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We consider effects of n − n̄ oscillations and resultant matter instability due to dinucleon decays. We 
point out that existing upper bounds on the rates for the dinucleon decays nn → 2π0, nn → π+π−, and 
np → π+π0 imply upper bounds on the rates for dinucleon decays to dileptons nn → e+e−, nn → μ+μ−, 
nn → ν�ν̄�, and np → �+ν�, where � = e, μ, τ . We present estimates for these upper bounds. Our 
bounds are substantially stronger than corresponding limits from direct searches.
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1. Introduction

The violation of baryon number, B , is expected to occur in 
nature, because this is one of the necessary conditions for gener-
ating the observed baryon asymmetry in the universe [1]. Baryon 
number violation (BNV) is, indeed, predicted in many ultraviolet 
extensions of the Standard Model (SM), such as grand unified the-
ories. A number of dedicated experiments have been carried out 
since the early 1980s to search for proton decay (and the decay of 
neutrons bound in nuclei). These experiments have obtained null 
results and have set resultant stringent upper limits for the rates 
of such �B = −1 baryon-number-violating nucleon decays.

A different type of baryon number violation has also received 
attention, namely n − n̄ oscillations, which have |�B| = 2 [2–16]. 
It was observed early on that n − n̄ oscillations might provide the 
source of baryon number violation necessary for baryogenesis [2]. 
The same operators that mediate n − n̄ transitions also lead to 
matter instability via the dinucleon decays from nn and np ini-
tial states to respective multipion final states. Let us denote the 
low-energy effective Hamiltonian responsible for n − n̄ oscillations 
as H(nn̄)

ef f . We will assume a minimal framework in which H(nn̄)

ef f
incorporates all of the physics beyond the Standard Model rel-
evant for n − n̄ oscillations. Rates for these dinucleon decays in 
matter are calculated by taking into account that in the presence 
of a nonzero transition amplitude 〈n̄|H(nn̄)

ef f |n〉, the physical state 
|n〉phys. contains a small but nonzero |n̄〉 component. This leads to 
a nonzero amplitude for annihilation of the |n̄〉 component with a 
neighboring neutron or proton in a nucleus.
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The operators in the low-energy effective Hamiltonian for pro-
ton decay are four-fermion operators with Maxwellian mass di-
mension 6 and hence coefficients of mass dimension −2, whereas 
the operators in H(nn̄)

ef f are six-quark operators, with coefficients of 
dimension −5. Consequently, if one were to assume that there is 
a single high mass scale MBN V characterizing the physics respon-
sible for baryon number violation, proton decay would be much 
more important as a manifestation of baryon number violation 
than n − n̄ oscillations and the corresponding dinucleon decays. 
However, such an assumption of a single BNV mass scale may well 
be overly simplistic [3]. Ref. [7] presented an explicit example of 
a theory in which proton decay is suppressed well beyond ob-
servable levels while n − n̄ oscillations occur at levels comparable 
to existing experimental limits. In such a model, it is the n − n̄
oscillations and the corresponding nn and np dinucleon decays 
to multi-meson final states that are the main manifestations of 
baryon number violation, rather than individual proton and bound 
neutron decays. Further examples of models with baryon number 
violation but no proton decay were given in the later work [10].

Here we point out that existing upper bounds on the rates for 
the hadronic dinucleon decays nn → 2π0, nn → π+π− , and np →
π+π0 imply upper bounds on the rates for the dinucleon to dilep-
ton decays nn → e+e− , nn → μ+μ− , nn → ν�ν̄� , and np → �+ν� , 
where � = e, μ, τ . We present estimates for these upper bounds. 
Our upper bounds are considerably stronger than direct limits on 
the rates for these decays.

