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In this paper, we study a particular mirror construction to the complete intersection of

two cubics in P5, due to Libgober and Teitelbaum. Using variations of geometric invariant

theory and methods of Favero and Kelly, we prove a derived equivalence of this mirror

to the Batyrev–Borisov mirror of the complete intersection.

1 Introduction

Libgober and Teitelbaum [20] proposed a mirror to a Calabi–Yau complete intersection

Vλ of two cubics in P5 defined as the zero locus for the two polynomials

Q1,λ = x3
0 + x3

1 + x3
2 − 3λx3x4x5, Q2,λ = x3

3 + x3
4 + x3

5 − 3λx0x1x2.

Their proposed mirror WLT,λ is a (minimal) resolution of singularities of the variety

VLT,λ with defining equations Q1,λ, Q2,λ but in the quotient space P5 /G81, where G81 is

a specified order 81 subgroup of PGL(5,C). They showed topological evidence that Vλ

and WLT,λ are a mirror pair, proving on the level of Euler characteristics that χ(Vλ) =
−χ(WLT,λ). In [13], Filipazzi and Rota verify a state space isomorphism between the two

Calabi–Yau varieties by providing an explicit mirror map.
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2100 A. Malter

Batyrev and Borisov in [3] introduced a mirror construction for Calabi–Yau

intersections in Fano toric varieties using polytopes, showing mirror duality for (1, q)-

Hodge numbers. This mirror construction agrees with constructions by Green–Plesser

[16] and Berglund–Hübsch [4] for Fermat hypersurfaces. However, the Batyrev–Borisov

mirror to two cubics in P5 differs from the one given above by Libgober and Teitelbaum.

In this paper, we establish a connection between the mirrors of Libgober–

Teitelbaum and Batyrev–Borisov for two cubics in P5 in the context of Homological

Mirror Symmetry, using variations of geometric invariant theory (VGIT). In particular, we

show that the bounded derived category of coherent sheaves of the Libgober–Teitelbaum

mirror is derived equivalent to that of a complete intersection Z ⊆ X∇ in the Batyrev–

Borisov mirror family. Note that there exists a toric stack X∇ with coarse moduli space

X∇ (see 2.1 for the toric stack construction and 3.1 for the fan associated to this toric

stack). On the level of stacks, we will prove the following result.

Theorem 1.1. Let λ ∈ C such that λ6 �= 0, 1. Consider the two polynomials

p1,λ = x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8,

p2,λ = x3
3x3

9 + x3
4x3

10 + x3
5x3

11 − 3λx0x1x2x9x10x11.

Let Zλ = Z(p1,λ, p2,λ) ⊆ X∇ and VLT,λ = Z(Q1,λ, Q2,λ) ⊆ [P5 /G81]. Then

Db(cohVLT,λ) � Db(cohZλ).

This result is expected in the context of Kontsevich’s Homological Mirror Sym-

metry Conjecture. As both VLT,λ and Zλ are conjectured to be (homological) mirrors

of the complete intersection of two cubics, we expect their corresponding derived

categories to be equivalent to each other and to the Fukaya category of the zero locus

Z(Q1,λ, Q2,λ) ⊆ P5.

There has been work to unify various (toric) mirror constructions [1–4, 6] in the

literature via derived equivalence [8, 9]. This paper adds a new construction to this

that has been elusive in the past. In particular, this is the first application of partial

compactifications in VGIT quotients to prove the equivalence of derived categories for

complete intersections, and not hypersurfaces, for Calabi–Yau varieties.

We start by giving some background on the mathematical tools necessary to

prove Theorem 1.1 in Section 2. This includes a short introduction to the relevant tools
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Libgober–Teitelbaum and Batyrev–Borisov 2101

in toric geometry, the Batyrev–Borisov mirror construction, and VGIT quotients as

outlined in [11]. In Section 4, we then study the link between the Batyrev–Borisov mirror

construction and the mirror given by Libgober–Teitelbaum, proving Theorem 1.1.

2 Background

In this section, we give the necessary background on the Batyrev–Borisov mirror

construction, the Libgober–Teitelbaum construction, and the tools used to connect those

two. All the varieties considered in this paper will be defined over the complex numbers.

More detailed expositions can for example be found in [5], [7], [9], and [20].

2.1 The Cox construction for toric stacks

Let M be a lattice of rank d and N its dual lattice, with the pairing

〈 〉 : M × N → Z .

We extend this to a pairing between M
R

:= M ⊗
Z
R and N

R
:= N ⊗

Z
R in the natural way.

To associate a variety X� to a fan �, we can use the Cox construction (see §5 of

[7]). Start by noting that each ray ρ of the fan � corresponds to a divisor Dρ on X� (see

§4 of [7]). Then we have the following exact sequence:

0 → M
ι→

⊕
ρ∈�(1)

ZDρ → coker ι → 0, (1)

where ι(m) := div(χm) = ∑
ρ∈�(1)〈m, uρ〉Dρ .

We will write Z�(1) := ⊕
ρ∈�(1) ZDρ . Since C∗ is a divisible group and hence an

injective Z-module, the functor Hom
Z
(−,C∗) is exact, so applying it to (1) yields the exact

sequence:

1 → HomZ(coker ι,C∗) → HomZ(Z�(1),C∗) → HomZ(M,C∗) → 1. (2)

Define

G� := HomZ(coker ι,C∗). (3)

Note that Hom
Z
(Z�(1),C∗) � (C∗)�(1) and Hom

Z
(M,C∗) � TN , where TN is the torus of the

variety. Hence, we may rewrite (2) as

1 → G� → (C∗)�(1) → TN → 1. (4)

When describing G� explicitly, the following lemma is useful.
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2102 A. Malter

Lemma 2.1 (Lemma 5.1.1(c) in [7]). Let G� ⊆ (C∗)�(1) be as in (4). Given a basis e1, . . . , en

of M, we have

G� =
{

(tρ) ∈ (C∗)�(1)

∣∣∣∣ ∏
ρ

t
〈ei,uρ 〉
ρ = 1 for1 ≤ i ≤ n

}
.

We now have both an affine space C�(1) and a group G� , which can be shown

to be reductive, thus only further require an exceptional set Z in order to construct the

toric variety X� as a geometric quotient. For each ray ρ ∈ �(1), introduce a variable xρ

and consider the total coordinate ring of X� ,

S := C[xρ | ρ ∈ �(1)].

For each cone σ ∈ �, let xσ̂ = ∏
ρ �∈σ(1) xρ . We define the irrelevant ideal

B(�) = 〈xσ̂ | σ ∈ �〉 ⊆ S.

Since τ 
 σ , we have that xτ̂ is a multiple of xσ̂ . Thus, we only need to consider maximal

cones to generate the irrelevant ideal. Define Z(�) = Z(B(�)) ⊆ C�(1). We then have:

Theorem 2.2 (Theorem 5.1.11 in [7]). Let X� be a toric variety without torus factors,

associated to a fan �. Then

X� � (C�(1) \Z(�)) // G� .

Most of the discussion to follow happens on the level of stacks, so we define the

toric stacks relevant for us here.

Definition 2.3. Let � be a fan. Define the Cox fan Cox(�) ⊆ R�(1) to be

Cox(�) := {Cone(eρ | ρ ∈ σ)
∣∣σ ∈ �}.

Denote by n the number of rays in the fan �. Then the Cox fan of � is a subfan

of the standard fan corresponding to the toric variety An. Thus, U� := XCox(�) is an open

subset of An. Consider the group G� as defined in Equation (3).

Definition 2.4. We call U� the Cox open set associated to � and define the Cox stack

associated to � to be

X� := [
U�/G�

]
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Libgober–Teitelbaum and Batyrev–Borisov 2103

In the smooth and orbifold cases, we have the following result relating X� to

X� .

Theorem 2.5 ([12]). If � is simplicial, then X� is a smooth Deligne–Mumford stack with

coarse moduli space X� . When � is smooth (or equivalently X� is smooth) X�
∼= X� .

2.2 Polytopes and the Batyrev–Borisov construction

We now define ref lexive polytopes and nef partitions. We can use them to introduce the

Batyrev–Borisov duality, following [3, 5].

Definition 2.6. A polytope 	 in MR is a convex hull of a finite set of points in MR. If this

finite set can be chosen to only consist of lattice points of M, we call 	 a lattice polytope.

Definition 2.7. Let 	 be a full dimensional lattice polytope in MR with 0 an interior

lattice point. Its dual polytope 	∨ is given by

	∨ := {n ∈ NR | 〈m, n〉 ≥ −1 ∀m ∈ 	}

We call 	 ref lexive if the dual polytope is also a lattice polytope.

Given a lattice polytope 	, we can associate a toric variety to it by considering

its normal fan �	 with its corresponding toric variety X�	
.

The polytope 	 corresponds to the anticanonical divisor of X�	
in that the lattice

points of 	 correspond to the global sections of the anticanonical divisor. This in turn

allows one to construct a Calabi–Yau hypersurface in X�	
by considering the zero section

of the global section; however, we want to construct Calabi–Yau complete intersections.

To do so, we must construct a nef partition of the polytope 	.

Definition 2.8. Let 	 ⊆ MR be a reflexive lattice polytope. A nef partition of length r of 	 is

a Minkowski sum decomposition 	 = 	1 +· · ·+	r where 	1, . . . , 	r are lattice polytopes

with 0 ∈ 	i.

Consider a reflexive polytope 	 ⊆ MR with nef partition 	 = 	1 + · · · + 	r. Then,

for 1 ≤ j ≤ r, we define

∇j := {n ∈ NR | 〈m, n〉 ≥ −δij for all m ∈ 	i, for 1 ≤ i ≤ r}.

We note that these polytopes are all lattice polytopes, and define the polytope ∇ as their

Minkowski sum ∇ := ∇1 + · · · + ∇r. We call ∇1, . . . , ∇r the dual nef partition to 	1, . . . , 	r.
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2104 A. Malter

To understand the statement of Batyrev–Borisov duality, we note that a lattice

polytope 	 corresponds to a d-dimensional Gorenstein Fano toric variety X	. Each of

the polytopes 	i corresponds to a divisor Di on X	. The nef partition 	 = 	1 + · · · + 	r

decomposes the anticanonical sheaf O(−KX	
) as tensor product

⊗r
i=1 OX	

(Di). Now

the lattice points inside the 	i correspond to global sections of these line bundles.

Taking the zero sets of such sections, we can associate to each polytope a family of

hypersurfaces. By intersecting these, a nef partition corresponds to a family of (d − r)-

dimensional Calabi–Yau complete intersections in X	. Similarly, the dual nef partition

∇ = ∇1 +· · ·+∇r gives a family of (d−r)-dimensional Calabi–Yau complete intersections

in X∇ .

Remark 2.9. The generic complete intersection in the family associated to the dual nef

partition ∇1, . . . , ∇r may be singular.

In [2], Batyrev formulates the original construction in a way that fixes this

problem. In this case, one uses a maximal projective crepant partial desingularization

(MPCP-desingularization), which reduces to a combinatorial manipulation of the normal

fan to ∇.

For every maximal cone of the normal fan, we choose a regular triangulation

of it. Therefore, all maximal cones should contain exactly the minimal number of rays

dictated by the dimension, since a triangulation uses simplices. Doing this for all

maximal cones gives exactly a maximal projective triangulation. When speaking of X∇ ,

we will thus think of a MPCP-desingularization of the variety associated to the normal

fan of ∇, obtained in this way.

Batyrev and Borisov prove the following result, showing that their construction

produces topological mirror duality for (1, q)-Hodge numbers.

