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Abstract We study the optical appearance of a thin accre-
tion disk around compact objects within the Einstein–Gauss–
Bonnet gravity. Considering static spherically symmetric
black holes and naked singularities we search for charac-
teristic signatures which can arise in the observable images
due to the modification of general relativity. While the
images of the Gauss–Bonnet black holes closely resemble
the Schwarzschild black hole, naked singularities possess a
distinctive feature. A series of bright rings are formed in
the central part of the images with observable radiation 103

times larger than the rest of the flux making them observa-
tionally significant. We elucidate the physical mechanism,
which causes the appearance of the central rings, showing
that the image is determined by the light ring structure of
the spacetime. In a certain region of the parametric space the
Gauss–Bonnet naked singularities possess a stable and an
unstable light ring. In addition the gravitational field becomes
repulsive in a certain neighbourhood of the singularity. This
combination of features leads to the formation of the central
rings implying that the effect is not specific for the Einstein–
Gauss–Bonnet gravity but would also appear for any other
compact object with the same characteristics of the photon
dynamics.

1 Introduction

Recently a new static spherically symmetric black hole was
proposed which generalizes the Schwarzschild black hole
when quantum corrections are considered [1–3]. It was
derived as an exact solution to the semi-classical Einstein
equations with Weyl anomaly of the energy–momentum ten-

a e-mail: gyulchev@phys.uni-sofia.bg
b e-mail: pnedkova@phys.uni-sofia.bg (corresponding author)
c e-mail: vetsov@phys.uni-sofia.bg
d e-mail: yazad@phys.uni-sofia.bg

sor by restricting the trace anomaly only to the Gauss–Bonnet
invariant. The new black holes possess a logarithmic term in
their Bekenstein–Hawking entropy, which is consistent with
the microscopic statistical interpretation of the black hole
entropy in string theory or quantum gravity. In addition, they
provide a resolution to the singularity problem, since the
gravitational force becomes repulsive at very small distances
from the compact object preventing the particles and light to
access the singularity.

The solution was also obtained in a different context
considering the classical four-dimensional (4D) Einstein–
Guass–Bonnet equations [4]. It was suggested that the
Einstein–Gauss–Bonnet theory possesses a non-trivial limit
to four spacetime dimensions which circumvents the Love-
lock theorem and allows the contribution of the Gauss–
Bonnet term to the local dynamics. While the proposed regu-
larization procedure is not consistent for general gravitational
fields [5,6], it leads to correct predictions in a number of cases
with high symmetries, such as spherically or cylindrically
symmetric spacetimes, and homogeneous and isotropic cos-
mologies. These geometries arise independently as solutions
to a subclass of the Horndeski theory following from a well-
defined action principle in four dimensions [7–12]. However,
the correspondence is broken if we relax the spacetime sym-
metries, e.g. by adding rotation or a non-trivial NUT charge,
or considering anisotropic Binachi I cosmologies [10,13].

Irrespective of the theoretical framework in which the
spherically symmetric solutions are interpreted, the non-
trivial contribution of the Gauss–Bonnet term is expected
to have phenomenological impact. This triggered a range of
works investigating different observational features such as
the shadow and the innermost stable orbit [14,15], the particle
dynamics [16,17], the gravitational lensing [18,19], and the
radiation from the accretion disk [20]. Coupling the theory
to Maxwell or Born–Infeld electrodynamics, charged black
holes were obtained in [21,22], and their thermodynamics
was studied focusing also on the validity of the weak cosmic
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censorship conjecture in these spacetimes [23,24]. Static rel-
ativistic stars were constructed in [25], while [26] considered
the gravitational collapse of a spherical cloud of dust.

