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Abstract
Built on top of theGeant4 toolkit, GATE is collaboratively developed formore than 15 years to design
MonteCarlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers
and industrials to design, optimize, understand and create innovative emission tomography systems.
In this paper, we reviewed the recent developments that have been proposed to simulatemodern
detectors and provide a comprehensive report on imaging systems that have been simulated and
evaluated inGATE. Additionally, somemethodological developments that are not specific for imaging
but that can improve detectormodeling and provide computation time gains, such as Variance
Reduction Techniques andArtificial Intelligence integration, are described and discussed.

1. Introduction

GATE is an open-source, community-based software effort relying on theGeant4 toolkit (Allison et al 2016)
dedicated toMonte Carlo simulation inmedical physics. GATE is about 15 years old and evolves a lot through
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users’ contributions. It was initially focused on nuclear imaging (Santin et al 2003, Strul et al 2003, Jan et al 2004,
Buvat and Lazaro 2006), then expanded to external and internal radiotherapy (Jan et al 2011), dosimetry (Sarrut
et al 2014) and hadrontherapy (Grevillot et al 2020). The simulated physics ismanaged by theGeant4Monte
Carlo kernel in charge of tracking particles inmatter and processing physical interactions. On top ofGeant4,
GATE gathersmultiple developments that facilitatemedical physics simulations. Indeed, numerous clinical,
preclinical, and prototype positron emission tomography (PET) and single photon emission compute
tomography scanners were simulated and confrontedwith experimental data.

Since the initial 2004OpenGATE collaboration article, emission tomography systems have changed
dramatically (Vandenberghe et al 2020)with improved time-of-flight (TOF)methods, better detection systems
based on silicon photomultipliers (SiPMs), long axialfield of views (FOVs), multi-headed systems, etc. At the
same time,Monte Carlo simulation also had to evolve to support those developments. This type of simulation
remains the gold standard for design, optimization and assessment of imaging systems, and serves to estimate
their performance, to optimize acquisition parameters, and to design reconstruction algorithms.

Since then, no synthesis of emission tomography (SPECT, PET, ComptonCamera) capabilities of GATEhas
been published. The goal of this paper is to review the current GATE capabilities and limitations for simulating
emission tomography imaging systems. The article is organized in the followingway: section 2 describes the
recent developments for detector simulations, section 3 givesmore details about validated simulated imaging
systems, andfinally section 4 reports on additional developments not specific to emission tomography yet
helpful to thefield.

2.Detector developments

In the following, we describe themainmodules recently developed or updated for simulation ofmodern
emission tomography systems. Thefirst subsection summarizes the twomainmodes of simulation, then, we
describe optical photon tracking, Cerenkov-based TOF andCompton cameramodules (CCMod).

2.1. Principal simulationmodes
In nuclear imaging, events are usually detected by collecting scintillation photons emitted after energy
deposition of high-energy gammaphotons in inorganic crystals (LYSO22, LSO23, BGO24, etc) using
photodetectors such as photomultiplier tubes (PMT), avalanche photodiodes (APDs) or SiPMs (Roncali and
Cherry 2011). There are twomodes that can be used inGATE to simulate this detection stage.

Thefirstmode consists in fullMonte Carlo tracking of the emitted optical photons. In such simulations,
precise definition of the crystal optical surfaces is crucial to obtain a realistic light distribution.While it is useful
to design and to better understand the in-depth behavior of a given detection system, simulating all optical
photons leads to long computation times due to the very large number of tracked particles (Cherry et al 2012).
Thisfirstmodewill be presented in section 2.2.

In the second simulationmode inGATE, the response of the photodetection components is simulated by a
specificmodule called a digitizer. In that case, an analyticalmodel is used to generate detection events from the
list of interaction events within the crystal, assuming the number of generated digital pulses is proportional to
the number of scintillation photons in the crystal. This digitizer converts photon interactions in the crystal into
digital counts and assigns time stamps to every event. Numerous parameters are provided to the user who can
apply successive signal processing operations to generate afinal response adapted to the hardware: pixelated or
monolithic scintillator detectors, depth-of-interaction (DoI)modeling, dead time, etc.Moreover, various
stochastic uncertainties can be added to reproduce the intrinsic resolution of components such as the intrinsic
radioactivity of 176Lu in LSO (McIntosh et al 2011), or the intrinsic resolution of a particular scintillator (Jan et al
2004).

A specific vocabulary is used: hits, singles, coincidences. Individual particle interactions within a detector
element (e.g. crystal) are called hits, each hit containing information about the interaction process type, the
position, deposited energy, time, the volumewhere the interaction occurs, etc. The hitswithin the same readout
volume are gathered into singles. Singles are sorted by time-stamp and associated in coincidences according to
several rules, in particular to handle coincidencewindows duringwhichmore than two singles are detected. In
PET imaging, it is common to consider several types of coincidences: the scatters (coincidence events resulting
from scattered photons inside the subject), the randoms (accidental coincidences), the trues (real, expected
coincidences). The sumof those three types are called the prompts (total detected coincidences). In reality, the

22
Lutetium–yttriumoxyorthosilicate.

23
Lutetiumoxyorthosilicate.

24
Bismuth germaniumoxide.
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number of randoms is not known from experimental data and is estimated by the delay coincidences obtained
fromdelayed time coincidencewindows (Strydhorst and Buvat 2016a). GATE generates all types of coincidences
for detailed analysis.

The digitizers processes are common to PET, SPECT andCCMods andmay be used either ‘online’, during
theMonteCarlo particle tracking, or ‘offline’, after the end of the simulation. In this latter case, the simulation
output requires hits, singles, and/or coincidences data to be saved in root (or Python)files that can be post-
processed.More details can be found in Strydhorst and Buvat (2016a), Etxebeste et al (2020).

2.2.Optical photon tracking and SiPM
The precise definition of crystal optical surfaces can bemodeledwith theDavis look-up table (LUT) surface
reflectionmodel, introduced inGATE since version 8.0 (Stockhoff 2017). Thismodel is based onmeasured
surface data obtained by atomic forcemicroscopy. Users can choose between two surfaces, a polished and a
rough one. For each surface, four LUTs are available: LSO crystal with no reflector, coupled to Teflon through an
air interface, ESR-air and ESR-grease. Themodels consider optical photon reflection probabilities and
directions depending on the incidence angle of the photon on the crystal surface. Themodels were validated
against experimental data. Next step towards finer detectormodeling lies in the use of completely customized
LUTs. For this reason, a standalone user interface has been developed to allow users to generate LUTs for any
surface obtainedwith a 3D scanningmethodwith a sub-micron resolutionwith the personalized definition of
the intrinsic properties of the scintillator and the couplingmedium and a specific reflector attached to the
crystal, Trigila et al (2021). The LUTDavismodel has been validated for several configurations by comparing the
experimental and simulated light output of single crystals, with an error of less than 10% (Roncali and
Cherry 2013).

With the LUTDavismodel, a largemonolithic scintillation detector for clinical PET systemswas simulated
using optical photon tracking. The detector consisted of 50× 50 × 16mm3 LYSO coupledwith optical grease
to an array of SiPMs (see figure 1). The gamma entrance facewas definedwith the polished ESRLUT. The crystal
sides were definedwith an adapted LUTmodeling a rough surfacewith black paint leading to absorption of
photons transmitted by the crystal surface. The SiPM readout sidewas simulated by LUTs thatmodel polished
surfaces and take into account the index of refraction of optical grease. Optical simulationswere used to
optimize the performance of the detector by testing various setups and their influence on the desired
performance parameter. It was thus possible to gain insight into physical processes that are difficult or
impossible tomeasure experimentally, notably ground-truth interaction positions, especially DoI. Each
influencing factor can be analyzed separately as for example the influence of Compton scattered events, the
influence of intrinsic 176Lu radiation of the scintillator, the influence of test-equipment, e.g. collimators or
housing.

