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ABSTRACT

Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87% and Sgr Ax offer valuable
insights into their space—time properties and astrophysical conditions. Utilizing a library of model images (~ 2 million for
Sgr Ax) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key
parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation
and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations,
probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and
computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores
the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code TPOLE is integrated with
the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes
predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration
and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on
four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers
parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact
of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations
and enables expansion of the model parameter space in a statistically robust and computationally efficient manner.

Key words: accretion, accretion discs—black hole physics —methods: data analysis —methods: statistical —techniques: high
angular resolution — quasars: supermassive black holes.

1 INTRODUCTION

The Event Horizon Telescope (EHT) is a millimetre very long
baseline interferometric (mm-VLBI) array capable of resolving
compact (sizes of ~ 20 pas) event horizon scale structures around
supermassive black holes in M87 (called M87x) (Doeleman et al.
2012; Event Horizon Telescope Collaboration 2019a, b, ¢, d, e, f) and
in the Galactic Centre (called Sagittarius Ax, abbreviated Sgr Asx)
(Doeleman et al. 2008; Fish et al. 2011; Johnson et al. 2015; Lu et al.
2018; Event Horizon Telescope Collaboration 2022a, b, c, d, e, f).
As recently demonstrated in Event Horizon Telescope Collab-
oration (2019e, f, 2022¢, f), EHT also enables inferences of the
astrophysical conditions present in the relativistic environment in
the immediate vicinity of a black hole horizon by comparing the
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VLBI data to theoretical models that predict the on-sky emission
map. For this purpose substantial libraries of diverse source models,
model comparison techniques, and parameter estimation tools are
being built and constantly improved.

In particular, general relativistic —magnetohydrodynamics
(GRMHD) numerical models of inefficiently radiating accretion
flows onto a black hole combined with general relativistic radiative
transfer (GRRT) models predict the appearance of the two EHT main
targets (Dexter, Agol & Fragile 2009; Moscibrodzka et al. 2009,
2014; Moscibrodzka, Falcke & Shiokawa 2016; Gold et al. 2017;
Jiménez-Rosales & Dexter 2018; Chael, Narayan & Johnson 2019).
These numerical models of magnetized accretion flows depend on a
few key physical parameters such as: (i) the spin of the black hole,
(ii) magnetic flux threading the horizon, (iii) the mass accretion rate
onto the black hole, (iv) the electron thermodynamics (here simply
modelled via Rygpn, and (v) the orientation of the system with respect
to the observer. Constraining these free parameters of GRMHD
simulations via EHT observations can give us quantitative estimates
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of black hole mass and spin, insights into how gravitational energy
is converted into radiation in strong gravity and what mechanism
launches the astrophysical jets such as the one observed in M87x
(e.g. Hada et al. 2013; Kim et al. 2018).

To constrain physical parameters of M87x and SgrAx, Event
Horizon Telescope Collaboration (2019e, 2022e) created a static
library of approximately 60 000 GRMHD model images for M87x%
and about 1800 000 for Sgr Ax and then compared the libraries to the
EHT data via various scoring procedures (Event Horizon Telescope
Collaboration 2019e, £, 2022e¢, f). The two main ones are: (a) average
image scoring (AIS, used for total intensity data), where snapshots
from simulations are turned into synthetic VLBI observations and
compared to real data; and (b) snapshot characterization (used mostly
for polarimetric images), where a suite of image properties such
as, e.g. resolved degree of linear and circular polarizations and
their directions are compared to polarimetric characteristics of the
reconstructed source images.

In the existing scoring procedure of the EHT to total intensity
data (AIS scoring), (a) only the total flux of the image (for a
fixed accretion rate), (b) the mass of the black hole, and (c) the
position angle of the model are estimated in adaptive fashion over
the entire possible range. In EHT terminology this is called snapshot
scoring, and creates distributions using all snapshots available (see
previous par.). After that, for each model (combination of GRMHD
+ GRRT parameters), consisting of ~ 500 snapshots an average
image is created. This averaged image generates synthetic data that
are compared with the real data, given a standard deviation from
the spread of the snapshots. Then, given a passing criterion (e.g.
cumulative distribution € [2.5 per cent, 97.5 per cent]) the models
pass or fail the AIS test (see Event Horizon Telescope Collaboration
2019e). In this procedure parameters such as inclination angle,
electron heating parameter Rygn, black hole spin, and magnetic
flux on the horizon are sampled sparsely in the limited range.
Moreover, the two latter parameters are fixed for a given GRMHD
simulation and changing them is computationally expensive as it
requires running an entire GRMHD simulation.

A key aspect of accretion flows and GRMHD simulations, vari-
ability, is particularly challenging for inference pipelines. Variability
refers to the inhomogeneity of an accretion flow in a spatial and
temporal sense. These two aspects are often intertwined, since a
spatial variability (a disc without azimuthal symmetry for example)
is magnified by temporal variability, where the directions and
particularities of this asymmetrical flow are changing direction and
even structure over time.

This means that when comparing EHT data with simulations it is
necessary to provide many snapshots of a simulation to test if any of
them resembles the source, and even then it will be an approximation.
Hence the inference pipelines need to be capable of matching two
images that are a priori different. In AIS, this is done by the usage of
the aforementioned large model libraries.

In this paper, we propose a new Bayesian parameter estimation
procedure by integrating the GRRT code ipole (Moscibrodzka &
Gammie 2018) with EHT/VLBI data analysis framework THEMIS
[Broderick et al. (2020) and Section 2.3 in this paper] and en-
able the adaptive GRRT parameter estimation given an arbitrary
GRMHD snapshot. In the improved parameter estimation scheme,
the parameters defined in GRRT, e.g. the inclination angle, the
accretion rate, and the plasma thermodynamics parameter will be
adaptively sampled across the entire parameter space to compute
the posterior distributions via Bayesian inference. Notice that in
this approach the large amount of memory for statically storing the
image library is not necessary. We also show that our pipeline could
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provide a robust framework to account for the variability challenges,
see Section 3.4. Additionally, the pipeline is designed to be highly
parallelized and extensible, which is the important first step towards
the large-scale computation of adaptive parameter estimation from
GRMHD simulations in the future.