The purpose of this work is to investigate the opti-
cal appearance of four-dimensional compact objects with a
Gauss–Bonnet term. Similar studies were initiated in order to
search for the observational signatures in the electromagnetic
spectrum of various types of compact objects in general rel-
ativity and the modified theories of gravity [27–34]. We con-
struct the observable images of the thin accretion disk around
black holes and naked singularities belonging to the class
of solutions obtained in [1–4]. While Gauss–Bonnet black
holes appear very similar to the Schwarzschild black hole,
we observe significant distinctions in the case of naked singu-
larities. The accretion disk possesses multiple images, which
form a series of concentric bright rings in the central region of
the primary disk image. Similar effect was obtained recently
for the strongly naked Janis–Newman–Winicour singular-
ity where its appearance was connected with the absence of
a photon sphere [28]. However, in the case of the Gauss–
Bonnet naked singularities the multiple images are related to
a different feature of the photon dynamics, and they appear
even when the solution possesses a photon sphere. We eluci-
date the physical mechanism which leads to the formation of
the image noting that similar processes may also take place
in the case of other compact objects where multiple ringlike
disk images are observed in the presence of a photon sphere
[29,30].

The paper is organized as follows. In the next section
we describe the exact solution representing static compact
objects within Gauss–Bonnet theory and some of the charac-
teristics of the geodesic motion in this spacetime, which are
relevant for our studies. In Sect. 3 we present the images of
the thin accretion disk around Gauss–Bonnet black holes and
weakly naked singularities as seen by a distant observer and
discuss their properties. In Sect. 4 we analyze the structure
of the images revealing the mechanism of their formation. In
the last section we summarize our results.

2 Properties of the exact solution

Static spherically symmetric compact objects within 4D
Gauss–Bonnet gravity can be described by the metric [1]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θφ2),

f (r) = 1 + r2

2γ

(
1 −

√
1 + 8γ M

r3

)
. (1)

where γ is a positive constant and M is the ADM mass. It was
derived originally as an exact solution to the semi-classical
Einstein equations with one loop quantum corrections

Rαβ − 1

2
Rgαβ = 8π〈Tαβ〉, (2)

when we consider only the Gauss–Bonnet term in the general
form of the trace anomaly of the effective energy–momentum
tensor 〈Tαβ〉

gαβTαβ = −γ
(
R2 − 4Rαβ R

αβ + Rαβγ δR
αβγ δ

)
, (3)

where the coupling constant γ depends on the degrees of free-
dom of the quantum fields. The metric can be alternatively
derived by solving the classical D-dimensional Einstein–
Gauss–Bonnet equations and taking a non-trivial limit to
four-dimensional spacetime [4].

The properties of the solution depend on the value of
the dimensionless coupling constant γ̂ = γ /M2. When γ̂

belongs to the range γ̂ ∈ [0, 1] the solution describes a
black hole with an inner and an outer horizon located at
r± = M ± √

M2 − γ , respectively. The value γ̂ = 1 cor-
responds to the extremal black hole, while γ̂ = 0 is the
Schwarzschild limit. The solutions with γ̂ > 1 are naked sin-
gularities. The Kretschmann invariant diverges at the location
of the singularity r = 0, however in a slower rate than for the
Schwarzschild solution since it behaves as Rαβγ δRαβγ δ ∼ 1

r3

when approaching the singularity.
In this work we will consider black holes, i.e. solutions

with γ̂ ∈ (0, 1] and naked singularities with coupling con-
stant taking the range 1 < γ̂ < 3

√
3/4. In this region of the

parametric space the solution describes weakly naked singu-
larities, which possess a photon sphere.1 The photon dynam-
ics is determined additionally by the presence of a stable
photon ring located in the interior of the photon sphere. The
location of the photon rings can be determined by obtaining
the stationary points of the effective potential for the null
geodesics

V ph
e f f = L2 f (r)

r2 , (4)

where L is the specific momentum of the photon. The radial
coordinates of the photon rings correspond to the solutions
of the system V ph

e f f = 0 and dV ph
e f f /dr = 0, which can be

reduced to the following algebraic equation

r3 + 8Mγ − 9M2r = 0. (5)

On the other hand, the Gauss–Bonnet black holes possess
only a photon sphere similar to the Schwarzschild black hole.
In Fig. 1 we illustrate the behavior of the effective potential
for the two types of compact objects as the photon sphere

1 We use the classification of the naked singularities by means of their
lensing properties to weakly and strongly naked, which was introduced
by Virbhadra when studying of the Janis–Newman–Winicour solution
[31].
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Fig. 1 Effective potential for the null geodesics for the Gauss–Bonnet
black holes with γ̂ = 1 and weakly naked singularities with γ̂ = 1.15

corresponds to the maximum of the potential, while the stable
light ring is located at the minimum.

