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Abstract This article focuses on different anisotropic mod-
els within the framework of a specific modified f (R, T ,

Rζγ T ζγ ) gravity theory. The study adopts a static spheri-
cally symmetric spacetime to determine the field equations
for two different modified models: (i) f (R, T ,Rζγ T ζγ ) =
R + ηRζγ T ζγ , and (ii) f (R, T ,Rζγ T ζγ ) = R(1 +
ηRζγ T ζγ ), where η is a constant parameter. To address
the additional degrees of freedom in the field equations and
obtain their corresponding unique solution, the Durgapal-
Fuloria spacetime geometry and MIT bag model are utilized.
Matching conditions are applied to determine unknown con-
stants within the chosen spacetime geometry. We adopt a
certain range of model parameters to analyze the physical
characteristics of the developed models in the interior dis-
tribution of a particular compact star candidate 4U 1820-30.
Energy conditions and some other tests are also implemented
to ensure their viability and stability. Additionally, the dis-
appearing radial pressure constraint is employed to find the
values of the model parameter, aligning with the observed
information of an array of stars. The study concludes that
both of our models are well-behaved and satisfy all neces-
sary conditions, and thus we observe them suitable for the
modeling of astrophysical objects.
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1 Introduction

The scientific community has long regarded general the-
ory of relativity (GR) as the dominant gravitational theory,
successfully tackling numerous challenges. However, it has
limitations in fully explaining the rapid cosmic expansion.
Recent observations have hinted at a repulsive force, known
as ‘dark energy’, which is believed to drive galaxies apart and
contribute to the cosmic acceleration. In response to various
cosmic mysteries, scientists have been investigating multiple
extensions to GR. The f (R) theory represents the pioneer-
ing extension of GR achieved through modifying the action,
where the Ricci scalar R is supplanted with the generalized
function [1]. Researchers have extensively utilized various
approaches in this context to investigate the feasibility of self-
gravitating structures [2–6]. Moreover, f (R) gravity models
have been instrumental in addressing diverse cosmological
issues, such as the late-time cosmic evolution, the inflation-
ary epoch in which our universe grown at an exponential
rate, and more [7–10], extending their applications beyond
celestial bodies.

In a research endeavor led by Bertolami and colleagues
[11], the quest to unveil the enigmatic aspects of the cosmos
prompted an investigation into a novel concept concerning
the coupling between matter and geometry. This exploration
involved unifying the influence of geometry and the fluid
Lagrangian in f (R) framework. The innovative nature of this
approach sparked the interest of numerous astronomers, who
subsequently shifted their focus towards comprehending the
accelerated expansion. Building upon these initial insights,
recent advancements have given rise to modified theories,
garnering significant attention in the scientific field. Harko
et al. [12] proposed the first-ever theory based on this idea,
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termed f (R, T ) gravity, where T signifies the trace of the
energy-momentum tensor (EMT) whose incorporation leads
to non-conservation effects, prompting thorough analysis of
the self-gravitating bodies, resulted in numerous significant
discoveries [13–22]. In a related development, Haghani et al.
[23] proposed another theory whose functional dependent on
Rζγ T ζγ along with previous two entities. They explored an
epoch of cosmic expansion characterized by rapid growth
and analyzed multiple models to evaluate their validity in
this context. They further enhanced their analysis by employ-
ing the Lagrange multiplier method and computed conserved
EMT even in this theoretical framework.

In this theory, the presence of a non-conserved EMT intro-
duces an extra force that disrupts the motion of test parti-
cles along geodesic paths. Researchers [24] investigated two
models, namelyR+ηRζγ T ζγ andR(1+ηRζγ T ζγ ), along
with different fluid Lagrangians. Their study delved into var-
ious properties related to black holes and the corresponding
laws to discuss their thermodynamics. Odintsov and Sáez-
Gómez [25] discussed the effects of varying fluid configu-
rations, demonstrating that such alternations can result in a
pure de Sitter model within this modified framework. Addi-
tionally, Ayuso et al. [26] analyzed the field equations in
this extended theory through the incorporation of some fields
(either scalar or vector), revealing the presence of non-linear
terms arising from such couplings between fluid and geom-
etry. The work presented in [27] extensively delves into the
stability checks for various models through the incorporation
of perturbation functions. A crucial observation was made
regarding the impact of the matter Lagrangian density, par-
ticularly in relation to the radial and tangential components
of pressure [28]. Additionally, the decomposition of the cur-
vature tensor resulted in scalar functions relevant to the fluids
possessing charge/uncharge properties, bearing importance
in studying celestial systems [29–34]. Through diverse tech-
niques, solutions to modified field equations were extracted,
leading to the modeling of several anisotropic systems that
proved consistent and physically valid results [35,36].

The reigning factors which define the self-gravitating inte-
riors, does not matter which properties they exhibit, are com-
monly the energy density and pressure (same or different in
different directions depending on the nature of the fluid).
These elements are interconnected in specific ways, one
of them being the MIT equation of state (EoS) [37]. It is
worth noting that this model effectively grabs the features
of the objects composed of quark-like elements such as RXJ
185635-3754, 4U 1820-30, PSR 0943+10, 4U 1728-34, SAX
J 1808.4-3658, Her X-1, among others. Conversely, such
characterization is not achievable using a neutron star EoS
[38]. Researchers have utilized the same model to explore
the internal configuration of strange stars [39–43]. Demorest
with his colleagues [44] conducted a comprehensive explo-
ration of the massive system PSR J1614-2230, determining

that only the MIT model can account for such extraordinarily
dense bodies. Rahaman et al. [45] described in more depth
some particular stellar interiors using the same model. Sim-
ilarly, various researchers expanded upon this research by
investigating various modified gravity scenarios, leading to
the identification of physically stable models [46,47].

This paper is focused on assessing the viability of the
Durgapal–Fuloria models coupled with anisotropic pressure
in the f (R, T ,Rζγ T ζγ ) framework. The following lines
explain the organization of the current paper. In the next
section, we introduce some fundamental definitions and cal-
culate the field equations for a couple of modified models.
Furthermore, we utilize the MIT bag model to describe the
inner structure of the quark-like structures. Section 3 employs
matching criteria to determine a doublet (d1, d2) appearing
due to the consideration of Durgapal–Fuloria metric. Mov-
ing to Sect. 4, we conduct a graphical analysis of different
properties of the obtained fluid determinants by fixing the
model parameter. After this, we identify the model parame-
ter that align with the calculated data of various stars in Sect.
5. Finally, the last section presents a brief summary regarding
our results.

