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Prüfer der Dissertation: 1. Prof. Dr. Alejandro Ibarra

2. Prof. Dr. Björn Garbrecht

Die Dissertation wurde am 12.11.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 24.01.2020 angenommen.





Abstract

Although the first hints towards dark matter were discovered almost 100 years ago, little

is known today about its properties. Also, dark matter has so far only been inferred

through astronomical and cosmological observations. In this work, we therefore investi-

gate the influence of astrophysical assumptions on the interpretation of direct searches

for dark matter. For this, we assume that dark matter is a weakly interacting massive

particle. First, we discuss the development of a new analysis method for direct dark

matter searches. Starting from the decomposition of the dark matter velocity distribu-

tion into streams, we present a method that is completely independent of astrophysical

assumptions. We extend this by using an effective theory for the interaction of dark

matter with nucleons. This allows to analyze experiments with minimal assumptions on

the particle physics of dark matter. Finally, we improve our method so that arbitrarily

strong deviations from a reference velocity distribution can be considered. This allows us

to bracket the influence of astrophysical uncertainties by parametrizing the deviation. We

then use this method to study the dark matter interpretation of the annual modulation

signal measured by the DAMA experiment. Furthermore, we calculate how the existence

of dark matter sub-halos affects the expected signals. Using a state of the art sub-halo

mass function calculated with a semi-analytic model, we consider sub-halos with masses

larger than 10−5M�. Thus, we extend existing works and calculate for the first time the

effect of sub-halos on the annihilation of dark matter in the sun. Finally, this work is

rounded off by an outlook and an introduction to the concepts of convex optimization.

Zusammenfassung

Obwohl erste Hinweise auf Dunkle Materie vor fast 100 Jahren entdeckt wurden, ist heu-

te wenig über dessen Eigenschaften bekannt. Auch konnte Dunkle Materie bis jetzt nur

durch astronomische und kosmologische Beobachtungen nachgewiesen werden. In dieser

Arbeit untersuchen wir daher den Einfluss von astrophysikalischen Annahmen auf die

Interpretation von direkten Suchen nach Dunkler Materie. Hierfür nehmen wir an, dass

Dunkle Materie ein �weakly interacting massive particle� ist. Zuerst entwickeln wir ei-

ne neue Analysemethode für direkte Suchen nach Dunkler Materie. Ausgehend von der

Zerlegung der Geschwindigkeitsverteilung von Dunkler Materie in Streams, präsentieren

wir eine Analysemethode die vollkommen unabhängig von astrophysikalischen Annah-

men ist. Wir erweitern diese, indem wir eine effektive Theorie für die Wechselwirkung

von Dunkler Materie und Nukleonen benutzen. Dies ermöglicht es, Experimente mit mi-

nimalen Annahmen über die Teilchenphysik der Dunklen Materie zu analysieren. Schließ-

lich verbessern wir unsere Methode damit auch beliebig starke Abweichungen von einer

Referenzgeschwindigkeitsverteilung betrachtet werden können. Durch eine Parametrisie-

rung der Abweichung lässt sich dann der Einfluss von astrophysikalischen Unsicherheiten

eingrenzen. Anschließend verwenden wir diese Methode um die Interpretation des Modu-
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lationssignals, welches vom DAMA Experiment gemessen wurde, durch Dunkle Materie

zu untersuchen. Des Weiteren berechnen wir wie sich die Existenz von Dunkle Materie

Sub-Halos auf die erwarteten Signale auswirkt. Die Verwendung einer modernen Sub-halo

Massenfunktion, die mittels eines semi-analytischen Modells berechent wurde, erlaubt es

uns Sub-halos mit Massen größer als 10−5M� zu berücksichtigen. Dadurch erweitern wir

existierende Arbeiten und berechnen zum ersten Mal den Effekt von Sub-halos auf die

Annihilation von Dunkler Materie in der Sonne. Diese Arbeit wird abgerundet von einem

Ausblick sowie einer Einführung in die Konzepte der konvexen Optimierung.
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Chapter 1.

Introduction

Evidence for dark matter comes so far exclusively from indirect effects due to the grav-

itational interaction of dark matter with visible matter [6–9]. First discussions about

an invisible component of matter present in the Milky Way date back to Kelvin [10],

Öpik [11], Kapteyn [12] and Oort [13]. However, they concluded that there is at most as

much invisible matter as there is visible. In the 1930s, first signs of a missing matter com-

ponent emerged from the measurements of the velocity dispersion in the Coma cluster,

from which Zwicky concluded that the mass to light ratio of the cluster is 500 [14]. This

implies that a large fraction of the mass of the Coma cluster is invisible. Also in the 1930s,

Oort investigated the motion of nearby stars and concluded that their trajectories could

not be explained solely by the gravitational potential of the visible stars [13]. To this day,

a large amount of evidence for dark matter has accumulated. This includes the famous

result of Vera Rubin and collaborators [15], who measured the rotation curve of the Milky

Way and found that it is flat for large distances from the galactic center, contradicting

the expectations from visible matter. Other evidence arises from the observation of the

merging cluster 1E0657-558 [16], which implies that the distribution of gravitating matter

of this system does not coincide with the locations where visible matter is concentrated.

Today, dark matter is an important ingredient in many physics models. For example, the

ΛCDM model describes successfully the evolution of the Universe as a whole and explic-

itly assumes the existence of cold dark matter (CDM). The current state of research is

that 84% of the mass-energy density of the Universe is in the form of dark matter [17].

In total, dark matter accounts for ∼25% of the energy density of the Universe as found

by WMAP [18] and Planck [17].

Despite the overwhelming evidence for its existence, the particle physics properties of

dark matter are not well known. One of the most pressing issues of modern particle

physics is therefore to determine the fundamental properties of dark matter like its mass,

spin and interactions with visible matter. In the successful Standard Model of Particle

Physics (SM), none of the known particles is able to explain dark matter. Due to this,

a wide range of models for dark matter have been proposed, featuring candidates with

masses ranging over 50 orders of magnitude [19]. One of the most studied class of dark

matter models is the weakly interacting massive particle (WIMP). In the broadest sense,

it is a new particle with a mass of at least a few GeV up to tens of TeV which interacts

weakly with SM particles. Here, weakly interacting means that the interaction strength

between dark matter and SM particles is similar to the strength of the SM weak interac-
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Chapter 1. Introduction

tion. WIMPs arise naturally from several theories that were introduced to solve different

problems of particle physics. For example, supersymmetric models like the MSSM contain

the neutralino that falls into the category of a weakly interacting massive particle [20].

However, the most compelling feature of WIMPs is thermal freeze-out [21] that provides

a natural mechanism to explain the dark matter abundance in the Universe.

Due to these compelling theoretical arguments, many experiments quote the search for

WIMP particles as a science case. Despite the huge experimental effort in the search

for dark matter, no clear signal could be discovered until now. The dark matter inter-

pretation of the annual modulation signal measured by the direct detection experiment

DAMA [22, 23] is in conflict with almost all of the currently pursued direct detection

experiments and dark matter searches utilizing neutrino telescopes. Furthermore, the

excess in the antiproton data collected by AMS-02 [24] could hint towards dark matter

but is discussed heavily in the literature [25–28] and no conclusion is reached yet. In spite

of these controversies, a natural question to ask is how the interpretation of dark matter

searches depends on assumptions about the astro- and particle physics nature of dark

matter. For example, it is important to check whether the dark matter interpretation of

the annual modulation signal reported by DAMA could be compatible with other direct

detection experiments by relaxing some of the assumptions.

In this thesis, we investigate the astrophysical uncertainties arising in the interpretation

of direct detection experiments and dark matter searches with neutrino telescopes as both

discussed in chapter 3. We introduce the formalism necessary to describe the dark matter

halo of the Milky Way in chapter 2. First, we develop in chapter 4 an analysis method that

is completely independent of assumptions about the dark matter halo model. We show

in chapter 5 that this method allows halo-independent analyses in terms of an effective

theory for the interactions between dark matter and nucleons. This extended method

addresses simultaneously the particle physics uncertainties on the concrete form of the

dark matter-nucleon interaction as well as the astrophysical uncertainties on the local dark

matter density and velocity distribution. In chapter 6, we further improve this method.

This makes it possible to consider any deviations from the standard assumptions about

the dark matter halo model in a statistically rigorous way. We then use this method in

chapter 7 to study the dark matter interpretation of the DAMA annual modulation signal

and its compatibility with null results of other experiments. After discussing this general

method and its applications, we analyze a specific source of astrophysical uncertainties

and determine in chapter 8 the impact of dark matter sub-halos on the interpretation

of direct detection experiments and dark matter searches with neutrino telescopes. This

extends previous works studying the impact of dark matter sub-halos on direct detection

experiments by considering sub-halos as light as 10−5M� and by building probabilistic

models. Finally, we present our conclusions in chapter 9. Appendices that cover the

formalism of convex optimization and summarize the key figures of several dark matter

searches complete this work.
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Chapter 2.

Dark matter on astrophysical scales

2.1. Dark matter in the Universe

2.1.1. Evidence for dark matter in the Universe

Starting from the 1930s, a vast amount of evidence for dark matter in the Universe has

accumulated. Here, we give a concise overview over some of the most striking evidence,

while we refer to Refs. [6–9] for more detailed reviews on this subject.

In the early 1930s, Fritz Zwicky observed that there is evidence for a large amount of

dark matter in the Coma cluster. While studying the redshifts of several galaxy clusters,

he realized that eight galaxies in this cluster have large apparent velocities [29] as also

found in Ref. [30]. He then applied the virial theorem to obtain the gravitating mass of the

system from the velocity dispersion of the galaxies in the cluster. Comparing this to the

luminosity of the Coma cluster, Zwicky determined the mass-to-light ratio M/L to be 500.

He concluded that the Coma cluster hosts a large amount of invisible matter [14], which

he referred to as dark matter. However, Zwicky’s result relies on the Hubble parameter to

relate the redshift and the distance. He assumed H0 = 558 km s−1 Mpc−1 as determined

by [30] which is a factor 10 larger than the modern value of H0 = 67.4±0.5 km s−1 Mpc−1

[17]. Rescaling his result to the modern value reduces his estimate of the mass-to-light

ratio by a factor 558/67.4 ≈ 8.3, the observation of the apparent velocities in the Coma

cluster nevertheless suggests a large M/L and therefore dark matter.

One of the most famous evidence for dark matter comes from the flatness of the rotation

curves at large distance to the galactic center. Starting in the 1970s, Rubin and collab-

orators pursued spectroscopic observations of several galaxies, mapping the velocities of

the objects bound to them [15,31,32]. They found that the rotation curves v(r) of those

galaxies are flat far beyond the visible part of the galaxy. In the left plot of Fig. 1, we

show the rotation curve of the galaxy NGC 6503 as determined in Ref. [33]. From New-

ton’s law of gravity, one expects that the rotation curve follows v(r) ∝
√
M(r)/r where

M(r) is the mass of the galaxy within a sphere with radius r. Assuming that galaxies

host mostly visible matter, this would imply that v(r) ∝
√

1/r beyond the visible part

of the galaxy which is in contradiction to observations. Therefore, those galaxies must

host an additional component of matter, extending far beyond the distribution of visible

matter.

In 2006, Ref. [16] observed two merging galaxy clusters, collectively known as 1E0657-
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Chapter 2. Dark matter on astrophysical scales

Figure 1.: Two famous examples of evidence for dark matter. In the left plot, we depict
the rotation curve of the galaxy NGC 6503 as measured in Ref. [33]. This plot
was adopted from Ref. [7] but was originally published in [33]. Furthermore,
we show the merging cluster 1E0657-558 as observed by [16]. The color code
indicates the temperature of the X-ray emitting gas while the green lines denote
the gravitational potential. This plot was adopted from Ref. [16].

558 respectively “bullet cluster”. As the clusters collided recently, the hot and X-ray

emitting gas is located in the collision region while the stars and galaxies passed through

each other. Although the majority of the baryonic mass of the clusters comes from the

gas component, weak lensing surveys imply that the mass of the system is not centered

in the collision region [16]. This discrepancy is also apparent from the right plot of

Fig. 1 which shows the contour lines of the gravitational potential as green lines while

X-ray observations are color coded. The plot shows that the locations of the highest

mass density and the highest baryon density do not coincide. Therefore, an invisible

mass component must be present that interacts only rarely and therefore traverses the

opposing galaxy cluster. This observation also challenges theories of modified Newtonian

dynamics, dubbed MOND [34,35], that aim to solve the dark matter problem by modifying

the laws of gravity. Although the flatness of rotation curves can be explained by these

theories, the bullet cluster requires an additional mass component that is hard to explain

by a modification of gravity [36] although this is subject to discussion [37].

2.1.2. The total amount of dark matter in the Universe

Despite the compelling evidence for dark matter presented in the previous section, it is

not possible to infer the total amount of dark matter in the Universe from those obser-

vations. An excellent probe for this is the cosmic microwave background (CMB), which

we introduce concisely in the following but we refer to Refs. [38–40] for detailed reviews.

Today, modern measurements of the CMB allow the precise determination of cosmological

parameters of the ΛCDM model, the standard model of cosmology. This model describes

successfully the evolution of the Universe from the Big Bang until present times and

crucially relies on the existence of cold dark matter, abbreviated as CDM.
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2.1. Dark matter in the Universe

Gamow [41, 42] as well as Alpher and Hermann [43, 44] predicted the CMB in 1948

and almost 20 years later, in 1965, Penzias and Wilson were able to verify it [45]. At

early times, the Universe was radiation dominated and the CMB photons were energetic

enough to ionize hydrogen [40]. Therefore, the Universe consisted of a hot and charged

plasma, which we refer to as the primordial plasma. As the CMB photons redshift due

to the expansion of the Universe, they become less energetic. When the Universe was

approximately 4 ·105 years old, they were no longer able to ionize hydrogen which lead to

the formation of stable and neutral atoms. From then on, CMB photons decoupled from

matter and were only subject to the redshift induced by the expansion of the Universe.

Due to this, we observe today an almost perfect black-body spectrum of photons with a

temperature of T ' 2.73K. There are, however, small fluctuations in the temperature

and the polarization spectrum of CMB photons that were induced by acoustic oscillations

in the primordial plasma, see Ref. [38] for a review on this topic. An overdensity in

the primorial plasma gravitationally attracts matter which also increases the pressure

due to photon-matter interactions. This gives rise to acoustic oscillations as those two

forces act opposite to each other. As dark matter does not interact with photons but

contributes to the gravitational potential, the power spectra of CMB photon temperature

and polarization fluctuations depend crucially on the ratio dark matter to baryons. Under

the assumption of the ΛCDM model, the latest measurements of the CMB conducted by

Planck [17] found dark matter and baryon densities of

ΩDM h2 = 0.1200± 0.0012 (2.1)

Ωb h
2 = 0.0224± 0.0001 , (2.2)

which implies that 84.3% of the matter content in the Universe is dark matter. Here,

ΩX is the ratio of the energy density of the component X and the critical density of

the Universe ρcrit = 3H2
0/8πG, where G is the gravitational constant. Furthermore, h

denotes the reduced Hubble constant which is defined as h = H0/100 km s−1 Mpc−1. The

latest measurements of Planck [17] found h = 0.674± 0.005.

Big Bang Nucleosynthesis (BBN) provides an alternative way to measure the baryonic

density Ωb by studying the production of light nuclei, see Ref. [46] for a detailed review. If

the temperature of SM particles is much larger than the mass difference between protons

and neutrons T � mn −mp, both particles are in equilibrium due to weak interactions.

Once the Universe cooled down enough such that T . 100 keV [40], neutrons decay

into protons or fuse with them to produce light nuclei. In order to match the observed

abundances of 2H, 3He, 4He and 7Li today, a baryon density in the Universe of

0.021 ≤ Ωb h
2 ≤ 0.024 at 95% C.L. (2.3)

is needed [47]. Due to the good agreement with the measurement of the baryonic density

using the CMB, we conclude that only a small fraction of the dark matter can be baryonic

matter.

5



Chapter 2. Dark matter on astrophysical scales

2.1.3. Structure formation

Dark matter plays a key role in explaining the structures observed in the Universe today

like galaxies, galaxy clusters and larger objects. Weak fluctuations of the density in the

early Universe provide the seed for the growth of such structures. Those inhomogeneities

are probably due to quantum fluctuations and are directly visible in the CMB [17]. During

inflation, the density fluctuations are blown up and finally gravitational interactions lead

to the structures that we observe today. Following the recent review of Ref. [48], we

give a quick overview over the formation of structure in the Universe. We describe the

evolution of structure starting at the end of inflation where the density fluctuations δρ/ρ

are predicted to be small and follow a nearly scale invariant power spectrum.