Theorem 2.10 (Theorem 9.6 in [3]). Let V be a Calabi–Yau complete intersection of r

hypersurfaces in Pd and d− r ≥ 3 and Ŵ be a MPCP-desingularization of the Calabi–Yau

complete intersection W ⊆ X∇ . Then

hq(�1
Ŵ) = hd−r−q(�1

V) for 0 ≤ q ≤ d − r.

2.3 Toric vector bundles and GIT quotients

We first discuss how to construct toric vector bundles. Recall that a Cartier divisor

D = ∑
ρ aρDρ on a toric variety X� corresponds to the line bundle L = OX�

(D), which is
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Libgober–Teitelbaum and Batyrev–Borisov 2105

the sheaf of sections of a rank 1 vector bundle π : VL → X� . The variety VL is toric and

π is a toric morphism. This is shown by directly constructing the fan of VL in terms of

� and D, which we do now. Given a cone σ ∈ �, set

σ̃ = Cone ((0, 1), (uρ , −aρ) | ρ ∈ σ(1)).

Then σ̃ is a strongly convex rational polyhedral cone in N
R

× R for all cones σ ∈ �. Now

let � ×D be the collection consisting of cones σ̃ for σ ∈ � and their faces. This is a fan in

NR ×R and the projection π : N × Z → N is compatible with � × D and �, thus inducing

a toric morphism

π : X�×D → X� .

Proposition 2.11 (Proposition 7.3.1 in [7]). π : X�×D → X� is a rank 1 vector bundle

whose sheaf of sections is OX�
(D).

The variety X�×D is sometimes also denoted by X�,D.

For decomposable vector bundles of rank higher than 1, we can repeatedly apply

Proposition 2.11 to construct the total space of the vector bundle, following [10]. Taking

r torus-invariant Weil divisors Di = ∑
ρ∈� aiρDρ , we define

σD1,...,Dr
:= Cone

(
{uρ − a1ρe1 − · · · − arρer | ρ ∈ σ(1)} ∪ {ei|i ∈ {1, . . . , r}}

)
⊂ NR ⊕ Rr .

Let �D1,...,Dr
be the fan generated by the cones σD1,...,Dr

and their proper faces, and call

X�,D1,...,Dr
the associated stack. We obtain the following result.

Proposition 2.12 (Proposition 4.13 in [10]). Let D1, . . . , Dr be divisors on X� . There is an

isomorphism of stacks

X�,D1,...,Dr
∼= tot

(
OX�

(Di)
)

.

Geometric invariant theory (GIT), developed by Mumford, is a powerful tool in

modern algebraic geometry. We will here discuss the toric version of it, following §14 of

[7].

Roughly speaking, GIT deals with ways to take almost geometric quotients of spaces by

some reductive groups acting on them. As a model for this, recall the Cox construction

in §2.1. It gives a toric variety as almost geometric quotient X� � (C�(1) \Z(�)) // G� .

Fundamentally, we start with C�(1) and remove a special Zariski closed subset in order
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2106 A. Malter

to obtain an almost geometric quotient. GIT provides the machinery to do so, but the

way is often not unique. The subsets that are removed depend on a choice of stability

parameterised by a choice of line bundle. The different choices can give different

quotients that are birational.

In GIT, deciding which points are removed is done by a lifting of the G-action on

Cr to the rank 1 trivial vector bundle Cr ×C → Cr. Define the character group of G to be

Ĝ = {χ : G → C∗ |χ is a homomorphism of algebraic groups}.

A character χ ∈ Ĝ then gives the action of G on Cr ×C defined by

g · (p, t) = (g · p, χ(g)t), g ∈ G, (p, t) ∈ Cr ×C .

This lifts the G-action on Cr and furthermore all possible liftings arise this way.

Let Lχ or O(χ) denote the sheaf of sections of Cr ×C with this G-action. It is

called the linearised line bundle with character χ . For d ∈ Z, the tensor product O(χ)⊗d is

the linearised line bundle with character χd. Note that, if one forgets the G-action, then

O(χ) � O
C

r as line bundles on Cr. Thus, a global section s ∈ 
(Cr,O(χ)) can be written

as

s : Cr → Cr ×C

p �→ (p, Fs(p)),

for some unique Fs ∈ C[x1, . . . , xr].

Definition 2.13. Fix G ⊆ (C∗)r and χ ∈ Ĝ, with linearised line bundle O(χ). Given a

global section s of O(χ), we denote

(Cr)s := {p ∈ Cr | s(p) �= 0}.

This is an affine open subset of Cr, as s(p) �= 0 means Fs(p) �= 0. Furthermore, G acts on

(Cr)s when s is G-invariant. We define:

A. p ∈ Cr is semistable with respect to χ if there exist d > 0 and s ∈ 
(Cr,O(χd))G

such that p ∈ (Cr)s.

B. p ∈ Cr is stable with respect to χ if there exist d > 0 and s ∈ 
(Cr,O(χd))G

such that p ∈ (Cr)s, the isotropy subgroup Gp is finite, and all G-orbits in

(Cr)s are closed in (Cr)s.

C. The set of all semistable (resp. stable) points with respect to χ is denoted

(Cr)ss
χ (resp. (Cr)s

χ ).
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Libgober–Teitelbaum and Batyrev–Borisov 2107

Given a group G ⊆ (C∗)r and χ ∈ Ĝ, we next need to define the GIT quotient

Cr //χG. Consider the graded ring Rχ = ⊕∞
d=0 
(Cr,O(χd))G.

Definition 2.14. For G ⊆ (C∗)r and χ ∈ Ĝ, the GIT quotient Cr //χG is

Cr //χG = Proj(Rχ ).

An important property of GIT quotients is that in principle, this is the same as

taking the quotient of (Cr)ss
χ under the action of G.

Proposition 2.15 (Proposition 14.1.12.c) in [7]). For G ⊆ (C∗)r and χ ∈ Ĝ, the GIT quotient

Cr //χG is a good categorical quotient of (Cr)ss
χ under the action of G, that is, Cr //χG �

(Cr)ss
χ // G.

Theorem 14.2.13 of [7] shows, using a polyhedron associated to the character χ ,

that the GIT quotient Cr //χG is a toric variety.

2.4 GKZ Fans

Let G ⊆ (C∗)r. Studying the GIT quotient Cr //χG as χ varies gives rise to the GKZ fan of

a toric variety, which has the structure of a generalised fan.

Definition 2.16. A generalised fan � in NR is a finite collection of cones σ ⊆ NR such

that:

A. Every σ ∈ � is a rational polyhedral cone.

B. For all σ ∈ �, each face of σ is also in �.

C. For all σ1, σ2 ∈ �, the intersection σ1 ∩ σ2 is a face of each.

This agrees with the usual definition of a fan, with the exception that cones are

not necessarily strongly convex. Consider the cone σ0 = ⋂
σ∈� σ . It has no proper faces

and is thus a subspace of NR. We consider the lattice N = N/(σ0 ∩N). To associate a toric

variety for the generalised fan �, one constructs the fan � where each cone comes from

a cone of � quotiented by σ0. This is a fan in the usual sense, and hence we can associate

a toric variety to it as usual. Then X� := X� .

We will now discuss the notion of a GKZ fan, following both [7] and [11]. Consider

a toric variety X. It can be written as a GIT quotient (Cr \Z) //χ G. Recall the character

group Ĝ of G. Each choice of character χ ∈ Ĝ determines an open subset Uχ := (Cr)ss
χ , the
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2108 A. Malter

semi-stable locus of X with respect to χ . Several different characters can give the same

semi-stable locus. Thinking of the vector space Hom(Ĝ, TN) ⊗
Z
Q as parameter space for

linearisations, we investigate where the semi-stable locus Uψ is the same as Uχ for a

given character χ . It turns out that dividing the vector space into chambers where Uχ

remains the same gives the space a natural fan structure. This fan-structure �GKZ is

called the GKZ fan. Maximal cones are called chambers and codimension one cones are

called walls.

Consider an arbitrary fan �, we can construct the GKZ fan as follows. Take the

group G = G� ⊆ (C∗)r acting on X� to be the group in Equation (3). There is a well-known

bijection between chambers of GKZ fans and regular triangulations of a certain set of

points, constructed as follows. In the general setting, apply Hom(−,C∗) to the sequence

0 → G
iG−→ (C∗)r proj−−→ coker(iG) → 0

to obtain the sequence

Hom(coker(iG),C∗) p̂roj−−→ Zr îG−→ Hom(G,C∗) → 0.

Let νi(G) be the element of Hom(coker(iG),C∗)∨ given by composing p̂roj with the

projection ofZr onto its ith factor. Compare this sequence with the sequence (1). We in fact

reversed the process of obtaining (4) from (1). Starting with the correct group acting on

the space, we thus recover the map corresponding to ι as p̂roj. Hence, the ν(G) correspond

to the primitive generators uρ of the rays of �. Then the set we will triangulate is the

convex hull of the set ν(G) = {ν1(G), . . . , νr(G)}.

Theorem 2.17 (Proposition 15.2.9 in [7]). There is a bijection between chambers of the

GKZ fan for the action of G on Cr and regular triangulations of the set Conv(ν(G)). In

particular, there are only finitely many chambers of the GKZ fan.

Thus we can enumerate the chambers of the GKZ fan, say by σ1, . . . , σk. For any

of those chambers, we can choose a character in its interior and consider the semi-

stable locus with respect to it. As this locus does not depend on the choice of character,

but solely on the choice of chamber, denote the open affine associated to chamber σp

by Up. By the above theorem, it will also correspond to a specific triangulation Tp of

Conv({ν1(G), . . . , νr(G)}).
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Libgober–Teitelbaum and Batyrev–Borisov 2109

2.5 Categories of singularities and some results on the equivalence of derived categories

In this section, we introduce the categories of singularities (as outlined in [21]) and their

equivalences to derived categories through VGIT, reviewing §4 of [11].

Let X be a variety and G an algebraic group acting on X (on the left).

Definition 2.18. An object of Db(coh[X/G]) is called perfect if it is locally quasi-

isomorphic to a bounded complex of vector bundles. We denote the full subcategory

of perfect objects by Perf([X/G]). The Verdier quotient of Db(coh[X/G]) by Perf([X/G]) is

called the category of singularities and denoted

Dsg([X/G]) := Db(coh[X/G])/ Perf([X/G]).

By the following observation of Orlov’s, the category can be viewed as studying

the geometry of the singular locus.

Proposition 2.19 (Orlov, [21]). Assume that coh[X/G] has enough locally free sheaves.

Let i : U → X be a G-equivariant open immersion such that the singular locus of X is

contained in i(U). Then the restriction,

i∗ : Dsg([X/G]) → Dsg([U/G]),

is an equivalence of categories.

Next, consider a G-equivariant vector bundle E on X. Denote by Z the zero locus

of a G-invariant section s ∈ H0(X, E). Then 〈−, s〉 induces a global function on tot E∨. Let

Y be the zero section of this pairing and consider the fibrewise dilation action on the

torus Gm. Then we have the following result.

Theorem 2.20 (Isik [19], Shipman [25], Hirano [17]). Suppose the Koszul complex on s is

exact. Then there is an equivalence of categories

Dsg([Y/(G × Gm)]) ∼= Db(coh[Z/G]).

Combining the previous two results gives the following.

Corollary 2.21 (Corollary 3.4 in [11]). Let V be an algebraic variety with a G×Gm action.

Suppose there is an open subset U ⊆ V such that U is G × Gm equivariantly isomorphic
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2110 A. Malter

to Y as above and that U contains the singular locus of X. Then

Dsg([V/(G × Gm)]) ∼= Db(coh[Z/G]).

