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ABSTRACT: We apply the numerical conformal bootstrap to correlators of Coulomb and
Higgs branch operators in 4d N/ = 2 superconformal theories. We start by revisiting pre-
vious results on single correlators of Coulomb branch operators. In particular, we present
improved bounds on OPE coefficients for some selected Argyres-Douglas models, and com-
pare them to recent work where the same cofficients were obtained in the limit of large r
charge. There is solid agreement between all the approaches. The improved bounds can be
used to extract an approximate spectrum of the Argyres-Douglas models, which can then
be used as a guide in order to corner these theories to numerical islands in the space of con-
formal dimensions. When there is a flavor symmetry present, we complement the analysis
by including mixed correlators of Coulomb branch operators and the moment map, a Higgs
branch operator which sits in the same multiplet as the flavor current. After calculating
the relevant superconformal blocks we apply the numerical machinery to the mixed system.
We put general constraints on CFT data appearing in the new channels, with particular
emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.
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1 Introduction

Four-dimensional N/ = 2 superconformal theories are interesting models that despite a
significant amount of symmetry, show highly non-trivial dynamics and constitute a vast
landscape of theories. In this work, we use modern conformal bootstrap techniques to
study a canonical set of correlators that involve Coulomb and Higgs branch operators.
These are operators that sit in short multiplets of the superconformal algebra and whose
vevs parameterize the moduli space vacua.

Both Coulomb and Higgs branches are a common feature of A/ = 2 theories and have
been used as a starting point for the ambitious program of classifying N = 2 SCFTs.
Coulomb branch geometries are characterized by their complex dimension, known as the
rank, and a classification of all possible rank-one scale-invariant geometries was recently
proposed in a series of papers [1-4] (for a review of later developments see [5]). The Higgs
branch is also a useful organizing principle, specially when taking into account its close
connection to the VOAs associated to 4d N' = 2 SCFTs [6]. It was conjectured in [7] that
one can recover the Higgs branch by looking at the associated variety of the corresponding
VOA. This observation lead to an elegant description of several VOAs in terms of free field
realizations [8-10], and constitutes a first step towards a classification of VOAs associated
to 4d N = 2 theories.

Progress in understanding AN/ = 2 dynamics usually involves quantities protected by
supersymmetry, and access to non-protected data is still a challenge. In this work, we will
study correlators of Coulomb and Higgs branch operators using the numerical bootstrap
of [11]. Even though the external operators in our analysis are protected objects, they still
capture an infinite amount of non-protected data in their correlators. Our results will be
naturally split into two parts: the single-correlator and the mixed-correlator bootstrap.

The single correlator bootstrap for each type of operator has already appeared in the
literature [12-14]. Here we refine the Coulomb branch results motivated in part by the
works [15, 16], where OPE coefficients of Coulomb branch operators for certain Argyres-
Douglas models were calculated in the large r-charge limit. The same OPE coefficients can
be estimated by obtaining upper and lower bounds using the numerical bootstrap, and our
improved results show solid agreement between the two approaches.

The improved OPE-coefficient bounds also give a better idea of the non-protected
spectrum of these models. This is because numerical exclusion curves correspond to solu-
tions to crossing with a spectrum that can be extracted from the zeros of the numerical
functional [17]. We can then use the approximate spectrum as a guide and corner models
by assuming gaps in the single correlator bootstrap, similarly to what was done in [18].

Having exhausted the single correlator analysis, we move on to the mixed-correlator
bootstrap and include Higgs branch operators, which will give us access to a new region of
parameter space that cannot be accessed by looking at single correlators separately. The
mixed correlator setup requires the calculation of new superconformal blocks that include
Coulomb and Higgs branch operators. We solve this problem by demanding that different
N = 1 decompositions of the blocks are consistent, and contribute a new entry to the
superblock catalog, a result interesting on its own right. With the mixed correlator at hand



we explore the landscape of theories with SU(2) flavor symmetry, and also attempt to corner
an individual Argyres-Douglas model, whose symmetries are consistent with our setup.

The rest of this work is organized as follows. In section 2 we review the properties
of the Coulomb and Higgs branch operators that will be the main focus of this work. We
describe to which short representations of the superconformal algebra they belong, and
introduce their OPE selection rules and superconformal blocks. We also summarize the
most salient features of the landscape of known A = 2 superconformal field theories. In
section 3 we present the crossing relations obeyed by our correlation functions. Special
care is required for the four-point function of moment-map operators, where one needs
to take into account the chiral algebra construction of [6]. In section 4 we present the
results obtained from applying numerical bootstrap techniques to the single and mixed
correlators. We conclude in section 5 with a summary of our results and an overview of
possible future directions. The derivation of the new superconformal blocks and the details
of our numerical bootstrap setup are relegated to appendix A and B.

2 Preliminaries

We start with a preliminary review of the two basic operators that will be the main focus
of this work. We will concentrate on two types of short multiplets of the superconformal
algebra, whose correlators capture “canonical data” of the theory, in the sense that it is
data common to most N = 2 superconformal theories. In particular, we will study short
operators whose vevs parameterize the Coulomb and Higgs branches of the moduli space
of vacua.

2.1 Canonical data in N/ = 2 SCFTs
2.1.1 Coulomb branch operators

We denote Coulomb branch operators by ¢,(z) and ¢_,(x). These are superconformal pri-
maries killed by supercharges of the same Lorentz chirality, and their conformal dimension
is fixed by supersymmetry in terms of their corresponding r charges:

G 0] =0, [Qh e 0] =0 = AL =2s, =g (D)

In the notation of [19], which we will use throughout the paper, ¢ is the superprimary
of a LB [0;0](0”) multiplet.! In the literature, they are sometimes called chiral primary
operators, and we will often refer to them simply as chiral or antichiral operators. They
form a ring under the OPE, called the Coulomb branch chiral ring, and the number of
generators in this ring defines the rank of the theory. Canonical data associated with this
ring are the U(1), charge values of the generators. In Lagrangian theories, the chiral ring
generators are given by gauge invariant combinations tr ¢™ of the basic vector multiplet
¢, and their r-charges are always integer-valued. In interacting Lagrangian models, each
coupling constant will have an associated chiral operator tr ¢ of dimension A = 2, which is

'For readers familiar with the notation of [20] this corresponds to the £, /» multiplet.



the superconformal primary of the multiplet that contains the exactly marginal deformation
responsible for the corresponding direction in the conformal manifold.

Non-lagrangian examples include Argyres-Douglas models, in which the r-charges of
the Coulomb branch generators can have fractional values, and it is therefore unlikely they
will have a standard Lagrangian description. One advantage of the bootstrap approach
followed here is that the value of r for chiral operators is a parameter in the crossing
equations, and it can take any continuous value. This makes Argyres-Douglas models
prime candidates for the conformal bootstrap.

Correlators involving chiral operators have been nevertheless studied by a variety of
means, and some recent results in the literature will guide our analysis. One approach is
the observation that certain chiral correlators satisfy exact differential equations known as
the tt* equations [21]. This lead to a series of exciting developments [22—-25], which provide
an algorithmic prescription to calculate OPE coefficient among operators in the chiral ring
of Lagrangian A/ = 2 theories. An alternative approach is provided by the study of these
correlators in the limit of large r-charge [26-29]. Of particular relevance for us will be the
works [15, 16], from which one can extract OPE coefficients of Coulomb branch operators
in rank-one Argyres-Douglas models. We will be able to compare these results with our
bootstrap bounds in section 4, showing consistent results between the two approaches.

2.1.2 The moment map

Complementary to the Coulomb branch there is also canonical data associated to the Higgs
branch. This branch of moduli space is parameterized by another type of short multiplets
killed by a different combination of supercharges, whose highest weights also form a ring
under the OPE. In this work we will only consider the so-called moment map operator
M é 7 (), which is the superconformal primary of the BB[0;0]%9 multiplet.? Unlike the
previous case, this multiplet satisfies a shortening condition involving supercharges of both
chiralities:

Qu My (0)] =0, [Qu Miy(@] =0 = Ay =2. (22)

This operator is neutral under U(1),, and transforms as a triplet under SU(2) g, which we
represent with two symmetric fundamental indices I,J = 1,2. What makes the moment
map particularly important is that it belongs to the same multiplet as the flavor current
jf, this means that both transform in the adjoint of the flavor group G, which we indicate
with an adjoint index A =1,...,dim Gp. It follows from this discussion that the moment
map will be present whenever there is a global (flavor) symmetry. Flavor symmetries are
ubiquitous in A/ = 2 superconformal theories, and correlators of flavor currents capture
canonical data associated to the Higgs branch. Relevant for us is the flavor central charge &k
which can be considered analogous to the most common central charge ¢, which is associated
to correlators of the stress tensor.

A fact that will play a fundamental role in our subsequent analysis is that the moment
map belongs to a special class of operators whose protected data is described by a 2d

For readers familiar with the notation of [20] this corresponds to the B:1 multiplet.



chiral algebra [6].> Because the moment map sits in the adjoint of the flavor group, the
corresponding operator in the 2d chiral algebra is an affine Kac-Moody current. The
dictionary between the 4d and 2d theories is well known:

1
M(’i‘u)(x) - JA(Z)7 kg — _§k2d- (2.3)

The chiral algebra description of protected data allows to solve for an infinite number of
OPE coefficients in terms of the two central charges ¢ and k. This has two important

consequences for us:

e Imposing unitarity of the parent 4d theory requires that the calculated OPE coeffi-
cients are positive, leading to strict analytic unitarity bounds on the central charges
¢ and k [6, 30-32]. These unitarity bounds are a good organizing principle that we
will use in the next section when we discuss the landscape of AV = 2 theories, in order
to choose which theories one should focus on.

e The second consequence is that having analytic control over the protected part of the
correlator gives valuable input for the numerical bootstrap, which is mostly concerned
with non-protected data. In the crossing equations we present below, the infinite
number of short operators appearing in the moment map four-point function can be
summed and treated exactly.

2.1.3 Case studies

Although the bootstrap is an agnostic approach to study SCFTs, it is important to keep
in mind what assumptions we are making and what theories our bounds apply to. For
example, chiral operators will be present when the theory has a Coulomb branch of rank
one or higher, and the moment map signals a global flavor symmetry group Gp. In this
work we will consider only Grp = SU(2), so our bounds will apply to any theory with
a flavor symmetry that admits an SU(2) subgroup. We leave the study of other flavor
symmetry groups for future work.