2. n − n̄ oscillations and dinucleon decays to hadronic final states

We recall some basic results on n − n̄ oscillations that are 
needed for our analysis (for further details, see, e.g., [11]). Let us 
consider a general theory in which there is baryon-number violat-
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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ing physics beyond the Standard Model (BSM) that leads to n − n̄
transitions and let us denote the corresponding transition ampli-
tude as

δm = 〈n̄|H(nn̄)

ef f |n〉 . (1)

In (field-free) vacuum, one is thus led to diagonalize the matrix of 
the Hamiltonian in the basis (|n〉, |n̄〉),(

mn − iλn/2 δm
δm mn − iλn/2

)
, (2)

where λn = τ−1
n is the decay rate of the free neutron and the 

equality mn̄ = mn follows from CPT invariance. The eigenstates 
of this matrix are |n±〉 = (|n〉 ± |n̄〉)/√2, with mass eigenvalues 
m± = (mn ± δm) − iλn/2. Hence, if one starts with a pure |n〉 state 
at t = 0, then there is a finite probability for it to be an |n̄〉 at t �= 0
given by

P (n(t) = n̄) = |〈n̄|n(t)〉|2 = [sin2(t/τnn̄)]e−λnt , (3)

where τnn̄ = 1/|δm|. The current limit on τnn̄ from an experiment 
with a neutron beam from a nuclear reactor at the Institut Laue-
Langevin (ILL) in Grenoble is τnn̄ ≥ 0.86 ×108 s, i.e., |δm| = 1/τnn̄ <

0.77 × 10−29 MeV [6]. (This and other limits discussed here are at 
the 90% confidence level.)

For a neutron bound in a nucleus, the Hamiltonian matrix be-
comes(

mn,ef f . δm
δm mn̄,ef f .

)
(4)

with mn,ef f = mn + Vn and mn̄,ef f . = mn + Vn̄ , where the nuclear 
potential Vn is real, Vn = VnR , but Vn̄ has an imaginary part: 
Vn̄ = Vn̄R − iVn̄I . In the presence of the n − n̄ mixing, the resul-
tant physical eigenstate for the neutron state in matter has a small 
component of |n̄〉, i.e.,

|n〉phys. = cos θnn̄|n〉 + sin θnn̄|n̄〉 , (5)

where tan(2θnn̄) = 2δm/|mn,ef f − mn̄,ef f |. In contrast to the situa-
tion in field-free vacuum, where θ = π/4 and the mixing is max-
imal, in matter, because the diagonal elements of the Hamiltonian 
matrix are different, |θ | << 1. However, this is more than com-
pensated for by the large number of nucleons in a proton decay 
experiment such as SuperKamiokande (SK). The nonzero |n̄〉 com-
ponent in |n〉phys. leads to annihilation with an adjacent neutron 
or proton, and hence to the decays to zero-baryon, multi-meson 
final states consisting dominantly of several pions, nn → pions and 
np → pions. The rate characterizing matter instability (m.i.) due to 
these dinucleon decays is


m.i. ≡ 1

τm.i.

 2(δm)2|Vn̄I |

(VnR − Vn̄R)2 + V 2
n̄I

. (6)

Hence, τm.i. ∝ (δm)−2 = τ 2
nn̄ . A common convention is to introduce 

a multiplicative factor R and write τm.i. = R τ 2
nn̄ (see, e.g., the re-

view [11]). As is evident from this relation, together with Eq. (6), 
the factor R reflects the different nuclear potentials felt by an n
and n̄ in a nucleus and has the value R ∼ O (102) MeV, or equiv-
alently, R 
 1023 s−1, dependent on the nucleus. Lower limits on 
τm.i. that yield equivalent lower bounds on τnn̄ in the 108 s range 
have been obtained from the Kamiokande [13], Soudan [14], SNO 
(Sudbury Neutrino Observatory) [15], and SK [16] experiments. The 
best current limit on matter instability (from SK) is [16],

τm.i. > 1.9 × 1032 yr , (7)
and hence, taking into account the uncertainty in the calculation 
of R 
 0.52 × 1023 s−1 for the 16O nuclei in water [9,11], the SK 
experiment has inferred the limit [16]

τnn̄ > 2.7 × 108 s, i.e., |δm| < 2.4 × 10−30 MeV. (8)

(From this and the value |mn,ef f − mn̄,ef f | ∼ 102 MeV, it follows 
that |θnn̄| <∼ 10−31.)