As long as the density perturbations are small, i.e. δρ/ρ � 1, we are in the regime

where linear perturbation theory can be applied. One important effect in this regime is

the Mészáros effect [49]. It predicts that density perturbations on scales smaller than the

horizon stagnate during radiation domination while those on scales larger than the horizon

grow. As soon as matter dominates the energy density of the Universe, all perturbations

grow at the same rate. This imprints two important scales into the power spectrum of

density perturbations. The first one is the size of the horizon at matter-radiation equality,

below which the power spectrum flattens. In addition to this, there is a scale that is set

by the particle nature of dark matter and which imposes a cut-off. For thermal relics, this

scale is set by free streaming and corresponds to the size of the horizon at the time when

dark matter becomes non-relativistic [48]. This happens earlier for heavier dark matter

and allows to group dark matter candidates into three different categories depending on

their temperature today: cold (mDM ∼ 100 GeV), warm (mDM ∼ 1 keV) and hot dark

matter (mDM ∼ 30 eV) [48]. Another important effect in the linear regime is collisional

damping that prevents the collapse of small structures and introduces a lower bound

in the power spectrum of density fluctuations. For WIMPs, the decoupling from the

photon-baryon plasma introduces a damping of small scale perturbations [50]. Another

example for collisional damping is the interaction of dark matter with relativistic parti-

cles, for example photons or neutrinos [51, 52] respectively dark radiation [53, 54]. Those

interactions give rise to a radiation pressure that counteracts the collapse of small den-

sity perturbations and introduces dark acoustic oscillations which are similar to baryonic

acoustic oscillations. This imprints a characteristic scale that corresponds to the sound

horizon at the time dark matter decouples from those relativistic particles. We conclude

that the power spectrum of density perturbations crucially depends on the particle na-

ture of dark matter. Recent observations of the large-scale distribution of galaxies [55,56]

and the Ly-α forest [57] constrain the power spectrum to be like cold dark matter for a

co-moving wave number smaller than k = 200 h/Mpc.

As soon as the density contrast becomes sizable, i.e. δρ/ρ ∼ 0.1, perturbation theory

brakes down as perturbations on different scales become coupled via gravity and can no

longer be treated separately. In the literature, several methods were proposed to describe

structure formation in the nonlinear regime, confer Ref. [48]. However, the most common

approach are N-body simulations which follow the phase-space evolution of a set of N
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2.2. Dark matter in the Milky Way

particles that are drawn from an initial power spectrum. The initial state is derived

in the linear regime [58, 59] using the Zel’dovic approximation [60] or the second-order

Lagrangian perturbation theory [61]. From this, N-body simulations evolve the dark

matter phase-space distribution f(~x,~v, t) through time. In the case of cold dark matter,

the collisionless Boltzmann equation and the Poisson equation describe the evolution of

the gravitational field Φ(~x)

df

dt
=
∂f

∂t
+
∑

i

vi
∂f

∂xi
+
∑

i

∂Φ

∂xi

∂f

∂vi
(2.4)

ρDM(~x, t) =

∫
f(~x,~v, t) d3v (2.5)

∇2Φ(~x) =4πGρDM(~x) , (2.6)

where G is the gravitational constant. Here, d/dt is the Lagrangian derivative, ρDM

is the dark matter density. N-body simulations solve this problem by discretizing the

distribution function into N phase-space elements {~xi, ~vi} for i = 1, . . . ,N. These phase-

space regions represent the particles of the simulation. We note that these “particles”

consist of a large amount of dark matter particles as mi/mDM � 1, where mi is the mass

of the ith region. Therefore, the conclusions drawn from N-body simulations are always

limited by the phase-space resolution. With this, the phase-space distribution function

is evolved by tracing the dynamics of a system consisting of N particles subject to the

potential imposed by the particle distribution in a self consistent way. This allows to

determine the phase-space distribution of dark matter deep into the non-linear regime

and study the properties of the Milky Way dark matter halo that are not accessible from

observations.

2.2. Dark matter in the Milky Way

The phase-space distribution of dark matter in the Milky Way is a key ingredient for

understanding dark matter in our Universe. Information about it can be extracted on all

scales of the galaxy, ranging from the Milky Way as a whole down to stars in the solar

neighborhood that could act as tracers of dark matter. In the following, we review the

most popular models for both the velocity and density distribution of dark matter in our

galaxy.

2.2.1. The dark matter density in the Milky Way

There are two main results that constrain the shape of the radial dark matter density

profile of the Milky Way. First, the dark matter density profile can be extracted from N-

body simulations by looking at simulated dark matter halos that have the same properties

as the Milky Way. Furthermore, the profile must reproduce the observed rotation curve

of the Milky Way.

The Navarro-Frenk-White (NFW) profile [62, 63] is motivated by dark matter only

7



Chapter 2. Dark matter on astrophysical scales

N-body simulations and reads

ρNFW(r) =
ρs

(r/rs) (1 + r/rs)
2 (2.7)

where rs ≈ 20 kpc is the scale radius of the Milky Way and ρs is the central density

of the halo that acts as a normalization of the profile. A recent study [64] suggests

ρs ≈ 0.5 GeV/cm3. As apparent from Fig. 2, the NFW profile increases strongly in the

center of the halo while it decreases with r−3 for large radii.

A profile with similar features, confer Fig. 2, is the Einasto profile [65, 66] which was

also determined from N-body simulations. It has the following form

ρEinasto(r) = ρs exp

[
− 2

α

((
r

rs

)α
+ 1

)]
, (2.8)

where again rs ≈ 20 kpc is the scale radius and ρs is the central density. In addition to

these two parameters, the Einasto profile is described by the shape parameter α. For the

Milky Way dark matter halo, this shape parameter takes values between 0.12 . α . 0.22

[67] with best fit value α = 0.17 [68,69].

In contrast to the previously discussed profiles, the Burkert profile [70] was determined

from the rotation curve of the Milky Way and describes well the dark matter density of

dwarf galaxies. It is given by

ρBurkert(r) =
ρs(

1 + r
rs

) (
1 + r2

r2s

) , (2.9)

where rs ≈ 10 kpc is the scale radius for the Burkert profile and ρs is the central density.

A recent study [64] points towards ρs ≈ 1.578 GeV/cm3. As apparent from Fig. 2, the

Burkert profile does not rise in the center of the Milky Way halo but instead becomes flat,

in contrast to the predictions of the NFW and the Einasto profile. Therefore, the density

profiles extracted from N-body simulations and those determined from the rotation curve

of the Milky Way predict a different behavior at the center of the halo. This is called the

Core-Cusp problem and we refer to Ref. [71] for a detailed review.

In addition to the shape of the profile, another important quantity is the dark matter

density in the solar neighborhood ρloc. The canonical value for the local dark matter

density is 0.3 GeV/cm3 [72], which we indicate in Fig. 2 by a gray band assuming an

uncertainty of ±0.1 GeV/cm3. Current measurements however suggest O(1) uncertainties

[73] on ρloc. There are two types of analyses to determine the local dark matter density.

Global measurements model the whole mass distribution of the Milky Way from rotation

curves and infer the dark matter density at the solar position from the resulting mass

model. This method is prone to uncertainties in each component of the Milky Way mass

model and depends on the assumptions made for the dark matter density profile. Recent

studies [74–81] obtain that the local dark matter density is between 0.2 GeV/cm3 and

0.4 GeV/cm3. Local measurement rely instead on the motion of tracers in the solar

neighborhood at distances smaller than 1 kpc from the Sun. In this case, the dominant

8
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Figure 2.: The NFW [62, 63], the Einasto [65, 66] and the Burkert dark matter density
profile [70]. In order to compare the shapes of the profiles, we choose the nor-
malization in such a way that it predicts a dark matter density of 0.3 GeV/cm3

at the position of the sun, r� = 8 kpc. We furthermore show the canonical
value of the dark matter density with an uncertainty of ±0.1 GeV/cm3 as gray
shaded band and we indicate the position of the solar system with a gray dashed
line.

uncertainties stem from the surface density of baryons and from the determination of the

kinematic properties of the tracers. Latest local measurements [82–91] have a much larger

spread, reaching from no hint towards dark matter to dark matter densities as large as

0.85 GeV/cm3.

2.2.2. The velocity distribution of dark matter particles in the Milky

Way

There are several approaches to determine the velocity distribution of dark matter par-

ticles. As N-body simulations evolve the whole phase-space distribution of dark matter,

it is possible to directly infer the velocity distribution. However, the simulated galaxy is

only Milky Way like and does not explicitly contain the Solar System. The velocity dis-

tribution is then extracted by discretizing space into boxes and studying those boxes with

the same distance to the galactic center as the Solar System. In order to illustrate this,

we show the velocity distribution extracted from the Aquarius simulation [92] in Fig. 3.

As the boxes are quite large, e.g. 2 kpc in Ref. [92], the extracted velocity distributions

do not necessarily reflect distribution in the solar neighborhood but instead in a much

larger volume. Another issue is the limited resolution of N-body simulations. As the

traced particles consist of a large amount of real dark matter particles, only the average

velocity of this bulk of dark matter particles is accessible via N-body simulations.

The velocity distribution can also be determined by using Eddington’s result [93, 94].

For this, we assume spherical symmetry and a self-gravitating system, which implies

that all particles are gravitationally bound to the halo and have energies per unit mass

E > 0. However, it is possible to generalize this to anisotropic halos [95]. As described

9



Chapter 2. Dark matter on astrophysical scales

in Refs. [95–99], the dark matter density profile ρ(~r) can be used to infer the velocity

distribution f~r(~v) at the position ~r via

f~r(~v) =
F(~r,~v)

ρ(~r)
, (2.10)

where F(~r,~v) is the phase-space distribution. In the following, we assume that the halo

is described by the relative gravitational potential Ψ(r) = Φ0 − Φ(r), where Φ(r) is the

gravitational potential determined from Poisson’s equation and Φ0 is a constant. The

density profile can then be written in terms of the density function F(E) [95]

ρ(r) = 4π
√

2

∫ Ψ(r)

0
dE F(E)

√
Ψ(r)− E , (2.11)

where the density function depends solely via the energy per unit mass E = Ψ(r)− v2 on

~r and ~v. Differentiating this equation with respect to Ψ, we obtain an Abel equation

dρ

dΨ
=
√

8π

∫ Ψ

0
dE F(E)√

Ψ− E
, (2.12)

which can be inverted using Eddington’s formula [93,94]

F(E) =
1√
8π2

d

dE

∫ E

0

dΨ√
E −Ψ

dρ

dΨ
. (2.13)

For a given density profile ρ(r), this allows to self-consistently determine the density

function F(E) and finally obtain the velocity distribution using Eq. (2.10). In Fig. 3,

we show the velocity distribution obtained by Ref. [100] using this formalism. We note

that the determination of the velocity distribution using this method heavily relies on the

shape of the density profile and is prone to uncertainties of ρ(r). This includes also the

Core-Cusp controversy [71] discussed in the previous section.

Finally, it is possible to determine the velocity distribution from objects that are be-

lieved to trace the motion of dark matter in the Milky Way [101–103]. As suggested in

Ref. [104], metal-poor1 halo stars could be good tracers of dark matter which is supported

by the ERIS simulation [106]. This is due to the fact that both dark matter and metal-

poor stars are accreted to the Milky Way via mergers of satellites. In Fig. 3, we show

the velocity distribution extracted in [103] from the combined data of Gaia [107,108] and

SDSS [109]. If the accretion happened at early times (zacc & 3), the kinematic properties

today of the dark matter and metal-poor star components are similar as both are fully

relaxed [103]. However, both components are not well correlated respectively displaced

in the case of recent mergers. As described in Ref. [110], the dark matter component in

the AURIGA [111] simulation is not well traced by stars if the galaxy was subject to a

recent major merger. Another caveat of this method is that it is hard to take into account

completely dark structures unless they are correlated to the motion of stars.

1Metal-poor stars are old [105] and have a low amount of iron compared to hydrogen [Fe/H].
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2.2. Dark matter in the Milky Way

2.2.3. The Standard Halo Model

The motivation for the Standard Halo Model (SHM) stems from the observation that the

rotation curve of galaxies is flat in the outer regions, as apparent from the left plot of

Fig. 1. This implies a constant rotation speed vc and therefore

GM(r)m

r2
=
mv2

c

r
, (2.14)

where M(r) is the mass of the Milky Way enclosed in a sphere of radius r and m is a

small test mass. This relation does not hold in the inner region of the Milky Way as it is

heavily influenced by baryons. In order to fulfill this equation, the density ρ(r) has to be

proportional to r−2 such that

M(r) =

∫ r

0
dr′ 4πr′2 ρ(r′) ∼ r . (2.15)

The SHM therefore assumes that the dark matter density of the Milky Way is modeled

by an isothermal sphere [112,113]

ρSHM(r) =
σ2
v

2πGr2
, (2.16)

where σv is the velocity dispersion. Finally, the isothermal sphere implies a Maxwell-

Boltzmann velocity distribution via Eddington’s formula given in Eq. (2.10). The resulting

velocity distribution reads [72,112,113]

fSHM(~v) =
1

(2πσ2
v)

3/2Nesc

exp

(
− ~v2

2σ2
v

)
for v ≤ vesc , (2.17)

where the velocity dispersion of the Milky Way halo is roughly σv ≈ 156 km s−1 [72, 114,

115]. For the SHM, the velocity distribution is truncated at the escape velocity from

the Milky Way. Here, we assume vesc ' 544 km/s in concordance with the findings of

Ref. [116]. In order to ensure that the velocity distribution is normalized, we have to

introduce a normalization factor

Nesc = erf

(
vesc√
2σv

)
−
√

2

π

vesc

σv
exp

(
−v

2
esc

2σ2
v

)
, (2.18)

depending on the escape velocity vesc and the velocity dispersion σv.

Despite being a good first approximation, it is unlikely that the SHM is realized in

nature. As apparent from Eq. (2.15), the mass of the Milky Way would diverge for very

large radii. Furthermore, the density profiles presented in section 2.2 are not proportional

to r−2 and thus contradict the assumptions of the SHM. However, this implies that the

velocity distribution also changes as it is related to the dark matter density profile, confer

Eq. (2.10). In Fig.3, we show the SHM and compare it to the velocity distributions that

are determined with the methods discussed in the previous section. As apparent from

this plot, the SHM is not a good approximation to any of the other velocity distributions
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Figure 3.: The SHM as well as the velocity distributions determined from the Aquarius
simulation [92], using Eddington inversion [100] and from tracers of dark matter
[103]. In each case, the velocity distribution is given in the Sun’s rest frame
and averaged over angles.

as it predicts a different shape. It matches closest the results of Ref. [100] which also uses

Eddington’s result but assumes the NFW profile. The velocity distributions extracted

from N-body simulations respectively from the motion of metal-poor stars show a much

larger discrepancy. The Aquarius simulation [92] finds that the peak of the distribution

is depleted while the high-velocity tail is enhanced. However, the opposite is reported in

Ref. [103]. There, the peak of the distribution is shifted to lower velocities and is more

pronounced than for the SHM while the high-velocity tail is suppressed. Despite the

SHM being not a good fit to observations, also the current determinations of the velocity

distributions disagree among each other. This leads us to conclude that there is currently

no consensus on the velocity distribution of dark matter.

2.3. Dark matter substructure of the Milky Way

The paradigm of cold and collisionless dark matter predicts that small structures form

first and then merge into larger structures [117, 118]. As a consequence of the hierar-

chical structure formation, the Milky Way halo is expected to host a large number of

substructures. Indeed, recent analyses [102, 103] of the stellar kinematics measured by

Gaia [107,108] show that a large fraction of the local dark matter halo of the Milky Way

might be in substructure.

There are several types of substructures present in the Milky Way halo. One example of

primary interest in this work are sub-halos, which are halo objects bound to larger halos.

The largest known sub-halos of the Milky Way are the Large and the Small Magellanic

Cloud as well as the known dwarf satellite galaxies. Those objects have masses of roughly

1011M� [119] respectively 107M� [120]. In addition to these massive structures, there

is a much larger fraction of light sub-halos which are not capable of accreting enough
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2.3. Dark matter substructure of the Milky Way

matter to form stars and therefore remain dark [121–123]. Due to these observations,

there has been a huge effort to determine the properties and the distribution of sub-

halos in Milky Way-like galaxies, confer Refs. [124–135]. Another kind of substructure

are stellar streams like Sagittarius [136–138], S1 [139], Ophiuchus [140], Orphan [141] or

Cetus [141]. They are the debris of dwarf satellite galaxies that were disrupted by the

Milky Way and are currently being accreted [142]. In addition to this, a recent study [143]

of the Gaia [107, 108] data found a high-velocity stream counterrotating relative to the

Sun. We conclude that stellar substructures play an important role in describing the dark

matter halo.