In Stockhoff et al (2019), the focuswas set on the spatial resolution influenced by the size of the
photodetector pixels, the photon detection efficiency (PDE) and the number of channels used to read out the
sensor array. The outcome of this simulation study demonstrated the high spatial resolution of 0.4–0.66 mm full
width at halfmaximum (FWHM) that can be obtained by amonolithic detector under idealized configurations.
High PDE and small pixel sizes improved the resolution, while the number of electronic readout channels could
be decreased drastically by summing rows and columnswith only a small or no degradation on the spatial
resolution. InDecuyper et al (2019, 2021) the performance of the detector could further be improved by using

Figure 1.Optical simulations of a calibration setup formonolithic scintillators. A 50 × 50 × 16mm3LYSO crystal wasmodeled read
out by a pixelated array of photo-detectors. The scintillator surfaces are defined by the LUTDavis reflectionmodel based onmeasured
data. The calibration beam is encapsulated in a tungsten collimator which is simulated by importing the 3D STLfile intoGATE. The
source is amonoenergetic 511 keV gammapoint source.
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artificial neural networks (ANNs) to train the positioning algorithm. The simulationwas used to identify and
address potential pitfalls related toANNswhich could then be translated to the experimental results. @Mariele
do you have any validation numbers to add? The simulation of single detectormodules does not only require a
dedicated surfacemodeling, but also has to account for the detection of scintillation photons and the subsequent
pulse processing inside the photodetector. The increasing use of SiPMs (see section 2) in the context of PET
imaging (Lewellen 2008, Cabello andZiegler 2018, Conti and Bendriem 2019)motivated the implementation of
specific digitizermodules for analog and digital SiPMs (dSiPMs), so that both the complete scanner system and
the single detectormodules can be simulated.

First, a digitizermodule for analog SiPMs (aSiPMs)was implemented, allowing to reproduce signals
originating from aSiPMs. For each optical photon impinging onto the surface of detection, a pulse has a non-
null probability to be generated at a time t+Δt considering the PDE,where t corresponds to the time of the
detection andΔt accounts for the single photon time resolution. The digitizer also takes into account aSiPM
saturation and various sources of noise such as dark counts, crosstalks, afterpulses, after-crosstalks and signal
white noise (Mehadji 2020).

A second digitizermodulewas implemented for dSiPMs, referring to the Philips digital photon counter
(DPC). ADPC sensor tile is subdivided into 16 so-called dies, which comprise four pixels each and are read out
independently. In contrast to aSiPMs, this device stores the number of counted photons on the four pixels of a
die and a die timestamp for each event. It therefore delivers a completely digital signal. Furthermore, itmakes
use of a trigger and validation logic in order to reduce the recording of dark counts (Degenhardt et al 2009, Frach
et al 2009). This dedicated digitizer currently allows for consideration of themost relevant noise sources (dark
noise and optical crosstalk), the PDEof the sensor, and the specific trigger and validation logic. For validation of
themodel, the probabilities for trigger and validation, determined by Tabacchini et al (2014), have been
successfully reproduced (Lenz 2020).

2.3. Cerenkov-based TOF
The use of ultra-fast (10 ps)Cerenkov emission for TOFPETdetectors has been investigated extensively as an
alternative to traditional time triggering on scintillation photons emittedwithin tens to hundreds of ns
(Lecoq 2012, Somlai-Schweiger andZiegler 2015, Brunner and Schaart 2017, Kwon et al 2016, Cates et al 2018).
The potential of Cerenkov light has become the foundation of a paradigm shift in TOFPET,with initiatives such
as the 10 ps TOF challenge (Lecoq 2017, Schaart et al 2020, Lecoq et al 2020). The very lownumber of Cerenkov
photons produced by each gamma interaction in theCerenkov radiator (around 15–20 per photoelectric
interaction for BGO) is themain limitation in fully exploiting these photons andwarrants thorough studies to
better understand their production, transport, collection and conversion into an electric signal. This can only be
achieved through detailed simulation, as it is not possible to separate these components experimentally.

GATEhas been increasingly used to studyCerenkov emission for its ability tomodel all aspects of the optical
detection chain including the effect of optical surfaces. However, it requiresmodifications to tag theCerenkov
photons in the hits tree and associate them to their parent gamma event (Ariño-Estrada et al 2020, Kwon et al
2019, Roncali andKwon 2019) and does not include tools for a complete optical analysis. Studies have been
reported in twomaterials: thewell-known scintillator BGO, and the novel semi-conductors thalliumbromide
(TlBr) and thallium chloride (TlCl). In BGO,GATE simulations of theCerenkov production and transport in
the crystal described the direction of the initial Cerenkov photons, as well as the contribution of Cerenkov
photons to the detector timing resolution. These simulation studies, in excellent agreementwith experimental
results, provided a new explanation of the long tails in the timing spectrumobserved experimentally in BGOby
several groups. GATE simulations in a dual-ended readout BGOdetector also elucidated the nature of the time
difference between the two crystal ends by identifying the type of photon first detected by the photodetector
(Cerenkov or scintillation). In TlBr andTlCl, GATE simulationswere used to generate and trackCerenkov
photons from the emission point to the photodetector (Ariño-Estrada et al 2020). The number of photons
produced and detected per photoelectric interactionwas estimated from the simulations, indicating the
potential of TlCl as a Cerenkov radiator thanks to its optical properties. Using the simulated photon time
stamps, the timing spectrum for different trigger thresholds was computed and confirmed the advantage of
TlCl. Good agreementwas obtained between simulations and experiments, with an overestimation of the
number of detected photons of 12% (Ariño-Estrada et al 2020).

2.4. Compton cameramodules
The recentGATECCMod (Etxebeste et al 2020)provides a frameworkwhere different Compton camera
configurations can be simulated and facilitates comparison between the performance of different prototypes in
medical experimental settings such as hadron therapymonitoring or nuclearmedicine. CCMod is designed to
reproduce the response ofmost common configurations inmedical applications composed of a scatterer and an
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absorber detectors working in time coincidence (Everett et al 1977). However, it can be adapted to accommodate
other designs such as one single detector layer system that acts as scatterer and absorber at the same time (Lehner
et al 2004,Mihailescu et al 2007,Maier et al 2018,Montémont et al 2017) frequently employed in homeland
security applications.

InCCMod, volumes defined as detector layers act as Geant4 sensitive detectors. The detector response (the
list of singles) is simulated by applying sequentially a chain of digitizermodules to the stored information of
particle interactions. The same data structure in SPECTor PET systems is employed so that digitizermodules
may be applied interchangeably to all three types of imaging devices. Since inCompton cameras different
detector layers have usually different roles and characteristics, digitizermodules that can be applied
independently to each detector layer have been included. Singles are sorted into coincidences using the sorter
developed for PET systems (Strydhorst and Buvat 2016a). Additional options have been included for CCMod
such as allowing only singles in a specific detector layer (absorber) to open its own time coincidence window.
Besides, different criteria for coincidence acceptance are available such as requiring at least one single in each
detector type. Since, in aCompton camera system, the order of the singleswithin each coincidence determines
the estimated cone surfacewhere the source is located, a dedicated coincidence processor has been included for
coincidence sequence reconstruction. At each step of this processing, from interactions to cone information,
corresponding data output is available. This recent extension ofGATE (Etxebeste et al 2020) has been
successfully validated against experimental data and employed to predict the performance of prototypes under
construction (see section 3).