There have also been searches for dinucleon decays to spe-
cific final states. Reflecting the dominance of the strong interac-
tions over the electroweak interactions, these decays lead mainly 
to hadronic final states. From null searches for the decays 56Fe →
54Fe +π+π− [12], 16O → 14O + 2π0 [17], and 16O → 14N +π+π0

[17], experiments have set upper bounds on the rates 
i , or equiv-
alently, lower bounds on the partial lifetimes (τi/Bi) ≡ 
−1

i for 
these decays, where Bi denotes a branching ratio. The experiments 
use the notational convention of referring to these as nn → π+π− , 
nn → 2π0, and np → π+π0. We will follow this convention, but 
note that a conversion would be necessary to compute the rate for 
an individual pair of neighboring nucleons to undergo these de-
cays. The limit from the Fréjus experiment [12] is

(τ/B)nn→π+π− > 0.7 × 1030 yr, (9)

and the limits from the SK experiment [17] are

(τ/B)nn→π0π0 > 4.04 × 1032 yr (10)

and

(τ/B)np→π+π0 > 1.70 × 1032 yr . (11)

We use the two more stringent bounds (10) and (11) for our anal-
ysis. The multiplicities of pion final states that would be detected 
in the SK detector are determined by the strong reactions, includ-
ing absorption, of the pions from the initial n̄ annihilation with a 
neighboring n or p as these pions propagate through the oxygen 
nucleus; Ref. [17] reported total and charged pion multiplicities 
of 3.5 and 2.2, respectively. For the purposes of our estimates, 
these are sufficiently close to the two-pion multiplicity of the 
nn → π0π0 and np → π+π0 decays that we do not attempt to 
introduce further effective multiplicity correction factors.

3. Dinucleon decays to dilepton final states

The same baryon-number-violating physics that leads to n − n̄
oscillations and hence also the dinucleon decays nn → pions and 
np → pions also leads to dinucleon decays to leptonic final states, 
in particular, to dileptons:

nn → �+�− for � = e, μ (12)

nn → ν�ν̄� for ν� = νe, νμ, ντ (13)

and

np → �+ν� for � = e, μ, τ . (14)

As is evident, these are �B = −2, �L = 0 decays, where L denotes 
total lepton number. We will derive upper bounds on the rates 
for these decays by relating them to hadronic dinucleon decays 
and using the upper bounds on rates for the latter. We utilize a 
minimal theoretical framework for our analysis, namely to assume 
the BSM physics responsible for the n − n̄ oscillations, but then 
apply only Standard-Model physics to derive these relations. With 
this framework, we identify and estimate the leading contributions 
to these dinucleon decays to dileptons. These contributions involve 
amplitudes each of which consists of a combination of two parts: 
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Fig. 1. Feynman diagram for nn → �+�− with � = e, μ.

(a) The basic BNV part, involving a six-fermion operator resulting 
from physics operative at a mass scale MBN V >> v , where v =
250 GeV is the electroweak-symmetry-breaking (EWSB) scale, and 
a second part involving SM physics, with a virtual timelike photon, 
Z , or W .

We begin with the decay nn → �+�− . This decay can occur 
as follows: the |n̄〉 component in a |n〉phys. neutron in a nucleus 
leads to annihilation with a neighboring neutron to yield a vir-
tual photon in the s channel, which then produces the final-state 
�+�− pair in (12). A much smaller contribution involves a diagram 
with a virtual Z in the s-channel. Equivalently, one can envision 
this as being due to a transition in which an initial n changes 
to a n̄ with transition matrix element (1), and then the n̄ anni-
hilates with the neighboring n to produce the virtual photon or 
Z , as shown in Fig. 1. Up to small corrections due to the bound 
state Fermi momenta of the nucleons, the center-of-mass energy 
is 

√
s = mn + mp ≡ 2mN in this transition, and the �+ and �− are 

emitted back-to-back, each with a total energy in the lab frame 
equal to mN . We denote the four-momentum of the virtual pho-
ton or Z as q and the four-momenta of the �− and �+ as p2 and 
p1, with q = p1 + p2 and q2 = s = (2mN )2. Here and below, we ne-
glect small effects due to Fermi momenta. The conversion reaction 
e + n → e + n̄ has been discussed in [18].