2.3.1. Properties of dark matter sub-halos

In this work, we model the dark matter density of sub-halos with an NFW profile [62,63]

ρsh(r) =





ρs

(r/rs) (1 + r/rs)
2 for r ≤ rt

0 for r > rt ,

(2.19)

where rt is the truncation radius at which we set the profile to zero. For field halos 2,

the truncation radius is identified with the virial radius Rvir [144–147], which is defined

such that the mean density within a sphere of radius Rvir is ∆c = 200 times larger [148]

than the critical density ρcrit = 1.05371 ·10−5 h2 GeV cm−3. For sub-halos, the truncation

radius is smaller than Rvir due to mass loss within the host halo [149] and is not related

to the critical density. Here, a halo is described by its scale radius rs and scale density

ρs. The scale radius of a halo is related to the truncation radius via rs = rt/cV , where

cV is the concentration parameter.

The mass of a halo is defined to be the mass enclosed by a sphere with radius rt and is

obtained by integrating the density profile in Eq. (2.19) up to rt. This yields

M =
4π

3
ρs r

3
s f(cV ) , (2.20)

where f(cV ) = ln(1 + cV ) − cV /(1 + cV ) . For field halos, we follow Ref. [150] and

parametrize the distribution of the concentration parameter at current times by a log-

normal distribution with mean value

log10(cV ) = 1.399− (0.0257 log10(M/M�)) ·
(
1 + 0.00481(log10(M/M�)2)

)
(2.21)

and scatter [131] σ (log10(cV )) = 0.06. We refer to Refs. [151,152] for a detailed discussion

of the concentration parameter of field halos. For field halos in the relevant mass range

between 10−5M� and 1011M�, cV takes values between cV ' 9 and cV ' 35. Milky Way

sub-halos in the same mass range have concentration parameters between cV ' 1 and

cV ' 35 which suggests that sub-halos are denser and more concentrated than field halos,

confer the results of Ref. [135]. By adopting a model for tidal stripping, the distribution

2Field halos are halo structures that are not bound to larger halos.
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of the concentration parameter for sub-halos can be calculated.

The scale radius and scale density are related to the mass of the sub-halo M and

concentration parameter cV via

ρs =
cV ρ̄

3 f(cV )
(2.22)

rs =

(
M

4π ρs f(cV )

)1/3

=

(
3M

4π c3V ρ̄

)1/3

, (2.23)

where ρ̄ is the mean density inside a sub-halo. Assuming a Hubble constant h ≈ 0.68 [153],

the mean density inside a sub-halo is

ρ̄ = ∆c ρcrit ≈ 9.745 · 10−4 GeV cm−3 . (2.24)

Therefore, the density profile of a sub-halo is completely determined by its mass M and

concentration cV .

Assuming that the sub-halos of the Milky Way are fully virialized, we model the ve-

locity distribution of dark matter particles bound to a sub-halo by a Maxwell-Boltzmann

distribution with velocity dispersion σsh

fsh|sh(~v) =
1

(2π σ2
sh)3/2

exp

(
− ~v2

2σ2
sh

)
. (2.25)

The mean-squared velocity of those particles is given by

〈|~v|2〉 =

∫
d~v3 |~v|2 fsh|sh(~v) = 3σ2

sh . (2.26)

We determine the velocity dispersion σ2
sh by using the virial theorem which relates the

kinetic energy T of the sub-halo to its potential energy U via

T = −1

2
U . (2.27)

The total kinetic energy of a sub-halo with mass M and mean-squared speed 〈v2〉 is given

by T = 1
2 M 〈v2〉. Furthermore, we calculate the total gravitational energy of the sub-halo

via

U = −4πG

∫ R

0

Menc(r)

r
r2ρsh(r)dr . (2.28)

Here, Menc(r) is the mass of a sub-halo enclosed in a sphere with radius r and G is the

gravitational constant. Adopting the NFW density profile from Eq. (2.19), we perform

the integration and obtain

U = −8π2Gρ2
s r

5
s

[
1− 2

ln(cV + 1)

(cV + 1)
− 1

(cV + 1)2

]

= −
(π

6

)1/3 GcV
f(cV )2

ρ̄1/3M5/3

[
1− 2

ln(cV + 1)

(cV + 1)
− 1

(cV + 1)2

]
. (2.29)
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2.3. Dark matter substructure of the Milky Way

We then apply the virial theorem and solve for the velocity dispersion. This yields

σ2
sh = − U

3M
=

1

3

(π
6

)1/3 GcV
f(cV )2

ρ̄1/3M2/3

[
1− 2

ln(cV + 1)

(cV + 1)
− 1

(cV + 1)2

]
. (2.30)

In Fig. 4, we show the dependence of the velocity dispersion on the sub-halo mass as well

as the band constructed from varying cV within its 1σ range. From the negligibly thin
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Figure 4.: Velocity dispersion as a function of the sub-halo mass. We assume that the
sub-halos are fully virialized and that the velocity distribution of dark matter
particles bound to sub-halos is described by a Maxwell-Boltzmann distribution.
We furthermore plot the 1σ band in cV which is negligibly thin.

band, we conclude that the dependence of σ2
sh on the concentration parameter cV is weak.

The velocity dispersion is well approximated by

σsh ≈ 1.5 km/s

(
M

106M�

) 1
3

, (2.31)

where we assumed a generic value cV = 20.

2.3.2. The distribution of sub-halos in the Milky Way

Following recent results from hydrodynamical N-body simulations that include baryonic

effects [154], we model the spatial distribution of sub-halos within the Milky Way by an

Einasto profile [65,66]

ln (nsh(r)/n−2) = −α
2

[(
r

r−2

)α
− 1

]
. (2.32)

Here, r−2 is the radius at which the slope of the density profile ln (nsh(r)) equals -2.

Furthermore, n−2 is the number of sub-halos within r−2 and α is a parameter. For r−2

and α, we follow Ref. [154] and adopt the values r−2 = 0.817 · R(MW)
vir and α = 0.854 .

Here, R
(MW)
vir ' 200 kpc [155,156] denotes the virial radius of the Milky Way. We calculate

the normalization n−2 by demanding that
∫
VMW

dr3 nsh(r) = Nsh, where Nsh is the total
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Figure 5.: The sub-halo mass function of the semi-analytical model from [135] as well as
those extracted from simulations. Here, we show results from the Aquarius [126]
and Via Lactea [157] dark matter only N-body simulations as well as from the
Illustris and EAGLE hydrodynamical N-body simulations. For the latter, the
sub-halo mass functions are taken from [158]. In the legend, we indicate those
two simulation types by the labels DMO respectively hydro.

number of sub-halos.

For the velocity distribution of sub-halos in the Milky Way, we assume that it follows

a Maxwell-Boltzmann distribution in the rest frame of the galaxy

fMB(~v) =
1

(2πσ2
v)

3/2Nesc

exp

(
− ~v2

2σ2
v

)
for v ≤ vesc , (2.33)

where we assume σv ≈ 156 km/s and vesc = 544 km/s as for the SHM. Furthermore,

the normalization of the distribution Nesc depends on σv as well as vesc and is given by

Eq. (2.18).

In addition to the phase-space distribution of sub-halos in the Milky Way, another

important key figure is the amount of sub-halos as a function of the sub-halo mass. This

is described by the sub-halo mass function (ShMF) and is extracted from simulations by

counting the number of sub-halos that fall in given bins of the sub-halo mass. The lower

limit of the sub-halo mass function is given by the free streaming length of dark matter

which restricts sub-halos to be heavier than 10−6M� [118] respectively 10−8M� [159].

Following Ref. [160], the minimal sub-halo mass that N-body simulations are able to

resolve can be estimated from the particle mass by assuming that only sub-halos with

at least 100 bound particles can be reliably detected. As shown in Fig. 5, current dark

matter only N-body simulations resolve sub-halos heavier than 105M�. An exception

to this is the semi-analytical model [135] which was built to trace sub-halos from infall

until today including tidal stripping. Since it was tuned to a set of dedicated simulations

probing sub-halo masses from 10−5M� to 1011M�, this allows to cover the complete

range of expected sub-halo masses. In Fig. 5, we compare this to sub-halo mass functions

extracted from the dark matter only (DMO) N-body simulations Aquarius [126] and Via
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2.3. Dark matter substructure of the Milky Way

Lactea [157] as well as to the sub-halo mass functions from the hydrodynamical (hydro)

N-body simulations Illustris and EAGLE, both determined in [158]. We observe that the

dark matter only N-body simulations agree well with the semi-analytical calculation from

Ref. [135] while hydrodynamical N-body simulations predict a smaller number of sub-

halos compared to the dark matter only case. As noted in Refs. [161–163], the amount

of sub-halos is reduced in hydrodynamical N-body simulations. This conclusion however

depends on the feedback model adopted in the simulation, confer [158].

There are claims that substructure could be depleted due to its interaction with the

Milky Way disk [164,165]. This effect would be strongest close to the galactic center and

therefore alter the shape and normalization of the spatial distribution in Eq. (2.32) as

well as the halo mass function, confer Fig. 5. However, the results of those calculations

vary significantly from a 10% effect up to a 90% decrease in the expected amount of

substructure. Since there is no common sense on the existence or magnitude of this

effect, we do not take it into account here.
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Chapter 3.

Detection of dark matter

3.1. Particle dark matter

Despite compelling evidence for dark matter from astrophysical observations, little is

known about its particle physics properties. However, possible dark matter models have

to fulfill several requirements in order to provide an explanation for the observations

described in section 2.1.1. One necessary requirement is that dark matter is present in

the Universe also at current times. Therefore, the model has to predict at least one

particle that is stable or whose lifetime is larger than the age of the Universe. In addition

to this, the electric charge of dark matter must be small or zero. Recent estimates of the

dark matter charge place stringent limits of |q| . 10−14|e| (mDM/GeV) [166,167]. Finally,

the model must be able to explain the observed dark matter density of ΩDM h2 ' 0.12,

confer Eq. (2.1).

In addition to these requirements, dark matter models have to fulfill several constraints.

First, baryonic dark matter candidates are disfavored due to the good agreement of the

baryon density extracted from the CMB and BBN, confer the discussion in section 2.1.2.

Second, each model is subject to various constraints on its interactions. Observations of

the bullet cluster suggest that the self-interaction cross section of dark matter is bounded

by σself/mDM < 2× 10−24 cm2/GeV. Otherwise, it is not possible to explain the observed

separation between the interaction region and the region with the highest mass density,

confer 2.1.1. Furthermore, interactions of dark matter with nuclei are constrained by var-

ious experimental searches for dark matter. This includes direct detection experiments

and searches with neutrino telescopes that we both cover later in this chapter. Other con-

straints on the interactions of dark matter with SM particles come from indirect searches

using γ-rays or cosmic rays as well as from colliders like the LHC.

With this in mind, the only known particles that could act as dark matter are SM

neutrinos [6]. They are stable particles, electrically neutral, interact only weakly with SM

particles and since the discovery of neutrino oscillations, it is established that they are

massive. However, the relic density of SM neutrinos is given by [7]

Ων h
2 =

3∑

i=1

mi

93 eV
, (3.1)

where mi is the mass of the i-th SM neutrino. Currently, the tritium β-decay experiment
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KATRIN provides the best upper limits and restricts the SM neutrino mass to be mν <

1.1 eV at a confidence level of 90% [168]. By comparing the predictions of Eq. (3.1) to

the measurements presented in Eq. (2.1), we conclude that SM neutrinos can contribute

at most 29.6% to the dark matter density. Furthermore, structure formation is in conflict

with the role of SM neutrinos as dark matter. Due to their low mass, SM neutrinos

are highly relativistic particles and therefore an example of hot dark matter [169, 170].

In contrast to the “bottom up” procedure predicted by cold dark matter where small

structures form first and then merge into larger ones, hot dark matter predicts a “top

down” formation where large structures form first and then fracture into smaller ones.

Using N-body simulations, Ref. [171] showed that SM neutrinos cannot explain dark

matter in the Universe as it is not possible to explain the observed structures in the

Universe.

As there is no good dark matter candidate in the SM, physics beyond the Standard

Model is needed to explain dark matter. There is a huge number of proposed models

that include dark matter candidates, sometimes motivated to solve other open problems

in particle physics. Examples for this are supersymmetric models [20] that aim to solve

the hierarchy problem, Kaluza-Klein models [172–174] that assume extra spacetime di-

mensions, sterile neutrinos [175] that could explain neutrino masses or axion dark matter

models [176] that aim to solve the strong-CP problem. Instead of adopting a specific

model, we focus in this work on the weakly interacting massive particle which represents

a class of dark matter candidates. In the most general definition, a WIMP is a particle

with a mass between a couple of GeV and several TeV that interacts weakly with SM

particles. In order make the WIMP stable or have a lifetime longer than the age of the

Universe, it is usually assumed that the WIMP is subject to a symmetry that prevents

its decays, like R-parity in supersymmetric models.

There are several compelling arguments in favor of WIMP dark matter and in the re-

mainder of this work, we explicitly assume that dark matter is a WIMP particle. First,

it arises naturally in several theories of physics beyond the Standard Model. An example

for a dark matter candidate that belongs to this category is the neutralino predicted by

supersymmetric models [20]. Furthermore, WIMPs provide testable predictions that can

be verified by experiments [177]. As discussed later in this work, searches for WIMP dark

matter with various strategies are currently pursued. Finally, WIMP dark matter offers

an intriguing way to explain the observed abundance of dark matter in the Universe via

the freeze-out mechanism, see Refs. [178–181]. This mechanism relies on the assumption

that dark matter and SM particles were in thermal and chemical equilibrium in the early

Universe due to interactions of the form DM DM ↔ SM SM. As long as the interaction

rate is larger than the expansion rate of the Universe, dark matter and the SM particles

stay in equilibrium. At some point, the Universe expanded enough such that the annihi-

lation rate of WIMP particles drops below the expansion rate of the Universe. WIMPs

then decouple and their abundance is frozen-out. As discussed in Refs. [7, 21, 174, 182],

the Boltzmann equation describes the time evolution of the particle number density of

20



3.2. Interactions of dark matter with nuclei

WIMPs n

dn

dt
+ 3H n = −〈σv〉

(
n2 − n2

eq

)
, (3.2)

where 〈σv〉 is the thermally averaged annihilation cross section of WIMPs, H is the Hubble

constant and neq denotes the number density in thermal equilibrium. For heavy particles

like WIMPs, the thermally averaged annihilation cross section can be expanded in terms

of powers of v [7]

〈σv〉 = a+ b 〈v2〉+O(〈v4〉) ≈ a+ 6
b

x
, (3.3)

where x = m/T is the ratio of the mass of the WIMP particle and the temperature of

the thermal bath. Assuming that the entropy after freeze-out is much larger than the

entropy before, solving Eq. (3.2) yields the following dark matter density

ΩWIMP h
2 =

1.07 · 109 GeV−1

MPL

xF√
g∗

1

a+ 3 b/xF
, (3.4)

where xF = m/TF and TF denotes the freeze-out temperature. Furthermore, g∗ is the

number of relativistic degrees of freedom at freeze-out. Using g∗ ≈ 100 [21] and xF ≈ 10

[113], the dark matter density reads [20]

ΩWIMP h
2 ≈ 3 · 10−27 cm/s−1

〈σv〉 . (3.5)

Assuming furthermore that WIMPs annihilate into lighter final states, the thermally

averaged annihilation cross section is well approximated by 〈σv〉 = α2/m2 [113]. Here,

α is proportional to the square of the coupling constant and α ∼ 0.01 for a weakly

interacting particle. This gives rise to exactly the correct dark matter abundance for

a dark matter mass of mDM ∼ 100 GeV, which is frequently referred to as the WIMP

miracle. Interestingly, two of the defining properties of the WIMP, its weak interactions

and the fact that it is massive, naturally give rise to the correct dark matter abundance.

Despite this might be a pure coincidence, it serves as a motivation to study WIMPs as

dark matter candidates.

3.2. Interactions of dark matter with nuclei

3.2.1. Spin-independent interactions

Spin-independent interactions between dark matter particles and nuclei are either due

to scalar-scalar or vector-vector interactions. They are theoretically appealing since they

arise naturally from several models, e.g supersymmetric models which feature a neutralino

a lightest supersymmetric particle [20]. On the Lagrangian level, the following two terms
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describe spin-independent interactions [112,113]

L ⊃ αS
q χ̄χq̄q + αV

q χ̄γ
µχq̄γµq , (3.6)

where αS
q and αV

q are the scalar-scalar respectively vector-vector coupling constants for a

specific quark species q. Furthermore, χ and q denote the dark matter field respectively

the quark field.

