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ABSTRACT

Three problems are investigated in the context of quantum collective dynamics.
First, we examine the optomechanics of a Bose-Einstein condensate trapped in an
optical ring cavity and coupled to counter-propagating light fields. Virtual dipole
transitions cause the light to recoil elastically from the condensate and to excite its
atoms into momentum side modes. These momentum side modes produce collec-
tive density oscillations. We contrast the situation to a condensate trapped in a
Fabry-Pérot cavity, where only symmetric (“cosine”) side modes are excited. In the
ring cavity case, antisymmetric (“sine”) modes can be excited also. We explore the
mean field limit and find that even when the counter-propagating light fields are
symmetrically pumped, there are parameter regions where spontaneous symmetry
breaking occurs and the sine mode becomes occupied. In addition, quantum fluctu-
ations are taken into account and shown to be particularly significant for parameter
values near bifurcations of the mean field dynamics.

The next system studied is a hybrid composed of a high quality micromechanical
membrane coupled magnetically to a spinor condensate. This coupling entangles
the membrane and the condensate and can produce position superposition states
of the membrane. Successive spin measurements of the condensate can put the
membrane into an increasingly complicated state. It is possible in principle to
produce nonclassical states of the membrane. We also examine a model of weaker,
nonprojective measurements of the condensate’s spin using phase contrast imaging.
We find an upper limit on how quickly such measurements can be made without
severely disrupting the unitary dynamics.

The third situation analyzed is the string breaking mechanism in ultrahigh en-
ergy collisions. When quark-antiquark pairs are produced in a collision, they are

believed to be linked by a tube of chromoelectric field flux, the color string. The
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energy of the string grows linearly with quark separation. This energy is converted
into real particles by the Schwinger mechanism. Screening of the color fields by new
particles breaks the string. By quantizing excitations of the string using the conju-
gate coordinates of field strength and string cross-section, we recover the observed

exponential spectrum of outgoing particles.
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CHAPTER 1

INTRODUCTION

Non-relativistic quantum mechanics is traditionally viewed as a theory that describes
the behavior of individual fundamental particles [1]. Whether in the Schrédinger [2]
or Heisenberg [3] picture, the laws of quantum mechanics determine the unitary evo-
lution of the quantum state or quantum operators, respectively, of a particle such
as an electron contained in an external potential. Yet this view has a few short-
comings. For one thing, particles such as atomic nuclei are composed of nucleons,
giving them a complicated internal structure space [4]. Even an electron is not abso-
lutely guaranteed, at our present level of understanding, to be a truly fundamental
particle [5]. Yet, despite these facts, to understand how a nuclear spin precesses in
a magnetic field or how an electron moves in an external field one can write down
the Hamiltonian of the system while ignoring the (actual or hypothetical) internal
structure of the object(s) being studied and still acheive results of remarkable ac-
curacy [6]. Furthermore, in fields of study such as solid state physics, one often
speaks of collective excitations of the material and treats these excitations as if
they were independent quasiparticles (e.g. phonons, polarons, plasmons, polaritons,
excitons, magnons, rotons, etc. [7]). To see how the collective motion of a composite
quantum mechanical system may itself be quantized and analyzed independently,
and also because such a variety of systems will be studied in this work, we turn first

to a simple but very general example.
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1.1 Collective motion of center of mass

Consider a system of N distinguishable particles, each with negligible internal dy-
namics, moving in D spatial dimensions. Let particle n have mass m,, and position
and momentum operators z,; and p, ;, respectively, where the first index will in-
dicate the particle number and the second the spatial component. These operators

obey commutation relations
[Ilmpn,j] = ih5ln5z’j, (1-1)

where ¢ is the Kronecker delta. Define new center of mass operators

1 N
X = > M, (1.2)
n=1

M= =

P = Do, (1.3)

1

3
I

where

M = f:mn (1.4)

is the total mass of the system. We note that when dealing with indistinguish-
able quantum particles, such as (fermions) bosons, the individual position and
momentum operators are not even truly well defined, since they will not map an
(anti)symmetrized state onto another (anti)symmetrized state. Thus, we have little
choice in that case but to speak of the collective motion and to augment the de-
scription of the dynamics with other appropriately (anti)symmetrized operators as

needed.
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Next, we compute the commutator of X with P :

1 N N
[Xi, Pyl = 5V Z Zml (1,6, Pn.j]
l;l n;l
Z Z ihmléln&-j
=1 n=1

<[~

The center of mass operators operators X and P thus have the same commutator
as the position and momentum operators of an elementary particle of mass M. We

consider now a Hamiltonian

pTL — — —
H = Z m + Z Vn,ext (ZEn) + Z Vn,l,int (l’n — J,‘l) , (]_6)
n=1 " n=1

— 2 n<l
where the the subscripts “ext” and “int” indicate interactions with an external
potential and internal interactions between particles (assumed here to be 2-body
in nature and dependent only on their relative positions). These need not be the
same potentials for all particles. Inspired by the analogous situation in classical

mechanics [8], we define difference coordinates,

o= i, - X,
— — my =
= pp— —PF. 1.7

2, and p!, all commute with X and P but, because they are constrained by

N N
D T, = ) 7, =0, (18)
n=1 n=1

they do not exactly commute with each other:

[mg,ivp;l,j} = ih <5ln — %) dij. (1.9)
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By Taylor expansion, we now can rewrite the Hamiltonian in terms of center of mass

and difference coordinates:

z+iVnm ()Z')
+ Z(zmn+vvnext (93) z, +(9< ) Z Vit (& :f’;)>(1.10)

l=n+1
If the external potential is proportional to mass (or if the particles are identical),
the term proportional to ﬁVext vanishes. In this case, in the Heisenberg picture, the

equations of motion for the center of mass coordinates are:

- L
P = ~MVU (X)) +0(), (1.11)

where U = V], ext/m,,. The second order corrections will be neglible if € < 1, where
}< (Zn 121 12; 1xnzxn]aavne><t <X>>>’

2| Qv (X))

In essence, this condition requires that the external force not fluctuate much when

(1.12)

compared to its mean value at the center of mass on the typical length scales of
the 2 ’s. This is a perfectly reasonable assumption when considering a macroscopic
field applied to a microscopic collection of particles, as long as the particles have
either sufficiently strong interactions or low enough relative velocities to keep them
from drifting apart during the time scale of interest.

Therefore, up to small corrections due to higher moments of the particle distri-
bution, we can treat the center of mass motion as independent from the system’s
internal dynamics. We note that we can often include the effects of the higher or-
der terms as damping and dissipation effects. This phenomenological treatment is
necessary as we usually cannot in practice monitor the detailed internal motion of

the constituent particles.
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The simple example outlined above will inspire the approach used on three di-
verse problems. In Appendix A, we explore the nature of optically induced oscilla-
tions in a Bose-Einstein condensate contained in a laser ring cavity. In Appendix B,
the dynamics of a hybrid system consisting of a magnetized membrane interacting
with a spinor BEC are analyzed in detail. The effects of measurement on the state of
the system are of particular importance in this section. Lastly, Appendix C applies
the ideas of collective dynamics to a much higher energy scenario: excitations in the
color (strong) field during relativistic collisions.

In the next few sections, we provide brief introductions to each of these areas of

study, beginning with quantum cavity optomechanics.

1.2 Quantum optomechanics

As long ago as the 1870’s Maxwell deduced that light would exert a force on the
surface onto which it shone [9]. Lebedev made the first experimental demonstration
of this phenomenon in 1900 [10]. Because of the extremely feeble nature of these
forces — in the best case scenario of normally incident, perfectly reflected light, the
recoil force on the surface is the incident power divided by half the speed of light — it
at first seems quite unlikely that the effects of a few photons on a mechanical element
would ever be significant, and thus a quantum treatment of the phenomenon would
be of purely academic value. However, two recent technical developments, spurred
on partly by the experimental need for ultraprecise position and force measurements
in for example gravitational wave detection and quantum computing [11, 12|, have
provided a reason to return to this issue. The first is the ultra-high finesse Fabry-
Pérot cavity [13, 14], and the second is the ultra-high quality mechanical micro-
oscillator [15, 16, 12].

We consider a system as in Fig. 1.1, consisting of a Fabry-Pérot cavity of length
L pumped by a laser of frequency w;. One end of the cavity is a reflecting oscillator

with mass m, stiffness k, and mechanical frequency w,, = \/k/m. We consider only a
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single optical cavity mode with annihilation operator a and describe the oscillator by
its position x and momentum p. This is necessarily a quantum collective treatment
of the mechanical element — we can hardly consider the motion of individual atoms
inside the oscillator. Whether it is an actual mechanical mirror oscillating [14],
a particular drumhead mode of a membrane interacting with the light field [17],
a breathing mode of a microspherical [18] or microtoroidal [16] dielectric cavity,
torsion of a micromechanical beam [15], or an LC circuit with a moving capacitor
coupled to a microwave cavity [19], the collective motion of the oscillator and its
interaction with the light can typically be quantified in terms of the simple operators

x and p. The combined system’s Hamiltonian is

p? ne

1 c
H = % + 5]{?{1}2 + hZ(L——x)aTal >~ Hosc + hWCCLT(I + h%aTax, (113)

where n is an integer and w, = nc/mL is the unperturbed cavity frequency. Thus,
the optical field interacts with the motion of the mirror through a coupling that
is linear to leading order. Though this Hamiltonian has been derived for a Fabry-
Pérot cavity, many other systems, such as the ones mentioned above, have similar
optomechanical interaction terms. In addition, some of these more elaborate setups
have been devised to increase the coupling strength [20, 21|, generate leading-order
quadratic [17] or higher [22] coupling, or to facilitate state transfer between light
and mechanical modes [23].

A particularly important feature of such optomechanical systems is that resolved
sideband cooling can be used to cool the mechanical element nearly to its quantum
ground state [24]. We now sketch how this process occurs. A high finesse Fabry-
Pérot cavity (or equivalent) will have an end-mirror with narrow transmission peak
at some frequency, say w;, and cavity decay constant s directly proportional to this
peak’s width. Now, the photons in the cavity generally have frequency w,, but they
can exchange energy by interacting with the oscillator, resulting in some photons
having frequency w,. 4+ w,,, a direct consequence of the Doppler effect. Creation of

a photon of higher frequency is accompanied by annihilation of a phonon, and vice
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versa. If we tune the cavity frequency such that w; = w.+w,, then the higher energy
photons will escape, and if kK < w;,, they will do so much more often than those of
lower energy (Fig. 1.2). Thus, there will be a net energy flux out of the mechanical
element, reducing its temperature by as much as a few orders of magnitude. In some
cases, this will leave the mechanical mode with an expected number of phonons as
low as order one [25, 26, 27] or even less than unity [28].

Preparing a mechanical system such that it is nearly in its ground state paves
the way not only for the high precision measurements mentioned above but also
for tests of quantum effects on macroscopic objects [29]. It is important to keep in
mind that it is only a single collective (phononic) mode of the mechanical element
that approaches the ground state. Other modes do not typically couple to the light
field and thus remain highly excited, i.e., they can be treated by a classical theory.
Thus, despite the fact that the various phononic modes of the oscillator arise from
the underlying interactions of the exact same constituent particles, one of these may
become quantum in nature while the others remain in the classical regime!

Unfortunately, the scheme of cooling outlined above has a technical limit on
how low of a phonon occupancy can be reached: it is a fixed fraction of the initial
occupancy based on the system’s coupling to a thermal reservoir. While there have
been recent clever experimental efforts to circumvent these limits [30, 31, 32] it may
be easier to consider the optomechanics of a system which begins its existence at
a temperature of order K and which remains extremely weakly coupled to any

external environment.

1.3 Bose-Einstein condensation

In 1924, Einstein [33] extended Bose’s work on photon statistics [34] to predict a
phase transition in which the momentum ground state of a collection of noninter-
acting bosons would be macroscopically occupied at extremely low temperatures.

Despite early excitement over the superfluid properties of liquid *He in the late
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1930’s, it turned out that the strong interactions between atoms in that system
prevented the zero momentum mode from being dominantly occupied [35]. It was
not until 1995 that an almost pure Bose-Einstein condensate phase was produced
experimentally out of rubidium and then other alkali atoms [36, 37, 38]. As the
present work does not focus in depth on the nuances of BECs, but rather views
them in terms of their collective dynamical properties, only a few pertinent points
will be summarized.

First of all, Bose-Einstein condensates are typically produced in a very dilute
state, with number density n ~ 10*® — 10?’m ™3 as opposed to, say, a gas at STP,
which has a density n ~ 3 x 102*m~3. Yet, at the same time, they need to be cold
enough so that there are multiple atoms per de Broglie volume. This ensures that
quantum effects, specifically bosonic statistical effects, will be important. Given
these constraints, the atoms must be cooled to kinetic energies of order 0.01 - 0.1
neV or equivalently temperatures of order 0.1 - 1 4K before they begin to condense.
These ultralow temperatures are achieved through a combination of laser cooling and
magnetic trapping which allows evaporative cooling [39]. The resulting condensate,
while possessing very weak interparticle interactions, can nevertheless be contained
by an extremely loose magnetic or optical trap (trapping frequency of order 10 Hertz,
or equivalently, confinement energy of order 100 feV, e.g. [40]). Thus, though there
is not a “true” zero momentum mode because of the confinement of the particles,
the ground state has an RMS momentum so small as to be effectively zero for most
practical purposes.

In addition, the atoms in the condensate are not simply bosonic billiard balls;
they typically have a complex internal manifold of electronic states. We wish, how-
ever, to avoid exciting electronic states, so we will typically make the atoms interact
with light which is far off resonant from any atomic electric dipole transitions. In
this case, light will tend to interact weakly with the atoms of the condensate, which

will recoil elastically via virtual dipole transitions [41].
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Up to this point, we have neglected one important internal degree of freedom of
the condensate that can act collectively: namely, its spin. The alkali atoms used
to form most BECs will usually have a net non-zero spin. In the case where these
spins are not aligned or where spin flips occur, as in a magnetic trap, the condensate
will have a shortened lifetime due to hyperfine levels that are not magnetically
trapped [37]. On the other hand, if the BEC is transfered to an optical trap, the
application of external fields can produce a coherent spin state, that is, a spinor
BEC [42]. Because of the extremely slow motion of the atoms in the trap and the
cancelation of interparticle magnetic interactions [43], this state can be treated as a

coherent spin field, with many interesting applications.

1.3.1 BEC as mechanical element

Now, consider an approximately 1-D BEC confined to a region of length L (and
much smaller cross-sectional dimension) in a Fabry-Pérot cavity, as in [44]. The
condensate is a bosonic field, so we will initially treat it in terms of its second
quantized Schrodinger field operator W(x,t). The optical field in the cavity will
be in the form of standing waves of photons of momentum hk. As mentioned
above, we consider the case where the light is far off resonance from any atomic
transitions. The atoms in the condensate can still be excited to states of center-
of-mass momenta 2iikn (n an integer) by successive elastic scatterings of photons
via virtual electric dipole transitions. We quickly derive the effective Hamiltonian
leading to these dynamics. Because the wavelength of visible is so much larger than
the atomic radius, we may use the electric dipole approximation [45]. A single two
level (ground state |0) and excited state |1)) atom with transition frequency w,

interacting with a cavity field E will thus have the Hamiltonian

H = E-d0)(1|+ E"- d*[1)(0] + hw,|1)(1], (1.14)
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where d is the atomic dipole transition moment. We do not include here the light
field Hamiltonian. Taking the cavity field to be composed of two modes of mo-
mentum +hk propogating in opposite directions (that is, decomposing the standing
wave) and working in a frame rotating at w, (to remove explicit time dependence of

E) the electric field operator is

hck
260V

where V' is the cavity volume, a; are photon annihilation operators, and é; are the

E_' — i —ik:v)

(alé’leikz + agé’ge s (115)

polarization vectors. We now take the atom’s state to be |¢) = mg|0) + my|1) and
use Schrédinger’s equation with (1.15) substituted into the Hamiltonian to find the

time derivatives of m;:

: dm : hck * —ikx ikx
1hd_t0 = —1@/2€0Vd <aJ{e ko 4 gk )ml, (1.16)

. dm . | hek
1BW1 = h(w, —we)my +1 N

Here the atomic frequency is shifted because we are working in the rotating frame.

d (a1€™ + aze™™") my. (1.17)

As the light is far off resonance, we expect that the excited state remains very nearly
unoccupied. The adiabatic elimination procedure consists of setting Eq. (1.17) equal
to 0, solving for my, substituting back into (1.16), and finding the effective Hamil-
tonian that produces this equation of motion for my without the presence of the

excited mode. This is straightforward, and we obtain

ha? . .
Hg = — fow (aial + abay + aba et + aIaQe’Ql’“) 10)(0], (1.18)
where gy = 2zg@|d] is the resonant Rabi frequency. The error of the adiabatic

elimination procedure can be quantified more precisely [46], but it is generally valid
if go < |we — wy|, that is, for large detunings. To account for many atoms in the
cavity, we second quantize the atomic field using its field operator ¥(x,t) and the

interaction Hamiltonian is just

ha? . .
Hiy = / Tl (z, t)i (aial + abay + alare®** 4 aJ{age_Qlk”C) U(z,t)dx(1.19)
We — Wq
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Now, although we expanded the two light modes independently, the symmetry of
the optical standing wave will tend to excite atoms into symmetrical superposi-
tions of momenta 2k and —2k, i.e. the matter wavefunction will be (co)sinusoidal.
Considering only the zero momentum and first excited center-of-mass mode of the
BEC (when the incident light is feeble, these will be by far the dominantly occupied
modes), we expand its field operator, including only the terms containing the single

mode annihilation operators ¢y and ¢y,

U(z,t) = C\O/(%)+\/%cl(t)cos(2kx). (1.20)

Next, we evaluate the mean particle density,

(Ul (2, 6)U(x, 1)) = %(<No(t)+N1(t)>+ﬂ(o@(t)cl(t)+c1(t)c0<t)>cos(2m)

+ON(D) Cos(4kx)> , (1.21)

where N; = cjci. Therefore, the collective mode excited by the interaction between
the light and the atoms is a spatially sinusoidal, time-dependent density fluctuation
in the condensate. By substituting x and p operators for the ¢’s, this problem can
be cast in an optomechanical form. A specific example of this type of ”bottom-
up” optomechanical system is investigated in detail in Appendix A, which will in
particular highlight the difference in dynamics between atoms trapped in a Fabry-

Pérot cavity and those trapped in a ring cavity.