2 Modified theory and field equations

The modified Einstein–Hilbert action with κ = 8π takes the
form [25]

S =
∫ √−g

{
f (R, T ,Rζγ T ζγ )

16π
+ Łm

}
d4x, (1)

where Łm being the matter’s Lagrangian density. We apply
the least-action principle on the above equation, resulting in

Gζγ = 8πT (ef)
ζγ = 8πTζγ

fR − Łm fQ
+ T (cr)

ζγ , (2)

which relates the effective matter distribution and geometry
expressed by the EMT T (eff)

ζγ and the Einstein tensor Gζγ ,

respectively. Also, Q = Rζγ T ζγ . The insertion of general-
ized functional f in Eq. (1) produces some additional terms
along with the fluid distribution of GR, and we represent it
by T (cr)

ζγ . Its expression is

T (cor)
ζγ = − 1(

Łm fQ − fR

)
[(

fT + 1

2
R fQ

)
Tζγ −

{
Łm fT

−R
2

(
f

R − fR

)
+ 1

2
∇�∇σ ( fQT �σ )

}
gζγ

−1

2
�( fQTζγ ) − (gζγ � − ∇ζ ∇γ ) fR

−2 fQR�(ζT
�

γ )
+ ∇�∇(ζ [T �

γ )
fQ]
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+2( fQR�σ + fT g�σ )
∂2Łm

∂gζγ ∂g�σ

]
, (3)

where the partial derivatives fR, fT and fQ are involved
that differentiate the functional with respect to its argu-
ments. Two other mathematical symbols are used, known
as the covariant derivative (∇�) and and D’Alambert opera-
tor

(
� ≡ 1√−g

∂ζ (
√−ggζγ ∂γ )

)
. It has been observed in the

literature that the fluid Lagrangian takes the value Łm = −μ

(μ being the energy density) in this theory to produce well-
behaving results. On the other hand, we also observe that the
equivalence principle is not satisfied in the current scenario
(i.e., ∇ζT ζγ �= 0), so an extra force must be required to make
the system in stable equilibrium. Such kind of force alters the
geodesic motion of the particles in spacetime regions. Math-
ematical, this force becomes

∇ζTζγ = 2

2 fT + R fQ + 16π

[
∇ζ

(
fQR�ζT�γ

)

− Gζγ ∇ζ
(
fQŁm

) + ∇γ

(
Łm fT

)

− 1

2
∇γ T �σ

(
fT g�σ + fQR�σ

)

− 1

2

{∇ζ (R fQ) + 2∇ζ fT
}
Tζγ

]
. (4)

The EMT plays a crucial role in examining the internal
properties of self-gravitating systems, which is vital in the
realm of astrophysics. In this field, a diverse array of cos-
mic entities is thought to display the anisotropy in pressure.
This makes the EMT an indispensable tool for studying the
complex processes of stellar evolution. The mathematical
expression of the anisotropic EMT is as follows

Tζγ = (μ + P⊥)Uζ Uγ + P⊥gζγ + (Pr − P⊥) Vζ Vγ , (5)

where P⊥ is the tangential pressure, Vζ indicates the four-
vector, Pr being the radial pressure and Uζ represents the
four-velocity. The trace of Eq. (2) along with (3) is

3∇�∇� fR − T (8π + fT ) − R
(T

2
fQ − fR

)

+ 1

2
∇�∇�( fQT ) + ∇ζ ∇�( fQT ζ�)

− 2 f + (R fQ + 4 fT )Łm + 2Rζ�T ζ� fQ

− 2gγ σ ∂2Łm

∂gγ σ ∂gζ�

(
fT gζ� + fQRζ�

) = 0.

The metric or spacetime is a fundamental concept that
enables us to investigate the gravitational field and its effects
on the curvature of spacetime within heavily celestial objects.
In this context, we focus on the interior spherical spacetime
that is described by the line element given as

ds2 = eA1dr2 + r2dθ2 + r2 sin2 θdφ2 − eA0dt2, (6)

where A0 = A0(r) and A1 = A1(r). The quantities used in
Eq. (5) are now become

Vζ = δ
ζ
1 e

− A1
2 , Uζ = δ

ζ
0 e

− A0
2 , (7)

satisfying Vζ Uζ = 0 and Uζ Uζ = −1.
Our cosmos is currently experiencing a period of rapid

expansion and is filled with a multitude of stars that exist
within a non-linear context. Despite this non-linearity, con-
ducting analyzes using linear methods offer a better under-
standing of the formation and behavior of these heavily struc-
tures. To delve into this, we explore following two models as
[23].

Model 1: f (R, T ,Rζγ T ζγ ) = R + ηRζγ T ζγ ,

Model 2: f (R, T ,Rζγ T ζγ ) = R(1 + ηRζγ T ζγ ),

where η being the arbitrary parameter. It is important to high-
light that different parametric values, all falling within the
estimated range, guarantee the validity of stars. Haghani et
al. [23] conducted a thorough examination of these models,
delving into the evolution of the scale factor and decelera-
tion parameter. Similarly, Sharif and Zubair [24] focused on
isotropic configurations within the same context, deriving
acceptable values for the respective parameters. The expres-
sion for the last term in above models can be expressed as

Rζγ T ζγ

= e−A1

[
μ

4

(
A′2

0 − A′
0A1

′ + 2A′′
0 + 4A′

0

r

)

+P⊥
(
A1

′

r
− A′

0

r
+ 2eA1

r2 − 2

r2

)

− Pr
4

(
A′2

0 − A′
0A1

′ + 2A′′
0 + 4A1

′

r

)]
,

where ′ = ∂
∂r .

The field equations (2) characterizing the anisotropic inte-
rior (5) are given for Model 1 as

8πμ = e−A1

[
A1

′

r
+ eA1

r2 − 1

r2

+ η

{
μ

(
3A′

0A1
′

8
− A′2

0

8
+ A1

′

r
+ eA1

r2

− 3A′′
0

4
− 3A′

0

2r
− 1

r2

)
− μ′

(
A1

′

4
− 1

r
− A′

0

)

+ μ′′

2
+ Pr

(
A′

0A1
′

8
− A′2

0

8
− A′′

0

4
+ A1

′

2r
+ A1

′′

2
(8)

− 3A1
′2

4

)
+ 5A1

′P ′
r

4
− P ′′

r

2

+ P⊥
(
A1

′

2r
− A′

0

2r
+ 3eA1

r2 − 1

r2

)
− P ′⊥

r

}]
,
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8π Pr = e−A1

[
A′

0

r
− eA1

r2 + 1

r2

+ η

{
μ

(
A′

0A1
′

8
+ A′2

0

8
− A′′

0

4
− A′

0

2r

)
− A′

0μ
′

4
− Pr

×
(

5A′2
0

8
− 7A′

0A1
′

8
+ 5A′′

0

4
− 7A1

′

2r

+ A′
0

r
− A1

′2 − eA1

r2 + 1

r2

)
+ P ′

r

(
A′

0

4
+ 1

r

)

− P⊥
(
A1

′

2r
− A′

0

2r
+ 3eA1

r2 − 1

r2

)
+ P ′⊥

r

}]
,

8π P⊥ = e−A1

[
A′2

0

4
− A′

0A1
′

4
+ A′′

0

2
− A1

′

2r
+ A′

0

2r

+ η

{
μ

(
A′2

0

8
+ A′

0A1
′

8
− A′′

0

4
− A′

0

2r

)

− A′
0μ

′

4
+ Pr

(
A′2

0

8
− A′

0A1
′

8

+ A′′
0

4
− A1

′

2r
− A1

′′

2
+ 3A1

′2

4

)
− 5A1

′P ′
r

4
+ P ′′

r

2
(9)

− P⊥
(
A′2

0

4
− A′

0A1
′

4
+ A′′

0

2

− A1
′

r
+ A′

0

r

)
− P ′⊥

(
A1

′

4
− A′

0

4

− 3

r

)
+ P ′′⊥

2

}]
. (10)

Similarly, expressions for matter variables corresponding
to Model 2 as

8πμ = e−A1

[
A1

′

r
+ eA1

r2 − 1

r2 + η

{
μ

((
A1

′

r
+ eA1

r2

− 1

r2

)
α1 − R

(
1

r2 − A1
′

r
− eA1

r2

+ ReA1

2
− 3A′2

0

8

− 3A′
0

2r
+ 5A′

0A1
′

8
− 3A′′

0

4

)
+ R′

(
A1

′

2
− 1

r

)

− R′′

2
− α4

(
2

r
− A1

′

2

)
− α7

)