We will move towards making these results applicable to the objects studied in

this paper, adapting [11]. Consider an affine space X := An+t with coordinates xi, uj for

1 ≤ i ≤ n, 1 ≤ j ≤ t. Let T denote the standard open torus Gn+t
m and consider a subgroup

S ⊆ T, with S̃ the connected component that contains the identity.

Recall the notion of GKZ fans from §2.4. We adjust the notation so that S above

corresponds to the group G from §2.4. We will now explain how to construct varieties

corresponding to the chambers of the GKZ fan, and the goal of this setup is to apply

Corollary 2.21 and VGIT to provide equivalences between derived categories.

Definition 2.22. Let G be a group acting on a space X and f a global function on X. f is

said to be semi-invariant with respect to a character χ if, for any g ∈ G, f (g · x) = χ(g)f (x).

To apply Corollary 2.21, we will add a Gm-action, which is S-invariant and Gm-

semi-invariant, acting with weight 0 on the xi and 1 on the uj. We refer to this action as

R-charge. Consider the action of S on the scheme SpecC[uj]. It corresponds to a character

γj of S. Let f1, . . . , ft be a collection of S-semi-invariant functions in the xi with respect

to γ −1
j . Then define a function, called superpotential, by

w :=
t∑

j=1

ujfj.

The superpotential w is S-invariant and χ-semi-invariant with respect to the projection

character χ : S × Gm → Gm, hence w is homogeneous of degree 0 with respect to the

S-action and of degree 1 with respect to the R-charge. Let Z(w) ⊆ X be its zerolocus and

define Yp := Z(w) ∩ Up. Then we have the following result.

Theorem 2.23 (Theorem 3 in [18]). If S is quasi-Calabi–Yau, there is an equivalence of

categories

Dsg([Yp/S × Gm]) ∼= Dsg([Yq/S × Gm])

for all 1 ≤ p, q ≤ k, where k is the number of chambers in the GKZ fan.

We will use this result to show a useful equivalence of derived categories. We

start by explicitly describing the open sets Up corresponding to a chamber σp of the
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Libgober–Teitelbaum and Batyrev–Borisov 2111

GKZ fan, defined in §2.4. For 1 ≤ p ≤ k, we associate an irrelevant ideal Ip to σp by

considering the (regular) triangulation Tp that the chamber corresponds to. So, let

Ip :=
〈∏

i�∈I

xi

∏
j �∈J

uj

∣∣∣ ⋃
i∈I

νi(S) ∪
⋃
j∈J

νn+j(S) is the set of vertices of a simplex in Tp

〉
.

Then Up = X \ Z(Ip). Another ideal we will need is a subideal of Ip, given similarly to Ip

by requiring J to be the full set {1, . . . , t}, that is,

J p :=
〈∏

i�∈I

xi

∣∣∣ ⋃
i∈I

νi(S) ∪
t⋃

j=1

νn+j(S) is the set of vertices of a simplex in Tp

〉
.

This ideal is therefore generated by those simplices whose sets of vertices contain all νn+j

for 1 ≤ j ≤ t. Using this subideal, we get a new open set Vp := X \ Z(J p) ⊆ Up. Since J p

has no uj in its generators, we can see it as ideal J x
p in C[x1, . . . , xn], giving an open subset

of An by Vx
p := An \Z(J x

p). This set gives us a toric stack Xp := [Vx
p/S]. Now suppose J p is

non-zero. Then the last two quantities defined are nonempty, and one can show [Vp/S] is a

vector bundle over Xp, with the inclusion of rings C[x1, . . . , xn] → C[x1, . . . , xn, u1, . . . , ut]

restricting to a S-equivariant morphism

[Vp/S] → [Vx
p/S] = Xp.

This morphism gives the following proposition.

Proposition 2.24 (Proposition 4.6 in [11]). Suppose J p is non-zero. The morphism

[Vp/S] → Xp realizes [Vp/S] as the total space of a vector bundle

[Vp/S] ∼= tot
t⊕

j=1

O(γj).

Furthermore, the R-charge action of Gm is the dilation action along fibers. Finally, for

each j, the function fj gives a section of O(γ −1
j ) and the superpotential w = ∑

ujfj

restricts to the pairing with the section ⊕fj.

In particular, from this we can view the function ⊕fj as a section of Vp, which

defines, for all p, a complete intersection Zp := Z(⊕fj) ⊆ Xp. Finally, we introduce

the Jacobian ideal ∂w, generated by the partial derivatives of w with respect to the

coordinates xi, uj.
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2112 A. Malter

Proposition 2.25 (Proposition 4.7 in [11]). Suppose J p is non-zero. If Ip ⊆
√

∂w,J p,

then

Dsg([Yp/S × Gm]) ∼= Db(coh Zp).

This finally leads us to the following result, which we will use in §4.

Corollary 2.26. Assume S satisfies the quasi-Calabi–Yau condition and that J p and J q

are non-zero. If Ip ⊆
√

∂w,J p and Iq ⊆
√

∂w,J q for some 1 ≤ p, q ≤ r, then

Db(coh Zp) ∼= Db(coh Zq).

3 The Libgober–Teitelbaum and the Batyrev–Borisov Constructions

3.1 The Batyrev–Borisov construction in P5

We now construct a Batyrev–Borisov mirror to a complete intersection of two cubics

in P5. We will do this by giving a nef partition of the anticanonical polytope of P5,

which corresponds to a complete intersection. Then we will apply the Batyrev–Borisov

construction to that nef partition, obtaining a polytope ∇ corresponding to the mirror.

Fix the lattice M ∼= Z5 and its dual lattice N.

Remark 3.1. Due to the way we will derive certain fans in this section via methods

inspired by mirror symmetry (see § 3.3.1) our first fan lives in MR and not in the

conventional NR.

Define the rays ρ0, . . . , ρ11 in MR ⊕ R2 with primitive generators

uρ0
= (3, 0, 0, −1, −1, 0, 1), uρ6

= (2, −1, −1, 0, 0, 1, 0),

uρ1
= (0, 3, 0, −1, −1, 0, 1), uρ7

= (−1, 2, −1, 0, 0, 1, 0),

uρ2
= (0, 0, 3, −1, −1, 0, 1), uρ8

= (−1, −1, 2, 0, 0, 1, 0),

uρ3
= (−1, −1, −1, 3, 0, 1, 0), uρ9

= (0, 0, 0, 2, −1, 0, 1),

uρ4
= (−1, −1, −1, 0, 3, 1, 0), uρ10

= (0, 0, 0, −1, 2, 0, 1),

uρ5
= (−1, −1, −1, 0, 0, 1, 0), uρ11

= (0, 0, 0, −1, −1, 0, 1),

uτ1
= (0, 0, 0, 0, 0, 1, 0), uτ2

= (0, 0, 0, 0, 0, 0, 1).

Notation 3.2. For 0 ≤ j ≤ 11, we denote by uρj
the lattice point in M obtained from uρj

by projecting onto the first 5 coordinates. Denote by ρj the ray generated by uρj
in MR.
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Libgober–Teitelbaum and Batyrev–Borisov 2113

Table 1 Maximal cones of X∇

ρ0ρ1ρ2ρ9ρ10 ρ0ρ1ρ6ρ9ρ10 ρ3ρ4ρ6ρ7ρ9 ρ1ρ6ρ7ρ9ρ10 ρ4ρ6ρ7ρ9ρ10 ρ0ρ2ρ6ρ9ρ10

ρ2ρ6ρ8ρ9ρ10 ρ3ρ4ρ6ρ8ρ9 ρ4ρ6ρ8ρ9ρ10 ρ1ρ2ρ7ρ9ρ10 ρ2ρ7ρ8ρ9ρ10 ρ3ρ4ρ7ρ8ρ10

ρ5ρ7ρ8ρ9ρ10 ρ1ρ2ρ7ρ10ρ11 ρ2ρ7ρ8ρ10ρ11 ρ4ρ5ρ7ρ8ρ10 ρ5ρ7ρ8ρ10ρ11 ρ0ρ1ρ2ρ9ρ11

ρ0ρ1ρ2ρ10ρ11 ρ3ρ4ρ5ρ6ρ7 ρ0ρ1ρ6ρ9ρ11 ρ1ρ6ρ7ρ9ρ11 ρ3ρ5ρ6ρ7ρ9 ρ5ρ6ρ7ρ9ρ11

ρ0ρ1ρ6ρ10ρ11 ρ1ρ6ρ7ρ10ρ11 ρ4ρ5ρ6ρ7ρ10 ρ5ρ6ρ7ρ10ρ11 ρ3ρ4ρ5ρ6ρ8 ρ0ρ2ρ6ρ9ρ11

ρ2ρ6ρ8ρ9ρ11 ρ3ρ5ρ6ρ8ρ9 ρ5ρ6ρ8ρ9ρ11 ρ0ρ2ρ6ρ10ρ11 ρ2ρ6ρ8ρ10ρ11 ρ4ρ5ρ6ρ8ρ10

ρ5ρ6ρ8ρ10ρ11 ρ3ρ4ρ5ρ7ρ8 ρ1ρ2ρ7ρ9ρ11 ρ2ρ7ρ8ρ9ρ11 ρ3ρ5ρ7ρ8ρ9 ρ5ρ7ρ8ρ9ρ11

Proposition 3.3. Consider the fan �∇ with rays ρ0, . . . , ρ11 defined above and maximal

cones listed in Table 1. Then a general complete intersection in the toric variety X∇
corresponding to the fan �∇ is a Batyrev–Borisov mirror to a complete intersection of

two cubics in P5.

Proof. The anticanonical sheaf of P5 is O
P

5(6), corresponding to the divisor class

− K
P

5 = T0 + · · · + T5 = (T0 + T1 + T2) + (T3 + T4 + T5).

The anticanonical polytope for P5 is given by

	−K
P5

= {m ∈ MR|〈m, uρ〉 ≥ −1 forρ ∈ �
P

5(1)} ⊆ MR,

which is the convex hull of the six points

(5, −1, −1, −1, −1), (−1, 5, −1, −1, −1), (−1, −1, 5, −1, −1),

(−1, −1, −1, 5, −1), (−1, −1, −1, −1, 5), (−1, −1, −1, −1, −1).

A nef partition with respect to the origin of the polytope 	−K
P5

is given by the polytopes

	1, 	2 associated to the divisors T0 + T1 + T2 and T3 + T4 + T5, since the Minkowski sum

	1 + 	2 is equal to 	−K
P5

. These polytopes are

	1 = Conv((2, −1, −1, 0, 0), (−1, 2, −1, 0, 0), (−1, −1, 2, 0, 0),

(−1, −1, −1, 3, 0), (−1, −1, −1, 0, 3), (−1, −1, −1, 0, 0)),

	2 = Conv((0, 0, 0, −1, 2), (0, 0, 0, 2, −1), (0, 0, 3, −1, −1),

(0, 3, 0, −1, −1), (3, 0, 0, −1, −1), (0, 0, 0, −1, −1)).
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2114 A. Malter

Next, we shall compute the dual nef partition, as defined in §2. We have:

∇1 = Conv((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 0))

∇2 = Conv((0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 0, 0, 0), (−1, −1, −1, −1, −1)).

Their Minkowski sum ∇ ⊆ N
R

is then the convex hull of the 15 points

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 0, 1, 0),

(0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1), (−1, −1, −1, −1, −1),

(0, −1, −1, −1, −1), (−1, 0, −1, −1, −1), (−1, −1, 0, −1, −1).