3. Simulation of imaging systems and applications

This section reviews the emission tomography imaging systems that were simulated and, at least partially,
validated against experimental data inGATE. In addition to detector development, and since the very first
version, GATEhas been used to simulate complete clinical and preclinical imaging systems. Efforts have been
made to provide comparison against experimental data and improve the simulationwhen discrepancies have
been found. The tables 1 and 2 list some studies and the associated clinical and preclinical imaging systems (some
are illustrated figure 2).Most systemswere PET scanners and, to a lesser extend, SPECTdevices. CCMod in
GATE is very recent (Etxebeste et al 2020) and only one validation against experimental data has been reported to
date.Most of the evaluationmethodologies were based onNEMAprotocols and compared noise equivalent
count rate (NECR), sensitivity, resolution, etc between simulated and experimental data. In the followingwe
described somemore recent studies, focusing on recent developments such as the use of SiPMs or TOF.

Philips Vereos Digital PET/CT. In Salvadori (2020), a detailedmodel of theVereosTMDPC-PETwas
proposed. This PETdevice, introduced in 2013, is one of thefirst PET/CTusing SiPMdetectors, togetherwith,
theGEDicoveryTMMIPET/CT in 2016 and the Siemens BiographVisionTM in 2018.On such systems, the
location ofβ+ annihilation is improved by the use of increase TOF resolution due to the use of SiPMs (210–378
ps).Moreover, theDPC systemprovides 1:1 coupling between the crystal array and the SiPMarray, contributing
to decrease uncertainty in the interaction position and to improve the image resolution.

TheGATEmodel of theVereos described the hierarchical structure of all the detectionmodules, for a total of
23 040 LYSO scintillator crystals (4 × 4 × 19mm3). The complete digitization chainwas simulated including
background noise (natural radioactivity of 176Lu in the crystals), dead time and pile-up, temporal resolution and
detector quantum efficiency. Themodel has been evaluated followingNEMANU2-2018 guidelines, including
NECR, scatter fraction, TOF and energy resolution, sensitivity and spatial resolution. The authors reported very
good agreement between experiments and simulations for clinical activity concentrations, with differences at
maximum lower than 10%, concluding that the proposedGATEmodel can be used to very accurately reproduce
PET images fromVereos system.

PET2020 long axial FOVPET. In Abi Akl et al (2019), Vandenberghe et al (2017) a long axial FOVPET
scannerwas simulated inGATE. Each ring consists of 36 detectormodulesmade up of 50 × 50 × 16mm3

monolithic LYSO crystals. The systemhas an inner diameter of 65 cm.GATEwas used to study the effect and
advantage of axial lengths between standard 20 cm, 1 m and 2m long systems, covering thewhole human body
versus a coverage of only head-to-hip. A 104 cm long systemwas 16 timesmore sensitive than a systemwith
20 cm axial length (1 m long uniformphantom). The effect of axial splitting of the detector rings to increase the
FOVwas also studied, in turn for sensitivity aswell as an adaptive systembore that allows a sensitivity gain and
advantages in spatial resolution due to the reduced acolinearity effect. The study showed that for objects shorter
than 1 m the sensitivity gain of a 2 m scanner is limitedwhile the detector cost is doubled compared to the 1 m
system. Axial spreading is possible (at the expense of a loss in sensitivity) and an adaptive systembore can be
realized by the camera aperture principle.
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CaLIPSO brain PET.TheCaLIPSOPET scanner (Kochebina et al 2019) is a detector concept dedicated to
human brain studies aiming at providing high detection efficiencywith 1 mm3 spatial resolution and
coincidence time resolution (CTR) of about 150 ps. First, the prototype uses a liquid time projection chamber
(see figure 4), where an elementary cell of the PET imager isfilledwith trimethyl bismuth (TMBi). Electrons and
Cerenkov light are produced in the TMBi by γ interactions. Then,micro-channel plate PMTs (MCP-PMT) are
used to detect theCerenkov light with an excellent time resolution (85 ps FWHM). The electrons produced
during the γ interactions drift along an electricfield and are collected by a pixelated detector of mm2. Ionization
drift time allows to estimate depth of interactionwith 1 mmprecision (Ramos et al 2016, Canot et al 2017, Yvon
et al 2020). Due to fast Cerenkov light emission, time resolution of CTR close to 150 ps (FWHM) is expected.
Thismakes possible to use TOF technique to improve signal to noise ratio infinal images.

Table 1.Bibliography of simulated and evaluated against experimental data PET systems. LYSO: lutetium–yttriumoxyorthosilicate, LSO:
lutetiumoxyorthosilicate, BGO: Bismuth germaniumoxide. The second column indicates if it is clinical (C) or preclinical (PC, for small
animals) systems.

Bib. ref. C/PC PET system

2004Assié et al (2004) PC ECATEXACTHR+, BGO, byCPS Innovations

2004 Lazaro et al (2004) PC IASAprototype, CsI(Tl)
2004 Bataille et al (2004) C ECATHRRT, LSO, brain

2004Groiselle et al (2004) C prototype, CsI(NaI), by PhotoDetection Systems

2004Rannou et al (2004) PC prototypeOPET, LSO/GSO

2005Chung et al (2005) PC prototype LSO and LuYAP

2005 Jan et al (2005) C ECATEXACTHR+, BGO, byCTI

2006Karakatsanis et al (2006) C ECATEXACTHR+ andBiograph 2, by Siemens

2006 Lamare et al (2006) C Allegro/Gemini, GSO, by Philips

2006Visvikis et al (2006) PC prototypes, CZT

2006Michel et al (2006) C BioGraphHiRez, LSO, by Siemens

2006 Schmidtlein et al (2006) C Advance/Discovery Light Speed, BGO, byGE

2006Merheb et al (2006) PC Mosaic, GO, by Philips

2006 Sakellios et al (2006) PC prototype, LSO

2006Vandenberghe (2006) C prototype, Univ. Penn., TOF, LaBr3
2006Vandenberghe et al (2006a) C Allegro/Gemini, GSO, by Philips

