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                              Abstract

  Anomaly  of  discrete symmetries  can  be defined as the Jacobian of the･path-integral

measure.  We  assume  that an  anomalous  discrete symmetry  at  low energy  is remnant  of  an

anomaly  free discrete symmetry,  and  that its allornaly  is cance]!ed  by the Green-Schwarz

(GS) mechanism  at a  more  fundamental scale. If the Kac-Moody  levels ki assume  non-

trivial va]ues,  the GS  cancellation  conditions  of  anomaly  modify  the ordinary  unification

of gauge couplings.  This is most  welcome,  because for a  renormalizable  model  to be
realistic any  non-abe!ian  lamily symmetry,  which  should  not  be hardly broken at  low-
enerpy,  requires  multi  SU(2)L doublet Higgs fields. As an  exarnple  we  consider  a  recently

proposed supetsymmetric  model  with  Q6 family symmetry.  In this example,  k2 =  1, k3 =  3
satisfies the GS  conditiens  and  the gauge coupling  unification  appears  close  to the Planck
scale.

1Anomalyofdiscretesymmetries

Anomaly is a  violation of  symmetry  at  the quantum  level, In the case  of  a  continuous  sym-

metry,  anomaly  means  non-conservation  of  the corresponding  Noether current.  Fbr discrete
symmetries,  however, there are  no  corresponding  Noether  currents.  But  Flijikawa's method  [1],
which  is based on  the calculation  of  the Jacobian of  the path-integral measure,  can  be used  to
define anomaly  of  discrete symmetries.

   Let us  start  by considering  a  Yiing-Mills theory with  massless  fermions th in Euclidean space
time, which  can  be described by the  fo11owing Lagrangian and  the  path-integral:

                Z=f  I],diPth exp  [f d4xL], L ==  idiPcb -  2}, [Er F""F)w, (1)

                D,  =  oj-iA,,A, =- gTaA:, [[y･[TaTb] =;6ab,  (2)

where  we  have dropped the path-integral measure  of  the gauge boson Ai,, because it does not
contribute  to anomaly.  Then we  make  a  chiral  phase rotation

                              kL,-zb'=eieor5zb, (3)
where  e is a discrete parameter. Under this finite transformation, the Lagrangian is
but the  path-integral measure  is not  invariant in general, i.e.

                             - -, ,1m

                           
Dab1)th

 
-

 
Dth

 
1)cb

 
=
 J                                               DipDth,

and  the corresponding  Jacobian can  be written  as

                     J-1 .,  exp  (-i fd4x 16e.2 [[b [cPVpaF),.F.l] .

This Jacobian has the same  form as
see  that  it makes  sense  to talk aboutthe

 Jacobian for a  continuous  transformation
anomaly  of  discrete symmetries  [2, 3, 4, 5].

invariant,

(4)

(5)

ll]. So we
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2 The  Green-Schwarz  (GS) mechanism

Unlike to [3], in which  only  abelian  discrete symmetries  are  considered,  we  de not  assume  that

the discrete symmetry  in question arises  from the spontaneous.break  down of  a  continues  Ioeal
symmetry.  We  instead assume  that  an  anomalous  discrete symmetry  at  low energy  is remnant

of  an  anomaly  free discrete symmetry,  and  that its low energy  anomaly  is cancelled  by the GS
mechanism  [6] at  a  more  fundamental scale,

   First we  discuss the abelian  case  and  consider  a  ZN  transfbrmation in a  supersymmetric

gauge theory,

                       ¢ -+ e-ie ¢ ,
 6-di  eie, v-l/;  (6)

where  O  and  V  are  a  chiral  superfield  and  a vector  superfield,  respectively.  The  transformation

parameter e is a  discrete parameter, i,e. e =  g3'l, The Jacobian of  this transformation appears

in the superpotential  as  [7]

                     -iA[[b  [ewalvh].+i.itTte [eviiaVPrb]., (7)
where  .4  is an  anomaly  coeMcient,  and  1･V is the chiral  superfield  for the gauge supermultiplet,
This anomaly  can  be caneeled  by a  shift  of  the dilaton superfield  S

                    s-  s' =s+i  ile, s-  s' ==  s-  i:e. (s)

where  k is the Kac-Moody  level. (R)r a  non-abelian  group, k is a  positive integer, while  there

is no  restriction  in the abelian  case.)  As  we  can  see  from (8), only  the imaginar:sr part of  the

scalar  component  of  S, which  is the axion,  should  be shifted.  Therefore, the Kahler potential
does not  change,  because the  veetor  superfield  dees not  change  under  the transformation (6).
Fli om  these observations,  we  can  now  obtain  the  anomaly  cancellation  eonditions  of  the  discrete

symmetry  IN [31:

                             
A3
 k+, 
eY=A2

 k+, 
gSL,

 (g)

where  v43  and  v42  are  anomaly  coeMcients  of  [SU(3)c]2ZN and  [SU(2)L]21N , respectively,

andp,q  are  integers. The conditions  containing  products of  U(1)y is omitted,  because ki is not
eonstrained  to be an  integer. The  constants  pN12  and  qN12  take into account  the contributions

from heavy Majorana and  Dirac ferniions [2, 3, 4, 5]. As  we  will  see  in the next  section,  Eq. (9)
exhibit,s  the  anomaly  cancellation  conditions  for non-abelian  discrete family symmetries,  too.

