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A B S T R A C T 

Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87 ∗ and Sgr A ∗ offer valuable 
insights into their space–time properties and astrophysical conditions. Utilizing a library of model images ( ∼ 2 million for 
Sgr A ∗) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key 

parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation 

and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, 
probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and 

computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores 
the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with 

the EHT parameter estimation tool THEMIS . The pipeline produces a ray-traced model image from GRMHD data, computes 
predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration 

and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on 

four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully reco v ers 
parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact 
of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations 
and enables expansion of the model parameter space in a statistically robust and computationally efficient manner. 

Key words: accretion, accretion discs – black hole physics – methods: data analysis – methods: statistical – techniques: high 

angular resolution – quasars: supermassive black holes. 

1

T
b
c
s
2  

i  

(  

2

o  

a
t

�

(

V
m
m
b

(
fl
t  

t  

2  

J  

T
f  

(  

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/4/3181/7885349 by guest on 08 M
arch 2025
 I N T RO D U C T I O N  

he Event Horizon Telescope (EHT) is a millimetre very long 
aseline interferometric (mm-VLBI) array capable of resolving 
ompact (sizes of ∼ 20 μas) event horizon scale structures around 
upermassive black holes in M87 (called M87 ∗) (Doeleman et al. 
012 ; Event Horizon Telescope Collaboration 2019a , b , c , d , e , f ) and
n the Galactic Centre (called Sagittarius A ∗, abbreviated Sgr A ∗)
Doeleman et al. 2008 ; Fish et al. 2011 ; Johnson et al. 2015 ; Lu et al.
018 ; Event Horizon Telescope Collaboration 2022a , b , c , d , e , f ). 
As recently demonstrated in Event Horizon Telescope Collab- 

ration ( 2019e , f , 2022e , f ), EHT also enables inferences of the
strophysical conditions present in the relativistic environment in 
he immediate vicinity of a black hole horizon by comparing the 
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LBI data to theoretical models that predict the on-sky emission 
ap. For this purpose substantial libraries of diverse source models, 
odel comparison techniques, and parameter estimation tools are 

eing built and constantly impro v ed. 
In particular, general relativistic magnetohydrodynamics 

GRMHD) numerical models of inefficiently radiating accretion 
ows onto a black hole combined with general relativistic radiative 

ransfer (GRRT) models predict the appearance of the two EHT main
argets (Dexter, Agol & Fragile 2009 ; Mo ́scibrodzka et al. 2009 ,
014 ; Mo ́scibrodzka, F alcke & Shioka wa 2016 ; Gold et al. 2017 ;
im ́enez-Rosales & Dexter 2018 ; Chael, Narayan & Johnson 2019 ).
hese numerical models of magnetized accretion flows depend on a 

ew key physical parameters such as: (i) the spin of the black hole,
ii) magnetic flux threading the horizon, (iii) the mass accretion rate
nto the black hole, (iv) the electron thermodynamics (here simply 
odelled via R high , and (v) the orientation of the system with respect

o the observer. Constraining these free parameters of GRMHD 

imulations via EHT observations can give us quantitative estimates 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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f black hole mass and spin, insights into how gravitational energy
s converted into radiation in strong gravity and what mechanism
aunches the astrophysical jets such as the one observed in M87 ∗
e.g. Hada et al. 2013 ; Kim et al. 2018 ). 

To constrain physical parameters of M87 ∗ and SgrA ∗, Event
orizon Telescope Collaboration ( 2019e , 2022e ) created a static

ibrary of approximately 60 000 GRMHD model images for M87 ∗
nd about 1800 000 for Sgr A ∗ and then compared the libraries to the
HT data via various scoring procedures (Event Horizon Telescope
ollaboration 2019e , f , 2022e , f ). The two main ones are: (a) average

mage scoring (AIS, used for total intensity data), where snapshots
rom simulations are turned into synthetic VLBI observations and
ompared to real data; and (b) snapshot characterization (used mostly
or polarimetric images), where a suite of image properties such
s, e.g. resolv ed de gree of linear and circular polarizations and
heir directions are compared to polarimetric characteristics of the
econstructed source images. 

In the existing scoring procedure of the EHT to total intensity
ata (AIS scoring), (a) only the total flux of the image (for a
xed accretion rate), (b) the mass of the black hole, and (c) the
osition angle of the model are estimated in adaptive fashion over
he entire possible range. In EHT terminology this is called snapshot
coring, and creates distributions using all snapshots available (see
revious par.). After that, for each model (combination of GRMHD
 GRRT parameters), consisting of ∼ 500 snapshots an average

mage is created. This averaged image generates synthetic data that
re compared with the real data, given a standard deviation from
he spread of the snapshots. Then, given a passing criterion (e.g.
umulative distribution ∈ [2 . 5 per cent , 97 . 5 per cent ]) the models
ass or fail the AIS test (see Event Horizon Telescope Collaboration
019e ). In this procedure parameters such as inclination angle,
lectron heating parameter R high , black hole spin, and magnetic
ux on the horizon are sampled sparsely in the limited range.
oreo v er, the two latter parameters are fixed for a given GRMHD

imulation and changing them is computationally e xpensiv e as it
equires running an entire GRMHD simulation. 

A key aspect of accretion flows and GRMHD simulations, vari-
bility, is particularly challenging for inference pipelines. Variability
efers to the inhomogeneity of an accretion flow in a spatial and
emporal sense. These two aspects are often intertwined, since a
patial variability (a disc without azimuthal symmetry for example)
s magnified by temporal variability, where the directions and
articularities of this asymmetrical flow are changing direction and
ven structure over time. 

This means that when comparing EHT data with simulations it is
ecessary to provide many snapshots of a simulation to test if any of
hem resembles the source, and even then it will be an approximation.
ence the inference pipelines need to be capable of matching two

mages that are a priori different. In AIS, this is done by the usage of
he aforementioned large model libraries. 

In this paper, we propose a new Bayesian parameter estimation
rocedure by integrating the GRRT code ipole (Mo ́scibrodzka &
ammie 2018 ) with EHT/VLBI data analysis framework THEMIS

Broderick et al. ( 2020 ) and Section 2.3 in this paper] and en-
ble the adaptive GRRT parameter estimation given an arbitrary
RMHD snapshot. In the impro v ed parameter estimation scheme,

he parameters defined in GRRT, e.g. the inclination angle, the
ccretion rate, and the plasma thermodynamics parameter will be
daptively sampled across the entire parameter space to compute
he posterior distributions via Bayesian inference. Notice that in
his approach the large amount of memory for statically storing the
mage library is not necessary. We also show that our pipeline could
NRAS 535, 3181–3197 (2024) 
rovide a robust framework to account for the variability challenges,
ee Section 3.4 . Additionally, the pipeline is designed to be highly
arallelized and extensible, which is the important first step towards
he large-scale computation of adaptive parameter estimation from
RMHD simulations in the future. 
To assess the accuracy and efficiency of our new parameter

xtraction scheme, we first pick an arbitrary set of GRRT model
arameters and generate an image from a GRMHD simulation. Next,
e simulate the EHT 2017 observation by assuming the abo v e image
as the same celestial position, mass, and distance as Sgr A ∗ (but the
rocedure can be also adopted for M87 ∗) and generate synthetic mm-
LBI data, including visibility amplitudes and closure phases. Since,

or our fitting routine we decide to use only the closure phases, the
nterstellar media scattering effect is not considered at this primary
tep (which is important and complicated for fitting archive Sgr
 ∗ data, see e.g. Johnson et al. 2018 ; Issaoun et al. 2019 , 2021 ).
dditionally, we apply standard thermal noise (Chael et al. 2016 ,
018 ) and systematic errors (1 per cent, 10 per cent, or 30 per cent
epending on the case). Then we use a Markov chain Monte Carlo
MCMC) algorithm to sample the posteriors of the parameters from
he underlying unknown distribution of all the physically possible

odels by comparing the synthetic data with the GRMHD + GRRT
odel. We perform well-controlled tests with a known ‘truth’ value
rst by fitting two parameters and then extend it to fit four parameters
imultaneously. Such an incremental approach provides clarity when
nterpreting the results. 