As anticipated, a powerful organizing principle to study the space of N' = 2 SCFTs
are the unitarity bounds obtained from the underlying chiral algebra. It will be important
to keep in mind that the central charges of any interacting A" = 2 SCFT satisfy [6, 31]:*

24chY

> k(—180c? di *hY —22chY < 0. 2.4
2 Dot dimGy’ (—180c” 4 66¢ + 3dimG ) + 60c ch” <0 (2.4)

For theories without flavor symmetry, the first inequality does not apply and the second
one reduces to ¢ > 11/30 [30].

Perhaps the most familiar examples of N' = 2 SCFTs are Lagrangian models, the
simplest one being the SU(/N) SYM theory coupled to an adjoint hypermultiplet. This is
precisely N' =4 SYM theory, where part of the full SU(4)z symmetry is reinterpreted as

3Coulomb branch operators are not captured by the chiral algebra, and apart from protected conformal

dimensions the rest of the CFT data appearing in their correlators is always dynamical.
“The dual Coxeter number A" is N for SU(N), N — 2 for SO(N) and so on.



Hy H; H»> N =4SYM | N =2SCQCD
Gr | — | SU©2) | SU@3) SU(2) SU(2N) x U(1)
AV 3 3 2,...,N 2,...,N

11 1 2 N2—-1 2N2—-1

30 2 3 4 6
k| —| & 3 N2 -1 2N

Table 1. N/ = 2 theories that will appear in the discussion of our results.

an SU(2) flavor symmetry. Another interesting model is /' = 2 SCQCD, namely an SU(V)
SYM theory coupled to Ny = 2N hypermultiplets. The flavor symmetry is SO(8) for N = 2
and SU(2N) x U(1) for N > 3. Data associated to these theories is presented in table 1.
When restricting to rank-one or equivalently SU(2) gauge group, SCQCD saturates the
two bounds in (2.4), while N' =4 SYM saturates only the first one.

Three non-Lagrangian models that will play an important role in our analysis are the
Argyres-Douglas theories listed in the first three columns of table 1. These models were
originally discovered as fixed points of N' = 2 SU(2) supersymmetric QCD [33], and they
correspond to vacua where a monopole and Ny quarks become massless.” These theories
have a rank-one Coulomb branch, and the flavor symmetry is SU(Ny) where Ny = 1,2,3
for Hy, Hi, Hs respectively. Moreover, they saturate the bounds (2.4) and have therefore
a distinguished position in the N' = 2 landscape.

These Argyres-Douglas models are isolated and strongly interacting with no standard
Lagrangian description.’ Despite this fact and thanks to superconformal symmetry, some
aspects of these theories are under good analytic control. The central charges listed in the
table were calculated using holography in [36], and their associated chiral algebras were
conjectured in [37, 38]. They can also be obtained as low energy theories on D3-branes
probing F-theory singularities [39], a construction that naturally generalizes our models
to higher ranks. In addition to the flavor symmetry already discussed, the rank- /N models
will enjoy an extra SU(2)z, symmetry, which will have its own flavor central charge kr. The
central charges of the higher rank models are [36]:

1 ,. 3 1
k=2NA,, (2.6)

ki, = N*A, — N(A, — 1) — 1,

where A, is the dimension of the rank-one Coulomb branch generator in table 1, and the
remaining generators have dimensions 2A, ..., NA,. This review of ' = 2 theories is by
no means complete, but it will be sufficient for the discussion of our numerical results.

®The Hy theory had been found first in [34] as a fixed point of ' = 2 SU(3) super Yang-Mills.
See however [35] for an interesting approach based on susy enhancement along an N’ =1 RG flow.



2.2 Correlators, conformal blocks and selection rules

Having reviewed the basic multiplets we are interested in, let us now have a brief review
of superconformal kinematics. Conformal Ward identities imply that four-point functions
depend on a function of two cross-ratios z and Z:

Gijri(2, 2) <$24>A’7 ($14>A’“’
(1) (x x T4)) = o | — — . 2.8
(@i(z1)95(22) P (23)Pi(24)) At 8o oy = (2.8)
Using the Operator Product Expansion (OPE) in the (12) — (34) channel, one obtains the
conformal block decomposition:

_ A, _
Gim(2:2) = > (=1)Njo o gas " (2,2). (2.9)
Oco;x¢p;
Here the sum runs only over conformal primaries that appear in the OPE ¢; x ¢;, and the
contribution of all conformal descendants is captured by the conformal blocks originally

computed in [40, 41]. In our conventions, they are normalized as
A, A _ ZZ (1 Ajg,A NPy A12.A34 7 —r 1. A72,A
(e 7) = 2 (R R () - SR (), (2a0)

where the one-dimensional blocks are of the familiar form:

1 1
kﬂA127A34 (z> = sz/Q o FY (2(6 — Alg), 5(5 + A34); ﬂ; Z) . (211)
It will be understood from now on that ga , = g&og and kg = kg’o.
When supersymmetry is present, the OPE coefficients of descendant operators can be
related to the ones of the superprimary. As a result, G;jz; can be decomposed in terms of

superconformal blocks

Gijr(2,2) = Y (=1)'A 000 GRY (2, 2), (2.12)
O€p; xd;
where the sum now runs only over superprimary operators in the ¢; x ¢; OPE, and the
superconformal blocks GZ’SI are linear combinations of non-supersymmetric blocks.

In the rest of this section we will discuss the implications of AN/ = 2 supersymmetry on
all possible correlation functions formed with (anti)chiral operators ¢, @ and the moment
map operator M. Single correlators for chiral operators and moment maps were studied
originally in [12], while mixed correlators involving both types of operators have not been
studied before. In order to bootstrap this system the first necessary step is to calculate the
corresponding superconformal blocks, this is done in section 2.2.3 by imposing consistency
between different N’ = 1 decompositions.

2.2.1 Chiral correlators
We focus first on the four-point function of two chirals and two antichirals:
1

<<Pr(961)907«(3?2)95—r(333)95—r(3?4)>:m > ‘)\W@‘QQA,Z(%E) (2.13)
T2 " T3q4  Ocpxp



Multiplet Block Restrictions
LBI0; 0] | gon,0
LA[t; £-2)(0:2r-2) G20, +0,0 £ >2, £even
LB[0; 0](22r-2) 92A,+2,0
LAC; ¢-1](1527-3) Gon, o420 | £ =2, Leven

LI ] gay A>2A,+0+2, £>0, €even

Table 2. List of multiplets that appear in the ¢, x ¢, OPE, where ¢, is the primary of N’ = 2
chiral multiplet. For each multiplet, only one conformal descendant appears in the OPE, so we
obtain non-supersymmetric bosonic blocks.

To understand what operators appear in the sum we need to study the OPE ¢, x ¢, ~ O.
The non-supersymmetric selection rules require that only even spin operators with 2r-
charge appear in the sum. Furthermore, the lLh.s. is chiral and annihilated by the super-
conformal charge S, (see [42] for a proof), i.e. QO = S,O = 0. Tables of supermultiplets
can be found in [19], where one starts with a primary operator at the top and all the @) and
Q-descendants are arranged in a diamond. The superselection rule implies that the only
operator that contributes to the OPE is the one sitting in the right corner of this diamond.
Since only one operator in each multiplet contributes to the OPE, the superconformal
blocks reduce to standard bosonic blocks and we define Gﬁ’é‘w = gay.

Going through the tables of superconformal multiplets, we obtain all operators that
can appear in the OPE. The resulting selection rule, together with the conformal blocks
are summarized in table 2.

Similarly, we can study the same four-point function with the operators in a different

order:

_ _ 1 SioB
(or(@1)P—r(22)0r (23)P—r(24)) = m Z |)‘sos50\2 Gg,péw(%z)- (2.14)
12 T34 Ocpxi

Now the sum runs over all superprimaries in the OPE ¢, x ¢_, ~ O. Using superconformal
Ward identities it is easy to prove that only multiplets with vanishing R and r charge can
appear. By going through the list of A/ = 2 multiplets one obtains

or X Gy ~ 1+ AA[G; 000 4 LL[e; ()0, (2.15)

For each multiplet, all operators with R = r = 0 appear in ¢, X ¢_,., thus the superconfor-
mal blocks are linear combinations of bosonic blocks. The superconformal block for the ex-
change of the long multiplet was originally computed in [43], and takes a very compact form:

GRPP(2,2) = (22) 'gR554(2, 7). (2.16)

At the unitarity bound A = ¢ + 2, the LL multiplet shortens and we obtain the super-
conformal block associated to AA. In particular, the stress tensor belongs to AA[O; 0}(0?0),
and all the AA[/(; )% with £ > 1 contain higher-spin conserved currents that are absent



Multiplet | Block | Restrictions
1 1
AA[G 000 | GEEFP | £ >0

LLG AR | G2 | A> 042,020

Table 3. List of multiplets that appear in the ¢, X o_,. OPE, where ¢, is the primary of an N' = 2
chiral multiplet and @_,. is its complex conjugate. The explicit form of the superconformal block
is given in (2.16). The multiplets AA[/;£](%%) for £ > 1 contain higher-spin conserved currents and
should be absent in an interacting SCFT.

in interacting SCFTs. Similarly, for £ = 0 and A = 0 we obtain the identity operator.
Although not manifestly so, the above superconformal block can be expanded as a sum of
bosonic blocks with Ajo = 0. We do not need the full result, but let us note for future
reference the contribution of the stress-tensor multiplet:

505, 1 _ 1 _
G%wp(z, Z) = g20 + Zgg,l(z, Z)+ @9472(27 zZ). (2.17)
In order to study crossing symmetry, we will also need the following ordering:
% % 1 2 APPpP (., 3
(or(@1)P—r(z2)P—r(23) 7 (24)) = 3R, 2A, Z |Apz0 GA,K (z,2). (2.18)

T1o "T34 " Ocpx@

The block G is given by the same linear combination of non-supersymmetric blocks as G.
However, for each term in the sum, we must include a factor (—1)¢ depending on the spin
of the exchanged operator. All in all, the superconformal blocks in compact form are:

NPP;P 5 07 =\—1 2,—2 _
Gz%’etp@(zvz) = (=1)"(22) 19A+2’g(272)- (2.19)
The results of this section are summarized in table 3.