1.3.2 BEC magnetometry

We now discuss the application of spinor BECs to ultraprecise magnetometry. Ob-
servation of the Larmor precession of a spinor BEC via phase contrast imaging is a
powerful tool to measure magnetic fields, competing with and potentially exceeding
SQUIDs in terms of both magnetic field sensitivity and spatial resolution [47]. To
illustrate how this works more concretely, we present a brief discussion of the phase

contrast measurement scheme.
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Due to a difference in Clebsch-Gordon coefficients for different polarizations of
incident light that drive virtual transitions between hyperfine levels of the conden-
sate atoms, the spinor condensate will exhibit birefringence. By passing a circularly
polarized beam of light (taken to be travelling in the y-direction) through the con-
densate and measuring the accumulated phase shift, we can gain information about
the BEC’s spin wavefunction. For light far detuned from an electrical transition of
narrow linewidth, absorption will be neglighle. Thus, we need only worry about the
real part of the index of refraction to calculate the phase shift of the probe light
relative to light traveling through empty space. From elementary optics this shift
will be

w

o = 2 [ - ay (122

C

Consider at first only the transition from the F' = 1 to F’ = 2 hyperfine manifolds
of 8Rb. Take this transition to have frequency wy (wavelength \g) and natural
linewidth . Use probe light with frequency w such that wy > w > Ay = wy—w > 7.
Under these restrictions, we can arrive at an approximate expression for the index

of refraction [48],

ij Z'Cg
~ 1 i L 1.23
" ; SWWSAQ’ ( )

where p is the number density of the condensate and A, ; is the Einstein coefficient
of the dipole transition from state j in F’ = 2 to state ¢ in F' = 1. We can then use
the Wigner-Eckart theorem and the Clebsch-Gordon coefficients for o, polarized
light and the various y spin components to compute the Einstein A’s. Putting this
together with (1.22) and replacing the prefactor w — wy, we attain the phase shift,

1 5 1
gb = ZRUQQLAQ (1 + 6<Fy> + 6<Fy2>) . (1.24)

Here 7 is the column number density of atoms in the condensate and oo = 3)\3/27 is

the resonant cross section of optical absorption. We have also taken the spin state
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of the atoms in the condensate to be specified by a single wavefunction
(W) = mylty) + mol0y) +m_|—y), (1.25)

and we define the spin expectation values in the usual way,

&
I
3
+
|
?

(F2) = |mf+m_ (1.26)

When we look at the actual levels of 8"Rb, probe light which is fairly red-detuned
from the FF = 1 — F’ = 2 transition will be comparably blue-detuned from the
F =1 — F’ =1 transition [49]. Let the probe light’s detuning from the latter be
A; and define the ratio § = Ay/A;. Accounting for the contributions from both

virtual transitions gives the final observed phase shift,

b = inaoziAQ{(1—%5>+%<Fy>(5+5)+é<F;> A+6)|.  (1.27)

We look into the effects of making such a dispersive measurement in the next section
in order to expand on and make precise the comments on measurement operators

in Appendix B.

1.4  Quantum back-action of weak measurements

Under von Neumann’s measurement postulate [50], the effect on a system of mea-
suring some physical quantity (an observable) is to collapse (or project) the system’s
wavefunction into the eigenstate of the observable corresponding to the measured
value. However, for many experiments it is undesirable to perform such a “de-
structive” measurement — the system could have initially been in a superposition of
numerous (or even infinitely many) initial states, and the measurement reduces it
to only one of these. The trade off for not doing a measurement that projects the

system into a particular state is that one cannot in general be completely certain of
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the final quantum state of the system after measurement. Consider an ensemble of
experimental systems described by a density matrix p, on which we measure some
observable O with outcomes o; described by measurement operators W; (this can
easily be extended to continuously valued observables). The probability of measur-

ing a particular o; is
Ploi) = tr(Wip), (1.28)

and, after the measurement, the system’s density matrix is

MiPM‘T
after — ! y 1.29
Paft P(Oz) ( )
where
MM, = W, (1.30)

The operators M; are known as the Kraus representation of the measurement pro-
cess.

We pause to make a few comments before proceeding. First, if the M; (or,
equivalently, in this case, the W;) are replaced by projectors, the usual von Neumann
measurement formalism is reproduced. Second, one could define M/ = U;M,; for
arbitrary unitary operators U; without altering immediately the probabilities of
the various outcomes. The full details of the measurement and its effect on the
system are taken into account by examining an expanded interaction Hamiltonian
incorporating the measuring device, whose state is later traced over, thereby arriving
at the physically correct U;’s. Also, the probabilities of all possible outcomes will

add up to 1 if we require
> wi=1, (1.31)

with [ the identity operator. Lastly, there is a technical requirement that the
operators W; be completely positive; that is, roughly speaking, that they yield a valid
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probability between 0 and 1 not just when acting on the experimental system but
also on any composite system containing the experiment as a subsystem (their action
on the other part of the composite is taken to be the identity). This final requirement
will in particular allow us to consider not only the effects of measurement on the
system in isolation but also when it is coupled to another system or the environment.

If a particular measurement outcome is consistent with several possible quan-
tum states, we hypothesize that the operator W; is a sum over projectors onto the
states with which the measurement is consistent. If these states are not linearly

independent, the operator will have to be normalized to adhere to (1.31).

1.4.1 Application to phase contrast imaging

We now apply these ideas to the specific situation of phase contrast imaging. We
already saw that for a BEC with spin wavefunction (1.25), the phase contrast signal
will be related only to the values |m;|* (for this short discussion, i = +1,0, —1) by
(1.27); that is, measuring a particular ¢ does not uniquely specify the quantum state
but only specifies a certain relationship amongst the coefficients of the wavefunction.
In particular, define a rescaled phase ® in terms of the experimentally measured
phase ¢ and the above constants,

24N,

noyy

® = 6

o; 0 <P <5+0. (1.32)
Then, post-measurement, we have constraints on the m;’s:

O = (B3+9)|mol* +(B+)|m_|?
1 = |[my]® + |mo)* + |m_|*. (1.33)

For a given value ®, these constraints specify an allowed curve of values for |m;|,

plotted in Fig. 1.3. To find the measurement operator Wg corresponding to a
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particular ®, we add (integrate) all projectors onto allowed states,

We = /|qf WU |d®m;

= /!m+!2\+y><+y\ + [mol?[0,) (0] + [m_[*|=y) (= lds
= w$|+y><+y| + w(?|0y><0y| + wq—>|_y><_y|> (1.34)

where we understand the integrand in the first line of (1.34) to be multiplied by delta
functions corresponding to the constraints (1.33). Note that the off-diagonal terms
vanish when integrating over all possible phases of the m;. Also, we are summing
over an overcomplete set — an infinite number of states overdetermines a space of
dimension 3 (despite situations where the contrary assumption seems to work [51],
here we have 3 < 00) — so the W4 need to be multiplied by a normalization 6/7, as
determined by (1.31). The values of the @} are plotted as functions of ® in Fig. 1.4.
Assuming for now that the phase contrast measurement has the minimum possible
effect on the BEC, we take the Mg operators of the previous section just to be the
real, diagonal matrix square roots of the Ws’s, with no additional unitary effect on
the system.

What remains is to see if these operators can reproduce the observations of
Larmor precession in BECs seen in experiments such as [47]. A few simulations of
a condensate initially prepared in the F, = +1 state, allowed to Larmor precess
in a uniform magnetic field in the z direction, and subjected to phase contrast
measurements by light along the y axis at a frequency of 8 per Larmor period, are
shown in Fig. 1.5. Clearly, something is missing from the treatment above.

What we have failed to consider is that, while the BEC can be accurately de-
scribed by a single spin wavefunction, it is not a single atom. Fig. 1.5 shows what
would happen if one tried to observe the Larmor precession of a single atom — it
would produce almost a random signal. One can monitor discrete spin flips of a
single atom, but not its phase. Therefore, we use the following procedure to de-

scribe weak measurements on a bosonic system of N atoms. Consider N separate
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measurements on the N atoms in the condensate. Each can give a different value
®,,. But the overall signal measured would be the mean value of these; call it ®.
Because of bosonic enhancement, the spins in the condensate, if initially aligned,
will tend to remain so after the measurement procedure (more precisely, there is a
significantly higher statistical weight in the full N-particle density matrix for aligned
spins). Therefore, rather than applying to each atom its own Ws, , we instead apply

to the collective spin density matrix the averaged operator

N
_ 1
W o= N;W%. (1.35)

Then, to find the post-measurement density matrix, we use (1.29), substituting
the M such that AM? = W. The signal obtained by applying this procedure to
various numbers of atoms N and at various measurement frequencies is shown in
Fig. 1.6. In addition, the evolution of the expectation values of (F,) and (F))
are plotted for a few combinations of N and measurement frequencies in Figs. 1.7.
This theoretical treatment thus preserves the Larmor precession as expected for
frequencies up to about 16 measurements per Larmor period. However, the model
makes an additional interesting prediction: without any extra feedback, which is
present in [52], measuring the phase too frequently causes the spin dynamics to
become dominated by the measurement procedure, rather than the applied magnetic
field. This prediction is robust not only as a function of N but also as a function
of the phase measurement uncertainty (all plots shown are for A® = 0.01, but,
aside from granularity in the case of small N, the exact same effect is observed for
AP = 0.1 and 0.001). This phenomenon may be related to the quantum anti-Zeno
effect [53]. It should be quite feasible, using current technology or even current
experimental apparatus already in place, to make a test of this prediction. We
now leave the realm of ultracold atoms and turn to a quite different application of

collective dynamics.
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1.5 The strong force and color fields

The first successful model of nuclear binding was in terms of a nuclear force medi-
ated by a massive, and hence short-range, scalar Yukawa meson [54]. Yet this force
between nucleons is not fundamental. Rather, it is much like the van der Waals
interaction between molecules, which arises from the Coulomb interaction between
their underlying charge distributions. Similarly, the nuclear force is a residual ef-
fect of a more fundamental strong force acting on the underlying distribution of
constituents in the nucleons.

Because of the huge number of hadrons that had been observed by the 1960’s,
Gell-Mann proposed the “eightfold way” to categorize them in terms of an SU(3)-
flavor symmetry [55, 56]. This quickly led to the idea of three (at the time) flavors of
fermionic quarks out of which all the hadrons were composed [57, 58]|. However, this
theory had a slight defect: certain particles, like the {2, appeared to contain quarks
that disobeyed the Pauli exclusion principle (two of the Q7 ’s quarks appear to have
identical spin, flavor, and spatial wavefunctions) [59]. This issue was resolved by
attaching an additional degree of freedom to quarks that became known as color
charge. The force between these charges is known as the color or strong force. To
gain a better understanding of color charge, we compare it to the more familiar
electric charge.

Quantum electrodynamics is a theory of the electromagnetic interaction in terms
of alocal U(1) gauge symmetry. U(1) is a one dimensional group with, consequently,
one generator. It thus has one type of electric charge (with two possible signs),
one conserved current, and one force-mediating gauge boson, the photon. Quantum
chromodynamics, on the other hand, is a theory of the strong interaction which obeys
a local SU(3)-color gauge symmetry. This symmetry group has eight generators
typically represented in QCD by the Gell-Mann matrices [60], and it is non-Abelian

(the generators do not generally commute). There are thus three color charges,
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three anticolor charges, eight conserved color currents, and eight bosons, the gluons,
associated with the eight generators of the group.

It is this richer, non-Abelian structure of QCD’s symmetry group that gives rise
to its most interesting phenomena. We contrast the QED and QCD Lagrangians

(focusing on the field-only terms, where the biggest discrepancies are) [61]:

Lo = —3F*Fp,

Fu = 0,ADM" — g, Apboron, (1.36)
Laocp = —inf"GZV’

qu _ aﬂ Agl;lon —9, Ail:on g fabc A%Luon Ailjuon' (1_37)

Here F' and G are the electromagnetic and color field tensors, respectively, the A’s
are the photon and gluon fields, ¢ is the color charge, a, b, ¢ are color indices from 1
to 8 (which can be raised or lowered freely) and the f’s are the structure constants

of the SU(3) group,
Moy Ag] = 20N, (1.38)

with )\, the Gell-Mann matrices (note that Einstein summation is followed for the
color indices as well as the space-time ones). The f’s are antisymmetric (it is obvious
for the first 2 indices, but it also turns out to be the case for the third index). This
is why there is no third term in (1.36) which is quadratic in APi°t": there is only
one photon field and so the only such term that could be constructed would have a
coefficient of 0. A more physical way of saying this is that photons do not carry the
electromagnetic charge to which they couple, but gluons do carry color charges and
hence the color fields they mediate are inherently nonlinear. When we consider the
Feynman rules for QED, the F? term generates only terms quadratic in A, so in a
matter-free universe, the only rule for photons is the propagator. On the other hand,
in the QCD Lagrangian, G? produces terms proportional to A%, A3, and even A*.

This means the Feynman rules for gluons include not just the propagator but also
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three and four gluon vertices. While the inclusion of matter in the QED Lagrangian
allows light to scatter from light, these processes must be mediated by matter loops
and hence are suppressed by powers of both the coupling strength agy and inverse
powers of the electron mass m,.

The inherent nonlinearity of QCD would not be such a problem if a perturbative
approach were valid. However, in contrast to QED, where agy ~ 1/137, in QCD
ag (and g) is of order 1 at low energies, and, though it decreases somewhat in high
energy collisions, it is still significantly larger than agy. Therefore, perturbative
expansions in terms of gluon and quark loops fail in many circumstances.

The consequences of this fact are striking. We have essentially no chance of
talking about the effects or even the existence of a single gluon in anything but
the highest energy situations. They are too sticky to be singled out. Therefore
many strong force phenomena are intrinsically non-perturbative (in terms of the
fundamental gluon and quark fields — however one can often find some small ratio and
perform an effective expansion in powers of that ratio) effects due to the collective
action of color fields and charges. This fact has long been recognized, and many
phenomenological models of strong physics are collective in nature (though not
always quantized). Some early examples include the bag model [62], the string
breaking model [63], and the NJL model [64]. Also, the use of quasiparticles in
the study of strong phenomena is nearly as prevalent as it is in solid state physics.
Prominent among these are constituent (vs. current) quarks [65] and instantons [66].
It is thus apparent that the work in Appendix C follows a long tradition of collective

dynamical treatment of color fields.