In the future, the pipeline can be impro v ed, for instance, with more
ealistic observational corruptions of model images (e.g. Blecher
t al. 2017 ; Janssen et al. 2019 ) or polarimetric models (Event
orizon Telescope Collaboration 2021b ). THEMIS as well as IPOLE

an handle different observing frequencies. Therefore, the pipeline
resented here can naturally handle model fitting to upcoming EHT,
gEHT, and non-EHT data sets, e.g. to longer wavelengths VLBI
bservations of the EHT targets or AGN sources (Kim et al. 2018 ;
ssaoun et al. 2019 ; EHT MWL Science Working Group 2021 ). 

The paper is organized as follows. In Section 2 , we describe the
ipeline which produces the GRMHD + GRRT models of Sgr A ∗ (or
87 ∗) at millimetre waves (Section 2.1 ), the process of generating

ynthetic mm-VLBI observation data sets from the image (Section
.2 ), the sampling methods (Section 2.3 ). In Section 3 , we use the
ynthetic data (generated in Section 2.2 ) to test the adaptive parameter
stimation pipeline by two parameter fitting (Section 3.1 ) as well as
ultiparameter fitting (Section 3.2 ). In Section 3.3 we introduce

ime variability in the fitting algorithm, and in 3.4 we propose a few
ays to account for it. We summarize the results and conclude in 
ection 4 . 

 PA RAMETER  ESTIMATION  PIPELINE:  
ESCRI PTI ON  

.1 Physical model and model parameters 

xtracting physical parameters from EHT observations requires a
odel for the accretion flow onto a compact object and a model for

he arising emission. 
Our model describes an accreting black hole within ideal-GRMHD

imulation and is therefore intrinsically dynamical. The simulation
tarts with a torus of plasma in Keplerian, equatorial orbit around
 Kerr black hole (Fishbone & Moncrief 1976 ) that would be in
ydrostatic equilibrium in absence of magnetic fields. The torus is
hen seeded with weak magnetic fields and the evolution of such
onfiguration is computed by solving the equations of ideal general
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elativistic magnetohydrodynamics (Gammie, McKinney & T ́oth 
003 ). Simulations show that magnetic turbulence is developed, 
hich acts as an ef fecti ve source of viscosity (Ha wle y & Balbus
991 ; Balbus & Ha wle y 1998 ), thereby causing matter to accrete
nto the black hole. In this process some material escapes the system
n the form of winds and jets that may or may not be visible in
he model image depending on radiation properties and electron 
hermodynamics. 

The free parameters of the GRMHD-informed model images can 
e divided into two categories: numerical parameters and physical 
arameters. The numerical parameters are e.g. numerical grid size 
nd resolution of the simulation. Physical parameters include: black 
ole spin parameter a ∗ ∈ (0 , 1) 1 or the normalized magnetic flux
hreading the horizon in the relaxed, steady state, which is the 
undamental parameter describing the state of the magnetic field 
long the standard and normal evolution (SANE) and magnetically 
rrested disc (MAD) regimes (Tchekhovsk o y, Narayan & McKinney 
011 ; Porth et al. 2019 ). In this paper, we utilize time-slices of an
xisting 3D GRMHD SANE simulation of Shiokawa ( 2013 ) (applied 
o model Sgr A ∗ in Mo ́scibrodzka et al. 2014 ), with the black hole
pin parameter a ∗ = 0 . 9375 and the adiabatic index of 13 / 9. We pick
napshots where the turbulence is fully developed and the simulation 
xhibits roughly a steady-state behaviour in which at least the interior 
e gions hav e not retained their initial conditions. 

Next, we generate synthetic images (intensity maps) from this 
imulation snapshot using the ray-tracing and radiative transfer code 
POLE 2 (Mo ́scibrodzka & Gammie 2018 ), which was tested against 
ther radiative transfer codes used in the original IPOLE paper 
s well as in Gold et al. ( 2020 ) and Prather et al. ( 2023 ). The
ast-light approach is used throughout this work for both synthetic 
ata and Bayesian runs. The main radiative processes considered 
n computing images from the GRMHD simulation is synchrotron 
mission and synchrotron self-absorption. Generating images of a 
articular astrophysical source requires rescaling the dimension-less 
RMHD simulations from geometrized unit system ( G = M = 

 = 1) to c.g.s. units. The scaling requires providing the mass of the
entral black hole which will also set the length scale of the system
ccording to GM BH /c 

2 [cm] and time scale units GM BH /c 
3 [s] . The

caling also requires providing the mass unit parameter M unit that 
cales the density of the plasma around the black hole, i.e. the
ensity of the matter in the accretion flow is ρc . g . s . = ρcode M unit / L 

3 

Notice that M unit also scales the accretion rate onto the black hole
nd strength of magnetic field at the same time, see Mo ́scibrodzka
t al. 2009 for details). It is therefore in principle necessary to
edo the ray-tracing/radiative transfer computation whenever these 
arameters are varied, which is what we pursue here in contrast 
o an approximate scaling approximation designed to a v oid the 
dditional computational cost. The free parameters used to model 
he differences between electron and proton temperatures in various 
egions of different magnetization are R low and R high (motivated by 

o ́scibrodzka et al. 2016 and Ressler et al. 2015 , see also Event
orizon Telescope Collaboration 2019e ). Specifically, the proton to 

lectron temperature ratio reads: 

T p 

T e 
= R low 

1 

1 + β2 
+ R high 

β2 

1 + β2 
. (1) 
 The black hole spin is usually given in dimension-less units where a ∗ = 0 
escribes Schwarzschild black hole and a ∗ = 1 is maximally rotating Kerr 
lack hole 
 https:// github.com/ moscibrodzka/ ipole 
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iven T p , which is equal to the gas temperature in the GRMHD
imulation, as was done in Event Horizon Telescope Collaboration 
 2019e , 2022e ), we can compute T e using equation ( 1 ) and the
ynchrotron emissivities thus depend on the assumed R high , R low 

arameters. As R high and R low are not two independent parameters, 
 low is usually fixed to be a constant ( R low = 1 in Event Horizon
elescope Collaboration 2019e ). The inclination angle, i, and posi- 

ion angle, PA (orientation of the image on the sky with respect to
he celestial North pole), are two remaining parameters of the model
escribing the geometrical orientation of the system with respect to 
he observer’s line of sight. Finally, the distance of the observer to
he source has to be assumed. 

For current models only black hole spin and magnetic flux 
equire an independent GRMHD simulation. This leads to higher 
omputational efficiencies especially for higher dimensions and the 
bility to estimate the posterior distribution for each parameter 
ncluding black hole mass and spin. We also drop the assumption
bout optical depth made in Event Horizon Telescope Collaboration 
 2019e , 2022e ) where a crude flux rescaling was applied, treating
H mass and total flux as scale-free parameters (to within a limited

ange). Such a scaling can at most be valid in a finite range and more
pecifically for matter that is sufficiently optically thin. Our method 
eperforms the ray-tracing and radiative transfer on every likelihood 
 v aluation and hence drops these assumptions. This is in itself a
ignificant impro v ement o v er the current method. 

In this work we focus on parameter estimation by scaling the
imension-less GRMHD simulations to Sgr A ∗ system but other 
lack hole masses can be assumed. We therefore fix the mass of
he black hole to M BH , Sgr A ∗ = 4 . 1 × 10 6 M � and distance D SgrA ∗ =
 . 5 kpc (Gravity Collaboration 2018 ). Other model parameters i,
A , M unit , R low , R high are allowed to float. This list can easily be
eneralized to include any parameter in the ray-tracing and radiative 
ransfer code used. 

In Fig. 1 (left-most upper panel) we show an example of an
rbitrarily chosen sets of parameters of appearance of the 3D 

RMHD simulation scaled to Sgr A ∗ system parameters as seen 
y an observer on Earth. The model image is generated at an
bservational wavelength of λ = 1 . 3 mm ( ν = 230 GHz ) at which
HT currently operates (in the future EHT will also operate at
 . 87 mm / 345 GHz ). 