2007Gonias et al (2007) C Biograph 6, LSO, by Siemens

2007 van der Laan et al (2007) PC prototype, LSO

2007 Bruyndonckx et al (2007) C prototype, LSO

2007Yang et al (2007) PC eXplore Vista, LYSO/GSO, byGE

2007Vandervoort andCamborde (2007) PC microPETR4, Focus 120, LSO, by Siemens

2007Rey (2007) PC protoype, LausanneClearPET

2009Rechka et al (2009) PC LabPET, LYSO, LGSO, by Sherbrooke

2009Geramifar et al (2009) C DiscoveryDLS/DST/DSTE/DRX, BGO/LYSO, byGE

2011McIntosh et al (2011) PC Inveon, LSO, by Siemens

2011Geramifar et al (2011) C Discovery RX, LYSO, byGE

2012 Poon et al (2012) C BiographmCT, LSO, by Siemens

2012Trindade et al (2012) C Gemini TF, TruFlight Select, LYSO, by Philips

2013 Lee et al (2013) PC Inveon trimodal, LSO, by Siemens

2013Nikolopoulos et al (2013) PC BiographDUO, LSO, by Siemens

2013 Zagni et al (2013) PC Argus, LYSO/GSO,DOI, by Sedecal

2013 Solevi et al (2013) C prototoypeAX-PET, LYSO, SiPM, brain

2015Moraes et al (2015) C BiographmCT, LSO, by Siemens

2015 Poon et al (2015) C BiographmCT, LSO, by Siemens

2015Aklan et al (2015) C BiographmMRhybrid, LSO, by Siemens

2015Monnier et al (2015) C BiographmMRhybrid, LSO, by Siemens

2016 Lu et al (2016) PC Inveon, LSO, by Siemens

2016 Etxebeste et al (2016) PC prototype, LYSO

2017 Sheikhzadeh et al (2017) C NeuroPET, LYSO, SiPM, brain, by PDS

2017 Li et al (2017) C Ray-Scan 64, BGO, byARRAYSMIC

2018DelGuerra et al (2018) C prototype TRIMAGE, LYSO

2018Kowalski et al (2018) C prototype J-PET, plastic

2019Abi Akl et al (2019) C prototype PET2020, LYSO

2019Kochebina et al (2019) C prototypeCaLIPSO, TMBi

2020 Emami et al (2020) C Dual ringMAMMIbreast, LYSO, byOncovision

2020 Salvadori (2020) C Vereos, LYSO, SiPM, Philips
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Simulation of this full size PET scannerwas performed. As illustrated infigure 5, a cubic shapewas used to
minimize dead zones and to simplify themanufacturing process. TheCaLIPSO is composed of 4 sectors of 5× 6
elementarymodules. The acquisition FOV are 354 mm (axial) and 307 mm (radial). TMBi is encapsulated
within a transparent sapphire window coupled to theMCP-PMTwith optical gel. The read-out ionization pad
structure is also integrated. TheGATEdigital detectionmodel used dedicated parameterizedmodules to
simulate the detector response for the ionization and light signal readout. These semi-analyticmodels were
calibrated using detector prototypes. Thefirst estimation of the non-paralyzable dead timewas 3.5 μs,
corresponding tomean drift time and the shaping time for electronics readout. Estimated spatial resolution of
reconstructed images was 1.1 mm in the complete scanner FOV and sensitivity was 17 kcps/MBq.

J-PET long axial FOVPETwith plastic scintillators. J-PET is a PET systembased on plastic scintillators
allowing for a cost-effective total body solution (Moskal et al 2019a, 2018,Moskal and Stepień 2020,

Table 2.Bibliography of simulated and evaluated against experimental data SPECT systems. Collimators types are: low energy all purpose
(LEAR), medium energy general purpose (MEGP), low energy high resolution (LEHR), high energy (HE). The second column indicates if it
is clinical (C) or preclinical (PC, for small animals) systems.

Bib. ref. C/PC SPECT system

2003 Staelens et al (2003) C AXIS, LEHR/MEGP, 99mTc, 22Na, 57Co, 67Ga, by Philips

2004Assie et al (2004) C DST-Xli,MEHR, 111I, byGE

2004Assié et al (2004) C AXIS, LEHR/MEGP, 99mTc, by Philips

2004 Lazaro et al (2004) PC IASAprototype, CsI(Tl), 99mTc
2005 Staelens et al (2005) C IRIX, LEHR/MEGP, 99mTc, by Philips

2005Autret et al (2005) C DST-XLi,MillenniumVG, 131I, byGE

2006 Staelens et al (2006) PC ECAMmulti-pinhole, 123I, by Siemens

2006Vandenberghe et al (2006b) PC prototype SOLSITCE, solid-state, CZT, 99mTc

2006 Sakellios et al (2006) PC prototype, PSPMT,CsI(Tl), 99mTc
2008Carlier et al (2008) C Symbia, 99mTc, 111I, 131I, by Siemens

2009 Park et al (2009) PC TRIADXLT9, LEUHR,NaI(Tl), 99mTc, by Trionix
2010Mok (2010) PC XSPECT,multi-pinhole, 99mTc, byGammaMedica-Ideas

2011Robert et al (2011) C prototype,HiSens, CZT, LEHR/H13, 99mTc, 57Co

2011 Boisson et al (2011) PC prototype, parallel slat, YAP:Ce, 99mTc, 57Co

2015 Lee et al (2015b) PC Symbia T2, LEAP/LEHR/HE, 131I, 99mTc, by Siemens

2015 Lee et al (2015a) PC Inveon, LSO, 123I, 125I, by Siemens

2015 Spirou et al (2015) C ECAM,NaI(Tl), 99mTc, by Siemens

2017Georgiou et al (2017) PC γ-eye, CsI(Na), 99mTc, 111In, 177Lu, by Bioemtech

2017Costa et al (2017) C Symbia T2,MEAP, 177Lu, by Siemens

2018Taherparvar and Sadremomtaz (2018) PC prototype, CsI(Na), 99mTc
2019 Sadremomtaz andTelikani (2019) PC HiReSPECT, LEHR,CsI(Na), 99mTc, by PNP

Figure 2.Examples of some simulated imaging systems (clinical, pre-clinical, prototype). (a)NEMA IECBody PhantomSet ready to
be imaged on a PET/CT. (b)TheBioemtech γ-eye preclinical device. (c)Philips VereosDigital PET/CT; (d)MACACOCompton
Camera prototypewith 2 layers of LaBr3monolithic crystals coupled to SiPMs, developed by IFIC-Valencia. Reproducedwith
permission fromPhilips France Commercial.
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Vandenberghe et al 2020). The J-PETprototype scannerwith a long axial FOVbuilt of axially arranged plastic
scintillator strips was simulated inGATE (Kowalski et al 2018). Three diameters of the scanner (75, 85 and
95 cm), three lengths (20, 50 and 100 cm) and two thicknessesT (4 and 7 mm) of scintillators were simulated for
both single- and double-layer geometries. Spatial resolutionwas simulated for three readout solutions: (1)
vacuumPMT, (2) SiPMmatrices and (3) SiPM readoutwith an additional layer of wavelength shifting (WLS)
strips. TheWLSwere arranged perpendicularly to the scintillator strips, allowing for the determination of the
photon interaction point along the tomograph axis, based on the distribution of amplitudes of light signals in
WLS strips. The spatial resolution, sensitivity, scatter fraction andNECRwere estimated according to the
NEMA-NU-2 protocol, as a function of the length of the tomograph, the number of detection layers, the
diameter of the tomographic chamber and for various types of applied readout. For the single-layer geometry
with a diameter of 85 cm, a strip length of 100 cm, a cross-section of 4 mm× 20 mmand SiPMwith an
additional layer ofWLS strips as the readout, the spatial resolution FWHM in the center of the scanner was
estimated to 3 mm (radial, tangential) and 6 mm (axial). For the analogous double-layer geometry with the same

Figure 3. (Left)A long axial FOV scanner of 20 rings (104 cm axial length) based onmonolithic scintillator blocks. (right) Long axial
FOV systems of 2 mwith full coverage, 1.5 mwith 33%gaps and a 2 m long systemwith 50%gaps.

Figure 4. Illustration of unit detectormodule based on the ionization chamber filledwith trimethyl bismuth (TMBi).
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readout, diameter and scintillator length, with a strip cross-section of 7 mm× 20 mm, aNECRpeak of 300 kcps
was reached at 40 kBq/c.c. activity concentration, the scatter fractionwas estimated to be about 35%and the
sensitivity at the center amounts to 14.9 cps/kBq.

Figure 5.Design of theCaLIPSOPET scanner dedicated for high resolution brain imaging.