To assess the accuracy and efficiency of our new parameter
extraction scheme, we first pick an arbitrary set of GRRT model
parameters and generate an image from a GRMHD simulation. Next,
we simulate the EHT 2017 observation by assuming the above image
has the same celestial position, mass, and distance as Sgr A (but the
procedure can be also adopted for M87x) and generate synthetic mm-
VLBI data, including visibility amplitudes and closure phases. Since,
for our fitting routine we decide to use only the closure phases, the
interstellar media scattering effect is not considered at this primary
step (which is important and complicated for fitting archive Sgr
Ax data, see e.g. Johnson et al. 2018; Issaoun et al. 2019, 2021).
Additionally, we apply standard thermal noise (Chael et al. 2016,
2018) and systematic errors (1 percent, 10 percent, or 30 per cent
depending on the case). Then we use a Markov chain Monte Carlo
(MCMC) algorithm to sample the posteriors of the parameters from
the underlying unknown distribution of all the physically possible
models by comparing the synthetic data with the GRMHD + GRRT
model. We perform well-controlled tests with a known ‘truth’ value
first by fitting two parameters and then extend it to fit four parameters
simultaneously. Such an incremental approach provides clarity when
interpreting the results.

In the future, the pipeline can be improved, for instance, with more
realistic observational corruptions of model images (e.g. Blecher
et al. 2017; Janssen et al.2019) or polarimetric models (Event
Horizon Telescope Collaboration 2021b). THEMIS as well as IPOLE
can handle different observing frequencies. Therefore, the pipeline
presented here can naturally handle model fitting to upcoming EHT,
ngEHT, and non-EHT data sets, e.g. to longer wavelengths VLBI
observations of the EHT targets or AGN sources (Kim et al. 2018;
Issaoun et al. 2019; EHT MWL Science Working Group 2021).

The paper is organized as follows. In Section 2, we describe the
pipeline which produces the GRMHD + GRRT models of Sgr Ax (or
M&87x) at millimetre waves (Section 2.1), the process of generating
synthetic mm-VLBI observation data sets from the image (Section
2.2), the sampling methods (Section 2.3). In Section 3, we use the
synthetic data (generated in Section 2.2) to test the adaptive parameter
estimation pipeline by two parameter fitting (Section 3.1) as well as
multiparameter fitting (Section 3.2). In Section 3.3 we introduce
time variability in the fitting algorithm, and in 3.4 we propose a few
ways to account for it. We summarize the results and conclude in
Section 4.

2 PARAMETER ESTIMATION PIPELINE:
DESCRIPTION

2.1 Physical model and model parameters

Extracting physical parameters from EHT observations requires a
model for the accretion flow onto a compact object and a model for
the arising emission.

Our model describes an accreting black hole within ideal-GRMHD
simulation and is therefore intrinsically dynamical. The simulation
starts with a torus of plasma in Keplerian, equatorial orbit around
a Kerr black hole (Fishbone & Moncrief 1976) that would be in
hydrostatic equilibrium in absence of magnetic fields. The torus is
then seeded with weak magnetic fields and the evolution of such
configuration is computed by solving the equations of ideal general
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relativistic magnetohydrodynamics (Gammie, McKinney & T6th
2003). Simulations show that magnetic turbulence is developed,
which acts as an effective source of viscosity (Hawley & Balbus
1991; Balbus & Hawley 1998), thereby causing matter to accrete
onto the black hole. In this process some material escapes the system
in the form of winds and jets that may or may not be visible in
the model image depending on radiation properties and electron
thermodynamics.

The free parameters of the GRMHD-informed model images can
be divided into two categories: numerical parameters and physical
parameters. The numerical parameters are e.g. numerical grid size
and resolution of the simulation. Physical parameters include: black
hole spin parameter a, € (0, 1)! or the normalized magnetic flux
threading the horizon in the relaxed, steady state, which is the
fundamental parameter describing the state of the magnetic field
along the standard and normal evolution (SANE) and magnetically
arrested disc (MAD) regimes (Tchekhovskoy, Narayan & McKinney
2011; Porth et al. 2019). In this paper, we utilize time-slices of an
existing 3D GRMHD SANE simulation of Shiokawa (2013) (applied
to model Sgr Ax in MoScibrodzka et al. 2014), with the black hole
spin parameter a,, = 0.9375 and the adiabatic index of 13/9. We pick
snapshots where the turbulence is fully developed and the simulation
exhibits roughly a steady-state behaviour in which at least the interior
regions have not retained their initial conditions.

Next, we generate synthetic images (intensity maps) from this
simulation snapshot using the ray-tracing and radiative transfer code
IPOLE? (Moscibrodzka & Gammie 2018), which was tested against
other radiative transfer codes used in the original IPOLE paper
as well as in Gold et al. (2020) and Prather et al. (2023). The
fast-light approach is used throughout this work for both synthetic
data and Bayesian runs. The main radiative processes considered
in computing images from the GRMHD simulation is synchrotron
emission and synchrotron self-absorption. Generating images of a
particular astrophysical source requires rescaling the dimension-less
GRMHD simulations from geometrized unit system (G = M =
¢ =1) to c.g.s. units. The scaling requires providing the mass of the
central black hole which will also set the length scale of the system
according to G Mgy /c? [cm] and time scale units G Mgy /c? [s]. The
scaling also requires providing the mass unit parameter M,y; that
scales the density of the plasma around the black hole, i.e. the
density of the matter in the accretion flow is pcgs. = Peode Munit /£3
(Notice that M,,; also scales the accretion rate onto the black hole
and strength of magnetic field at the same time, see Moscibrodzka
et al. 2009 for details). It is therefore in principle necessary to
redo the ray-tracing/radiative transfer computation whenever these
parameters are varied, which is what we pursue here in contrast
to an approximate scaling approximation designed to avoid the
additional computational cost. The free parameters used to model
the differences between electron and proton temperatures in various
regions of different magnetization are Ry, and Ry, (motivated by
Moscibrodzka et al. 2016 and Ressler et al. 2015, see also Event
Horizon Telescope Collaboration 2019e). Specifically, the proton to
electron temperature ratio reads:

T, 1 B’
= + Rhigh 5

1

IThe black hole spin is usually given in dimension-less units where a, = 0
describes Schwarzschild black hole and a, = 1 is maximally rotating Kerr
black hole

Zhttps://github.com/moscibrodzka/ipole
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Given T}, which is equal to the gas temperature in the GRMHD
simulation, as was done in Event Horizon Telescope Collaboration
(2019e, 2022e), we can compute 7. using equation (1) and the
synchrotron emissivities thus depend on the assumed Rpigh, Riow
parameters. As Ryign and Ry, are not two independent parameters,
Ry 1s usually fixed to be a constant (R, = 1 in Event Horizon
Telescope Collaboration 2019¢). The inclination angle, i, and posi-
tion angle, PA (orientation of the image on the sky with respect to
the celestial North pole), are two remaining parameters of the model
describing the geometrical orientation of the system with respect to
the observer’s line of sight. Finally, the distance of the observer to
the source has to be assumed.