1.6 Dissertation format

The preceding sections have outlined the basic ideas needed for the rest of this work.
In particular, quantum collective dynamics will be applied to three different prob-

lems. Appendix A includes work on BECs as optomechanical systems. I performed
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the calculations in and wrote this section under the supervision of Pierre Meystre.
Appendix B deals with a hybrid BEC-membrane system and focuses on the effects
of measurements. Many authors have collaborated on this work; besides me, these
are Swati Singh, Mehmet Tasgin, Pierre Meystre, Mukund Vengalattore, and Keith
Schwab. My contribution to the work was a significant fraction of the computations
and writing. In particular, I did some of the calculations in section 3 and all of the
calculations and writing in sections 4 and 5 and subsections 7.2 and 7.3. 1 developed
the formalism to compute the weak back-action effects of phase contrast imaging.
Also, T wrote the Mathematica code to plot the Wigner distributions used in several
figures. Appendix C deals with collective oscillations of the color field between two
quarks. This research was performed and written up under the supervision of my
quondam advisor, Johann Rafelski. In Chapter 2, a summary of the major results

from each of these projects is presented.
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Figure 1.1: The canonical optomechanical setup. Light is pumped into a cavity
where it exerts radiation pressure on a mechanical oscillator. Measurement of the
output light can give information about or induce quantum back-action on the
oscillator.
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Figure 1.2: An illustration of the frequency relationships used in resolved sideband
cooling. The dashed line is the Fabry-Perot cavity’s transmission as a function of
frequency. The central colored peak is the cavity light frequency, and the others are
the sidebands. In this setup, light which has absorbed energy from the oscillator is
more likely to escape.
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1.0

0.0

1.0

Figure 1.3: The constraints imposed on the coefficients of the spin wavefunction
by a particular measurement, (1.33), plotted for various measurement outcomes ®.
Smaller values of ® are in blue and occur higher along the vertical axis.
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0.8

Figure 1.4: The coefficients of the operators W? as a function of ®. Lower values,
in blue, predominantly project onto |+)(+|, medium project onto |0)(0|, and large
values, in red, onto |—)(—]
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3 realizations of PCM

Figure 1.5: Three realizations of a sequence of phase contrast measurements occuring
16 times per Larmor period. Time is on the x axis and the signal is on the y axis.
Nothing like a periodic signal is apparent.
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Figure 1.6: Ilustration of realizations of the measurement operator scheme outlined
above as N and the measurement frequency are varied. In each figure, time is
on the x axis and signal is on the y axis. Overall, each column has double the
number of measurements per Larmor period of the column before, starting with
2 at the left and reaching 128/period at the right. Each row has 10 times the
number of atoms being averaged over as the one above, starting with 1 at the top
and reaching 100000 at the bottom. The lower right corner is missing due to the
exponential growth in computation time required. We note that the measurement
process seems to perturb and then completely disrupt the normal evolution if it
occurs too frequently, regardless of N.
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Figure 1.7: Plots of Larmor precession subject to periodic measurements. The axes
are (F,) and (F}). In the top left, N=1 and the frequency of measurements f,,
= 8 per Larmor period. In all others N=1000, and, reading left to right from
the top center, f,, = 8, 16, 32, 64, 128. The unperturbed evolution is the black
circle in each figure. Averaging the measurement effect over many atoms clearly
disturbs the Larmor precession much less than not doing so. As the phase contrast
measurements are made more frequently, they disturb the dynamics more strongly,
ultimately causing a complete decoherence of the condensate’s spin.
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CHAPTER 2

Present Study

The three appendices of this document contain the theory, results, and conclusions

of this study. The following is a brief presentation of the key results of these papers.

2.1 Quantized dynamics of a BEC in an optical ring cavity

As mentioned above, density fluctuations in a Bose-Einstein condensate can be
treated by the quantum collective action of the field creation and annihilation op-
erators. When excited by off-resonant interactions with feeble light in a ring cavity,
a slightly more complex situation than the one explained in Section 1.3.1 arises.
This is because, contrary to those in a standing wave, the photons in a ring cavity
still contain directional information. In other words, the photon modes of momenta
+hk are independent and do not have to be combined symmetrically to form cavity
modes. This allows the photons to couple not only to the symmetric matter mode
of momentum 2hk, but also to the antisymmetric mode of the same momentum.
This latter matter mode’s spatial wavefunction will be a sine function rather than a
cosine, so we distinguish the two modes by calling them “cosine” and “sine” modes.
In addition, we include the evolution of the zero momentum mode (in contrast to
the approach used in other studies [44, 67]), and that of the two counter-propagating
optical fields, for a total of five interacting fields. The cosine mode is excited from
the zero momentum mode by interaction with a symmetric (under interchange of the
two light fields) light operator, and similarly the sine mode is excited by interaction
with an antisymmetric light operator.

To narrow the study, we work on the case where the light fields are pumped by
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sources of the same intensity and phase so that, naively, the intracavity fields should
be the same and thus the sine mode, at a classical (ignoring quantum fluctuations
and treating operators as c-numbers) level, should be unoccupied or “dark.” Yet we
find that this is not always the case; for certain parameter ranges, the system exhibits
spontaneous symmetry breaking and the sine mode acquires a finite occupancy. On
top of this, there is optical bi- or even multistability: two distinct steady states (or
two different stable cycles) of the system can be reached, depending on the initial
state of the light and matter fields. One additional result is that the zero momentum
mode shows appreciable depletion and gains a complex phase. Specifically, the usual
ansatz for this mode’s creation and annihilation operators cy, C(T) — VN, where N
is the number of atoms in the condensate, differs appreciably from the observed
behavior ¢y — /N — ne'®.

We next restrict our inquiry to the parameter region where the dark sine mode
is stable and then linearize the Heisenberg-Langevin equations of motion about the
steady state values. Under these restrictions, we find that quantum fluctuations
become quite large near the classical bifurcation points of the system. That is,
the number of atoms in the cosine mode differs from the previous steady state
prediction, and the number in the sine mode is on average many, rather than none.
These fluctuations will cause the bifurcation points to shift and may even facilitate

quantum tunneling between macroscopically distinct behaviors of the condensate.

2.2 Hybrid membrane - condensate system with measurement back-action

The system considered in Appendix B consists of a spinor BEC trapped a few mi-
crons from a high quality micromechanical membrane. The membrane is coupled to
the condensate via a high-gradient magnet attached to its surface. Taylor expand-
ing the dipole-dipole interaction between the two gives a linear coupling between
the membrane’s position and the condensate’s spin. By using phase contrast imag-

ing to measure changes in the local magnetic field, the goal is to obtain detailed
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information about the oscillator’s motion.

However, any measurement on the condensate will necessarily induce some back-
action on it. Because of the coupling between them, the membrane and the conden-
sate are entangled, so back-action on the condensate also perturbs the membrane.
If we take the magnetic field gradient to point along the z axis, then the interaction

that entangles the two can be expressed as
1
Vise = §mw2 (x — AFZ)2 , (2.1)

where A is a length scale we have termed the “back-action” parameter which is
related to the strength of the coupling. For realistic experimental parameters, A
can be of the same order as the oscillator zero-point motion distance. The operator
F, commutes with the Hamiltonian, and specifically with both  and p. Thus, from
the perspective of the membrane’s dynamics alone, it might as well be a c-number.
However, in the combined system density matrix, it is possible that the condensate’s
spin will be a superposition of multiple F, states. Each of these spin components will
shift the equilibrium position of the oscillator differently, effectively creating multi-
ple potential wells simultaneously. In particular, putting the condensate intially in a
spin state F, = 1 the membrane to three spatially separated potential wells of equal
strength. This interaction puts the membrane into a superposition state. A mea-
surement of the spin of the condensate in the y (or x for that matter) direction does
not resolve which well the oscillator was interacting with and therefore leaves it in a
superposition of states distinct in position and momentum. We compute the density
matrix of the system after an arbitrary number of measurements interspersed with
periods of free evolution. This is done for both a membrane initially in thermal equi-
librium with its surroundings and one which has been prepared in a coherent state.
Each of n measurements will typically increase the number of possible interactions
the oscillator may have had by a factor of three, creating up to 32" distinct terms
in the density matrix. The interference between these terms is a purely quantum

effect. Specifically, by making successive strong (projective) measurements of the
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condensate’s y component of spin, a la the Stern-Gerlach experiment, the membrane
can be put into non-classical (having negatively valued Wigner function) states that
resemble displaced Fock states and even Schrodinger cat states. It remains to be
seen what the effects of repeated weaker measurements, as in Section 1.4, are on the

state on of the membrane.

2.3 Collective dynamics of a color string and impact on particle production

The Schwinger mechanism for particle production is a tunneling process that occurs
in intense fields [68]. In this process, a virtual particle tunnels out of the Dirac
sea, creating a real charged particle-antiparticle pair. The charges on these new
particles in turn screen the fields, reducing the fields’ energy content enough to
compensate for the mass-energy of the pair. This is a non-perturbative mechanism,
because it can occur even in constant fields, which are composed of photons (or
other massless gauge bosons) of zero energy (consider the infinite wavelength limit
of a plane wave), hence requiring an infinite number of photons to contribute to
the process. It predicts a Gaussian distribution of transverse momenta of produced
particles.

In high energy collisions that produce strongly interacting particles, quark-
antiquark pairs will be produced. As the members of such a pair move away from
each other, their color-electric dipole field forms a tube of flux lines between them
known as a color string. The experimental evidence for such a flux tube has been
accumulating for some time. One signature is the Regge trajectory observed in
mesonic states of high angular momentum. The mass of these states grows propor-
tional to the square root of their angular momenta [69]. This is consistent with a
tube of constant energy density rotating relativistically between two low-mass end-
points (quarks) [70]. The field pattern differs from the usual electric dipole case
because of the vacuum’s confinement of the color fields, compressing the butterfly

pattern down into a tube, by extension of the MIT bag model to quarks with large
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separation [62, 63]. Much theoretical effort has been made to rigorously derive the
string model directly from the QCD Lagrangian, but constraints or other features
typically must be added by hand, e.g. [71]. A further limitation is that below quark
separations of about 1 fm, the string picture is invalid [72]. The Schwinger mecha-
nism is a likely candidate for the method by which new particles are produced from
such strings, because the color fields contain a tremendous amount of energy and a
newly minted quark-antiquark pair can completely screen the field. Yet, there is a
discrepancy observed experimentally — the typical transverse momentum spectrum
of final particles in such a collision is thermal (exponential), rather than Gaus-
sian [73]. This does not make sense in relativistic ete™ or pp collisions where the
final state only contains a few hadrons, for there are so few particles with so little
interaction time that they should not thermalize.

A proposed solution to this issue is stochastic fluctuation of the strength of the
color field [74]. The work in Appendix C finds such a fluctuation by assuming that
the color string undergoes quantized, collective motion in only the radial direction.
This should be a fairly good first approximation, as curvature in the classical string
has been shown to introduce only small corrections [75]. In this work, the coordinates
x and p are basically the diameter of and the field strength inside the string. If the
string breaks while in the ground state of this collective oscillation, the spectrum of
quarks emitted will indeed be exponential (up to a linear prefactor 14+m /T}, where
m is the transverse mass and Ty ~ 165 MeV. The resulting spectrum still appears
almost perfectly exponential). If the string breaks while it is in the nth excited
state, on the other hand, this spectrum acquires additional polynomial prefactors
of order 2n in m_ . As n increases from 0 the resulting spectrum quickly deviates
from exponential. We take a moment here to answer a question the Appendix does
not fully address: in a highly relativistic collision, why would any quantum degree
of freedom be in or near its ground state?

We take the Hamiltonian per unit length of the string (C.8) and multiply it by
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the length of the string (which is quickly increasing) to find the full Hamiltonian.
Using this result and the commutator (C.11) it is elementary to derive the energy
levels of the Hamiltonian:

1
E, = gLVv2B (n—|—§>

MeV 1
L — 2.2
300 . (n—|— 2> ) (2.2)

12

where ¢ is the color charge (taken to be 1 here, a very conservative low estimate) and
B is the color confinement pressure of the vacuum, known as the bag constant (in
units where fic = 1 it is roughly (200MeV)* [62]). Even if the string is initially in a
highly excited state, as the ¢¢ pair move away from each other, the length grows and
the energy cost of the color field phonons (“chromonons”, perhaps?) becomes quite
large (at a separation of just 3 fm it is already nearly a GeV per phonon). Even
though no relaxation method is included explicitly in the Hamiltonian, the string
will be coupled to hadronic matter modes, and should cool rapidly to its ground
state, perhaps by radiating pions, before it ultimately breaks. At the same time,
the spectrum of particles produced is independent of the length of the string at the
moment it breaks. Therefore, quantization of the dynamics of the color string, when
combined with the Schwinger mechanism, can account for the observed spectrum in

few-particle high energy collisions.
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APPENDIX A

THE ROLE OF QUANTUM FLUCTUATIONS IN THE OPTOMECHANICAL
PROPERTIES OF A BOSE-EINSTEIN CONDENSATE OF A BOSE-EINSTEIN
CONDENSATE IN A RING CAVITY

S. K. Steinke and P. Meystre

Submitted to Physical Review A

ABSTRACT

We analyze a detailed model of a Bose-Einstein condensate trapped in a ring
optical resonator and contrast its classical and quantum properties to those of a
Fabry-Pérot geometry. The inclusion of two counter-propagating light fields and
three matter field modes leads to important differences between the two situations.
Specifically, we identify an experimentally realizable region where the system’s be-
havior differs strongly from that of a BEC in a Fabry-Pérot cavity, and also where
quantum corrections become significant. The classical dynamics are rich, and near
bifurcation points in the mean-field classical system, the quantum fluctuations have

a major impact on the system’s dynamics.

A.1 Introduction

In recent years, there has been an explosion of interest in optomechanical systems
in which at least one degree of freedom is cooled nearly to its quantum ground

state. In the top-down approach, the mechanical element (often one end-mirror of
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a Fabry-Pérot cavity that is allowed to oscillate) is initially in thermal equilibrium
with its surroundings and then is cooled via radiation pressure. On the other hand,
in the bottom-up approach, the mechanical portion of the system typically consists
of ultracold atoms trapped inside a high-@) optical resonator. The ultracold atomic
system can be a thermal sample [1], a quantum-degenerate Bose-Einstein condensate
(BEC) [2, 3], or even a quantum-degenerate gas of fermions [4]. In the bottom-up
situation the mechanical oscillator(s) are comprised of collective momentum modes
of the trapped gas, excited via photon recoil [5, 6, 7, 8, 9].

In the case of a high-() Fabry-Pérot cavity the intracavity standing-wave field
couples the macroscopically occupied zero-momentum component of the BEC to
a symmetric superposition of the states with center-of-mass momentum +2hk via
virtual electric dipole transitions. As discussed in a previous paper [10], there are sit-
uations where a ring cavity can lead to atomic dynamics different from the standing-
wave situation. This is because in contrast to a standing wave, running waves permit
one in principle to extract “which way” information about the matter-wave diffrac-
tion process. As a first step toward discussing that question, the earlier work con-
sidered the difference between classical standing wave and counterpropagating light
fields, that is, the difference in optomechanical properties of condensates trapped
in, say, a Fabry-Pérot and a ring cavity. One main consequence of the presence of
two counterpropagating running waves was that in addition to a symmetric “cosine”
momentum side mode, it becomes possible to excite an out-of-phase “sine” mode
as well. In the optomechanics analogy, this indicates that two coupled “condensate
mirrors” of equal oscillation frequencies but in general different masses are driven
by the intracavity field. We showed that this can result in complex multistable be-
haviors, including the appearance of isolated branches of solutions for appropriate
choice of parameters.

The present paper builds on these results and includes two new features. At

a classical (operators replaced by c-numbers) level, the evolution of the zero-
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momentum mode of the condensate is now also included. Furthermore, this work
also discusses the role of small quantum fluctuations in the system, particularly on
the occupancy of the sine and cosine side modes. As previously discussed, together
with the original condensate they form a V-system, with the upper levels — the sine
and cosine modes — driven by a two-photon process involving both counterpropa-
gating light fields. At the classical level one or the other of these modes can become
a dark state, but quantum fluctuations will normally prevent these modes from be-
coming perfectly dark. It follows that measuring correlation functions of the optical
field provides a direct means to probe the quantum properties of the matter-wave
side modes. These and other aspects of the role of quantum fluctuations are exam-
ined in the following sections, which consider the situation where these fluctuations
are feeble and their effect can be treated in the framework of a linearized theory.
This paper is organized as follows: Section II introduces our model of a quantum-
degenerate atomic system interacting with two quantized counter-propagating field
modes in a high-() ring resonator, and casts it in a form that emphasizes the op-
tomechanical nature of the problem. Section III derives the resulting Heisenberg-
Langevin equations of motion for the system. It solves them first in steady state for
the case of classical fields, recovering in a slightly different form some key results of
Ref. [10], and then treats the quantum fluctuations in a linearized regime. Section
IV starts by giving a formal outline of a general treatment of quantum correlations
applicable in cases where many separate noise sources are present and then uses
this result to analyze the different behaviors produced by the classical and quantum
equations of motion for selected system parameters. Finally, Section V is a summary

and conclusion.