3 The  GS  mechanism  for non-abelian  discrete family

    symmetries  and  unification  of  gauge  couplings

XVe first recall  that  the string  coupling  g,t is the VEV  of  the dilaton field, which  is the real

scalar  component  of  the dilaton superfield  S. Fltirther, the gauge couplings  gi are  related  to the

string  coupling  according  te  the  corresponding  Kac-Moody  levels. Therefore, gauge coupling

unification conditions  are

                           k3g32 
--

 k2g,2=kig?=g.2,  (lo)
at  the string  scale,  So, the unification  conditions  depend on  the Kac-Moody  levels. Keeping

this in mind,  we  proeeed with  our  discussion on  the  non-abelian  case.
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   Recently, a  number  of  models  with  anon-abelian  discrete family symmetry  are  proposed [8].
If only  the SM  Higgs is present within  the framework of  renormalizable  models,  any  non-abelian

family symmetry  should  be hardly broken. That  is, ifa non-abelian  family symmetry  should  be
at  most  softly  broken, we  need  mere  than two SU(2)L doublet Higgs fields. This implies that
the conditions  of the ordinary  unification  of  gauge couplings,  i.e. k2 =  le3 =  ki(315), will  be
very  diMcult to be satisfied,  However, as indicated in Eq. (10), there  is a  possibility to satisfy
the unification  conditions  at  the string  scale  for non-trivial  values  of  the  Kac-Moody  levels.
Befbre we  study  the unification  conditions  fbr a  conerete  model,  we  derive the GS  cancel}ation

conditions  fbr the non-abelian  case  below. [[b this end,  we  consider  the Lagrangian

               L 
=:  iof-, Pip -  2;z [b' F'`"(L)E,.(L) 

-  2;i  
[[ltr F'`"(R)4,.(R), (11)

               D,=a,-iL:TaiZ-iRtTb,FIR,  (12)
and  a  non-abelian  discrete chiral  transformation

                       ip.'(X) 
-L'
 ZL'L=  [etXIIL+'Ylk].p ipp, (13)

where  a,P  are  family indices. Noticing that this transfbrmation is a  unitary  transfbrmatioll,
we  then ¢ alculate  the Jacobian and  find

       J-i =  exp  {zfd`x 3i,  [[Er U`"pa [eL F),.(L)F.(L) - eR g.(R)F.(R)]}, (14)

where  eL,R are  defined as

                    eL(R) =- [[lr[X(Y)], eieLCR) ii det [e'XO')], (15)

Therefbre, only  the abelian  parts of  the non-abelian  group contribute  to anomaly,  implying
that the GS cancellation  conditions  for the non-abelian  case  are  exactly  the  same  as  Eq. (9)
for the abelian  case.

   [[b be more  concrete,  we  consider  the supersymmetric  Q6 model  of  [9], According to our
discussion above,  to calculate  anomaly  of  Q6, it is suMcient  to consider  anomaly  of  its abelian
subgroups  Zh and  Z4. In the  model  of  [9], it turns out  that the  Z6 part does not  have  any

anomaly,  but Z4, and  its anomaly  coeficients  are  computed  as

           2A3=2-2-1-1=2(7nod  4), 2A2=2･3+2-1-1=6(mod  4). (16)

This anomaly  can  be canceled  by the GS  mechanism,  if

                            
1
 
(mko,d

 
2)
 =  

3
 
(MkO,d

 
2)
 (17)

are  satisfied.  In string  theory, lower Kac-Moody  levels are  preferable, and  so  k2 =  1, k3 =  3,
fbr example,  is a  preferable solution  to (17). Let us  see  whether  the unification  conditions  (10)
with  the levels satisfying  (17) can  be satisfied,  [Eb this end,  we  calculate  the running  of  gauge
couplings,  Fig.1 shows  the ratio  ofg221g?  (upper Iine) and  g22!g: (lower line) as  a  function energ}r
scale.  From the figure we  see  that g22!g32 near  the Planck scale  MpL  =  1.2 × 10i8 GeV  is close
to 3. Therefore, we  assume  that the ratio  of  the  two  Kac-Moody  levels is three, i,e, k3!k2 =  3,
Fig.2 shows  the running  of  (criki)-i, (a2k2)-i, (a3k3)Li with  k3 =  3, k2 =  1 and  ki !r 1,63. The
unification  scale  is 1020 GeV, which  is slightly  higher than  A4)]L. In this example  the gauge
eouplings  do not  exactly  satisfy  the unification  conditions  (10) at  Ali,L, but it is suggesting
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a  right  direction. If we  take  into account  the threshold  corrections  at  nfPL, for instanee, the
conditions  could  be exactlv  satisfied.  ･

   Our study  shows  that it is certainl.v  worthwhile  to loek at the other  models  more  in detail.
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