For current models only black hole spin and magnetic flux
require an independent GRMHD simulation. This leads to higher
computational efficiencies especially for higher dimensions and the
ability to estimate the posterior distribution for each parameter
including black hole mass and spin. We also drop the assumption
about optical depth made in Event Horizon Telescope Collaboration
(2019e, 2022e) where a crude flux rescaling was applied, treating
BH mass and total flux as scale-free parameters (to within a limited
range). Such a scaling can at most be valid in a finite range and more
specifically for matter that is sufficiently optically thin. Our method
reperforms the ray-tracing and radiative transfer on every likelihood
evaluation and hence drops these assumptions. This is in itself a
significant improvement over the current method.

In this work we focus on parameter estimation by scaling the
dimension-less GRMHD simulations to Sgr Ax system but other
black hole masses can be assumed. We therefore fix the mass of
the black hole to My sgr A+ = 4.1 X 10° M, and distance Dsgas =
8.5kpc (Gravity Collaboration 2018). Other model parameters i,
PA, Muit, Riows Rnign are allowed to float. This list can easily be
generalized to include any parameter in the ray-tracing and radiative
transfer code used.

In Fig. 1 (left-most upper panel) we show an example of an
arbitrarily chosen sets of parameters of appearance of the 3D
GRMHD simulation scaled to Sgr A% system parameters as seen
by an observer on Earth. The model image is generated at an
observational wavelength of A = 1.3 mm (v = 230 GHz) at which
EHT currently operates (in the future EHT will also operate at
0.87 mm/345 GHz).

2.2 VLBI data products and synthetic data generation

EHT is an interferometer which detects the sparsely sampled Fourier
components of the image of the source on the sky, called visibilities.
The visibility V(u,v) is the 2D Fourier transformed complex
function of intensity distribution /(x, y) defined by e.g. Thompson,
Moran & Swenson (2017) as:

Viu,v) = / /I(x, y)e T qxdy. )

The visibility is by definition a complex function with amplitude
A and phase ¢: V(u, v) = Ae™®. In Fig. 1 (middle and right-most
upper panels) we show the visibility amplitude and phase computed
based on the GRMHD model image.

The visibility amplitudes are subject of a future work, so they are
not discussed here. In the present we utilize closure phases, the sum
of the complex visibility phases along a closed triangle baseline,
which is:

D; i = arg (Vi; Vie Vi), 3)
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Figure 1. Top panels: 230 GHz image of GRMHD model of Sgr As. Physical parameters used to generate image are: Mgy = 3 x 10'8 gram, Rhigh = 3,
Riow = 3,1 = 60°, PA = 0°. Here, the model image has high resolution of 256 x 256 pixels. The colour shows the emission intensity (Stokes Z). The middle
and right panels show the amplitudes and phases of the complex visibility function which is generated by the Fourier transformation (FT) of the model image.
Bottom panels: Synthetic EHT 2017 data generated using EHT-IMAGING and THEMIS. The middle left panel shows the baseline (u, v) coverage of the
observation and the middle right panels displays the visibility amplitudes as a function of (u,v) distance. The colours code different baselines. The bottom panel
shows the synthetic closure phases. The different colours refer to different EHT station triangles. Black crosses denote the data modelled within THEMIS which

are in excellent agreement with those from EHT - IMAGING.
where V;;, Vji, and V}; are the visibility of baseline ij, jk, and ki. Due
to degeneracy amongst possible triangles, an array with N antennas
has (N — 1)(N — 2)/2independent closure phases (Thompson et al.
2017, Blackburn et al. 2020). For the 2017 EHT observations N =
8 which gives 21 independent closure phases but in general one
can form up to 56 closure phase triangles (N(N — 1)(N —2)/3!)
assuming that the source is visible at all sites during an observing
window. In practice, using 2017 EHT (u, v) coverage, we generate 41
closure phases. The simulated observation is roughly 11 h long. The
main advantage of the closure quantities is that they are insensitive
to station-based errors (Chael et al. 2018).

In Fig. 1 (middle and bottom panels) we show the (u, v) coverage,
synthetic visibility amplitudes and closure phases. Our example of
synthetic VLBI data is generated based on GRMHD image assuming
the following parameters: i = 60°, My = 3 x 10'® gram, Ryjgh =
3, Riow = 3, and position angle PA = 0°. For the following M,;,;; will
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always be in ( gram). The image has 128 x 128 pixels (see Appendix A
for discussion of image resolution), and we assume that the source
is on the celestial sphere where the ascension and the declination are
same as Sgr Ax. The synthetic VLBI data are generated using the
EHT- IMAGING library® (Chael et al. 2016, 2018). We simulate the
EHT observation with EHT 2017 array configuration to observe Sgr
Asx with the baseline (#, v) coverage matching the EHT observation
on 2017 April 7 (Event Horizon Telescope Collaboration 2022b).
The centre of the observational frequency band is 229.1 GHz and the
bandwidth is 1.8 GHz.

Our synthetic EHT data are time-averaged along (u, v) tracks into
10 min scans. Furthermore, the data have been treated to account
for typical noises, such as thermal and systematic noises usually

3https://github.com/achael/eht-imaging
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considered when analysing EHT data (see e.g. Event Horizon
Telescope Collaboration 2019d, 2024a, b). The thermal noise (tn)
is to account for fluctuations in the telescope during ‘observation’,
while the systematic errors (syser), set at 1 percent, 10 per cent, or
30 per cent, capture additional uncertainties from the instrument.

When fitting model to synthetic or real EHT data, the calcu-
lation of visibility amplitudes and closure phases from the given
model image is the nested part of EHT data analyse framework
THEMIS.*THEMIS is a massively parallel, modular, flexible, and
extensible framework, containing all the utilities necessary to com-
pare EHT data to a variety of model predictions for these data
sets, including visibility amplitudes, closure phases and more. The
FFTW3? is the fast Fourier transformation (FFT) library used to
transform the intensity distribution on the celestial plane to the
visibility of each uv data sets, which are read from input data files.
In Fig. 1 we also show that the visibility amplitudes and the closure
phases calculated with THEMIS match perfectly those produced by
EHT-IMAGING library.

2.3 Model fitting

2.3.1 Likelihood and priors

THEMIS carries out Bayesian parameter estimation via MCMC
sampling the log-likelihood. In the Bayesian statistics, if given the
prior probability distribution of parameters to estimate, the posterior
probability distribution is constrained by the likelihood function. The
likelihood and the prior are defined by the user. The log-likelihood
of closure phases is

A (D, —d,(p
=y (0= 8
J

J

, (C))

where p is the vector of parameters to estimate, @ ; and ® ;(p) are the
observed and modelled closure phases, A(x) is the angular difference

in the range [~ 180°, 180°), and 0; = /02, + 02, * &;(5)2. Allink
to the more traditional approach is the relation £ = —x?2/2, from

where it follows that

25 A (@ - ®;(p) x?
X*(p) = ; -7 RER - ®)
where n, = 358 is the number of data points, affected by the data
character, visibility amplitudes (VA), or closure phases (CP), and the
observation specifics, number of telescopes, time, etc. The number of
freedomis ny = 2 for two-parameter fit and 4 for the multiparameter
fit, equal to the number of parameters being fitted simultaneously.