In order to work on the nucleus level, dark matter parton interactions have to be related

to interactions with nucleons first. The scalar-scalar couplings of dark matter to protons

fp respectively to neutrons fn are given by [112]

fp

mp
=

∑

q=u,d,s

αSq
mq

fp
Tq +

2

27
fp

TG

∑

q=c,b,t

αSq
mq

, (3.7)

where a similar relation arises for neutrons [113]. Here, the factors fp,n
Tq model the contri-

bution of the light quarks flavor q to the mass of the proton or the neutron. Furthermore,

fp,n
TG is the interaction strength of dark matter with the gluon scalar density in the nucleon.

Concretely, those factors are given by

mq f
p
Tq ≡ 〈p|mq q̄q |p〉

fp
TG = 1−

∑

q=u,d,s

fp
Tq , (3.8)

where we refer to Ref. [183] for numerical results. Finally, the differential WIMP-nucleus

scattering cross section for scalar-scalar interactions reads

dσSI

dER
=
κmT

2π v2
(Z fp + (A− Z) fn)2 F 2(ER) , (3.9)

where F 2(ER) is a form factor that parametrizes the dependence on the recoil energy and

κ is a constant that arises from summing and averaging initial state respectively final state

spins. Concretely, κ = 4 if WIMPs are Majorana particles and κ = 1 if they are Dirac

particles [184]. Furthermore, A and Z denote the total number of nucleons respectively

the number of protons in the nucleus and mT is the mass of the nucleus.

In addition to this, the vector-vector interaction gives rise to a term that vanishes if

dark matter is a Majorana particle but is non-zero for Dirac particles. This interaction

yields the following differential WIMP-nucleus scattering cross section [112]

dσSI

dER
=

2mT

π v2

B2
N

256
F 2(ER) δ(κ− 1) , (3.10)

where F 2(ER) is again the form factor for spin-independent interactions and δ(κ − 1)

emphasizes that this term vanishes for Majorana particles. Here, the parameter BN is

given by

BN = αVu (A+ Z) + αVd (2A− Z) , (3.11)
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where αVu and αVd are the coupling constants for up-quarks respectively down-quarks as

only valence quarks contribute to this term [112].

In the case of spin-independent dark matter-nucleus interactions, the form factor F 2(ER)

is given by the Fourier transform of the nucleon density [185,186] due to the coherent na-

ture of the interaction. Parametrized in terms of the momentum transfer q =
√

2mT ER,

the form factor reads [185–187]

F 2(q) =

(
3 j1(q r0)

q r0

)2

exp
(
−q2 s2

)
, (3.12)

which is referred to in the literature as Helm form factor. Here, j1 is the spherical Bessel

function for n = 1 and s ' 1 fm [112,113] is the thickness parameter of the nuclear surface.

The parameter r0 is related to the nuclear radius RN and the thickness parameter s via

r0 =
√
R2
N − 5 s2 , (3.13)

where RN ' 1.2A1/3 fm [112] depends on the number of nucleons A. The form factor

is normalized to unity in the limit of zero momentum transfer q → 0, as apparent from

Eq. (3.12).

In general, the differential scattering cross section is given by

dσSI

dER
=
mT σ

SI
0 F 2(ER)

2µ2
T v

2
, (3.14)

where σSI
0 is the scattering cross section at zero momentum transfer and F 2(ER) is the

nuclear form factor. Furthermore, µT = mDMmT /(mDM + mT ) is the WIMP-nucleus

reduced mass. Taking into account scalar-scalar as well as vector-vector interactions, σSI
0

reads [112,115]

σSI
0 =

κµ2
T

4π

[
(Z fp + (A− Z) fn)2 +

B2
N

256
δ(κ− 1)

]
, (3.15)

where fp and fn paramterize the coupling strength of dark matter to protons respectively

neutrons. For the usual assumption of equal coupling to protons and neutrons as well as

assuming Majorana dark matter, the expression for the scattering cross section at zero

momentum transfer simplifies to

σSI
0 =

µ2
T

π
A2 (fp)2 . (3.16)

In order to compare the results of experiments using different target nuclei, the dark

matter proton respectively the dark matter neutron cross section is used. It is related to

the spin-independent scattering cross section at zero momentum transfer via [113,115,184]

σSI
0 =

µ2
T

µ2
p,n

A2 σp,n
SI , (3.17)

where µp,n and µT are the dark matter-nucleon respectively the dark matter-nucleus
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reduced mass. With this, the differential scattering cross section can be expressed in

terms of the interactions with nucleons

dσSI

dER
=

mT

2µ2
p,n v

2
A2 σp,n

SI F 2(ER) , (3.18)

where all information on the particle physics model of dark matter is encoded in the dark

matter-nucleon cross section σp,n
SI .

As apparent from this expression, the scattering cross section scales with the squared

number of nucleons A2 for fp ≈ fn. Since dark matter scatters coherently off the nucleus,

the scattering cross section increases when increasing the number of nucleons. Popular

target nuclei for direct detection experiments are therefore heavy elements like Xenon,

Germanium or Iodine. However, the spin-independent scattering cross section might be

suppressed due to destructive interference if the ratio of the interactions to protons and

neutrons fulfills fp/fn ≈ −(A − Z)/Z. As this ratio is different for each nucleus, it is

important to have direct detection experiments with different targets in order to not miss

the dark matter signal.

3.2.2. Spin-dependent interactions

Spin-dependent interactions arise for dark matter particles that interact with the quark

axial current q̄γµγ5q. For Majorana or Dirac dark matter, the following term models

spin-dependent interactions [112,184]

L ⊃ αAq (χ̄γµγ5χ) (q̄γµγ5q) . (3.19)

In order to relate this to the nucleus level, one constructs the nucleus matrix element

which is given by [112]

〈N | q̄γµγ5q |N〉 = 2λNq 〈N | JµN |N〉 , (3.20)

where JµN is the spin operator of the nucleus. The coefficients λNq relate the quark axial

current to the spin of the nucleus and are given by

λNq '
∆

(p)
q 〈Sp〉+ ∆

(n)
q 〈Sn〉

J
, (3.21)

where J is the total spin of the nucleus. Furthermore, 〈Sp,n〉 are the expectation values

of the spin of the proton group respectively the neutron group in the nucleus. They

are determined from nuclear calculations as performed for example in Refs. [188–193].

Finally, the constants ∆
(p,n)
q are extracted from the axial vector current in a nucleon and

describe the amount of spin carried by quarks of the flavor q inside the proton respectively

the neutron. Measurements of those quantities were performed in Refs. [194–197]. With

these definitions, the Lagrangian reads

L = 2
√

2GF Λ (χ̄γµγ5χ) 〈N | JµN |N〉 , (3.22)
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where GF denotes Fermi’s constant. It is convenient to define

Λ =
ap 〈Sp〉+ an 〈Sn〉

J
, (3.23)

which weights the couplings of dark matter to protons respectively neutrons with the

fraction of the spin that is carried by protons respectively neutrons and the total spin

of the nucleus. The dark matter proton respectively neutron coupling constants are

determined by adding up the contributions from all quarks

ap =
∑

q=u,d,s

αAq√
2GF

∆(p)
q an =

∑

q=u,d,s

αAq√
2GF

∆(n)
q , (3.24)

where the constants ∆
(p,n)
q are related to the amount of spin carried by quarks of the

flavor q.

Using the Lagrangian in Eq. (3.22), the differential WIMP-nucleus scattering cross

section for a spin-1
2 dark matter particle and spin-dependent interaction is given by [184]

dσSD

dER
=

4κmT

π v2
Λ2G2

F J(J + 1)
SA(ER)

SA(0)
, (3.25)

where κ = 4 if dark matter is a Majorana particle and κ = 1 if it is a Dirac particle. We

refer to [198] for a similar derivation of this quantity for a spin-1 dark matter particle.

Here, SA(q) are nuclear structure functions that are determined numerically, confer [199–

201]. For spin-dependent interactions, the scattering cross section at zero momentum

transfer σSD
0 is given by the following expression [202]

σSD
0 =

8κµ2
T G

2
F

2 J + 1
SA(0) , (3.26)

where µ2
T is the dark matter-nucleus reduced mass. In order to compare experiments using

different target nuclei, the results are cast in terms of the dark matter proton respectively

neutron scattering cross section at zero momentum transfer. It can be derived from σSD
0

via [202]

σp,n
SD =

3µ2
p,n (2J + 1)

4π µ2
T SA(0)

σSD
0 , (3.27)

where µp,n is the dark matter proton respectively neutron reduced mass. Finally, the

differential WIMP-nucleus scattering cross section can be rewritten in terms of σSD
p,n

dσSD

dER
=

2πmT

3µ2
p,n v

2 (2J + 1)
σp,n

SD SA(ER) , (3.28)

where the whole dependence on particle physics is encoded in σp,n
SD .

In contrast to spin-independent dark matter-nucleus interactions, the spin-dependent

scattering cross section does not increase with the number of nucleons A. Instead, the

interaction strength scales with the spin of the nucleus. In order to test the spin-dependent
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interactions between dark matter and nucleons, it is necessary to use nuclei for which

either the protons or the neutrons contribute significantly to the total spin of the nucleus.

Prime targets are for example Fluorine that has an unpaired proton which carries most

of the spin of the nucleus. A further example is Xenon that has stable isotopes with

an unpaired neutron which allows to effectively probe spin-dependent interactions with

neutrons. Although the strength of spin-independent interactions usually exceeds those

of spin-dependent ones, there are models for which the spin-independent interactions are

suppressed [203]. Therefore, it is crucial to explore all possible interaction types.

3.2.3. Interactions of non-relativistic dark matter with nuclei

In addition to spin-independent and spin-dependent interactions, it is possible to construct

a general, non-relativistic effective field theory for dark matter-nucleus interactions. In

this work, we use the theory derived in Refs. [204–206] and adopt the form factors for direct

detection experiments provided in [206]. Furthermore, we use the form factors relevant for

nuclei present in the Sun which were determined in Ref. [207]. In the following discussion,

we assume that dark matter has a spin of 0 or 1
2 . The calculation for spin-1 dark matter

is similar, but we show only the final result for the sake of simplicity.

When constructing the most general and non-relativistic Hamiltonian for dark matter-

nucleon interactions, energy and momentum conservation as well as Galilean invariance

must be fulfilled. As detailed in [204–206], all operators in the Hamiltonian must be

constructed from the following five operators

1DM i~̂q ~̂v⊥ ~̂SDM
~̂SN . (3.29)

These operators act on the two particle Hilbert space which is spanned by dark matter

and nucleon states. Here, 1DM and 1N are the identity matrices in this space and ~v⊥ is the

relative transverse momentum satisfying ~v⊥ · ~q = 0. In Tab. 1, we show the complete set

of operators that can be constructed with those basis operators for dark matter particles

with spin 0, 1
2 , 1. For all operators, the momentum transfer is divided by the mass of

a nucleon mN = 0.9315 GeV. In concordance with [204–206], we neglect operators O2

and O16 . Operator O2 cannot arise at leading order in an effective field theory [205] and

O16 is a linear combination of O12 and O15. The most general Hamiltonian density for

non-relativistic scattering of dark matter particles with nucleons is given by

ĤN(~r) =

1∑

τ=0

18∑

k=1

cτk Ôk(~r) tτ . (3.30)

Here, cτk denotes the Wilson coefficient for the k-th operator and tτ(i) is a spin matrix with

t0 = 1 and t1 = σ3 the third Pauli matrix. The basis of isoscalar and isovector coupling

is related the couplings to protons and neutrons via

cp
k = (c0

k + c1
k)/2 cn

k = (c0
k − c1

k)/2 . (3.31)
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Ô1 = 1DM1N Ô10 = i ~̂SN · ~̂q
mN

1DM

Ô3 = i ~̂SN ·
(

~̂q
mN
× ~̂v⊥

)
1DM Ô11 = i ~̂SDM · ~̂q

mN
1N

Ô4 = ~̂SDM · ~̂SN Ô12 = ~̂SDM ·
(
~̂SN × ~̂v⊥

)

Ô5 = i ~̂SDM ·
(

~̂q
mN
× ~̂v⊥

)
1N Ô13 = i

(
~̂SDM · ~̂v⊥

)(
~̂SN · ~̂q

mN

)

Ô6 =
(
~̂SDM · ~̂q

mN

)(
~̂SN · ~̂q

mN

)
Ô14 = i

(
~̂SDM · ~̂q

mN

)(
~̂SN · ~̂v⊥

)

Ô7 = ~̂SN · ~̂v⊥1DM Ô15 = −
(
~̂SDM · ~̂q

mN

) [(
~̂SN × ~̂v⊥

)
· ~̂q
mN

]

Ô8 = ~̂SDM · ~̂v⊥1N Ô17 = i ~̂q
mN
· S · ~̂v⊥1N

Ô9 = i ~̂SDM ·
(
~̂SN × ~̂q

mN

)
Ô18 = i ~̂q

mN
· S · ~̂SN

Table 1.: Operators of the non-relativistic effective theory of dark matter-nucleon inter-
actions [204, 205, 208]. Further details about the notation are provided in sec-
tion 3.2.3. The matrices 1N and 1DM denote the identity matrices in nucleus
spin respectively dark matter spin space. Furthermore, the spin operators of nu-

clei and dark matter particles are denoted by ~̂SN and ~̂SDM. For spin-1 WIMPs,
S denotes the symmetric combination of polarisation vectors. This table was
adopted from Ref. [3].

This allows to relate the general non-relativistic effective field theory to the specific cases

of spin-independent and spin-dependent interactions. As can be seen from comparing

Eqs. (3.6) as well as (3.19) to the operators listed in Tab. 1 and using the identities pre-

sented in Ref. [205], the operators O1 and O4 correspond to the standard spin-independent

respectively standard spin-dependent interactions. We note that O1 and O4 are the lead-

ing order operators of this effective field theory and therefore standard spin-independent

and spin-dependent interactions could provide the most dominant effects in case they are

non-zero.

In order to connect this to the signal expected in dark matter searches, one constructs

the coupling to the nucleus. Following [204–206] and using the one-body approximation,

the Hamiltonian density ĤT(~r) is used to model the interaction of dark matter particles

with a nucleus. For this, the contributions of all A nucleons inside the nucleus are summed

which yields

ĤT(~r) =

A∑

i=1

1∑

τ=0

15∑

k=1

cτk Ô
(i)
k (~r) tτ(i) . (3.32)

In order to relate to the operators in Tab. 1, it is useful to separate the motion of the

center of mass of the nucleus and the motion of the ith nucleon with respect to it. In

coordinate space, this induces the following separation [207]

~̂q = −i ~∇~x δ(~x− ~y − ~r)− i δ(~x− ~y − ~r) ~∇~x (3.33)

~̂v⊥ = ~̂v⊥N + ~̂v⊥T , (3.34)

where ∇~x acts on the wave function of the nucleus center of mass. The individual com-
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ponents of the transverse momentum are given by

~̂v⊥T = δ(~x− ~y − ~r)
(
i
~∇~x
mT
− i

~∇~y
mDM

)
+

~̂q

2µT
(3.35)

~̂v⊥N =
1

2mN

(
i ~∇~r δ(~r − ~ri)− i δ(~r − ~ri) ~∇~r

)
. (3.36)

Here, ∇~y and ∇~r act on the wave function of the dark matter particle respectively the

constituent nucleon while mT and µT are the mass respectively the reduced mass of the

target nucleus. Furthermore, ~r and ~ri denote the distance of the dark matter particle

respectively of the ith nucleon to the nucleus center of mass. As apparent from this

decomposition, the only part of ~̂q and ~̂v⊥ that depends on ~ri is ~̂v⊥N . In order to separate

the motion of the nucleons with respect to the nucleus center of mass, one categorizes the

different dependencies on ~ri in Eq. (3.32). As apparent from Eqs. (3.33) and (3.34) in

combination with the operators shown in Tab. 1, there are only five different contributions

possible

A∑

i=1

1i t
τ
(i) =

A∑

i=1

δ(~r − ~ri) tτ(i) ≡ ρ̂τ0(~r)

A∑

i=1

~σ(i) ~̂v⊥N tτ(i) ≡ ρ̂τ0A(~r)

A∑

i=1

~σ(i) 1i t
τ
(i) =

A∑

i=1

~σ(i) δ(~r − ~ri) tτ(i) ≡ ~̂ρτ5(~r)

A∑

i=1

~̂v⊥N ≡ ~̂ρτM (~r)

A∑

i=1

~σ(i)× ~̂v⊥N ≡ ~̂ρτE(~r) , (3.37)

where ~σ(i) is the vector of Pauli matrices that acts on the ith nucleon and 1i is equivalent

to δ(~r − ~ri) in coordinate space [207]. Here, ρ̂τ0(~r) and ρ̂τ0A(~r) are the nuclear vector

respectively nuclear axial charges. The operators ~̂ρτ5(~r), ~̂ρτM (~r) and ~̂ρτE(~r) denote the

nuclear spin, nuclear convection and nuclear spin-velocity currents. Using these operators,

the Hamiltonian density becomes a sum of those five contributions

ĤT(~r) =
∑

τ=0,1

(
l̂τ0 ρ̂

τ
0(~r) + l̂τ0A ρ̂

τ
0A(~r) + ~̂lτ5 ~̂ρ

τ
5(~r) + ~̂lτM ~̂ρτM (~r) + ~̂lτE ~̂ρ

τ
E(~r)

)
. (3.38)

In the case of dark matter particles with spin 0 or 1
2 , only operators O1−O15 contribute.

