving all other points the same weight of w =
2 and then refining the resulting regular polyhedral subdivision into a triangu-
lation. Alternatively, one can check the regularity of this triangulation by using
SAGE.

The third item follows from the fact that we do not partially compactify, hence

jq = Iq and therefore Iq C /ow, jq, as required. [ |

We now have all the necessary tools to prove the main result of this paper,

Theorem 1.1.
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Proof of Theorem 1.1. Recall the chambers o, and o in the GKZ fan of the toric

p
variety tot (Ox, (—D}) @ Ox, (—D))) given in Corollary 4.6 and Lemma 4.7. By applying
Corollary 2.26, we have D”(coh Z,) = DP(coh Vi), as required. |

We note that analogous computations to the ones displayed in this paper can

yield the following result in lower dimension.

Theorem 4.8. Let Q; = x7 + x5 — x3%,, Q, = X5 + X5 — X1 X, and let p; = x9xZ + x5x3 —

X3X,X5Xg, Dy = X3X3 + X2X5 — X, X,X,Xg. We define the group G, € PGL(3, C) given by the

four automorphisms

diag(1,1,1,1), diag(fg, —¢g, —Cg '/ ¢g V), diag(Cy, ¢ary th ), diaged, —¢8, —¢53,¢5%),

where ¢ is a primitive k™" root of unity.

The Batyrev-Borisov mirror to Z(Q;, Q,) € P? can be computed to be a complete
intersection Z, in a 3-dimensional toric stack A given as the zero locus Z, = Z(p,,p,) €
App. Take the stacky complete intersection V, := Z(Q;, Q,) < [(Cc*\{o})/(C* x G4)]. Then

D”(coh V,) = DP(coh Z,).

Remark 4.9. One can aim to generalise this to higher dimensions by looking at the

zeroset of the two polynomials
— n _ N n
Qpn=x1+ +X3 =Xy . Xpand Qp, =X+ + X5, — X1 ... X,

in P2n-1,

Unfortunately, 2(Qy,,Q,,) < P21 ig itself singular for n > 4, which poses
problems for the required ideal containment condition Z C /0w, J to hold. However,
using these methods of VGIT is still interesting in the context of categorical resolu-
tions. Indeed, the direct generalisation of the Libgober-Teitelbaum construction above
can be categorically resolved. This technique and its generalisations are a subject of

future work.

Remark 4.10. The notion of f-duality introduced by Rossi in [23] and [24] gives an
efficient method of computing and extending the Batyrev—Borisov mirror construction.
In particular, applying f-duality to the variety V;r, C Pd Gg, vields V, € P°.

The generalisations looked at in the Remark 4.9 were inspired by f-duality and
it seems to be an interesting question when, in general, one can use the methods of

variations of GIT employed in this paper to strengthen the notion of f-duality.
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