A.2 Model

We consider a Bose-Einstein condensate of N two-state atoms with transition fre-

quency w, and mass m, assumed to be at zero temperature, confined along the path
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of two counterpropagating optical beams in a ring cavity of natural frequency w,
and wave number k. = w./c. These fields are driven by external lasers of intensity
n; and frequency w,. We assume that the atomic transition is far off-resonance from
the field frequency, so that the upper electronic level can be eliminated adiabatically.
Neglecting two-body collisions and in a frame rotating at the pump frequency w.

the Hamiltonian for this system is then

}A[ — HA-Opt + ﬁpump + ﬁBEC + ﬁinta (Al)
where
2
Hope = _hZA&Id“

+ abae?* 4 alage ) (). (A.2)
Here A = w, — w, is the pump-cavity detuning, and
Qo = gg/(wp — Wa) (A.3)

is the off-resonant vacuum Rabi frequency and gy is the usual (resonant) vacuum
Rabi frequency.

The photon recoil associated with the virtual transitions between the lower and
upper atomic electronic states results in the population of atomic center-of-mass
states of momenta 2phk, where p is an integer. For feeble intracavity fields and large
detunings it is sufficient to consider the first two momentum side modes, p = +1.

It is then convenient to decompose the atomic Schrodinger field in terms of its
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momentum ground state and two nearest momentum side modes in terms of the

parity (rather than momentum) eigenstates

O(z) = \/% [% + ¢, cos(2kz) + ¢, sin(2kz) |, (A.4)

where ¢y, ¢, and ¢. are bosonic annihilation operators for the zero-momentum com-
ponent and for the sine and cosine side modes of the quantum-degenerate atomic
system, respectively.

To couch the problem in a more transparently optomechanical form, we further

make the substitutions !

X Xo+iP
& = JN+“T2"‘J, (A.5)

p X1,2 + ip1,2

12 = ———F——,

’ \/5

Xc,s + Z.pc,s
V2o

The first of these equations is indicative of the fact that we assume that the zero-

(A.6)

~
Ces =

momentum component of the atomic sample comprises a macroscopically populated
component that we treat in mean-field theory via a classical amplitude v/ N, to which
are superimposed quantum fluctuations resulting from the coupling to the sine and
cosine side modes.

The approximate expansion (A.4) and the definitions (A.5)-(A.6) result in the
alternate form of the Hamiltonian

H' = H., + Hyup + Hype + Hi

int

(A7)

'Recasting the light field operators in terms of “position” and “momentum” operators has
been done primarily for later analytical ease rather than as a straightforward analogy to other

optomechanical problems.
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where
H,, = —hz (X2 + P?),
ﬁpump = h\/_ZRe -—Im(n)f(i,
Hipe = h;(X3+X§+P3+P3>,
. Qo =~ -
H ., = h—=(LM,+ L,M,), A.8
int \/ﬁ( ) (A.8)
and

Ee = X'1)22%-}/\71}/\)2,
o = XiP— XoP,
M; = V2NX;+ XoX; + By Py, (A.9)

where I = {¢,s}. In Eq. (A.7) a constant term has been ignored and the energy
shift of the atom-light interaction has been absorbed into the optical part of the
Hamiltonian (hence the primed terms).

The operators L and M are quadratic light and matter operators, respectively,
while the e and o subscripts in the light operators indicate their parity under inter-

change of the left- and right-moving light fields. Finally,
A=A—-QyN (A.10)

is an effective detuning that accounts for the mean-field Stark shift of the condensate

and
wy = 2hk*/m (A.11)

is the recoil frequency associated with the virtual transition.
As already discussed in Ref. [10] the presence of two counter-propagating fields in
a ring resonator results in a situation that is significantly more complex than is the

case for a high-Q) Fabry-Pérot cavity. In particular, the optomechanical properties
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of the condensate are now formally analogous to those of a system of two coupled
moving mirrors. This can be seen by exploiting the fact that due to the large value

of N, we can for now neglect the nonlinear terms in MC and MS, so that

M; ~V2NX;, (A.12)
and hence
H  ~ QoVN(L X, + L, X,). (A.13)

Thus, rather than having a light-matter interaction proportional to the light field in-
tensity times the position of an effective mirror we now have an interaction with two
“mirrors” [11] of equal mass and effective oscillation frequency, but each of which

is driven differently due to interference effects between the two counterpropagating

light fields.

A.3 Equations of motion

The Heisenberg-Langevin equations of motion of the system are easily derived from

the Hamiltonian (A.7), complemented by appropriate quantum noise and damping
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terms. One finds readily

X, = —kX,— AP + Re(n)x/i
Qo ~ =~ PERSS .
+ E(MC-P] + (1) M X;) + &,
P = —kP+AX;+ Im(n)\/§

- 7%(Mcxj + (1) M, P)) + &,

X N QO ~ A N ~
X = —Xo+—= Le et LOPS + &z0,
0 Yo \/5( ) &0
X o Qo » - A~ A ~
0o = _’VPO - _(LeXC + LOXS> + €p07

V2

~ ~ QO A A ~
= - Xc + WrPc + _LeP + ey
v \/§ 0 5

>e

(9}

X o N O - N ~
c = _’YPC - w’/‘Xc - _OLE( V2N + XO) + é.pc’
V2

X A ~ QO A A N

Xs = - Xs + wrps + _LoP + Sas)
v Nk §

X ~ ~ O - N -

Py = =P, —w.X, — —=L,(V2N + Xo) + &, (A.14)

V2
where ¢ = {1,2} and j =3 — 1.

The noise sources are assumed uncorrelated for the different modes of both the
matter and light fields. Because the damping originates in the a and ¢ operators,
it appears in both the X and P equations of motion. In the case of the light
fields, the noise and damping originate from cavity loss, vacuum noise, and laser
fluctuations, while for the matter fields the primary source of noise and damping
is 3-body collisions with additional nearby non-condensed atoms. In addition, the
customary factors of v/2x and /2y multiplying the f ’s have been absorbed into their

definitions. This simplifies later results somewhat.



61

A.3.1 Comparison to previous results

Before further analysis is undertaken, we investigate briefly the effects of including
the zero-momentum mode itself as a dynamical component of the system. We
neglect noise and simply look at the existence and stability of the fixed points of
Eqgs. (A.14) as the various parameters are varied. The results of one such calculation
are shown in Fig. A.1, revealing the dependence of the intracavity photon number
|ci|? = L(X?+ P?) on the detuning A. When compared to Fig. 2 of Ref. [10], which
uses identical parameters, we note that a quite similar bistable behavior is observed,
with two degenerate stable branches the photon number can reach, as before. Which
branch is reached is dependent on initial conditions and quantum fluctuations, and,
when one field’s intensity is given by the lower branch, the other’s is given by
the upper. There is one particularly interesting discrepancy when the evolution of
the zero-momentum mode’s occupancy is included, however. For a small range of
negative detunings — around A /k =~ —0.5 for the present example — the bistable
branches become unstable, due to a previously unseen Hopf bifurcation. Bistable
periodic cycles are present, and as before, which is reached depends primarily on
the initial state of the system. The amplitudes of oscillations observed in these
stable cycles are quite small for the zero-momentum mode when compared to its
mean value (which is of the order VN ), but for the lightly occupied side modes,
the amplitudes can be comparable to the mean values. This is a case where simply
making the ansatz ¢y — v/ N suppresses certain dynamical features.

In order to do a meaningful linearized quantum treatment, we attempt in this
paper to avoid parameter regions where complicated multistable behavior is evident.
The results of the next section will assist us in this effort. Furthermore, a broader
search of the parameter space has hinted that there are also experimentally realizable
regimes in which the classical dynamics goes beyond multistability and becomes

chaotic. We hope to return to this topic in a later work.
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Figure A.1: Mean intracavity photon number of both modes as a function of the
effective detuning A. Here k = 27 x 1.3 MHz, v = 2w x 1.3 kHz, Qg = 27 x 3.1 kHz,
w, = 2w x 15.2 kHz, N = 9000, and 1, = 1y = 0.54k. Stable solutions are indicated
in black and unstable solutions are in green.
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Figure A.2: Mean sine mode “position” and “momentum” as a function of A. Other
parameters as above. The outer magnitude branches are the position solutions and
the inner the momentum. The maximum sine mode occupancy N, reached is roughly
20.
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A.3.2 Classical dark state

We now turn to a concrete example in which quantum and classical predictions differ
qualitatively. Specifically, we consider the case of symmetric pumping 17, = 7o = 7
of the counterpropagating cavity modes. We have shown previously in Ref. [10] and
also below that within a classical (for the light field) and mean-field (for the atoms)
theory the sine mode is a dark state, for all but relatively narrow parameter regions
in which bistability and spontaneous symmetry breaking occurs (Fig. A.2). This
can be seen easily by replacing all optical and matter-wave operators by classical
expectation values, for instance

XO — Xo, <A15)

where the overbar indicates the mean. Similar definitions are used for the rest of
the linear operators. When a quadratic operator is written with an overbar, we
refer to the products of the classical means of its constituents (Z_}e =X, X5 + P, P,
N. = (X2 + P?)/2, etc.).

The steady-state solution in this limit is easily obtained by setting all time
derivatives equal to zero. Simplifying the equations of motion for the matter field

operators yields for the even and odd light field mean values the constraints

XlXQ—FPpo = 2|OL‘2,
XiP, - XoP = 0, (A.16)

where |a|? is the mean number of intracavity photons in either mode. Next, we find
that
X, =P, =0, (A.17)

showing that the sine side mode is indeed a dark state, as advertised. Other solutions
are possible, as we see below, but we want to focus our quantum treatment on the
dark sine mode. Fortunately, for many regions of parameter space, the dark sine

mode is indeed the stable classical behavior of the system. A primary point of
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interest for the remainder of this work is to identify conditions such that quantum
corrections lead to a finite occupancy of this mode.
For completeness and to make more direct contact with Ref. [10], we also solve

for the other classical steady state values.

o
|

—P (v + ) Z,

_0 = 7292Z7
_c = _/VQWTQZa
P. = —QH*+0%)7Z, (A.18)
where
Q = Qla*V2 (A.19)

is the off-resonant Rabi frequency for the intracavity photon number |a|? and

7 = V2N . (A.20)
(P + P+ 7%

We note that if we calculate M, and M,, the quantities governing light-cosine mode
and light-sine mode interaction strengths, we retrieve X,v/2N and 0, which are
exactly the results obtained when occupancy changes in the zero-momentum mode
are neglected. This shows that allowing for the evolution of the zero-momentum
mode as in Eq. (A.5) versus fixing ¢o — /N will only yield different behaviors
for the light and side-mode fields in the spontaneously broken symmetry region of
parameter space.

The remaining four equations are easily solved to give
%o - kRe(n)v2 — (A — Qo X/ N)Im(n)v/2
12 21 (A QXN ’
o kmm)V2+ (A — QX N)Re() V3
P, = — — . (A.21)
K2+ (A — QX V/N)?

We may therefore eliminate P; o without loss of generality (thereby requiring o = @, 2

to be real) by appropriate selection of the real and imaginary parts (equivalently,
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the phase and strength) of the pumping 7, namely

Re(n) = ka,
Im(n) = —(A—QXNVN)a. (A.22)

Recall from Eqgs. (A.18)-(A.20) that X. has a nontrivial implicit dependence on «
(proportional to a? for small a and proportional to a~° for large o). Once we begin
the discussion of the quantum fluctuations, we will treat « as the free parameter
rather than 7, because it allows the quantum equations of motion to be put forth in
closed form. That such a substitution is possible without requiring an inordinately
large pump intensity 7 is shown in Fig. A.3, a plot of the relationship between the
desired intracavity field a and the imaginary part of the required 7.

Under the restrictions (A.22), a bifurcation diagram of the steady state solutions

of the mean intracavity photon number |a;|? as a function of « are shown in Fig. A.4.
In general, the system has up to six steady-state solutions, with up to two being
stable. For small o, we have oy = ap = a, but as « is increased the system undergoes
a bifurcation, with a; # as. This occurs at o &~ .4 for our parameters. This is
followed by a small window with no stable solution (between about o« = .45 and .6),
at which point, there is again a stable symmetric solution where the «; are larger
than might be expected. Presumably, the symmetry breaking creates something of
a positive feedback loop: a few atoms are excited into the sine mode, which shifts
the phase of the counterpropagating light fields, causing them to interfere with each
other less effectively, thereby increasing the net number of photons in the cavity,
causing more atoms to be excited. Lastly, for much larger light fields, the pumping
dominates the atoms’ symmetry breaking ability and the dark sine mode becomes
stable again.

In addition, the character of the bifurcation diagrams as functions of A will

change because of (A.22), that is, because we use a complex (rather than purely

real as in Fig. A.1) n whose imaginary part is itself a linear function of A. These
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Figure A.3: Imaginary part of the pump intensity 7 required to produce mean
intracavity field a. All parameters are as in Fig. A.1, except 1 itself and A =
—1.0 x k. Note that because Re(n) is linear in a (Re(n) = ka), n itself is determined
uniquely as a function of «.
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Figure A.4: Mean intracavity photon number |a;]? as a function of a. All parame-
ters are as in Fig. A.3. The solution is not unique for sufficiently high «, (i.e. larger
pumping), and also the dark sine mode solution becomes temporarily unstable (in-

dicated in green, while stable solutions are in black).
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diagrams are shown in Figs. A.5-A.7. The multistable behaviors in particular are
richer than before. The dark sine mode remains stable over the entire range of A
(straight black line o = .0625 = .25? at the bottom of Fig. A.5), yet it is augmented
by an isola consisting of additional steady-state solutions with macroscopic side
mode occupancies. In particular, N, can reach approximately 250, almost 3% of
the total number of atoms (see Fig. A.6). These solutions can be stable or not,
and symmetric or not, depending on the detuning. We will see later that quantum
fluctuations may affect tunneling between these stable solution branches. We remark
that for the range of detunings where the isola has a single stable solution (between
A ~ —2.2r and A ~ —2.7) the light mode has an additional symmetric stable
solution, but the side mode still remains dark. It becomes macroscopically occupied
once the symmetry of the optical isola is broken. Lastly, the imaginary part, P,
of the zero-momentum mode’s creation operator can be quite large — up to half the
real part (not shown; however, as P, increases, it decreases sufficiently so the total
number of atoms is always less than 9000). This result strongly suggests that the
replacement of ¢ by v/N is not always a safe ansatz to make; ¢y — v Ne® seems

to be necessary in this case.

A.3.3 Quantum fluctuations

With these detailed results about the mean-field behavior in hand, we now include
quantum fluctuations in the original equations of motion, assuming that these fluc-
tuations remain sufficiently small that their effects may adequately be described by

linearized equations of motion. We introduce the fluctuations via
XO — XO + i’o, <A23)

and so forth, and linearize the Heisenberg-Langevin equations of motion in these
fluctuations. This process is justified as long as the quantum fluctuations are small

compared to the classical means (or in the case of the sine mode, with its zero mean,
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Figure A.5: Mean intracavity photon number |a;]? as a function of A. All param-
eters are as in Fig. A.1, except rather than a fixed n, we take o = 0.25. Stable

solutions are indicated in black and unstable in green.
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Figure A.6: Mean sine mode position and momentum as a function of A. All
parameters as in Fig. A.5. The outer branches are position solutions and the inner
are momentum.
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Figure A.7: Mean P, as a function of A. All parameters are as in Fig. A.5.
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as long as the quadratic terms are smaller than the linear ones). But we remark
again that because of the instabilities demonstrated here and in Ref. [10] this will
not always be the case, so some care must be taken when selecting values for the
parameters.