The structure of the timelike circular orbits for the Gauss–
Bonnet black holes resembles the Schwarzschild black hole.
The stable circular orbits extend from a certain marginally
stable orbit to infinity. For weakly naked singularities the
stable circular orbits are located in two disconnected region.
There exists an inner annular region located between the
inner limit of existence of timelike circular orbits rin and
the stable photon ring, and an outer region extending from
the marginally stable timelike orbit rms to infinity. In the gap
between the two regions we have the following behavior.
Timelike circular orbits are not allowed between the stable
and unstable photon rings, while after passing the photon
sphere they exist but remain unstable until reaching rms . The
inner radius of existence of timelike circular orbits is given
by the solution of the equation

r3 + 2Mγ − r3

√
1 + 8Mγ

r3 = 0, (6)

while the location of the marginally stable orbit corresponds
to the inflection point of the effective potential Vef f for the
timelike geodesics satisfying Vef f = 0, dVef f /dr = 0 and
d2Vef f /dr2 = 0, where

Vef f = f (r)

(
1 + L2

r2

)
. (7)

In the following analysis the position of the rms is obtained
numerically.

For our purposes the described characteristic features of
the circular geodesic orbits are sufficient to determine the
structure of the thin accretion disk for coupling constant in
the range 0 < γ̂ < 3

√
3/4. A detailed qualitative analysis

of the geodesic motion will be presented in a further work.

3 Image of the thin accretion disk around
Einstein–Gauss–Bonnet black holes and naked
singularities

We consider the image a thin accretion disk around Einstein–
Gauss–Bonnet black holes and weakly naked singularities
with 1 < γ̂ < 3

√
3/4. The disk is described by the

Novikov–Thorne model [38,39], and consists of radiating
particles moving on stable circular geodesics in the com-
pact object’s spacetime. We construct its image as seen by a
distant observer by obtaining the optical appearance of the
timelike circular orbits at spacetime infinity and evaluating
the observable radiation flux.

The apparent shape of the timelike circular orbits is
obtained numerically using a ray-tracing procedure. We
apply additionally a semi-analytical scheme requiring only
numerical integration, which is more convenient for the inter-
pretation of the images. Both methods are described in detail
in our previous works [27,28]. In essence, the trajectories of
the photons emitted at a certain point on the circular orbits are
obtained numerically up to some radial distance correspond-
ing effectively to the spacetime infinity. Afterwards, their
projections on the observer’s sky are visualized by means of
two celestial angles α and β, which are related to the photon’s
4-momentum as

pθ = √
gθθ sin α, pφ = √

gφφ sin β cos α,

pr = √
grr cos β cos α. (8)

Practically it is more convenient to use α and β as ini-
tial data and integrate the photon trajectory backwards to its
emission point. We consider the full range of the celestial
angles α ∈ [0, π ] and β ∈ [−π/2, π/2], and select those
values which correspond to null geodesics originating from
the accretion disk, i.e. solutions to the geodesic equation pass-
ing through the equatorial plane at a radial coordinate with
range of stability of the timelike circular orbits. In this way
we obtain the set of the celestial angles, which represent
the image of the accretion disk on the observer’s sky. Since
the celestial angles decrease with increasing the distance to
the observer, it is convenient to rescale them by the mass of
the compact object, i.e. α → αM , β → βM . These impact
parameters are used for the visualization of the accretion disk
images in the figures.