A SAGE computation shows the normal fan of ∇, �′∇ ⊆ MR, has rays ρ0, . . . , ρ11 from
Notation 3.2. The maximal-dimensional cones are the following 15 cones:

ρ0ρ1ρ2ρ9ρ10, ρ0ρ1ρ3ρ4ρ6ρ7ρ9ρ10, ρ0ρ2ρ3ρ4ρ6ρ8ρ9ρ10, ρ1ρ2ρ3ρ4ρ7ρ8ρ9ρ10,
ρ1ρ2ρ4ρ5ρ7ρ8ρ10ρ11, ρ0ρ1ρ2ρ9ρ11, ρ0ρ1ρ2ρ10ρ11, ρ3ρ4ρ5ρ6ρ7,
ρ0ρ1ρ3ρ5ρ6ρ7ρ9ρ11, ρ0ρ1ρ2ρ5ρ6ρ7ρ10ρ11, ρ3ρ4ρ5ρ6ρ8, ρ0ρ2ρ3ρ5ρ6ρ8ρ9ρ11,
ρ0ρ2ρ4ρ5ρ6ρ8ρ10ρ11, ρ3ρ4ρ5ρ7ρ8, ρ1ρ2ρ3ρ5ρ7ρ8ρ9ρ10ρ11.

We listed the cones by giving the rays generating them. For instance, ρ0ρ1ρ2ρ9ρ10 stands

for the cone Cone (ρ0, ρ1, ρ2, ρ9, ρ10). Note here that some of these maximal cones contain

more rays than the others. So, as described in Remark 2.9, we want a MPCP-resolution

of the variety associated to the above fan. To do this, we subdivide each of the maximal

cones that has more than 5 rays. This procedure involves choice, as each cone can be

subdivided in 24 ways (being a total of 249 possible choices!). However, all these choices

are related by GIT, so any choice gives us a mirror family, all of which are birational.

Following this procedure, the Table 1 (see below) gives the 42 maximal cones in the fan

corresponding to a MPCP-resolution of the variety associated to the fan �′∇ . Define the

fan �∇ to be the fan consisting of those 42 5-dimensional cones and all of their faces.

Determining the variety X∇ explicitly is not straightforward, but also not necessary for

our purposes, so long as we have the fan �∇ . �

For i = 0, . . . , 11, call D′
i the torus-invariant divisor on X∇ corresponding to the

ray ρi of �	. Let D′
a = D′

0 +D′
1 +D′

2 +D′
9 +D′

10 +D′
11 and D′

b = D′
3 +D′

4 +D′
5 +D′

6 +D′
7 +D′

8.

Corollary 3.4. Let �∇,D′
a,D′

b
be the fan with rays ρ0, . . . , ρ11, τ1, τ2, and cones over

those rays inherited from �∇ . Then �∇,D′
a,D′

b
is a fan corresponding to tot(OX∇ (−D′

b) ⊕
OX∇ (−D′

a)).

Proof. Apply Proposition 2.11 twice to get the result (recalling that we can do this by

Proposition 2.12). �
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Libgober–Teitelbaum and Batyrev–Borisov 2115

3.2 Libgober and Teitelbaum’s Mirror

We now recall the family Libgober and Teitelbaum give as a mirror to the generic

complete intersection of two cubics in P5. To start, define Vλ ⊆ P5 to be the vanishing set

of the following two polynomials:

Q1,λ = x3
0 + x3

1 + x3
2 − 3λx3x4x5, Q2,λ = x3

3 + x3
4 + x3

5 − 3λx0x1x2. (5)

For generic λ, this gives a smooth complete intersection in P5, which is a Calabi–

Yau threefold.

Let ζn denote a primitive n-th root of unity. Let α, β, δ, ε ∈ Z (mod 3) and μ ∈ Z

(mod 9) with 3μ = α + β = δ + ε. Define the diagonal matrix

gα,β,δ,ε,μ := diag
(
ζ α

3 ζ
μ
9 , ζ

β
3 ζ

μ
9 , ζ

μ
9 , ζ−δ

3 ζ
−μ
9 , ζ−ε

3 ζ
−μ
9 , ζ

−μ
9

)
and let G81 ⊂ PGL(5,C) denote the order 81 group generated by the gα,β,δ,ε,μ. Note that G81

acts on P5 by restricting the natural action of PGL(5,C) on P5. The polynomials Q1,λ, Q2,λ

are invariant with respect to the action of G81, hence G81 acts on Vλ.

Note that G81 is of isomorphism type (Z /3Z)2 × (Z /9Z) and can be generated by

(ζ3, ζ−1
3 , 1, 1, 1, 1), (1, 1, 1, ζ−1

3 , ζ3, 1) and (ζ9, ζ 4
9 , ζ9, ζ−1

9 , ζ−4
9 , ζ−1

9 ).

Let VLT,λ be the quotient of Vλ by the action of G81 and let WLT,λ be a minimal

resolution of singularities of VLT,λ, which is a Calabi–Yau manifold.

3.3 Expressing Libgober–Teitelbaum torically

In the following, we aim to give a toric description of VLT,λ. First we give a fan for the

toric variety XLT := P5 /G81 and then employ methods of §7.3 of [7] to construct a vector

bundle over XLT that has the global section Q1,λ ⊕ Q2,λ.

Proposition 3.5. Consider the 1-dimensional cones ρ0, . . . , ρ5 with corresponding prim-

itive generators

uρ0
= (3, 0, 0, −1, −1), uρ1

= (0, 3, 0, −1, −1), uρ2
= (0, 0, 3, −1, −1),

uρ3
= (−1, −1, −1, 3, 0), uρ4

= (−1, −1, −1, 0, 3), uρ5
= (−1, −1, −1, 0, 0).

Consider the collection C of sets of the form

{ρi | i ∈ I, I ⊆ {0, . . . , 5}, |I| = 5}.
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2116 A. Malter

Let �LT ⊆ M
R

be the fan consisting of maximal cones

{Cone(C)|C ∈ C}

and all their faces.

Then the toric stack associated to �LT is the stack corresponding to the Libgober–

Teitelbaum construction, XLT = [C6 \{0}/ (
C∗ ×G81

)
], with C∗ acting by (λx0, . . . , λx5) ∼

(x0, . . . , x5) and G81 acting as described above in § 3.2.

Proof. We use the Cox construction described in §2.1. By Lemma 2.1, we obtain the

following system of equations characterising elements of G := G�

t3t4t5 = t3
0 (6)

t3t4t5 = t3
1 (7)

t3t4t5 = t3
2 (8)

t0t1t2 = t3
3 (9)

t0t1t2 = t3
4 (10)

First, we note that we have a copy of C∗ in G, given by {t · (1, 1, 1, 1, 1, 1) | t ∈ C∗},
so to compute G we consider the group H of cosets of C∗. We will explicitly describe

H and subsequently use the direct product theorem to compute G. Consider an element

(t0, . . . , t5) ∈ G. By an appropriate choice of coset representative of (t0, t1, t2, t3, t4, t5) ·C∗,

we may assume
∏5

i=0 ti = 1.

Using equations (6), (7), and (8), we have t3
0 = t3

1 = t3
2, and thus t0 = ζ α

3 t2, t1 = ζ
β
3 t2

for some α, β ∈ Z3. Using equations (6)–(10), we have that t3
3t3

4t3
5 = t3

0t3
1t3

2 = t6
3t3

4 = t3
3t6

4,

which implies

t3
5 = t3

3 = t3
4. (11)

Hence, similarly to above, we obtain t3 = ζ−δ
3 t5, t4 = ζ−ε

3 t5 for some δ, ε ∈ Z3.

By combining (8), (9), and (10), we obtain

t3
2t3

5 = t0t1t2t3t4t5 = 1. (12)
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Libgober–Teitelbaum and Batyrev–Borisov 2117

Equation (12) implies t3
5 = (t−1

2 )3, thus t5 = ζ ν
3 · t−1

2 for some ν ∈ Z3. Using t3 = ζ−δ
3 t5 and

t4 = ζ−ε
3 t5 and equation (8), we obtain

t3
2 = t3t4t5 = t3

5ζ
−(δ+ε)
3 = t−3

2 ζ
−(δ+ε)
3 .

Hence t18
2 = 1. So we can write t2 = ζ l

18 for some l ∈ Z18.

We now claim that t2 can be assumed to be a ninth root of unity and t5 to be

its inverse, that is, t2 = ζ
μ
9 , t5 = ζ

−μ
9 for some μ ∈ Z9. Indeed, note that (ζ6, . . . , ζ6) ∈

(1, 1, 1, 1, 1, 1) · C∗ ⊆ G, so we can scale an element (t0, . . . , t5) ∈ G by sixth roots of

unity, leaving the product
∏6

i=1 ti invariant. The claim follows by multiplication with

an appropriate sixth root of unity.

Expressing all the ti in terms of t2, the assumption 1 = ∏6
i=1 ti implies 1 =

ζ
α+β−δ−ε
3 , or, equivalently,

α + β = δ + ε (mod 3).

Finally, using (8) gives ζ
3μ
9 = ζ−δ+ε

3 ζ
−3μ
9 and therefore ζ

3μ
9 = ζ δ+ε

3 . Thus H, the group

of cosets of C∗, is isomorphic to G81, where G81 is the same group described in §2. In

particular, all elements of G are of the form g · λ with g ∈ G81, λ ∈ (1, 1, 1, 1, 1, 1) · C∗ and

G81 ∩ {(1, 1, 1, 1, 1, 1) · λ|λ ∈ C∗} = {(1, 1, 1, 1, 1, 1)}. Hence, by the direct product theorem,

G ∼= C∗ ×G81.

The Cox fan of �LT can be described as follows. It has six rays eρ0
, . . . , eρ5

. It is

straightforward to see that the maximal cones are all 5-dimensional cones generated

by any 5 of the rays above. Therefore, we obtain U�LT
= A6 \ {0}. Thus, the Cox stack

associated to �LT is

XLT = [U�LT
/G] = [C6 \{0}/ (

C∗ ×G81

)
],

with the prescribed action, as required. �

Remark 3.6. We note that by Theorem 2.5 the coarse moduli space of the stack XLT is

XLT , since �LT is simplicial.

Starting with the fan �LT of XLT , we apply Proposition 2.11 twice to construct a

vector bundle. Let Di be the Weil divisor corresponding to the ray ρi in �LT . Let Da =
D0 + D1 + D2 and Db = D3 + D4 + D5.
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2118 A. Malter

Corollary 3.7. Denote by the rays ρ0, . . . , ρ5, τ1 and τ2 the rays (These are the same as on

page 40.) generated by the primitive generators:

uρ0
= (3, 0, 0, −1, −1, 0, 1), uρ1

= (0, 3, 0, −1, −1, 0, 1), uρ2
= (0, 0, 3, −1, −1, 0, 1),

uρ3
= (−1, −1, −1, 3, 0, 1, 0), uρ4

= (−1, −1, −1, 0, 3, 1, 0), uρ5
= (−1, −1, −1, 0, 0, 1, 0),

uτ1
= (0, 0, 0, 0, 0, 1, 0), uτ2

= (0, 0, 0, 0, 0, 0, 1).

Consider the collection S of sets of the form

{ρi | i ∈ I, I ⊆ {0, . . . , 5}, |I| = 5} ∪ {τ1, τ2}.

Let �LT,Da,Db
be the fan in M

R
⊕ R2 consisting of the maximal cones

{Cone(S)|S ∈ S}

and all their faces. Then:

(a) �LT,Da,Db
is a fan corresponding to tot(OXLT

(−Db) ⊕ OXLT
(−Da));

(b) The vector bundle OXLT
(Db) ⊕ OXLT

(Da) has the global section Q1,λ ⊕ Q2,λ.

Proof. Applying Proposition 2.11 twice yields (a).