2.2.2 Moment map correlator

Now we consider the four-point function of moment map operators. In this work, we will
restrict our attention to Gp = SU(2), which could represent the full flavor symmetry of the
theory or an SU(2) subgroup. It is convenient to contract the SU(2)g indices with auxiliary
vectors ! to unclutter the equations M4 (z,t) = M7y (z)t't’. Using this notation the four-
point function of moment maps can be decomposed into SU(2)r and flavor irreducible

representations:
(M (w1, t1) MP (9, t2) M (3, t35) MP (24, ta))

(t1 - t2)?(ts - t4)? ABCD _
= 11 > D P Pr(y) ai,r(z, 2).
T12734 R=024 i

(2.20)

We contract the auxiliary vectors as t,-t, = e7tLt/, and the SU(2) r-invariant cross ratio is

w— (t1 - t2)(t3 - t4) y = 2_ 4 (2.21)

(tl . tg)(tz . t4) ’ w



Since the moment map is a triplet under R-symmetry, the four-point function decomposes
into [2] ® [2] = [0] @ [2] @ [4], where [R] is the (R + 1)-dimensional representation of SU(2).
The projectors Pr(y) are given by Legendre polynomials:

P)=1, Pl =y, Pily)= 532~ 1). (222)

On the flavor symmetry side, we have an index ¢ which runs over all irreducible represen-
tations in the product of two adjoints i € ad Gp x ad Gp. We use orthogonal projectors

normalized as follows:
P@ABCD})jDCEF — 5in:ABEF7 -PiABBA — dim RZ . (223)

For the case of interest to us Gp = SU(2), the projectors are:

1

PABCD — gdAB(sCD, (2.24a)
1

PABCD _ 5((SAD(;BC — §AC§BD) (2.24b)
1

PgélBCD _ 5((SAD(;BC + 5AC(;BD) _ PfXBCD ) (2‘24(3)

A useful property of the moment map four-point function is that superconformal Ward iden-
tities relate the different R-symmetry channels. In particular, the three a; r for R = 0,2,4
depend on a two-variable function G;(z, z) and a meromorphic function f;(z) [44-46]:

ai0(27) = 227 — 3(z6+ zZ) + 6gi(z, . z(zzf . ((2 - Z)ﬁ(z) 2- i_)ﬁ(é)) 7
i2(sr3) = g ()~ 50) + 5l (2.25)

aia(z7) = %zgi(z, 7).

Since the superconformal blocks satisfy the same Ward identities as the correlator, we can
also express them in terms of G(z,z) and f(z). The selection rules for the moment map
operator were first obtained in [47], and the corresponding blocks were calculated in [44].
We do not review the calculation here, but we just quote the result in table 4.

2.2.3 Chiral and moment map

Finally, we consider the channel involving both chiral and moment map operators. In this
case, the superconformal blocks are not available in the literature. Fortunately, we can
leverage the knowledge of NV = 1 superblocks to easily obtain the required blocks. The
strategy is to build the A/ = 2 superblocks as a linear combination of N' = 1 blocks, and
by a mix of basic consistency conditions and N = 2 selection rules, it turns out all free
coefficients can be fixed. We present the steps in detail in appendix A.

First we consider the four-point function

(o)) MA s 1) (1)) = Dl 1)

_ wp; MM _
= W Z)\WPO)\MMOGAJ (z,2), (2.26)

o

~10 -



Multiplet | Block G(u,v) | Block f(z) | Restrictions
1 0 1 —
BB[0;0]Z9 | o ks -
BB[0; 0|49 | 6ulgsg 6k -
AA[0; )00 | ¢ —kay2) (>0

AAG 0 | —2u g5 04 | —2koeysy | £>0

LL¢; E](AO;O) U_lgAJrQ’e 0 A>L0+2

Table 4. List of multiplets that appear in the M x M OPE, where M is the A/ = 2 moment map
operator. The superconformal blocks can be expressed in terms of two functions G(z, z) and f(z), as
discussed around equation (2.25). In our conventions, the contribution from the lowest-dimension
operator is always unit normalized.

Multiplet | Block Restrictions

1 1

AA[ 000 | gAY 0> 0, ¢even
LI_J[E;E](AO;O) GK“Z;MM A>(0+2,£>0, feven

Table 5. List of multiplets that appear both in the ¢, x ¢_, and M x M OPEs. For each multiplet,
the superconformal block can be found in equation (2.27).

where the sum runs over all even-spin superprimaries which are both in the ¢, x ¢_, and
M x M OPEs (see tables 3 and 4). Interestingly, the superconformal block can be written
very compactly (see appendix A):

GWJ;MM(

A (2.27)

_ —\—1.20 _
z,2) = (22) 1gA+27Z(z,z).

As before, at the unitarity bound A = ¢ + 2 this block gives the contribution of the

AA[l; 0)%0) multiplet. In the appendix we give an expression for GZ‘Z;MM

as a linear
combination of non-supersymmetric blocks (A.12). We do not need such an expression in

general, only when A = 2, £ = 0 to capture the contribution of the stress tensor:

5. 1
MM~ _
Gy (2,2) = g2.0 — 309422, 2). (2.28)
These results are summarized in table 5.
Let us now consider the four-point function in the crossed channel
(@) M (2, ta) MP (23, t3) @ (24))
648 (ty - t3)? (x24)A“"_2 (x14)A‘”_2 S P oaro G M (5, 5) (2.29)
= Qx5 Al — MO z,2),
oy Pagy T\t *13 o .
where the superconformal blocks derived in appendix A are
M;M@ = —\— Ay,—1,3-A _
GZ! “(2,2) = (22) 1/29Ai2,£ “(z,2). (2.30)
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Multiplet Block Restrictions

LB[o;0)®") | G{MHE

LA ¢-1)0mD | GRMETE >

LL[GAR™ | GMP | A Ay +L4+1, £>0

Table 6. List of multiplets that appear in the ¢, x M OPE. For each multiplet, the superconformal
block can be found in equation (2.30).

The sum in (2.29) runs over the superprimaries of three different multiplets. For generic
A it is a long multiplet LL and the block is given by (2.30). At the unitarity bound
A = A, + 0+ 1 we either obtain an LA multiplet if £ > 1, or an LB multiplet for £ = 0.

When we study crossing we will also need the blocks for the (pM@M) ordering. As
before, we define them with a tilde:

GRMP(2,2) = (1) (22) V2007, 00 (5, ). (2.31)

The results in this section are summarized in table 6.

3 Crossing equations

With the selection rules and superconformal blocks at hand, we are finally ready to present
the crossing equations of interest. Although it is generally an easy exercise to obtain them,
for the moment map four-point function one needs to take into account the contributions
coming from the chiral algebra. We will review the most important results which are
derived in more detail in [12].

3.1 Generalities

The bootstrap for four-point functions of different scalars was first studied in [48]. As
usual, one demands that the OPE decomposition in the (12) — (34) channel is equivalent
to the (14) — (23) channel:”

| | — |

(66(21) b5 (2) b1 () A1 (24)) = (65(1) b5 (w2) i () du(2:4)) (3.1)

Upon expanding in conformal blocks, this implies two independent crossing equations

Z(—l) )‘lJOAklOEi AE 2,z) = Z )\kjo)\llOEj: Aé(z z)=0, (3.2)

where we have defined

At AL A
1513kl
Ny (

BN (2,5) = (2 - 2) {(zz)— : 2%)

DA
L Nij, A

:F((l—z)(l—é))_TgA’E (1—2,1-2)

"There will also be flavor symmetry indices which for simplicity we do not consider yet.
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We have multiplied by (z — Z) to simplify the approximation of blocks in terms of poly-
nomials, as explained in appendix B. In what follows, we will use the same notation for
superblocks, for example EMM:#% is obtained from (3.3) with A1g =2, Agy = A, and

A12,A34 MM;p@ 8
(N =Gy 7T

3.2 Chiral correlators

The constraints imposed by crossing symmetry on a system of A/ = 1 chiral correlators in
4d was first studied in [42] and later improved in [49]. The analogous system with N = 2
supersymmetry has been studied by [12-14]. Applying (3.2) to (ppep) and (ppep) one
obtains three independent equations

L+ Y Pyeol Une+ D Pogol?Vae+ D Appol> Wae =0, (3.4)
OcA+ OcA- OeB+
where
BEF BEy? o
Une=|BSR7 |0 Vau= |BER7 | Wae=| BIRY |- 39)
Bo5y7 By ~Be.

Furthermore, we have separated the contribution of the unit operator and the stress tensor

into
S A2
I.=Uppo + G—;DUQ,O : (3.6)

The normalization of the stress tensor is easily obtained from (2.17) and the requirement

2
that it is normalized as ~ % ga2 (for details see [42, 49]). The ranges of the sums in (3.4)
can be read from tables 2 and 3:

AT ={>0, L even, A > 1+ 2},
A ={{>0, Lodd, A>(+2}, (3.7)
BT ={0>0, L even, A =2A,+ (}U{l >0, £ even, A >2A, +{+2}.

The operators in the ¢ x @ OPE are divided into even and odd spins A*. Even though
the distinction is not necessary at this point, we keep it in analogy to the mixed system in
section 3.4.

3.3 Moment map correlator

The crossing equations for the moment map are a bit more intricate than for a regular non-
supersymmetric four-point function. Let us remember that this correlator is completely
determined in terms of two variable functions G;(z,z) and meromorphic functions f;(z).

8We proceed similarly for the superblocks with tilde. For example E¥MM¢ ig obtained from (3.3) with
Azyg = 2, A174 = A¢ and gﬁlf’AM — ézl\g;Mgo.
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The index i € ad Gg x ad G runs over representations that appear in the product of two
flavor adjoint representations. The projectors PZABCD transform under crossing as:

o= NI Wl

; Fsu(z) =

wlot = Wl
ST NI o=

With this definition it is a simple exercise to show that the crossing relations for f;(z)
decouple from the rest, and take the simple form

z
-1

2
= ) r1-2. @9

f(25) = Cmmose, e = (
Here symm(i) is 0 for representations that are symmetric under the exchange of points
14> 2, and 1 for the antisymmetric ones. For the case of SU(2), symm(1) = symm(5) =0
and symm(3) = 1. Interestingly, the crossing equations (3.9) determine f;(z) up to a free
parameter. Alternatively, one can obtain fABCP(z) as the four-point function of affine
Kac-Moody currents of the chiral algebra associated to the N” = 2 theory [6]. Using either
procedure, one obtains

_3—62—1—(5—%)22—(2—%)23—1-,24

fi(z) = (12 : (3.10a)
_8, 4 12,2 9 _4y,3_ .4
falz) = 2K (1+_(Z)2 R =2 (3.10b)
4y(52 _ ,3 !
fs(z) = &+ ’“)((1 e )tz (3.10c)

The free parameter k is the flavor central charge that appears in the four-point function of
flavor currents.