+ μ′
(

α1

(
A1

′

2
− 2

r

)
− R

(
1

r

− A1
′

4

)
− R′ − 2α4

)
− μ′′

(
α1

+ R
2

)
− Pr

((
1

r2 − A1
′

r

− eA1

r2

)
α2 + R

(
A′2

0

8
− 1

r2 − A′
0A1

′

8
+ A1

′

2r
+ A′′

0

4

)

− R′
(

2

r
− A1

′

2

)

− R′′

2
+ α5

(
2

r
− A1

′

2

)
+ α8

)
− P ′

r

(
α2

(
2

r
− A1

′

2

)
+ R

×
(
A1

′

4
− 2

r

)

− R′ + 2α5

)
− P ′′

r

(
α2 − R

2

)
− P⊥

((
1

r2

− A1
′

r
− eA1

r2

)
α3

+ R
(
A′

0

2r
+ 1

r2 − A1
′

2r

)

+ R′

r
+ α6

(
2

r
− A1

′

2

)

+ α9

)
− P ′⊥

(
α3

(
2

r
− A1

′

2

)
(11)

+ R
2

+ 2α6

)
− P ′′⊥α3

}]
,

8π Pr = e−A1

[
A′

0

r
− eA1

r2

+ 1

r2 + η

{
μ

((
A′

0

r
− eA1

r2 + 1

r2

)
α1

− R
(
eA1

r2 − 1

r2 − A′
0

r
+ A′2

0

8
+ A′

0

2r

− A′
0A1

′

8
+ A′′

0

4

)
+ R′A′

0

4
+ α4

(
2

r
+ A′

0

2

))

+ μ′
(

α1

(
2

r
+ A′

0

2

)

+ RA′
0

4

)
+ Pr

((
1

r2

+ A′
0

r
− eA1

r2

)
α2 − R

(ReA1

2
− 3A′2

0

8

+ 1

r2 + A′
0

r
+ 3A1

′

2r
+ 3A′

0A1
′

8
− 3A′′

0

4

)

− R′
(

1

r
+ A′

0

4

)
+ α5

(
2

r
+ A′

0

2

))

+ P ′
r

(
α2

(
2

r
+ A′

0

2

)
− R

(
A′

0

4
+ 1

r

))
− P⊥

((
A′

0

r

+ eA1

r2 − 1

r2

)
α3 + R

(
A1

′

2r
− 1

r2 − A′
0

2r

)
+ R′

r
(12)

− α6

(
2

r
+ A′

0

2

))

+ P ′⊥
(

α3

(
2

r
+ A′

0

2

)
− R

2

)}]
,

8π P⊥ = e−A1

[
A′′

0

2
− A′

0A1
′

4
+ A′2

0

4
+ A′

0

2r
− A1

2r

+ η

{
μ

(
α1

(
A′′

0

2
− A′

0A1
′

4
+ A′2

0

4

+ A′
0

2r
− A1

2r

)
− R

(
A′

0A1
′

8
− A′′

0

4
− A′2

0

8
+ A1

′

2r

)

−
(
A1

′

2
− 1

r
− A′

0

2

)
α4 + α7
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− R′A′
0

4

)
− μ′

(
α1

(
A1

′

2

− 1

r
− A′

0

2

)
+ RA′

0

4
− 2α4

)
+ μ′′α1 − Pr

((
A1

′

2r

− A′′
0

2
− A′2

0

4
− A′

0

2r
+ A′

0A1
′

4

)
α2

+ R
(
A′2

0

8
+ A′

0

2r
− A′

0A1
′

8
+ A′′

0

4

)
+ R′

×
(
A′

0

2
+ 1

r
− A1

′

4

)
+ R′′

2

+ α5

(
A1

′

2
− 1

r
− A′

0

2

)
− α8

)
− P ′

r

(
α2

(
A1

′

2

− 1

r
− A′

0

2

)
+ R

(
A′

0

2
+ 1

r
− A1

′

4

)

+ R′ − 2α5

)
+ P ′′

r

(
α2 − R

2

)
+ P⊥

(
α3

×
(
A′′

0

2
− A′

0A1
′

4
+ A′2

0

4
+ A′

0

2r

− A1

2r

)
− R

(ReA1

2
− 2

r2 + A1
′

r
− A′

0

r
+ 2eA1

r2

)

− R′
(
A′

0

4
− A1

′

4

)
− R′′

2

− α6

(
A1

′

2
− 1

r
− A′

0

2

)
+ α9

)

− P ′⊥
(

α3

(
A1

′

2
− 1

r

− A′
0

2

)
+ R

(
A′

0

4
− A1

′

4

+ 2

r

)
+ R′ − 2α6

)
+ P ′′⊥

(
α3 − R

2

)}]
, (13)

where α
′s
j , ( j = 1 to 9) are presented in Appendix A. A

formula for calculating the spherical mass distribution has
been calculated [48], represented as

m(r) = r

2

(
1 − gζγ r,ζ r,γ

)
,

simplifies to

m(r) = r

2

(
1 − e−A1

)
. (14)

The two sets of differential equations (8)–(10) and (11)–
(13) involve matter determinants and their derivatives, mak-
ing it a challenging task to obtain their solutions. Therefore,
it becomes imperative to impose some constraints in order to
derive the required solutions. In this context, we consider the
MIT bag model to quark’s interior [37]. The corresponding
EoS is defined as

Pr = 1

3
(μ − 4Bc) . (15)

Researchers have conducted investigations into various quark
interiors using the aforementioned equation and calculated
values for Bc that are consistent with observed data [49,50].

After combining Eqs. (8) and (9) with (15), the explicit
form of matter variables μ, Pr and Pt for Model 1 can be
expressed by

μ =
[
η

(
9A′′

0
8

− eA1

r2 + 1

r2

− A1
′′

8
− 5A′

0A1
′

8
− A1

′2
16

− 7A1
′

2r
+ 3A′2

0
16

+ 7A′
0

4r

)

+ 8πeA1

]−1[
3

4

(
A1

′
r

+ A′
0
r

)
+ Bc

{
8πeA1 − η

(
4A1

′
r

− 3A′2
0

4
− 3A′′

0
2

+ A1
′′

2

+ A1
′2

4
+ A′

0A1
′ − A′

0
r

+ eA1

r2 − 1

r2

)}]
, (16)

Pr =
[
η

(
9A′′

0
8

− eA1

r2 + 1

r2

− A1
′′

8
− 5A′

0A1
′

8
− A1

′2
16

− 7A1
′

2r
+ 3A′2

0
16

+ 7A′
0

4r

)

+ 8πeA1

]−1[
1

4

(
A1

′
r

+ A′
0
r

)
− Bc

{
8πeA1

− η

(
A′

0A1
′

2
+ A1

′
r

− 2A′
0

r

+ eA1

r2 − A′′
0 − 1

r2

)}]
. (17)

On the other hand, Eqs. (11) and (12) along with EOS
(g14a) give the expressions for Model 2

μ =
[
η

{
3

4

(
A1

′

r
+ A′

0

r

)(
α1

+ α2

3

)
+ 3

8

(
A1

′ + A′
0

)(
α4 + α5

3

)
+ R

(
A′′

0

2
+ A1

′

4r

− 7A′
0A1

′

16
+ A′2

0

16
+ 5A′

0

4r

− ReA1

2

)
+ R′

(
A′

0

8
− 1

2r
+ A1

′

8

)
− R′′

4
− α8

4

}

− 8πeA1

]−1[
− 3

4

(
A1

′

r
+ A′

0

r

)
− 8πBce

A1

− ηBc

{(
A1

′

r
+ A′

0

r

)
α2 − R

(
A′2

0

2

+ ReA1

2
+ A′

0

r
+ A′

0A1
′

4
+ 2A1

′

r
− A′′

0

2

)