.2 VLBI data products and synthetic data generation 

HT is an interferometer which detects the sparsely sampled Fourier 
omponents of the image of the source on the sky, called visibilities.
he visibility V ( u, v) is the 2D Fourier transformed complex

unction of intensity distribution I ( x , y ) defined by e.g. Thompson,
oran & Swenson ( 2017 ) as: 

 ( u, v) = 

“
I ( x , y ) e −2 πi ( ux + vy ) d x d y . (2) 

he visibility is by definition a complex function with amplitude 
 and phase φ: V ( u, v) = Ae −iφ . In Fig. 1 (middle and right-most
pper panels) we show the visibility amplitude and phase computed 
ased on the GRMHD model image. 
The visibility amplitudes are subject of a future work, so they are

ot discussed here. In the present we utilize closure phases, the sum
f the complex visibility phases along a closed triangle baseline, 
hich is: 

 i,j ,k = arg ( V ij V jk V ki ) , (3) 
MNRAS 535, 3181–3197 (2024) 
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M

Figure 1. Top panels: 230 GHz image of GRMHD model of Sgr A ∗. Physical parameters used to generate image are: M unit = 3 × 10 18 gram, R high = 3, 
R low = 3, i = 60 ◦, PA = 0 ◦. Here, the model image has high resolution of 256 × 256 pixels. The colour shows the emission intensity (Stokes I). The middle 
and right panels show the amplitudes and phases of the complex visibility function which is generated by the Fourier transformation (FT) of the model image. 
Bottom panels: Synthetic EHT 2017 data generated using EHT-IMAGING and THEMIS . The middle left panel shows the baseline ( u, v) co v erage of the 
observation and the middle right panels displays the visibility amplitudes as a function of (u,v) distance. The colours code different baselines. The bottom panel 
shows the synthetic closure phases. The different colours refer to different EHT station triangles. Black crosses denote the data modelled within THEMIS which 
are in excellent agreement with those from EHT-IMAGING . 
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here V ij , V jk , and V ki are the visibility of baseline ij , jk , and ki . Due
o de generac y amongst possible triangles, an array with N antennas
as ( N − 1)( N − 2) / 2 independent closure phases (Thompson et al.
017 , Blackburn et al. 2020 ). For the 2017 EHT observations N =
 which gives 21 independent closure phases but in general one
an form up to 56 closure phase triangles ( N ( N − 1)( N − 2) / 3!)
ssuming that the source is visible at all sites during an observing
indow. In practice, using 2017 EHT ( u, v) co v erage, we generate 41

losure phases. The simulated observation is roughly 11 h long. The
ain advantage of the closure quantities is that they are insensitive

o station-based errors (Chael et al. 2018 ). 
In Fig. 1 (middle and bottom panels) we show the ( u, v) co v erage,

ynthetic visibility amplitudes and closure phases. Our example of
ynthetic VLBI data is generated based on GRMHD image assuming
he following parameters: i = 60 ◦, M unit = 3 × 10 18 gram, R high =
, R low = 3, and position angle PA = 0 ◦. For the following M unit will
NRAS 535, 3181–3197 (2024) 
l w ays be in ( gram). The image has 128 ×128 pixels (see Appendix A
or discussion of image resolution), and we assume that the source
s on the celestial sphere where the ascension and the declination are
ame as Sgr A ∗. The synthetic VLBI data are generated using the
HT-IMAGING library 3 (Chael et al. 2016 , 2018 ). We simulate the
HT observation with EHT 2017 array configuration to observe Sgr
 ∗ with the baseline ( u, v) co v erage matching the EHT observation
n 2017 April 7 (Event Horizon Telescope Collaboration 2022b ).
he centre of the observational frequency band is 229 . 1 GHz and the
andwidth is 1 . 8 GHz . 
Our synthetic EHT data are time-averaged along ( u, v) tracks into

0 min scans. Furthermore, the data have been treated to account
or typical noises, such as thermal and systematic noises usually

https://github.com/achael/eht-imaging
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onsidered when analysing EHT data (see e.g. Event Horizon 
elescope Collaboration 2019d , 2024a , b ). The thermal noise (tn)

s to account for fluctuations in the telescope during ‘observation’, 
hile the systematic errors (syser), set at 1 per cent, 10 per cent, or
0 per cent, capture additional uncertainties from the instrument. 
When fitting model to synthetic or real EHT data, the calcu- 

ation of visibility amplitudes and closure phases from the given 
odel image is the nested part of EHT data analyse framework 
HEMIS. 4 THEMIS is a massively parallel, modular, flexible, and 
xtensible framework, containing all the utilities necessary to com- 
are EHT data to a variety of model predictions for these data
ets, including visibility amplitudes, closure phases and more. The 
FTW3 5 is the fast Fourier transformation (FFT) library used to 

ransform the intensity distribution on the celestial plane to the 
isibility of each uv data sets, which are read from input data files.
n Fig. 1 we also show that the visibility amplitudes and the closure
hases calculated with THEMIS match perfectly those produced by 
HT-IMAGING library. 

.3 Model fitting 

.3.1 Likelihood and priors 

HEMIS carries out Bayesian parameter estimation via MCMC 

ampling the log-likelihood. In the Bayesian statistics, if given the 
rior probability distribution of parameters to estimate, the posterior 
robability distribution is constrained by the likelihood function. The 
ikelihood and the prior are defined by the user. The log-likelihood 
f closure phases is 

 ( � p ) = −
∑ 

j 


 

2 
(
	 j − ˆ 	 j ( � p ) 

)

2 σ 2 
j 

, (4) 

here � p is the vector of parameters to estimate, 	 j and ˆ 	 j ( � p ) are the
bserved and modelled closure phases, 
 ( x) is the angular difference

n the range [ −180 ◦, 180 ◦), and σj = 

√ 

σ 2 
tn, j + σ 2 

sys ∗ ˆ 	 j ( � p ) 2 . A link

o the more traditional approach is the relation L = −χ2 / 2, from
here it follows that 

2 ( � p ) = 

∑ 

j 


 

2 
(
	 j − ˆ 	 j ( � p ) 

)

σ 2 
j 

; χ2 
eff = 

χ2 

n d − n f 
, (5) 

here n d = 358 is the number of data points, affected by the data
haracter, visibility amplitudes (VA), or closure phases (CP), and the 
bservation specifics, number of telescopes, time, etc. The number of 
reedom is n f = 2 for two-parameter fit and 4 for the multiparameter
t, equal to the number of parameters being fitted simultaneously. 
In this likelihood definition, we assume that the errors in the closure

hases have Gaussian distribution. Ho we ver when signal-to-noise 
atio (SNR) is low, the error distribution is more likely to be non-
aussian (Thompson et al. 2017 ). How the error distribution and 
NR affect the fitting accuracy is discussed in Broderick et al. ( 2020 ).
nother problem of this likelihood is that it is unable to treat fitting
ulti-epoch data. Both, the non-Gaussian errors and the multi-epoch 

bservation fitting are beyond the scope of this work. 
 https:// github.com/ PerimeterInstitute/ Themis 
 FFTW is a publically available C subroutine library for computing the 
iscrete Fourier transform in one or more dimensions, of arbitrary input size, 
nd of both real and complex data. http://www .fftw .org/
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Similarly to the phases, the log-likelihood for visibility amplitudes 
an be calculated as 

 ( � p ) = −
∑ 

j 

[| V | j − ˆ | V | j ( � p ) 
]2 

2 σ 2 
j 

. (6) 

e adopt prior for each parameter separately. Due to the lack of the
nowledge of the true model parameters and for keeping the approach 
s agnostic as possible, we adopt flat prior for all parameters. It is
orth mentioning that flat prior is not equi v alent to non-informati ve
rior, but it is sufficient for this fit. 

.3.2 Sampling parameters 

CMC methods are frequently used to sample the posterior from 

rior with defined likelihood. In order to efficiently sample the 
nderlying parameter space and to faithfully infer model parameters. 
pecial care is needed on top of standard MCMC to a v oid trapping

n local extrema. We adopt a (parallel) tempering technique (Swend- 
en & Wang 1986 ; Geyer 1991 ), in which high-tempered chains
xplore large regions in the parameter space with low precision 
hile the low-tempered chains focus on small regions with high 
recision. The different tempered chains communicate and exchange 
heir position information, which let the coldest chains (most accurate 
nd used to be the final output) escape any local optimums. The
cheme has been demonstrated to explore a variety of likelihood 
urfaces including multimodal distributions and is well described in 
roderick et al. ( 2020 ). The sampler of choice for this project was

he affine invariant (AI) method described in detail in Goodman &
eare ( 2010 ). More possibilities and reasoning behind this choice

an be found in Appendix B . 
Within THEMIS a variety of further options can be chosen, 

rom VLBI data types, to sampling methods, number of w alk ers,
emperatures, steps between communication of the w alk ers, number 
f processors per likelihood. Our final choice consists of fitting 
losure phase data (CP), with the addition of thermal noise and
ystematic errors (1 per cent , 10 per cent , 30 per cent ), the affine 
n variant sampler , and the number of w alk ers and temperatures:
 W 

= 8, N T = 10 for the two parameter fitting and N W 

= 10,
 T = 12 for the multiparameter run (see the next section). We have

alculated the ef fecti ve sampling size for our two models (A and B,
ee Section 3 ) and we found minimum values of ∼ 40 and ∼ 67,
espectiv ely. We hav e not apply an y thinning, i.e. retain only a subset
f samples from the MCMC chains. 
A summary of the physical and numerical parameters used in the

alculations can be found in Table 1 . 