In this likelihood definition, we assume that the errors in the closure
phases have Gaussian distribution. However when signal-to-noise
ratio (SNR) is low, the error distribution is more likely to be non-
Gaussian (Thompson et al. 2017). How the error distribution and
SNR affect the fitting accuracy is discussed in Broderick et al. (2020).
Another problem of this likelihood is that it is unable to treat fitting
multi-epoch data. Both, the non-Gaussian errors and the multi-epoch
observation fitting are beyond the scope of this work.

“https://github.com/PerimeterInstitute/Themis

SFFTW is a publically available C subroutine library for computing the
discrete Fourier transform in one or more dimensions, of arbitrary input size,
and of both real and complex data. http://www.fftw.org/
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Similarly to the phases, the log-likelihood for visibility amplitudes
can be calculated as
A2
- V1, —IV1;(p)
L(P)=— Z M

2
7 2(7/-

(6)

We adopt prior for each parameter separately. Due to the lack of the
knowledge of the true model parameters and for keeping the approach
as agnostic as possible, we adopt flat prior for all parameters. It is
worth mentioning that flat prior is not equivalent to non-informative
prior, but it is sufficient for this fit.

2.3.2 Sampling parameters

MCMC methods are frequently used to sample the posterior from
prior with defined likelihood. In order to efficiently sample the
underlying parameter space and to faithfully infer model parameters.
Special care is needed on top of standard MCMC to avoid trapping
in local extrema. We adopt a (parallel) tempering technique (Swend-
sen & Wang 1986; Geyer 1991), in which high-tempered chains
explore large regions in the parameter space with low precision
while the low-tempered chains focus on small regions with high
precision. The different tempered chains communicate and exchange
their position information, which let the coldest chains (most accurate
and used to be the final output) escape any local optimums. The
scheme has been demonstrated to explore a variety of likelihood
surfaces including multimodal distributions and is well described in
Broderick et al. (2020). The sampler of choice for this project was
the affine invariant (AI) method described in detail in Goodman &
Weare (2010). More possibilities and reasoning behind this choice
can be found in Appendix B.

Within THEMIS a variety of further options can be chosen,
from VLBI data types, to sampling methods, number of walkers,
temperatures, steps between communication of the walkers, number
of processors per likelihood. Our final choice consists of fitting
closure phase data (CP), with the addition of thermal noise and
systematic errors (1 per cent, 10 per cent, 30 per cent), the affine
invariant sampler, and the number of walkers and temperatures:
Nw =8, Nr =10 for the two parameter fitting and Nw = 10,
Nt = 12 for the multiparameter run (see the next section). We have
calculated the effective sampling size for our two models (A and B,
see Section 3) and we found minimum values of ~ 40 and ~ 67,
respectively. We have not apply any thinning, i.e. retain only a subset
of samples from the MCMC chains.

A summary of the physical and numerical parameters used in the
calculations can be found in Table 1.

3 PARAMETER ESTIMATION PIPELINE:
VALIDATION USING SYNTHETIC VLBI DATA

In the following, first we perform two parameter fitting, using fitting
parameter pairs of PA together with one of the other parameters
(while keeping the remaining two fixed), the details of which are
presented in Section 3.1. Then we raise both the number of Nt and
Nw by 2 and perform an all parameter fitting simultaneously, which
is presented in Section 3.2 and finally we discuss variability of the
source and the data and how to tackle it in Sections 3.3 and 3.4

3.1 Single snapshot, two parameter fitting

In the first test, model A (shown in the upper panels in Fig. 1) is used
to generate the truth synthetic data via simulating the EHT 2017
observation.
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Table 1. Physical and numerical model parameters explored in this work.

Physical model parameters

Name Value/Range Description
ay 0.9375 Black hole spin parameter of a give GRMHD simulation snapshot; Fixed in this occasion.
i (0, 180°) Viewing angle (inclination) of the observer: i = 0° is face-on, i = 90° is edge-on.
PA [—m, 7] Position angle of the black hole spin on the sky, measured east of north.
M ynit [10'7,6 x 10'9] Mass unit parameter scales the density of the plasma, hence My ~ M(g/s).
Rhign [1,90] Describes coupling of 7. w/ T, in regions of weak magnetization (high plasma 8 region).
Riow 3 Describes coupling of 7. w/ T}, in regions of strong magnetization (low plasma f region).
Fitting numerical parameters
Two parameter fit
Name Value Description
image res. 1282 The size of model image, unit in pixels.
Nw 8 The number of chains in MCMC sampler.
Nt 10 The temperature level of the parallel tempering in MCMC sampler.
comm. freq. 2 The interval MCMC steps between communication events of different tempered chains.
burn-in 500 The number of initial MCMC steps removed from chains when building posterior.
end step 5000 The final MCMC step of the simulation
Four parameter fit
image res. 1282 The size of model image, unit in pixels.
Nw 10 The number of chains in MCMC sampler.
Nt 12 The temperature level of the parallel tempering in MCMC sampler.
comm. freq. 2 The interval MCMC steps between communication events of different tempered chains.
burn-in 1000-3500 The number of initial MCMC steps removed from chains when building posterior.
end step 10000 The final MCMC step of the simulation

The first pipeline test validates the scheme while fitting two
parameters only: PA in combination with one of the three remaining
parameters i, Muyp Or Rpigh. PA sampling alone is done more
efficiently through an analytically marginalized likelihood however
sampling i, My, and Rygn requires repeating the GRRT simulation
in every step. To initialize the MCMC chains we have chosen values
in the middle of the range that we wish to explore (Table 1), using
flat priors for all parameters.

The test results are summarized in Fig. 2 where we show the
posterior probability distribution (PD) for all parameters and the trace
plot and the log-likelihood for M,,,; as an example. For all runs Xesz <
1, as shown in Table 2. We achieve effective sampling sizes larger than
600 for both parameters and a median split R = (0.9996, 1.0017) in
the two parameter fit.

The posterior densities and the Gaussian fits of them have been
made with a burn-in of 500 MCMC steps. For all parameters except
Ryign the truth values are covered by the posterior (at 3 o in the
case of inclination). By contrast, the PD of Ryg, has a shifted peak
revealing a smaller than 1 per cent bias (from the median value) and
misses the truth value altogether.