Figure 6.Presentation of the (a)modeledmodule of the system (1st layer in red and 2nd layer in blue), (b) scheme of the full TRIMAGE
scanner inGATE, reprinted fromDelGuerra et al 2018, Copyright (2018), with permission fromElsevier. Copyright. © European
Psychiatric Association 2018. (c) viewof the simulated phantomgeometry for the sensitivitymeasurements (the several layers of the
sleeves are presentedwith different colors) and (d)–(f) transversal, coronal and sagittal slices of the 10 iterations of the simulated IQ
phantom.
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TRIMAGE: trimodality imaging for schizophrenia.Anovel dedicated trimodality (PET/MR/EEG) imaging
prototype for schizophrenia was developedwithin the TRIMAGEproject. The brainPET insert wasmodeled and
extensively evaluatedwithGATE. InDelGuerra et al (2018), several geometrical phantomswere implemented,
covering realistic imaging situations. The simulated PETmodel was evaluated for its performance (spatial
resolution, sensitivity and count rate) according to theNEMA standards. Figure 6 depicts themodeled scanner
alongsidewith theNU2-2001 sensitivity phantom (Teräs et al 2007) and the PRESTO reconstructions of the
NU2-1994 ImageQuality (IQ) phantom. Spatial resolution varied between 2.34 mmand 3.66 mm (FWHM)
axiallymoving radially 10–100 mm from the center of the FOV. The simulated coincidence efficiency (i.e. the
sensitivity) for a point source positioned at the center of the FOVwas 61 cps/kBq. To assess the count rates, a
solid, cylindrical phantommade of polyethylene (density 0.96 ± 0.1 g cm−3)with dimensions of 70 mm in
length and 25 mm in diameter was used. The phantomwas placed at the center of the axial and transaxial FOVof
themodeled scanner. A cylindrical hole of 3.2 mmdiameter was drilled parallel to the central axis of the cylinder,
at a radial distance of 10 mm from the center. The line source insert was a clear polyethylene plastic tube 60 mm
in length, filledwith 5 to 11 kBq ml−1 of 18F and threaded through the hole in the phantom for 1000 s
measurement time. TheNECR showed a peak above 1.8Mcps at 250MBq.

The γ-eye SPECT camera. In Ricci et al (2019), the γ-eye, a small FOVpreclinical scintigraphic camerawas
extensively validated. The γ-eye is produced by BIOEMTECHand is suitable for in vivomolecular imaging of
radiolabeled biomolecules providing a screening tool for dynamic pharmacokinetics studies (Georgiou et al
2017). The γ-eye detector was simulatedwithGATE and evaluated for its spatial resolution and sensitivity
properties comparing experimental and simulated data. All of the appropriate electromagnetic and physical
processes were included, while no cuts or variance reduction techniques (VRT)were applied. Amaximum
difference, equal to≈16%, on spatial resolution observed, at 7.5 mmdistance (5.85 mmexperimental value
versus 4.9 mm simulation value). In the case of sensitivity, the difference recorded in zero mm source-to-
collimator distance (57 cps/MBq versus 63 cps/MBq)was≈10.5%. For all the other distances the difference in
sensitivity was lower and very close to themean value of 56 cps/MBq.

Figure 7. Simulation set-up used for the choice of the collimator. Left—the complete camera and a 3DXCAT voxelized phantom.
Right—images of the thyroidwith two hot nodules (0.6 and 1.2 cmdiameter) simulated for five collimators. Given values are the
collimator spatial resolutions. Example of ROIs defined around the nodules and on the background are shown on the 3 mmSR
collimator image.
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THIDOS compactmobile γ-camera for absorbed radiation dose control inmolecular radiotherapy.TheTHIDOS
project aims to theoptimizationof the individualizedpatient dosimetry in radioiodine therapyof thyroiddiseases by
thedevelopmentofnew instrumental andmethodological approaches to strengthen the control of the absorbeddose
by reducing theuncertainties associated todose calculation. In that frameworkwearedeveloping ahigh-resolution
compact andmobile planarγ-camerawith a10× 10 cm2FOVforuse at thepatient bedside.The goal is to improve the
individual quantitative assessmentof thedistribution andbiokinetics of radioiodine in target regions andorgans-at-
riskbefore andafter treatment administration. InTrigila (2019), thedesignof thehigh-energyparallel-hole tungsten
collimatorwasoptimizedusingGATEandanXCAT3Dvoxelizedphantomwith realistic backgroundand thyroid
gland 131I distributions inorder to improvequantificationof small targets (nodules or tumor remnants) as shown in
figure 7.The camerawas fullymodeled anda specific studywas carriedouton the energy and spatial distributionsof
scattered andpenetration events inside the collimator.Thebest compromise in termsof contrast and signal-to-noise
ratio onnodules of various sizeswas achievedwith a5.5 cmthick collimatorwith1.1mmhexagonalholes and
0.75mmthick septa,which allows tominimize thepartial volumeeffect,while reducingboth scattered and
penetration events (effective septal penetration less than7.5%). The expected spatial resolution (2mmFWHM) and
efficiency (1.24× 10−5) for a 131I source set a 5 cm fromthecollimatorwere found tobe in goodagreementwith the
experimental results.

MACACOComptonCamera prototype. InEtxebeste et al (2020), thefirst versionofMACACO (Medical
ApplicationsCompActCOmpton camera)prototype (Muñoz et al 2017)built at IFIC-Valencia,was employed for
the validation ofGATECCModagainst experimental data. This prototype is based onmultiple (2–3) layers of
LaBr3monolithic crystals coupled to SiPMs.A systemconfiguration of two layers separated by50mmwas
considered.The crystal sizeswere 27.2× 26.8× 5mm3 and32× 36× 10mm3 for thefirst and second layer
respectively both coupled to SiPMarrayswith active area pixels of 3× 3mm2.Thefirst layerwas basedon four
HamamatsuMPPCS11830-3340MFmonolithic arrayswhereas the secondonewas basedonanolder version
S11064-050P(X1)with larger gaps between thepixels. Passivematerial of theprototype (boards, holders, etc)was
also included in the simulations. Theperformanceof the systemwas characterized and compared to simulated data
in termsof energy spectra, efficiency, angular resolution andback-projection image onto theplane of the source
with good agreement.Hence, the angular resolutionmeasure for 1275 keV incident photonswas 13.4° ± 0.2°
(simulation) versus 13.5° ± 0.2° (experimental). Relative detection efficiencywas slightly overestimated
2.6× 10−3 (simulated) versus 1.9× 10−3 (experimental) and consistent resultswithin a 3-sigma intervalwere
obtained for energy spectra except for low energieswhere small differenceswere observed. These discrepancies
were partially caused by the approximationsmade in the simulation of the experimental discriminator threshold at
SiPMpixel level in thedigitization processwhich allowus to avoid the generation and transport of optical photons.

Other applications in interventional nuclearmedicine.As nuclearmedicine techniquesmake rapid
advancement in surgery and in interventional radiology, we briefly summarize the current uses of GATE in
support of these applications. They include simulations of tomography units and 1D and 2Ddetectors with the
goal either to enhance the extracted diagnostic information or tomaximize the therapeutic effect of the
procedures. Following is a list of GATEuses in radio-guided surgery, in trans-arterial radioembolization and in
real-time PET/CT guided biopsies.