Now one can expand the f;j(z) in terms of one-dimensional blocks, and extract the
corresponding OPE coefficients. Using table 4 these can be mapped to the OPE coefficients
in the G(z, z) block expansion.” With this information, one can resum the contribution
of the BB[0;0](4% and AA[(; £]%0) multiplets to G(z, Z), which splits into protected and
unprotected pieces:

Gi(2,2) = G"(2,2) + G(2,2),  G(2,2) = Y [Mumo, [ u gau(z,2).  (3.11)

The conformal block decomposition of the long (unprotected) piece involves only
LE[&E](AO;O) multiplets, and the corresponding block appears in table 4. For SU(2) fla-

In order to do this mapping unambiguously one needs to assume the absence of higher-spin currents,
or equivalently, that AA[(; €]<0;0) for £ > 1 are absent in our equations.

— 14 —



vor, the short (protected) pieces were computed in [12]:

_ = 2 20,2 _
gih(z,z):bg(l 7z) <6+ 82 z* (2 2z+2)>

z2—Z ¢ k(l-2) (1—2)2

log(1 - 2) 6, 8z P (F-22+2)

Z2—Z c k(1-2) (1—2)?

_ 6log(l — Zéog (1— 2)7 (3.12)
gih(z,z) = 2=2le(1—2) (4 2 >(2—Z)zlog(1—z) (4 z2>
87 (z—2)(1—2) \k 1-—2z (z—2)(1-2) \k 1-z)°
gSh(zz)—_zleg(l—E)<4 22—22+2> Zlog(1 — 2) (4 52—25”)
BT -2 -2) \k 1—2z (z—2)(1—-2) \k 1-2 '

Keeping this information in mind, we are finally ready to write a set of crossing equa-
tions that constrain the unprotected spectrum of N' = 2 theories. Besides (3.9), crossing
symmetry implies

(B, 6,") (H3(2,2) = H;(1 = 2,1 = 2)) = (B, £0,") Ha j(2,2) = 0, (3.13)
where
Hi(27) = (2 — 2)(22)2Gi(2, 5) — 2<zlz>2 (Zilfi(z) -2 lfi(z)) . (3.14)

Out of the six crossing equations (3.13), only three of them are independent. When we
expand them in blocks, there will be a piece which corresponds to the long operators, for
which f;(z) drops out and G;(z,z) — u_lgAH,g, see table 4. On the other hand, for the
protected part both (3.10) and (3.12) will be relevant, and we collect them in the vector
f;,k. All in all, we get

I+ > Ao, 2 Uny+ > Ao, Xay+ > Ao, ? Yar=0. (3.15)
At s o
with
g s s
Une=| 2BYNMMM |, Xap=[9BYNMM |, Yay=| -5 BMAMM | (3.16)
—2 pMAMM g EMA MM 5 BV

For convenience we have defined

EY MM (2,2) = (2= 2)[(22) gz 2) F (1= 2)(1-2) Pgard — 2,1 2)]. (3.17)

The contribution of all the protected operators depends only on ¢ and k. It can be con-
structed by combining the definition of H in (3.14) with (3.10) and (3.12):

AHS ) + 3H g + 5H 5
L= 2Hh, +omh, — 53 | (3.18)
—2HL )+ 3HS 4+ 5HT

~15 —



Regarding the ranges of summation in (3.15), we have three different channels depending
on the flavor symmetry representation. The singlet channel is equivalent to AT defined
in (3.7), while the 3 and 5 channels give:

Cyg ={>0, {odd, A>/(+2}, (3.19)
Cd=1{>0, L even, A > (+2}. '
3.4 Full mixed system

The crossing equations for the mixed system are a simple extension of the ones presented
so far. By considering (¢pM@M) and (@pM M) we obtain three extra equations and a new
channel ¢ x M. The full system is then

- N N o AMMO - -
L+ Y ()‘MMO )\p@o) Uny (}\ >+ > ool Vae+ D [Appol*Waye (3.20)

OcA+ ppO OcA- OeB+
+ > Mnio? X e+ > Aainso]2Ya e+ > Aorro]2Za e =0.
0eCy oecy OeD*

The explicit crossing vectors are easy to obtain and are given in appendix B.3. In the new
channel the summation range can be obtained from table 6:

DE={0>0, A>A,+0+1}. (3.21)

We will often refer to the different channels by the name of the crossing vector. For example,
the multiplets that appear in the ¢ x M OPE will be referred to as Z-channel multiplets,
and similarly for the other channels.

4 Numerical bounds

In this section we use the numerical bootstrap of [11] to obtain bounds on the space of
N = 2 superconformal theories. Arguably the most important numerical bootstrap result is
the precise determination of the critical exponents of the three-dimensional Ising and O(N)
models [48, 50-55]. In the supersymmetric literature, one can find studies of 3d models
with minimal supersymmetry [56-58], N' = 2 supersymmetry [59-63] and maximal N' = 8
supersymmetry [64-67]. Similarly, in four dimensions there have been studies of N’ = 1
theories [42, 49, 68-70], N' = 2 theories [12-14], N' = 3 theories [71] and of N' =4 SYM
theory [72, 73]. Finally there have also been bootstrap studies of supersymetric theories in
two [74-76], five [77] and six [78, 79] dimensions and for supersymmetric defects [80, 81].
A mixed correlator between Coulomb and moment map operators similar in spirit to our
work has been studied in 3d N/ = 4 theories in [82]. A pedagogical introduction to the
modern numerical bootstrap is [83].

4.1 Chiral correlators

In this section we focus exclusively on chiral correlators. Some of our results are new, while
others are improved versions of the ones previously obtained in [12-14]. For details of the
numerical implementation for this and all subsequent sections see appendix B.
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Figure 1. Upper and lower bounds on the OPE coefficients of operators ¢? and Q>0 in ¢ X ¢,
where ¢ is the highest weight of a chiral multiplet. Curves are shown for A = 16, 20, 24, 28, 32, and
the allowed region is filled. In the left figure, the values for the rank one Hy, Hi and Hs theories
were computed in the large r-charge limit in [15, 16]. We also present free SU(N) gauge theory
values for N = 2,...,6, which as N — oo approach the mean-field theory solution (MFT).

4.1.1 OPE bounds and spectrum

As summarized in table 2, the OPE of two chiral fields ¢, X ¢, contains a family of protected
operators captured by conformal blocks gaa 1 for £ =0,2,4,.... These operators should
be interpreted as double traces of the chiral primary operators ¢ 0#! ...9"¢p. For £ = 0 this
gives another Coulomb branch operator that we denote ¢?, while for £ = 2 the exchanged

operator is a level-two descendant in its multiplet which we denote Q0. In figure 1 we plot
2

Q20
sion of the external field A, = r/2, without making any assumptions about the spectrum.

upper and lower bounds on the OPE coefficients A2 and A as a function of the dimen-
Notice that upper and lower bounds are close to each other for low values of the external
dimension A,. Luckily, the Argyres-Douglas models listed in table 1 are characterized by a
low value of A, which means the bounds are particularly useful to constrain these theories.
The equivalent bounds for £ > 4 are qualitatively equal to the £ = 2 case, in the sense that
for low values of A, the OPE coefficient must be approximately given by their MFT values.

It is interesting now to compare our results with the works [15, 16], where analytic
expressions were obtained for )\iz for the Argyres-Douglas theories of table 1. In [15]
the authors obtained an expression valid to all orders in 1/r, without taking into account
exponentially-suppressed non-perturbative contributions, which could be relevant for the
case of interest to us where 7 = A, is of order one.’® The approach of [16] also relies on
taking a large r-charge limit, that can be analyzed using Random Matrix Theory (RMT)
techniques. The two methods give very similar results, which we have added to figure 1,
and observe that they sit in the allowed region. Figure 1 is agnostic regarding the value
of the central charge ¢, so we can refine these bounds by fixing ¢ to the Argyres-Douglas

10We thank D. Orlando for an interesting discussion on this point.
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Lower bound | Upper bound | Resummed [15] | RMT [16]
)\iz for Hy 2.142596 2.16509 2.1181 2.0982
/\iz for Hy 2.216735 2.35462 2.2129 2.2412
)\ig for Ho 2.299679 2.69898 2.3457 2.4206
/\2—220 for Hy 0.468394 0.46893 — —
A%Q o for Hy 0.571321 0.57544 — —
A%Q o for Hy 0.714878 0.73218 — —

Table 7. Upper and lower bounds on the OPE coefficients of operators 2 and Q2O in ¢ x ¢, where
 is the highest weight of a chiral multiplet. The parameters A, and c are fixed to the known values
of the rank-one Argyres-Douglas theories in table 1. All bounds have been obtained at A = 50. In
the rightmost columns we compare with the values computed by resuming an expansion in 1/r to
all orders [15], and using Random Matrix Theory in [16].

values of table 1, and also by increasing the number of derivatives A. This allows for a
better comparison between the bootstrap and large r-charge results which we present in
table 7. There is surprising agreement between the two approaches, especially considering
the analytic results were calculated using a large-r expansion, and the values of r for these
operators are quite low. The values for the Q2O OPE coefficients are exclusive to the
bootstrap and have not been estimated by other techniques.

Using the
extremal functional method it is possible to extract the spectrum of the theory which

There is a second, less obvious motivation for looking at these bounds.

lives at the boundary of the exclusion region [17]. This idea has been used successfully in
many applications, most importantly the 3d Ising model [51, 84]. In our case we have two
numerical bounds that are quite close to each other, and the hope is that the extracted
spectrum is a good approximation of the actual spectrum of the Argyres-Douglas models.
The results of the analysis are collected in table 8 in the appendix. We are focusing on
the £ = 0 operators in the U and W channels. In particular, Ay is the dimension of the
first superprimary in the ¢ x ¢ OPE, A}, of the second superprimary, and so on. For the
¢ x ¢ OPE, Ay and Af;, denote the dimension of the exchanged operators rather than
the superprimaries. For the rank-one Hy and H;p theories a summary of results is

Hy : Ay~27, Ayp~59 AV ~92, Aw ~4.8, Ay ~T,

4.1
Hy : Ay~30, Ay~59 A ~9-13, Ay ~53, Al ~6—8. 1)

These are rough averages of the results in table 8, for which there is no rigorous way to
estimate the errors. In the next section we are going to use these numbers as a guide and
attempt to isolate these models using bounds on scaling dimensions, and as we will see, a
consistent picture emerges.