We associate further with each point of the image an
observable flux emitted by the accreting particles. The local
flux radiated by a portion of the disk delimited by the radial
coordinates r0 and r is evaluated according to the Novikov-
Thorne model by the integral [38,39]

F(r) = − Ṁ0

4π
√−g(3)

	,r

(E − 	L)2

∫ r

r0

(E − 	L)L ,r dr, (9)
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where r0 is corresponds to the edge of the disk, Ṁ0 is the
accretion rate, and g(3) is the determinant of the induced
metric in the equatorial plane. We denote by 	, E and L
the angular velocity, the energy and the angular momentum
of the particles on the circular orbits. For a general static
spherically symmetric metric in the form

ds2 = gtt dt
2 + gφφ dφ2 + grr dr

2 + gθθ dθ2 , (10)

they are given by the expressions

E = − gtt√−gtt − gφφ	2
,

L = gφφ	√−gtt − gφφ	2
,

	 = dφ

dt
=

√
− gtt,r
gφφ,r

. (11)

In order to obtain the observable flux Fobs at a given point
of the celestial sphere we should take into account the grav-
itational redshift z. Thus, we obtain the relation

Fobs = F

(1 + z)4 , (12)

where the gravitational redshift for a general spherically sym-
metric spacetime can be expressed by means of the metric
functions and the impact parameter b = L/E as [35]

1 + z = 1 + 	b√−gtt − 	2gφφ

. (13)

We illustrate the qualitative behavior of the images for the
Einstein–Gauss–Bonnet black holes and the weakly naked
singularities by choosing a representative value of the cou-
pling constant γ̂ for each class of solutions. Their optical
appearance is given in Figs. 2 and 3 representing the dis-
tribution of the apparent flux intensity as seen by a distant
observer, where γ̂ = 1 for the black hole, and γ̂ = 1.15 for
the naked singularity. The image of the Schwarzschild black
is also given for comparison. The observable flux is normal-
ized by its maximal value, and its range Fobs/Fmax

obs ∈ [0, 1]
is mapped continuously to the color spectrum from red to
blue, as the highest values are depicted in blue. The effec-
tive infinity is assumed to correspond to the radial coordinate
r = 5000M , and we choose an inclination angle i = 80◦,
since for larger inclination angles the relativistic effects are
more pronounced.

The images of the Einstein–Gauss–Bonnet black holes
resemble closely the Schwarzschild black hole. Although we
choose a Guass–Bonnet solution with a value of the coupling
constant maximally deviating from the Schwarzschild black
hole, only slight quantitative differences are present. The disk
size is smaller in the Einstein–Gauss–Bonnet case and the

peak of the observable radiation is slighly lower compared
to the Schwarzschild black hole. Still, the observable flux
distribution follows the same pattern for the two solutions
with a similar characteristic location of the maximum of the
radiation in the vicinity of the ISCO on the left-hand side of
the image.

On the other hand for weakly naked singularities we
observe clear qualitative distinctions. In the central region
of the image a series of bright rings are formed which are
absent in the case of the Schwarzschild or the Gauss–Bonnet
black holes. For weakly naked singularities the stable circu-
lar orbits are distributed into two disconnected regions which
form an inner and an outer accretion disk. The outer disk pro-
duces two types of images – a hat-like image similar to the
Schwarzschild black hole, and a sequence of rings located in
the interior part of the image of the marginally stable orbit.
On the other hand the inner disk is observed only in the form
of central ring images.

The ring images resulting from the two disconnected parts
of the accretion disk radiate with different intensity. The
observable flux of the rings resulting from the outer disk can
be evaluated to be less than 30% of the apparent flux max-
imum from the outer disk. The maximum of the observable
radiation from the outer disk Fout

max is located on the hat-like
image similar to the Schwarzschild and Gauss–Bonnet black
holes. In contrast the observable flux from the inner disk
rings is with three orders of magnitude larger as its maxi-
mum Fin

max is related to the radiation from the outer disk as
Fin
max/F

out
max ∼ 103. Thus, it represents the most pronounced

intensity in the radiation from the whole accretion disk image.
In order to facilitate the interpretation of the image we

present the optical appearance of the outer and the inner disks
separately in the left and right panels of Fig. 3. The complete
observable image of the accretion disk is composed by the
superposition of the two images. For the chosen value of the
coupling constant γ̂ = 1.15 the outer accretion disk extends
from the marginally stable orbit rms = 5.08M to infinity.
The inner disk is located between the inner limit of existence
of the timelike circular orbits rin = 1.05M and the stable
photon ring rph = 1.23M .