The operators l̂τk are then given by [206,207]

l̂τ0 = cτ1 + i

(
~̂q

mN
× ~̂v⊥T

)
~̂SDM cτ5 + ~̂v

⊥
T
~̂SDM cτ8 + i

~̂q

mN

~̂SDM cτ11
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l̂τ0A = − 1

2

[
cτ7 + i

~̂q

mN

~̂SDM cτ14

]

~̂l
τ

5 =
1

2

[
i
~̂q

mN
× ~̂v⊥T cτ3 + ~̂SDM cτ4 +

~̂q

mN

~̂q

mN

~̂SDM cτ6 + ~̂v
⊥
T cτ7 + i

~̂q

mN
× ~̂SDM cτ9 + i

~̂q

mN
cτ10

+~̂v
⊥
T × ~̂SDM cτ12 + i

~̂q

mN
~̂v
⊥
T
~̂SDM cτ13 + i~̂v

⊥
T

~̂q

mN

~̂SDM cτ14 +
~̂q

mN
× ~̂v⊥T

~̂q

mN

~̂SDM cτ15

]

~̂l
τ

M = i
~̂q

mN
× ~̂SDM cτ5 − ~̂SDM cτ8

~̂l
τ

E =
1

2

[
~̂q

mN
cτ3 + i ~̂SDM cτ12 −

~̂q

mN
× ~̂SDM cτ13 − i

~̂q

mN

~̂q

mN

~̂SDM cτ15

]
. (3.39)

For spin-1 dark matter, the operators l̂τk look slightly different and we refer to Ref. [208]

for explicit results. Integrating the Hamiltonian density ĤT(~r) over space coordinates

finally yields the dark matter-nucleus interaction Hamiltonian HT.

The transition matrix element between the initial state |i〉 and the final state |f〉 then

reads

〈f |HT |i〉 = (2π)3 δ(~k′T + ~p′ − ~kT − ~p) iMNR . (3.40)

Here, ~kT and ~p are the momenta of the target nucleus respectively the dark matter

particle. The matrix element can be calculated by performing a multipole expansion,

confer [206,207]. Using that nuclear ground states are eigenstates of P and CP to a very

good approximation [205], some of the terms in the expansion vanish. In particular, none

of the terms related to l̂τ0A contribute. Furthermore, the charge l̂τ0 gives rise to the nuclear

response operator M while the currents ~̂l
τ

5 , ~̂l
τ

M and ~̂l
τ

E induce the response operators Σ′

and Σ′′, ∆ respectively Φ̃′ and Φ′′. In addition to this, the interference terms Φ′′M and

∆Σ′ arise. We refer to Refs. [205–207] for explicit calculations of the response operators

and the matrix element MNR.

Squaring the transition amplitude, summing over final spin states and averaging initial

spin states, the transition probability is given by [206,207]

Ptot(v
2, q2) ≡ 1

2jDM + 1

1

2J + 1

∑

spins

|MNR|2

=
4π

2J + 1

∑

τ=0,1

∑

τ ′=0,1

{ ∑

k=M,Σ′′,Σ′

Rττ
′

k

(
v⊥2
T ,

q2

m2
N

)
W ττ ′
k (y)

+
q2

m2
N

∑

k=Φ′′,Φ′′M, Φ̃′,∆,∆Σ′

Rττ
′

k

(
v⊥2
T ,

q2

m2
N

)
W ττ ′
k (y)

}
(3.41)

where jDM and J are the spin of the dark matter particle respectively the spin of the

nucleus. The velocity of the dark matter particle with respect to the nucleus is denoted

by v. Furthermore, the squared transverse velocity of the dark matter particle with
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respect to the nucleus reads

~v⊥2
T = v2 − q2

4µ2
T

(3.42)

where µT is the dark matter-nucleus reduced mass. The transition probability Ptot de-

pends on the form factors W ττ ′(y) which are functions of the dimensionless variable

y = (b q/2)2. Here, b =
√

41.467/(45A−1/3 − 25A−2/3) fm and q is the momentum trans-

fer. In this work, we adopt the fit polynomials for the form factors from Refs. [205, 207].

In the case of Ref. [207], the form factors were computed using the Mathematica script

provided by [206]. The response functions Rττ
′

k

(
v⊥2
T , q2

m2
N

)
are quadratic functions of the

Wilson coefficients and are given in Refs. [206, 207] for dark matter particles with spin-0

respectively spin-1
2 . In the case of spin-1 dark matter, the response functions are given in

Ref. [208]. In appendix A, we explicitly state the response functions including contribu-

tions from all operators listed in Tab. 1. Finally, the differential WIMP-nucleus scattering

cross section off the nucleus T is obtained from the transition probability Ptot

dσ

dER

(
v2, q2

)
=

mT

2πv2
Ptot

(
v2, q2

)
, (3.43)

where mT is again the mass of the target nucleus.

In this work, we additionally take into account long-range interactions between dark

matter particles and nuclei. To do this, the Wilson coefficients cτk are replaced by the linear

combination cτk + c̃τkm
2
N/q

2 where cτk and c̃τk may vary independently from each other.

These additional coupling constants c̃τk increase the total number of Wilson coefficients

from 32 to 64. With this, several dark matter-nucleus interactions that arise from specific

models can be represented. Examples are anapole dark matter [205] and millicharged

dark matter [209–211] that both arise from models including dark photons in addition to

a dark sector. A further example is magnetic dipole dark matter [211–213] that models

the interactions of dark matter with the SM via electromagnetic interactions. Notable

exceptions are models where the mediator has masses between 1 MeV and 100 MeV as

well as models that predict inelastic scatterings. Furthermore, this formalism cannot be

used to incorporate the effects of meson exchange in nuclei [214]. However, we expect the

effects of this to be negligible in the mass range relevant for this work, confer [215].

3.3. Direct dark matter searches

3.3.1. Direct detection experiments

The goal of direct detection experiments is to detect dark matter particles via nuclear

recoils in the target material. If enough energy is transferred onto the nucleus, sev-

eral signatures can be used to search for dark matter. Those include scintillation light,

ionization electrons or phonons. However, those signals can be faked easily by SM par-

ticles or swamped by the thermal motion of target particles in the detector. Therefore,

sophisticated shielding and stable operation under cryogenic conditions are among the
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Figure 6.: This figure shows the upper limits on the spin-independent (left) and spin-
dependent (right) scattering cross sections derived from several direct detection
experiments. Concretely, we depict the upper limits of XENON1T [221, 230],
PandaX-II [219,231], LUX [202,216], DEAP-3600 [223], DarkSide-50 [224] and
SuperCDMS [227] and PICO-60 [232]. Furthermore, we include the preferred
regions in parameter space reconstructed from the DAMA data released in
2013 [22] and 2018 [23]. Here, we adopt the results for the 2013 data set from
Refs. [233,234] and for the 2018 data set from Ref. [235]. We note that the latter
does not provide preferred regions in the case of spin-independent interactions
as the fit to the data is bad.

major challenges experimental collaborations face when building and operating a direct

detection experiment.

As discussed in section 3.2, the scattering cross section depends on the target nucleus.

Therefore, experimental collaborations currently use several different target materials to

avoid being blind to the dark matter signal due to an accidental destructive interference

in the interaction of dark matter and a specific target element. Also, using different

target materials allows to better understand and quantify the background. Among the

most popular targets are xenon that is used by the LUX [202, 216], PandaX [217–219]

and XENON1T [220, 221] collaborations. Further common targets include argon, used

by the DEAP [222,223] and DarkSide-50 [224] collaborations, as well as germanium and

silicon that is employed by the CDMS collaboration [225–227]. For light dark matter

searches, the CRESST [228,229] collaboration uses a CaWO3 target that allows to probe

recoil energies in the eV range. The PICO collaboration [232,236,237] uses a C3F8 target

in order probe spin-dependent interactions. In Fig. 6, we show a compilation of the

current status of the dark matter searches with those experiments for spin-independent

and spin-dependent interactions.

The expected rate of dark matter scatterings off the nucleus Ti in the detector, confer

[112], is given by

dRi
dER

=
ξi ρloc

mDM mTi

∫

v(D)≥v(DD)
min,i (ER)

d3v(D) f
(
~v(D) + ~vobs(t)

)

v(D)

dσi
dER

(v(D), ER) , (3.44)

where ~v(D) is the velocity of the dark matter particle in the rest frame of the detector and
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~vobs is the velocity of the observer with respect to the Galactic rest frame, for which we

adopt the parametrization derived in Ref. [238]. It can be decomposed into the velocity

of the Sun with respect to the Galactic rest frame as well as the velocity of the Earth

with respect to the Sun which yields

~vobs = ~v� + ~v⊕ = ~vLSR + ~v�,pec + ~v⊕ . (3.45)

Here, ~vLSR = (0, vc, 0) is the motion of the local standard of rest (LSR) and vc ≈ 220 km/s

[114] is the local circular speed. Furthermore, ~v�,pec = (11.1, 12.24, 7.25) km/s [239] is the

Sun’s peculiar motion. In order to transfer the amount of energy ER onto the nucleus, a

dark matter particle must have a velocity larger than

v
(DD)
min,i(ER) =

√
mTiER/(2µ

2
Ti

) , (3.46)

where µTi = mDMmTi/(mDM + mTi) is the dark matter-nucleus reduced mass. The

differential scattering cross section dσi/dER is discussed in detail in section 3.2 and we

adopt the interactions described there. The total scattering rate is then given by

R =

∫ ∞

0

∑

i

εi(ER)
dRi
dER

dER , (3.47)

where the efficiency εi(ER) is the energy dependent probability to detect a recoil off the

nucleus Ti. Finally, the expected number of events is given by Nexpected = RT Mdet,

where T denotes the exposure time Mdet the target mass of the experiment.

Furthermore, direct detection experiments are able to search for the annual modulation

of the recoil rate caused by to the motion of the Earth around the Sun. Due to the chang-

ing alignment of the Sun’s velocity and the Earth’s velocity over the course of the year,

the recoil rate is expected to vary during the year. Specifically for the SHM, the mini-

mum and maximum are expected at June 1st and December 1st. Given that the exposure

time of the direct detection experiment is long enough, this signal can be detected [240]

without the need for an excellent background suppression as processes that could mimic

dark matter-nucleus interactions are expected to be time-independent. Although several

searches for an annual modulation signal were performed by experimental collaborations

with various targets, the most prominent target for this search is NaI. This is due to

the annual modulation signal observed by the DAMA experiment [22, 23]. As the recon-

structed dark matter parameters are in severe tension with the results from other dark

matter searches, confer Figs. 6 and 7, several collaborations formed in order to test this

signal with an NaI target in an model independent way. Among the currently pursued or

planned experiments are Anais [241], Cosine-100 [242,243], COSINUS [244], DM-Ice [245]

and Sabre [246]. Although first results do not support the claim of an annual modulation

signal, those experiments cannot preclude the dark matter interpretation of the DAMA

signal in a model independent way yet.

Motivated by the time dependence of the signal for the SHM, we define the modulation

amplitude in the interval [Emin, Emax] by the difference of the recoil rates at June 1st and
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Figure 7.: Upper limits on the spin-independent (left) and spin-dependent (right) scatter-
ing cross sections of several neutrino telescopes. Concretely, we depict the upper
limits derived by the IceCube [250], Antares [251] and Super-Kamiokande [252]
collaborations. In each case, we include the limits for annihilation into bb̄,
W+W− and τ+τ−.

at December 1st [247]

S[Emin,Emax]
m =

1

Emax − Emin
· 1

2
·
(
R[Emin,Emax]

∣∣∣
June 1st

−R[Emin,Emax]

∣∣∣
Dec 1st

)
. (3.48)

Here, R[Emin,Emax] denotes the event rate expected in the energy bin [Emin, Emax] as a

function of time.

3.3.2. Neutrino telescope experiments

Dark matter particles traversing a celestial body lose energy when scattering off particles

bound to the body. If the energy loss is large enough, the dark matter particles get

gravitationally bound and sink to the core where they generate an overdensity of dark

matter particles. If the overdensity is large enough and the annihilation of dark matter

into SM particles gives rise to neutrinos, the neutrino signal from the Sun is enhanced

and could be observable by neutrino telescopes on Earth [248].

Following the derivation of the capture rate by Ref. [249], we start by computing the

number of captured particles by a thin spherical shell of radius r and thickness dr. For

this, we denote the escape velocity from the surface of the shell by vesc(r), the velocity of

the dark matter particle infinitely far away from the shell by v(S) and the velocity at the

surface of the shell by w(r) ≡
((
v(S)

)2
+ v2

esc(r)
)1/2

. Assuming that the velocity of dark

matter particles infinitely far away from the shell is f
(
~v(S) + ~v�

)
d3v(S), the flux of dark

matter particles inward across the surface of the shell is given by [253]

1

4
f
(
~v(S) + ~v�

)
v(S) d3v(S) d cos2(θ) , (3.49)

where 0 ≤ θ ≤ π/2 parametrizes the angle with respect to the radial direction. Performing

a variable transformation [249] of (v(S), θ) to (v(S), J2) where J is the angular momentum

per unit mass and integrating over the surface of the shell, the total number of particles
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entering the shell reads

π

v(S)
f
(
~v(S) + ~v�

)
d3v(S) dJ2 . (3.50)

A dark matter particle that gets captured has to lose enough energy such that its velocity

after scattering is smaller than the escape velocity at the position of scattering vesc(r).

For dark matter particles with mass mDM, the rate of those scatterings per unit time at

distance r from the center of the celestial body is given by [249]:

Ω−vesc(r)(w(r)) =
∑

i

ηi(r)wΘ

(
µi
µ2

+,i

− v2

w2

)∫ Ek µi/µ
2
+,i

Ek v2/w2

dER
dσi
dER

(w2, q2) , (3.51)

where the sum extends over all nuclei present in the Sun. Furthermore, the definitions

µi = mDM/mTi , µ
2
+,i = (µi ± 1)/2 and Ek = mDMw2/2 were introduced. If the dark

matter particle is too fast, capture is kinematically impossible with one single scattering.

As we do not consider multi-scattering here, the maximal velocity for capture is given by

v
(NT)
max,i(r) = 2 vesc(r)

√
mDMmTi/ |mDM −mTi | , (3.52)

which depends on the masses mTi of the nuclei present in the Sun. In this work, we use

the solar composition given in the model AGSS09 [254] from which we extract the number

density profile ηi(r) for each nuclear species in the Sun. For the differential scattering

cross section dσi/dER, we study the interactions discussed in section 3.2. With this, the

probability that a dark matter particle loses enough energy to become gravitationally

captured reads

Ω−vesc(r)(w(r))
dl

w(r)
, (3.53)

where dl/w is the time the particle spends in the material of the shell. As the dark matter

particle traverses the shell twice or not at all, a factor 2 has to be introduced as well as

a θ-function which models the requirement that the dark matter particle must have an

angular momentum J smaller than r w in order to hit the sphere. Therefore, the time

inside the shell material is given by [249]

dl

w
=

1

w

√
1−

(
J

r w

)2

dr 2 θ(r w − J) . (3.54)

Multiplying the total number of particles entering the shell given in Eq. (3.50) by the

probability per unit time to lose enough energy to become gravitationally captured, see

Eq. (3.53), we obtain the number of particles captured per unit time and per unit velocity

by integrating all angular momenta. This reads [249]

4π r2dr
f
(
~v(S) + ~v�

)
dv(S)

v(S)
wΩ−vesc(r)(w(r)) . (3.55)
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By integrating the velocity and dividing by the volume, the differential capture rate per

volume is given by [249]

dC

dV
=

∫ ∞

0
d3v(S) f

(
~v(S) + ~v�

)

v(S)
wΩ−vesc(w) . (3.56)

Assuming that the Sun is spherically symmetric, the angular parts of the volume integral

can be performed analytically. Applying the Heaviside Θ function, the capture rate of

dark matter particles in the Sun reads [249,255]

C =
∑

i

∫ R�

0
4π r2 dr ηi(r)

ρloc

mDM

∫

v(S)≤v(Sun)max,i(r)
d3v(S) f

(
~v(S) + ~v�

)

v(S)
w2(r)

∫ 2µ2Ti
w2(r)/mTi

mDM(v(S))
2
/2

dER
dσi
dER

(w(r), ER) .