− R′
(
A′

0

4
− 1

r
+ A1

′

4

)
+ R′′

2
− α8

+ α5

(
A1

′

2
+ A′

0

2

)}]
, (18)

Pr =
[
η

{
3

4

(
A1

′

r
+ A′

0

r

)
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×
(

α1 + α2

3

)
+ 3

8

(
A1

′ + A′
0

)(
α4 + α5

3

)

+ R
(
A′′

0

2
+ A1

′

4r
− 7A′

0A1
′

16
+ A′2

0

16
+ 5A′

0

4r

− ReA1

2

)
+ R′

(
A′

0

8
− 1

2r
+ A1

′

8

)
− R′′

4
− α8

4

}

− 8πeA1

]−1[
− 1

4

(
A1

′

r
+ A′

0

r

)
+ 8πBce

A1

− ηBc

{(
A1

′

r
+ A′

0

r

)
α1 + R

(
A′2

0

4

− ReA1

2
+ A1

′

r
− A′

0A1
′

2
+ A′′

0

2
+ 2A′

0

r

)

+ R′
(
A′

0

4
− 1

r
+ A1

′

4

)
− R′′

2
− α7

+ α4

(
A1

′

2
+ A′

0

2

)}]
. (19)

Moreover, we avoid writing an expression for tangential pres-
sure (Pt ) for both models due to the very long expression.
But, we can determine the tangential pressure corresponding
to Model 1, one can put Eqs. (16) and (17) into (10). For the
Model 2, it can be achieved using Eqs. (13), (18) and (19).

3 A particular Ansatz and implementation of matching
criteria

Given that the equations of motion possess additional
unknowns till now, we shift our focus to a particular metric,
i.e., Durgapal–Fuloria spacetime, that has attracted signifi-
cant interest among astrophysicists. The components of this
metric are provided as [51]

eA0 = d1
(
d2r

2 + 1
)4

, eA1 = 7
(
d2r2 + 1

)2

7 − d2
2r

4 − 10d2r2
, (20)

involving a doublet constant (d1, d2) and we need to calculate
its values. In our analysis, we shall utilize matching criteria to
ascertain these values. Given the variety of metrics proposed
in the literature, it is essential to verify the physical accept-
ability of the ansatz under consideration. For this purpose, a
specific criterion has been suggested [52,53], which involves
taking derivatives of both the time and radial components to
validate its suitability, as outlined below

A′
0(r) = 8d2r

d2r2 + 1
, A′′

0(r) = 8d2

d2r2 + 1
− 16d2

2r
2

(
d2r2 + 1

)2 ,

A1
′(r) = 16d2r

(
d2r

2 − 3
)

(
d2r2 + 1

)(
d2

2r
4 + 10d2r2 − 7

) ,

A1
′′(r) = 16d2

(
21 − 3d4

2r
8 + 4d3

2r
6 + 102d2

2r
4 − 12d2r

2)
(
d2r2 + 1

)2(
d2

2r
4 + 10d2r2 − 7

)2 ,

from which we notice that A′
0(0) = 0 = A1

′(0) and A′′
0(0),

A1
′′(0)>0 in the whole domain (r = 0 is the star’s core).

Hence, the considered ansatz is found to be acceptable.
The matching of the inner and outer sectors at the hyper-

surface provides multiple conditions that serve as a valuable
tool for comprehending the structure of massive bodies. In
this context, the Schwarzschild metric describing the exterior
geometry is considered that has the form

ds2 = dr2(
1 − 2M

r

) + r2dθ2 + r2 sin2 θdφ2 −
(

1 − 2M

r

)
dt2,

(21)

where M being the total exterior mass. We use only the first
fundamental form of these constraints, ensuring that metric
components of both geometries are continuous across the
boundary. This leads to

gtt �= eA0(R) = d1
(
d2R

2 + 1
)4 = 1 − 2M

R
, (22)

grr �= eA1(R) = 7
(
d2R2 + 1

)2

7 − d2
2R

4 − 10d2R2 =
(

1 − 2M

R

)−1

. (23)

Equations (22) and (23) simultaneously provide these two
constants as

d1 = R − 2M

R
(
d2R2 + 1

)4 , (24)

d2 = 6R3 − 7MR2 − 2
√

9R6 − 14MR5

7MR4 − 4R5
. (25)

4 Exploring stellar solutions through graphical analysis

We devoted this section to graphically analyzing the result-
ing models for a particular object, namely 4U 1820-30. The
initial data for the considered candidate includes a mass of
M = 1.58 ± 0.06 M⊙ and radius R = 9.1 ± 0.4 km [54].
For this star, the constants (24) and (25) are calculated as
d1 = 0.235009 and d2 = 0.00243166 km−2. Furthermore, a
thorough analysis of the model under consideration is con-
ducted, encompassing various properties to assess the valid-
ity of the outcomes. We also extend this investigation to
assessing the equilibrium as well as stability for the resulting
models by considering the parametric range of η, which can
either be negative or positive. It must be kept in mind that
the plotting is done for multiple choices of the bag constant
and identify favorable outcomes when Bc = 90 MeV/fm3.
Therefore, all the plots presented in the following shall cor-
respond to this particular value.
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It is crucial to highlight that a valid metric ansatz should
not only monotonically increasing function of r but also free
from singularities. This is ensured through the plotting of
both components given in Eq. (20), as depicted in Fig. 1.

4.1 Matter variables and anisotropy

Ensuring the concentration of fluid within a geometric struc-
ture is crucial for validating the resulting solution. It entails
that the fluid sector must reach their maximum values and be
finitely positive at the center, decreasing outward. To achieve
this, we conduct a comparative analysis for models 1 and 2, as
illustrated in Fig. 2. Remarkably, the plotting shows that the
behavior of the fluid variables aligns with that of physically
acceptable interiors. Such an observation provides assistance
for the existence of extremely dense interiors within this
gravity theory. Upon exploring the first row of Fig. 2, it is
guaranteed that the second model produces structures with
slightly higher densities. This can also be observed from the
numerical values provided in Tables 1 and 2. Furthermore,
the subsequent graphs in the same Figure show that model
2 exhibits higher values for pressure components within the
stellar body under discussion. Importantly, we also verify the
regularity constraints by plotting the first and second deriva-
tives of the fluid variables in Figs. 3 and 4.

Another important factor in the stellar evolution is the
pressure anisotropy, and we define it by � = P⊥ − Pr in
this case. Here, we shall see how this factor affects the stellar
evolutionary pattern through its graphical representation. If
the pressure in the tangential direction is higher than the other
one, an outward force must occur that prevent the system
from collapse. However, the structure is collapse when the
radial pressure is much higher than the other component.
The expressions for anisotropy corresponding to both models
are given in Appendix B. Figure 5 exhibits the plots from
where we notice its null profile at the center and consistent
increment outwards. We also observe the presence of little
more anisotropy in the interior corresponding to the second
model.

4.2 Mass function, compactness, redshift and eos
parameters

We already defined the mass function in the form of radial
metric function (14) in section 2, and it remains the same in
this theory as well. However, in this subsection, we define this
function in relation with the effective energy density so that
the impact of modification of the action (1) can be explored.
This is expressed by

m(r) = 1

2

∫ R

0
r2μdr, (26)

where the values of μ are presented in Eqs. (16) and (18)
analogous to models 1 and 2, respectively. The first two plots
of Fig. 6 explains that there is no mass at the center. However,
model 2 generates more massive interior of the considered
compact star as compared to the other model.