 PARAMETER  ESTIMATION  PIPELINE:  
A LI DATI ON  USI NG  SYNTHETI C  VLBI  DATA  

n the following, first we perform two parameter fitting, using fitting
arameter pairs of PA together with one of the other parameters
while keeping the remaining two fixed), the details of which are
resented in Section 3.1 . Then we raise both the number of N T and
 W 

by 2 and perform an all parameter fitting simultaneously, which
s presented in Section 3.2 and finally we discuss variability of the
ource and the data and how to tackle it in Sections 3.3 and 3.4 

.1 Single snapshot, two parameter fitting 

n the first test, model A (shown in the upper panels in Fig. 1 ) is used
o generate the truth synthetic data via simulating the EHT 2017
bservation. 
MNRAS 535, 3181–3197 (2024) 
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Table 1. Physical and numerical model parameters explored in this work. 

Physical model parameters 
Name Value/Range Description 

a ∗ 0.9375 Black hole spin parameter of a give GRMHD simulation snapshot; Fixed in this occasion. 
i (0 , 180 ◦) Viewing angle (inclination) of the observer: i = 0 ◦ is face-on, i = 90 ◦ is edge-on. 
PA [ −π, π ] Position angle of the black hole spin on the sky, measured east of north. 
M unit [10 17 , 6 × 10 19 ] Mass unit parameter scales the density of the plasma, hence M unit ∼ Ṁ ( g/s). 
R high [1,90] Describes coupling of T e w/ T p in regions of weak magnetization (high plasma β region). 
R low 3 Describes coupling of T e w/ T p in regions of strong magnetization (low plasma β region). 

Fitting numerical parameters 

Two parameter fit 

Name Value Description 
image res. 128 2 The size of model image, unit in pixels. 
N W 

8 The number of chains in MCMC sampler. 
N T 10 The temperature level of the parallel tempering in MCMC sampler. 
comm. freq. 2 The interval MCMC steps between communication events of different tempered chains. 
burn-in 500 The number of initial MCMC steps remo v ed from chains when building posterior. 
end step 5000 The final MCMC step of the simulation 

Four parameter fit 

image res. 128 2 The size of model image, unit in pixels. 
N W 

10 The number of chains in MCMC sampler. 
N T 12 The temperature level of the parallel tempering in MCMC sampler. 
comm. freq. 2 The interval MCMC steps between communication events of different tempered chains. 
burn-in 1000–3500 The number of initial MCMC steps remo v ed from chains when building posterior. 
end step 10 000 The final MCMC step of the simulation 
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The first pipeline test validates the scheme while fitting two
arameters only: PA in combination with one of the three remaining
arameters i, M unit or R high . PA sampling alone is done more
fficiently through an analytically marginalized likelihood ho we ver
ampling i, M unit , and R high requires repeating the GRRT simulation
n every step. To initialize the MCMC chains we have chosen values
n the middle of the range that we wish to explore (Table 1 ), using
at priors for all parameters. 
The test results are summarized in Fig. 2 where we show the

osterior probability distribution (PD) for all parameters and the trace
lot and the log-likelihood for M unit as an e xample. F or all runs χ2 

eff ≤
, as shown in Table 2 . We achieve effective sampling sizes larger than
00 for both parameters and a median split ˆ R = (0 . 9996 , 1 . 0017) in
he two parameter fit. 

The posterior densities and the Gaussian fits of them have been
ade with a burn-in of 500 MCMC steps. For all parameters except
 high the truth values are co v ered by the posterior (at 3 σ in the

ase of inclination). By contrast, the PD of R high has a shifted peak
evealing a smaller than 1 per cent bias (from the median value) and
isses the truth value altogether. 
To investigate R high offset we carry out several tests with three

mpro v ements, such as (i) adding more stations in the telescope
rray (from 2021, 2022), (ii) using CP and VA data, (iii) using a
ut in the data where we only use CP points with S/N abo v e 4, and
astly (iv) inflating the systematic errors at 10 per cent. The posterior
an be seen in Fig. 3 . Impro v ements (ii), (iii), and (iv) all resolve
he parameter offset problem separately. This points to a bias caused
y the closure phases, which is fixed either by the SNR cut or its
ffects are weakened when also VA data are included. The offset
roblem is also resolved when the systematic errors are inflated and
he posterior co v ers a wider range of values. 

Two parameter fitting tests demonstrate that it is possible to fit
ther parameters apart from PA, in an adaptive way, and that they
onverge to the truth values in a fast and stable fashion. The χ2 

eff values
or all runs below are close to 1 which further strengthen these claims.
NRAS 535, 3181–3197 (2024) 
he two parameter fits for R high or i already have advantage over the
tandard EHT image library which samples these variables rather
parsely (usually R high = 1 , 10 , 40 , 160, and i = 10 , 30 , 50 .. . ). 

.2 Single snapshot, four parameter fitting 

ext, we simultaneously sample four parameters (PA, i, M unit , and
 high ). We still fit only the CP data, using the same initial values

nd ranges of the parameters as in the previous two parameter fitting
ests. 

Fig. 4 shows a triangle plot of the posteriors and the joint
robability densities of parameters given two different truths, models
 and B. The burn-in window has been set to 3500 MCMC steps.
ur pipeline reco v ers both, significantly different, truth parameters.
s visible in Table 3 , the numerical parameters of the four parameter
ts together with 10 000 MCMC steps result in parameter estimation
ccuracy and precision comparable to those of the two parameter fits.

.3 Effects of time variability on the parameter estimation 

ere we examine the behaviour of the pipeline when taking into
ccount a possibility that the source may be changing in time (which
s certainly true for Sgr A ∗ o v er a single night and for M87 ∗ o v er
ime-scales of a week). In fact, our model image does not change with
ime yet (although this can be naturally incorporated in the future).
nstead we examine the effects if the realization of variability in
he model is different from the one in the data. We do so by fitting
ynthetic data from a model in a certain point in the simulation to
ynthetic EHT data created using a different time moment of the
ame simulation. model B + 100 M, has been created from the same
RMHD simulation and the same radiative transfer parameters, but
00 GM/c 3 later than model B, and similarly model B-500 M, 500
M/c 3 earlier than model B. Note that GRMHD snapshots are

nown to become sufficiently uncorrelated when separated by 20 −
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Figure 2. Results of the two parameters fits, showing the posterior probability distribution for all parameters. 

Table 2. Truth parameters and the pipeline performance for two parameter 
fitting, for a burn-in step of 500 MCMC. For each listed run, the PA and one 
other parameter is varied. 

Truth Estimated χ2 
eff 

PA( π ) 0 0 + O 

−4 –
i( ◦) 60 60 . 04 ± 0 . 021 0.66 
M unit (10 18 ) 3 3 ± 0 . 001 0.69 
R high 3 2 . 97 ± 0 . 008 0.89 

Figure 3. The posterior probability distribution for two parameters ( R high 

and PA) fits when assuming systematic errors of 10 per cent. Since we already 
have information about the truth, this test is limited to 2000 MCMC steps and 
a narrower prior for R high ∈ (1 , 10). When fitting real VLBI data we would 
use a wider prior and run the pipeline longer. 
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0 M and so the adopted time offsets can be considered significant
Georgiev et al. 2022 ). The snapshots of the GRMHD model for
he same radiative transfer parameters at different time moments 
re shown in Fig. 5 . We still use model B for synthetic data, and
 + 100 M or B − 500 M as a template for fitting. Our goal is to
ssess: (i) how poor the fit quality gets for a given error budget and
ii) how large the bias can be. 