We now turn to (b) and show that Q1,λ ∈ 
(XLT ,OXLT
(Db)) and Q2,λ ∈


(XLT ,OXLT
(Da)). We start by noting that on XLT we have div(x3

i ) = 3Di, so div(x3
i )−3Di ≥

0, that is, x3
i ∈ 
(XLT ,OXLT

(3Di)). Similarly, x0x1x2 ∈ 
(XLT ,OXLT
(Da)) and x3x4x5 ∈


(XLT ,OXLT
(Db)).

To show the linear equivalence of two divisors, it suffices to consider their differ-

ence and show it is principal. We recall that div(χn) = ∑
ρ∈�(1)〈uρ , n〉Dρ , corresponding

to the map ι in the exact sequence (1). So, for instance 3D1 − 3D0 = div(x−3
0 x3

1), which

is the character associated to the lattice point (−1, 1, 0, 0, 0). Hence, 3D1 − 3D0 = 0 in

Cl(XLT), that is, 3D0 ∼ 3D1. Similarly, 3D1 ∼ 3D2 and 3D3 ∼ 3D4 ∼ 3D5. Using the

lattice points (−1, 0, 0, 0, 0) and (0, 0, 0, −1, 0), respectively, we also see that 3D0 ∼ Db

and 3D3 ∼ Da.

Thus

OXLT
(3D0) � OXLT

(3D1) � OXLT
(3D2) � OXLT

(Db)

and

OXLT
(3D3) � OXLT

(3D4) � OXLT
(3D5) � OXLT

(Da),

implying Q2,λ ∈ 
(XLT ,OXLT
(Da)) and Q1,λ ∈ 
(XLT ,OXLT

(Db)), as required. �
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Libgober–Teitelbaum and Batyrev–Borisov 2119

3.3.1 Intuition for constructing XLT torically

We now explain how we found an explicit description for the fan �LT . We start by

considering the standard fan �
P

5 ⊆ NR for P5 in the standard basis. It is the fan

consisting of the cones generated by any proper subset of the six rays ν0, . . . , ν5 with

primitive generators

uν0
= (1, 0, 0, 0, 0), uν1

= (0, 1, 0, 0, 0), uν2
= (0, 0, 1, 0, 0),

uν3
= (0, 0, 0, 1, 0), uν4

= (0, 0, 0, 0, 1), uν5
= (−1, −1, −1, −1, −1).

Denote by T0, . . . , T5 the six primitive Weil divisors corresponding to the rays uν0
, . . . , uν5

,

respectively. Then

O(− (T0 + T1 + T2)︸ ︷︷ ︸
:=Ta

) = O(− (T3 + T4 + T5)︸ ︷︷ ︸
:=Tb

) = O(−3),

and we can use the methods of §7.3 of [7] again to construct a fan of tot(O
P

5(−3) ⊕
O

P
5(−3)). This yields the fan �

P
5,Ta,Tb

in NR ⊕ R2 with the 8 rays ν0, . . . , ν5, τ1 and τ2

having primitive ray generators

uν0
= (1, 0, 0, 0, 0, 1, 0), uν4

= (0, 0, 0, 0, 1, 0, 1),

uν1
= (0, 1, 0, 0, 0, 1, 0), uν5

= (−1, −1, −1, −1, −1, 0, 1),

uν2
= (0, 0, 1, 0, 0, 1, 0), uτ1

= (0, 0, 0, 0, 0, 1, 0),

uν3
= (0, 0, 0, 1, 0, 0, 1), uτ2

= (0, 0, 0, 0, 0, 0, 1).

(13)

The fan �
P

5,Ta,Tb
is the star subdivision of Cone(uν0

, . . . , uν5
, uτ1

, uτ2
) along uτ1

and uτ2

(noting the abuse of notation by which uτi
represent the same vector in both lattices

M, N). The dual cone to �
P

5,Ta,Tb
in MR ⊕ R2 is spanned by the 12 rays ρ0, . . . , ρ11 defined

in § 3.1 (page 39).

We recall that each lattice point in the interior of the dual cone corresponds to a

global function of X�
P5 ,Ta,Tb

by associating m to the monomial

xm :=
∏

ρ∈�
P5,T1,T2

(1)

x
〈m,uρ 〉
ρ .

Now a section s1 ⊕ s2 ∈ 
(P5,O(3) ⊕ O(3)) will correspond to a global function

on tot (O(−3) ⊕ O(−3)) of the form u1s1 + u2s2, where ui is the variable corresponding

to uτi
. Recalling the polynomials Qi from (5) in §3.2, we would like to express the global

function F := u2Q1,λ +u1Q2,λ as a linear combination of global functions of the form xm.
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2120 A. Malter

We do this by finding the lattice points in the dual cone corresponding to each monomial

in F.

By splitting it up into its monomials, u2Q1,λ corresponds to the 4 points

(3, 0, 0, −1, −1, 0, 1), (0, 3, 0, −1, −1, 0, 1), (0, 0, 3, −1, −1, 0, 1), and (0, 0, 0, 0, 0, 0, 1).

Similarly, u1Q2,λ corresponds to the points (−1, −1, −1, 3, 0, 1, 0), (−1, −1, −1, 0, 3, 1, 0),

(−1, −1, −1, 0, 0, 1, 0), and (0, 0, 0, 0, 0, 1, 0).

We find that these 8 points are the primitive generators for the rays of �LT,Da,Db

(see Corollary 3.7).

Quotienting MR ⊕ R2 by the rays associated to the bundle coordinates (i.e., the

lattice points that are the elements of the dual basis dual to uτ1
and uτ2

) corresponds to a

toric morphism X�LT,Da,Db
→ X�LT

. We emphasize that the dual cone to Cone(�
P

5,Ta,Tb
(1))

is given by Conv(uρ0
, . . . , uρ11

). Here, we take a subcone generated by a subset of

{uρ0
, . . . , uρ11

}.

3.3.2 Expressing the zero locus of Q1,λ, Q2,λ

We remark that the cone |�LT,Da,Db
| is not a reflexive Gorenstein cone, hence the Batyrev–

Borisov construction does not apply to it.

The variety VLT,λ ⊆ XLT is the zero locus of the polynomials Q1,λ, Q2,λ, where

Q1,λ⊕Q2,λ is a section of the vector bundle constructed above in Corollary 3.7. Proceeding

in the same way as in §3.3.1, we consider lattice points on the cone |�LT,Da,Db
|∨ ⊆ NR⊕R2

to get global functions of X�LT,Da,Db
. The cone |�LT,Da,Db

|∨ is the cone over the convex hull

of the following 12 points:

(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1), (2, −1, −1, 0, 0, 0, 3),

(−1, 2, −1, 0, 0, 0, 3), (−1, −1, 2, 0, 0, 0, 3), (1, 1, 1, 3, 0, 3, 0),

(1, 1, 1, 0, 3, 3, 0), (−1, −1, −1, −1, −1, 0, 1), (−2, −2, −2, −3, −3, 3, 0).

The points corresponding to the monomials in u1Q1,λ + u2Q2,λ, and hence to the

section Q1,λ ⊕ Q2,λ, are the lattice points uνi
and uτi

in (13). Later on, describing VLT by

these 8 points will allow us to work with Db(coh VLT), using results in [11].

Remark 3.8. In their recent work [23, 24], Rossi proposes a generalisation of the

Batyrev–Borisov mirror construction, called framed duality (f-duality). f -duality gives an

algorithm to obtain mirror candidates of hypersurfaces and complete intersections in

toric varieties. Applying f -duality to VLT ⊂ P5 /G81 produces Vλ ⊂ P5, which in turn

gives the same mirror as the Batyrev–Borisov construction when applying f -duality to it.
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Libgober–Teitelbaum and Batyrev–Borisov 2121

Theorem 1.1 suggests that different mirror candidates obtained via f -duality may be

derived equivalent and prompts the question under what conditions this is the case.

4 A Derived Equivalence Between the Constructions by Libgober–Teitelbaum and

Batyrev–Borisov

Here, we will prove the main result, Theorem 1.1.

4.1 Picking a partial compactification

Looking at the dual of the fan �LT,Da,Db
as in Corollary 3.7, we recall from §3.3.2 that the

global function u1Q1,λ + u2Q2,λ corresponds to the points

(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1), (−1, −1, −1, −1, −1, 0, 1),

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0).

Consider the GKZ fan of tot(OX∇ (−D′
b) ⊕ OX∇ (−D′

a)). We note that the chambers

of this GKZ fan correspond to regular triangulations of the polytope P = Conv(C), where

C is the collection of the following 14 points:

P0 = (3, 0, 0, −1, −1, 0, 1), P6 = (2, −1, −1, 0, 0, 1, 0),

P1 = (0, 3, 0, −1, −1, 0, 1), P7 = (−1, 2, −1, 0, 0, 1, 0),

P2 = (0, 0, 3, −1, −1, 0, 1), P8 = (−1, −1, 2, 0, 0, 1, 0),

P3 = (−1, −1, −1, 3, 0, 1, 0), P9 = (0, 0, 0, 2, −1, 0, 1),

P4 = (−1, −1, −1, 0, 3, 1, 0), P10 = (0, 0, 0, −1, 2, 0, 1),

P5 = (−1, −1, −1, 0, 0, 1, 0), P11 = (0, 0, 0, −1, −1, 0, 1),

S1 = (0, 0, 0, 0, 0, 1, 0), S2 = (0, 0, 0, 0, 0, 0, 1).

In the (regular) triangulations of P, we look for a subtriangulation corresponding

to �LT,Da,Db
, as then we obtain a partial compactification of tot(OXLT

(−Db) ⊕ OXLT
(−Da))

from Corollary 3.7.

Proposition 4.1. There exists a chamber σLT in the GKZ fan of tot(OX∇ (−D′
b)⊕OX∇ (−D′

a))

(from Corollary 3.4) so that the triangulation T corresponding to the chamber σLT (in the

sense of 2.17) has the following properties:

• T contains the following set of simplices, listed via their vertices:

T0 := {{Pi, S1, S2 | i ∈ I} | I ⊂ {0, 2, . . . , 5}, |I| = 5
}

.
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2122 A. Malter

• Any simplex T ∈ T \ T0 fulfills either of the two following conditions:

A. S1, P6, P7, P8 �∈ T and ∃ 3 ≤ j ≤ 6 such that Pj, P6+j �∈ T.

B. S2, P9, P10, P11 �∈ T and ∃ 0 ≤ j ≤ 2 such that Pj, P6+j �∈ T.

Moreover, the toric variety X� corresponding to the chamber σLT is a partial

compactification of the variety tot(OXLT
(−Db) ⊕ OXLT

(−Da)) from Corollary 3.7.

The first property of T means that the associated variety X� is a partial

compactification of XLT , so proving the existence of the triangulation T is sufficient to

prove the Proposition. The second property of T is not a natural one to consider, but will

become necessary to apply results from §2.5.

The proposition can be checked via a simple SAGE program [26] using the

TOPCOM package [22]; however, we include an explicit proof on how such a triangulation

can be constructed.

To prove the proposition, we break the statement up into 3 steps.

Step 1: We start by defining an explicit regular polyhedral subdivision S of P

containing T0.

Step 2: We prove that the polyhedral subdivision S can be refined to a regular

triangulation T of P containing T0.

Step 3: We show that any regular triangulation obtained this way fulfills the condi-

tions outlined in the Proposition.

4.1.1 Step 1:

We note that T0 is a regular triangulation of the set of points P0, . . . , P5, S1, S2. It is in

fact a star subdivision with respect to S1, S2 of the convex hull Conv(P0, . . . , P5, S1, S2).

