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Abstract

Anomaly of discrete symmetries can be defined as the Jacobian of the path-integral
measure. We assume that an anomalous discrete symmetry at low energy is remnant of an
anomaly free discrete symmetry, and that its anomaly is cancelled by the Green-Schwarz
(GS) mechanism at a more fundamental scale. If the Kac-Moody levels k; assume non-
trivial values, the GS cancellation conditions of anomaly modify the ordinary unification
of gauge couplings. This is most welcome, because for a renormalizable model to be
realistic any non-abelian family symmetry, which should not be hardly broken at low-
energy, requires multi SU(2);, doublet Higgs fields. As an example we consider a recently
proposed supersymmetric model with Qg family symmetry. In this example, ko = 1,k3 =3
satisfies the GS conditions and the gauge coupling unification appears close to the Planck
scale.

1 Anomaly of discrete symmetries

Anomaly is a violation of symmetry at the quantum level. In the case of a continuous sym-
metry, anomaly means non-conservation of the corresponding Noether current. For discrete
symmetries, however, there are no corresponding Noether currents. But Fujikawa’s method {1],
which is based on the calculation of the Jacobian of the path-integral measure, can be used to
define anomaly of discrete symmetries.

Let us start by considering a Yang-Mills theory with massless fermions ¢ in Euclidean space
time, which can be described by the following Lagrangian and the path-integral:

_ B 1 )
7z = /wa exp[/ d“m[,], L= Dy - 35T PP, (1)
D, =0,—iA,, A, =gT°A% |, Tx[T°T"| = %5‘1”, (2)

where we have dropped the path-integral measure of the gauge boson A,,, because it does not
contribute to anomaly. Then we make a chiral phase rotation

P — ¢ = ey, (3)

where 0 is a discrete parameter. Under this finite transformation, the Lagrangian is invariant,
but the path-integral measure is not invariant in general, i.e.

DYDY — DYDY’ = %D&sz, (4)
and the corresponding Jacobian can be written as
- . 0 Wwpo
Jl= exp{—z/d“x m’[‘r[e’ s F#VFN]}. (5)

This Jacobian has the same form as the Jacobian for a continuous transformation [1]. So we
see that it makes sense to talk about anomaly of discrete symmetries {2, 3, 4, 5].
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2 The Green-Schwarz (GS) mechanism

Unlike to [3], in which only abelian discrete symmetries are considered, we do not assume that
the discrete symmetry in question arises from the spontaneous break down of a continues local
symmetry. We instead assume that an anomalous discrete symmetry at low energy is remnant
of an anomaly free discrete symmetry, and that its low energy anomaly is cancelled by the GS
mechanism [6] at a more fundamental scale.

First we discuss the abelian case and consider a Zy transformation in a supersymmetric
gauge theory,

e, D -de¥ VYV, (6)

where ® and V are a chiral superfield and a vector superfield, respectively. The transformation
parameter 6 is a discrete parameter, i.e. 8 = %V’E The Jacobian of this transformation appears

in the superpotential as (7]
—i AT [JW*W,| + i ATr [eWéWﬁ]F , (7)

where A is an anomaly coefficient, and W is the chiral superfield for the gauge supermultiplet.
This anomaly can be canceled by a shift of the dilaton superfield S
’ = = = A

S—>S=S+i%0, S—>S=S—z’?0. (8)
where k is the Kac-Moody level. (For a non-abelian group, & is a positive integer, while there
is no restriction in the abelian case.) As we can see from (8), only the imaginary part of the
scalar component of S, which is the axion, should be shifted. Therefore, the Kahler potential
does not change, because the vector superfield does not change under the transformation (6).
From these observations, we can now obtain the anomaly cancellation conditions of the discrete
symmetry Zy [3]:

At o
— =, (9)
ks ks

where Az and A, are anomaly coefficients of [SU(3)¢|?Zy and [SU(2)L]*Zy , respectively,
and p, q are integers. The conditions containing products of U(1)y is omitted, because k; is not
constrained to be an integer. The constants pN/2 and q/N/2 take into account the contributions
from heavy Majorana and Dirac fermions [2, 3, 4, 5]. As we will see in the next section, Eq. (9)
exhibits the anomaly cancellation conditions for non-abelian discrete family symmetries, too.