Fig. 6 shows parameter estimation for both snapshots. Regarding 
 + 100 M, from the triangle plot it is clear that 2 parameters
 i, M unit ) have distributions with peaks shifted from the truth
7 per cent and 23 per cent, or 87 σ and 6 σ away from the truth,
espectively), but in a coherent manner in a sense that the more
istant snapshot is further away from the truth. Notice that in some
ases the 3 σ contours are on the edge of the truth (intersection of
ashed lines). As for the two remaining parameters ( R high and PA),
he distributions are able to co v er the truth, perhaps a coincidence or
n effect of time correlation given the poor fit quality (as expected in
bsence of inflated error budgets); in this test the χ2 

eff = 150 . 4. 
In the same figure the orange line shows the parameter estimation

or snapshot B − 500 M. It is evident that in this test the fit is unable
o co v er the truth in all four parameters, including PA. The log-
ikelihood is larger compared to that when fitting model B + 100 M,
ut χ2 

eff = 181 stays roughly at the same level. 
The two tests abo v e illustrate that on top of the expected poor-fit

uality a large bias is typically introduced into parameter estimation 
ue to the intrinsic source variability. Table 4 collects the best-fitting
arameters for the two runs. In addition, Fig. 5 shows the best-
tting model images for the two tests abo v e. The B + 100 M and B

500 M best-fitting images look somewhat different compared to 
odel B (shown in the left panel) but o v erall crescent shape of the

mission region is preserved. 
MNRAS 535, 3181–3197 (2024) 
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Figure 4. The triangle plot of four parameters estimation by fitting with the synthetic data based on models A and B. The main diagonal shows marginalized 
posterior distributions of all four parameters. The six plots in the lower left triangle show the joint densities for all the parameter combinations. The contours 
have been set to represent confidence of 0.68, and 0.9973 (1 and 3 σ ). Dashed lines denote the truth (black for model A, grey for B). The lowest χ2 

eff was 0.89 
for both models. 

Table 3. Truth parameters and the pipeline performance for four parameter 
fitting with 1 per cent systematic error added to the simulated data, for a 
burn-in step of 3500 MCMC. All parameters are sampled simultaneously, so 
there is only one χ2 

eff value. 

Truth Estimated χ2 
eff 

Model A 

PA( π ) 0 0 ± 0 . 0003 0.88 
i( ◦) 60 60.02 ±0 . 02 0.88 
M unit (10 18 ) 3 3 ± 0 . 0005 0.88 
R high 3 2 . 98 ± 0 . 01 0.88 

Model B 

PA( π ) 0 0 ± 0 . 0014 0.82 
i( ◦) 90 89.99 ±0 . 0378 0.82 
M unit (10 19 ) 1 1 ± 0 . 0052 0.82 
R high 20 19 . 93 ± 0 . 1345 0.82 
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.4 Tackling variability: inflated errorbars and snapshot 
veraging 

n this section, we carry out two additional tests which may be useful
hen designing strategies on how to tackle the variability issues. 
NRAS 535, 3181–3197 (2024) 
The first obvious step to address variability impact on parameter
stimation is to simply inflate the systematic errors of the data
oints to enable the analysis to be more permissive and fitting to
e easier. Fig. 7 demonstrates model B fitting using snapshot B −
00M with three different choices of systematic error, namely: 1
er cent, 10 per cent, and 30 per cent. Already with systematic errors
f 10 per cent, the fitting of snapshots separated by 
t = 500 M
eco v ers the truth. This test validates that the pipeline can find the
ruth even with snapshot misspecification, a necessary feature for
eal data fitting, where most certainly all our models will be (at best)
nly approximations to the real image. At 30 per cent errors, the
osterior distributions of all free parameters widen (as expected),
otice that χ2 

eff = 179 . 5 , 0 . 71 , 0 . 41 for increasing error budgets,
hile still co v ering the truths at 1 σ confidence. F or this specific

xample, the 30 per cent and arguably 10 per cent cases are slightly
 v erfitted, presumably due to an o v erestimated systematic error to
apture the intrinsic variability. Note that for general and realistic
ases this may be slightly different, but this needs to be investigated
ore thoroughly in a dedicated future work. The produced Themis-
t images of model B-500M, for different error budgets are visible

n Fig. 8 . 
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MNRAS 535, 3181–3197 (2024) 

Figure 5. 230 GHz images of GRMHD model of Sgr A ∗ from different snapshots with the same (left and right top panels) and fitted (right bottom panels) 
GRRT parameters. The colour codes the emission intensity (Stokes I). A comparison between physical parameters and snapshots is presented in Table 4 . 

Figure 6. Same as Fig. 4 for modB, modB + 100M and modB − 500M (all with 1 per cent systematic error). The corresponding χ2 
eff = 0 . 89 , 150 , 181 for the 

three models, respectively. 
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Figure 7. Same as Fig. 4 for modB − 500M (1 per cent systematic error), modB − 500M (10 per cent systematic error) and modB − 500M (30 per cent 
systematic error). The corresponding χ2 

eff = 179 . 5 , 0 . 71 , 0 . 41 for increasing error budgets (1 per cent, 10 per cent, 30 per cent). The snapshots from all models 
(plus model B) are visible bellow, in Fig. 8 . 

Figure 8. 230 GHz images of GRMHD models from Fig. 7 . The figure aims to underline the impro v ement on the last two panels, going from 1 per cent errors, 
to 10 per cent, and 30 per cent. 

 

t  

e  

n  

T  

s  

a  

t  

c  

(  

i  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/535/4/3181/7885349 by guest on 08 M
arch 2025
Sagittarius A ∗ is changing on time-scales that are short compared
o a full night of EHT observation. To be precise 500 M for Sgr A ∗ is
qui v alent to 165 min. In this case VLBI data collected o v er one full
ight represent a smoothed-out image of a varying accretion flow.
o emulate such smoothing effect in our pipeline we create the truth
ynthetic data by averaging three snapshots (models: B − 500M, B,
NRAS 535, 3181–3197 (2024) 
nd B + 100M), called model ‘avg’. We then fit a single snapshot to
he ‘averaged’ truth (shown in Fig. 9 , left panel). We consider two
ases: first where the fitted snapshot is a part of the averaged image
model B, shown in Fig. 9 ) and second where the fitted snapshot
s approximately 3500 M away from the average image (Fig. 9 ).
hese two fits are called ‘avg T ref = 0’ and ‘avg T ref = 3500M’
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Figure 9. 230 GHz images of GRMHD model of Sgr A ∗ from different snapshots and using the GRRT parameters dictated by the fitting algorithm. For 
B + 100 M and B − 500 M the sampler was fitting B with the aforementioned templates. For avg models, T ref corresponds to the template used by the sampler. 
The colour codes the emission intensity (Stokes I). A direct comparison between physical parameters and snapshots can be seen in Table 5 . Model avg T ref = 

3500 M Themis fit introduces the strongest biases. The most striking ones to the eye are M unit and PA. The smaller M unit is a reaction to the extended nature of 
the snapshot, while the PA = 36 deg result of the different symmetry of the source. Note, that we fit CP which is particularly sensitive to symmetries on the sky. 
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espectively. As a sanity check we also perform a fit with model avg
 −500 M,100 M), that excludes the snapshot T ref = 0 from the truth.
he systematic error added to the synthetic data was 10 per cent for
ll cases. 

The results of this fitting e x ercise are shown in Fig. 10 and their
arameters are listed in Table 5 . The model avg T ref = 0 (orange line)
onverged to values close to the truth with the largest deviation for
 high = 26 . 9 and total χ2 

eff = 10 . 2. The produced image avg T ref = 0
hemis fit is visible in Fig. 9 (bottom right panel) closely resembles

he averaged image (the cross-correlation between them is 0.972 
sing the NXCORR tool within EHT-IMAGING software). The fit 
rom model avg ( −500M,100M), T ref = 0, is visible in Fig. 10 . The
esults are of matching quality with similar biases and χ2 

eff = 4 . 3,
nsuring that the smoothing of the truth is more significant than the
xistence of T ref = 0 in the averaged truth image. 