Indeed, an example of an explicit weight function w giving the triangulation T0 is

w(S1) = w(S2) = 1, w(Pi) = 2 for 0 ≤ i ≤ 5. To complete Step 1, we extend this weight

function to all 14 points of C.

Consider the weight function w(Pi) = 2 for 0 ≤ i ≤ 5, w(S1) = w(S2) = 1 and

w(Pj) = 5 for 6 ≤ j ≤ 11. The convex hull of the points

Zi = (Pi, w(Pi)), Rj = (Sj, w(Sj)), (0 ≤ i ≤ 11, j = 1, 2)

then forms a polyhedron Q in R8. To obtain the regular subdivision of P corresponding

to the weight function w, we need to project the lower facets of the polyhedron Q down to

R7 along the last coordinate. A lower facet is defined to be a facet of Q where the inward

pointing normal has a positive last coordinate.
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Libgober–Teitelbaum and Batyrev–Borisov 2123

Table 2 Dictionary of points contained in each lower facet of Q

Facet contains

F0 Z1, . . . , Z5, R1, R2
...

...

F5 Z0, . . . , Z4, R1, R2

F6 Z1, . . . , Z5, R1, Z7, Z8

F7 Z0, Z2, . . . , Z5, R1, Z6, Z8

F8 Z0, Z1, Z3, Z4, Z5, R1, Z6, Z7

F9 Z0, Z1, Z2, Z4, Z5, R2, Z10, Z11

F10 Z0, Z1, Z2, Z3, Z5, R2, Z9, Z11

F11 Z0, . . . , Z4, R2, Z9, Z10.

We claim there are exactly 12 lower facets of Q. We write each lower facet Fi in

the form ui · x + ai = 0 where ui is the inward pointing normal of the ith facet. Take Hi

to be the halfspace corresponding to the lower facet Fi, that is, the halfspace given by

ui · x + a ≥ 0. The normals and additive constants are:

• H0 : (5, −1, −1, 0, 0, 0, 0, 3)x − 3 ≥ 0

• H1 : (−1, 5, −1, 0, 0, 0, 0, 3)x − 3 ≥ 0

• H2 : (−1, −1, 5, 0, 0, 0, 0, 3)x − 3 ≥ 0

• H3 : (1, 1, 1, 6, 0, 0, 0, 3)x − 3 ≥ 0

• H4 : (1, 1, 1, 0, 6, 0, 0, 3)x − 3 ≥ 0

• H5 : (−5, −5, −5, −6, −6, 0, 0, 3)x − 3 ≥ 0

• H6 : (3, −1, −1, 0, 0, 0, 2, 1)x − 1 ≥ 0

• H7 : (−1, 3, −1, 0, 0, 0, 2, 1)x − 1 ≥ 0

• H8 : (−1, −1, 3, 0, 0, 0, 2, 1)x − 1 ≥ 0

• H9 : (1, 1, 1, 4, 0, 0, −2, 1)x + 1 ≥ 0

• H10 : (1, 1, 1, 0, 4, 0, −2, 1)x + 1 ≥ 0

• H11 : (−3, −3, −3, −4, −4, 0, −2, 1)x + 1 ≥ 0.

An easy computation shows that all 14 points lie in the intersection of the

relevant half-spaces. This is a direct consequence of the fact that Q ⊆ Hi for i = 0, . . . , 11.

Table 2 shows which points lie on each lower facet.

To obtain the polyhedral subdivision S of P corresponding to the weight function w,
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2124 A. Malter

Table 3 Polyhedra in the regular subdivision

F̂0 = Conv(P1, . . . , P5, S1, S2)

...
...

F̂5 = Conv(P0, . . . , P4, S1, S2)

F̂6 = Conv(P1, . . . , P5, S1, P7, P8)

F̂7 = Conv(P0, P2, . . . , P5, S1, P6, P8)

F̂8 = Conv(P0, P1, P3, P4, P5, S1, P6, P7)

F̂9 = Conv(P0, P1, P2, P4, P5, S2, P10, P11)

F̂10 = Conv(P0, . . . , P3, P5, S2, P9, P11)

F̂11 = Conv(P0, . . . , P4, S2, P9, P10).

we now project these facets down to R7 along the last coordinate. Denoting by F̂i the

polyhedron obtained by projecting the facet Fi, we obtain the set of 12 polyhedra given

in Table 3. We note here that when projecting, all points that lied on the facet Fi lie in

the polyhedron F̂i, by convexity of the polyhedron Q in R8.

It remains to show that the above collection Fi contains all the lower facets of Q.

Showing that there is no other lower facet of Q apart from F0, . . . , F11 is equivalent to

showing that
⋃

Fi + 〈(0, . . . , 0, 1)〉
R≥0

contains the entire polyhedron Q. Since all vertices

of Q lie inside each half-space Hi, it suffices to show that the union of the projections

F̂i contains the convex hull of P0, . . . , P11, S1, S2, that is, contains P. This is equivalent to

saying that they give a polyhedral subdivision (regularity is given by construction).

So we aim to prove the following claim.

Lemma 4.2. For F̂i and P as above, we have
⋃11

i=0 F̂i = P.

To prove Lemma 4.2, we will need the following result.

Lemma 4.3. Suppose we are given a set of m inequalities Lj ≤ Rj with
∑m

j=1 Lj ≤ C ≤∑m
j=1 Rj, then there exists an m-tuple of real numbers aj such that Lj ≤ aj ≤ Rj and∑m
j=1 aj = C.

Proof. To show that the claim holds, we define aj(x) = Lj + x(Rj − Lj). This is a linear

function such that, for all x ∈ [0, 1], Lj ≤ aj(x) ≤ Rj. Define f (x) = ∑
aj(x). f is itself linear
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Libgober–Teitelbaum and Batyrev–Borisov 2125

and thus continuous in x, with f (0) = ∑m
j=1 Lj ≤ C ≤ ∑m

j=1 Rj = f (1). By the intermediate

value theorem, there is an xC ∈ [0, 1] such that f (x) = ∑m
j=1 aj(xC) = C. Setting aj = aj(xC)

gives the m-tuple, proving the claim. �

Proof of Lemma 4.2. The first thing to note is that

P = Conv(P0, . . . , P11, S1, S2) = Conv(P0, . . . , P11).

So we will show that
⋃11

i=0 F̂i = Conv(P0, . . . , P11).

We start by showing that
⋃5

i=0 F̂i = Conv(P0, . . . , P5, S1, S2), which is equivalent

to saying that F̂0, . . . , F̂5 form a polyhedral subdivision of Conv(P0, . . . , P5, S1, S2).

The inclusion ⊆ is immediate from Table 3, so it remains to check the opposite

inclusion. Any point X ∈ Conv(P0, . . . , P5, S1, S2) can be written as X = ∑5
i=0 λiPi + μ1S1 +

μ2S2 for some λi, μj ∈ R≥0 with
∑

λi + μ1 + μ2 = 1. Note also that
∑5

i=0 Pi = 3(S1 + S2).

Now define j such that λj = min0≤i≤5{λi}. Then

X =
5∑

i=0

(λi − λj)Pi + (3λj + μ1)S1 + (3λj + μ2)S2

=
∑

0≤i≤5
i�=j

(λi − λj)Pi + (3λj + μ1)S1 + (3λj + μ2)S2.

Since λj = min0≤i≤5{λi} ≤ λi for 0 ≤ i ≤ 5, we have that (λi − λj) ≥ 0 for 0 ≤ i ≤ 5. As

λi, μ1, μ2 ≥ 0, we also have 3λj + μ1, 3λj + μ2 ≥ 0. Also,

∑
0≤i≤5

i�=j

(λi − λj) + (3λj + μ1) + (3λj + μ2) =
5∑

i=0

λi + μ1 + μ2 = 1,

and thus X ∈ F̂j. This shows
⋃5

i=0 F̂i = Conv(P0, . . . , P5, S1, S2).

To show
⋃11

i=0 F̂i = P, we note again that the inclusion ⊆ is immediate. For the

opposite inclusion ⊇, take a general point X in P. Then X can be written as X = ∑11
i=0 λiPi

with λi ≥ 0 for 0 ≤ i ≤ 11 and
∑11

i=0 λi = 1.

Without loss of generality, assume that (λ6 + λ7 + λ8) ≥ (λ9 + λ10 + λ11) (the case

where the inequality is reversed is analogous). We will now show that if X �∈ ⋃5
i=0 F̂i =

Conv(P0, . . . , P5, S1, S2), then X ∈ ⋃8
i=6 F̂i (if the inequality had been reversed, then X

would be in
⋃11

i=9 F̂i).
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2126 A. Malter

Let

νi = λi + λ6+i − 1
3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
for0 ≤ i ≤ 2,

νi = λi + λ6+i for3 ≤ i ≤ 5,

μ1 = ((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
,

μ2 = 0.

Then
5∑

i=0

νiPi + μ1S1 + μ2S2 =
11∑

i=0

λiPi

and
5∑

i=0

νi + μ1 + μ2 =
11∑

i=0

λi = 1.

Note μ1 ≥ 0 by assumption and μ2 = 0. Thus, if νi ≥ 0 for 0 ≤ i ≤ 5, X is expressed

as an element of Conv(P0, . . . , P5, S1, S2) = ⋃5
i=0 F̂i using the above equations. Otherwise,

we will claim that X ∈ ⋃8
i=6 F̂i. For 3 ≤ i ≤ 5, we have νi ≥ 0 as both λi and λ6+i are ≥ 0.

We turn our attention to the νi for i = 0, 1, 2.

For 0 ≤ i ≤ 2, νi ≥ 0 is equivalent to

1

3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

)) ≤ λi + λ6+i,

so the condition that all νi are non-negative is equivalent to

1

3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
≤ min

0≤i≤2
{λi + λ6+i}.

Therefore, X ∈ ⋃5
i=0 F̂i = Conv(P0, . . . , P5, S1, S2) if

1

3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
≤ min

0≤i≤2
{λi + λ6+i}.

Suppose this condition does not hold, that is,

min
0≤i≤2

{λi + λ6+i} <
1

3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
. (14)

Without loss of generality, we may assume that λ0 + λ6 = min0≤i≤2{λi + λ6+i}
(by symmetry, the other cases are analogous). We will show that X ∈ F̂6. Any point Y in

F̂6 = Conv (P1, . . . , P5, S1, P7, P8) can be written as

Y =
5∑

i=1

νiPi +
8∑

i=7

νiPi + μ1S1.
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If we find νi, μ1 such that this sum is equal to
∑11

i=0 λiPi = X, we are done as we will have

expressed X as an element of F̂6.

Given a choice of real numbers α1, α2 with α1 + α2 = 1, define

νi = λi + αi(3λ0 + 2λ6 + (λ9 + λ10 + λ11)) − (λ0 + λ6) for 1 ≤ i ≤ 2,

νi = λi + λ6+i for 3 ≤ i ≤ 5,

μ1 = 3λ0 + 3λ6,

ν6+i = λ6+i + αi(−3λ0 − 2λ6 − (λ9 + λ10 + λ11)) for 1 ≤ i ≤ 2.

Substituting these values into the expression for Y gives

Y =
5∑

i=1

νiPi +
8∑

i=7

νiPi + μ1S1 =
11∑

i=0

λiPi = X,

as well as

∑
νi + μ1 =

11∑
i=0

λi = 1.

For this choice of νi’s and μ1 to define an element Y ∈ F̂6, we require νi ≥ 0 for all i and

μ1 ≥ 0. We note that, as λ0, λ6 ≥ 0, we have μ1 ≥ 0.