This linearization procedure yields the ten coupled operator equations of motion

T; = —KI; — Aﬁi + Qpp;
+ (=1)'(xo@s + pobs) + &uis
ﬁi = —kp; + Az; — QpTj — XTo
— Xofe = 9o — PoPe + &
Zo = —yio+ e+ pe(@1 + 2) + Ero,
o = —vPo— Qe — Xe(d1 + 22)) + ép(]?
Fe = —YEe+ wrbe + o + ©o(Z1 + 22) + Eves
De = —YPe — Wrdie — Qo — Xo(&1 + £2)) + Epe,
Ty = —YE,+wps+ ©0(P2 — p1) + Evss
Ps = —Ds — wiis — Xo(B2 — 1)) + Eps, (A.24)

where ¢ = {1,2} and

2 o
Qp = 2 |(V2N + X)X, + BP,|,
B \/§ ( 0) 0 ]

Xo = Qoa(V2N+X0),

Xe = QOCYXC,
o = Q004160,
0 = QoaP.. (A.25)

The first two of Egs. (A.24) describe the fluctuations of the light field, and the last six
the matter-wave fluctuations in the zero-momentum component and in the sine and

cosine side modes. The terms proportional to 25 describe Bragg scattering between
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the two counter-propagating optical fields due to the material grating formed by
the zero-momentum matter wave and the cosine mode. The coupling between the
light and matter operators is determined by the constants xo, X, o and ., which
act as small perturbations that couple the evolution of the four light and six matter
operators. Note that there is no coupling dependent on the occupancy of the sine
side mode at the level of these equations of motion. The coupling coefficients involve
only the classical, mean optical and matter wave fields. Thus, the coupling to the
sine side mode only occurs indirectly via quantum fluctuations in the symmetric
driving situation considered here.

While the exact eigenvalues and eigenvectors of the 10x10 matrix defined by
these equations cannot be found explicitly in closed form, standard perturbation
theory states that the eigenvalues associated to the uncoupled optical and matter
blocks of equations, e.g. for xo. = go. = 0, match those of the coupled system
up to second order in the perturbation. Numerical testing confirms that the values

indeed remain close. These eigenvalues are

Ao = —miz’(A—i—QB),

As = —Kziz’(A—QB),

e = —’yii\/QQ—l—%(wTj: 4Q2+w§),

Aus = —v tiw,. (A.26)

The reason for this nomenclature is clear when one considers the corresponding
eigenvectors (normal modes of evolution). While their explicit expressions are not
possible to write in closed form and are exceedingly unwieldy even when only ex-
panded to first order in the perturbation, a qualitative inspection yields some useful
information. The two pairs of eigenvalues \;. and \j s correspond to light-dominated
evolution with a small mixture of cosine and zero-momentum state matter modes,
in the first case, and of the sine matter mode, in the second case. The four A,

eigenvalues correspond to normal modes dominated by the cosine mode and zero-
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momentum mode (in unequal proportion) and coupled to the light fields. The Ay
values correspond to sine-dominated normal modes coupled to the light fields. The
sine-dominated normal modes only contain a tiny contribution from the cosine mode
and zero-momentum modes and vice-versa, a direct consequence of the dark-state
nature of the sine mode at the classical, mean-field level. Since 7 is typically the
smallest parameter, as one varies the other parameters, changes in the eigenvalues
that are relatively small compared to the magnitudes |A| can still drive the real parts
of the A\y;’s to be positive and thereby cause the solutions to become unstable. Be-
cause k > - the optical transients die rapidly and the light fields follow adiabatically
the matter wave fields, with noise- and interaction-dominated fluctuations.

The next section turns to a discussion of the correlations of various orders of the

matter-wave and light modes, as well as the cross-correlations between the matter

and light fields.

A4 Quantum correlations

A.4.1 Formal development

We proceed by first presenting briefly a somewhat formal result that will prove useful
in the analysis of the problem at hand, and that extends much of the machinery
familiar from systems with a single damped operator to deal with multiple noise
sources with distinct characteristics.

Consider a quantum system describes by a linear (or linearizable) system of
coupled Heisenberg-Langevin for a vector of d operators 5,

~
—

o) = WO +£(b), (A.27)

&lg‘

t

where W is a d xd matrix with c-number coefficients and E are purely noise operators.
(We assume that any net input to the system has already been absorbed into the

equations of motion.) For convenience we have merged the usual factors of v/2k
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needed to preserve commutation relations into 5, since they may vary for each
operator.

These equations can be integrated in a straightforward fashion, yielding
~ ~ t ~
O(t) = eW'0(0) + / eWIE(u) du. (A.28)
0

For each 7,5 < d, and at all times s,¢ > 0 we have

~ ~

(0i(0)&;(8)) = 0, (A.29)
(E(9)6(1) = Nyd(s—1), (A.30)

where the first condition is satisfied axiomatically, and the second one holds for white
noise sources, an approximation that should be adequate for the system under study.

The expectation values of the operators alone are just

(O(t)) = e™VH(O(0)), (A.31)

~
—

since (¢(t)) = 0.

Under these conditions we can obtain the correlation matrix

(O(s) 2 0(1) = eV (O(0) ® O(0))e™ ™

min(s,t)
+ / eWE—INeW! =) gy, (A.32)
0

which lets us compute all quadratic correlations at all times, e.g. (Z1(8)p.(t)).

For the rest of the paper, we shall work in the long-time limit, in which the
transient behavior of the operators has decayed to 0. In physical terms, for the
model in question, this corresponds to times ¢t > 1/7, which are experimentally
accessible for long-lived BECs. In this limit, the initial values have decayed to
irrelevance, and the correlations are simply

min(s,t)

(O(s) @ O(t)) = / W N W (=) gy (A.33)
0
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This is the central result of this section. For a Gaussian process we can easily
determine higher order correlations as well: all three-operator correlators are 0, and

the four operator correlators are given by

(0(s) ® O(t) ® O(u) @ Ov)) =
(0(s) ® O(t)) @ (O(w) ® O())
+ (0(s) ® Ow)) ® (O(t) ® Ov))
L (0(s) ® O() @ (O(t) @ O(u)). (A.34)

Now, we apply this technique to our model. The operators O are the #’s and p’s,
with the coefficients W given by (A.24). Lastly, we determine the &, ,, and hence,

N from the following relations:

(Eai(5)EL (D) = 2r0(s — t)(N 4+ 1), (A.35)
(h(9)8ailt)) = 2rd(s — )N/, (A.36)
Ea ()€ (0) = 296(s — t)(N]" + 1), (A.37)
(E(9)€a(t)) = 290(s — )N}, (A.38)
where i = {1,2}, I = {0,¢,s}, the N"*’s are thermal noise occupancies of the

baths near the characteristic frequencies of the system as given by Bose-Einstein
statistics, and all other quadratic noise correlations are 0. The noise matrix N for
the position and momentum operators thus has the form of 5 2 x 2 block matrices,
each with 2N* 4 1 for the on-diagonal entries and =i for the off-diagonal entries
with all 4 entries multiplied by + or k as appropriate. Because we are dealing with
optical photons and a BEC at a temperature of at most a few uK, going forward
we take all Ny, — 0, or, equivalently, we take the bath temperatures to be 0. We
find that typically increasing the Ny, ’s just adds directly to the occupancy of the

corresponding fields.
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A.4.2 Second-order correlations and quantum occupancies

Working with a set of parameters that are a combination of those in Figs. A4 —
A7 and with A = —1. x &, & = 0.25, we explore a few results of the cross operator
correlations before looking at the quantum-fluctuation-augmented occupancy of the
side modes. Further calculations not presented here have shown that the results
attained at these particular parameter values are fairly typical of the monostable
regime in which we are interested.

As expected, the fluctuations in the zero-momentum and cosine modes are virtu-
ally uncorrelated with those of the sine mode, ((Z,p)o.(Z,p)s) = 0, but are slightly
correlated with each other (e.g. (Zof.) ~ 0.022 — for comparison, Xy X, ~ 0.11, so
the classical mean-field correlation is a more significant contribution). By far the
largest correlation between distinct matter and/or light fields, however, is the one
that confirms our intuition, namely, the sine mode’s fluctuations are very strongly
correlated to those of the light field (e.g. (%;2s) ~ (—1)%0.32,7 = 1,2). This shows
that, indeed, the occupation of the sine side mode is driven by the fluctuations in
the light fields.

We also consider the occupancy of the side modes as functions of the most easily
tunable parameters A and a. Keeping in mind that all single operator expectation

values such as (#;) decay to 0, we have
(X2) = X7+ (a2), (A.39)

etc. When evaluating these quantities we must be careful to avoid those regions
in parameter space where the dark sine mode steady state solution is unstable,
in particular, we need a@ < 0.4. The results are shown in Figs. A.8 and A.9. In
the former, we see a noticeable occupation of the sine mode before the classical
bifurcation. This may be sufficient to shift the bifurcation point to a lower value of
«. This possibility is corroborated by the observed shift to the left in the plot of (V)

versus NN,; that is, when quantum fluctuations are included, the cosine mode behaves
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Figure A.8: Side mode occupancies (N.), (N;) as functions of a. Parameters as in
Fig. A.3. The cosine mode has a larger occupancy and is in black; the sine mode is
in green. For reference, the classical mean N, is plotted (dashed line) as well.



80

[\

—_

‘|\\\‘\\\\‘\\\\‘\\l\‘\\\\‘\\\\‘\\\\A/K
—7 -6 -9 —4 -3 -2 -1 0

Figure A.9: Side mode occupancies (N.), (N,) as functions of A. Parameters as
in Fig. A.5, but the range of A has been extended slightly. The cosine mode has
a larger occupancy and is in black; the sine mode is in green. For reference, the
classical mean N, is plotted (dashed line) as well. X, and P, do not depend on A
so it is constant.
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as if a were slightly larger. On the other hand, a somewhat different behavior is seen
in the latter plot. As A decreases from 0 and approaches the bifurcation seen above
in Figs. A.5-A.7, the sine mode initially starts to increase in occupancy, but then
its (and the cosine mode’s) quantum fluctuations are suppressed as |A| increases
further. Nevertheless, as we see below, the variance in the sine mode’s occupation
is so large that the quantum fluctuations may still influence the character of the

system’s behavior in the case —2.5k S AR 1.0k

A.4.3 Variance in side mode occupancy

Because the system is coupled to a zero temperature bath, we compare the variance
o7 = (N7)—(Np)? (A.40)

to that of a bosonic system in thermal equilibrium, in which case
oton = (N)?+ (N)), (A.41)

specifically taking the ratio of (A.40) to (A.41). A value less than one indicates sub-
thermal statistics, as would be the case when there is a significant classical mean
and/or quantum fluctuations are suppressed. On the other hand, a ratio greater than
one indicates significant fluctuations and a matter or light field driven out of thermal
equilibrium. These ratios are computed and plotted in Figs. A.10 and A.11. In the
former, for weak mean intracavity light field «, both modes’ statistics are thermal
in nature. As the applied field is increased, the sine mode is perturbed to slightly
higher variance, whereas the cosine mode at first exhibits less than thermal variance,
as the classical mean field contribution grows. However, the quantum fluctuations
then take over and its variance grows quickly as a approaches the bifurcation at a
value of roughly 0.4. We should however take this result with a grain of salt since
it is at this point that the quantum fluctuation contribution to (N,) exceeds the

mean contribution N,, thus endangering the validity of the linearized treatment.
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Still, it should of course be expected that increased fluctuations in the cosine mode
significantly alter the existence and stability of steady state solutions in this critical
region.

In the second of these figures we plot the variances as a function of the effective
detuning A. In this case, except for detunings very near 0, the cosine mode is
almost completely classical, as is the sine mode for sufficiently negative values of
A. This implies that, if a zero-momentum condensate is formed and allowed to
evolve for the parameters given and a A of less than —2.5x or so, and if it reaches
the dark sine mode steady state, it is quite likely to remain there indefinitely, as
quantum fluctuations are strongly suppressed. But for less negative values of A, the
sine mode fluctuations are significant. It may be possible that these fluctuations
“anticipate” the classical bifurcation nearby in parameter space, or even that they
allow the new stable solutions to appear for larger values of the detuning than they
would otherwise. To test this would likely require simulation of the full nonlinear

quantum evolution of the system.

A.5 Discussion and Conclusions

By analyzing a detailed model including two counter-propagating light fields and
three matter fields, we are able to find a region in parameter space, with experimen-
tally accessible values, where the system’s behavior differs significantly from that of
a BEC in a Fabry-Pérot cavity, and also where quantum corrections become signifi-
cant. The classical dynamics are rich, and near bifurcation points in the mean-field
classical system, the quantum fluctuations also have intriguing properties. They
appear strong enough to shift or perturb the dynamical bifurcation points.

This system’s dynamics are richer than the typical optomechanical system, and
they may be exploited in the future to investigate numerous non-classical effects.
For instance, because of the strong cross-correlation between the light’s and the sine

mode’s fluctuations, it should be possible, by measuring the output light fields, to
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Figure A.10: Variance of side mode occupancy compared to thermal variance as
functions of a. Parameters as Fig. A.8. Cosine mode is in black and sine mode in
green.
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Figure A.11: Variance of side mode occupancy compared to thermal variance as
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monitor the sine mode as it tunnels between different possible steady state branches.
This would contrast with the tunneling suppression seen in, e.g., Ref. [12], and it
relies on the optically driven fluctuations in the matter fields. Also, for significantly
larger condensates, with N ~ 10°, apparently chaotic classical dynamics are ob-
served. It may be that this behavior persists even with the minimal (N = 0) kicks
given by the noise operators f . To explore these possibilities, further work will be
needed in the form of a full nonlinear quantum treatment.
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ABSTRACT

We study theoretically the dynamics of a a hybrid optomechanical system con-
sisting of a macroscopic mechanical membrane magnetically coupled to a spinor
Bose-Einstein condensate via a nanomagnet attached at the membrane center. We
demonstrate that his coupling permits to indirectly monitor the center-of-mass po-
sition of the membrane via a non-destructive measurement of the Larmor precession
frequency of the condensed atoms. This measurement induces a significant back-
action on the membrane motion, which we quantify for the cases of thermal and
coherent initial states of the membrane. We discuss the possibility of measuring

that quantum back-action via repeated measurements, and show that it can be for
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observable experimental parameters. We also investigate the potential to gener-
ate non-classical of the membrane, in particular Schrodinger cat states, via such

repeated measurements.

B.1 Introduction

While the theoretical foundations of Quantum Measurement Theory were already
laid down in the early days of quantum mechanics by Bohr, Schrodinger, Heisenberg,
von Neumann and others, quantitative studies are a relatively recent development
that is now driving significant advances in quantum information science and quan-
tum metrology, with major progress originally driven both by the desire to test
Bell’s inequalities on the one hand, and by the quest for gravitational wave detec-
tion on the other. A common aspect of these and related studies is the need to
quantify, control, and possibly exploit the quantum back-action of one or a series of
measurements on a quantum mechanical system.

An important development in this context is the rapid progress witnessed by
cavity optomechanics, which makes it increasingly realistic to consider the use of
mechanical systems operating in the quantum regime to make precise and accu-
rate measurements of feeble forces and fields. In many cases, these measurements
amount to the detection of exceedingly small displacements. In this context, hybrid
systems consisting of coupled atomic (or molecular) and nanomechanical systems
may prove particularly useful. The robust and scalable infrastructure provided by
NEMS/MEMS devices coupled with the high precision measurement capability of
quantum gases [10, 11, 12] makes them an attractive combination for sensitive force
measurements, as well as for a quantitative study of dissipation and decoherence
processes at the quantum-classical interface. There are ongoing experimental [3, 4]
and theoretical [5, 6, 7, 8, 9] efforts toward coupling mechanical systems to atomic
ensembles.

The system that we consider consists of a mechanical membrane magnetically
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Figure B.1: Proposed experimental setup for back-action detection, involving a
magnetic particle located at the center of a vibrating membrane and polarized along
the z-axis. This setup produces a spatially inhomogeneous magnetic field that is
detected by the BEC. The BEC’s long axis is along the z-direction, the probe light
(red arrow) is along y, and the membrane oscillations are along the x-axis.
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coupled to a spinor Bose-Einstein condensate, an arrangement somewhat similar to
a system previously considered in Refs. [5, 8]. The magnetic coupling, generated via
a nano-magnet anchored on the membrane, allows for an indirect determination of
the center-of-mass position of the membrane through a non-destructive measurement
of the Larmor precession frequency of the condensed atoms. This in turn can be
achieved via a phase contrast imaging technique, as described in Ref. [10]. Since the
Larmor frequency is proportional to the local magnetic field — which is modulated
by the motion of the magnetic domain attached to the oscillating membrane — it
provides a measure of the membrane motion. This technique promises to be much
more precise than a measurement of trap loss such as recently demonstrated in
Ref. [4]. The measurement of the BEC spin induces in turn a back-action on the
membrane, modifying in general both its position and its momentum. One main
goal of this paper is to quantify this back-action and to determine the feasibility of
measuring it directly, thereby providing a way to directly observe quantum back-
action on a macroscopic object. So far such quantum effects have only been observed
for measurements on a BEC [14]. We also discuss the possibility of exploiting this
back-action to achieve the quantum control of the membrane position, for instance
to prepare its center-of-mass in a squeezed state or a Schrodinger cat state.