In the second case of model avg T ref = + 3500 M the biases are sig-
ificantly larger, placing an upper limit in snapshot misspecification 
t roughly 500 M. The fitted image (avg T ref = 3500 M Themis fit) is
isibly different from the averaged image, but explains some of the 
osterior values, such as the low M unit to make emission narrower, 
nd ne gativ e PA to roughly match the emission region asymmetry on
he sky. 

To sum up, both these tests suggest that variability will play 
 detrimental role in parameter estimation when moving to real 
ata fitting. Ho we ver, a more sophisticated implementation of the 
oise models arising from variability studies (Broderick et al. 2022 ; 
eorgiev et al. 2022 ), both on baseline and time domain, could
ro v e e xtremely fruitful, and we plan to examine this in a future
tudy. 

 DISCUSSION  A N D  C O N C L U S I O N S  

e created a pipeline towards Bayesian inference by fitting the 
RMHD models to EHT observations and estimate model parame- 

ers. Similar efforts have been previously made by Kim et al. ( 2016 )
here sampling of GRMHD images was done only using two param- 

ters: PA and total flux normalization. Also in Psaltis et al. ( 2022 )
 new MCMC algorithm was introduced for sampling of geometric, 
rescent models for image features (such as the shadow radius, 
he width of the ring etc.). In Medeiros et al. ( 2023 ) a PCA-based
mage reconstruction was developed, using an ensemble of simulated 
RMHD images for fitting VLBI data. Lastly, in Jimenez-Rosales 

t al. ( 2023 ) image moments were used to characterize GRMHD
napshots as a means for model discrimination. Here we sample 
ultiple parameters which require radiative transfer calculations in 

very MCMC-step which is a significant leap compared to previous 
ork. We tested the pipeline o v er two distinct models (A, B) with
iffering inclination angle and R high , but more importantly, we made
rst steps towards tackling the time variability issue of such systems.
he main results of this work lies in Fig. 6 , where we showed that
ith the correct consideration of error budgets the pipeline is capable
f retrieving correct parameters even for mis-specified snapshots. In 
ig. 10 we showed that the miss-specification can work even for
n averaged truth from multiple snapshots. Of course, that does not
ome without limitations as for the same averaged snapshot with a
tting template 3500 M away, the pipeline misses significantly the 

ruth in all parameters. Template spacing of 1000 M, or 500 M to be
ore moderate, could potentially solve that and it would decrease 

he necessary snapshots by an order of 100, from 500 (cadence 10 M)
sed in AIS to 5–10 (cadence 1000 M–500 M) with our scheme. 
In this stage we focused on fitting models to observed closure

hases constructed from interferometric visibility phases. If one 
hooses to also fit visibility amplitudes, another thing that should 
e taken into account is that in case of Sgr A ∗ (but not M87 ∗),
he visibility function should be additionally modified to include 
mearing effects caused by refractive scattering of radio waves by free 
lectrons in the Galaxy (Johnson & Gwinn 2015 ), causing artificial
mall-scale substructure in the image. 

Despite being an impro v ement on static libraries, the adaptive
arameter estimation is still time-consuming. In particular, to run 
he multiparameter fit on a university cluster, with 60 CPU cores,
 GB per core, for 10 000 MCMC, takes approximately 170 wall-
lock hours. In the same cluster running the snapshot scoring (part of
IS) tak es 20 w all-clock hours with 24 cores, for a certain parameter
MNRAS 535, 3181–3197 (2024) 
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Table 4. The difference in GRMHD snapshots and physical parameters 
between the models presented in fitting test 3.3 . The labels −100 M, + 500 M, 
refer to how far a snapshot of the GRMHD simulation is with respect to 
model B ( T = 0). Themis fit, refers to the best parameters from the MCMC 

sampler. For B + 100 M and B − 500 M the sampler was fitting B with the 
aforementioned templates. The percentile in the fitted models note systematic 
error level. 

Model i M unit R high PA [ π ] χ2 
eff 

B + 100M 90 10 19 20 0 –
B − 500M 90 10 19 20 0 –
B + 100M Themis fit 
(1 per cent ) 

84.5 1 . 23 × 10 19 20.5 0.02 150 

B − 500M Themis fit 
(1 per cent) 

101.9 2 . 37 × 10 19 37.8 0.2 181 

B − 500M Themis fit 
(10 per cent) 

90.0 1 . 0 × 10 19 20.0 0.0 0.71 

B − 500M Themis fit 
(30 per cent) 

89.8 1 . 0 × 10 19 20.3 0.0 0.41 
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alues takes 500 h). For a usage of ∼ 10 snapshots our method is
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igure 10. Same as Fig. 4 for models avg( −500,100), T ref = 0, avg( −500, 0, 10
ystematic error. The corresponding χ2 

eff = 4 . 3 , 10 . 2 , 30 . 0 for the three models, res
lready faster, plus the added value of not having to create, save, and
anage the millions of snapshots required for AIS. 
Another time-consuming part (for both the static library scoring

nd our approach) is the GRMHD simulation itself. At present we
o not consider different GRMHD simulations and only call the
ay-tracing code to generate different model images from the same
imulation. The parameters which we are interested in the GRMHD,
uch as the spin of the black hole, could not be estimated under the
urrent settings. Applying the current method to multiple simulations
s a first, direct way forward leaving a model selection problem that
ould be tackled with Bayesian evidence or information criteria. How
o simplify the model and generate the model image faster is a big
hallenge and that is the reason why fitting simple phenomenological
odels to observations is another practical way to compromise at

resent, such as Narayan & Yi ( 1995 ) and Broderick & Loeb ( 2006 )
r the more modern approaches of Palumbo et al. ( 2022 ), Chang
t al. ( 2024 ), and Yfantis et al. ( 2024 ). 

The MCMC sampling part is fast due to the highly parallel
evelopment. The computing performance could be improved by
arefully choosing the numerical parameters (e.g. the temperature,
he number of w alk ers) to be better adapted to the computer.
0), T ref = 0 and avg( −500, 0, 100), T ref = + 3500 M, all with 10 per cent 
pectively.. 
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Table 5. The difference in GRMHD snapshots and physical parameters for fitting test 3.4 . Model avg was made using snapshots −500 M, 0 and + 100 M. 
Themis fit, refers to the best parameters from the MCMC sampler. T ref corresponds to the template used by the sampler. The percentile in the fitted models 
note systematic error level. 

Model i M unit R high PA [ π ] χ2 
eff 

B + 3500 M 90 10 19 20 0 - 
avg ( −500 M, 0,100 M) 90 10 19 20 0 - 
avg ( −500 M,100 M) Tref = 0 Themis fit (10 per cent) 96.04 0 . 98 × 10 19 21.4 0.03 4.3 
avg T ref = 0 Themis fit (10 per cent) 88.74 1 . 17 × 10 19 26.9 −0.06 10.2 
avg T ref = 3500 M Themis fit (10 per cent) 137.96 0 . 54 × 10 19 40.0 −0.6 30.0 
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ransfer side. At each tempering level independent model images 
re being generated for different parameter values, some of which 
uch as higher Ṁ (i.e. higher density and opacity) will take longer 
o compute than others. On this front, recent developments in ray- 
racing optimization, such as the GPU version of IPOLE presented 
n Moscibrodzka & Yfantis ( 2023 ) can be pro v en useful for the
peed-up of the pipeline. 

We have presented and validated the first Bayesian scheme to 
nfer properties from GRMHD simulations from their simulated 
odel images and visibility data as measured by an EHT-like VLBI

onfiguration. This is a major step in fully utilizing the predictive 
ower from GRMHD simulations of accreting black holes which 
reviously have only been compared to VLBI data in more indirect 
ays and by using a-priori fixed parameter surv e ys. The work
resented here eliminates simplifying scaling assumptions with total 
ux and BH mass in previous EHT VLBI analysis using GRMHD 

odels Event Horizon Telescope Collaboration ( 2019e ). It further 
llows impro v ed conclusions from GRMHD models given a VLBI
ata set: (i) a refined inference in a continuous posterior distribution
nstead of discrete apriori chosen values (ii) efficient extension of the 
robed prior range (for instance beyond R high = 160) of the explored
odel parameters, which would otherwise become prohibitive with 

urrent strategies and (iii) a more efficient pathway to expand the 
arameter space to include any additional parameter that IPOLE 
an vary. More advanced samplers can easily handle much higher 
imensional lik elihood surf aces than will ev er be e xplored with
uch models. Instead, the key improvement will be to speed up the
 v aluation of a single likelihood for instance by speeding up disc I/O.