To investigate Ry, offset we carry out several tests with three
improvements, such as (i) adding more stations in the telescope
array (from 2021, 2022), (ii) using CP and VA data, (iii) using a
cut in the data where we only use CP points with S/N above 4, and
lastly (iv) inflating the systematic errors at 10 per cent. The posterior
can be seen in Fig. 3. Improvements (ii), (iii), and (iv) all resolve
the parameter offset problem separately. This points to a bias caused
by the closure phases, which is fixed either by the SNR cut or its
effects are weakened when also VA data are included. The offset
problem is also resolved when the systematic errors are inflated and
the posterior covers a wider range of values.

Two parameter fitting tests demonstrate that it is possible to fit
other parameters apart from PA, in an adaptive way, and that they
converge to the truth values in a fast and stable fashion. The x 2, values
for all runs below are close to 1 which further strengthen these claims.

MNRAS 535, 3181-3197 (2024)

The two parameter fits for Ry;gy or i already have advantage over the
standard EHT image library which samples these variables rather
sparsely (usually Ryign = 1, 10, 40, 160, and i = 10, 30, 50...).

3.2 Single snapshot, four parameter fitting

Next, we simultaneously sample four parameters (PA, i, My, and
Ryign). We still fit only the CP data, using the same initial values
and ranges of the parameters as in the previous two parameter fitting
tests.

Fig. 4 shows a triangle plot of the posteriors and the joint
probability densities of parameters given two different truths, models
A and B. The burn-in window has been set to 3500 MCMC steps.
Our pipeline recovers both, significantly different, truth parameters.
As visible in Table 3, the numerical parameters of the four parameter
fits together with 10 000 MCMC steps result in parameter estimation
accuracy and precision comparable to those of the two parameter fits.

3.3 Effects of time variability on the parameter estimation

Here we examine the behaviour of the pipeline when taking into
account a possibility that the source may be changing in time (which
is certainly true for Sgr Ax over a single night and for M87x% over
time-scales of a week). In fact, our model image does not change with
time yet (although this can be naturally incorporated in the future).
Instead we examine the effects if the realization of variability in
the model is different from the one in the data. We do so by fitting
synthetic data from a model in a certain point in the simulation to
synthetic EHT data created using a different time moment of the
same simulation. model B + 100 M, has been created from the same
GRMHD simulation and the same radiative transfer parameters, but
100 GM /3 later than model B, and similarly model B-500 M, 500
GM/c? earlier than model B. Note that GRMHD snapshots are
known to become sufficiently uncorrelated when separated by 20 —
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Figure 2. Results of the two parameters fits, showing the posterior probability distribution for all parameters.

Table 2. Truth parameters and the pipeline performance for two parameter
fitting, for a burn-in step of 500 MCMC. For each listed run, the PA and one
other parameter is varied.

Truth Estimated Xesz

PA(rr) 0 04+07* _
i©) 60 60.04 +0.021 0.66
Muni(1018) 3 340.001 0.69
Rhigh 3 2.97 £+ 0.008 0.89
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Figure 3. The posterior probability distribution for two parameters (Rhign
and PA) fits when assuming systematic errors of 10 per cent. Since we already
have information about the truth, this test is limited to 2000 MCMC steps and
a narrower prior for Rpign € (1, 10). When fitting real VLBI data we would
use a wider prior and run the pipeline longer.

30M and so the adopted time offsets can be considered significant
(Georgiev et al. 2022). The snapshots of the GRMHD model for
the same radiative transfer parameters at different time moments
are shown in Fig. 5. We still use model B for synthetic data, and
B 4+ 100M or B — 500M as a template for fitting. Our goal is to
assess: (i) how poor the fit quality gets for a given error budget and
(i1) how large the bias can be.

Fig. 6 shows parameter estimation for both snapshots. Regarding
B + 100M, from the triangle plot it is clear that 2 parameters
(i, Myni) have distributions with peaks shifted from the truth
(7 percent and 23 percent, or 870 and 60 away from the truth,
respectively), but in a coherent manner in a sense that the more
distant snapshot is further away from the truth. Notice that in some
cases the 30 contours are on the edge of the truth (intersection of
dashed lines). As for the two remaining parameters (Rpign and PA),
the distributions are able to cover the truth, perhaps a coincidence or
an effect of time correlation given the poor fit quality (as expected in
absence of inflated error budgets); in this test the 2 = 150.4.

In the same figure the orange line shows the parameter estimation
for snapshot B — 500 M. It is evident that in this test the fit is unable
to cover the truth in all four parameters, including PA. The log-
likelihood is larger compared to that when fitting model B + 100 M,
but x2 = 181 stays roughly at the same level.

The two tests above illustrate that on top of the expected poor-fit
quality a large bias is typically introduced into parameter estimation
due to the intrinsic source variability. Table 4 collects the best-fitting
parameters for the two runs. In addition, Fig. 5 shows the best-
fitting model images for the two tests above. The B + 100 M and B
— 500 M best-fitting images look somewhat different compared to
model B (shown in the left panel) but overall crescent shape of the
emission region is preserved.
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Figure 4. The triangle plot of four parameters estimation by fitting with the synthetic data based on models A and B. The main diagonal shows marginalized
posterior distributions of all four parameters. The six plots in the lower left triangle show the joint densities for all the parameter combinations. The contours
have been set to represent confidence of 0.68, and 0.9973 (1 and 30). Dashed lines denote the truth (black for model A, grey for B). The lowest Xesz was 0.89

for both models.

Table 3. Truth parameters and the pipeline performance for four parameter
fitting with 1 percent systematic error added to the simulated data, for a
burn-in step of 3500 MCMC. All parameters are sampled simultaneously, so
there is only one Xcsz value.

Truth Estimated X esz
Model A
PA(7) 0 0 + 0.0003 0.88
i) 60 60.0240.02 0.88
Munir(10'8) 3 3 +0.0005 0.88
Rhigh 3 2.98 +0.01 0.88
Model B
PA(7r) 0 0+0.0014 0.82
i) 90 89.99 +0.0378 0.82
My (10'9) 1 1 £0.0052 0.82
Rhigh 20 19.93 +0.1345 0.82

3.4 Tackling variability: inflated errorbars and snapshot
averaging

In this section, we carry out two additional tests which may be useful
when designing strategies on how to tackle the variability issues.