This paper is organized as follows; Section II introduces the system under con-
sideration and derives a model Hamiltonian that describes the magnetic coupling
of the membrane to the condensate. Section III discusses the indirect measurement
of the membrane center-of-mass position via the Larmor precession of the conden-
sate, assuming that the membrane is initially in a thermal state. In particular,
we present the post-measurement Wigner function of the membrane and interpret
its main features in terms of a back-action parameter. Section IV then turns to
the case of repeated measurements on this system, illustrating how a sequence of
measurements provides a direct signature of the back-action. Section V discusses

the possibility of producing highly non-classical states of the membrane, considering
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specifically the case where it is initially in a coherent state. We show that repeated
measurements typically leave the membrane in a non-classical state characterized by
a non-positive Wigner distribution. Finally, Section V is a summary and outlook.

Some technical details of the calculations are relegated to appendices.

B.2 Model

As already mentioned in the introduction, the hybrid system under consideration
consists of a micromechanical membrane whose center-of-mass is oscillating, perhaps
under the influence of a weak force. Our goal is to develop and analyze a quantum
measurement scheme that permits us to characterize the center-of-mass motion of
that membrane.

The scheme that we envisage involves integrating this membrane into a hybrid
system whose other component is an elongated spinor Bose-Einstein condensate
with long axis z, see Fig. 1. The condensate is subjected to a static magnetic field
By along the quantization axis z. The membrane is magnetically coupled to the
condensate via a magnetic domain anchored at the center of the membrane. Since
the resulting magnetic field at the location of the condensate depends on its distance
from the dipole, a measurement of the changes in Larmor frequency of the spinor
condensate — e.g. via a non-destructive phase contrast imaging technique — provides
direct information on the membrane motion.

We assume for simplicity that the magnetic domain is a point dipole located at
the origin and polarized along the z-axis, tm = pmz . The magnetic field due to
that dipole is

BE) = 10 (31t D)F — ) (B.1)

The small spatial variation of the resulting magnetic field along the long axis of the
condensate results in a variation of its Larmor precession frequency. As we show in

the following, this dependence permits us to characterize the expectation value of
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center-of-mass mode of oscillation of the membrane.
The Zeeman interaction between the atoms in the condensate and the total

magnetic field By + B(r) is described by the Hamiltonian

H = —Ha - (BO + B(I‘))
= ppyr (FyB, + F,B, + F.(By+ B.)), (B.2)

where Fj is the i component of the spin-1 operator. As a result of the spatial
dependence of the magnetic field, atoms at different positions along the long axis of
the condensate precess at different frequencies and dephase over a period of time.
It is this z-dependent phase difference that is picked up in phase contrast imaging.

We note that the transverse dependence of the magnetic field also results in an
inhomogeneous broadening of the Larmor frequency. The effects of this broadening
can be minimized, the more elongated along z and tightly confined in the transverse
directions the condensate. In the following we consider for simplicity a condensate
that is almost two-dimensional and confined to a region close to y = 0, so that
By, ~ 0 and F,B, ~ 0. Furthermore, close to z = 0, i.e. for the fraction of the
BEC directly above the dipole, the magnetic field B(r) is predominantly in the
z- direction provided that xg, the equilibrium distance between the BEC and the
membrane, is much greater than the relevant coordinates y and z. In that case we
can ignore the effects of B, and B, altogether.

As shown in detail in Appendix A, for small displacements z,, of the membrane

compared to xy the magnetic coupling Hamiltonian (B.2) reduces then to

Hotm

V = F,|B
UBIF o+ Az

(—x0 + 32m) | - (B.3)

The first and the second term of this expression are independent of time, while the
third term, proportional to x,,, varies sinusoidally in time. We exploit this property

by rewriting the magnetic Hamiltonian as
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where

B, = 357561” (B.5)
see Appendix A. From here on we drop the subscript in membrane displacement,
Tm — x for compactness. The total system Hamiltonian of the hybrid BEC-
membrane system is then

H = H,, + Hjpc+ V. (B.6)

Here

H,, = p*/2m + mw?,z*/2

is the membrane Hamiltonian and

tec = Hopec + ppgrF.Be,

where Hjprc is the spin-independent part of the atomic Hamiltonian. Describing
the condensate as a collection of NV non-interacting spin-1 atoms at zero temperature,
and assuming that the atoms are experiencing a constant magnetic field over the
detector area of interest, perhaps one or a few CCD camera pixels, we can then

express the interaction Hamiltonian as
V = NuggrF.(B. + B.x). (B.7)

This simplifies the total Hamiltonian to

2
1
H= ;; + §mwgﬁb (z+ AF.)” + {nQoF. — h6QF?} (B.8)
m

where

A = upgrNB. /mw?, (B.9)

which we call the back-action parameter in anticipation of the following sections,

and
60 = mw? A?/2h. (B.10)
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B.3 Spin measurement

The measurement proceeds in the following way: at time ¢t = 0 a 7/2 pulse is applied
to the condensate, preparing all atoms in |F, = 1) state. Following that prepara-
tion stage, the atomic spins precess about the z-axis until a later time t; when the
atoms are brought in interaction with a o, polarized optical field propagating along
the y-axis, see Fig. 1. As a result of that interaction the optical field acquires a
phase shift proportional to the y-component of the atomic spin [10], thereby mea-
suring the Larmor precession resulting from the magnetic field B, + B! x. Briefly,
this frequency can be inferred from the accumulated phase shift resulting from the
different (Clebsch-Gordon) coupling coefficients of the field to the three spin states
under consideration. Additional measurements can be performed at later time in-
tervals t;,7 = 2,3,.... A key point here is that the light field does not perturb the
membrane, and realizes therefore a ‘non-destructive’ measurement of the BEC state
in the F} basis.

Equation (B.8) already gives a clear indication of the back-action of the measur-
ing apparatus — the condensate — on the membrane. As a result of their coupling
the membrane Hamiltonian is modified from being a harmonic oscillator centered at
the origin to one that is shifted by the quantity AF,, indicating that the back-action
depends on the outcome of a specific measurement. Here, we give an explicit de-
scription of the measurement process by evaluating the pre— and post-measurement

density operator of the membrane, and the corresponding Wigner function.
B.3.1 Density operator
We assume that the membrane and the condensate are initially uncorrelated,

p = pm(0) ® pprc(0)

and denote the initial density matrix elements of the BEC as pj) 5, where po 5 =

(a|pBeC|B), and «a, B are the various spin states, a,, § = {0, +1}. We also assume for
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now that the membrane center-of-mass is initially in a thermal state at temperature

T. With
n = hwm/QkBT,

its density matrix elements in position space are then

W,

5 tanhn

Pm($f7xz,t =0) = <xf|/)m|37i> =
MWy,

X exp [_W ((zf + x;)* tanhn + (zy — 2;)° coth n)kB.ll)

For ¢t > 0 the spin components of the condensate undergo a Larmor precession
about the z-axis. Since [Hggrc, Hn+V] = 0, we can use the Baker-Hausdorff relation

to re-express the propagator U(t) = exp(—iHt/h) as
U(t) — e—itHBEc/he—it(Hm-i-V)/h‘
This allows to find the evolution of the system density matrix in a straightforward

way. After an interaction time ¢, this evolution results in the matrix elements of

the density operator of the membrane + condensate system to become

MWy,

(a,zf|p(t)|B, x:) = plgexp[—iQo(a — B)tr +i6Q(a® — B7)t1] — tanhn
MW, )
X exp [_W (xf 4+ x; + (o + B)A(L — coswy,ty))” tanhn

+(zf — x4 (a — B)A(1 — coswpty))? cothn
+4iAsinwyty (azy — B;) + 2iA%(0® — B%) sinwyty (2 — coswpty)}] . (B.12)
That is, the interaction of the membrane with the BEC displaces its center-of-

mass motion in both position and momentum by amounts that depend explicitly on

the spin components o and 3, as well as on the back-action parameter A.

B.3.2 Single measurement

As already discussed, a measurement of F}, is carried out at time ¢; by propagating

through the BEC a (classical) o -polarized light beam sufficiently far detuned from
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any atomic resonance that it does not destroy its state. The post-measurement
density matrix of the membrane depends on the measurement outcome, and is given
by

1 *
<xf|pm|xi>Fyﬁ = m Z F(y,'y),apsysF(yw)ﬁ' (B.13)
s a,B

y
Here 7 is the outcome of the F}, measurement, v = {0, £1}, P(F, ) is the probability

of that outcome, and FY, ) s is the 3 component of the I, =~ eigenstate.

B.3.3 Phase Space Representation

The effect of the measurement on the state of the membrane can be visualized

particularly clearly in terms of its Wigner distribution function

Wiap) = 5r / dec P (o 4 €/2ple — £/2) (B.14)

For a harmonic oscillator in a thermal state, we have

MWy,

1 2
W(z,p,t =0)= %tanhnexp [—% <$2 + (L) ) tanhn] (B.15)

an expression that should be contrasted to the post-measurement Wigner function,

which is found to be

1 1 ) .
W(ZL’,p, tl) = % tanhnm OCZ/B Fy,'yaFy:’Yﬁpaﬁ <B16)

x exp[—iQpo(a — B)ty + 109 (a” — 52)t]

mw A ?
X exp {—Tm <I + E(O& + B)(l - COS(wmt1)>

mw, 2

A 2
+ (L + —(a+p5) sin(wmt1)> ] tanh 7
: . P A .
+ 1A(a — B) | zsin(wpt;) — —— (1 — cos(wmtr)) + 5(04 + B) sin(wpty) | ¢ -
MW,
At time ¢; the first line of Eq. (B.16) simply describes the imposition of a global

phase in W(x,p), with a value depending on the measurement outcome. More
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interesting are the last two lines in that expression: The second line describes a
shift and stretch of the initial gaussian distribution, with a value dependent on
the temperature and back-action parameter A. When this is the dominant term,
the measurement results in an oblate gaussian Wigner function moving around the
phase space at the membrane frequency. The measurement dependent position shift
is derived in the next subsection.

The third line in W (z, p, t1) results in oscillations of the Wigner function. These
are due to the fact that the initial state of the BEC, |F, = 1), is not an eigenstate
of the interaction Hamiltonian (proportional to F,). So, one can think of the con-
densate as experiencing three interaction Hamiltonians simultaneously, one for each
of its spin components, and it is the interference between them that leads to the
oscillations. We remark that the oscillations in the Wigner function can be seen as

long as

A < /tanhn (B.17)

T

where ., = \/h/2mw,,.

B.3.4 Back-action

To illustrate the effect of backaction, we assume the following membrane parame-
ters for the remainder of the paper (unless stated otherwise): w,, = 2710° rad/s,
m = 107 kg, p,, = 1072A -m?, and an initial temperature of 4K. The static
external magnetic field is By = 0.1 Gauss, and the condensate is g = 5 x 107°
m away from the membrane, resulting in a single-atom back-action parameter
Aga = 2.25 x 10718 m. We assume that N = 10* atoms experience the same mag-
netic field in the detection region, yielding then an effective back-action parameter
of Ay = NAg, = 2.25 x 107*m (for comparison, Ay = 0.246x,,). Fig. B.2 shows
the resulting post-measurement Wigner Function for this A (figure ¢), and for the
backaction parameter being 0.1A4, (figure b), and 0.014, (figure a)., assuming that

a measurement of £}, with result 1 was made after an interaction time of ¢; = 7/wy,.
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As alluded to by Eq. (B.17), in order to observe the oscillations in the post-
measurement Wigner function, we can either increase the temperature or increase
A. However, increasing the temperature leads to dissipation and decoherence losses
that are ignored in the present analysis, but result of course in a fast thermalization
and associated smoothing of W (z,p. A more promising approach will be to increase
A (Eq. (B.9)), either by increasing the number of atoms in the effective detection
zone, or by increasing B! via a decrease of zy. Since B! scales as 1/x{, this may be
the easiest way to reach the regime of observable Wigner function oscillations. Note
however that for decreasing x( the simplified interaction Hamiltonian (B.7) becomes
less accurate as the components of the magnetic field along x and y become more
important. Both decoherence effects and corrections to the Hamiltonian (B.7) will
be discussed in future work.

An additional point of concern is that the BEC does not act as a good position
sensor for high A, as can be seen in Fig B.2. The act of measurement on the
BEC creates a significant change in the phase-space distribution of the membrane
that would invalidate any information gained about the position. However, as we
show in Section V, a high value of A is beneficial for preparing the membrane in
highly non-classical states via repeated measurements. As with all schemes for
state preparation involving repeated measurements, its not very efficient for highly
excited initial states like the one considered in Fig. B.2 considering — at 4 K, and for
the membrane parameters of this example, the mean phonon occupation number is
5.2 x 10°.

The expectation value of the center-of-mass position (x) of a membrane in ther-

mal equilibrium is zero, and its variance is

o?(z) = (2*) — (x)? = (2?) = 2njwm coth 7. (B.18)

Immediately following the measurement, the membrane is no longer in thermal equi-

librium, and (z) # 0 in general. For large back-action parameters the oscillations
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on W (x,p) become quite significant, but on the other hand, these oscillations also
indicate that in that regime the BEC is a poor position sensor, since its coupling to
the membrane significantly perturbs the outcome of subsequent measurements. To
investigate the efficiency of our setup as a position sensor, it is therefore appropri-
ate to consider the limit of small Ag. Consider for concreteness the specific example
where the outcome of the spin measurement is F}, = 1. Ignoring then terms of order

A% and for t; = m/Q, we find
A
(r) = 5 sin wy,m /o cothn, (B.19)

with (#?) remaining constant to lowest order in A. We then have

2

h A
() pm = ST cothn — T sin? (w7 /o) coth? (B.20)

where the subscript “pm” indicates post-measurement. The minimum back-action
occurs for n — oo, or T' — 0. It also vanishes when the membrane frequency is an

integer multiple of Larmor precession frequency,
Wm = nQLo, (B21)

where n in an integer, in which case it is possible to carry out stroboscopic QND

measurements of the membrane position.

B.4 Successive Measurements

The previous discussion hints at the possibility of carrying out stroboscopic QND
measurements of the membrane, but in general, successive measurements result in
an accumulation of back-action effects. At the same time, they offer the potential
for the coherent control of the center-of-mass motion of the membrane. To address
such situations, we now consider the effect of a succession of measurements on the
state of the membrane. The similarity between Eqgs. (B.11) and (B.12) suggests that

it should be possible to find a closed form for the density matrix of the composite



100

system after an arbitrary number of measurements on the BEC. Indeed, this is the

case and such a form is presented below.

B.4.1 Analytical results

We first consider the situation where the membrane is initially in a thermal state,
and assume that the interaction between the membrane and the BEC, (initially
prepared in the F, = 1 state, is turned on at time t; = 0. After time t;, a first
measurement is performed on the spin of the BEC. The light-BEC interaction time
tmeas Tequired to carry out that measurement is taken to be negligible compared to
the other characteristic times of the system — in practice ty,eas is about 10 percent
of the Larmor period. The direct effect of the measurement is only on the BEC,
and can be formally described by a Krauss operator M) that depends explicitly on
the outcome of the measurement. Following that first measurement the system the
system evolves unitarily for an additional time ¢5, becoming re-entangled A second
measurement is then performed, acting on the BEC with an operator M®, and this
process is repeated n times.