(3.57)

Here, v(S) is the velocity of the dark matter particle in the rest frame of the Sun infinitely

far away from the Sun.

We determine the number N(t) of dark matter particles captured in the Sun at time t

from the differential equation [256]

dN

dt
= C − CE N − CAN2 , (3.58)

where CE is the evaporation rate of dark matter particles bound to the Sun. As evapora-

tion requires a significant momentum transfer onto the dark matter particle, this is most

effective for light dark matter particles or those matching the mass of a nucleus in the sun,

i.e. mDM ' mTi [256, 257]. Recent studies [257–261] found that this is only relevant for

dark matter particles lighter than 1 to 4 GeV for the dark matter-nucleus scattering cross

sections that are probed by current and future experiments. Therefore, we neglect this

process in the following as neutrino telescope are currently not sensitive to dark matter

particles that are this light [250–252]. Furthermore, the constant CA [249, 256] depends

on the dark matter mass and parametrizes the strength of the pair-annihilation processes.

We calculate CA following [256] by expressing the annihilation constant in terms of the

thermally averaged annihilation cross section 〈σv〉

CA =
V2

V 2
1

〈σv〉 . (3.59)

Following Ref. [256], the effective volumes Vj are given by

Vj =

∫
dr3

(
n(~r)

n0

)j
= 4π

∫ R�

0
r2 exp

(
j mDM Φ(r)

TDM(r)

)
dr , (3.60)

where n(r) = n0 exp (j mDM Φ(r)/TDM(r)) is the spatial density of dark matter in the

Sun and n0 is the density at r = 0. Furthermore, TDM(r) is the temperature of the

WIMP component, which we calculate following [261]. An analytical approximation for
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Figure 8.: Dependence of the annihilation constant CA on the dark matter mass. For the
numerical calculation, we follow the procedure outlined in Ref. [256] with a
dark matter temperature determined as derived in Ref. [261]. For the analytic
upper limit on the annihilation coefficient, we adopt the formula derived in [256]
assuming that the neutrino temperature equals the core temperature of the Sun
from the model AGSS09 [254].

the effective volumes of the Sun is provided in [256]. Finally, the gravitational potential

Φ(r) is defined as

Φ(r) =

∫ r

0

GM(r′)
r′ 2

dr′ . (3.61)

This allows to determine the constant CA self consistently from a given star model. Fur-

thermore, Ref. [256] provides an analytic formula to compute an upper limit to the anni-

hilation constant CA for the Sun:

CA = 5.1 · 10−57

(
TDM

1.4 · 107 K

)
·
(mDM

GeV

)
·
( 〈σv〉

3 · 10−26 cm3/s

)
s−1 . (3.62)

In Fig. 8, we show a comparison of this analytic formula with the full calculation assuming

the solar model AGSS09 [254]. We find that the analytic formula is accurate over a large

range of dark matter masses between 10 GeV and 1000 GeV with minor deviations outside

this region.

Neglecting evaporation, Eq. (3.58) can be solved analytically and the number of dark

matter particles bound to the Sun is given by

N(t) =

√
C

CA
tanh

(
t

τ

)
, (3.63)

where the equilibration time is defined as τ = 1/
√
C CA and describes the time after

which capture and annihilation processes are in equilibrium. We depict the dependence

of τ on the dark matter mass in Fig. 9. From this plot, we conclude that equilibrium is

achieved for the cross sections that are currently probed by neutrino telescopes, confer
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Figure 9.: Dependence of the equilibration time τ on the dark matter mass for several
values of the spin-independent and the spin-dependent scattering cross sections.
Furthermore, we indicate the age of the sun by a black dotted line.

also Fig. 7. However, if the sensitivity of neutrino telescopes increases by a factor of

∼ 100, cross sections can be tested for which capture and annihilation processes are not

in equilibrium.

Following Ref. [256], the annihilation rate of dark matter particles in the Sun reads

ΓA =
1

2

∫
dr3 n(r)2 〈σv〉 (3.64)

This can be simplified by using the definition of the effective volume from Eq. (3.60) and

by noting that the number of dark matter particles captured by the Sun is given by V 2
1 n

2
0.

Using Eq. (3.63), the annihilation rate today reads

ΓA =
1

2
CAN(t0)2 =

1

2
C tanh

(
t0
τ

)2

, (3.65)

where t0 = 4.6 Gyr is the age of the Sun. As first suggested in Refs. [262, 263], the an-

nihilation of dark matter in the Sun could be detected by neutrino telescopes if the final

state of the annihilation process includes neutrinos or particles whose decay chain con-

tains neutrinos. Once the annihilation process is fixed, the expected flux at the neutrino

telescope on Earth can be calculated by taking into account the propagation of the neu-

trinos through the Sun and finally to the Earth. The calculation of the neutrino spectra

at Earth for various annihilation channels is described in Ref. [264], which also provides

the public code WimpSim [264] that is included in the DarkSUSY [265] code. In this work,

we use this code to relate dark matter annihilation rate in the sun to the neutrino flux at

Earth.
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A halo-independent comparison of direct

dark matter searches

The content of this section was published in Refs. [2] while the basis of the following

discussion was also published in Ref. [1]. In the following, we clearly indicate the relevant

publication for each section.

As discussed in chapter 2, astrophysics plays a major role when interpreting direct

dark matter searches, see Refs. [72, 115, 266] for reviews of the associated uncertainties.

The largest uncertainties stem from the fact that the velocity distribution of dark matter

particles is unknown as well as from the local dark matter matter density as discussed

in sections 2.2.1 respectively 2.2.2. In order to interpret the outcome of direct dark

matter searches, one usually assumes the Standard Halo Model, see section 2.2 for a

detailed discussion. Using more sophisticated models than an isothermal sphere to infer

the velocity distribution from observations, Refs. [100,102–104,267,268] showed that the

deviations from the SHM are expected to be non-negligible.

In the following, we construct an analysis framework to interpret direct dark matter

searches with minimal assumptions on the halo model. This extends and builds upon

previous studies that performed halo-independent analyses [269–293]. Since the local dark

matter density enters linearly in the signals under consideration, confer Eqs. (3.47) (3.57)

and (3.48), those uncertainties can be incorporated trivially by rescaling the expected

outcome of the experiment. Therefore, we present our results multiplied by the factor

ρloc, 0.3 ≡ ρloc/(0.3 GeV/cm3) which indicates the uncertainty in the local dark matter

density. In the following, we focus on the impact of the velocity distribution on the

conclusions drawn from direct dark matter searches.

4.1. Optimizing the velocity distribution of dark matter

particles

We note that the following content was published in [2] while a related discussion was also

published in Ref. [1]. We aim to optimize the outcome N (A) of experiment A such that

constraints from p + q other experiments are met. This includes upper limits N (Bα) ≤
N

(Bα)
max with α = 1, . . . , p and lower limits N (Bα) ≥ N

(Bα)
min for α = p + 1, . . . , p + q from

experiments Bα. Concretely, the outcomes N (A), N (Bα) can be the recoil rate or the

annual modulation amplitude at a direct detection experiment respectively the capture

39



Chapter 4. A halo-independent comparison of direct dark matter searches

rate of dark matter particles in the Sun.

In order to find the optimal velocity distribution, we rewrite it in a mathematically

equivalent way using δ-functions

f(~v) =

∫

v0≤vesc
dv3

0 f(~v0) δ(~v − ~v0) , (4.1)

where v0 = |~v0| denotes the absolute value of the velocity. We interpret this as a superpo-

sition of streams with a fixed velocity ~v0 and weight f(~v0). Each stream gives rise to an

experimental outcome N~v0 which can be calculated by assuming the velocity distribution

f(~v) = δ(~v−~v0). By taking into account the contributions from each stream, we calculate

the experimental outcome expected from the full velocity distribution f(~v) as

N =

∫

v0≤vesc
dv3

0 f(~v0)N~v0 . (4.2)

With this, we formulate the problem of finding an upper limit on the outcome N (A) sub-

ject to constraints from other experiments as an optimization problem with the velocity

distribution f as primal variable

optimize F [f ] ≡
∫
d3v0 f(~v0) N

(A)
~v0

, (4.3)

subject to

∫
d3v0 f(~v0) = 1 ,

and

∫
d3v0 f(~v0) N

(Bα)
~v0

≤ N (Bα)
max , α = 1, ..., p ,

and

∫
d3v0 f(~v0) N

(Bα)
~v0

≥ N (Bα)
min , α = p+ 1, ..., p+ q ,

and f(~v0) ≥ 0 .

Here, we denote the objective function by F [f ] to emphasize that it is a functional of

the velocity distribution. However, this optimization problem cannot be solved as the

velocity distribution enters linearly. This can be seen from the Lagrangian

L =

∫
d3v0 f(~v0) N

(A)
~v0

+ λ

(∫
d3v0 f(~v0)− 1

)
+

p∑

α=1

ηα

(∫
d3v0 f(~v0) N

(Bα)
~v0

−N (Bα)
max + sα

)
−

p+q∑

α=p+1

ηα

(∫
d3v0 f(~v0) N

(Bα)
~v0

−N (Bα)
min − sα

)
, (4.4)

where λ, ηα are Lagrangian multipliers and sα are slack variables. The Karush-Kuhn-

Tucker conditions [294, 295] can be calculated by setting the first derivatives of the La-

grangian to zero, confer the discussion in appendix B.1. As every term of L is linear in

f(~v), we conclude that no information can be extracted from those conditions.

However, we can solve this problem by transforming it into a linear programming prob-
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4.1. Optimizing the velocity distribution of dark matter particles

lem, see the discussion in appendix B.3. Therefore, we discretize the velocity distribution

into n streams with velocity ~vi for i = 1, . . . , n. This yields

f(~v) =

n∑

i=1

∆v3
i f(~vi) δ(~v − ~vi) ≡

n∑

i=1

c~vi δ(~v − ~vi) , (4.5)

where ∆v3
i is the integration weight from discretizing the integral and f(~vi) is the velocity

distribution to be optimized, evaluated at the velocity ~vi. The decomposition into a

finite number of streams is justified by the Fenchel-Eggleston theorem [296,297] as well as

Choquet’s theorem [298]. We note that the decomposition into streams was first suggested

in Refs. [281,285]. In the following, we define c~vi ≡ ∆v3
i f(~vi) as the weight of the stream

δ(~v − ~vi). With this, we write the optimization problem as

optimize F (c~v1 ..., c~vn) =
n∑

i=1

c~viN
(A)
~vi

, (4.6)

subject to
n∑

i=1

c~vi = 1 ,

and
n∑

i=1

c~viN
(Bα)
~vi

≤ N (Bα)
max , α = 1, ..., p ,

and (−1) ·
n∑

i=1

c~viN
(Bα)
~vi

≤ (−1) ·N (Bα)
min , α = p+ 1, ..., p+ q ,

and − c~vi ≤ 0, i = 1...n ,

where the objective function F (c~v1 ..., c~vn) is now a function of the weights c~vi . We give

the optimization problem in Eq. (4.6) in the standard form of linear programming, see ap-

pendix B.3, by multiplying lower limit inequalities by a factor of (-1). We then solve those

problems using the linear programming solvers from Mathematica [299] or CVXOPT [300].

In the limit of an infinitely large number of streams n → ∞, the solution converges to

the optimal function f(~v).

From Eq. (B.30), we read off that this specific linear programming problem has a

number of non-zero coefficients c~vi between 1 and 1 + p + q depending on how many

constraints are saturated. We use this to gain analytic insight into the structure of the

optimal solution. Here, we restrict ourselves to the particular case of one experiment that

we wish to optimize and one constraint from another experiment. In this case, the linear

programming problem is given by

minimize R({a~vi}) =
n∑

i=1

a2
~vi
R~vi , (4.7)

subject to
n∑

i=1

a2
~vi

= 1 ,

and C({a~vi}) =

n∑

i=1

a2
~vi
C~vi ≤ Cmax ,
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where we assumed the particular case of optimizing the signal at a direct detection exper-

iment, which measures the recoil rate R, such that constraints on the capture rate of dark

matter in the Sun are met. Here, we choose the primal variables a2
~vi
≡ c~vi which ensures

that c~vi is positive without including a constraint. We solve this problem by minimizing

the Lagrangian

L({a~vi}, {~vi}, s, λ, η) =
n∑

i=1

a2
~vi
R~vi − λ

(
n∑

i=1

a2
~vi
− 1

)
− η

(
n∑

i=1

a2
~vi
C~vi + s2 − Cmax

)
,

(4.8)

where we introduce two Lagrangian multipliers λ > 0 and η > 0 as well as the slack

variable s2 > 0. We use the latter to convert the inequality constraint of Eq. (4.7) into

an equality constraint. From this, we derive the optimal configuration of the variables by

calculating the Karush-Kuhn-Tucker conditions

∂L

∂a~vp
= 2 a~vp [R~vp − λ− ηC~vp ] = 0, p = 1, . . . , n , (4.9)

∂L

∂~vp
= a2

vi [
∂R~vp
∂~vp

− η∂C~vp
∂~vp

] = 0, p = 1, . . . , n , (4.10)

∂L

∂s
= 2 η s = 0 , (4.11)

∂L

∂λ
=

n∑

i=1

a2
~vi
− 1 = 0 , (4.12)

∂L

∂η
=

n∑

i=1

a2
~vi
C~vi + s2 − Cmax = 0 . (4.13)

In order to fulfill this system of equations, we require η = 0 or s = 0. The solution s = 0

corresponds to the case that the upper limit on C is saturated while η = 0 indicates that

the constraint is not fulfilled.

For the case that the constraint on C is not fulfilled, i.e. η = 0, we obtain the condition

∂R~v
∂~v

∣∣∣
~v=~v1

= 0 (4.14)

from the derivative of the Lagrangian with respect to the velocities of the streams. This

implies that the optimal velocity distribution consists of streams that are placed at the

position of the extreme points of the scattering rate. Using furthermore the derivative of

the Lagrangian with respect to the primal variables a~vi

a~vp [R~vp − λ] = 0, p = 1, . . . , n , (4.15)

we conclude that there is only one stream with a non-zero weight fulfilling the condition

R~vi = λ. In the case that there are multiple extreme points, it suffices to pick one of them

as all of those points are equivalent. Finally, we conclude from the derivative with respect

to λ that this stream must have a weight a~vi = 1 and therefore c~vi = 1. In the case that

the constraint on the capture rate is not fulfilled, we conclude that the optimized velocity
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distribution is given by

f(~v) = δ(~v − ~v1) with
∂R~v
∂~v

∣∣∣
~v=~v1

= 0 . (4.16)

For the specific case that the minimum of the scattering rate is sought-after, the stream

velocity is ~v = 0 as this leads to recoil energies below the threshold of the experiment

R~v=0 = 0.

In the case that the constraint on the capture rate is saturated, we conclude that there

are two streams since the equation

a~vp [R~vp − λ− ηC~vp ] = 0, p = 1, . . . , n (4.17)

has exactly two solutions, confer the discussion in appendix B.3. In the following, we

denote the velocities of the two streams by v1 and v2. From the two equations in Eq. (4.17)

for which the weights are non-zero, we derive the Lagrangian multipliers

λ =
C~v1R~v2 − C~v2R~v1

C~v1 − C~v2
, η =

R~v1 −R~v2
C~v1 − C~v2

. (4.18)

Furthermore, we determine the weights from the derivatives of the Lagrangian with re-

spect to the Lagrangian multipliers. This yields

a2
~v1

=
Cmax − C~v2
C~v1 − C~v2

, a2
~v2

=
C~v1 − Cmax

C~v1 − C~v2
. (4.19)

Finally, we derive the velocities of the two streams from the derivatives of the Lagrangian

with respect to the stream velocities, confer Eq. (4.9), using the expression for η. The

resulting equations read

∂R~v1
∂~v1

=

(
R~v1 −R~v2
C~v1 − C~v2

)
∂C~v1
∂~v1

, (4.20)

∂R~v2
∂~v2

=

(
R~v1 −R~v2
C~v1 − C~v2

)
∂C~v2
∂~v2

. (4.21)

From solving this set of coupled equations, we obtain the velocities of the streams. How-

ever, the number of coupled equations depends on the number of constraints and increases

with the number of constraints that are saturated. This makes it very hard to solve this

set of equations analytically for more than one inequality constraint in Eq. (4.6).