Compactness, specifically, refers to the ratio between an
object’s mass and its radius. Buchdahl [55], in a seminal
contribution, calculated a maximum value for this factor
(denoted by β) within the context of a celestial structure,
establishing it at 4

9 . A massive object, nestled within a potent
gravity field, emits radiations. Such radiations always travel
through space, and hence, there occur a stretching in their
wavelengths, leading to the redshift phenomenon. Its formula
is given as

z(r) = 1√
1 − 2β(r)

− 1. (27)

Theoretical models whose interior is configured with uniform
distribution typically have a maximum limit of 2 for this
parameter. However, an important development came from
the contribution of Ivanov [56], who found its value as 5.211
when the anisotropic star is studied. The remaining plots of
Fig. 6 confirm both of these factors within their proposed
limits.

Furthermore, the EoS is divided into two equations when
we are dealing with the anisotropic fluid distribution. They
can mathematically be written as

ωr = Pr
μ

, ω⊥ = P⊥
μ

. (28)

It must be recalled that both the parameters must remain with
the interval [0, 1] to get well-behaved results for the stellar
structures. We plot them in Fig. 7, ensuring their required
behavior.

4.3 Energy bounds

The internal composition of celestial bodies can consist of
either conventional or exotic fluids. Whether a compact star
contains a conventional fluid depends on energy conditions
determined by physical factors reigning the fluid distribution.
When examining astronomical systems within modified the-
ories, it is crucial to account for these conditions, as correc-
tion terms can profoundly influence their behavior. There-
fore, adhering to the following four types of such conditions
ensures the formation of a scientifically valid configuration

• Strong: μ + Pr + 2P⊥ ≥ 0,
• Weak: μ + Pr ≥ 0, μ ≥ 0, μ + P⊥ ≥ 0,
• Dominant: μ ± P⊥ ≥ 0, μ ± Pr ≥ 0,
• Null: μ + P⊥ ≥ 0, μ + Pr ≥ 0.
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Fig. 1 Metric components (20) versus η and r

Table 1 Numerical values of
fluid parameters for 4U 1820-30
corresponding to model 1

Physical Factors μc (g/cm3) μs (g/cm3) Pc (dyne/cm2) βs zs

η = −1.5 1.7138 × 1015 9.4959 × 1014 2.4626 × 1035 0.248 0.909

η = 0 1.6736 × 1015 8.9461 × 1014 2.3267 × 1035 0.259 1.028

η = 1.5 1.6295 × 1015 8.5956 × 1014 2.2052 × 1035 0.269 1.147

Table 2 Numerical values of
fluid parameters for 4U 1820-30
corresponding to model 2

Physical Factors μc (g/cm3) μs (g/cm3) Pc (dyne/cm2) βs zs

η = −1.5 2.0228 × 1015 8.4016 × 1014 2.8678 × 1035 0.278 0.744

η = 0 2.0094 × 1015 1.0727 × 1015 2.8089 × 1035 0.284 1.788

η = 1.5 1.9961 × 1015 1.4355 × 1015 2.7115 × 1035 0.291 0.833

We observe their graphical depiction Figs. 8 and 9. Each plot
showcases consistently positive trend, indicating that both
of derived solutions meet the standards of physical viability.
This suggests the existence of normal matter within their
respective interiors.

4.4 Tolman–Opphenheimer–Volkoff equation

Examining various (fundamental) forces is crucial for under-
standing the evolution of a self-gravitating object. It is essen-
tial to assess these forces to determine if the system is in a
state of equilibrium or not [57,58]. This can be explored by
formulating the Tolman–Oppenheimer–Volkoff (TOV) equa-
tion. In the subsequent analysis, we compute the correspond-
ing expression using Eq. (4) for both models as

dPr
dr

+ A′
0

2
(μ + Pr ) − 2

r
(P⊥ − Pr )

− 2ηe−A1

ηR + 16π

×
[
A′

0μ

8

(
A′2

0 − A′
0A1

′ + 2A′′
0 + 4A′

0
r

)

− μ′
8

(
A′2

0 − A′
0A1

′ + 2A′′
0 − 4A′

0
r

− 8eA1

r2 + 8

r2

)

+ Pr

(
5A′2

0 A1
′

8
− 5A′

0A1
′2

8
+ 7A′′

0 A1
′

4

− A′
0A

′′
0 + A′

0A1
′′

2
− 5A1

′2
2r

− A′′′
0
2

+ 2A1
′′

r
+ A′

0A1
′

r
− A1

′
r2 − A′′

0
r

+ A′
0

r2 + 2eA1

r3 − 2

r3

)

− P ′
r

8

(
A′2

0 − A′
0A1

′ + 2A′′
0 − 4A1

′
r

)

+ P⊥
r2

(
A1

′ − A′
0 + 2eA1

r
− 2

r

)
− P ′⊥

r

(
A1

′
2

− A′
0

2

+ eA1

r
− 1

r

)]
= 0, (29)
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Fig. 2 Matter determinants versus η and r for Model 1 (left) and Model 2 (right)
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Fig. 3 First-order derivatives of matter determinants versus η and r for Model 1 (left) and Model 2 (right)
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Fig. 4 Second-order derivatives of matter determinants versus η and r for Model 1 (left) and Model 2 (right)
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Fig. 5 Anisotropy versus η and r for Model 1 (left) and Model 2 (right)

and

dPr
dr

+ A′
0

2
(μ + Pr ) − 2

r
(P⊥ − Pr )

− 2η

ηR2 + 16π

[
μ

{
e−A0−A1 A′

0RR00

2
− e−2A1

× R′
(
A′

0

r
− eA1

r2 + 1

r2

)}

− μ′
{
e−A0−A1RR00

2
− e−2A1R

(
A′

0

r
− eA1

r2 + 1

r2

)}

+ Pr

{
R′R11

+ R(R11)′ − e−A1RR′ + e−2A1 A1
′RR11

2

}
− RR22

eA1

×
{
P ′
t

r2 − 2P⊥
r3

}

+ P ′
r

{
RR11 − e−2A1RR11

2

}]
= 0. (30)

The geometric entities (R00, R11 and R22) are expressed
in Appendix A. We write the above equations in the concise
form as

fa + fh + fy = 0, (31)

with fa being the anisotropic and fh indicates the hydro-
static, defined by

fa = 2

r

(
P⊥ − Pr

)
, fh = −dPr

dr
.

Further, the third entity is the sum of gravitational and an extra
force of this gravity theory, i.e., fy = fg + fe. This force

contains all the remaining terms of (29) and (30) along with a
negative sign. These forces are plotted in Fig. 10, guaranteing
the developed interiors to be in hydrostatic equilibrium.