4.1.2 Dimension bounds

Having obtained a rough estimate of the spectrum of operators for the Hy and H; rank-one
Argyres-Douglas theories, let us now try to isolate them using the numerical bootstrap for
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Aw Hy theory Aw H, theory

4.8 5.2
5.0
4.6 4.8
4.6
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AL >4,AY >5 A AL > 4.5, A, > 5.5
{—ap >34 >55 1—ay>354) >6
1= AL >4,AY >55 4-2'_ — AL >4.5,A >6
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Figure 2. Dimension Ay of the lowest dimension unprotected operator in the ¢ x ¢ channel,
versus dimension Ay of the lowest dimension unprotected operator in the ¢ x ¢ channel. We fix
the dimension of the external operator ¢ and the central charge ¢, and impose gaps with the next
operators in the spectrum Ay, and Aj;,. All bounds have been obtained with cutoff A = 32.

conformal dimensions. More precisely, we will fix the dimensions of the external chiral
operator ¢ and the central charge to ¢ to the values listed in table 1. We then plot the
allowed region for Ay and Ay, assuming they are the dimensions of the lowest-lying
operators in their respective channels. We also assume gaps for the next operator in the
spectrum consistent with (4.1):

Hy : A} >1{3.0,4.0}, Ay > {5.0,5.5},

42
Hy : A > {3545}, Al >{5.5,6.0} (4.2)

The results of this analysis can be found in figure 2. We observe that even for the most
conservative choices of gaps, the allowed region is a fairly small island in the (Ay, Aw)
plane. The effect of reducing the gaps in either channel is to allow for solutions to crossing
with smaller dimensions.

An alternative but similar strategy is to focus on a particular channel, like the U-
channel that contains operators neutral under all symmetries. We plot the allowed values
of Ay and Al;, assuming they are the lowest dimension operators, and assume different
gaps for the next operator Af; consistent with the approximate spectrum in (4.1):

Hy, Hy : Al > {6.0, 7.0, 8.0, 9.0}. 4.3
U

The results of this analysis can be found in figure 3. In this case we observe two qualitatively
distinct behaviors. For A}, > 7,8,9 once again we obtain a small allowed region in the
(Ay, Ap;) plane. The estimate for Ay from this analysis is compatible with the one from
figure 2. On the other hand, when the gap is lowered further to A}, > 6, the allowed
region is no longer a small disconnected island. Let us focus on the Hy plot, although the
conclusion is identical for Hy. There are clearly two different regimes when A}, > 6. In
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Figure 3. Dimensions Ay versus A, of the two lowest dimension unprotected operators in the
¢ x ¢ channel. We fix the dimension of the external operator ¢ and the central charge ¢, and impose
a gap with the next operator in the spectrum A7}, > 6,7,8,9. For A}, greater than 7 we provide
a zoom to the allowed region, which form small islands isolated from the continuum. All bounds
have been obtained with cutoff A = 32.

the first, Ay can take any value between the unitarity bound 2 and ~ 2.6, provided that
A}, ~ 2.66. In the second, Aj; can take any value between ~ 2.7 and ~ 6 provided that
Ay ~ 2.66. Summarizing, we are assuming there are only two operators with Ay, Aj; <
AY;. If the gap Af; is small enough, crossing allows one operator to have arbitrary conformal
dimension as long as the other is at Ay ~ 2.66. Thus, the bootstrap insists on having a
long operator with dimension Ay ~ 2.66, even when the gaps are lowered, but it cannot
resolve the position of the next operator Ay;.

We should point out that these results are not on the same footing as the Ising model
island [48], where the gaps were physically justified by assuming only two relevant operators
in the spectrum, and moreover the island was obtained by studying mixed correlators. Our
analysis was inspired by the one in [18], where numerical islands were obtained using a
single-correlator bootstrap, by assuming mild gaps around conserved currents, similar to
what we did here.

We expect this single-correlator approach to give at least qualitative results for the Hy
theory, which we are assuming is in a sense “simple” and perhaps one of the models that
has the best chance to be solved by bootstrap methods. Circumstantial evidence in favor
of its simplicity include the fact that the theory is rank one, it has no Higgs branch, it
has the minimum allowed value of ¢ among interacting theories, and the associated chiral
algebra is the Yang-Lee edge singularity, arguably the simplest non-trivial 2d model with
Virasoro symmetry.

For H; on the other hand we expect more structure. This model does have some
simplifying features similar to those of Hp, however there is an SU(2) flavor symmetry
and therefore Higgs branch operators. We will therefore consider the full mixed system of
correlators in our attempts to corner this theory.
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Figure 4. Upper bound on the dimension Ay of the first singlet operator in the OPE M x M
of two moment map operators. The values of the flavor central charge from bottom to top are
k = 8/3,3,7/2,4,5,6,8,12,20,any. The bounds for ¢ = 10? and ¢ = oo are identical with the
resolution of the plot. All results are obtained at A = 32.

4.2 Moment map correlators

Before we jump to the full mixed system, let us also look at the single correlator of moment
map operators, see (3.15). For later purposes, we will be mostly be interested on bounding
the dimension of operators which are neutral under all symmetries, i.e. multiplets appearing
in the U channel. These bounds depend heavily on the values of the central charge ¢ and
the flavor central charge k. In figure 4 we present upper bounds on Ay, the dimension of
the first unprotected operator in the singlet channel of the M x M OPE. We have chosen
the values of k to match some of the theories in table 1, for example Hy, Hy and SU(N)
SCQCD, and the rest provide a convenient interpolation between them.

We see that the upper bound on Ay decreases as we increase the central charge c,
while it increases as we increase k. If we do not make assumptions about ¢, the upper
bound is dominated by the small ¢ values. If we do not make assumptions about k, the
bound is dominated by the large k region. These considerations will be important when
we look at the mixed correlator results. A more comprehensive survey of bounds from the
moment map four-point function is available in [12], including dimension bounds on the X
and Y channel, as well as bounds on ¢ and k.

4.3 Mixed correlators

We are finally ready to consider the full mixed system of crossing equations (3.20). The
bounds we derive no longer apply to the rank-one Hy theory, because there is no flavor
symmetry and therefore no moment map operator. However, they apply to the higher rank
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version of Hy with the flavor given by the SU(2); symmetry, as well as all other theories
discussed in section 2.1.3.

In general one expects the mixed correlator bootstrap to be most efficient when there
is an overlap between the two types of operators. For this reason we focus in the U channel,
which appears both in the ¢ x ¢ and M x M OPEs, and also in the Z channel, which
contains operators in the ¢ x M OPE. This last channel is of particular interest because
it captures a new family of operators inaccessible from the single correlators studied so
far. Numerical bounds on the central charges ¢ and k can also be obtained, however the
analytic bounds obtained from the associated chiral algebra [6, 31] are quite strong, and
the numerical methods used here will not improve on them.

4.3.1 U-channel dimension bounds

We start bounding the dimension Ay of the first unprotected multiplet in the ¢ x ¢ and
M x M OPEs. The crossing equations (3.20) contain three canonical parameters: the
central charge ¢, the flavor central charge k and the dimension A, of the Coulomb branch
operator. Ideally we would like to obtain Ay for all possible values of (c,k,A,), but
exploring a three-dimensional parameter space is computationally intensive. Instead, in
figure 5 we plot Ay for different values of (¢, A,) without restrictions on k, and in figure 6
we plot Ay for different values of (k, A,) without restrictions on c.

Before we discuss the results in detail, let us summarize some of our expectations. The
single correlator bound of Ay as a function of A, using the chiral correlators was studied
in detail in [12-14]. The upper bound on Ay grows with A, with approximately the same
slope as the mean field theory solution Ay ~ 2A,. On the other hand, from the moment
map correlator the bound is 2.5 < Ay < 5.5, which is independent of A, and changes with
c and k as shown in figure 4. It is natural to expect that for small A, the upper bound
is dominated by the chiral bound, while for large A, it is dominated by the moment map
bound. This is indeed the behavior we observe in figures 5 and 6. We also know that for
¢,k — oo the numerical bounds cannot rule out the intersection of the mean field theory
(MFT) solutions:

AU = QA@ for Asp < 2, AU = QAM =4 for Atp > 2. (4.4)

These are plotted with a black dashed line in the figures.

In figure 5 the flavor central charge k is arbitrary, and as discussed in section 4.2, the
upper bound will be dominated by the k& — oo region of parameter space. Let us first look
at the A, < 2 regime. For low values of the central charge, the upper bound insists on
staying above the mean-field theory (MFT) solution even when A is increased. For large
values of the central charge the upper bound gets closer to the MFT value. As expected,
when we approach A, = 1 the upper bound approaches the free-theory value Ay = 2
regardless of the central charge. The behavior is significantly different for A, > 2, where
the curves start flattening as dictated by the moment map crossing symmetry. For small
values of the central charge 1/2 < ¢ < 1 this transition is smooth. However, as we increase
the central charge ¢ > 2 the transition becomes sharp resulting in a kink around A, ~ 2.
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Figure 5. Upper bound on the dimension Ay of the first unprotected operator in the ¢ x @ and
M x M OPEs as a function of the dimension of the chiral operator A,. The flavor central charge
k is not fixed to a particular value. In the top blue curve, the central charge c is also free, while it
takes values ¢ = 1/2, 1,2, 0o in the curves below it. The black dashed curve is the mean field theory
value (4.4). All results are computed with A = 24.

By extrapolating the numerics to A — oo it seems that the kink of the ¢ = oo curve
will eventually land on (A, Ay) = (2,4) which corresponds to mean field theory (MFT).
The conclusion is then that for large central charge the numerical bootstrap rules out any
theory with a leading gap larger than the MFT value. This is precisely what was observed
in /=4 SYM in [72, 73]. In this case, the mean field theory solution is interpreted as the
large N and large A = g2, N limit of N' = 4 SYM, whose correlators are captured by tree-
level supergravity. We now have a similar phenomenon but for N’ = 2 SCFTs with SU(2)
flavor symmetry, which incidentally also includes N = 4 SYM. If we consider the N/ = 2
decomposition of N/ = 4 theories, part of the SU(4) R-symmetry gets re-interpreted as a
global SU(2) flavor symmetry. Furthermore, the decomposition of the 20’ multiplet (the
one studied in [72, 73]) into N/ = 2 contains a chiral and antichiral operator of dimension
A, =2, and a moment map multiplet [20]:

OzolNM+(p+()5+..., (45)

the same multiplets that we are studying in this work. Figure 5 presents a bound on
the lowest-dimension multiplet which has a scalar superprimary that is neutral under R-
symmetry, so it should include NV = 4 SYM. The plot is however more general and valid
for any N = 2 theory with SU(2) flavor. For 2 < ¢ < oo it is unclear to us whether the
kinks corresponds to physical N' = 2 theories.