A characteristic feature of the inner disk is that the emitted
flux F(r) decreases when the radius of the particle orbit r
moves towards its inner edge. This is contrary to the behav-
ior of the flux for the outer disk, or the accretion disk for
the Schwarzschild or Gauss–Bonnet black holes, which has
a maximum in the vicinity of the ISCO. The reason is the
opposite gradient of the angular velocity on the circular orbits
in this region, which decreases in direction to the naked sin-
gularity becoming zero at the disk inner edge. Such anomaly
can be associated with the repulsive action of the gravita-
tional field in the vicinity of the singularity, which prevents
the particles from falling in, thus screening the singularity.
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Fig. 2 Apparent radiation flux for the Gauss–Bonnet black hole with γ̂ = 1 (left), and for the Schwarzschild black hole (right). The observer is
located at robs = 5000M , and at the inclination angle i = 80◦

Fig. 3 Apparent radiation flux for the Gauss–Bonnet weakly naked
singularity with γ̂ = 1.15. The radiation from the outer disk (left)
and the inner disk (right) are represented separately in order to make
the image more transparent. The maximum of the observable radiation

from the outer disk is Fout
max = 6.07 × 10−5MṀ , while for the inner

disk the flux reaches the value Fin
max = 4.94 × 10−2MṀ . The observer

is located at robs = 5000M , and at the inclination angle i = 80◦

4 Image formation for the weakly naked singularities

Using a semi-analytical scheme for constructing the optical
appearance of the circular orbits we can study the process
of the image formation for the weakly naked singularities.
This procedure is described in detail in [27,28], therefore
here we online only the basic steps. The central quantity in
the scheme is the evaluation of the variation of the azimuthal
angle φ along the photon trajectory. For a general spherically
symmetric metric in the form (1) it is given by the integral

φ(b) =
∫ robs

rsource

dr

r2
√

1
b2 − f (r)

r2

, (14)

where b = L/E is the impact parameter on the geodesic and
the integration is performed between the photon’s emission
point rsource and the location of the observer robs . Taking
advantage of the spherical symmetry, the azimuthal angle
can be expressed by means of the inclination angle i and a
properly defined celestial coordinate η as [35,36]

φ = − arccos
sin η tan i√

sin2 η tan2 i + 1
. (15)

The equality of the two expressions (14) and (15) deter-
mines the impact parameter of the photon trajectories which
can be observed at a given inclination angle and a given celes-
tial coordinate.2 Considering the full range of the celestial
coordinate η ∈ [0, π ] we get the impact parameters of all the
photon trajectories emitted by a particular circular orbit with
a radial coordinate r = rsource, which can reach an observer
located at r = robs and inclination angle i . So far we con-
sidered only trajectories which reach the observer directly
without revolving around the compact object. In general we
can observe also trajectories performing an arbitrary large
number of turns around the origin of the coordinate system.
Such trajectories are taken into account by including in the
equation an integer number k, parameterizing the number of

2 For an observer located at the asymptotic infinity the celestial coor-
dinate η is related to the impact parameters α and β, which we used in
the visualization of the disk images as η = arctan β

α
.
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Fig. 4 Image formation diagram for a circular orbit from the outer disk
(a), and the corresponding observable image (b). The orbit is located
at the radial coordinate r = 10M , while the observer’s position is at

{robs = 5000M, i = 80◦}. In a we have denoted the value of the impact
parameter of the photon sphere with a vertical dashed line

half-loops around the coordinate origin. Direct trajectories
with k = 0 lead to the primary observable image, but we can
observe also secondary images of higher order k. Thus, we
obtain the basic equation

∫ robs

rsource

dr

r2
√

1
b2 − f (r)

r2

= kπ − arccos
sin η tan i√

sin2 η tan2 i + 1
.