MNRAS 535, 3181-3197 (2024)

The first obvious step to address variability impact on parameter
estimation is to simply inflate the systematic errors of the data
points to enable the analysis to be more permissive and fitting to
be easier. Fig. 7 demonstrates model B fitting using snapshot B —
500M with three different choices of systematic error, namely: 1
per cent, 10 per cent, and 30 per cent. Already with systematic errors
of 10 percent, the fitting of snapshots separated by At =500 M
recovers the truth. This test validates that the pipeline can find the
truth even with snapshot misspecification, a necessary feature for
real data fitting, where most certainly all our models will be (at best)
only approximations to the real image. At 30 percent errors, the
posterior distributions of all free parameters widen (as expected),
notice that xfff =179.5,0.71, 0.41 for increasing error budgets,
while still covering the truths at 1o confidence. For this specific
example, the 30 per cent and arguably 10 per cent cases are slightly
overfitted, presumably due to an overestimated systematic error to
capture the intrinsic variability. Note that for general and realistic
cases this may be slightly different, but this needs to be investigated
more thoroughly in a dedicated future work. The produced Themis-
fit images of model B-500M, for different error budgets are visible
in Fig. 8.
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Figure 5. 230 GHz images of GRMHD model of Sgr Ax from different snapshots with the same (left and right top panels) and fitted (right bottom panels)
GRRT parameters. The colour codes the emission intensity (Stokes Z). A comparison between physical parameters and snapshots is presented in Table 4.
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Figure 6. Same as Fig. 4 for modB, modB + 100M and modB — 500M (all with 1 per cent systematic error). The corresponding Xesz = 0.89, 150, 181 for the
three models, respectively.
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Figure 7. Same as Fig. 4 for modB — 500M (1 percent systematic error), modB — 500M (10 per cent systematic error) and modB — 500M (30 per cent
systematic error). The corresponding)(ez[f =179.5,0.71, 0.41 for increasing error budgets (1 percent, 10 per cent, 30 per cent). The snapshots from all models

(plus model B) are visible bellow, in Fig. 8.
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Figure 8. 230 GHz images of GRMHD models from Fig. 7. The figure aims to underline the improvement on the last two panels, going from 1 per cent errors,

to 10 per cent, and 30 per cent.

Sagittarius Ax is changing on time-scales that are short compared
to a full night of EHT observation. To be precise 500 M for Sgr Ax is
equivalent to 165 min. In this case VLBI data collected over one full
night represent a smoothed-out image of a varying accretion flow.
To emulate such smoothing effect in our pipeline we create the truth
synthetic data by averaging three snapshots (models: B — 500M, B,

MNRAS 535, 3181-3197 (2024)

and B + 100M), called model ‘avg’. We then fit a single snapshot to
the ‘averaged’ truth (shown in Fig. 9, left panel). We consider two
cases: first where the fitted snapshot is a part of the averaged image
(model B, shown in Fig. 9) and second where the fitted snapshot
is approximately 3500 M away from the average image (Fig. 9).
These two fits are called ‘avg T,y = 0’ and ‘avg T, = 3500M’
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Figure 9. 230 GHz images of GRMHD model of Sgr Ax from different snapshots and using the GRRT parameters dictated by the fitting algorithm. For
B + 100 M and B — 500 M the sampler was fitting B with the aforementioned templates. For avg models, Tier corresponds to the template used by the sampler.
The colour codes the emission intensity (Stokes 7). A direct comparison between physical parameters and snapshots can be seen in Table 5. Model avg Tref =
3500 M Themis fit introduces the strongest biases. The most striking ones to the eye are Myp;; and PA. The smaller My is a reaction to the extended nature of
the snapshot, while the PA = 36 deg result of the different symmetry of the source. Note, that we fit CP which is particularly sensitive to symmetries on the sky.

respectively. As a sanity check we also perform a fit with model avg
(=500 M,100 M), that excludes the snapshot T;.t = 0 from the truth.
The systematic error added to the synthetic data was 10 per cent for
all cases.

The results of this fitting exercise are shown in Fig. 10 and their
parameters are listed in Table 5. The model avg T'.; = O (orange line)
converged to values close to the truth with the largest deviation for
Rhigh = 26.9 and total Xesz = 10.2. The produced image avg Tref = 0
Themis fit is visible in Fig. 9 (bottom right panel) closely resembles
the averaged image (the cross-correlation between them is 0.972
using the NXCORR tool within EHT- IMAGING software). The fit
from model avg (—500M,100M), Tt = O, is visible in Fig. 10. The
results are of matching quality with similar biases and xZ% = 4.3,
ensuring that the smoothing of the truth is more significant than the
existence of Ty = 0 in the averaged truth image.

In the second case of model avg T = 43500 M the biases are sig-
nificantly larger, placing an upper limit in snapshot misspecification
at roughly 500 M. The fitted image (avg T,f = 3500 M Themis fit) is
visibly different from the averaged image, but explains some of the
posterior values, such as the low M, to make emission narrower,
and negative PA to roughly match the emission region asymmetry on
the sky.

To sum up, both these tests suggest that variability will play
a detrimental role in parameter estimation when moving to real
data fitting. However, a more sophisticated implementation of the
noise models arising from variability studies (Broderick et al. 2022;
Georgiev et al. 2022), both on baseline and time domain, could
prove extremely fruitful, and we plan to examine this in a future
study.

4 DISCUSSION AND CONCLUSIONS

We created a pipeline towards Bayesian inference by fitting the
GRMHD models to EHT observations and estimate model parame-
ters. Similar efforts have been previously made by Kim et al. (2016)
where sampling of GRMHD images was done only using two param-
eters: PA and total flux normalization. Also in Psaltis et al. (2022)

anew MCMC algorithm was introduced for sampling of geometric,
crescent models for image features (such as the shadow radius,
the width of the ring etc.). In Medeiros et al. (2023) a PCA-based
image reconstruction was developed, using an ensemble of simulated
GRMHD images for fitting VLBI data. Lastly, in Jimenez-Rosales
et al. (2023) image moments were used to characterize GRMHD
snapshots as a means for model discrimination. Here we sample
multiple parameters which require radiative transfer calculations in
every MCMC-step which is a significant leap compared to previous
work. We tested the pipeline over two distinct models (A, B) with
differing inclination angle and Ry;gh, but more importantly, we made
first steps towards tackling the time variability issue of such systems.
The main results of this work lies in Fig. 6, where we showed that
with the correct consideration of error budgets the pipeline is capable
of retrieving correct parameters even for mis-specified snapshots. In
Fig. 10 we showed that the miss-specification can work even for
an averaged truth from multiple snapshots. Of course, that does not
come without limitations as for the same averaged snapshot with a
fitting template 3500 M away, the pipeline misses significantly the
truth in all parameters. Template spacing of 1000 M, or 500 M to be
more moderate, could potentially solve that and it would decrease
the necessary snapshots by an order of 100, from 500 (cadence 10 M)
used in AIS to 5-10 (cadence 1000 M—500 M) with our scheme.

In this stage we focused on fitting models to observed closure
phases constructed from interferometric visibility phases. If one
chooses to also fit visibility amplitudes, another thing that should
be taken into account is that in case of Sgr Ax (but not M87x),
the visibility function should be additionally modified to include
smearing effects caused by refractive scattering of radio waves by free
electrons in the Galaxy (Johnson & Gwinn 2015), causing artificial
small-scale substructure in the image.