In radio-guided surgery, GATE is used to simulate gamma and beta detection probes (Spadola et al 2016) and
optimize the imaging process. Vetter et al (2015) usedGATE to evaluate the limits of accuracy of an analytical
approach to register a previous 3DSPECT image to the readings from an optically tracked hand-held 1D gamma
probe an approach known as freehand (fh) SPECT. Since in fh-SPECT the detector positions are arbitrary and
the systemmatrix is not defined,Hartl et al (2015)usedGATE to simulate a LUTof detector readings at a
predefined grid of probe positions around a 99mTc source in order to obtain the contribution of each source
voxel to the detector readings. A LUT createdwithGATEwas used for the fh-SPECTpart of a novel hybrid probe
combining fh-SPECTwith fh-fluorescence (vanOosterom et al 2020). The authors used ameasured LUT for the
optical probe. They commented, that whilefluorescence simulations are possible withGATE, the optical LUT
computationwould be challenging since the opto-nuclear probe is not in direct tissue contact which leads to a
dynamic ratio of air and skin contributions (vanOosterom et al 2020). In an another development, the design of
a PET-like limited angle tomography system for intraoperative radio-guided imagingwas explored usingGATE
by Sajedi et al (2019).

After trans-arterial radioembolization of liver tumorswith 90Ymicrospheres, verification of the correct
delivery of themicrospheres and voxel-based dosimetry can be achieved by performing 90Y SPECTor 90Y PET
scans (Bastiaannet et al 2018). Since 90Y is a pureβ-emitter, the bremsstrahlung radiation used for SPECT
imposes the use of broad energywindowswhich contain large amounts of scattered radiation. In that case, a
differentMonte Carlo code (SIMIND)was used to optimize the collimators and the energywindow for 90Y
SPECT (Roshan et al 2016). 90Y PET is challenging due to the very low positron yield (3.186× 10−5) and
Strydhorst et al performed a detailed analysis of the sources of quantification error in 90Y PETby separating true
coincidences from randomand true events caused by the 176Lu LSO crystal activity and by bremsstrahlung
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radiation in phantom simulationswithGATE (Strydhorst et al 2016b). The point-spread function of a cone
beamSPECT collimator and the projections of aNEMAphantommodel for SPECTparallel hole, cone beam
andmultifocal collimators were simulatedwithGATE to validate the performance of theUtrechtMonte Carlo
system iterative SPECT reconstruction package for fast pre-radioembolization imagingwith 99mTc
macroaggregated albumin (99mTc-MAA) (Dietze et al 2018). GATEwas also used for investigating various
dosimetry aspects of radioembolization (Papadimitroulas et al 2012,Mountris et al 2014, Roncali et al 2020).

The specimens from real-time PET/CT guided biopsies are radioactive, allowingmeasurement of the
amount and the distribution of the PET tracer contained in themby radioactivitymeasurements. This concept
has been explored to show that autoradiography (ARG) images of the specimens are quantifiable and can aid
evaluating adequacy of the specimens for diagnosis and for genomic profiling as well as investigating the
specificity of beta emitting radiopharmaceuticals with high resolution (Fanchon et al 2015, Fanchon 2016,
Maybody et al 2016, Kirov et al 2018). GATE simulations of the positron transport through liver specimens and
gelatin-based specimenmodels whichwere used for calibrating theARGdetectors were performed to obtain a
gel-to-liver correction factor (Fanchon 2016, Kirov et al 2018). Further, anARG image of the tumor cells in a
colorectal cancer liver specimenwas simulated from the distribution of tumor cells as established in the
pathology slices intowhich the specimenwas sectioned (Seiter et al 2018), see figure 8.

4.Methodological developments withinGATE

In addition to developments dedicated to improve detectormodeling, which are detailed in section 2, we briefly
review in the following sections recent features added inGATE that help to design emission tomography
simulation but are not specific to imaging.

4.1. Towards simpler analysis via Python
Historically, Geant4 andHigh Energy Physics community are linked to the ROOTCERN framework (Brun and
Rademakers 1997) that allows to efficientlymanage and analyze physics data. Since the beginning, GATE also
allows towrite ROOTfiles, e.g. detector events or phase space, or use them as input, e.g. use phase space file as a
source of particles. Python has become the tool of choice for data analysis withmodules such asNumPy (Harris
et al 2020) orMatplotlib (Hunter 2007). Since version 9.0, GATEnow includes additional options to read/write
data inNPYfile format (Harris et al 2020) that can be processedwith Python. Also, ROOT files can be processed
in Pythonwith the uprootmodule (Pivarski 2020). Details about theNPYfile format can be found in theGATE
user guide25 and examples of Python analysis are available on theGateContrib repository26.

Figure 8.Measured (a) and simulated (b) autoradiography (ARG) images of a liver specimen obtained from 18F-FDGPET/CT guided
biopsy. The simulationwas performed by buildingwithinGATE a 3Dvoxelized sourcemodel of the distribution of tumor cells in the
biopsy specimen by registering and stacking 2D slices ((c), only one slice shown) inwhich the location of tumor cells (red)was
obtained by amachine learning tool (TMARKER Schüffler et al 2013) applied to the 58 pathology sections (d) intowhich the specimen
was sectioned (Seiter et al 2018). The images are not to scale and the uptake in normal liver cells (blue in (c))was set to zero for this
simulation (b). Among the other factors causing a difference between themeasured and simulated ARG images are deformation of the
specimen during processing and inaccuracies in registration between the sections.

25
https://opengate.readthedocs.io

26
https://github.com/OpenGATE/GateContrib
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Finally, theGATE community recently started a new repository, calledGateTools27, that gather Python
functions that can be useful for simulation setup and analysis. As example, it contains tools to convert or resize
images in various file formats, to convert DICOMRT structures, tomanage phase-spacefiles or analyze dose
map, withDVH (DoseVolumeHistogram) or gamma-index for example. All tools are available as Python
function and as command-line independent scripts. At the time ofwriting, there aremore than twenty different
tools. The installation is very easy thanks to conventional Pythonpipinstall. LikeGATE itself, the code is
open-source and community driven. It should evolve in the future thanks to users’ contributions.

4.2. Variance reduction techniques
Several VRTswere developed inGATE. Among those useful for emission tomography, we can describe the
following: for particles with relatively largemean free path lengths comparatively to voxels size,Woodcock
tracking (Rehfeld et al 2009) usingfictitious interactions can be used to speed up tracking; for SPECT simulation,
angular response function (ARF) (Song and Segars 2005,Descourt et al 2010, Sarrut et al 2018) replaces the
detector response by an analytical (or neural network)model providing probabilities of detection in all energy
channels; ARF can be combinedwith fixed forced detection that forces the detection of a photon in each detector
pixel weighted by the probability of emission (or scattering) and transmission to this pixel (Cajgfinger et al 2018).
The acceleration of all those approaches can reach one order ofmagnitude, although it depends onmany
parameters and on the simulation configurations.

4.3. Positronium source
Positronium is ametastable electron–positron bound state, which is formed approximately up to 40%of the
cases in a patient’s body before the annihilation. It appears in two quantummodes: ortho- and para-positronium,
which have different physical properties, in particular the ortho-positronium lives three orders ofmagnitude
longer than para-positronium, around: 142 ns versus 0.125 ns, respectively. In the tissue, ortho-positronium
mean lifetime strongly depends on the size of intramolecular voids (free volumes between atoms), whereas its
formation probability depends on the voids concentration (Moskal and Stepień 2020). In a patient’s body the
formation probability and themean lifetime are in function of the bio-fluids and bio-activemolecules
concentration (Moskal et al 2019b). As it was shown inMoskal and Stepień (2020), one can reach themean
lifetime precision of about 20 ps. Tomeasure the positronium lifetime, one needs to use non-pure isotopes
emitting prompt gammas.