(16)

We should further consider that some trajectories possess
a radial turning point. Then, the integral (14) is represented
as a sum of two integrals including the turning point in the
integration limits. The turning point r0 is a function of the
impact parameter b determined by the largest root of the
equation

b = r0√
f (r)

. (17)

We can illustrate graphically the solutions of Eq. (16)
by using the following argument. For every order k the
right-hand side of the equation determines a minimal and
a maximal observable azimuthal angle, which we denote

0 2 4 6 8 10

2

4

6

8

10

Fig. 5 Dependence of the impact parameter on the photon trajectory’s
turning point

by φk
min and φk

max , respectively. They correspond to the
minimal and maximal values of the celestial coordinate η.
Then, for every order k we define an observational window
�φk = φk

max − φk
min . By definition it gives the possible

variation of the azimuthal angle on the photon trajectories
starting at a given radial coordinate rsource, which can be
observed at a given inclination angle i and observer position
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Fig. 6 Images of the circular orbit located at r = 10M as seen by an observer at {robs = 5000M, i = 80◦}. We illustrate the secondary images up
to the order k = 9

robs after making k/2 loops around the coordinate origin.
Then, the solutions of Eq. (16) for a given boundary data
{rsource, robs, i} will correspond to all the possible intersec-
tions of the curve φ(b) with the different observational win-
dows �φk . From this graphical representation we can deduce
information about the existence of the images of a given order
k and some of their qualitative features like the formation of
multiple images for example [28]. Multiple images of order
k arise if the intersection of the curve φ(b) with the observa-
tion window �φk consists of multiple disconnected portions.
Each disconnected piece of the curve φ(b) leads to a separate
image in the observer’s sky.

In Fig. 4 we illustrate our argument by presenting the
solutions of Eq. (16) for the boundary data {rsource =

10M, robs = 5000M, i = 80◦}. This diagram determines
the image of a circular orbit located at r = 10M observed
at the inclination angle i = 80◦. The red curve represents
the solutions of the integral (14) when the photon trajecto-
ries possess no radial turning point, while the green curve
corresponds to the solutions when a turning point is present.
Although we consider a particular orbit, the properties of its
image are representative for any circular orbit from the outer
disk.

We see that the graph of the function φ(b) consists of
two disconnected curves, which diverge when b → b+

ph and

b → b−
ph , respectively, where bph is the value of the impact

parameter corresponding to the photon sphere. The curve
approaching the photon sphere with values of the impact
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Fig. 7 Image formation diagram for a circular orbit from the inner disk
(a), and the corresponding observable image (b). The orbit is located
at the radial coordinate r = 1.227M , while the observer’s position is

at {robs = 5000M, i = 80◦}. In a we have denoted the value of the
impact parameter of the photon sphere with a vertical dashed line

parameter larger than bph possesses similar behavior to the
function φ(b) for the Schwarzschild black hole (see [28]).
For the Schwarzschild black hole Eq. (16) has a single solu-
tion for every k, which leads to the formation of an infinite
sequence of images approaching the image of the photon
sphere when k → ∞. This reflects the behavior of the tra-
jectories with impact parameters close to bph , since they can
perform arbitrary large number of turns abound the photon
sphere before reaching the distant observer.

The distinctive feature of the weakly naked Gauss–Bonnet
singularity is the existence of a second solution of Eq. (16)
for every k ≥ 1, forming a second curve φ(b), which tends to
infinity when approaching the photon sphere, however with
values of the impact parameter lower that bph . Thus, we get a
second infinite sequence of images resulting from trajectories
which revolve a certain number of times around the photon
sphere before scattering to infinity.

This behavior can be explained by looking at the effec-
tive potential for the null geodesics or equivalently at the
dependence of the impact parameter on the trajectory’s turn-
ing point b(r0) presented in Fig. 5. The minimum of the
curve with coordinates {rph, bph} corresponds to the pho-
ton sphere, while the maximum is located at the stable light
ring. We see that there are two classes of photon trajectories

which can scatter away to infinity after being emitted at a
radial distance larger than the location of the photon sphere.
The first type has impact parameters b > bph , and radial
turning points r > rph . This is the only possible case of
scattering null geodesics for the Schwarzschild and Gauss–
Bonnet black holes, as well as for some other weakly naked
singularities like the Janis–Newman–Winicour solution. The
second type has impact parameters lower than bph and turn-
ing points approaching the singularity. Such geodesics are
possible if the gravitational field becomes repulsive in some
characteristic neighbourhood of the compact object and pre-
vents particles and light from reaching it. As a result, all the
geodesics emitted in the exterior of the photon sphere will
scatter away to infinity either from the first or the second type
of potential barriers except for the limit case of trajectories
revolving eternally around the photon sphere.