Therefore, what remains to prove is that there exist α1, α2 ∈ R with α1 + α2 = 1

such that νi ≥ 0 for i ∈ {1, . . . , 5, 7, 8}. For i = 1, 2, we can arrange the inequalities νi ≥ 0

and ν6+i ≥ 0 to give

λ0 + λ6 − λi

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
≤ αi ≤ λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
. (15)

This works provided 3λ0 + 2λ6 + (λ9 + λ10 + λ11) �= 0 but if that term was zero, then by

non-negativity of the λi we would have λ0 = λ6 = λ9 = · · · = λ11 = 0 and thus X ∈ F̂6. So

if there exists a pair (α1, α2) with (15) holding for i = 1, 2 and α1 + α2 = 1, then X ∈ F̂6.

Note that for all i,

λ0 + λ6 − λi

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
≤ λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
,

as λ0 + λ6 = min0≤i≤2{λi + λ6+i}.
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2128 A. Malter

Furthermore,

0 ≤ λ0 + λ1 + λ2 + λ9 + λ10 + λ11

⇔ 2λ0 + 2λ6 ≤ 3λ0 + λ1 + λ2 + 2λ6 + λ9 + λ10 + λ11

⇔ ∑2
i=1 λ0 + λ6 − λi ≤ 3λ0 + 2λ6 + (λ9 + λ10 + λ11)

⇔ ∑2
i=1

λ0+λ6−λi
3λ0+2λ6+(λ9+λ10+λ11)

≤ 1.

Lastly, we are given that λ0+λ6 = min0≤i≤2{λi+λ6+i} ≤ 1
3

(
(λ6 + λ7 + λ8) − (λ9 + λ10 + λ11)

)
.

This leads to the following sequence of implications:

λ0 + λ6 ≤ 1
3

((
λ6 + λ7 + λ8) − (λ9 + λ10 + λ11

))
⇔ 3λ0 + 2λ6 + λ9 + λ10 + λ11 ≤ λ7 + λ8

⇔ 1 ≤ ∑2
i=1

λ6+i
3λ0+2λ6+(λ9+λ10+λ11)

.

In summary, we have shown that for i = 1, 2, we have

λ0 + λ6 − λi

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
≤ λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
,

and that

2∑
i=1

λ0 + λ6 − λi

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
≤ 1 ≤

2∑
i=1

λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
.

Applying Lemma 4.3 gives us the existence of a pair α1, α2 as required, concluding

the proof to Lemma 4.2. �

The Lemma 4.2 shows that we have indeed found all lower facets of the polyhe-

dron Q, meaning that the collection F̂1, . . . , F̂11 gives a regular polyhedral subdivision S
of P, thus concluding Step 1.

4.1.2 Step 2:

This is true by general convex geometry (using the poset of refinements and the

secondary polytope). By Theorem 2.4 in Chapter 7 of [14], the poset of (non-empty) faces

of the secondary polytope �(P) is isomorphic to the poset of all regular subdivisions

of P, partially ordered by refinement (see also Theorem 16.4.1 in [15]). The vertices

of �(P) correspond to regular triangulations. Thus, our regular subdivision obtained

by projection must correspond to some face of �(P) and any vertex of that face will

correspond to a regular triangulation refining it.
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Libgober–Teitelbaum and Batyrev–Borisov 2129

4.1.3 Step 3:

Consider a regular triangulation T obtained by refining S. By definition, it is a regular

triangulation of P. Recall Table 3. Denote by Ci the collection of points used to define the

polyhedron F̂i in the table. Note that F̂0, . . . , F̂5 are the simplices in T0, and therefore any

simplices in T \ T0 do not originate from refining any of F̂0, . . . , F̂5.

Thus, the last step of the proof reduces to showing that none of the polyhedra

F̂i, 0 ≤ i ≤ 11, contain any of the points we did not define it by, that is, F̂i ∩ C = Ci.

Indeed, in that case we note that, by consulting Table 3, the polyhedra F̂i each fulfill at

least one of the conditions A or B in the proposition. If F̂i ∩ C = Ci, then all simplices in

a refinement of F̂i are defined as the convex hull of a subset of Ci (as there is no interior

point to refine upon), thus inheriting the properties A or B from F̂i.

Showing that F̂i ∩C = Ci for 6 ≤ i ≤ 11 reduces to a simple computation. We shall

do the computation for F̂6, as the remaining cases are analogous by symmetry.

We need to show that P0, P6, P9, P10, P11, S1 �∈ F̂6. Any point X in F̂6 can be written

as

λ1P1 + · · · + λ5P5 + μ1S1 + λ7P7 + λ8P8 = (−λ3 − λ4 − λ5 − λ7 − λ8,

3λ1 − λ3 − λ4 − λ5 + 2λ7 − λ8, 3λ2 − λ3 − λ4 − λ5 − λ7 + 2λ8, −λ1 − λ2 + 3λ3,

λ1 + λ2 + 3λ4, λ3 + λ4 + λ5 + μ1 + λ7 + λ8, λ1 + λ2), (16)

with λi, μ1 ≥ 0 and
∑

λi + μ1 = 1. We note that the last two coordinates of X are

λ3 + λ4 + λ5 + μ1 + λ7 + λ8 and λ1 + λ2, respectively. Assume P0 ∈ F̂6 and had an

expression as in Equation (16). Then, as λi, μ1 ≥ 0, we can see by looking at the last

two coordinates that λ3 = λ4 = λ5 = μ1 = λ7 = λ8 = 0 and λ1 + λ2 = 1. But

then the first coordinate is λ1 · 0 + λ2 · 0 = 0 �= 2, hence we get a contradiction

and P0 �∈ F̂6. By an analogous reasoning, for S2, P9, P10, P11 we obtain that all but

λ1, λ2 would need to be 0 again and the sum of these two would need to be 1,

which means that not both the second and third coordinate (being 3λ1, 3λ2) can be 0.

Hence S2, P9, P10, P11 �∈ F̂6.

Finally, we need to show P6 �∈ F̂6. Assume we had an expression for P6 as in

Equation (16). Since λi ≥ 0, considering the last two coordinates gives λ1 = λ2 = 0 (since

λi ≥ 0) and λ3 + λ4 + λ5 + μ1 + λ7 + λ8 = 1. But then the first coordinate is −(λ3 +
λ4 + λ5 + λ7 + λ8) ≤ 0 < 2, a contradiction. Thus P6 �∈ F̂6, and thus F̂6 ∩ C = C6 as

claimed.

The other cases are analogous by symmetry. Thus we finished Step 3, hence

proving Proposition 4.1.
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2130 A. Malter

4.2 The ideals associated to the partial compactification

Recalling the notation from section 2.5, we denote by xi the variable inC[x0, . . . , x11, u1, u2]

corresponding to the point Pi and by uj the variable corresponding to Sj. These 14

variables correspond to the rays of the fan �∇,D′
a,D′

a
from Corollary 3.4.

Lemma 4.4. There exists a global function on X∇,D′
a,D′

b
that has the form

w = u1(c0x3
0x3

6 + c1x3
1x3

7 + c2x3
2x3

8 − 3λ1x3x4x5x6x7x8)

+ u2(c3x3
3x3

9 + c4x3
4x3

10 + c5x3
5x3

11 − 3λ2x0x1x2x9x10x11),
(17)

for some ci, λj ∈ C.

Proof. Consider the hyperplane

H := {(m, t1, t2) ∈ MR ⊕ R2 | t1 + t2 = 1} (18)

in M
R

⊕R2. The cone |�∇,D′
a,D′

b
|∨ is given by the cone over the convex hull of the following

8 points on H:

(0, 0, 0, 0, 1, 0, 1), (−1, −1, −1, −1, −1, 0, 1), (0, 0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0),

(0, 1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0).

Recall that there is a correspondence between points in the dual cone |�LT,Da,Db
|∨

and global functions on XLT,Da,Db
. Note that, when one constructs a superpotential for

XLT,Da,Db
using this correspondence with the 8 points above, one obtains the super-

potential w = u1Q1,λ + u2Q2,λ. To see the global function on X∇,D′
a,D′

b
, it suffices to

compute what monomials these 8 points correspond to on X∇,D′
a,D′

b
. This gives the

8 monomials in (17). �

For our purposes of comparing the Batyrev–Borisov construction with the one

by Libgober–Teitelbaum, we choose ci = 1 and λ1 = λ2 =: λ.

We fix a triangulation T fulfilling the properties of Proposition 4.1. Let X = C14

and consider the group G� corresponding to the fan �∇,D′
a,D′

b
with its action on X. From

the triangulation T , we obtain the ideals:

I :=
〈∏

i�∈I

xi

∏
j �∈J

uj

∣∣∣ ⋃
i∈I

uρi
∪

⋃
j∈J

uτj
give the set of vertices of a simplex in T

〉
,

J :=
〈∏

i�∈I

xi

∣∣∣ ⋃
i∈I

uρi
∪

2⋃
j=1

uτj
give the set of vertices of a simplex in T

〉
.
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Libgober–Teitelbaum and Batyrev–Borisov 2131

Before we can apply Proposition 2.25 and Corollary 2.26, we need to ensure the

condition I ⊆ √
∂w,J holds.

Lemma 4.5. For any triangulation T as in Proposition 4.1, defining I,J and w as above

with λ6 �= 0, 1, we have I ⊆ √
J , ∂w. Therefore, this choice of superpotential fulfills the

condition of Proposition 2.25.

Proof. To show the containment I ⊆ √
∂w,J , we prove that all the generators of I are

in
√

∂w,J . The ideal I is, by definition, generated by the monomials that correspond to

the simplices in the triangulation T . For a simplex T ∈ T0, both S1 and S2 are vertices.

Thus, by definition, the monomial associated to T is in J and hence in
√

∂w,J .

For any simplex T ∈ T \ T0, either condition (A) or (B) of Proposition 4.1 holds.

We claim that the monomial associated to a simplex T fulfilling either of those two

conditions is an element of
√

∂w and therefore an element of
√

∂w,J .

We note that if T ∈ T \ T0 fulfills condition (A), that is, does not contain any of

the points S1.P6, P7, P8 and there is a pair of points of the form Pj, P6+j with 3 ≤ j ≤ 5 also

not contained, then by definition u1xjx6+jx6x7x8 divides the monomial associated to T.

Similarly, if T fulfilled condition (B) instead, u2xjx6+jx9x10x11 (for some 0 ≤ j ≤ 2) would

divide the monomial generator of I associated to T.

To show that any monomial associated to a simplex in T \T0 is in
√

∂w ⊆ √
∂w,J ,

it is thus sufficient to prove that the six monomials u2x0x6x9x10x11, u2x1x7x9x10x11,

u2x2x8x9x10x11, u1x3x9x6x7x8, u1x4x10x6x7x8 and u1x5x11x6x7x8 are elements of
√

∂w.

By symmetry of the xi in w, we note that it is sufficient to show that

u2x0x6x9x10x11 ∈ √
∂w. Start by explicitly writing down the ideal 〈∂w〉, that is, the

ideal generated by the partial derivatives of w.