Despite being an improvement on static libraries, the adaptive
parameter estimation is still time-consuming. In particular, to run
the multiparameter fit on a university cluster, with 60 CPU cores,
1 GB per core, for 10000 MCMC, takes approximately 170 wall-
clock hours. In the same cluster running the snapshot scoring (part of
AIS) takes 20 wall-clock hours with 24 cores, for a certain parameter
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Table 4. The difference in GRMHD snapshots and physical parameters
between the models presented in fitting test 3.3. The labels —100 M, +500 M,
refer to how far a snapshot of the GRMHD simulation is with respect to
model B (7 = 0). Themis fit, refers to the best parameters from the MCMC
sampler. For B 4+ 100M and B — 500 M the sampler was fitting B with the
aforementioned templates. The percentile in the fitted models note systematic
error level.

already faster, plus the added value of not having to create, save, and
manage the millions of snapshots required for AIS.

Another time-consuming part (for both the static library scoring
and our approach) is the GRMHD simulation itself. At present we
do not consider different GRMHD simulations and only call the
ray-tracing code to generate different model images from the same
simulation. The parameters which we are interested in the GRMHD,

Model ; Monic Rhigh PA[] 1 such as the_ spin of the_black hole, could not be estlmateq under. the

current settings. Applying the current method to multiple simulations
B 4 100M 90 10" 20 0 - is a first, direct way forward leaving a model selection problem that
B — 500M 90 0% 20 0 -

B + 100M Themis fit 84.5 1.23x 10  20.5 0.02 150
(1 per cent)
B — 500M Themis fit 101.9 2.37 x 10'°  37.8 0.2 181

(1 per cent)

could be tackled with Bayesian evidence or information criteria. How
to simplify the model and generate the model image faster is a big
challenge and that is the reason why fitting simple phenomenological
models to observations is another practical way to compromise at

B — 500M Themis fit 90.0 1.0 x 10'° 20.0 0.0 071 present, such as Narayan & Yi (1995) and Broderick & Loeb (2006)
(10 per cent) or the more modern approaches of Palumbo et al. (2022), Chang
B — 500M Themis fit 89.8 1.0 x 10" 20.3 0.0 0.41 et al. (2024), and Yfantis et al. (2024).

(30 percent)

combination (so using only five inclination values and five Rpyign
values takes 500h). For a usage of ~ 10 snapshots our method is

96.06+ 0.3815
88.74+ 0.0416
137.96+ 0.0665

The MCMC sampling part is fast due to the highly parallel
development. The computing performance could be improved by
carefully choosing the numerical parameters (e.g. the temperature,
the number of walkers) to be better adapted to the computer.
Another bottleneck arises from load imbalance on the radiative
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Figure 10. Same as Fig. 4 for models avg(—500,100), Tief = 0, avg(—500, 0, 100), T = 0 and avg(—500, 0, 100), Tref = +3500M, all with 10 per cent

systematic error. The corresponding Xesz = 4.3, 10.2, 30.0 for the three models, respectively..
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Table 5. The difference in GRMHD snapshots and physical parameters for fitting test 3.4. Model avg was made using snapshots —500 M, 0 and +100 M.
Themis fit, refers to the best parameters from the MCMC sampler. Tt corresponds to the template used by the sampler. The percentile in the fitted models

note systematic error level.

Model Munit Rnigh PA [r] X2
B + 3500M 90 10" 20 0 -
avg (—500M, 0,100 M) 90 10 20 0 -
avg (—500 M, 100 M) Tref = 0 Themis fit (10 per cent) 96.04 0.98 x 101? 21.4 0.03 4.3
avg Trer = 0 Themis fit (10 per cent) 88.74 1.17 x 10" 26.9 —0.06 10.2
avg Tret = 3500 M Themis fit (10 per cent) 137.96 0.54 x 101? 40.0 —0.6 30.0

transfer side. At each tempering level independent model images
are being generated for different parameter values, some of which
such as higher M (i.e. higher density and opacity) will take longer
to compute than others. On this front, recent developments in ray-
tracing optimization, such as the GPU version of ITPOLE presented
in Moscibrodzka & Yfantis (2023) can be proven useful for the
speed-up of the pipeline.

We have presented and validated the first Bayesian scheme to
infer properties from GRMHD simulations from their simulated
model images and visibility data as measured by an EHT-like VLBI
configuration. This is a major step in fully utilizing the predictive
power from GRMHD simulations of accreting black holes which
previously have only been compared to VLBI data in more indirect
ways and by using a-priori fixed parameter surveys. The work
presented here eliminates simplifying scaling assumptions with total
flux and BH mass in previous EHT VLBI analysis using GRMHD
models Event Horizon Telescope Collaboration (2019¢). It further
allows improved conclusions from GRMHD models given a VLBI
data set: (i) a refined inference in a continuous posterior distribution
instead of discrete apriori chosen values (ii) efficient extension of the
probed prior range (for instance beyond Ryign = 160) of the explored
model parameters, which would otherwise become prohibitive with
current strategies and (iii) a more efficient pathway to expand the
parameter space to include any additional parameter that IPOLE
can vary. More advanced samplers can easily handle much higher
dimensional likelihood surfaces than will ever be explored with
such models. Instead, the key improvement will be to speed up the
evaluation of a single likelihood for instance by speeding up disc I/O.

Much work is still needed to get the most out of such inferences, but
the next steps (sampler improvements, better likelihood approaches
using complex visibilities, GRMHD-informed error budget etc.;
Event Horizon Telescope Collaboration 2022d; Broderick et al. 2022;
Georgiev et al. 2022) are both clear and already implemented in
other analyses in THEMIS. Furthermore, following the results of
Event Horizon Telescope Collaboration (Akiyama et al. 2021a),
where polarization is resolved from MS87, the so-called closure
traces® can be included in the pipeline, making the fitting of the
polarization to full visibilities possible. We envision that improved
analysis schemes will greatly benefit the GRMHD community and
theoretical interpretation of accreting black holes in the near future.
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APPENDIX A: OPTIMAL IMAGE RESOLUTION

To reduce the computational cost of the pipeline we look for a
minimum model image resolution for which the synthetic VLBI data
are converged. Given the fiducial image of model A (with parameters
i = 600, Munil =3x 1018, Rhigh = 3, Rlow = 3, PA = 0), shown in
Fig. 1, we use EHT- IMAGING to produce the visibility amplitudes
and closure phases for four different image resolution cases: 32x32
pixels, 64 x 64 pixels, 128 x 128, and 256 x256 pixels.