To leading order, the amplitude for nn → �+�− is the sum of 
the terms due to virtual (v) photon and Z exchange in the s-
channel:

Ann→�+�− = Ann→�+�−;γ + Ann→�+�−;Z , (15)

with

Ann→�+�−;γ = (δm) e2 〈0| Jλ
em|nn̄〉 1

q2
[ū(p2)γλv(p1)] (16)

and

Ann→�+�−;Z

= √
2G F (δm) 〈0| Jλ

Z |nn̄〉
[

ū(p2)γλ[(1− 4 sin2 θW )−γ5]v(p1)
]
,

(17)

where the δm factor represents the initial n → n̄ transition medi-
ated by H(nn̄)

ef f ; Jλ
em and Jλ

Z = Jλ
3L − sin2 θW Jλ

em denote the elec-

tromagnetic and neutral weak currents; and e = √
4παem , and G F

denote the electromagnetic and Fermi couplings.
We first consider the contribution from Ann→�+�−;γ . Since the 

annihilation occurs on a scale of order ∼ 1 fm, a reasonable ap-
proximation is to consider the initial nn state by itself, independent 
of the other nucleons in the nucleus. Let us denote the wavefunc-
tion of this state as |nn〉 = φI φS φL , where I , S , and L denote 
the strong isospin, the spin, and the relative orbital angular mo-
mentum L of the nn pair. (To maintain standard notation, we use 
the same symbol, L, for orbital angular momentum and total lep-
ton number; the context will always make clear which is meant.) 
This wavefunction must be antisymmetric under interchange of 
neutrons. The |nn〉 state has strong isospin I = 1, and the lowest-
energy configuration has L = 0, so the φI and φL wavefunctions for 
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 configuration are both symmetric under interchange of neu-
s. Hence, φS is antisymmetric, corresponding to spin S = 0 and 
ce total angular momentum J = 0 for the nn pair. Since L(nn̄)

ef f

 Lorentz scalar, the n − n̄ transition matrix element 〈n̄|L(nn̄)

ef f |n〉
s not change the neutron spin, so the value of S (as well as L) 
the resultant nn̄ dinucleon is the same as for the initial nn din-

eon. (This is obvious in Eq. (5).) The matrix element 〈0| Jλ
em|nn̄〉

elated by crossing symmetry to the matrix element 〈n| Jλ
em|n〉, 

ich involves Dirac and Pauli form factors F (n)
1 (q2) and F (n)

2 (q2). 
 the J = 0 nn state, the only four-momentum on which the 
trix element 〈0| Jλ

em|nn̄〉 can depend is qλ , so 〈0| Jλ
em|nn̄〉 ∝ qλ . 

 qλ [ū(p2)γλv(p1)] = 0, so that this contribution to the am-
ude vanishes. Another contribution arises from an excited |nn〉
e with L = 1 and an antisymmetric φL , so that φS is symmetric, 
responding to S = 1. Then the quantum mechanical addition of 
nd S to yield a total angular momentum 
J = 
L + 
S can yield 

0, 1, or 2. The J = 0 state gives zero contribution, as before, 
the amplitude arises from the initial nn states with nonzero J . 
 denote the probability of the nn dinucleon to be in a state 
h J �= 0 as Pnn, J �=0. Given that J �= 0 so that Ann→�+�−;γ �= 0, 
ollows that in |Ann→�+�−;γ |2, the (1/s)2 factor from the photon 
pagator is cancelled by kinematic factors of order s2.
We next consider the contribution from Ann→�+�−;Z . The 
are, |Ann→�+�−;Z |2, is negligible because of suppression

the factor ∼ (G F s)2 = 1.7 × 10−9. The cross term
Ann→�+�−;γ A∗

nn→�+�−;Z } is also small because of the factor 
F s = 4.11 × 10−5. Thus, although for the J = 0 initial nn

e, the axial-vector part of J Z has a nonzero contraction 
ū(p2)γλγ5 v(p1)] = 2m�[ū(p2)γ5 v(p1)], this contribution is sup-
ssed both by the smallness of 2m�/