4.2. Applications

Here, we present halo-independent analyses for several applications to direct dark matter

searches and we implement the experiments as detailed in appendix C. We note that

examples for the application of this method to signal claims are discussed in chapter 5

and chapter 7.
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4.2.1. Upper limits on the cross section from null results

For this application, we minimize the outcome of experiment A subject to the upper limits

on the outcomes of experiments Bα with α = 1, . . . , p. For a fixed scattering cross section

and dark matter mass, we calculate the minimal outcome of experiment A that is allowed

by varying the velocity distribution. We consider a pair of parameters (mDM, σ) to be

ruled out if

min{N (A)}(σ,mDM) ≥ N (A)
max , (4.22)

subject to N (Bα) ≤ N (Bα)
u.l. for α = 1, . . . , p ,

∫
f(~v) d3v = 1 .

With this, we calculate halo-independent upper limits on the scattering cross section as

a function of the dark matter mass from the combination of p + 1 experiments that do

not claim a signal.

To illustrate this application, we calculate the halo-independent upper limits by com-

bining results from one direct detection experiment and one neutrino telescope. For

this, we discretize the velocity integrals and introduce 775 streams. As apparent from

the discussion of those experiments in sections 3.3.1 and 3.3.2, direct detection exper-

iments are sensitive to velocities larger than v
(DD)
min while neutrino telescopes probe ve-

locities smaller than v
(NT)
max . As long as v

(DD)
min < v

(NT)
max , the combination of a direct

detection experiment and a neutrino telescope covers the whole velocity space. If this

is not the case, the halo-independent upper limit vanishes as a stream with velocity

v
(NT)
max < v < v

(DD)
min cannot be detected by neither the direct detection experiment nor

the neutrino telescope. The complementarity of these two detection techniques was high-

lighted in Refs. [2, 4, 98,285,301,302].

In Fig. 10, we show the combined halo-independent analysis using the upper limits on

the annihilation rate from IceCube [250] and Super-Kamiokande [252] for annihilation into

W+W− (τ+τ− for mDM < MW ) as well as using the null results from PandaX Run 8 [217]

and Run 9 [218] for spin-independent interactions and PICO-60 [237] for spin-dependent

interactions. Here, we assume equilibrium between capture and annihilation as the com-

bined upper limits shown in Fig. 10 are in regions where equilibrium is achieved, confer

Fig. 9. Since the capture of dark matter in the Sun does not depend on the characteris-

tics of the neutrino telescope, we use the strongest upper limit on the annihilation rate

available. In addition to this, we show the halo-independent upper limits derived from

only neutrino telescope data.

This methods yields remarkably strong limits reaching down to σp
SI ' 10−44 cm2 and

σp
SD ' 10−40 cm2 when combining direct detection experiments and neutrino telescopes.

For the combined analysis of PICO and IceCube, the limits presented here are compatible

with the combined analysis performed jointly by both collaborations [293]. Here, we

assume a dark matter density of 0.3 GeV/cm3 and choose the angle between the velocity

of the Sun and the Earth such that the limits are most conservative. As apparent from
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Figure 10.: Combined halo-independent upper limits on the scattering cross section as-

suming a local dark matter density of ρ = 0.3 GeV/cm3. We depict limits on
spin-independent interactions in the left plot. For this, we use the dark mat-
ter search results from PandaX Run 8 and Run 9. The right plot shows the
halo-independent upper limits for spin-dependent interactions using results
from the direct detection experiment PICO-60. In both plots, we combine the
results of the direct detection experiment under consideration and the neu-
trino telescopes IceCube as well as Super-Kamiokande. We additionally show
halo-independent upper limits derived from neutrino telescopes only. In each
case, we use limits on the annihilation rate in the Sun derived by assuming
that dark matter annihilates solely into W+W− (τ+τ− for mDM < mW ). As
a comparison, we show the upper limits of the individual experiments derived
from the Standard Halo Model as black solid and dotted lines. These plots
were taken from Ref. [2].

Fig. 10, it is not always possible to derive halo-independent upper limits on the cross

section due to the fact that v
(NT)
max,i is small for heavy dark matter, confer Eq. (3.52).

Observing furthermore that the minimal velocity needed to leave a detectable signature

increases for heavy dark matter, see Eq. (3.46), we conclude that v
(NT)
max < v

(DD)
min for very

heavy dark matter. In this regime, the limit vanishes as the minimum of the objective

function is achieved for streams with velocity v
(NT)
max < v < v

(DD)
min as those streams can

neither be detected by direct detection experiments nor by neutrino telescopes. The dark

matter mass above which this happens depends on the experiments under consideration

and the nuclei present in the target. For the combination of PandaX and IceCube, dark

matter must be heavier than ∼ 165 TeV, while for PICO-60 and IceCube the threshold is

at mDM ∼ 4.5 TeV.

For dark matter masses smaller than ∼ 200 GeV, we are able to set halo-independent

upper limits on the scattering cross section solely from IceCube and Super-Kamiokande.

This is possible as the maximal velocity that can lead to capture in the Sun is larger than

the escape velocity from the Milky Way for those masses. Therefore, neutrino telescopes

alone probe the whole velocity space. As apparent from the discussion in section 4.1,

the optimal velocity distribution consists of one stream that is placed at v = vesc as the

capture rate is a monotonically decreasing function of the stream velocity.
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Chapter 4. A halo-independent comparison of direct dark matter searches

4.2.2. Prospects for future experiments

In this section, we study the sensitivity of proposed experiments to a dark matter signal.

For this, the results from existing experiments are a valuable input when studying the

detection prospects. This additional information allows to determine the part of the

dark matter parameter space (mDM, σ) where the limits could be or will be refined.

Therefore, we consider the future experiment A as well experiments Bα that set upper

limits. Assuming the minimal number of events N
(A)
det that is necessary to establish a

signal at experiment A, we identify the region in parameter space that cannot be probed

by this experiment regardless of the velocity distribution via the condition

max{N (A)}(mDM, σ) < N
(A)
det . (4.23)

Concretely, we maximize the outcome of experiment A subject to constraints from exper-

iments Bα with α = 1, . . . , p. The region in parameter space that will be probed by some

velocity distributions is defined as

max{N (A)}(mDM, σ) ≥ N (A)
det . (4.24)

In this region, it is possible to have a signal larger than the detection threshold depending

on the velocity distribution. Finally, we define the region in parameter space that can be

probed regardless of the velocity distribution. It consists of points (mDM, σ) satisfying

min{N (A)}(mDM, σ) ≥ N (A)
det , (4.25)

i.e. points for which a dark matter signal will be detected by the experiment regardless

of the velocity distribution. In addition to these three regions, there is a fourth one for

which a signal is excluded by the experiments Bα in a halo-independent way.

Here, we asses the detection prospects of the proposed LUX-ZEPLIN (LZ) [303] exper-

iment. We solve the optimization problems by discretizing the velocity integrals into 775

streams and modeling the constraints as in the previous sections. We identify the regions

in parameter space that can be probed by LZ using the null results from SuperCDMS [226]

and PICO-60 [237] as constraints for spin-independent respectively spin-dependent inter-

actions. In contrast to the previous sections, we do not use the null results of xenon-based

direct detection experiments as we need experiments with different characteristics for a

meaningful halo-independent forecast. Therefore, we use the results of SuperCDMS which

employs a germanium target. In addition to constraints from direct detection experiments,

we include the null results of IceCube [250] and Super-Kamiokande [252] into the analysis

considering annihilation of dark matter solely into W+W− (τ+τ− for mDM < mW ). As in

the previous sections of this chapter, we assume equilibrium between capture and annihi-

lation processes as equilibration is given for the relevant cross sections. Finally, we fix the

time-dependent velocity of the Earth such that the optimized recoil rate at LZ is smallest

(largest) which allows us to identify the regions that will be tested (remain untested) in

the most conservative way. Further details on the experiments under consideration can
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be found in appendix C.

In Fig. 11, we show the detection prospects of LZ for constraints from direct detection

experiments (upper row), neutrino telescopes (middle row) as well as for direct detection

experiments and neutrino telescopes combined. We study spin independent (left column)

and spin-dependent interactions (right column). Furthermore, we assume that the number

of events necessary to claim a signal at LZ is one, i.e. N
(LZ)
det = 1. In the plots of Fig. 11,

we denote the domain which is not accessible by LZ in white. This consists of parameters

for which the maximal number of events at LZ is smaller than the detection threshold. We

show in light red the region that is testable for some velocity distributions. For parameters

in this region, there exist velocity distributions for which the expected number of recoil

events is larger than N
(LZ)
det . Furthermore, the dark red domain in Fig. 11 corresponds to

the points in parameter space which are for sure testable as even the minimal number

of events at LZ exceeds N
(LZ)
det . Finally, we show the region in parameter space that is

already ruled out by the constraints in gray. In addition to those regions, we depict the

projected sensitivity derived by the LZ collaboration [303] assuming the SHM. For a local

dark matter density of ρloc = 0.3 GeV/cm3 and a dark matter mass of 1 TeV, we find that

LZ will be able to probe σp
SI & 3 · 10−45 cm2 as well as σp

SD & 3 · 10−40 cm2 regardless of

the velocity distribution. Furthermore, cross sections smaller than σp
SI . 2 ·10−47 cm2 and

σp
SD . 2 · 10−42 cm2 will escape detection for all velocity distributions and dark matter

masses between 5 GeV and 10 TeV.

In the following, we motivate the contours shown in Fig. 11 analytically. In the re-

gion that cannot be accessed by LZ, the cross section is small and therefore none of

the constraints is active. Due to this, the optimized velocity distribution consists of one

single stream f(v) = δ(v − v0), where v0 either fulfills the condition ∂R/∂v0 = 0 or is

located at the boundary of the velocity space. The region in parameter space which is

fully testable with LZ, i.e. for which min{R(LZ)}(mDM, σ) ≥ N
(LZ)
det holds, does not exist

when considering constraints from direct detection experiments only. The optimized ve-

locity distribution in this case is a single stream with a speed smaller than the velocity

threshold of each experiment and cannot be probed by direct detection experiments. As

a stream with a small velocity would violate the bounds from neutrino telescopes, there

can be a region in parameter space that is fully testable with LZ or already excluded in a

halo-independent way from the results of other experiments. As discussed in section 4.1

and depicted in Fig. 10, this region exists only in the case that constraints from neutrino

telescopes are considered.

4.3. Discussion and summary

In this Chapter, we introduced a method to analyze results from direct detection ex-

periments and neutrino telescopes without specifying the velocity distribution. For this

method, we calculate the minimal/maximal expected outcome of an experiment subject to

constraints from other local dark matter searches. We do this by decomposing the velocity

distribution into a sum of weighted streams. Using the fact that the velocity distribution
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Figure 11.: Detection prospects of LZ assuming spin-independent (left) as well as spin-
dependent interactions (right). In the upper row, we depict the detection
prospects of LZ compatible with null results from SuperCDMS and PICO-60.
In the middle row, we show the same but using constraints from the neu-
trino telescopes IceCube and Super-Kamiokande for annihilation into W+W−

(τ+τ− for mDM < mW ). Finally, the bottom row contains plots for the de-
tection prospects of LZ given combined constraints from direct detection ex-
periments and neutrino telescopes. In each plot, we include the projected
sensitivity assuming the SHM as derived by the LZ collaboration [303]. These
plots were taken from Ref. [2].
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enters linearly into the number of events expected at a direct detection experiment and

the capture rate of dark matter particles in the Sun, we decompose those observables into

sums which depend linearly on the weights. Finally, we use linear programming techniques

to optimize the outcome of an experiments subject to constraints. For p constraints from

experiments, we found that the optimal velocity distribution consists of p+1−r streams,

where r is the number of constraints that are not saturated.

We applied the method to two different types of analyses. First, we derived halo-

independent upper limits on the scattering cross section from the combination of direct

detection experiments and neutrino telescopes. The combination of those two experimen-

tal techniques leads to the strongest limits as the whole velocity space can be probed.

For the particular case of annihilation into W+W− (τ+τ− for mDM < mW ), we com-

puted the halo-independent upper limits from the combination of direct detection experi-

ments and neutrino telescopes. From this, we obtained remarkably strong limits excluding

σp
SI & 3 · 10−44 cm2 and σp

SD & 10−40 cm2 in a halo-independent way for a dark matter

mass of 1 TeV and a local dark matter density of ρloc = 0.3 GeV/cm3.

We investigated furthermore the detection prospects of future experiments given null

results from other experiments. Concretely, we studied the sensitivity of the planned

experiment LZ in light of the current dark matter searches performed by SuperCDMS

and PICO-60 as well as by the neutrino telescopes IceCube and Super-Kamiokande. For

the latter, we assumed that dark matter annihilates solely into W+W− (τ+τ− for mDM <

mW ). We found that LZ will probe σp
SI & 3·10−45 cm2 and σp

SD & 3·10−40 cm2 regardless of

the velocity distribution for a dark matter mass of 1 TeV and a local dark matter density of

ρloc = 0.3 GeV/cm3. In contrast, scattering cross sections smaller than σp
SI . 2 ·10−47 cm2

and σp
SD . 2 · 10−42 cm2 will not be probed for any velocity distribution and dark matter

masses between 5 GeV and 10 TeV.

However, this method has two disadvantages. Despite the fact that our results are strict

in the mathematical sense, they are too conservative as it is unlikely that the velocity dis-

tribution in the solar neighborhood saturates such a mathematically optimal distribution.

This is also supported by the velocity distributions extracted from astrophysical obser-

vations or from N-body simulations, confer Fig. 3. Our method therefore finds the most

extreme outcome of an analysis. Furthermore, this method does not properly include

the propagation of errors. As a consequence of this, the confidence level of our results

is not clear in the case of a combined analysis. However, our results are conservative

as the confidence level of a combined analysis is higher than the confidence level of the

individual bounds. This motivates to improve this method, see chapter 6.
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Chapter 5.

A halo-independent analysis in the

effective theory of dark matter-nucleon

interactions

The content of this chapter was published in Ref. [3]. As this was done before the latest

data from XENON1T [221] were released, we used the results from 2017 [220] which in

the following will be referred to as XENON1T-2017.

We propose in this chapter a method to confront, in a halo-independent way, a puta-

tive dark matter signal with the null results from other direct detection experiments in

an effective theory of dark matter-nucleon interactions, including possible interferences.

The method then allows to check the compatibility of different experiments despite our

ignorance of the local dark matter velocity distribution and with only minor assump-

tions on the characteristics of the dark matter-nucleon interaction. This extends previous

works that can either treat the uncertainties arising from the local dark matter density

and velocity distribution [2,4,269–293] or the uncertainties from the concrete form of the

dark matter-nucleon interaction [3].

As an application of this method, we examine the compatibility of the tentative detec-

tion of a dark matter signal by the silicon detectors of the CDMS-II experiment (CMDS-

Si) [225] with the null results from XENON1T-2017 [220] and PICO-60 [237] experiments.

This putative dark matter signal consists of three candidate events that were collected

over the full exposure of the detectors. The parameters necessary to explain those events

with dark matter are in strong tension with null results from other experiments when as-

suming the spin-independent or the spin-dependent interaction as well as the SHM. Until

today, there is no satisfactory explanation of this signal as no new sources of background

could be identified and the probability that the signal is due to a statistical fluctuation of

the known background is smaller than 5.4% [225]. The question therefore arises whether

the CDMS-Si signal can be reconciled with null search experiments by considering other

types of dark matter-nucleon interactions and/or by being agnostic about the local veloc-

ity distribution of dark matter particles.
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5.1. Optimizing the interaction of dark matter with nuclei

We adopt the non-relativistic effective field theory discussed in section 3.2.3 in order to

account for the fact that the concrete form of the dark matter-nucleon interaction is

unknown. In this framework, the expected outcome of an experiment for a fixed velocity

distribution f(~v) is given by

Nf(~v) (~c) = ~cTNf(~v)~c , (5.1)

where ~c is the vector of Wilson coefficients corresponding to the operators shown in Tab. 1.

Furthermore, Nf(~v) is a symmetric matrix that depends on the velocity distribution and

the details of the experiment under consideration.

We determine the maximal signal at an experiment E0 subject to null results from p

other experiments E1, . . . , Ep by solving the following optimization problem for a fixed

velocity distribution

max
~c

[
N

(E0)
f(~v) (~c)

]
, (5.2)

subject to N
(E1)
f(~v)(~c) ≤ N

(E1)
u.l. ,

...

N
(Ep)
f(~v)(~c) ≤ N (Ep)

u.l. .