A set of helper classes was added inGATE for the simulations of the positroniumdecays. Positroniummean
lifetime tomography is one of the examples of a novel PETmultiphoton imaging technique proposed recently
(Moskal et al 2019a). The available positroniumdecaymodels are: para-positronium two-photon decay, ortho-
positronium three-photon decay and themixedmodel decaywhere users can adjust a relative frequency of two
possible positroniumdecays. The implementedmodel of ortho-positroniumdecay products angular
distribution is described inKamińska et al (2016). All themodel parameters are configurable by user with a
simpleGATEmacro. In addition, an emission of prompt gammawith a predefined emission energy can be

Figure 9. a)Patientmeshmodel with all segmented volumes of interest: bones (red), lungs (blue), liver (pink), spleen (white) and left
and right kidney (green and yellow). (b) Snapshot of patientmodel with the remainder of the body (gray) fromGATE. Few green lines
represent photons emissions. (c)Visualization of the auto-contouring gamma cameramotion inGATE.Unequal distances of each
detector from the center of rotation (in orange and blue respectively) shows that the cameramoves in a non-circular orbit.

27
https://github.com/OpenGATE/GateTools
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added. Photon polarization settings are also supported at themacro level. This source enables advanced PET
imaging applications such as oxygen sensing for tumor hypoxia (Shibuya et al 2020).

4.4. STL geometry
Thanks to theGeant4G4TessellatedSolid class, tessellatedmesh geometries composed of triangle
primitives are now available inGATE.Users can import STL (stereolithography)files containing the coordinates
of vertices and faces of themeshed surface, andGATE generates the corresponding volume in the geometry. One
application of this new kind of geometry has been themodeling of the body contouring limited to cubic shapes
allows the gamma camera head tomove as close as possible to the phantom/patientmodel thereby preventing
their collision in theGATE environment (Kayal et al 2020a, 2020b).Meshes for each segmented volume of
interest from the phantom/patientmodel were generated individually using Python scripts and imported in
GATEwhere individual volumes could be assignedwith their respectivematerials fromCT (Kayal et al
2021, 2020c). Figure 9 displays the patientmeshmodel with the auto-contouring gamma cameramotion. Total
counts inmodeled phantomSPECT images obtainedwith circular and body contouring gamma cameramotion
with same acquisition parameters revealed a relative difference of around 2.5% and 12% for 177Lu and 131I
respectively thereby emphasizing the importance ofmodeling auto-contouring SPECT gamma cameramotion
(with the use of STL volumes) especially for radionuclides with high septal penetration (for e.g. 131I). There could
be potential activity underestimation caused by the use of circularmotion acquisition thereby impacting the
absorbed dose in the dosimetry chain.

STL geometriesmoreover allow for an easy description of complex phantoms, as an alternative to voxelized
phantoms. For instance, a STL-basedmodel of a zebrafishwas created from ex-vivo high-resolutionmicro-CT
scans (Zvolský et al 2019a). This phantomhas been designed for theMERMAIDproject, which is aimed to
small-fish PET imaging (Zvolský et al 2019b). Figure 10 displays 3D renderings of a PET scanner design and the
zebrafish phantom including exemplary photon emissions. Separate STLfiles were used for different structures
(e.g. bones, heart, swimbladder, gills, etc). Thesemeshes were used as both attenuation and emission phantom.
AsGATEdoes not support the distribution of activity within amesh, Geant4 volumes enclosing the tessellated
volumes of interest were created. The activity is distributedwithin the volume by an acceptance-rejection
method. Then, GATE confines the emission of radiation to the respective volumewith the confinemethod of its
General Particle Source. It should be noted that the acceptance-rejectionmethod can significantly slow down the
simulationwhen the surrounding volumes aremuch larger than the organs or structures of interest towhich the
activity should be confined. Care should be thus put in selecting the appropriate size and position of the
enclosing volumes.

4.5. Link to third-party reconstruction software
Output fromPET, SPECTorCompton camera simulation, either as listmode data or projections images can
then be used as input for reconstruction software (Gillam andRafecas 2016). Among others, we can cite the
following software used to reconstruct 3D images fromGATE simulations. STIR (Software for Tomographic
Image Reconstruction) (Thielemans et al 2012, Khateri et al 2019, Kang et al 2018)was among thefirst to
propose dedicatedmodules allowing to reconstructionGATE simulated data, both for PET and SPECT,with
MLEMandOSEMmethods.More recently, the CASToRproject (Merlin et al 2018) (Customizable and
Advanced Software for Tomographic Reconstruction) also proposed various reconstruction algorithms for PET
and SPECT,with dedicated tools to useGATE generated data. For SPECT images, theQSPECT software
(Loudos et al 2010, 2014, Spirou et al 2015)was also employed, in particular to investigate the effect of

Figure 10. 3D rendering of a customPET scanner and theMERMAID zebrafish phantom inGATE. Left: full view. Right: zoom to the
phantom, placed into awater tube.Here the gray structure represents the tessellated zebrafish volume, and the green and red dots
correspond to emission locations for the entire zebrafish and the heart, respectively. The green lines indicate several representative
photon trajectories.
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attenuation correction. Recently in Robert et al (2019), the Reconstruction Toolkit (RTK) (Rit et al 2014)was
used to provide 4Dwhole body SPECT reconstruction using image-based breathing signal extraction (Robert
et al ). The PRESTO toolkit (PETReconstruction Software Toolkit) (Scheins andHerzog 2008, Scheins et al
2011, 2015) can also be usedwithGATEoutput, such as in Xu et al (2019). Finally, several ComptonCamera
reconstruction approaches have been usedwithGATEdata, such as inMuñoz et al (2018), Kohlhase et al (2020)
(MLEMorOrigin Ensemble) or in Feng et al (2020),Maxim (2019) (with conical Radon transformmodeling).

4.6. Artificial intelligence integration
There are several potential interactions between artificial intelligence, deep learning in particular, andMonte
Carlo simulations.Within the context ofmedical imaging, these synergies can be classified in two categories.
First,Monte Carlo simulations can produce highly accurate imaging device and patient training datasets for
neural networks applied to various signal and image processing tasks. At the detector level,multiple works have
been carried out to better determineDOI and/or events positioningwithin pixelated and continuous
monolithic scintillators by using trained neural networks (Oliver et al 2013, Conde et al 2016, Pedemonte et al
2017, Berg andCherry 2018,Müller et al 2018, 2019, Iborra et al 2019, Yang 2019, Zatcepin et al 2020). Training
datamay be obtained from experimental data acquiredwith a specific setup or from simulation such as in Yang
(2019). In the case of image processing, one can identify tasks specific to the reconstruction and/or the post-
processing phase. For example, GATE simulations have been used to provide the input to aU-NET in sinogram
space for the derivation of scatter contributions during PET imaging (Visvikis 2020). Deep learning-based
scatter correction has been favorably comparedwith state-of-the art single scatter simulation approaches,
independently of the imaging device or anatomical location (tested on lung or pelvis). Similarly,MonteCarlo
simulation can generate raw sinograms to training deep-learning networks for PET attenuation correction using
MR images (Lee 2020), or for direct deep learning-based image reconstruction in PET imaging (Reader et al
2020). In terms of image processing, images generatedwithGATEhave been used as part of the training dataset
for a functional tumor volume segmentation challenge. Deep learning-based segmentation approaches trained
using this dataset showed improved performance compared to state-of-the-artmethods (Hatt et al 2018).