4.5 Stability analysis through different tests

In the expansive domain of cosmic phenomena, significant
focus has been directed towards gravitational models that
meet stability checks. Various methodologies have been doc-
umented to analyze the stability. A crucial approach that often
used in such studies is the causality criterion [59,60], which
asserts that the speed of light in a stable object must be lower
than that of light. Mathematically, we have

0 < v2
s⊥ = dP⊥

dμ
, v2

sr = dPr
dμ

< 1. (32)

Herrera [61] put forward this approach and merged both
sound speeds into a single expression. He claimed that the
absence of cracking can be assured only if 0 <| v2

s⊥ −v2
sr |<

1 satisfies, leading to the stability of compact stars. In Fig. 11,
we plot all these factors which are found to be within their
respective ranges. Hence, our models are stable for every
value of η within the chosen range. Another test is named as
the adiabatic index, which we denote by �, used in the litera-
ture regarding stability analysis. According to its definition,
both the following components must be greater than 4

3 [62].
These components are

�r = μ + Pr
Pr

(
dPr
dμ

)
, �⊥ = μ + P⊥

P⊥

(
dP⊥
dμ

)
. (33)

Both graphs in Fig. 12 satisfy the above-mentioned limit,
showing the applicability of the considered modified theory
in the framework of anisotropic stellar models.
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Fig. 6 Physical terms versus η and r for Model 1 (left) and Model 2 (right)

5 Finding the model parameter through Pr�=0
constraint

The values of the constant η are calculated in this section
by using preliminary information of various compact stars.
We already used first fundamental form while calculating the
doublet (d1, d2) in the Durgapal–Fuloria metric (20). Now we
use the second form, resulting in the condition on the radial
pressure that becomes zero at the interface of any geometrical
object, i.e., Pr�=0. Implementing this constraint on Eq. (17)
corresponding to Model 1 as, we have

7ηM2R
(
79

√
R5(9R − 14M) + 193R3)

− 98ηM3(6
√
R5(9R − 14M) + 11R3)

− 8BcR
2{56π2R8 − 4πηR4(196M2 − 259MR + 93R2)

+ η2M
(
2744M3 + 31R3

− 3283M2R + 938MR2)}

− 40πR5(√R5(9R − 14M) − 3R3) + MR2{28π

× (
3R2

√
R5(9R − 14M) − 8R5)

− 131η

√
R5(9R − 14M) − 413ηR3} = 0. (34)

On the other hand, combining the same condition with
(19), we can get the constraints forModel 2, which we are left
due to a very lengthy expression. However, both constraints
are used to find the numerical values of η for different choices
of the bag constant corresponsing to Model 1 and Model 2.
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Fig. 7 EoS parameters versus η and r for Model 1 (left) and Model 2 (right)

Table 3 Parametric values of η

corresponding to model 1
Values of Bc 73 MeV/fm3 83 MeV/fm3 93 MeV/fm3

Star candidates Mass (M⊙) Radius (km) η η η

Cen X-3 1.49 9.51 −9.46 3.58 16.45

SMC X-4 1.29 8.83 −235.61 −221.391 −207.36

Her X-1 0.85 8.1 −826.024 −525.799 −288.779

4U 1820-30 1.58 9.1 −243.39 −222.84 −202.57

4U 1608-52 1.74 9.3 −164.96 −154.66 −144.51

PSR J 1614 2230 1.97 10.3 130.28 140.26 143.01

PSR J 1903+327 1.67 9.82 43.32 55.06 66.64

SAX J 1808.4-3658 0.9 7.95 −447.55 −428.58 −209.85
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Fig. 8 Energy bounds versus η and r for Model 1
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Fig. 9 Energy bounds versus η and r for Model 2
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Fig. 10 Variation in fa (solid), fh (dotted) and fy (dashed) versus r for Model 1 (left) and Model 2 (right)

Table 4 Parametric values of η

corresponding to model 2
Values of Bc 73 MeV/fm3 83 MeV/fm3 93 MeV/fm3

Star candidates Mass (M⊙) Radius (km) η η η

Cen X-3 1.49 9.51 0.28 −3.36 −6.57

SMC X-4 1.29 8.83 8.24 3.55 −0.57

Her X-1 0.85 8.1 11.25 2.29 −5.58

4U 1820-30 1.58 9.1 6.67 3.31 0.35

4U 1608-52 1.74 9.3 4.82 1.98 −0.51

PSR J 1614 2230 1.97 10.3 −3.11 −5.34 −7.31

PSR J 1903+327 1.67 9.82 −1.17 −4.18 −6.82

SAX J 1808.4-3658 0.9 7.95 20.89 12.54 5.19

We specify their values in Tables 3 and 4, proving η to be a
real-valued parameter.

6 Conclusions

This study delves into investigating the existence of dif-
ferent anisotropic compact models within the context of
f (R, T ,Rζγ T ζγ ) theory. The consequences of the non-
minimal interaction between geometry and matter have been
explored by choosing two distinct modified functional forms
along with focusing on a specific range of η. We formu-
lated the modified field equations which correspond to the
adopted models and identified them as under-determined
sets of differential equations possessing high non-linearity.
The Durgapal–Fuloria spacetime, meeting specific criteria of
acceptability, have been employed to calculate solutions to
these equations. Furthermore, the internal structure of strange
stars has been described using the MIT bag model. In the
context of the Durgapal–Fuloria spacetime, defined by two
unknowns (d1, d2), calculations have been performed at the
hypersurface using matching conditions to determine their
values.

Figure 2 exhibited the graphical profile of the matter
triplet, ensuring validation of the resulting solutions (for

instance, (16), (17) and (18), (19)). Analyzing the mass
function within the considered fluid setup indicated itself to
be consistently increasing function of the radial coordinate
(Fig. 6). It is noted that model 1 displays a less dense inte-
rior than model 2 for the specified range of η (Tables 1, 2).
Additionally, the graphs depicting compactness and redshift
conformed to acceptable ranges. Two parameters related with
EoS have been illustrated in Fig. 7, validating the practicality
of the constructed models. Throughout the interior, the con-
straints on EMT take positive values, affirming the physical
feasibility of our proposed solutions depicted in Figs. 8 and
9. Furthermore, we have plotted the TOV equations (29) and
(30) in Fig. 10, demonstrating that the derived models are in
the hydrostatic equilibrium.

Finally, three distinct tests have been utilized to evaluate
stability. We have found the stability of the obtained solu-
tions, as evidenced by the observations presented in Figs. 11
and 12, aligning with the findings in [35,46]. Notably, it
is evident that our solutions demonstrated superior efficacy
compared to the results obtained in [28], suggesting that the
extra force of this extended theory may lead to more favor-
able outcomes for the specified parametric range. Further,
we employed the zero radial pressure constraint at the spher-
ical interface to determine the parameter η that align with
the observed masses and radii of an array of compact stars.
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Fig. 11 Stability checks versus η and r for Model 1 (left) and Model 2 (right)
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Fig. 12 Adiabatic index versus η and r for Model 1 (left) and Model 2 (right)

For models 1 and 2, we have presented these numerical val-
ues in Tables 3 and 4, respectively, across various acceptable
choices of the bag constant. Notably, η exhibits both neg-
ative/positive values, signifying its nature as a real-valued
parameter. Ultimately, the parallel results in GR can be found
when substituting η = 0.
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Appendix A

The terms α
′s
j appeared in Eqs.(11)-(13) are given by
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The geometric terms for the line element (6) are
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Appendix B

The anisotropic factor analogous to model 1 is
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� =
{

2eA1r2ηR2 + 4η
(
r A1

′ + 2eA1 − r A′
0 − 2

)
R

+ r
(
η
(
rR′ − 2rα6 − 4α3

)
A′

0

− rηα3A
′2
0 + 32eA1πr − 4rηα9 − 4ηα6 + ηA1

′(r A′
0α3

+ 4α3 + 2rα6 − rR′) + 2r

× ηR′′ − 2rηα3A
′′
0
)}−1

{
r
(
r A′2

0 + 2A′
0 − A1

′(r A′
0 + 2

) + 2r A′′
0
)}

+
{

8eA1rηR2

+ η
(
A1

′(7r A′
0 − 4

) − r A′2
0 − 20A′

0 − 8r A′′
0
)
R

+ 2
(
2ηα8r − 3ηα4A

′
0r − ηα5A

′
0r

+ 2ηR′′r + 64eA1πr − η(6α1 + 2α2 + 3rα4 + rα5)A1
′

− ηR′(r A1
′ + r A′

0 − 4
)