Much work is still needed to get the most out of such inferences, but
he next steps (sampler impro v ements, better likelihood approaches 
sing complex visibilities, GRMHD-informed error budget etc.; 
vent Horizon Telescope Collaboration 2022d ; Broderick et al. 2022 ; 
eorgiev et al. 2022 ) are both clear and already implemented in
ther analyses in THEMIS . Furthermore, following the results of 
vent Horizon Telescope Collaboration (Akiyama et al. 2021a ), 
here polarization is resolved from M87, the so-called closure 

races 6 can be included in the pipeline, making the fitting of the
olarization to full visibilities possible. We envision that impro v ed 
nalysis schemes will greatly benefit the GRMHD community and 
heoretical interpretation of accreting black holes in the near future. 

C K N OW L E D G E M E N T S  

e thank Paul Tiede, George Wong, Lia Medeiros, and Michi 
aub ̈ock for fruitful discussions. This publication is part of the 
roject the Dutch Black Hole Consortium (with project number 
 Closure traces, introduced by Broderick & Pesce ( 2020 ), is a data product 
onstructed from polarimetric VLBI visibilities, that are immune to both 
tation gains and polarization leakage (encoded in the so-called ‘D-term’). 

F
F  

G
G

WA 1292.19.202) of the research programme the National Science 
genda which is financed by the Dutch Research Council (NWO). 

ATA  AVAI LABI LI TY  

oftware used in the paper: IPOLE , THEMIS , EHT-IMAGING ,
ython. The scripts can be shared on reasonable request to the
orresponding author. 

EFERENCES  

albus S. A. , Ha wle y J. F., 1998, Rev. Mod. Phys. , 70, 1 
lackburn L. , Pesce D. W., Johnson M. D., Wielgus M., Chael A. A., Christian

P., Doeleman S. S., 2020, ApJ , 894, 31 
lecher T. , Deane R., Bernardi G., Smirnov O., 2017, MNRAS , 464, 143 
roderick A. E. et al., 2020, ApJ , 897, 139 
roderick A. E. et al., 2022, ApJ , 930, l21 
roderick A. E. , Loeb A., 2006, MNRAS , 367, 905 
roderick A. E. , Pesce D. W., 2020, ApJ , 904, 126 
hael A. A. , Johnson M. D., Bouman K. L., Blackburn L. L., Akiyama K.,

Narayan R., 2018, ApJ , 857, 23 
hael A. A. , Johnson M. D., Narayan R., Doeleman S. S., Wardle J. F. C.,

Bouman K. L., 2016, ApJ , 829, 11 
hael A. , Narayan R., Johnson M. D., 2019, MNRAS , 486, 2873 
hang D. O. , Johnson M. D., Tiede P., Palumbo D. C. M., 2024, ApJ, 974,

143 
exter J. , Agol E., Fragile P. C., 2009, ApJ , 703, L142 
oeleman S. S. et al., 2008, Nature , 455, 78 
oeleman S. S. et al., 2012, Science , 338, 355 
HT MWL Science Working Group 2021, ApJ , 911, l11 
vent Horizon Telescope Collaboration 2019b, ApJ , 875, L2 
vent Horizon Telescope Collaboration 2019c, ApJ , 875, L3 
vent Horizon Telescope Collaboration 2019d, ApJ , 875, L4 
vent Horizon Telescope Collaboration 2019e, ApJ , 875, L5 
vent Horizon Telescope Collaboration 2019f, ApJ , 875, L6 
vent Horizon Telescope Collaboration 2021b, ApJ , 910, l13 
vent Horizon Telescope Collaboration 2022a, ApJ , 930, l12 
vent Horizon Telescope Collaboration 2022b, ApJ , 930, l13 
vent Horizon Telescope Collaboration 2022c, ApJ , 930, l14 
vent Horizon Telescope Collaboration 2022d, ApJ , 930, l15 
vent Horizon Telescope Collaboration 2022e, ApJ , 930, l16 
vent Horizon Telescope Collaboration 2022f, ApJ , 930, l17 
vent Horizon Telescope Collaboration 2024a, ApJ , 964, L25 
vent Horizon Telescope Collaboration 2024b, ApJ , 964, L26 
vent Horizon Telescope Collaboration Akiyama K. et al., 2021a, ApJ , 910,

l12 
vent Horizon Telescope Collaboration et al., 2019a, ApJ , 875, L1 
ish V. L. et al., 2011, ApJ , 727, L36 
ishbone L. G. , Moncrief V., 1976, ApJ , 207, 962 
 oreman-Macke y D. , Hogg D. W., Lang D., Goodman J., 2013, PASP , 125,

306 
ammie C. F. , McKinney J. C., T ́oth G., 2003, ApJ , 589, 444 
eorgiev B. et al., 2022, ApJ , 930, L20 
MNRAS 535, 3181–3197 (2024) 

http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.3847/1538-4357/ab8469
http://dx.doi.org/10.1093/mnras/stw2311
http://dx.doi.org/10.3847/1538-4357/ab91a4
http://dx.doi.org/10.3847/2041-8213/ac6584
http://dx.doi.org/10.1111/j.1365-2966.2006.10152.x
http://dx.doi.org/10.3847/1538-4357/abbd9d
http://dx.doi.org/10.3847/1538-4357/aab6a8
http://dx.doi.org/10.3847/0004-637X/829/1/11
http://dx.doi.org/10.1093/mnras/stz988
http://dx.doi.org/10.1088/0004-637X/703/2/L142
http://dx.doi.org/10.1038/nature07245
http://dx.doi.org/10.1126/science.1224768
http://dx.doi.org/10.3847/2041-8213/abef71
http://dx.doi.org/10.3847/2041-8213/ab0c96
http://dx.doi.org/10.3847/2041-8213/ab0c57
http://dx.doi.org/10.3847/2041-8213/ab0e85
http://dx.doi.org/10.3847/2041-8213/ab0f43
http://dx.doi.org/10.3847/2041-8213/ab1141
http://dx.doi.org/10.3847/2041-8213/abe4de
http://dx.doi.org/10.3847/2041-8213/ac6674
http://dx.doi.org/10.3847/2041-8213/ac6675
http://dx.doi.org/10.3847/2041-8213/ac6429
http://dx.doi.org/10.3847/2041-8213/ac6736
http://dx.doi.org/10.3847/2041-8213/ac6672
http://dx.doi.org/10.3847/2041-8213/ac6756
http://dx.doi.org/10.3847/2041-8213/ad2df0
http://dx.doi.org/10.3847/2041-8213/ad2df1
http://dx.doi.org/10.3847/2041-8213/abe71d
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.1088/2041-8205/727/2/L36
http://dx.doi.org/10.1086/154565
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1086/374594
http://dx.doi.org/10.3847/2041-8213/ac65eb


3194 A. I. Yfantis et al. 

M

G  

 

G
G  

G
G
H
H
I
I
J
J
J  

J
J
J
K
K  

L
M
M
M  

M
M  

M
N
N
P  

P

P
P
R  

S
S
T
T
T  

T  

Y  

A

T  

m  

a  

i  

F  

a  

p
 

r  

n  

s  

i  

f  

w  

t  

F
f

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/53
eyer C. J. , 1991, in Computing Science and Statistics: Proceedings of the
23rd Symposium on the Interface. Interface Foundation of North America,
p. 156 

old R. et al., 2020, ApJ , 897, 148 
old R. , McKinney J. C., Johnson M. D., Doeleman S. S., 2017, ApJ , 837,

180 
oodman J. , Weare J., 2010, Commun. Appl. Math. Comput. Sci. , 5, 65 
ravity Collaboration 2018, A&A , 618, L10 
ada K. et al., 2013, ApJ , 775, 70 
a wle y J. F. , Balbus S. A., 1991, ApJ , 376, 223 

ssaoun S. et al., 2019, ApJ , 871, 30 
ssaoun S. et al., 2021, ApJ , 915, 99 
anssen M. et al. (2019) A&A , 626, A75 
im ́enez-Rosales A. , Dexter J., 2018, MNRAS , 478, 1875 
imenez-Rosales A. , Yfantis A., Mo ́scibrodzka M., Dexter J., 2023, MNRAS ,