Second, deep learning approaches can be applied to improveMonteCarlo simulation performance,mostly
computational efficiency.One example is the simulation-trained neural networks tomodel detector response.
In Sarrut et al (2018), the authors determined the Angular Response Function (ARF) of a SPECT collimator-
detector systemwith simulation output. The resulting netmodeled the probability that a photon is detected,
using variance reduction to speed up the simulation. Recently, the concept of generative adversarial networks
(GAN) (Goodfellow et al 2014) that allowmodeling ofmultidimensional data distributionswas proposed to
learn a phase space (Sarrut et al 2019, 2021) generated byMonte Carlo simulation. Once trained, the generator
neural network of theGANcan be used as a very compact source of particles. Similarly, GANs or othermore
recent variants such asWassersteinGANorDeepConvolutional GAN can be applied to generate realistic
anthropomorphicmodels from a few examples ofMonte Carlo simulated images with sufficient variability
(necessary for training).

Since version 9.0, GATE can be linked to the PyTorch library (Paszke et al 2019) andmethods to interact with
theC++ version of this library have been integrated. Trained neural networks can be loaded and used during
particle tracking. This integration opens the door tomultiple extensions. Indeed,Monte Carlo can generate data
ultimately used to train a net or feed the input layer of a net in order to improve the simulation. Note also that
deep learning integration is not limited to emission tomography simulation and can be used for dose estimation
(Lee et al 2019, Götz et al 2019,Nguyen et al 2019, Liu et al 2019), denoising dose fromMonteCarlo simulation
both for photon (Peng et al 2019, Fornander 2019,Neph et al 2019) or proton (RicardoAsensiMadrigal 2018,
Javaid et al 2019), scattermodeling (Lalonde et al 2020, van derHeyden et al 2020), etc. Those studies are still in
early stages and furtherwork is needed to better understand the advantages and limitations ofmixing deep
learningwithMonte Carlo approaches. It is a promisingfield andGATE is ready for it.

5. Conclusion

This article presents an overview of the current status of GATE for emission tomography imaging system
simulation, including a large list of systems that have been simulated and, at least partially, validated against
experimental data. Recent developments have been described aswell and give insight on future improvements in
GATE. This comprehensive summary aims at providing an evaluation of the current capabilities and limitations
ofGATE for imaging systems simulation.

TheGATE software has some limitations, partly rooted in the general nature of theMonte Carlo approach,
domain-specific problems, and code complexity. First, simulations are generally considered slow, in particular,
compared to analytical or semi-analyticalmethods. Attempts have beenmade to provideGPU-based

15

Phys.Med. Biol. 66 (2021) 10TR03 D Sarrut et al



accelerationwithinGATE (Bert et al 2012, 2013)with acceleration factors from20 to 400 depending on the
simulation type.However, GPU integration inGATEwas discontinued due to difficulty to support generic
enough graphic card types. Part of this work has been ported to theGGEMSMonteCarlo code (Garcia et al
2016). One common alternative solution is to apply parallelization techniques by usingmultiple CPUs
(Camarasu-Pop et al 2010). Users need, however, to pay attention to the timemanagement in the simulation
when splitting into parallel jobs, e.g. dead-time or coincidences sorting. Typically, when splitting a PET
simulation into several jobs, each job should keep the same activity rate and thewhole simulation should be split
according to the total simulated acquisition time.Moreover, true coincidences estimation relies on the particle’s
ID (identification number) provided by theGeant4 kernel in order to ensure the gamma came from the same
events.With parallel independent jobs, each jobmanage his own set of ID. Events ID fromone job cannot be
mixedwith the ones of another job. Tools are provided to adequately split simulations and tomerge job’sfiles
such as the events IDs aremodified and can be compared.

Computation time also limits the use of optical tracking to the simulation of single or pairs of detectors, due
to the need for trackingmultiple interactions for each optical photon and the high volume of data recorded. As
opticalMonte Carlo simulation in radiation detectors is increasingly used to study TOFdetectors and prompt
photons, the complexity of the simulations expands and so do the requirements in terms of computational
power. The latest developments in emission tomography are likely to utilizemore andmore optical tracking
capabilities,making this shortcoming a high priority. Another difficulty lies in the need to precisely know the
material and geometrical information of all elements in an imaging systemwhich is often private information
that can only be obtained throughNDA, preventing publicly share complete imagingmodels. Another
limitation ofGATE is that the code source is rather old,more than 15 years, and acknowledges the contributions
of numerous volunteers (more than 70 on the current repository that only keeps track of all authors since 2015).
Hence, the size and the diversity of the C++ code,more than 350 000 lines of code,makes it relatively hard to
maintain. Currently, an effort has beenmade tomodernize the code and adapt a set of engineering techniques
e.g. unit tests and continuous integration to improve the code quality. TheGATE code typically quickly follows
theGeant4 evolutions, thanks to the high responsiveness and support of theGeant4 community. Geant4 toolkit
is at the core of simulation in almost everyHigh Energy Physics experiment at CERN (Albrecht et al 2019) and
will evolve over the next decade towards various improvements, such as the vectorization technique.

GATE is also used for dosimetry purposes, fromoptimizing the dose of radiation-based imaging to
evaluating absorbed dose distribution during radiation therapy for cancer treatment, in external beamphoton
and particle therapy, and in internal radionuclide therapy (Jan et al 2011, Sarrut et al 2014, Grevillot et al 2020,
Roncali et al 2020). For example, GATE is one ofmajor contributors to theOpenDose collaboration that aims at
providing the community with free resources forNuclearMedicine dosimetry (Chauvin et al 2020)28. Indeed,
the possibility to perform in the same framework imaging and dosimetry studies is important, such as in
hadrontherapymonitoring (Jan et al 2012, Gueth et al 2013,Huisman et al 2016,Hilaire et al 2016) or in the
assessment of uncertainties associatedwith clinicalmolecular radiotherapy dosimetry (Garcia et al 2015)29.

Numerous collaborationswith themajormanufacturers in thisfield (Philips, GE, Siemens, Spectrum
Dynamics, etc) show that GATE is used not only in academia but also in industry. Itmight be difficult tomake
predictions about futureGATEdevelopment directions because it is largely guided by users’ projects and
emerging needs. However, we canmention an ongoing trend such as Python binding, which allows performing
GATEdata analysis using Python scripts, providing access to a large ecosystem of libraries and tools.Moreover,
the integration of PyTorch is just at the beginning andmay open the doors to developments exploiting Artificial
Intelligencemethods.

The range of PET and SPECT imaging biomarkers is rapidly expanding for both diagnostic and nuclear
theranostic applications (Czernin et al 2019), and fast timing has nowbecome a key issue for further improving
TOF-PET image contrast and reducing radioactive doses injected to the patients (Lecoq et al 2020). Along the
incentive proposed by the 10 ps challenge30, crossing the ambitious 10 ps FWHMCTR frontier whichwould
allow to image a volume virtually without tomographic inversionwill necessitate effective, rapid and versatile
optical simulation tools tomodel fast scintillation and prompt photons. In this context, new imaging systems
and concepts are being developed to becomemore quantitative andmore cost-effective (Surti et al 2020). The
OpenGATE collaboration31 is committed to follow this evolution providing an open-source simulation toolkit
dedicated both to research and industry applications in thefield ofmedical imaging, and perhaps numerous
other domains utilizing ionizing radiation imaging, such as prompt gamma ray imaging for particle range

28
https://opendose.org

29
http://dositest.org

30
https://the10ps-challenge.org

31
https://opengatecollaboration.org
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monitoring in hadrontherapy, x-ray photon counting and neutron imaging for homeland security, or Compton
imaging for nuclear decommissioning and nuclear wastemanagement.
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