√
s = m�/mN and by the 

s factor in the amplitude.
The two-body phase space factor for a decay of an initial state 
h mass 

√
s to final-state ( f s) particles with masses m1 and m2

s) = 1

8π
[λ(1,m2

1/s,m2
2/s)]1/2 , (18)

ere

, y, z) = x2 + y2 + z2 − 2(xy + yz + zx) . (19)

ce, for the relevant case m1 =m2 ≡m, R2 = (8π)−1
√

1− 4m2/s. 
 square root is equal to 0.9896, 1.0000, and 0.9937 for the re-
ctive decays nn → 2π0, nn → e+e− , and nn → μ+μ− .
We are thus led to the estimate

→�+�− ∼ Pnn, J �=0 e4 R(�+�−)
2

R(2π0)
2


nn→2π0

∼ Pnn, J �=0 e4 
nn→2π0 , (20)

ere we have used the fact that R(�+�−)
2 /R(2π0)

2 is very close 
unity for both � = e and � = μ. Utilizing the lower limit on 
B)nn→2π0 in Eq. (10) together with the estimate (20), we thus 
ain the following estimates for lower limits on the partial life-
es for dinucleon to dilepton decays per 16O nucleus:

B)nn→�+�− >∼ (Pnn, J �=0)
−1 (5 × 1034 yr)

>∼ 5 × 1034 yr for � = e, μ , (21)

ere the final inequality follows from the fact that Pnn, J �=0 < 1. 
n without inserting an estimated value for the suppression fac-
due to Pnn, J �=0, our bound (21) is stronger than the direct limits 
these two decays, which are (from the SuperKamiokande exper-
nt) [21]:
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Fig. 2. Feynman diagram for nn → ν�ν̄� , where ν� = νe, νμ, ντ .

(τ/B)nn→e+e− > 4.2 × 1033 yr (22)

and

(τ/B)nn→μ+μ− > 4.4 × 1033 yr . (23)

We next consider the decay nn → ν�ν̄� , where ν� = νe, νμ , or 
ντ . This decay arises from a process in which the |n̄〉 in |n〉phys.

annihilates with a neighboring neutron to produce a virtual Z bo-
son in the s-channel, which then yields the final-state ν�ν̄� pair, as 
shown in Fig. 2. Here and below, we shall refer to this as a tree-
level process, having integrated out any loops in a BSM model to 
obtain the local four-fermion operators in the low-energy effective 
Hamiltonian H(nn̄)

ef f . (More precisely, it is a tree-level process as re-
gards SM fields.) One may again analyze the contributions of the 
J = 0 and J �= 0 initial nn states. For the J = 0 initial state, by 
the same argument as above, the vector part of the neutral cur-
rent gives a vanishing contribution, and the axial vector part gives 
a negligibly small contribution to the amplitude proportional to 
neutrino masses. Hence, the decay arises from the J �= 0 initial 
dineutron states. We thus obtain the rough estimate


nn→ν�ν̄�
∼ Pnn, J �=0 (G F s)2 
nn→π0π0 . (24)

Combining this with the experimental limit (10), we obtain the 
rough lower bound, per 16O nucleus,

(τ/B)nn→ν�ν̄�
>∼ P−1

nn, J �=0 (2 × 1041 yr)
>∼ 2 × 1041 yr for ν� = νe, νμ, ντ . (25)

For comparison, there is a bound from a direct search by the Kam-
LAND experiment,1 namely [22]

(τ/B)nn→inv. > 1.4 × 1030 yr (26)

per 12C nucleus, where “inv.” denotes an invisible final state, e.g., 
one with two neutral, weakly interacting particles which do not 
decay in the detector (and which could be νν , νν̄ , or ν̄ν̄ , with un-
determined flavors). Since the final-state (anti)neutrinos were not 
observed, the limit (26) applies to all of these possibilities. For the 
case where the final state is ν�ν̄� , our estimated lower bound in 
(25) is considerably stronger than the direct experimental limit 
(26).