− 6ηα1A
′
0 − 2ηα2A

′
0
)}−1

×
{

4
(
2eA1rηBcR2 + ηBc

(
2A1

′(r A′
0 − 2

) − r A′2
0 − 8A′

0

− 2r A′′
0
)
R + 32eA1πr Bc

+ 4rηBcα7 − 4ηBcα1A1
′ − 2rηBcα4A1

′ − A1
′ − 4ηBcα1

× A′
0 − 2rηBcα4A

′
0 − A′

0

− ηBcR
′(r A1

′ + r A′
0 − 4

) + 2rηBcR′′)} +
{(

8eA1rηR2

+ η
( − r A′2

0 − 20A′
0 + A1

′(7r A′
0 − 4

) − 8r A′′
0
)
R

+ 2
(
2ηα8r − 3ηα4A

′
0r − ηα5A

′
0r

+ 2ηR′′r + 64eA1πr − η(6α1 + 2α2 + 3rα4

+ rα5)A1
′ − 6ηα1A

′
0 − 2ηα2A

′
0 − ηR′

× (
r A1

′ + r A′
0 − 4

)))(
2eA1r2ηR2

+ 4η
(
r A1

′ + 2eA1 − r A′
0 − 2

)
R − r

(
rηα3A

′2
0

− η
( − 4α3 − 2rα6

+ rR′)A′
0 − 32eA1πr + 4rηα9 + 4ηα6

− ηA1
′(r A′

0α3 + 2rα6

+ 4α3 − rR′) − 2rηR′′

+ 2rηα3A
′′
0
))}−1{

2rη
(( − r(2α1

+ R)A′2
0 − (

4α1 + r4α4

− 2rR′)A′
0 − 8rα7

− 8α4 + A1
′(2r A′

0α1 + 4α1 + 4rα4

+ R
(
r A′

0 + 4
)) − r4α1A

′′
0

− 2rRA′′
0
)(

2eA1rηBcR2

+ ηBc
(
2r A′2

0 + 4A′
0 + A1

′(r A′
0 + 8

) − 2r A′′
0
)
R − 3A1

′

− 32eA1πr Bc + 4rηBcα8 − 4ηBcα2A1
′ − 2rηBcα5A1

′

− 4ηBcα2A
′
0 − 2rηα5Bc A

′
0

− 3A′
0 + ηBcR′(r A1

′ + r A′
0 − 4

)
− 2rηBcR′′) + (

2rα2A
′2
0 − rRA′2

0 + 4α2A
′
0 + 8α5

+ 4rα5A
′
0 − 4RA′

0 + 8rα8 + 2R′(r A1
′

− 2r A′
0 − 4

) + (
(R − 2α2)r A′

0 − 4(α2 + rα5)
)

× A1
′ − 4rR′′ + 4rα2A

′′
0

− 2rRA′′
0
)( − 2eA1rηBcR2 + ηBc

(
A′2

0 r + 8A′
0 + 2r A′′

0

+ A1
′(4 − 2r A′

0
))
R − 32eA1πr Bc

− 4rηBcα7 + 4ηBcα1A1
′ + 2rηBcα4A1

′ + A1
′

+ 4ηBcα1A
′
0 + 2rηBcα4A

′
0 + A′

0 + ηBcR′(r A1
′

+ r A′
0 − 4

) − 2rηBcR′′))}.

References

1. H.A. Buchdahl, Non-linear Lagrangians and cosmological theory.
Mon. Not. R. Astron. Soc. 150, 1–8 (1970)

2. S. Nojiri, S.D. Odintsov, Modified gravity with negative and posi-
tive powers of curvature: unification of inflation and cosmic accel-
eration. Phys. Rev. D 68, 123512 (2003)

3. Y.S. Song, W. Hu, I. Sawicki, Large scale structure of f (R) gravity.
Phys. Rev. D 75, 044004 (2007)

4. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Maximal neutron
star mass and the resolution of the hyperon puzzle in modified
gravity. Phys. Rev. D 89, 103509 (2014)

5. G. Mustafa, I. Hussain, M.F. Shamir, Stable wormholes in the back-
ground of an exponential f (R) gravity. Universe 6, 48 (2020)

6. M.F. Shamir, A. Malik, G. Mustafa, Noncommutative wormhole
solutions in modified f (R) theory of gravity. Chin. J. Phys. 73, 634
(2021)

7. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Cosmological
viability of f (R)-gravity as an ideal fluid and its compatibility with
a matter dominated phase. Phys. Lett. B 639, 135 (2006)

8. J.D. Barrow, S. Hervik, Anisotropically inflating universes. Phys.
Rev. D 73, 023007 (2006)

9. M. Visser, Energy conditions in the epoch of galaxy formation.
Science 276, 88 (1997)

10. T. Naseer, M. Sharif, Implications of vanishing complexity condi-
tion in f (R) theory. Eur. Phys. J. C 84, 554 (2024)

11. O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Extra force in
f (R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007)

12. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, f (R, T ) gravity.
Phys. Rev. D 84, 024020 (2011)

123



   18 Page 22 of 22 Eur. Phys. J. C            (2025) 85:18 

13. M. Sharif, M. Zubair, Thermodynamic behavior of particular
f (R, T )-gravity models. J. Exp. Theor. Phys. 117, 248–257 (2013)

14. H. Shabani, M. Farhoudi, f (R, T ) cosmological models in phase
space. Phys. Rev. D 88, 044048 (2013)

15. A. Das, S. Ghosh, B.K. Guha, S. Das, F. Rahaman, S. Ray, Gravas-
tars in f (R, T ) gravity. Phys. Rev. D 95, 124011 (2017)

16. S.K. Maurya, A. Banerjee, F. Tello-Ortiz, Buchdahl model in
f (R, T ) gravity: a comparative study with standard Einstein’s
gravity. Phys. Dark Universe 27, 100438 (2020)

17. G. Mustafa, M. Zubair, S. Waheed, X. Tiecheng, Realistic stel-
lar anisotropic model satisfying Karmarker condition in f (R, T )

gravity. Eur. Phys. J. C 80, 26 (2020)
18. P. Rej, P. Bhar, Charged strange star in f (R, T ) gravity with linear

equation of state. Astrophys. Space Sci. 366, 35 (2021)
19. A. Errehymy, Y. Khedif, G. Mustafa, M. Daoud, Anisotropic stars

of class one space-time in f (R, T ) gravity under the simplest linear
functional of the matter-geometry coupling. Chin. J. Phys. 77, 1502
(2022)

20. M. Sharif, T. Naseer, Anisotropic complexity-free models in mod-
ified f (R, T ) theory. Ann. Phys. 459, 169527 (2023)

21. M. Sharif, T. Naseer, Effect of extended gravitational decoupling on
isotropization and complexity in f (R, T ) theory. Class. Quantum
Gravity 40, 035009 (2023)

22. T. Naseer, M. Sharif, Study of decoupled cosmological solutions
in f (R, T ) theory. Fortschr. Phys. 71, 2300004 (2023)

23. Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi, Fur-
ther matters in space-time geometry: f (R, T, RμνTμν) gravity.
Phys. Rev. D 88, 044023 (2013)

24. M. Sharif, M. Zubair, Study of thermodynamic laws in
f (R, T, RμνTμν) gravity. J. Cosmol. Astropart. Phys. 11, 042
(2013)

