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ABSTRACT

The correction terms to the Sokolov-Ternov radiation formula due to varia-
tion of the magnetic field strength along the electron trajectory are calculated up
to the second order in the power expansion of Br /B, where 7 is the formation
time of radiation. It is found that the field-gradient effect reduces radiation inten-
sity in the classical regime, and enhances it in the quantum regime. This is then
applied to quantum beamstrahlung with Gaussian variation in ete™ bunch cur-
rents. The correction is shown to be substantial for beam parameters suggested

by Himel and Siegrest.
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For future e*e™ linear colliders, radiation induced by beam-beam collision is
expected to be very strong.! This radiation, called beamstrahlung, would cause
a substantial loss of energy and the degradation on energy resolution. Due to
these concerns, the study of the subject has been intensive during recent years.2
In the calculations done so far, the field was typically treated as locally uniform.
The following question arises: On what scale must the field be uniform for this

treatment to be valid?

Recently one of us (PC) initiated the investigation® on the corrections to the
uniform field treatment proportional to B2/B? and B/B in the field variation.
However, due to the deficiency of the mathematical techniques employed, the
result was inconclusive. Here we present an improved calculation that gives a
definitive evaluation of quantum beamstrahlung that includes the field-gradient
effect.

Our aim is to evaluate the average energy loss of the entire beam. To achieve
this we want to derive the radiation intensity of one electron that sees the local
field and its gradient arising frbm the oncoming positron beam. Our approach
follows the spirit of Schwinger,* and Baier and Katkov® on quantum synchrotron
radiation. It has been shown® that, to the accuracy of 1/+, the radiation intensity

in the Coulomb gauge,
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can be approximated by
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where o = 1/137 is the fine structure constant, £ and £’ the initial and final
energies, (t1,71) and (t2,73) the initial and final coordinates, of the electron,
respectively, (w, k) the four-momentum of the photon, v = w/&' = w/(£ —w),7 =
ty—t1,0 = (f2 —71)/7, and it = E/w Let t = (t1 +t3)/2, then [ dti1dts = [ drdt.



The photon angle in the phase can be easily integrated to obtain exp{iuér|¥| —
1}/(u&7|¥| — i0). Next we Taylor expand ri and r; (thus @), and ¢; and ¥,
around ¢, to the order 7%, which gives vy - "2 =9 —7 17‘2/2 — 745 - ‘:/24 and
5] = 1 —1/24% — 721:)‘2/24 - 1"4(5‘2 + 37 )/1440 Now we make one more

approximation by bringing the highest order term in |#| down from the phase:
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Define z = v97/2, and y = 2u€ /3943, Eq. (2) can then be rewritten as
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It can be seen that the dominant contribution corresponds to the region where

z ~ 1, or 7 ~ 1/9y. We shall therefore define a “radiation formation length,”
f£p = 1/9, which characterizes the length that an electron travels during an
emission process. Integrating over z, we get Bessel functions of fractional order

with argument y. For convenience we write dI/dt = dIy/dt + dI3/dt, with
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In the above expression the vector products #+v and ¥'- ¥ have been replaced

+B
B

by BB and BB. This is because the only components that ¥ and 17' contribute
are proportional to ¥ x E and ¢ X B, respectively. The term dIy/dt corresponds
to the synchrotron radiation intensity in uniform fields derived by Sokolov and
Ternov,® and many others. The term dI;/dt corresponds to the correction to

the leading behavior arising fro.m the local field gradient.

Next we proceed to integrate over u in Egs. (5) and (6). Recall that u =
w/(€£ — w), thus widw = E3u?du/(1 + u)*. For this purpose it is convenient to

introduce the representation
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where —k < A < 0, and I'’s are the gamma functions. We then straightforwardly

obtain
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where the Lorentz invariant parameter T = 943/ = vB/B, (B, = m*c3/eh) is

intoduced, and
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with the constraint —2/3 < A < 0.