Immediately following the nth measurement, the elements of the BEC-membrane

system’s density matrix are given by (see Appendix B)

Dt n—1)t n)t
<Oz,{Ef|p |Baxz Z a Ocn anan 1’ Mt%)oclpalﬁlMlglgz .M[gnflgnMén)ﬁ

[CAFTS an:ﬁl: Bn

X exp [—2’ S tdQuolas — B) — 691 (a2 — 53)}] , /”Z%m tanh 7
=1

X exp [—% (z; + X[a]A + z; + X[B]A)* tanhn

+ (7 + X[a]A — 2; — X[B]A)? cothn
+ 4iA(Plal(zs + X[al4) = P8)(x: + X[8)4)) +2i4%(0la] - 0[]} | (B22)
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where
MO = (oM, (B.23)
X[o] = on=) (0i—0i1)cosTip, (B.24)
i=1
Plo] = Z (0; — 0i—1)sin T}, (B.25)
i=1
olo] = Z<0i —0;.1)*sin Ty, cos T,
i=1
n—1 n
+ 2 Z Z (0i—0i-1)(0j—0j_1)sin T}, cosT; ,, (B.26)
=1 j=i+1
and 4
j
T, = metk if i<j7 and =0 otherwise. (B.27)
k=i

The sums on «; and f; run over {—1,0,+1}, and in Egs. (B.24) — (B.26) we have
oo = Po = 0 wherever they appear. To be clear, in the equations above, the times
t; are the spacing between measurements rather than the times themselves. Also,
care should be taken as X, P, and ¢ are functions of the spin indices and thus must
be recomputed for each term in the sum. Note also that the density matrix (B.22)
is unnormalized. Its trace is equal to the probability of the particular sequence of
measurement outcomes described by the specific set of operators {M®} occurring
in it.

A few remarks are in order before turning to a discussion of numerical results:
First, the density matrix of the membrane can be obtained from Eq. (B.22) by a par-
tial trace. It is the sum of many different contributions from various shifted (in posi-
tion and momentum) thermal ensembles. A (numerical) computation problem does
arise, though, as calculating the density matrix for n measurements requires sum-
ming over 9" terms. In our numerics we will thus be restricted to few-measurement

scenarios.



102

The timing of the measurements is also very important to the BEC functioning as
a detector. In one extreme case, if the measurements are made exactly at the natural
frequency of the membrane, the interaction will be completely masked, except for
the tiny second-order effect of 6§2;,. This again supports the claim that position is
very nearly a stroboscopic QND variable.

The structures of Egs. (B.22) and (B.24)-(B.26) also indicate that the results of
the earliest measurements continue to be as important as those of later measure-
ments. This is because in the absence of dissipation, there is no attenuation of the
information gained nor of the back-action induced by the measurements. Including
the effects of thermal dissipation reduces and eventually erases this memory effect.

The Wigner function (B.14) of the membrane after n measurements can be
derived from (B.22) and is found to be

W(z,p) = 7D ML M) Mg P My My M

t anan 1° Bny
psys ’Y aq,. 7ﬁn

3

X exp <—Z ZE(QLO(O@ — 5%) — 5QL(C¥ZQ — ﬂ?))) 7'[‘_1h tanhn
=1

exp [_% { <(a: + %X@] + X[ﬁ])) (B.28)

I (L + é(p[a] + P[ﬁ])) ) tanh 7 + iA(P[o] — P[f])

X

MWy, 2
< o+ S0Xlal + X[8)) = iA(Xla] - X[8) L+ 0la] - ol } |

MWy, 2

a form that clearly illustrates the shift in position and momentum of the various
terms in the sum.
B.4.2 Numerical results

One simple way to detect the effect of quantum back-action on the state of the

membrane is to consider a sequence of 2 measurements carried out in succession at
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times t; and 9, and to compare the outcome of the last measurement to the outcome
of a measurement at that same time t,, but skipping the first measurement at ¢;.
As a concrete example, we consider, for the parameters of the previous section, the
following two scenarios:

1. F, is measured once, at ty = 7/w,, (i.e., half the oscillator period);

2. F, is measured first at t; = 7/2w,, and then at ty = 7/wp,.

By simply calculating the trace of Eq. (B.22) for the 3 possible operators M(1)’s

in scenario 1 we obtain the probabilities

P(F,=4+1) = 0375
P(F,=0) = 0.25 (B.29)

In the second scenario 9 traces need to be evaluated instead of just 3. Summing
then the three terms corresponding to the same final value of F),, so as to obtain

the total probability of obtaining a particular value for the second measurement, we

find

P(F,=+1) = 0.344
P(F,=0) = 0.312 (B.30)

The simple example shows that back-action of the intermediate measurement
should be readily observable, since it changes the probability for the three possible
outcomes of the measurements at t, by a significant amount, of the order of several
percent.

A slightly more complete look into the effects of intermediate measurements is
provided by the Wigner functions shown in Figures B.2 and B.3. In Fig. B.2,
we show a series of plots for the case of a single measurement at t = 7 /w,,, for
different values of A (0.01A4p,0.1Ag, and Ay, respectively). In Fig. B.3 we increase
the number of measurements from 1 to 2. The time of the final measurement is

the same as in Fig. B.2, 7/w,,, but an intermediate measurement is made at time



104

t1 = m/2w,,. The outcome of the final spin measurement is again F,, = 1, but, for
the sake of direct comparison with Fig. B.2, we average over all possible results of
the intermediate measurement. This is equivalent to an experiment in which the
outcomes of the intermediate measurement are discarded or ignored. As expected,
the Wigner functions where an intermediate measurement are noticeably different
than the one lacking an intermediate measurement, hinting at a simple way to

characterize the impact of quantum back-action on the membrane dynamics.

B.5 Initial Coherent State

We now turn to the situation where the center-of-mass state of the membrane is a
coherent state. an initial condition that can be prepared by driving the membrane
with a classical force. The main result of this section is to demonstrate that after
n measurements, the center-of-mass of membrane is split into a superposition of up
to 3™ discrete coherent states, hinting at the possibility to generate a macrsocopic

Schrodinger cat.

B.5.1 Evolution of the Coherent State

The assumption that the membrane is initially in a coherent state allows us to
eschew the density matrix formalism for the moment, and the initial state of the

composite system is given by
[T(0)) = D(ag + ibo)|Omem) ® D _ calar) (B.31)
where Y°_|ca|* =1 and
D(u) = exp(ua’ — u*a)

is the displacement operator for the center-of-mass state of the membrane.

Following a procedure similar to that for the initially thermal membrane, we
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Figure B.2: Wigner distribution function of the membrane after one measurement
giving the result F, = 1, for several values of the back-action parameter: (a) A =
0.01A4,: (b) A=0.14, and (c) A = Ay, with Ay = 0.246+/h/2mw,,. The evolution
time is t = 7/wy, in all three cases. The Wigner function has been multiplied by
10% to make the axes legible.

b. A=0.14,

Figure B.3: Wigner distribution function of the membrane in the case of two mea-
surements: the final spin measurement, at time 7/w,,, yields the outcome F, =1
. As in Fig.( B.2), the three Wigner functions are plotted for increasing values of
the back-action parameter, A, and the final Wigner functions are averaged over all
possible outcomes of the intermediate measurement.



106

arrive at the final state for the hybrid membrane-BEC system

~ W LAB[a]
ZM Mc(éalcal exXp <—@ ; l; (QLoOéi— 5QLOZ? + 7) —1 2 )

A, ..,
x D(a [ ] 4 ib[a])|Opmem) @ ) (B.32)
with
) A
alo] = agcosTy,, + bysinTy, — 5 X|o], (B.33)
Zap
, A
blo] = bocosTi, —agsinTy, — Plo], (B.34)
’ ’ 2%
@[0'] = Z g; [ao(sin Tlﬂ' — sin T17i71> — bo(COS Tl,i — COS Tl,ifl)
=1
A . .
—+ o0 Z(Uj — O'j_1>(SII1 Tjﬂ' — Sin jjjﬂ‘_l)], <B35)
o

and all other definitions are as before. This wave-function is not normalized; the
probability of obtaining a particular sequence of measurement outcomes is given by
(WO (2)).

Because the real part of the displacement is proportional to (z) and the imagi-
nary part is proportional to (p), we have a very clear picture of the physics arising
in this situation. The membrane’s initial displacement oscillates back and forth
semi-classically. However, each time the BEC’s spin is measured, the membrane’s
wave function splits into three distinct components, each having received a different
kick from its interaction with the different possible spin orientations of the BEC.
This indicates that the membrane is indeed put into a cat state, except for the fact
that the kick is proportional to A, which is typicallysomewhat less than the ordinary
zero point oscillations x,,. If, going forward, we can increase A in an experimen-
tally realizable setting, this system may provide an excellent demonstration of a

macroscopic object put into a highly non-classical state.
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B.5.2 Wigner function

Following a sequence of measurements, the Wigner function of the initially coherent

state of the membrane motion becomes

W($7p> = 71'71— Z M’gnan azowll) 1 "Mrgc?mpalﬁlMlgigg Mé: jg:Mlgn)W
Y1505 Bn
X exp <_izti(QL0(ai — B;) — 6Q(af — 512)))
X exp [~ { (2 — wop(ala] + alf] + i(b[a] - b[8)))?
+ (mL;m — 2., (bla] + b[B] — i(ala] — a[ﬁ]))) } + i(a[B]bla] — ala]b[A])
A 1 5 1 2
- g (ela] - O1A) - jlala] - alf)? - G0kl - ) (B30

Figure B.4 shows the post-measurement Wigner function after successive mea-
surements. The key point here is that repeated measurements can lead to very non-
classical states, as is evident from the resulting negative valued Wigner functions.
As can be seen in Egs. (B.32) and (B.36), each measurement introduces different
phase factors to the initial coherent state, along with splitting it into different co-
herent states. It is the quantum interference between the different coherent states
thus generated that gives rise to the non-classical Wigner functions. Relatively few
measurements are required to generate such non-classical states.

In fact, it is possible to turn a coherent state into a non-classical state after only
one measurement. Fig. B.4 shows one such case. Here, ag = by = 1 and the result
of the first measurement after a time interval of ¢; = m/w,, is F,, = 0. Repeated
measurements after equal time intervals lead to states that resemble displaced fock
states to states that can be thought of as Schrodinger cat states.

If the initial displacement is small in magnitude (as in Fig. B.4 below), this
behavior will be rather independent of the measurement timing. For this particular

case, with the outcome F,, = 0, it is seen for ¢; in the range 0.67/w,, — 1.87/w,,. On
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the other hand if the initial displacement is large (for example, ag = 50v/2,by = 0),
the effect is much harder to find, as it becomes very sensitive to the timing of the
measurements — only from ¢; ~ 0.777/w,, — 0.797 /w,,. Nevertheless, in either case,
successive measurements can build up some very interesting non-classical states. It
may be possible to obtain a high degree of probabilistic quantum state control of

the membrane if the dissipative effects do not wash out the interference too quickly.

B.6 Conclusion

In conclusion, we have demonstrated that by coupling a magnetic membrane to a
BEC, we can indirectly monitor the position of the membrane. This measurement
induces significant back-action that can be measured for reasonable experimental
parameters. We investigated the effect of this interaction for different initial mem-
brane states, namely thermal and coherent states. We discussed the possibility to
measure back-action of a quantum measurement on the membrane via repeated
measurements and the potential to generate cat states of the oscillator via such re-
peated measurements in the case of an initial coherent state. A study of the effect
of dissipation on this dynamics is the subject of future work. Future work will also
include developing a theory for a general coupling to other spin components i.e. an
interaction Hamiltonian of the form F.r, because at short distances the coupling to
other spin components cannot be ignored. also, dissipation, and multiple modes of
the membrane.
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Figure B.4: Post-measurement Wigner distribution functions of the membrane, ini-
tially in a coherent state a = 1 + ¢1. We notice that repeated measurements do
indead lead to some interesting non-classical states. The measurement results and
evolution time before measurement are given for each plot.
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B.7 Mathematical Appendices

B.7.1 Derivation of interaction Hamiltonian

Our starting assumption is that the magnetic domain on the membrane is a point
dipole located at the origin. The magnetic field due to that dipole is

B(r) = 2 (3t )7 — 1) (B.37)

It is the small inhomogeneity of the resulting magnetic field along the long axis z

of the condensate, and the resulting variation in Larmor precession frequency, that

permits to characterize the center-of-mass mode of oscillation of the membrane.
For a dipole polarized along the z-axis (jim = ftmZ), and distance r = (2% +y* +

22)1/2 the components of the magnetic field (B.37) are

[o fm | 372

By(z,y,2) = yscy T—Q] (B.38)
fo pm [ 3yz

By(z,y,2) = 5 7,—2} (B.39)
Ho Hm '3Z2

B.(w,y,2) = 5 |52 1 (B.40)

With z = ¢ + x,,, where xq is the equilibrium value of z for a condensate atom,
x = 0 is the equilibrium position of the membrane, and z,, its small sinusoidal
displacement of the membrane around the origin. Expanding the expression for

magnetic fields for small z,,, (up to first order) we get

. 3o(da? — 2 — 22
B, =~ M0M5 [Sxoz— 247 2y : )xm (B.41)
4mrg g
m 15 1
B, = MOMS [3 z— xgyzxm (B.42)
4mrg g |
. Hobm 2 2 2
B, =~ p [(22% — 25 — ) (B.43)
3130(373 + y2 - 422)
+ 5 m
To ]
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here, 7o = (22 + 32 + 22)/2. Assuming a two-dimensional condensate (i.e. y ~ 0),
we can set B, — 0. For theoretical simplicity, we assume that the measurements
are made on the part of the condensate directly above the magnet, i.e. close to
z = 0. Under these approximations, the magnetic field simplifies to just being in
the z-direction,

Mo fom
B, = — 3T - B.44
ol [0 + 3, (.41

Combining this with the quantization field By, we end up with the interaction

Hamiltonian of the form

Hofhn | 3fofm
V= F. |By — ml - B.45
UBIF 0 I + o T ( )

We can break this total magnetic field into a constant part, B, (sum of the first two
terms), and a component that varies at the membrane frequency, B! x,,. Here, the

gradient of the magnetic field,

B _ 31t0kim
v Amad

(B.46)

This is the form used in Equation (B.4).

B.7.2  Derivation of Successive Measurement Density Matrix

Here we outline the steps used in section IV to derive (B.22). We arrive at the result
via induction. Suppose that n — 1 measurements have been performed already. We

n—lx

denote the density matrix at this moment by p After the next period of free

evolution and the nth measurement, we have
p™ = MUt "YU () MM, (B.47)

To find the matrix elements, we insert completeness relationships:

(@B = 3 / du / dyo, 25| MU (1), )

On Bn

(s | p "By ) (B, y| U () M ™| B, 2). (B.48)

X
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Now, the propagator can be derived from (B.11) by multiplying by the trace, sub-
stituting n — iw,,t/2, and including the contributions of the F,-dependent parts of

the Hamiltonian. Using these techniques, we arrive at the needed matrix elements:

8mw,y,

(o, ul MU (t,)|r,v) = MM

g T

—F—exp [—z’ [thLOT — £,0072
imh sin w,,t

- 2 ((u + o+ 247)% tan ”’”Tt” — (u— v)2cot w";t”)H(BA%
The fact that (B.11) and the individual terms of (B.13) (i.e. terms of the form in
(B.12) do not differ except for shifts in the coordinates and some complex phase
shifts leads us to conjecture that additional evolution and measurements will not
alter the underlying structure of the density matrix. Thus, we try a matrix of the
form (B.22) for p™~ Y, but with unknowns for X~V etc. (superscript added for
clarity) and see if evaluation of the integral (B.48) produces a similar output for

p™ . Indeed it does, and it also gives us the recurrence relations used to derive

(B.24-B.26). These are

XW[eo] = X" Yo]coswmty, + P Vo] sinwpt, + 0n(1 — coswmty,),(B.50)
P[] = PP V5] coswmt, — X" V0] sinwmty 4+ 0 SInwpnty, (B.51)

oMo] = ¢ Vo] + (XM[o]? + X" V[5]?) cot wpmt,
— 2XM[g) X D5] csc wptn. (B.52)

The solutions to these recurrence relationships are the equations given above.

B.7.3 Derivation of Coherent State Evolution

We again will arrive at the result (B.32) by using induction and finding a set of
recurrence relations as in Appendix B, but the steps involved are slightly different.
We first split the Hamiltonian (B.8) into two parts Hgge and (H,,+V). These com-
mute, so the unitary evolution operator can simply be factorized into two operators,

one acting only on the BEC and another acting as a shifted harmonic oscillator. We
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also note that the unperturbed membrane Hamiltonian and H,, + V are related by

a simple unitary transformation, namely

H,+V = D (— A F> H,,D <iF) : (B.53)

274 2%

Using this fact and the well-known results

exp[—iH,t/hD(¢) = D(e ') exp|—iH,ut/h], (B.54)
D)D) = D(C+&)e =92, (B.55)

we can postulate that the system after n — 1 measurements is specified by a super-

position of states as in (B.32), apply an additional evolution and measurement,
[T) = M Uppe(tn) U () [F"7D), (B.56)

and then use the result to find the following recurrences:

A

a™o] = a" Y[o]coswmt, + 0" Vo] sinwpt, — 7 (1 — coswpt,),(B.57)
2%
nA

Vo] = b Vo] coswmt, — a™ Vo] sinwpt, — I’ sin Wintn, (B.58)
Tz

oM = ol 4 q, (b= — p™). (B.59)

Note the strong resemblance between the first two of these equations and those from
the previous appendix. This is to be expected, as the real and imaginary parts of
the displacement are proportional to the expected position and momentum of the

coherent state, respectively. The solutions to these equations are (B.33-B.35).