Finally, we derive a relation between the rates for np → π+π0

and np → �+ν� , where �+ = e+, μ+, τ+ . At tree level, the ampli-
tude np → �+ν� arises from the process in which the |n̄〉 compo-
nent in |n〉phys. annihilates with a neighboring proton to produce a 
virtual W + boson which then yields the final-state �+ν� pair. This 
is shown in Fig. 3. Denoting the four-momenta of the ν� and �+
as p2 and p1, we write

1 The KamLAND bound was obtained via a search for the decays of the resultant 
10C nucleus [22]. Although our bound applies to an 16O nucleus rather than 12C 
nucleus, one does not expect the rates to differ very much between these nuclei 
with almost equal numbers of nucleons. A weaker bound, (τ/B)nn→inv. > 1.3 × 1028

yr. per 16O nucleus has been obtained by the SNO+ experiment [23].
Fig. 3. Feynman diagram for np → �+ν� , where � = e, μ, τ .

Anp→�+ν�
= (δm)

G F√
2

〈0| Jλ
W |n̄p〉 [ū(p2)γλ(1 − γ5)v(p1)] . (27)

The initial np state is a mixture of I = 0 and I = 1 isospin states. 
The I = 0 state is analogous to the deuteron, with S = 1 and dom-
inantly L = 0, whence J = 1. The I = 1 np state has dominantly 
L = 0, S = 0, and hence J = 0, leading to severe helicity suppres-
sion of the decays if �+ = e+ or �+ = μ+ , although this helicity 
suppression not so severe for np → τ+ντ . In contrast, the decays 
np → �+ν� from the initial np states with J �= 0 are not helicity-
suppressed. This is similar to the fact that there is no helicity 
suppression in the leptonic decays of a real W boson. It is thus 
expected that the dominant contribution to np → �+ν� arises from 
the I = 0, J = 1 component of the initial np state. We thus esti-
mate


np→�+ν�
∼ (G F s)2 R(�+ν�)

2

R(π+π0)
2


np→π+π0 (28)

The phase space factor for np → �+ν� decay is R(�+ν�)
2 =

(8π)−1 [1 − m2
�/(2mN )2]. The expression in square brackets has 

the respective values 1.0000, 0.9969, and 0.1047 for � = e, μ, τ . 
In the decay np → π+π0, R(π+π0)

2 = (8π)−1(0.9893). Combining 
Eq. (28) with these values for the phase space factors and the ex-
perimental limit (11), we obtain the rough lower bounds, per 16O 
nucleus,

(τ/B)np→�+ν�
>∼ 1041 yrs for � = e, μ (29)

and

(τ/B)np→τ+ντ
>∼ 1042 yr . (30)

The SK experiment has reported the limits [20]

(τ/B)np→e+x > 2.6 × 1032 yr (31)

and

(τ/B)np→μ+x > 2.2 × 1032 yr (32)

per 16O nucleus, where x denotes a neutrino or antineutrino (of 
undetermined flavor). For the cases in which x = νe in (31) and 
x = νμ in (32), our bounds are much stronger than these limits 
from direct experimental searches. It was pointed out in [19] that 
data from existing searches for nucleon and dinucleon decays into 
multilepton final states involving e+ and μ+ plus (anti)neutrinos 
could be retroactively analyzed to set a limit on the decay np →
τ+ν̄τ , since the τ+ could decay as τ+ → ν̄τ �+ν� with � = e or 
� = μ. Ref. [19] carried out such an analysis and obtained a lower 
bound (τ/B)np→τ+ ν̄τ

> 1 × 1030 yr per 16O nucleus. Subsequently, 
from a direct search, SK obtained the limit [20]

(τ/B)np→τ+x > 2.9 × 1031 yr (33)
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per 16O nucleus, where x is a neutrino or antineutrino (of unde-
termined flavor). For the case in which x = ντ , our bound (30) is 
much stronger than this direct limit. As is evident from our deriva-
tions, our limits constrain dinucleon decays that have �L = 0. 
They do not constrain dinucleon decays with �L �= 0, such as the 
�L = −2 decays nn → ν̄�ν̄�′ and np → τ+ν̄τ or the �L = +2 de-
cay nn → ν�ν� . Using similar methods, we have derived improved 
upper bounds on several decay models of individual protons and 
bound neutrons. These are reported elsewhere [24].
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