527, 1847 
ohnson M. D. et al., 2015, Science , 350, 1242 
ohnson M. D. et al., 2018, ApJ , 865, 104 
ohnson M. D. , Gwinn C. R., 2015, ApJ , 805, 180 
im J. Y. et al., 2018, A&A , 616, A188 
im J. , Marrone D. P., Chan C.-K., Medeiros L., Özel F., Psaltis D., 2016,
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PPENDI X  A :  OPTI MAL  I MAG E  RESOLUTIO N  

o reduce the computational cost of the pipeline we look for a
inimum model image resolution for which the synthetic VLBI data

re conv erged. Giv en the fiducial image of model A (with parameters
 = 60 ◦, M unit = 3 × 10 18 , R high = 3, R low = 3, PA = 0), shown in
ig. 1 , we use EHT-IMAGING to produce the visibility amplitudes
nd closure phases for four different image resolution cases: 32 ×32
ixels, 64 ×64 pixels, 128 ×128, and 256 ×256 pixels. 
We compare all the observables generated by EHT-IMAGING , the

esults of which are plotted in Fig. A1 . In the top row we can see the
atural impro v ement of images with resolution. In the bottom one we
how the VA and CP data for all resolutions. What we want to conv e y
s that even though the data get better with higher resolutions, the step
rom 128 to 256 is small, while the steps before that large. Indeed,
e see that points of green and orange show sizable divergence, but

he blue points are often ‘hidden’ in the plots, suggesting that they
atch very well with the points from 256 2 (purple). 
ix els, 256 ×256 pix els. Bottom:t he left plot shows the visibility amplitudes 
2 2 and 64 2 , while dots represent 128 2 and 256 2 . 
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Figure A2. Top: Same as Fig. 4 for model A using different resolution (64 2 , 128 2 ). Middle: The log-likelihood evolution through out the run. Bottom: The 
chains for the whole duration of the MCMC run. The burn-in for the PDs and the Gaussian fits has been set to 6000 and the total run time was 10 000 MCMC. 
The reported χ2 

eff are the smallest values after the burn-in. In short: low resolution introduces poorer fit quality, but the posteriors are largely un-biased with 
the exception of R high . The latter bias in R high is subtle in magnitude compared to the coarse spacing in the EHT libraries, but should be further investigated in 
subsequent work. 
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To further strengthen our thesis and demonstrate the benefit of
sing data with resolution 128 2 , in Fig. A2 we compare the results
rom fitting model A, for all four parameters, using two different
esolutions (64 2 , 128 2 ). The higher resolution outperforms the lower
ne in a number of fronts. The posteriors for 64 2 are not co v ering
he truth for all parameters ( R high is shifted). This is reflected in the
ikelihood graph as well, where in lower resolution the quality of the
t is not as good ( χ2 

eff = 5 . 37). Lastly, the lower resolution exhibits
 slower convergence, that can be seen both in the chains and the
ikelihood development. 

Overall, it seems that a resolution of 128 2 is necessary for
ufficient fit quality while resolution of 256 2 does not provide further
mpro v ement at higher computational expenses. 

PPENDIX  B:  D E P E N D E N C E  O N  C H O I C E  O F  

AMPLERS,  WA LKERS,  TEMPERATURES,  A N D  

NIT IA LIZATION  

n this appendix, we search for the optimal sampling method and
hains initialization. We do this by various fitting procedures and
irect comparisons for model A. 
Within the parallel tempering sampler, an algorithm should be

hosen to decide on the next step parameters. There is a handful
f options implemented in THEMIS , from which we consider three
or this project. The first one is the affine invariant (AI) method
escribed in detail in Goodman & Weare ( 2010 ). Under the affine
ransformation the ill-shaped density probability will not bring any
xtra difficulties as the simple single-variable MCMC samplers (e.g.
ibbs sampler) do. This method is widely used and well tested in

he famous MCMC python package EMCEE (F oreman-Macke y et al.
013 ). The second possible algorithm is the differential evolution
NRAS 535, 3181–3197 (2024) 

igure B1. Trace of the chains fitting M unit for different samplers (AI: affine invari
n the top panel was initialized at 8 × 10 18 , while the bottom at 3 × 10 19 . Note that
nd their computational efficiency was 1.5 steps per core per hour. AFS was run wi
DE) method introduced by Ter Braak ( 2006 ) and developed further
n Nelson, Ford & Payne ( 2014 ). Similarly to the affine invariant
ethod each chain draws ne w v alues by using positions from other

hains in the parameter space. The difference is that DE uses all
hains per draw while AI only one. This can lead to discrepancies
n their performance, depending on the problem. Due to the pipeline
onstructions, the number of processors should be at least N T and be
nteger times of N T × N W 

/ 2 for both samplers. The last option is the
utomated factor slice (AFS) algorithm (Tibbits et al. 2014 ). It was
mplemented more recently than the others within THEMIS and it has
 key difference since it operates only with one chain, multiplied by
he temperatures. It impro v es from the simple Metropolis–Hastings
MH) sampler by using an in-between step of redefining the sampling
ool on every step. 
Fig. B1 shows the chains and the corresponding likelihood for all

hree samplers fitting two parameters ( M unit and PA). The top has
een made with an initial value of 8 × 10 18 while the bottom with
 × 10 19 (truth is at 3 × 10 18 ). In the top panel, all samplers behave
imilarly, the y conv erge towards the truth fast (with AFS being the
astest ∼ 10 steps) and with similar χ2 

eff values (AFS has a higher
alue that persists till after 5000 MCMC steps). Already we can
otice that DE in contrast to AI is more jittery, probably to the fact
hat the number of chains and temperatures is too high for the level
f communication DE sampler imposes. 
In the bottom panel the picture is different. AFS which was the

aster sampler in the previous case, now converges to the truth last
at 530 MCMC steps). Furthermore, even though it seems like DE
s faster than AI, that is actually not the case, since almost all chains
re close to the truth but not exactly and vary significantly for a
ong period. All this is reflected in the likelihood plot, where the
scillation of DE chains is more evident. 
ant, DE: differential evolution, AFS: automated factor slice). The run shown 
 the last MCMC step in the bottom is 550. AI and DE were run with 40 cores 
th 10 cores and the efficiency was higher at 2.5 steps per core per hour. 
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Figure B2. Trace of the chains fitting M unit for different initial ranges using the AI sampler. The initial value is 3 × 10 19 . 

Figure B3. Trace of the chains fitting all four parameters for different samplers (AI: affine invariant, AFS: automated factor slice). The chains were initialized 
in the same way as for model A. AI was run with 40 cores and the computational efficiency was 1 step per core per hour. AFS was run with 12 cores and the 
efficiency was the same, 1 step per core per hour, with a much faster convergence though. 
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As a last remark the computational efficiency of AI and DE is
0 and 70 steps per hour, respectively, using 40 cores (8 chains and
0 temperatures, divided by 2), so ∼ 1 . 5 steps per core per hour
hile AFS is 25 steps per hour, using 10 cores (1 chain and 10

emperatures), so 2.5 steps per core per hour. 
Fig. B3 shows the fitting procedure for all parameters using AI and

FS. For initial values we chose the same as in the main results, that
s i 0 = 90, M unit, 0 = 8 × 10 18 , R high , 0 = 30, PA 0 = 0. It is evident
hat AFS converges faster in this example. The fact that some chains
rom AI get stuck for a significant amount of time can be a problem
or more advance fitting procedures. This is a well known problem 

n certain fits with AI, reported already in F oreman-Macke y et al.
 2013 ). 
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
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In Fig. B2 we show the chain evolution for the AI sampler for
ifferent initial range, using the same initial value. The convergence 
s faster with a wide range if the initial value is far from the truth,
ut with better informed prior a smaller range is to be preferred, as
tated in F oreman-Macke y et al. ( 2013 ). 

The combination of these tests, taking into account the com- 
utational time, makes AI our sampler of choice for this work.
urthermore, we choose to initialize our chains near the middle of

he desired area of exploration with an initial range that co v ers it all
o be as agnostic as possible. In the future a hybrid approach, using
I for a wide surv e y and AFS for a more detailed exploration, with
riors obtained from AI, could pro v e optimal. 
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