In figure 6 we consider the reversed situation, the central charge c¢ is not fixed, but we
allow k to take different values. In this case, we observe a behavior qualitatively similar
as before. For A, < 1.5, the upper bound stays above MFT and grows almost parallel to
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Figure 6. Upper bound on the dimension Ay of the first unprotected operator in the ¢ x @ and
M x M OPE:s as a function of the dimension of the chiral operator A,. The central charge c is not
fixed to a particular value. In the top blue curve, the flavor central charge k is also unfixed, while
it takes values k = 8/3,4,6,12 in the curves below it. For the brown curve, both central charges
are fixed to the values of the Hy theory ¢ = %, k= %. The black dashed curve is the mean field
theory value (4.4). All results are computed with A = 24.

it. For 1.5 < A, < 2.2, depending on the value of k, the curves start to be dominated by
the moment map part of crossing and they flatten. This flattening is smooth and we do
not observe any kinks like the ones found before. The lowest upper bound in figure 6 is
obtained by fixing both central charges ¢ and k to the values of the H; theory. For H; we
know A, = %, which corresponds to an upper bound Ay = 2.94. For larger A, the upper
bound becomes flat at the value Ay = 3.4 for A = 24. As one increases the number of
derivatives A, the upper bound Ay = 2.94 is very robust and does not decrease, while the
asymptotic value Ay = 3.4 has not converged and is still decreasing. Ideally, for A — oo
the two upper bounds would coincide, in which case the point (A,, Ay) = (1.33,2.94)
would become a kink, and one could claim that the H; theory saturates the numerical
bounds. Looking at the asymptotics of our numerics however it seems unlikely Ay = 3.4
will go down below Ay ~ 3.

4.3.2 Focusing on H;

Let us now change gears for a moment. Instead of presenting bounds applicable to general
N =2 SCFTs, we will try to use crossing symmetry to focus on the rank-one H; Argyres-
Douglas theory. Besides the central charges ¢, k and the dimension of the Coulomb branch
generator A, using the superconformal index [37, 85] one can show that the short multiplet
LB[0;0]®") that could appear in the ¢ x M OPE is missing!! (see table 6). One should

1YWe thank L. Rastelli for suggesting that this OPE coefficient might vanish in the H; theory, and J.
Song for confirming that this is indeed the case.
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Figure 7. Allowed values of Ay versus Ay, the dimensions of the first two multiplets in the ¢ X ¢
and M x M OPEs. We assume that these are the only two operators below A}, > {6,6.5,7} and
the parameters A, ¢, k are fixed to the values of the rank-one H; theory. The allowed region is
enclosed between the upper and lower curves. The numerical optimization is using A = 24.

be aware that this is not a definitive proof that the multiplet is absent, and it could
be a consequence of cancelations between different contributions to the index.!? We will
nevertheless assume the multiplet is absent, and try to leverage this information to learn
about the spectrum of the H; theory.

Following the approach of figure 3, we assume that there are only two operators in
the U channel with Ay, A}, < A}, and find the allowed region in the plane (Ay, Ay)).
Using only the single correlator and assuming a sparse spectrum we managed to obtain
a small island. Now we will complement that result by adding constraints coming from
Higgs branch operators which we know are present in the H; theory. Using the full mixed
correlator system we observe in figure 7 that the gaps A}, > {6,6.5,7} are allowed, but
larger gaps are ruled out. For the smallest gap we find a change of behavior in the lower
bound around Ay = 2.35, for which we do not currently have an interpretation. To be on
the safe side, in the next figure we will assume the most conservative gap A, > 6.

The advantage of having the mixed correlator system is that we have a host of gap
combinations we can assume. In particular, since we know that the short operator pM €
(o x M is missing in the H; theory, it is natural to impose a gap in this channel until the
first long operator Az. The results, shown in figure 8, indicate that as we increase the gap
in the Z channel, the allowed region shrinks to a small island around (Ay, Ay;) ~ (2.9,5).
In this case the value of Ay is saturating the upper bound in figure 6. We are tempted to
conjecture that H;p is characterized by a solution of crossing without the short multiplet
@M and maximal gap Az, and we will see in later discussions that this seems to be indeed

12We thank Madalena Lemos for comments regarding this issue.
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Figure 8. Allowed values of Ay versus Ay, the dimensions of the first two multiplets in the ¢ x ¢
and M x M OPEs, as a function of the gap Az in the channel ¢ x M. We assume that these are the
only two operators below A7, > 6, that the short multiplet ¢ M is missing, and the parameters A,
c and k are fixed to the values of the rank-one H; theory. The allowed region is enclosed between
the upper and lower curves. The numerical optimization is using A = 24.

a distinguished point in our numerical plots. However, more work will be needed to see
whether this is indeed the case.

4.3.3 Z-channel dimension bounds

Let us conclude the study of conformal dimensions by putting an upper bound on the
dimension Ay of the first unprotected operator in the ¢ x M OPE with £ = 0. As discussed
in the previous section, the most general situation is to have a protected operator @M at
the unitarity bound A = A, + 1, after which there is a gap until the first unprotected
operator at Ayz. In some cases however, like the Hy theory, the short operator might be
missing. One can also put gaps on the U channel on top of the Z-channel gaps, starting
with the agnostic case Ay > 2. In the numerical bounds of figure 9 we consider several
possibilities. We have also explored different central charges (¢, k), but the results were not
significantly different and therefore we assume general values for them.

The first thing that one observes in figure 9 is that discarding the short operator ¢ M
leads to much stronger bounds than in the general case. For theories like Hj, where the
short is indeed missing, we have

7
H1 : g ~ 2.33 < AZ < 2.90. (4.6)
Note that in figure 8 we obtained the stronger bound 2.33 < Az < 2.73, but we assumed
there are only two operators in the U channel with Ay, A}, <6.
It is also interesting to add a gap in the U channel. From figures 5 and 6, this restricts

the dimension of the Coulomb branch operator, namely Ay > 3 requires that A, > 1.34
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Figure 9. Upper bounds on the dimension of the first unprotected multiplet in the ¢ x M OPE,
as a function of the dimension of the Coulomb branch operator ¢ and the gaps in the U channel
Ay > {2,3,4}. The solid line corresponds to the most general case, when the short operator ¢ M
sits at the unitarity bound A = A, + 1 and Ay is the position of the first long operator. The
dashed line is obtained by the further assumption that the short operator is not present. All results
are obtained with A = 24.

and Ay > 4 requires that A, > 1.86. Indeed, when in figure 8 we assume gaps in Ay the
curves start at the values of A, just discussed. More importantly, at these values the upper
bounds with and without short operator @M coincide. Since there is a unique solution to
crossing at the boundary of the allowed region, the solutions that saturate the bound for
arbitrary ¢ and k of figure 5 do not have the short operator @M in the spectrum. This
suggests that the Hy theory saturates the bounds in figure 5.

Finally, the reader can see from figure 8 that for large values of A, the upper bound
of Az diverges, i.e. for A, high enough any value of Az is allowed. Increasing the gap in
Ay moves the position of this divergence to the right, but does not remove it. We have
tried different parameters of the numerical solver, either increasing the number of spins kept
fmax, increasing the precision used by sdpb, or adding more poles to improve the polynomial
approximation, but none of these measures has changed the results. We currently do not
know the reason of this divergence. It has been observed previously that mixed correlator
bootstrap problems involving large external dimensions can be numerically unstable,® and
perhaps we found another instance of these instabilities.

4.3.4 OPE bounds

Let us conclude our numerical exploration of the crossing equations (3.20) by obtaining
upper and lower bounds on OPE coefficients. As mentioned previously, we will not attempt

13A possibly related issue appeared in figure 6 of [70]. Instabilities in the context of mixed correlator
bootstrap were discussed in [86].
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Figure 10. Upper and lower bounds of the protected operator @M that appears in the o x M
OPE, as a function of the dimension Az of the first long in the same channel. We compare the
results for different dimensions of the Coulomb branch operator A,. All numerical optimizations
are performed at A = 24.

to bound the central charges ¢ and k, because the analytic bounds obtained in [30, 31] are
quite strong. We will focus our efforts on studying the operators that appear in the new
channel ¢ x M.

As already discussed, restricting to scalars in the ¢ x M OPE means we have two
types of operators, a short protected one at the unitarity bound that we call oM, followed

by an unprotected multiplet whose primary has dimension Az > A, + 1. In figure 10,

2
e, M,p
the dimension of the long Az. These bounds depend strongly on the dimension of the

we put upper and lower bounds on the OPE coefficient A M= )\i a as a function of
Coulomb branch generator A,; we have also experimented changing the central charges ¢
and k but they had little influence on the final result. When the dimension of the long is
close to the unitarity bound, only upper bounds are obtained, but as we increase Ay we
can eventually also obtain lower bounds on the OPE coefficients. The value of Az where
the lower bound appears corresponds precisely to the maximum gap for a theory without
the ¢ M multiplet, namely the blue dashed line in figure 9. As we increase Az even more,
the upper and lower bounds eventually meet, and after that point there are no solutions
of crossing; this corresponds to the blue solid line in figure 9.

One might also be interested in the OPE coefficients of the scalar long operators in the
i x M OPE, which are presented in figure 11. In this case we are only able to obtain upper
bounds because the operators belong to a continuum. We see that the value of these OPE
coeflicients decreases monotonically with the dimension Az of the operator. At a certain
value of Az, which corresponds precisely to the point where /\i a acquires a lower bound
in figure 10, one can observe a kink. From the discussion around figure 9 this also seems
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Figure 11. Upper bounds on the OPE coefficient of a long scalar multiplet of dimension Ay in the
@ x M OPE, for different dimensions of the Coulomb branch operator ¢. Notice we do not assume
that Az is the lowest dimension of an operator in the Z channel. The black line corresponds to the
upper bound for the operator ¢ M at the unitarity bound Az = A, 4 1. All results are obtained
with A = 24.

to be the point that saturates the upper bounds of figures 5 and 6. Once again, it is very
tempting to conjecture that the rank-one H; Argyres-Douglas theory lives at this kink.

5 Conclusions

In this work we appplied the numerical bootstrap to mixed correlators in NV = 2 supercon-
formal theories. We refined single-correlator bounds for OPE coefficients and compared
them successfully to recent results obtained in the limit of large r charge [15, 16]. The
improved bounds allowed us to extract an approximate spectrum for selected Argyres-
Douglas models, information that we then used to obtain numerical islands in the space of
conformal dimensions.

We then proceeded to study a mixed system between Coulomb branch operators and
the moment map. Even though these type of correlators had been analyzed before [12-14],
this is the first time mixed correlators for different types of multiplets are considered in
the 4d N' = 2 bootstrap.