In Figs. 4b and 6 we present the images of the circular orbit
at r = 10M up to the order k = 9 as seen by an observer
located at {robs = 5000M, i = 80◦}. The direct image (k =
0) leads to the characteristic hat-like shape of the accretion
disk primary image observed also for the Schwarzschild and
the Gauss–Bonnet black holes at large inclination angles.
This is the only order which produces a single image. For
all the higher orders k ≥ 1 a pair of secondary images is

123



Eur. Phys. J. C           (2021) 81:885 Page 9 of 10   885 

Fig. 8 Images of the circular orbit located at r = 1.227M as seen by an observer at {robs = 5000M, i = 80◦}. We illustrate the primary image of
order k = 0 and the secondary images up to the order k = 5

formed, as the two images come closer to each other when k
increases both approaching the image of the photon sphere
in the limit k → ∞. All the images of the circular orbit up
to the order k = 9 are superposed in Fig. 4b showing how
the image of the accretion disk is built up.

We can use a similar argument to describe the image of
the inner disk. The image formation diagram in this case
is presented in Fig. 7 for a representative orbit located at
rsource = 1.227M , and an observer at {robs = 5000M, i =
80◦}. The images of the orbit up to the order k = 5 and their
superposition are presented in Figs. 7b and 8. We observe
again a single direct image with k = 0, while we have a pair of
secondary images for all the higher orders k ≥ 1. When k →
∞ the couple of images approach the image of the photon
sphere both with impact parameters b < bph . In contrast
to the case of the outer disk, one of the images for each k
arises from photon trajectories without turning point, while
for the second one we have a turning point. The pattern for
the formation of the images can be understood qualitatively
by looking at the effective potential for the null geodesics in
Fig. 1. The photons emitted from the inner disk, i.e. at radial
distances smaller than the location of the stable light ring, can
reach the spacetime infinity only if their impact parameter
is lower than that of the photon sphere. Their trajectories
can be either direct, i.e. without a radial turning point, or

they can scatter away from the repulsive gravitational field
in the vicinity of the singularity. In both cases for suitable
impact parameters they can perform arbitrary number of turns
around the photon sphere before reaching the observer, thus
creating an infinite sequence of higher order images.

5 Conclusion

We study the images of the thin accretion disk around static
spherically symmetric black holes and naked singularities in
the 4D Einstein–Gauss–Bonnet gravity. On the one hand our
goal is to get some insights about the observational signatures
of the Gauss–Bonnet gravity compared to the general rela-
tivity. In this respect we observe no qualitative distinction in
the appearance of the thin accretion disk around the Gauss–
Bonnet black holes and the Schwarzschild black hole. Only
small quantitative differences are present in the disk size and
the maximum of the radiation flux.

On the other hand we aim at investigating the observable
features of the naked singularities, which are not present for
black holes and could serve as an experimental test for distin-
guishing the two types of compact objects. For certain values
of the coupling constant Gauss–Bonnet gravity allows for an
interesting case of naked singularities with respect to their
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lensing properties. In addition to a photon sphere they pos-
sess a stable light ring and the gravitational field becomes
repulsive in a certain region around the singularity. Due to
these properties broader classes of photon trajectories scatter
away from the compact object and reach a distant observer
leading to the formation of multiple observable images of the
accretion disk. These images appear as a series of bright rings
in the center of the primary disk image, and some of them
emit radiation 103 times larger that the flux from the primary
disk image. Thus, they represent a significant observational
feature. We describe in detail the physical mechanism for the
formation of the accretion disk image showing that the phe-
nomenon is expected also for other spacetimes possessing
the same properties of the photon dynamics.
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