〈∂w〉 = 〈3u1x2
0x3

6 − 3λu2x1x2x9x10x11, 3u1x2
1x3

7 − 3λu2x0x2x9x10x11,

3u1x2
2x3

8 − 3λu2x0x1x9x10x11, 3u2x2
3x3

9 − 3λu1x4x5x6x7x8,

3u2x2
4x3

10 − 3λu1x3x5x6x7x8, 3u2x2
5x3

11 − 3λu1x3x4x6x7x8,

3u1x3
0x2

6 − 3λu1x3x4x5x7x8, 3u1x3
1x2

7 − 3λu1x3x4x5x6x8,

3u1x3
2x2

8 − 3λu1x3x4x5x6x7, 3u2x3
3x2

9 − 3λu2x0x1x2x10x11,

3u2x3
4x2

10 − 3λu2x0x1x2x9x11, 3u2x3
5x2

11 − 3λu2x0x1x2x9x10,

x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8, x3
3x3

9 + x3
4x3

10 + x3
5x3

11 − 3λx0x1x2x9x10x11〉

We see that 3u1x2
i x3

6+i − 3λu2
x0x1x2x9x10x11

xi
∈ 〈∂w〉 for 0 ≤ i ≤ 2. Notice that since

ac − bd = c(a − b) + b(c − d), if a − b, c − d are elements in an ideal, then so is ac − bd.
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2132 A. Malter

Hence by iterating this we obtain that

27u3
1x2

0x2
1x2

2x3
6x3

7x3
8 − 27λ3u3

2x2
0x2

1x2
2x3

9x3
10x3

11 ∈ 〈∂w〉.

Similarly,

27u3
2x2

3x2
4x2

5x3
9x3

10x3
11 − 27λ3u3

1x2
3x2

4x2
5x3

6x3
7x3

8 ∈ 〈∂w〉.

Therefore,

(27)2u3
1u3

2x2
0 . . . x2

5x3
6 . . . x3

11 − (27)2λ6u3
1u3

2x2
0 . . . x2

5x3
6 . . . x3

11 ∈ 〈∂w〉
⇒ 272(1 − λ6)u3

1u3
2x2

0 . . . x2
5x3

6 . . . x3
11 ∈ 〈∂w〉

⇒ u3
1u3

2x2
0 . . . x2

5x3
6 . . . x3

11 ∈ 〈∂w〉
⇒ (u1u2x0 . . . x11)3 ∈ 〈∂w〉. (19)

Consider ∂w
∂u1

, giving

x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8 ∈ 〈∂w〉. (20)

Furthermore, we note that
∑2

i=0 xi
∂w
∂xi

∈ 〈∂w〉, and thus

2∑
i=0

(3u1x3
i x3

6+i − 3λu2x0x1x2x9x10x11) ∈ 〈∂w〉. (21)

By (20), we have that x3x4x5x6x7x8 + 〈∂w〉 = 1
3λ

(x3
0x3

6 + x3
1x3

7 + x3
2x3

8) + 〈∂w〉. We use this

to substitute into (19) to obtain that

1

27λ3 u3
2x3

0x3
1x3

2x3
9x3

10x3
11(u1(x3

0x3
6 + x3

1x3
7 + x3

2x3
8))3 ∈ 〈∂w〉.

Performing the same style of substitution with (21), we obtain

u3
2x3

0x3
1x3

2x3
9x3

10x3
11u3

2x3
0x3

1x3
2x3

9x3
10x3

11 = (u2x0x1x2x9x10x11)6 ∈ 〈∂w〉.

Thus u2x0x1x2x9x10x11 ∈ √
∂w.

By comparing the elements x2
∂w
∂x2

, u2x0x1x2x9x10x11 ∈ √
∂w, we obtain that

u1x3
2x3

8 ∈ √
∂w, implying u1x2x8 ∈ √

∂w. This, in turn, implies that u2x0x1x9x10x11 ∈
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Libgober–Teitelbaum and Batyrev–Borisov 2133

√
∂w, by inspection of ∂w

∂x2
∈ 〈∂w〉 ⊆ √

∂w. Similarly, u2x0x2x9x10x11 ∈ √
∂w. We also

have u2x5x11 ∈ √
∂w by an analogous computation. Finally, ∂w

∂u1
= x3

0x3
6 + x3

1x3
7 + x3

2x3
8 −

3λx3x4x5x6x7x8 ∈ √
∂w.

Therefore, one can intuit and then compute that

(u2x0x6x9x10x11)4 = −u3
2x2

1x6x3
7x3

9x3
10x3

11 · (u2x0x1x9x10x11)

− u3
2x2

2x6x3
8x3

9x3
10x3

11 · (u2x0x2x9x10x11)

+ 3λu3
2x0x3x4x2

6x7x8x4
9x4

10x4
11 · (u2x5x11)

+ u4
2x0x6x4

9x4
10x4

11 · (x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8) ∈ √
∂w.

(22)

Thus, we have shown that u2x0x6x9x10x11 ∈ √
∂w. By symmetry, any simplex

fulfilling properties (A) or (B) corresponds to a monomial in
√

∂w,J . Hence, any

monomial associated to a simplex T ∈ T \ T0 is an element of
√

∂w,J , concluding the

proof that I ⊆ √
∂w,J . �

Corollary 4.6. Consider the GKZ fan of tot
(
OX∇ (−D′

b) ⊕ OX∇ (−D′
a)

)
and the group G�

from above. There is a chamber σp with affine open Up such that:

(i) [Up/G� ] is a partial compactification of tot
(
OXLT

(−Db) ⊕ OXLT
(−Da)

)
.

(ii) There is a superpotential corresponding to the eight points in |�∇,D′
a,D′

b
|∨ ∩H

taking the form w = u1(x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8) + u2(x3
3x3

9 +
x3

4x3
10 + x3

5x3
11 − 3λx0x1x2x9x10x11).

(iii) With Ip,J p as defined in §2.5, we have Ip ⊆
√

∂w,J p.

Proof. Proposition 4.1 proves (i), Lemma 4.4 proves (ii), and finally Lemma 4.5 shows

(iii). �

4.3 Relating X∇ and XLT

Recall that the partial compactification of the total space tot
(
OXLT

(−Db) ⊕ OXLT
(−Da)

)
in

Corollary 4.6 corresponds to a chamber σp of the GKZ fan of tot(OX∇ (−D′
b) ⊕OX∇ (−D′

a)).

We then know that it is birationally equivalent to tot(OX∇ (−D′
b) ⊕ OX∇ (−D′

a)).

Thus, we want to now explicitly find a triangulation of P corresponding to the

Batyrev–Borisov mirror family. There, the superpotential will take the form

w = u1(x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8) + u2(x3
3x3

9 + x3
4x3

10 + x3
5x3

11

− 3λx0x1x2x9x10x11).
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2134 A. Malter

Note that, by Lemma 4.4, this is the form the superpotential should take in the

Batyrev–Borisov mirror. In other words, we need a chamber σq in the GKZ fan

corresponding to tot(OX∇ (−D′
b) ⊕ OX∇ (−D′

a)), where a general section of OX∇ (−D′
b) ⊕

OX∇ (−D′
a) will yield a complete intersection in X∇ , and thus a Batyrev–Borisov

mirror.

Lemma 4.7. Consider the GKZ fan of tot
(
OX∇ (−D′

b) ⊕ OX∇ (−D′
a)

)
and recall the group

G� from above. There is a chamber σq with affine open Uq such that:

(i) [Uq/G� ] = tot
(
OX∇ (−D′

b) ⊕ OX∇ (−D′
a)

)
.

(ii) A superpotential corresponding to the eight lattice points of |�∇,D′
a,D′

b
|∨∩H is

of the form w = u1(x3
0x3

6 + x3
1x3

7 + x3
2x3

8 − 3λx3x4x5x6x7x8)+ u2(x3
3x3

9 + x3
4x3

10 +
x3

5x3
11 − 3λx0x1x2x9x10x11).

(iii) For Iq,J q as defined in §2.5, Iq ⊆
√

∂w,J q.

Proof. This proof will construct the triangulation Tq corresponding to the chamber

σq. We consider the 42 maximal cones from Table 1. For each of those cones

σi, 1 ≤ i ≤ 42, we associate a simplex given as convex hull of the 5 vertices

corresponding to the 5 rays of σi plus the two vertices corresponding to the

bundle coordinates, that is, (0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 0, 1). So for example

the first cone, with rays ρ0, ρ1, ρ2, ρ9, ρ10, will correspond to the simplex with

vertices (3, 0, 0, −1, −1, 1, 0), (0, 3, 0, −1, −1, 1, 0), (0, 0, 3, −1, −1, 1, 0), (0, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 2, −1, 1, 0), (0, 0, 0, −1, 2, 1, 0). Another way to formulate this is

that we take the star subdivision of the cones from Table 1 on the two bundle points

S1, S2.

Regularity of this triangulation of the 14 points is an easy consequence

of its construction as a star subdivision, hence it corresponds to some chamber

σq in the GKZ-fan. Indeed, the star subdivision can be obtained by giving the

points S1, S2 a weight of 1 and giving all other points the same weight of w =
2 and then refining the resulting regular polyhedral subdivision into a triangu-

lation. Alternatively, one can check the regularity of this triangulation by using

SAGE.

The third item follows from the fact that we do not partially compactify, hence

J q = Iq and therefore Iq ⊆
√

∂w,J q, as required. �

We now have all the necessary tools to prove the main result of this paper,

Theorem 1.1.
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Proof of Theorem 1.1. Recall the chambers σp and σq in the GKZ fan of the toric

variety tot
(
OX∇ (−D′

b) ⊕ OX∇ (−D′
a)

)
given in Corollary 4.6 and Lemma 4.7. By applying

Corollary 2.26, we have Db(cohZλ)
∼= Db(cohVLT,λ), as required. �

We note that analogous computations to the ones displayed in this paper can

yield the following result in lower dimension.

Theorem 4.8. Let Q1 = x2
1 + x2

2 − x3x4, Q2 = x2
3 + x2

4 − x1x2 and let p1 = x2
1x2

5 + x2
2x2

6 −
x3x4x5x6, p2 = x2

3x2
7 + x2

4x2
8 − x1x2x7x8. We define the group G4 ⊆ PGL(3,C) given by the

four automorphisms

diag(1, 1, 1, 1), diag(ζ8, −ζ8, −ζ−1
8 , ζ−1

8 ), diag(ζ4, ζ4, ζ−1
4 , ζ−1

4 ), diag(ζ 3
8 , −ζ 3

8 , −ζ−3
8 , ζ−3

8 ),

where ζk is a primitive kth root of unity.

The Batyrev–Borisov mirror to Z(Q1, Q2) ⊆ P3 can be computed to be a complete

intersection Z2 in a 3-dimensional toric stack XBB given as the zero locus Z2 = Z(p1, p2) ⊆
XBB. Take the stacky complete intersection V2 := Z(Q1, Q2) ⊆ [(C4 \{0})/(C∗ ×G4)]. Then

Db(cohV2) ∼= Db(cohZ2).

Remark 4.9. One can aim to generalise this to higher dimensions by looking at the

zeroset of the two polynomials

Q1,n = xn
1 + · · · + xn

n − xn+1 . . . x2n and Q2,n = xn
n+1 + · · · + xn

2n − x1 . . . xn

in P2n−1.

Unfortunately, Z(Q1,n, Q2,n) ⊆ P2n−1 is itself singular for n ≥ 4, which poses

problems for the required ideal containment condition I ⊆ √
∂w,J to hold. However,

using these methods of VGIT is still interesting in the context of categorical resolu-

tions. Indeed, the direct generalisation of the Libgober–Teitelbaum construction above

can be categorically resolved. This technique and its generalisations are a subject of

future work.

Remark 4.10. The notion of f -duality introduced by Rossi in [23] and [24] gives an

efficient method of computing and extending the Batyrev–Borisov mirror construction.

In particular, applying f -duality to the variety VLT,λ ⊆ P5 /G81 yields Vλ ⊆ P5.

The generalisations looked at in the Remark 4.9 were inspired by f -duality and

it seems to be an interesting question when, in general, one can use the methods of

variations of GIT employed in this paper to strengthen the notion of f -duality.
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