B.7.4 Simulation of measurement backaction

We outline here the utilitarian approach used to produce Kraus operators M ®
more appropriate to the dispersive phase contrast measurement, rather than using
projectors onto [}, eigenstates. Since the spinor BEC has a coherence time of order

nearly 1s, we assume that the measurement will leave the atoms in the condensate all
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in the same spin state. We note the relationship B.60 below gives partial information
about the average spin wavefunction of the condensate. Therefore, given a measured
phase difference s we sum over projectors onto all states consistent with that value
s and normalize to attain the M@ for that particular measurement. Because the
signal depends on the expactation values of F, and F;, we average the results of
such a procedure over all atoms in the condensate and then apply a cumulative
operator to the spin portion of the density matrix. Preliminary results using such a

procedure are encouraging.

B.7.5 Experimental Implementation

Here, we provide details on the experimental detection of the quantum backaction
on the micromechanical membrane. The membrane is composed of Silicon Nitride
with a micron-scale magnetic domain deposited at its center. These structures are
fabricated by coating silicon wafers with around 100 nm of high stress silicon nitride
and then etching the silicon in a 50 gm x 50 pm region to reveal a free standing
membrane.Quality factors exceeding 10° have been demonstrated with similar SiN
membranes for resonance frequencies in the range of 500 kHz [16]. The magnetic
domain is deposited on this membrane by a combination of photolithography and
sputtering of a high permeability material like permalloy [15]. Peak surface fields
on the order of 1 T at the surface of this magnetic domain should ensure field
gradients around 10° T/m in the regions above the domain. The membrane is
supported on a cryogenically cooled flange housed in a UHV chamber. Sputtered
gold films deposited on the substrate in the regions surrounding the membrane serve
as mirrors for trapping and imaging. Spinor Bose condensates of 8"Rb in the ' = 1
hyperfine state will be optically confined about 5 pym above the membrane in a
quasi-2D trap created by shallow angle interference of laser beams reflected off the
gold surface [17]. This ensures a quasi-2D confinement of the condensates such that

the spatial extent of the gas in the direction normal to the membrane is less than
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the spin healing length & = \/h/2m|con|. Here, ¢y = 47h*(ay — ag)/m is the spin
dependent coupling strength of the spinor gas and ag(az) is the s-wave scattering
length in the F' = 0(F = 2) channel. In this way, we can freeze out spin dynamics
along this dimension [10].

The estimation of the membrane’s position is based on detecting the Zeeman shift
at the location of the condensate due to the micromotion of the membrane. This is
achieved by magnetization-sensitive phase contrast imaging as demonstrated in [10].
To summarize this technique briefly, a sequence of non-destructive phase contrast
images of the condensate are obtained with far off-resonant circular polarized light.
Due to Larmor precession of the gas, the phase imprinted on the probe light is

modulated at the Larmor frequency leading to a phase contrast signal given by
s = 14 2n00(7/2A)[ag + a1 (F,) + ax(F})] (B.60)

where 7 is the column density of the gas, op = 3\?/27 is the resonant cross section,
A is the detuning of the probe light from resonance and -~y is the natural linewidth.
F, is the projection of the local atomic spin along the imaging axis. The constants
ag,a; and as depend on the detuning of the probe light and describe the isotropic
polarization and optical activity of the condensate. By analyzing the sequence of
phase contrast images on a pixel-by-pixel basis, we can estimate the local Larmor
precession rate and hence, the local magnetic field. At the shot noise limit, we
estimate a magnetic field sensitivity on the order of 15 fT/Hz!/? for a condensate
of area 50 pum? in the plane of the membrane [18]. For the expected field gradient
of 10> T/m at the location of the condensate, this field sensitivity translates to a

1/2

position sensitivity of 15 x 107'® m/Hz!/2. This is much smaller than the zero point

motion of the oscillator which has an amplitude on the order of 6 x 10~ m.
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ABSTRACT

The string breaking model of particle production is extended in order to help
explain the transverse momentum distribution in elementary collisions. Inspired by
an idea of Bialas, we treat the string using a collective coordinate approach. This
leads to a chromo-electric field strength which fluctuates, and in turn implies that

quarks are produced according to a thermal distribution.

C.1 Introduction

We study the production process of hadronic particles in elementary collisions based
on the string breaking mechanism of QCD. The non-Abelian SU(3)-color gauge
group leads to confinement of the color electromagnetic field lines at scales of roughly
1 fm and above. Thus, a ¢g pair produced in, say, an ete™ collision will have a
chromo-electric flux tube connecting the quark and antiquark. The tube increases
in length as the quarks separate, and eventually there is sufficient energy in the field

to produce another gg pair. The rate of production is calculated via Schwinger’s
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formula [1], generalized to consider transverse particle momentum [2]. This is often
referred to as the string breaking mechanism of particle production.

Despite its successes, one troublesome detail of the QCD-string model has not
been fully explained. The predicted transverse momentum distribution of quarks is
Gaussian [2], while the observed spectrum of final state particles is thermal, or very
nearly so [3, 4, 5, 6]. Naive averaging over constituent quark transverse momenta
cannot make an exponential distribution out of a Gaussian one. Further, it is not
natural to suppose that there is sufficient rescattering for thermalization in systems
as small as those in ete™ and pp collisions. Hagedorn thus spoke before QCD
was developed of ‘pre-established thermal equilibrium’ [3]. While the string model
itself has been refined several times, nothing like a thermal p; spectrum has been
predicted by any of these refinements until recently.

This discrepancy invites new ideas. Bialas showed that a random fluctuation
of the string tension could produce particles in a thermal spectrum [7], if the ap-
propriate initial distribution is used. He proposed that these fluctuations originate
from the stochastic nature of the QCD vacuum. There has been further work on an
extensions of this idea using dynamical fluctuations of the string in time [8]. This
method seems like a promising way to proceed, and the purpose of this paper is
to improve the justification for these fluctuations, as well as to propose a possible
origin.

We separate the transverse and longitudinal dynamics of the string, introduce
collective coordinates for the transverse dynamics of the string and quantize them.
The reason that we will proceed this way is the following order of magnitude consid-
eration: due to the very high momentum in the longitudinal direction (constituent
quarks may have p; &~ 100GeV or more, in a 1 TeV pp collision) it is reasonable to
treat this part of the dynamics classically. However, the typical transverse momen-
tum of a produced ¢g pair will be on the order of the temperature (which we are

seeking to justify) 7" ~ 160 MeV. The radius of the string is about 1fm, approxi-
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mately the same magnitude as the DeBroglie wavelength of the produced particles.

Our approach is inspired by prior collective coordinate approaches in many-
body quantum systems. One well-known example is the excitation spectrum of
vibrations and rotations of large nuclei[9]. In the simplest liquid drop version of this
model, Coulomb repulsion competes with nuclear surface tension. Quantization of
the Hamiltonian resulting from these interactions leads to an excitation spectrum
which can be verified experimentally.

In the string model, we once again have two competing energy considerations.
The field lines will tend to spread in order to minimize their energy content. How-
ever, the vacuum confines color; this effect can be effectively reproduced by imple-
menting in transverse direction the bag pressure and energy density dynamics. One
might ask where the many-body quality arises in the string picture, since there is
just a single ¢q pair anchoring the ends of the string. The answer is in the large
number of virtual gluons which constitute the string QCD fields. We consider the
string to be a collective excitation of this gluon sea.

In section C.2, we first look at the classical string picture, namely the energy
balance and the Hamiltonian that results. Quantizing this Hamiltonian yields a
harmonic oscillator-type wave equation for the transverse dimension of the string.
We explore some of the properties of the solutions to this equation. Then, in section
C.3, we fold the resulting probability distribution for the string tension with the
Schwinger formula for pair production [1, 2]. This in fact generates an exponential

p1 spectrum.

C.2 Wave Equation

C.2.1 String Hamiltonian

In preparation for quantization, we will first write down a Hamiltonian, focusing

here on the energy density per unit length. We combine the contributions to the
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energy density from the chromo-electric field and the vacuum pressure to obtain the

classical Hamiltonian density

o=1E2A+ BA. (C.1)

— 2
The two terms are reminiscent of the usual kinetic and potential energies. Since the
chromo-electric field is longitudinal, we will denote it by E}, to avoid confusion with
energy.
Suppose the field lines are broken by a ¢q pair produced, each having color charge
g. In the case where the field is longitudinal, we may simplify the non-Abelian Gauss’

law down to its usual form:
[, B -dA=1g. (C.2)

The factor % arises comparing the elementary currents in QCD and QED:

b= g\llfy“)\alll, = edryah. (C.3)

Note that we have taken Ej to be constant here. This is easily justified: under
the constraint of a fixed flux, the total energy is minimized by a uniform field. Due
to the presence of the constraint equation (C.2), one eliminates the dependence on,

say, Fr, and obtains:
o= + BA. (C.4)

We can see the interplay between field and vacuum energy more clearly now. Mini-

mizing o with respect to A gives

classical __
A S (C.5)

Ezlassical — \/2_ (C6)
and thus a classical string tension of:

o = % /2B — %Ezlassicall (07)



121

C.2.2 Position-momentum collective dynamics

The string arises as a quasi particle state (presumably) in the full theory of QCD.
Thus, its dynamics must be treated in an appropriate quantized way. However, as we
noted earlier, the longitudinal evolution of the string should be safe to approximate
classically, at least in our initial crude treatment. Furthermore, we assume the
string is rigid. To be precise, there is no spatial bending of the string, nor spatial
dependence in the field strength.

There are two reasons that we make this assumption. First, though the energy
may fluctuate between bag and field energy, we suppose that the configuration of
either is such that their separate energy contents are minimized. Second, treat-
ing the complexities of a “wavy” string is well beyond the scope of this paper.
The chromo-electric field now contains only 1 degree of freedom, the longitudinal
strength. Therefore, its conjugate coordinate, which will be the string cross section
area or something related, will retain only 1 degree of freedom. Thus, it appears
that the initially 2-dimensional transverse dynamics may in fact be successfully mod-
eled by a 1-dimensional wave equation. Despite the simplifications, it will still be
a problem with a constraint, equation (C.2) (Gauss’ law), and an unusual looking
Hamiltonian.

To deal with the transverse dynamics as a quantum problem in an expedient
manner, we make the following further simplification. As is evident the problem
arising should still be closely related to the original one, though, admittedly, there
is no absolute guarantee of complete isomorphic relation. We take the constraint
equation (C.2) and substitute it just once into the Hamiltonian, equation (C.1),

yielding:
H, =19E; + BA. (C.8)

We want to quantize this Hamiltonian in terms of Hermitian operators with the

usual dimensions of distance and momentum. Since our degrees of freedom are A
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and Fj, which dimensions are square of distance and momentum, we introduce

z=VA (C.9)
p=+3EL (C.10)

Here we have defined p to be the root of the classical energy density. Since the
square root may take on positive or negative values, we will allow z,p € (—o0, +00).
We make x and p into canonically conjugate operators, and so they satisfy the

commutation relation

[z,p] = ig (C.11)

The justification for our choice of commutator will follow. Indeed, H, now looks

like the Hamiltonian of a harmonic oscillator:

H, = 1p* + Ba*. (C.12)

Working in the p-representation leads to the wave equation:
(%p2 - Bgzg—;> n = Opn. (C.13)
This is a very familiar equation, and its eigenvalues are:
on=+/2Bg? (n+1). (C.14)

Note that if the dimension of the problem is in fact not 1 but d, the % would have
to be multiplied by d, and there would be additional n’s.

As a matter of convenience, let us define

TO = /m (015)

Then we may express the eigensolutions of the problem as

Un(p) = 2 Ho (/P2 AT TE)e V1578, (C.16)

where H,, are Hermite polynomials, and A,, is a dimensionless normalization.
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C.2.3 Properties of the quantized string

Let us now take stock of some of the features that have become evident in our model.

First of all, we may calculate the expected cross sectional area and field strength;

because
(3p?) = (Ba?) = 1o, (C.17)
we obtain
(EL) = % =V2B(2n+1), (C.18)
(A) = 2= \/%(QH +1). (C.19)

In both cases there is agreement between the ground state and the classical picture.
Now, we want to see if the constraint, as well, is satisfied. It is reasonable to

look at the product of the expectation values and see if Gauss’ Law results.
(BL)(A) = £(2n +1)? (C.20)

By using this combination of operators we see that the ground state at least satisfies
(C.2). This also clarifies our choice of commutator in equation (C.11). Whether or
not this excludes excited states of the string remains to be seen. For if we consider
different combinations of expectation values that still appear to be related to the

constraint, we attain different results. Consider, for example,

(zp)(pz) = %. (C.21)

This should be related to the constraint, and it indicates that all excited string states
may satisfy equation (C.2). Finding the correct combination of operators to verify
if the constraint equation (C.2) is satisfied remains a difficult problem. However,
these preliminary results strongly suggest that at least one, if not more, string states

are admissible solutions.
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C.3 Thermal p; Spectrum

We are now ready to investigate the spectrum of particles produced from this string.
First, let us look at the probability distribution P(E}). Taking the probability
density 9?2 and changing coordinates back to the field strength, we obtain

dP,(Bp) = 722 H2(\/gEL /87T )e 9P /55 d By, (C.22)

B, is again a dimensionless normalization. Note that the factor (¢Er)~'/? arises
from the change in measure. The singularity arising for even n is not troubling; it
is an artifact of the change in measure and never worse than E;l/ 2,

Next, we review the traditional particle production spectrum. The probability
per unit 4-volume of a quark pair of momentum p, being produced is given by the
Schwinger mechanism, as expounded by Casher, Neuberger and Nussinov[2]:

E )
dP(p.) = %Tge*%m/gﬁd?pr (C.23)

This is in fact only the first term in an infinite sum, but the approximation is
appropriate for our current level of precision. We consider each string breaking to be,
essentially, a measurement of E. For now, let us suppose that the strings are formed
in the ground state, with string tension oy. Thus, over several string breakings, the
observed spectrum of produced quarks is obtained by folding equations (C.22) and
(C.23) over EI.

Performing this folding results in the quark transverse production probability
per unit 4-volume,

CT02 —m /To 2
quuark<pJ_) = g (1—|—mL/T0)e + Od Pl (C24)

This agrees with previous results up to a linear prefactor[7, 8]. As a final step,
consider the composite hadron spectrum. We will obtain this by first rewriting the

distribution in terms of the transverse mass (fortunately, it is already more or less in
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such a form), and then folding two distributions together, corresponding to quark-

antiquark or quark-diquark pairings. The final hadron spectrum thus obtained is

dP adarons
APhaarons(ma) - (o Oyt x| (L3x, 42X, + 3X))
de_ 5

1
— X2 (83X, +2X3) + X3 + X + 5Xi) e Xt (C.25)

where

mi " mo " m
XnE E— e , X =
(TO) +<TO) T

and m; and my are the constituent quark/diquark/antiquark masses. Note that the
largest root of the prefactor is m, = my + mo, and thus the probability is always
positive, as expected. This can be seen trivially in the case m; = my = 0. The
specific relationship (C.15) is the same as in the aforementioned works, though the
pre-factor shifts slightly the fitted temperature. Making use of a fairly standard
value for the string constant, og ~ 0.9 GeV /fm, gives Ty ~ 165 MeV.

C.4 Conclusions

We have considered the string between a ¢g pair as a quasiparticle excitation of
the gluon field. Thus, we justified introducing collective quantization of transverse
dynamics. This implies that the internal chromo-electric field is not constant, but
rather when the string breaks and the field is observed, it takes on values according
to a quantum probability distribution. Folding this distribution with the traditional
Schwinger-Casher-Neuberger-Nussinov result leads to an intrinsically thermal p,
spectrum. The emerging phenomenology is quite satisfactory; e.g. it produces a
thermal spectrum. However, a more complete theory will certainly lead to further

insights including refinement of the temperature parameter.
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