As a necessary step towards the mixed system we calculated new superconformal
blocks, a result interesting on its own. Recent progress that attempts to systematize the
study of superblocks include the connection to Calogero-Sutherland models [87, 88], and
the analytic superspace approach of [89]. Here we have contributed a new entry to the list
of known superblocks, and the simplicity of our expressions hints at a simple description
within the framework of [87-89].
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With the mixed system at hand we applied the numerical bootstrap machinery. Fig-
ures 5 and 6 are good examples that capture how the full system behaves. As explained in
the main text, there are two regimes dominated by the individual single-correlator bounds,
and the mixed system smoothly interpolates the two. The fact the interpolation is smooth
is slightly disappointing, because this happens in a region where we know Argyres-Douglas
models live, and there is no sharp feature signalizing their presence. The bounds are nev-
ertheless valid and give rigorous constraints on the spectrum of these theories. The mixed
system also allowed us put constraints on a region of the landscape that was unexplored
until now.

One possible future direction is to continue adding information in the form of extra
operators. For the Hy theory, any additional new type of multiplet will not be of the half-
BPS type considered in this work, instead it will have to be semi-short or long multiplets
of the superconformal algebra, which means the four-point kinematics will be challenging.
However, such studies can shed light on the validity of the numerical islands found in
section 4. Within the realm of Coulomb and Higgs branch operators, the next natural
system to consider is ¢, ¢, and M. The rank-two (Aj, A5) theory'* contains precisely
these type of multiplets with a U(1) flavor symmetry, and although computationally this
system will be more intensive than the one considered here, it is still within reach.

A long-term direction is the inclusion of the stress-tensor multiplet. The blocks for its
superconformal primary operator were obtained in [90], however the numerical bootstrap
has not been implemented yet. Perhaps one of the reasons this has not been done is
that these this correlator is known to have nilpotent invariants [30], which means that
to impose the full N' = 2 constraints one needs to include correlators of superconformal
descendants. Adding the stress tensor multiplet to the correlators studied here will allow
us to bootstrap all three canonical multiplets in one mixed system, and impose a huge
amount of input coming from supersymmetry. Five years ago such a problem would have
been clearly unfeasible, but thanks to the impressive progress on the numerical front [55],
the bootstrap for correlators with several external operators is now a reality.
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141n this notation, the rank-one Ho, H; and Hs models are (A1, A2), (A1, A3) and (A2, A2) respectively.
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A Blocks in the mixed channel

In this appendix we compute the superconformal blocks involving mixed chiral and moment
map operators. The arguments rely mostly on representation theory, and no calculations
of three-point functions or Casimir equations are required.

A.1 Decomposition of N =2 into N =1

The N = 1 and N/ = 2 superconformal algebras share the same conformal algebra, but
differ in the fermionic generators. The N = 2 Poincare supercharges are QL, Q4 for
I=1,2and a,& = 1,2. We can embed the N' = 1 subalgebra by keeping only the I =1
component

(Qa)n=1 = (Q4)n=2, (Qa)n=1 = (Qra)n=2, (A1)

and similarly for the conformal supercharges S, and Sg. The R-symmetry is reduced from
SU(2)r x U(1), to U(1), as follows

1
Pt = 1 (2R, (A2)
and each SU(2)gr representation [R] decomposes into the eigenvalues Ry = —R,—R +

2,...,R—2 R. Now we study the implications of this decomposition for the chiral and
moment map multiplets.

Remember that a chiral operator is a scalar killed by all Q4 supercharges, so it can
also be understood as an N/ = 1 chiral ¢, — ¢§, where the r charge assignment follows
from (A.2). Here and in what follows, we denote the superprimary operator of an N' =1
chiral multiplet by ¢,, satisfying the shortening [Qg, #,(0)] = 0. The r denotes its U(1),
charge, which is related to the conformal dimension by Ay = %r.

On the other hand, the moment map operator is a scalar satisfying the shortening
conditions (2.2). We can reduce them to N/ = 1 shortening conditions, noting Qa, — —Qq

and Qld — Qd:
Qe M1 (0)] =0, [Q* M12(0)] = [Q* M12(0)] =0,  [Qa, M22(0)] =0.  (A.3)

Thus the components Miy, Miy and Moy are N' = 1 chiral, N' = 1 current and N = 1
antichiral operators:

My — ¢%, Mo — J, Moy — (2_5_%. (A4)
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Finally, we will use repeatedly the decomposition of N/ = 2 long multiplets without
SU(2)g charge into A/ = 1 multiplets:

r . — ,l’l’
LI, 1% & LEj, 55"

- . (L (r+1 . _ (i
+ > LL[J+s,J](§’+(f Doy rif+ s
s=+1 2 5=+1
= . (% = (2 (r+2s
+ > LL[g+s,g+s}(A3+)1+ > LL[J,J](EL ) (A.5)
s,5==+1 s==1
+ Z fo[ —(%(7‘*1)) Tl 7 3\;
J +S7J]A+§ + Z LL[]7J+S]A+§
s==£1 2 s=£1 2
(57)

+ Lf’[.jhﬂA-FQ'

This decomposition can be obtained combining the tables in [19] with the rule (A.2).

A.2 (ppMM) correlator

In order to compute the blocks it is convenient to switch back to component notation for
the moment map. In this section we suppress the adjoint flavor indices to simplify the
notation. We start with the four point function (2.26):

(p(z1)@(xo) Mry(23) MK (x4)) = CI(KEJ|L)

o M M _
= e 2 AeeornnoGR M (,2). (A6)

OeA+

The sum runs over all even spin supermultiplets that appear in the chiral-antichiral and
moment map OPEs:

o x @ MxM ~ 1+ AA[L; 000 4 LL[0%Y ¢ even. (A7)

By looking at the (I,.J) = (1,1) and (K, L) = (2, 2) components, we can think of (A.6)
as a correlator of different A" = 1 chiral and antichiral operators (¢1¢1¢a¢s). The selection
rules and superconformal blocks for this correlator are well understood [42, 43, 91]. The
N =1O0PE is

Gr, X 6—r, ~ 1+ AAG0O + LL[E; Y, (A-8)

and the contribution of the long multiplet is captured by the following superconformal
block:
G¢1¢1’¢2¢2 _
AL gae+ 1A+ 1) ga+i,e41 + A(A
(A4+0)(A—-1-2)
16(A + 0+ 1)(A—¢— 1) 75+20

(A+0) (A —1—-2) »
+1,0—1
—f-1 (A.9)

The contribution for the exchanged A/_l[f; /] (0) short multiplet is obtained setting this block
at the unitarity bound A = ¢ + 2. Notice that the N' = 2 long exchanged in (A.7)
decomposes in N = 1 language as

LLIGARYY = DL 0V + DL+ 1,6+ 100, + LL[e - 150 - 19, + LL[6 4V, (A.10)
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where we have omitted all V' = 1 multiplets that are not allowed by the selection rule (A.8).
Thus, we must have the following decomposition:

7.MM s . iy s . iy s . iy s . iy
GEZMM = agGRYPP 4+ a1 GROVEY + ar GV + asGRLY . (A.11)

We are going to fix the coefficients a; in two different ways leading to the same result.
First, in the OPE of two moment maps only operators with even spin can appear. Insert-
ing (A.9) in (A.11) and demanding that only even spin descendants contribute fixes the
block completely:

P (B-0O@a-t-2) (A+0)(A+1+2)
G T 9aLT gA+2,0-2 — GA42. 042
> TOI6(A L+ )(A - =17 16(A + L+ 1) (A+ 04 3)70TH
(A—0(A—L=2A+0A++2)
256(A — 01+ 1) (A —C—1)(A+ L+ 1)(A10y3)7ame

N (A.12)

As discussed, this block corresponds to the exchange of a generic long multiplet. The
contribution of AA[E;E](();O) is obtained by evaluating the block at the unitarity bound
A = (+2. By using hypergeometric identities one can check that (A.12) is identical to the
compact expression provided in the main text (2.27).

Let us derive the same result in an alternative way. Looking at the (I,J) = (K, L) =
(1,2) component of (A.6) we get a correlation function of N' = 1 chirals and currents
(ppJJ). As before, the selection rules and superconformal blocks are well understood [68,
91, 92]. In particular, the only multiplet relevant in the OPE is J x J ~ LL[/; E](AO), for
which the conformal block is

6.1 (A-2)(A—-1—-2)(A+ 1) A
= — .13
Al even gAae 16A(A—€—1)(A—|—€—{—1)9A+2’€’ ( )

¢>¢>,JJ (L+2)(A—L—-2)(A+1+1) A
— 1. 14

Following the same reasoning as before, the N' = 2 block should decompose as
p; MM b;JJ ;T b;J J

G = bOGZq?Z,even + blGﬁH t+1,0dd T b2GA+1 ¢—1o0dd T b3G(2¢j‘r2,€,even' (A.15)

Demanding that the two decompositions (A.11) and (A.15) are equal uniquely determines
the superconformal block (A.12).

A.3 (pMMep) correlator

Now we move on to the calculation of the blocks in the crossed channel:

(p(z1)Mpy(22) MK L(73)P(T4))

__ CIKEIIL) T4 Ap—2 T Ap—2 ZP\ 2 @MMvJ( 2) (A.16)
:I;lAQ pt2 A«p+2 T14 13 MO .

The first important question is what multiplets appear in the sum over superdescendants.
Using the superspace calculation of [93], we obtain the following selection rule:

or x M ~ LB[0;0]®") + LA[¢;¢ — 1)5 =D 4 LLe; (072, (A.17)
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The strategy to compute the conformal blocks is the same as before. Consider the
component (I,J) = (2,2) and (K, L) = (1,1) of the four-point function and interpret it as
a correlator of NV = 1 chirals and antichirals <gz$1¢_>2¢2<;31). The selection rules and blocks
are once again in the literature [13]. Restricting to the case of interest to us, we have

3 310: 0159 & LA 5 + LLje ()
¢r X p.a~ LB[0;0]''s/ + LA[4;0)V5) + LL[¢; 0] \* 7, (A.18)
3
and the contribution of the long is given by the superconformal block:
GR9 (2, 2) = (22) 2GR 0 (2, 2). (A.19)
As before, we want to write our N' = 2 block as a linear combination of A" = 1 ones. For
concreteness, let us focus on the exchange of the long in (A.17), which has the following
decomposition:
54
+1-
We have dropped all terms that are not compatible with the A/ = 1 selection rule (A.18).