3 The GS mechanism for non-abelian discrete family
symmetries and unification of gauge couplings

We first recall that the string coupling g5 is the VEV of the dilaton field, which is the real
scalar component of the dilaton superfield S. Further, the gauge couplings g; are related to the
string coupling according to the corresponding Kac-Moody levels. Therefore, gauge coupling
unification conditions are

kags = kogs = k1g; = g (10)

at the string scale. So, the unification conditions depend on the Kac-Moody levels. Keeping
this in mind, we proceed with our discussion on the non-abelian case.
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Recently, a number of models with a non-abelian discrete family symmetry are proposed [8].
If only the SM Higgs is present within the framework of renormalizable models, any non-abelian
family symmetry should be hardly broken. That is, if a non-abelian family symmetry should be
at most softly broken, we need more than two SU(2); doublet Higgs fields. This implies that
the conditions of the ordinary unification of gauge couplings, i.e. ky = k3 = k,(3/5), will be
very difficult to be satisfied. However, as indicated in Eq. (10), there is a possibility to satisfy
the unification conditions at the string scale for non-trivial values of the Kac-Moody levels.
Before we study the unification conditions for a concrete model, we derive the GS cancellation
conditions for the non-abelian case below. To this end, we consider the Lagrangian

_ 1 1

L=ip D — —Tr F*(L)F,(L) — =—Tr F*(R)F,.(R), (11)
291, 29k

D, =8, —iLiT*Py — iR\ T" Pg, (12)

and a non-abelian discrete chiral transformation
Yo (z) - o, = [eiXPL-HYPR]aﬂ Vg, (13)

where «, 3 are family indices. Noticing that this transformation is a unitary transformation,
we then calculate the Jacobian and find

J! = exp {z / d'z 32;2’1* €7 [0, Fu(L)Fpo(L) — O F,,,,(R)Fpa(R)]}.» (14)

where 0y, r are defined as
Orry = Te[X(Y)], e“:m = det [e"x(y)] : v (15)

Therefore, only the abelian parts of the non-abelian group contribute to anomaly, implying
that the GS cancellation conditions for the non-abelian case are exactly the same as Eq. (9)
for the abelian case.

To be more concrete, we consider the supersymmetric Qs model of [9]. According to our
discussion above, to calculate anomaly of Q, it is sufficient to consider anomaly of its abelian
subgroups Zg and Zs. In the model of [9], it turns out that the Zs part does not have any
anomaly, but Z4, and its anomaly coeflicients are computed as

243=2-2-1-1=2(mod 4), 24, =2-3+2-1—1=6 (mod 4). (16)
This anomaly can be canceled by the GS mechanism, if

1 (mod 2) _3 (mod 2)

" o (17)

are satisfied. In string theory, lower Kac-Moody levels are preferable, and so k; = 1,k; = 3,
for example, is a preferable solution to (17). Let us see whether the unification conditions (10)
with the levels satisfying (17) can be satisfied. To this end, we calculate the running of gauge
couplings. Fig.1 shows the ratio of g5/g% (upper line) and g2 /g2 (lower line) as a function energy
scale. From the figure we see that g7/¢2 near the Planck scale Mp;, = 1.2 x 10'® GeV is close
to 3. Therefore, we assume that the ratio of the two Kac-Moody levels is three, i.e. k3/k; = 3.
Fig.2 shows the running of (a1k1)~!, (agks) ™!, (azks) ™! with k3 = 3,k = 1 and k; ~ 1.63. The
unification scale is 102 GeV, which is slightly higher than Mp;. In this example the gauge
couplings do not exactly satisfy the unification conditions (10) at Mpy, but it is suggesting
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Figure 1. The ratio of g3/gf (upper line) and gf/gf 8 % e T o e, T mthoation st

(lower line) as a function energy scale. is 100 GeV.

a right direction. If we take into account the threshold corrections at Mp;, for instance, the
conditions could be exactly satisfied. :
Our study shows that it is certainly worthwhile to look at the other models more in detail.
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