The asymptotic forms of the above equations can be derived by closing the

contour to the right for T <« 1, and to the left for T > 1. Thus we find
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The above expression for T < 1 is the well-known formula for classical syn-
chrotron radiation, and that for T > 1 is the so called Sokolov-Ternov formula

for quantum synchrotron radiation.

The classical limit of dIz/dt has relevant poles at s =n =1,2,3,... , i.e,,
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For the quantum limit, the relevant poles are at s = —n/3(n = 2,3,... , but

excluding n = 5,7,11,13,... (mod. 6)). So we have
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Comparing Eqs. (11) and (12) with Eq. (10), we see that the field-gradient
correction does not contribute at the leading order (~ Y?) in the classical limit,
and scales as £4,Y*/3 in the quantum limit, which confirm qualitatively our pre-

vious findings in Ref. 3.

To appreciate the field-gradient effect in quantum beamstrahlung, let us con-
sider a Gaussian variation of the field strength along the electron trajectory pro-
vided by the oncoming beam: B(t) = Byexp(—2t%/02), where the time of flight
in the CM frame is ¢ = z/2. Since T is proportional to B, it varies the same way,

Le.,, T(t) = Toexp(—2t?/o2). It can also be seen that £p = 1/0y = X.v/T(t).

The leading behavior of the fractional energy loss of the electron, from
Eq. (10), is
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The integration of the correction term dI;/dt is not easy, particularly when
To > 1, because the leading term in the series expansion of dI;/dt does not
dominate the integration. If one insists on applying the asympotic form of dI; /dt
in Eq. (12), one is forced to introduce a cutoff in the integration over time, which

renders the evaluation of €; inconclusive. This was the situation of our previous



calculation. The cutoff symptom, however, can be avoided if one integrates over

t before the s-integration in Eq. (9).

First we notice that for a Gaussian field, B vanishes at ¢t = +oco. Thus

integration by parts in ¢ turns B/B into B2/B2, and we get
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The integration over time can be further developed by changing the variable
to T:
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where £po = X.v/Yo. Since Res = A < 0, the above integral gives [T*]® = —¢®.
Thus we have
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where —2/3 < A < 0. For small e, we close the contour to the right, where the
leading pole is at s = 0, and all higher poles vanish. So
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On the other hand, ¢; for To < 1 can be trivially obtained as
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For intermediate values of Yy, it is difficult to find an analytic expression for e3.

7



A numerical integration of Eq. (14) is plotted in Fig. 1 for Yo from 1072 to 10%.
We see that the effect due to the field gradient is to reduce the fractional energy
loss for To < 1, and to enhance it for Tg > 1. The transition occurs at around
Yo = 2/3, which corresponds to the situation where the initial electron energy

equals to the critical energy of synchrotron radiation.

As an example, consider the Himel-Siegrest parameters? for a conceptual 545
TeV linear collider, where 4 = 107, number of particles per bunch N = 1.2 x 108,
and beam size o; = 2.5 A, 0, = 0.4 um. The beamstrahlung parameter Tg
corresponds to twice the local field strength (i.e., |B| ~ |E|), and varies with
radius. Thus the evaluation of the mean value of e3/€p for the entire beam
involves an average over the transverse distribution, which is rather intricate.
Instead, we assume uniform transverse density profile, and look at a typical
electron that has an impact parameter r = o;. In this case To = 5094 > 1,
and we find ez/ep ~ 30%. This is indeed a substantial effect. In comparison,
€2/€0 =~ 45% at r = 0} /2 and ez/ep ~ 20% at the beam edge r = 20}. For the
next generation of ete~ linear colliders at around 1 TeV in the center-of-mass
energy, the effective beamstrahlung paramter Yy is expected to be of order unity.
Therefore, the field-gradient effect would not be a concern, as can be seen from
Fig. 1.
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FIGURE CAPTION

Fig. 1. Numerical plots of functions in Eq. (14). The solid curve is the
integrand @Q(7T), which is independent of specific variations of the field B. The
dashed curve is the correction to the fractional energy loss, €2, as a function of

To, with Gaussian variation of B assumed.
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