We compare all the observables generated by EHT - IMAGING, the
results of which are plotted in Fig. A1. In the top row we can see the
natural improvement of images with resolution. In the bottom one we
show the VA and CP data for all resolutions. What we want to convey
is that even though the data get better with higher resolutions, the step
from 128 to 256 is small, while the steps before that large. Indeed,
we see that points of green and orange show sizable divergence, but
the blue points are often ‘hidden’ in the plots, suggesting that they
match very well with the points from 256 (purple).
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Figure A1. Top: the modelled images for 32x32 pixels, 64 x 64 pixels, 128 x 128 pixels, 256256 pixels. Bottom:t he left plot shows the visibility amplitudes
for all different resolutions; the right one all the closure phases. Crosses represent 322 and 642, while dots represent 128> and 2562.
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Figure A2. Top: Same as Fig. 4 for model A using different resolution (642, 1282). Middle: The log-likelihood evolution through out the run. Bottom: The
chains for the whole duration of the MCMC run. The burn-in for the PDs and the Gaussian fits has been set to 6000 and the total run time was 10000 MCMC.
The reported Xesz are the smallest values after the burn-in. In short: low resolution introduces poorer fit quality, but the posteriors are largely un-biased with
the exception of Ry;gh. The latter bias in Rpgh is subtle in magnitude compared to the coarse spacing in the EHT libraries, but should be further investigated in

subsequent work.
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To further strengthen our thesis and demonstrate the benefit of
using data with resolution 1282, in Fig. A2 we compare the results
from fitting model A, for all four parameters, using two different
resolutions (642, 1282). The higher resolution outperforms the lower
one in a number of fronts. The posteriors for 64> are not covering
the truth for all parameters (Ry;gp is shifted). This is reflected in the
likelihood graph as well, where in lower resolution the quality of the
fit is not as good (xZ = 5.37). Lastly, the lower resolution exhibits
a slower convergence, that can be seen both in the chains and the
likelihood development.

Overall, it seems that a resolution of 1282 is necessary for
sufficient fit quality while resolution of 2567 does not provide further
improvement at higher computational expenses.

APPENDIX B: DEPENDENCE ON CHOICE OF
SAMPLERS, WALKERS, TEMPERATURES, AND
INITIALIZATION

In this appendix, we search for the optimal sampling method and
chains initialization. We do this by various fitting procedures and
direct comparisons for model A.

Within the parallel tempering sampler, an algorithm should be
chosen to decide on the next step parameters. There is a handful
of options implemented in THEMIS, from which we consider three
for this project. The first one is the affine invariant (AI) method
described in detail in Goodman & Weare (2010). Under the affine
transformation the ill-shaped density probability will not bring any
extra difficulties as the simple single-variable MCMC samplers (e.g.
Gibbs sampler) do. This method is widely used and well tested in
the famous MCMC python package EMCEE (Foreman-Mackey et al.
2013). The second possible algorithm is the differential evolution

(DE) method introduced by Ter Braak (2006) and developed further
in Nelson, Ford & Payne (2014). Similarly to the affine invariant
method each chain draws new values by using positions from other
chains in the parameter space. The difference is that DE uses all
chains per draw while Al only one. This can lead to discrepancies
in their performance, depending on the problem. Due to the pipeline
constructions, the number of processors should be at least Nt and be
integer times of Nt x Nw/2 for both samplers. The last option is the
automated factor slice (AFS) algorithm (Tibbits et al. 2014). It was
implemented more recently than the others within THEMIS and it has
a key difference since it operates only with one chain, multiplied by
the temperatures. It improves from the simple Metropolis—Hastings
(MH) sampler by using an in-between step of redefining the sampling
pool on every step.

Fig. B1 shows the chains and the corresponding likelihood for all
three samplers fitting two parameters (M, and PA). The top has
been made with an initial value of 8 x 10'® while the bottom with
3 x 10" (truth is at 3 x 10'®). In the top panel, all samplers behave
similarly, they converge towards the truth fast (with AFS being the
fastest ~ 10 steps) and with similar xZ; values (AFS has a higher
value that persists till after 5000 MCMC steps). Already we can
notice that DE in contrast to Al is more jittery, probably to the fact
that the number of chains and temperatures is too high for the level
of communication DE sampler imposes.

In the bottom panel the picture is different. AFS which was the
faster sampler in the previous case, now converges to the truth last
(at 530 MCMC steps). Furthermore, even though it seems like DE
is faster than Al, that is actually not the case, since almost all chains
are close to the truth but not exactly and vary significantly for a
long period. All this is reflected in the likelihood plot, where the
oscillation of DE chains is more evident.
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Figure B1. Trace of the chains fitting Myp;; for different samplers (AL affine invariant, DE: differential evolution, AFS: automated factor slice). The run shown
in the top panel was initialized at 8 x 10'8, while the bottom at 3 x 10'°. Note that the last MCMC step in the bottom is 550. AI and DE were run with 40 cores
and their computational efficiency was 1.5 steps per core per hour. AFS was run with 10 cores and the efficiency was higher at 2.5 steps per core per hour.
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Figure B2. Trace of the chains fitting My, for different initial ranges using the AI sampler. The initial value is 3 x 101°.
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Figure B3. Trace of the chains fitting all four parameters for different samplers (Al: affine invariant, AFS: automated factor slice). The chains were initialized
in the same way as for model A. Al was run with 40 cores and the computational efficiency was 1 step per core per hour. AFS was run with 12 cores and the
efficiency was the same, 1 step per core per hour, with a much faster convergence though.

As a last remark the computational efficiency of Al and DE is
60 and 70 steps per hour, respectively, using 40 cores (8 chains and
10 temperatures, divided by 2), so ~ 1.5 steps per core per hour
while AFS is 25 steps per hour, using 10 cores (1 chain and 10
temperatures), so 2.5 steps per core per hour.

Fig. B3 shows the fitting procedure for all parameters using Al and
AFS. For initial values we chose the same as in the main results, that
is i() = 90, Munit,O =8 x 1018, Rhigh,O = 30, PA() = 0. It is evident
that AFS converges faster in this example. The fact that some chains
from Al get stuck for a significant amount of time can be a problem
for more advance fitting procedures. This is a well known problem
in certain fits with Al reported already in Foreman-Mackey et al.
(2013).

© 2024 The Author(s).

In Fig. B2 we show the chain evolution for the Al sampler for
different initial range, using the same initial value. The convergence
is faster with a wide range if the initial value is far from the truth,
but with better informed prior a smaller range is to be preferred, as
stated in Foreman-Mackey et al. (2013).

The combination of these tests, taking into account the com-

putational time, makes Al our sampler of choice for this work.
Furthermore, we choose to initialize our chains near the middle of

the desired area of exploration with an initial range that covers it all
to be as agnostic as possible. In the future a hybrid approach, using
Al for a wide survey and AFS for a more detailed exploration, with
priors obtained from Al, could prove optimal.
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