25. S.D. Odintsov, D. Sáez-Gómez, f (R, T, RμνTμν) gravity phe-
nomenology and �CDM universe. Phys. Lett. B 725, 437–444
(2013)

26. I. Ayuso, J.B. Jiménez, Á. De la Cruz-Dombriz, Consistency of uni-
versally nonminimally coupled f (R, T, RμνTμν) theories. Phys.
Rev. D 91, 104003 (2015)

27. E.H. Baffou, M.J.S. Houndjo, J. Tosssa, Exploring stable models in
f (R, T, RμνTμν) gravity. Astrophys. Space Sci. 361, 376 (2016)

28. M. Sharif, A. Waseem, Physical behavior of anisotropic compact
stars in f (R, T, RμνTμν) gravity. Can. J. Phys. 94, 1024–1039
(2016)

29. Z. Yousaf, M.Z. Bhatti, T. Naseer, Study of static charged spherical
structure in f (R, T, Q) gravity. Eur. Phys. J. Plus 135, 353 (2020)

30. Z. Yousaf, M.Z. Bhatti, T. Naseer, Measure of complexity for
dynamical self-gravitating structures. Int. J. Mod. Phys. D 29,
2050061 (2020)

31. Z. Yousaf et al., The measure of complexity in charged celes-
tial bodies in f (R, T, RμνTμν) gravity. Phys. Dark Universe 29,
100581 (2020)

32. Z. Yousaf, M.Z. Bhatti, T. Naseer, Evolution of the charged dynam-
ical radiating spherical structures. Ann. Phys. 420, 168267 (2020)

33. Z. Yousaf, M.Z. Bhatti, T. Naseer, New definition of complex-
ity factor in f (R, T, RμνTμν) gravity. Phys. Dark Universe 28,
100535 (2020)

34. Z. Yousaf et al., Influence of modification of gravity on the com-
plexity factor of static spherical structures. Mon. Not. R. Astron.
Soc. 495, 4334–4346 (2020)

35. T. Naseer, M. Sharif, A. Fatima, S. Manzoor, Constructing
traversable wormhole solutions in f (R, Lm) theory. Chin. J. Phys.
86, 350 (2023)

36. M. Sharif, T. Naseer, Study of charged compact stars in non-
minimally coupled gravity. Fortschr. Phys. 71, 2200147 (2023)

37. B. Das, P.C. Ray, I. Radinschi, F. Rahaman, S. Ray, Isotropic cases
of static charged fluid spheres in general relativity. Int. J. Mod.
Phys. D 20, 1675 (2011)

38. G.H. Bordbar, A.R. Peivand, Computation of the structure of a
magnetized strange quark star. Res. Astron. Astrophys. 11, 851
(2011)

39. P. Haensel, J.L. Zdunik, R. Schaefer, Strange quark stars. Astron.
Astrophys. 160, 121 (1986)

40. K.S. Cheng, Z.G. Dai, T. Lu, Strange stars and related astrophysical
phenomena. Int. J. Mod. Phys. D 7, 139 (1998)

41. M.K. Mak, T. Harko, An exact anisotropic quark star model. Chin.
J. Astron. Astrophys. 2, 248 (2002)

42. P. Rej, P. Bhar, Model of hybrid star with baryonic and strange quark
matter in Tolman–Kuchowicz spacetime. Int. J. Geom. Methods
Mod. 19, 2250104 (2022)

43. P. Rej, A. Errehymy, M. Daoud, Charged strange star model in
Tolman–Kuchowicz spacetime in the background of 5D Einstein–
Maxwell–Gauss–Bonnet gravity. Eur. Phys. J. C 83, 392 (2023)

44. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T.
Hessels, A two-solar-mass neutron star measured using Shapiro
delay. Nature 467, 1081 (2010)

45. F. Rahaman, K. Chakraborty, P.K.F. Kuhfittig, G.C. Shit, M. Rah-
man, A new deterministic model of strange stars. Eur. Phys. J. C
74, 3126 (2014)

46. M.R. Shahzad, G. Abbas, Strange stars with MIT bag model in the
Rastall theory of gravity. Int. J. Geom. Methods Mod. Phys. 16,
1950132 (2019)

47. A. Errehymy, A. Ditta, G. Mustafa, S.K. Maurya, A. Abdel-Aty,
Anisotropic electrically charged stars in f (Q) symmetric telepar-
allel gravity. Eur. Phys. J. Plus 137, 1311 (2022)

48. C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic,
spherically symmetric gravitational collapse. Phys. Rev. 136, B571
(1964)

49. M. Kalam, A.A. Usmani, F. Rahaman, S.M. Hossein, I. Karar, R.
Sharma, A relativistic model for strange quark star. Int. J. Theor.
Phys. 52, 3319 (2013)

50. J.D.V. Arbañil, M. Malheiro, Radial stability of anisotropic strange
quark stars. J. Cosmol. Astropart. Phys. 11, 012 (2016)

51. T. Naseer, M. Sharif, S. Manzoor, A. Fatima, Anisotropic
Durgapal–Fuloria neutron stars in f (R, T 2) gravity. Mod. Phys.
Lett. A 39, 2450048 (2024)

52. K. Lake, All static spherically symmetric perfect-fluid solutions of
Einstein’s equations. Phys. Rev. D 67, 104015 (2003)

53. T. Naseer, M. Sharif, Estimating the role of bag constant and mod-
ified theory on anisotropic stellar models. Chin. J. Phys. 88, 10–31
(2024)

54. T. Güver, P. Wroblewski, L. Camarota, F. Özel, The mass and radius
of the neutron star in 4U 1820-30. Astrophys. J. 719, 1807 (2010)

55. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116,
1027 (1959)

56. B.V. Ivanov, Maximum bounds on the surface redshift of
anisotropic stars. Phys. Rev. D 65, 104011 (2002)

57. F. Tello-Ortiz, S.K. Maurya, Y. Gomez-Leyton, Class I approach
as MGD generator. Eur. Phys. J. C 80, 324 (2020)

58. B. Dayanandan, T.T. Smitha, S.K. Maurya, Self-gravitating
anisotropic star using gravitational decoupling. Phys. Scr. 96,
125041 (2021)

59. H. Abreu, H. Hernandez, L.A. Nunez, Sound speeds, cracking and
the stability of self-gravitating anisotropic compact objects. Class.
Quantum Gravity 24, 4631 (2007)

60. T. Naseer, M. Sharif, Decoupled anisotropic Buchdahl’s relativistic
models in f (R, T ) theory. Phys. Scr. 99, 035001 (2024)

61. L. Herrera, Cracking of self-gravitating compact objects. Phys.
Lett. A 165, 206 (1992)

62. H. Heintzmann, W. Hillebrandt, Neutron stars with an anisotropic
equation of state—mass, redshift and stability. Astron. Astrophys.
38, 51–55 (1975)

123


	Non-singular anisotropic solutions for strange star model  in f(mathcalR,mathcalT,mathcalRζγmathcalTζγ) gravity theory
	Abstract 
	1 Introduction
	2 Modified theory and field equations
	3 A particular Ansatz and implementation of matching criteria
	4 Exploring stellar solutions through graphical analysis
	4.1 Matter variables and anisotropy
	4.2 Mass function, compactness, redshift and eos parameters
	4.3 Energy bounds
	4.4 Tolman–Opphenheimer–Volkoff equation
	4.5 Stability analysis through different tests

	5 Finding the model parameter through Pr=Σ0 constraint
	6 Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	References