LL[ 0% 5 LLe0L®) (A.20)

Since there is only one A/ = 1 multiplet in the decomposition, the block must be equal to
its ' = 1 counterpart:

M;M@,_ - bo;pah - N— Ay—1,3—A _
Gzl (2,2) = Gzlfig)ml(z,z) = (22) 1/29Ai2,£ “(z,2). (A.21)

Naturally, this can be expanded into non-supersymmetric blocks

OMM3  Ap—22-A, Ap—22-A, Ap—22-A, Ap—22-A,
Gae " = 9a%1 tCgalo1 T T C29a 01 T T C1C29A 3, ; (A.22)

with
(A=A, +l+3)(A+A,+0-1)
AA+L+1)(A+L+2) ’
oy — (A=A, =L+ 1)(A+A,—-0-3)
4A—-L-1)(A=12)
As a non-trivial sanity check, we can instead look at the (I,J) = (K,L) = (1,2)
component of the four-point function, and interpret it as a N' = 1 correlator (¢JJ¢). The

Cl =
(A.23)

selection rule in this case is [70]

¢ x J ~ LL[G 0+ 1) 4 LL[ 0 — 1107 4 LL[6; 07 + shorts. (A.24)
Only the first two will play a role, and the associated blocks are
- r— A N ANy=22-Ay . Ay—22-A
LL[t; 0 + 1](A RE Gae=101 gAil/Z,é e 9Ai3/2,£+1¢’ (A.25)
= r— - L ANp=22-Ay . Ay—22-A :
LLIGE-1URY: Gag=06 NEV-VERE Y )N
with coefficients [70]:
o (£+2)
T+ 1)(2A —2A, —20—3)
o (2A=3)(2A 20, +20+5)28 424, + 20— 3)
T ARA - 1)(2A + 20+ 1)(2A + 20 + 3)(2A — 2A4 — 20 — 3)’
) (A.26)
¢ =

(2A — 27, + 20+ 1)
L 2A=3)((+1)(2A =205 — 20+ 1)(2A + 20, — 20— T)
2T U2A —1)02A —20—1)(2A — 20— 3)(2A —2A, + 20+ 1)
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Decomposing the N' = 2 long multiplet and keeping only terms compatible with the
OPE (A.24) we get

_ . _ r-3 r-3
LG O0 — LLjG 0+ 1) l)—l—LL[E 0—1'3)

A
* (A.27)
Y LI+ 1:4] +§ + LI - 1:00 §
2
so we find the following decomposition:
MM A5 6 5¢J;J ¢ “¢J;J ¢ AG 3T
G@ Y =do GA+1/2,e +dy GA+1/2,Z +dy GA+3/2,Z+1 +d3 GA+3/2,£—1 : (A.28)

There is a linear relation between the four A/ = 1 blocks above, and we fix it by setting
dg = 0. It is an easy exercise to check that using the remaining coefficients we can indeed
obtain the decomposition (A.28):

di =2(A = Ay, +0+1),
(A+ Ay +L—1)(A—Ay+ £+ 3)?
2A+ 0+ 1)(A+£+2) ’ (A.29)
(A+ A, — - 3)

d3 — Y (
2Nl + 1)(A e)

dy =

Ay —C41)2

The reader can check that any minor change to the AV = 2 or ' = 1 superblocks prevents
this decomposition from being possible. This provides a very non-trivial check for our
superblock (A.22), as well as for the results in [70].

B Numerical implementation

B.1 Approximating blocks by polynomials

In order to build polynomial approximations of the four-dimensional conformal blocks we
use the recursion relations originally obtained in [42, 49], and later generalized in [70].

The quantities we need to approximate are derivatives of one-dimensional conformal
blocks, evaluated at the crossing-symmetric point:

.
e G O) (B.1)

z=1/2"

We take 3, v, 6 and n to have fixed numerical values, and we wish to approximate Cy 545
as a polynomial in « times a positive function of «. Using the differential equation satisfied
by k27(2), one obtains the following recursion relation [70]:

Ch s =—(2n+B—y+46—10)CL 5L &
+ (4n(n = B+~ - 3)
+2a(a = 2) = By + 25 — 10) + (26 — 10) — 45(5 —4) = 4)CL 2 5

+2(n —2)(2n— §+26 — 8)(2n + v+ 25 — 8)C 5% .

(B.2)
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Applying the recursion repeatedly, we can write

B 8]@&’7
€2y = Pula B D1/ + Qule B B2 1) (B

where P, and @), are polynomials in «. Next, we should approximate k:g”(l /2) and its

first derivative as polynomials in « times a positive prefactor. We introduce the radial

coordinate p [94]

4
2= ﬁ, (B.4)

and expand the one-dimensional blocks in a power series in p up to order w. Finally, we
evaluate the expansion at the crossing symmetric point p, = 3 — 2v/2 ~ 0.17. Remember

/2

that the one-dimensional blocks are schematically 2%/~ times a o F} hypergeometric, so the

expansion will have the form

w ) a/2
K27(1/2) & (4p.)*2 Y Rj(a)pl = D(4P*)N5,%w(a), (B.5)
7=0 @%w(a)
kB s S (4p)e/?
e 1/2) = (40" 3 S0y = L), (B.6)

where the terms R;(c), Sj(a) are rational functions of ¢, and so we can factor a common
term (4p.)*/%2/D(a). The zeros of D(a) are at a = 0,—1,—2,..., and one can see that
the prefactor is always positive provided the unitary bounds are satisfied. Combining
these ingredients it is a simple exercise to construct the polynomial approximation of the
conformal blocks.

There are other possible approaches to compute the polynomial approximations. One
idea would be to use the Zamolodchikov-like recursion relations for k27(z) derived in [95].
Another option would be to use the recursion relations directly in 4d [96], which are al-
ready implemented in scalar_blocks. It would be interesting to compare the different
approaches in terms of performance, accuracy of the blocks and size of the polynomial
approximation.

B.2 SDPB parameters

In this work, we have computed mixed correlator bounds at A = 24 and single correlator
bounds at A = 32,50 using sdpb [52, 97]. As we increase the number of derivatives it is
necessary to increase the spins included to ensure numerical stability:

Sacos = {0,...,261 U {29,30,33,34,37, 38, 41,42, 45, 46},
Shss = {0,...,44} U {47, 48,51, 52,55, 56,59, 60, 63, 64, 67, 68}, (B.7)
Sa—so = {0,...,64} U {67,68,71,72,75,76, 79,80, 83, 84, 87, 88}.

Furthermore, it is also important to increase the accuracy of the polynomial approximation
w and the precision used by sdpb:

A=24 | A=32|A=50
w 18 18 26 (B.8)
prec | 768 768 | 1024.
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We have observed that the polynomial approximation of section B.1 works better for single
correlators. This is the reason why for the single correlator bootstrap at A = 32 we can
keep the same number of poles as for the mixed bootstrap at A = 24. For the dimension
bounds, we rely heavily on the hot-starting procedure introduced in [98], which speeds
up the computations significantly. We instruct sdpb to stop as soon as a primal or dual
feasible solutions is found:

findPrimalFeasible = findDualFeasible = true, (B.9)
detectPrimalFeasibleJump = detectDualFeasibleJump = true. '

In practice, we observed that the algorithm always stopped after a primal or dual jump.
For the OPE optimizations, in order to speed them up, we have lowered the default
dualityGapThreshold to

dualityGapThreshold = 10710, (B.10)

For the remaining parameters, we have found that the defaults of sdpb lead to stable
results.

B.3 Crossing vectors

In this appendix we write the explicit crossing vectors that appear in equation (3.20). The

-

I.j, term captures all the known contributions, either from the identity, stress-tensor or
flavor current exchanges. The normalization of the stress-tensor contribution for the mixed
blocks can be obtained from (2.28). The rest has already been discussed in the main text:

MG+ BHTPG + SHDY

short short short
ZHETT + 9HYSY — SHYy

— QA 4 3Fht 4 5short

- A2 o
pP;pe © TPP;PP
B0 + 5 B0

g o - = A2 PO
Li=|  Bo5P+ S by (B11)
- = AQ - - =
PP 2 PPPiPP
EZ00" + 5 EZ2p
0
EMM;pp Do pMMipg
+,0,0 6c +,2,0

MM;pp Ay mMM;pg
EZ o0 — 5 E 20
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The remaining crossing vectors can be easily obtained as discussed in the main text:

MM,MM
4B MM
0 0
MM,MM
26} MM o
0 0
MM,MM 0 0
—2EMMM
0 0 0 0
0 0 0 0
0 ES%57 ETNY 0
Use=| [0 0 Cvaes B | waes | Ee |,
0 EZXY 27 —E¥577
00 0 0
0 EZY 0 0
01 Y 0 0
0 sEAL”
1 MM, pp
§E+,A,£W} 0
1 MM, pp
0 sEZASY
2 VA
(B.12)
MM, MM MM,MM
3EL A SEL A 0
MM, MM MM,MM
IO ~5 B 0
MM,MM MM,MM
sy, N 0
0 0 0
Xae= 0 : Yae= 0 v Ipag= 0
0 0 0
oM ;M p
0 0 B
M;Meo
0 0 E—f,A,e ®
M;Mp
0 0 _Ef,A,Z ®
(B.13)

B.4 Spectrum extraction

In table 8 we present the results from extracting the spectrum that saturates the OPE
bounds in table 7. We use the package spectrum-extraction developed for [99], which is
available online in the Bootstrap Collaboration website. Although we have not collected
the spectrum for ¢ > 0 operators, we are happy to provide the data upon request. For a
detailed analysis of the spectrum in the large-¢ limit for the Hy theory we refer to [14].
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Theory | Bound | Type | Ay Ay A Ay Al
Hy @2 upper | 2.70 | 594 | 9.28 | 4.82 | 7.82
Hy @2 lower | 2.66 | 5.82 | 9.14 | 4.95 | 7.57
Hy Q*0 | upper | 269 | 588 | 9.16 | 4.81 | 7.79
Hy Q*0 | lower | 266 | 579 | 9.07 | 4.69 | 6.49
H, 2 upper | 3.05 | 6.12 | 13.11 | 5.28 | 8.27
H, ©? lower | 2.92 | 5.79 | 12.79 | 5.79 | 7.74
H, Q?0O | upper | 3.03 | 598 | 9.12 | 5.27 | 8.28
H, Q*0 | lower | 292 | 576 | 12.65 | 4.78 | 6.35
H, p? upper | 3.45 6.41 9.66 5.88 8.96
H, > lower | 3.23 | 591 | 898 | 6.88 | 9.89
Hy Q?0O | upper | 342 | 629 | 949 | 5.85 | 895
H, Q?0 | lower | 3.21 | 3.75 | 597 | 6.86 | 9.38

Table 8. Approximate spectrum from OPE bounds at A = 50.
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