This is a convex optimization problem1 as both the objective function as well as the

constraints are quadratic in the Wilson coefficients. We solve this following the procedure

outlined in Refs. [3, 304] and we assume for simplicity that there are constraints from

two experiments. However, this discussion can be extended in a straight forward way

to an arbitrary number of constraints. As the constraints are quadratic, each of them

corresponds to the interior of an ellipse in dim(~c) dimensions. We illustrate this in Fig. 12

for a two dimensional slice of the parameter space. All vectors ~c that are within a colored

ellipse are allowed by the constraint from the corresponding experiment and the feasible

set is therefore the intersection of all colored ellipses. The contours of the objective

function are also shown in Fig. 12 for three different cases labeled by N3 < N2 < N1.

Geometrically, they correspond to surfaces of ellipses as the objective function is also

quadratic. Concretely, a number of events at CDMS-Si equal to N3 is allowed but not

optimal while N1 is forbidden as its contour does not touch the feasible region. Finally,

the maximum is given by the largest dashed ellipse that intersects the feasible region and

is denoted by N2. We check whether the ellipse surface parametrized by the condition

~cTN(E0)
f(~v)~c = N

(E0)
f(~v) (~c) intersects the feasible region by finding real parameters ζ(E1) and

1More specifically, a second order cone problem, confer the discussion in appendix B.4.
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N
(PICO)
f(v) (c) < N

(PICO)
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in each case: N
(E)
f(v) (c) = cTN(E)

f(v)c

(0, 0)

Figure 12.: Visualization of the proposed method. We depict upper limit constraints from
XENON1T (blue) and PICO-60 (red) as colored ellipses. The black dashed
ellipses denote the contours of the objective function labeled by the expected
number of scattering events at CDMS-Si with N3 < N2 < N1. We note that
the depicted ellipses are not based on real data. This figure was initially
published in Ref. [304] but taken from Ref. [3].

ζ(E2) such that [3, 304]

i) ζ(E1) + ζ(E2) < 1 and (5.3)

ii)


ζ(E1)

N(E1)
f(~v)

N
(E1)
u.l.

+ ζ(E2)
N(E2)
f(~v)

N
(E2)
u.l.


−

N(E0)
f(~v)

N
(E0)
f(~v)

is a positive definite matrix. (5.4)

We then increase N
(E0)
f(~v) until it is not possible to find those real parameters. We implement

this algorithm using the feasp solver of MATLAB [305] respectively the conelp solver of

CVXOPT [300].

For a completely halo-independent analysis in the context of the effective theory of dark

matter-nucleon interactions, the optimization problem is then given by

max
f(~v)

max
~c

[
N

(E0)
f(~v) (~c)

]
, (5.5)

subject to N
(E1)
f(~v)(~c) ≤ N

(E1)
u.l. ,

...

N
(Ep)
f(~v)(~c) ≤ N (Ep)

u.l. ,
∫
f(~v) d3v = 1 ,
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where we assume p constraints from experiments. Fixing again p = 2, we conclude from

section 4.1 that there are between 1 and 3 streams with non-zero weights, depending on

the number of constraints that are saturated. When maximizing the objective function

and since the normalization of the Wilson coefficients is not fixed, we are able to write the

optimal velocity distribution in terms of at most two streams, as proven by an explicit

calculation in appendix D. Therefore, we write the optimal velocity distribution as

fα,~v1,~v2(~v) = α δ(~v − ~v1) + (1− α)δ(~v − ~v2) , (5.6)

where we have two streams with velocity ~v1 and ~v2 as well as weights α and 1 − α. We

then find the maximum by scanning the parameters α, ~v1 as well as ~v2 and calculating

N
(E0)
f(~v) (~c) for each velocity distribution. We note that the complexity of this increases

significantly when increasing the number of constraints from experiments. In practice

however, this is not a problem as the number of different target elements is limited and

so is the number of reasonable constraints.

5.2. Confronting the CDMS-Si signal to null results

We analyze the signal at the silicon detectors of the CDMS-II experiment (CDMS-Si) that

found three events with an exposure of 140.2 kg×day [225]. However, the experiments

XENON1T-2017 and the PICO-60 found no evidence for dark matter despite much larger

exposures of 3.35 · 104 kg×day [220] and 1167 kg×day [237]. Assuming spin-independent

or spin-dependent scattering, the dark matter interpretation of the CDMS-Si excess is

disfavored by the results of XENON1T-2017 and PICO-60. It is however important to

note that these three experiments have different target materials, whose responses could

be dramatically affected by the nature of the DM-nucleon interaction. Furthermore, the

typical energy transferred onto the nucleus, and thus also the detectability of the scatter-

ing events, depends crucially on the local dark matter velocity distribution. We therefore

investigate whether the CDMS-Si signal can be reconciled with null search experiments

by considering other types of dark matter-nucleon interactions and/or by being agnostic

about the local velocity distribution of dark matter particles. The optimization problem

relevant for this analysis reads

max
f(~v)

max
~c

[
N

(CDMS-Si)
f(~v) (~c)

]
, (5.7)

subject to N
(XENON1T)
f(~v) (~c) ≤ N (XENON1T)

u.l. ,

N
(PICO-60)
f(~v) (~c) ≤ N (PICO-60)

u.l. ,
∫
f(~v) d3v = 1 .

where ~c denotes the vector of Wilson coefficients corresponding to the operators described

in Tab. 1. Furthermore, N
(XENON1T)
u.l. and N

(PICO-60)
u.l. are the 95% CL upper limits on the

number of events at XENON1T-2017 and PICO-60.

In Fig. 13, we show the maximal number of events at CDMS-Si compatible with the null
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Figure 13.: Maximal number of events at CDMS-Si compatible with null results from
XENON1T-2017 and PICO-60. In each panel we show different sets of opera-
tors used in our analysis. We include results for spin-independent interactions
(top left) as well as for the complete set of operators allowed for spin-0 (top
right), spin-1/2 (bottom left) and spin-1 dark matter (bottom right). In each
panel, we denote results for short-range interactions by red lines while those
additionally assuming long-range interactions are indicated by blue lines. In
case of spin-independent interactions, we also show results for isoscalar, short-
range interactions as black lines. In each plot, we furthermore depict the
maximal number of events at CDMS-Si compatible with the constraints cal-
culated by assuming the SHM. We indicate those by colored bands with the
same color code as before. These plots were taken from [3].

results from XENON1T-2017 and PICO-60. In the upper left panel, we depict results for

spin-independent interactions only. The upper right, bottom left and bottom right panels

correspond to plots for spin-0, spin-1/2 and spin-1 dark matter. We denote results using

only short-range interactions in red while those assuming also long-range interactions

are shown in blue. For spin-independent scattering, we additionally depict the results for

isoscalar short-range interactions. We furthermore show the maximal number of events at

CDMS-Si with optimized Wilson coefficients but for the particluar case of the SHM. The

colored bands correspond to uncertainties of the SHM constructed by varying the most

probable speed v0 between 220 and 240 km/s as well as considering escape velocities vesc

between 492 and 587 km/s. In each panel of Fig. 13, we show the significance with which

the dark matter interpretation of the CDMS-Si excess is excluded. We define this quantity

55



Chapter 5. A halo-independent analysis in the effective theory of dark matter-nucleon

interactions

as the number of standard deviations that correspond to the probability of observing three

or more events when expecting only N
(CDMS-Si)
max events and we assume zero background

events for definiteness. The significance of exclusion would however decrease if one or

more of the observed events could be credited to background.

When assuming the SHM, the maximal number of events at CDMS-Si is zero for dark

matter masses smaller than 4 GeV as apparent from Fig. 13. This is due to the fact

that the velocity distribution has a cutoff at vesc which can be translated into a maximal

recoil energy for a given dark matter mass. For light dark matter with mDM . 4 GeV,

this energy is smaller than the energy threshold of the CDMS-Si experiment. For the

halo-independent analysis, we do not impose a cutoff at vesc but instead consider only

particles slower than 3000 km/s. We motivate this by the fact that faster dark matter

particles are in conflict with the assumption of cold dark matter and cannot be explained

even when considering highly non-standard galactic dynamics. Therefore, the expected

number of events at CDMS-Si is greater than zero even for mDM ≤ 4 GeV.

As already observed in previous studies, see e.g. Ref. [306], the excess at CDMS-Si

is in tension with results from XENON1T-2017 and PICO-60 when assuming a spin-

independent, isoscalar and short-ranged interaction as well the SHM. For this particular

setup, we expect at most 3 · 10−3 events. As apparent from the black band in the top

left plot of Fig. 13, this excludes the dark matter hypothesis with ∼ 6σ confidence. The

expected number of events increases to 0.1 when additionally assuming isovector inter-

actions and finally reaches 0.2 events when including isoscalar and isovector as well as

short and long-range interactions. When furthermore using the optimal velocity distri-

bution, the maximum number of events at CDMS-Si increases to ∼ 0.03, 0.2 respectively

0.3 events. Therefore, we conclude that for spin-independent scattering mediated by the

operator O1, the dark matter interpretation of the CDMS-Si excess is excluded by the

null results of XENON1T-2017 and PICO-60 with at least ∼ 3σ confidence.

We find the tension between the experiments is alleviated significantly for arbitrary

interactions of spin-0, spin-1/2 and spin-1 dark matter. When assuming the SHM, the

maximal number of events at CDMS-Si for spin-0 dark matter is ∼ 2 events which is

only in mild tension with the experimental results. For spin-1/2 and spin-1 dark matter,

we even find that the experiments can be reconciled but only for dark matter masses of

∼ 6 GeV. This however is only possible when considering the full set of operators, i.e.

those corresponding to isoscalar and isovector as well as short and long-range interactions.

When additionally considering arbitrary velocity distributions, the experiments are com-

patible in a much larger dark matter mass range. This region extends from slightly above

1 GeV up to 8 GeV for a dark matter particle with spin-1/2 or spin-1. For spin-0 dark

matter, we find that the experiments can be reconciled for dark matter masses between

3 GeV and 7 GeV. In addition to this, we studied the effect of smearing the optimal

velocity distribution by a Gaussian with a variance of up to 50 km/s. We find that the

conclusions do not change significantly.

As apparent from Fig. 13, the maximal number of events at CDMS-Si is ∼ 5.4 for

arbitrary interactions and velocity distributions when including the constraints from
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XENON1T-2017 and PICO-60. If the exposure of both experiments increases by a factor

of ∼ 20, the signal at CDMS-Si will either be confirmed or ruled out with more than

3σ significance in a halo-independent way for the effective theory of dark matter-nucleon

interactions.

5.3. Discussion and Summary

In this chapter, we have extended the method presented in chapter 4 that allows to check

whether a putative dark matter signal at a direct detection experiment is compatible with

the null results from other experiments. The extended method addresses simultaneously

the particle physics uncertainties on the concrete form of the dark matter-nucleon in-

teraction as well as the astrophysical uncertainties on the local dark matter density and

velocity distribution. For the former, we consider an arbitrarily large set of operators

inducing scattering, which possibly interfere with each other. The method then allows

to study whether that set of operators is capable of reproducing all experimental results

for a given velocity distribution. For the latter, we determined analytically, using the

results of chapter 4, a parametrization of the velocity distribution that yields the largest

scattering rate compatible with the null results from other experiments. We found that

it is parametrized by a superposition of streams which allows us to obtain the optimal

velocity distribution by scanning over a small number of parameters.

We illustrated our method by confronting the dark matter interpretation of the CDMS-

Si excess to the null results of XENON1T-2017 and PICO-60. We found that it is not

possible to explain this excess in terms of the spin-independent interaction, even when

allowing for isovector and/or long-range interactions and regardless of the velocity dis-

tribution. When allowing for a larger set of operators that induce scattering of dark

matter with nuclei, the constraints from null results of other experiments get relaxed.

For general spin-0, spin-1/2 or spin-1 dark matter, we found configurations of the veloc-

ity distribution and the dark matter-nucleon interactions that reconcile the experiments.

However, the next generation of dark matter experiments will either confirm the CDMS-

Si excess or rule it out in a halo-independent way regardless of the concrete form of the

dark matter-nucleon interaction.

57





Chapter 6.

An improved method to asses the impact

of astrophysical uncertainties on direct

dark matter searches

The content of this chapter was published in [4]. In the following, we explicitly indicate

additional information that was not published.

As already mentioned in section 4.3, the method presented in chapter 4 has two short-

comings. First, it is not possible to derive solid statistical conclusions. For a long time,

it was not possible to perform a halo-independent analysis in a statistically solid frame-

work, see Refs. [269–280, 282, 283, 285, 287, 291, 293]. Recently, there has been interest in

resolving this issue, leading to a series of works [284,286,289] that discuss how to extract

the best fit velocity integral η(vmin) =
∫
vmin

dv3 f(v)/v from the results of direct detec-

tion experiments. Furthermore, several approaches were introduced to perform analyses

independent of astrophysical assumptions with a well defined statistical meaning. With

the methods proposed in Refs. [281, 290, 292, 307–309], it is possible to extract parame-

ters of a velocity distributions in a statistically rigorous way. Another application [288]

is the extraction of the time-independent dark matter signal at DAMA compatible with

the annual modulation signal. Furthermore, Refs. [301,310,311] showed that information

about the dark matter mass can be inferred from a signal at a direct detection experiment

without assumptions on the velocity distribution.

Second, with the method presented in the previous chapter it is only possible to perform

a fully halo-independent analysis which leads to a velocity distribution consisting of a

finite number of streams. Those extremely fine tuned solutions are the mathematically

optimal velocity distributions, however it is unlikely to find such contrived distributions

in nature. In fact, there are several hints that there is a significant smooth contribution to

the velocity distribution. Among those are the results of chapter 8 as well as the findings

of numerical simulations [92,312–320] and attempts to reconstruct the local dark matter

velocity distribution [100–104, 143, 321, 322]. Therefore, it is more realistic to optimize

perturbations on top of a smooth distribution. However, halo-independent analyses are a

valuable tool to asses the worst case scenario.

In this chapter, we extend the method derived in the previous chapter to do both,

taking into account deviations from reference distributions as well as deriving statistically

rigorous results. We start by defining a measure of the distances between functions in
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Figure 14.: Sketch of the constraint Df |fMB
(~v) ≤ ∆. We denote the reference velocity

distribution fMB(~v) with a black solid line while we show an example of the
velocity distribution f(~v) as black dashed line. Furthermore, we show the band
around the reference velocity distribution for which the distance is smaller
than ∆ in dark green.

order to quantify deviation from a reference velocity distribution by a number ∆. We then

reformulate the optimization problems from the previous chapter in order to capture the

correct statistical treatment of the experiments under consideration. Finally, we minimize

the appropriate p-value respectively likelihood subject to the constraint that the velocity

distribution deviates at most a factor ∆ from the reference distribution. By adjusting this

parameter, we are able to smoothly interpolate between fixing the velocity distribution

to the reference distribution and a fully halo-independent analysis.

6.1. Optimization with constraints on the velocity

distribution

In the following, we investigate how the conclusions drawn from direct dark matter

searches change if we take into account deviations from the SHM velocity distribution.

Therefore, we define the distance of the velocity distribution f(~v) to the reference distri-

bution fMB(~v) as

Df |fMB
(~v) =

∣∣∣∣
f(~v)− fMB(~v)

fMB(~v)

∣∣∣∣ , (6.1)

where the parameter ∆ parametrizes the deviation and f(~v) as well as fMB(~v) are non-

negative. In the following, we assume that fMB(~v) is a Maxwell-Boltzmann distribution as

for the SHM. The difference between f(~v) and the reference velocity distribution fMB(~v)

is at most ∆ if

Df |fMB
(~v) ≤ ∆ ∀~v . (6.2)
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We sketch this constraint in Fig. 14 where we show in dark green the band around the

reference velocity for which the distance is smaller than ∆. As apparent from Eq. (6.1),

the velocity distribution is allowed to vanish in parts of the velocity space if ∆ ≥ 1.

If ∆ < 1, the velocity distribution is non-vanishing over the whole range of velocities.

With this, we bracket the uncertainties due to the velocity distribution. For a given

∆, we calculate the most conservative as well as the most aggressive outcome. We then

conclude that all velocity distributions that differ at most by a factor ∆ from the reference

distribution give rise to results bounded by these upper and lower limits.

Here, we assume that the experiments are described by the p-value derived from the

cumulative Poisson probability distribution PPoisson. Given the observed number of signal

events Nobs as well as the number of background events NBG, the p-value is given by

ptot(Nsig) = PPoisson(k ≤ Nobs|Nsig +NBG) , (6.3)

where Nsig is the number of events expected from a given dark matter model. We then

optimize the p-value requiring that the velocity distribution is normalized, non-negative

and deviates at most ∆ from the reference velocity distribution. The corresponding

optimization problem in standard form reads

Optimize: log p (mDM, σ)

Subject to:

∣∣∣∣
f(~v)− fMB(~v)

fMB(~v)

∣∣∣∣ ≤ ∆

∫
d3v f(~v) = 1

− f(~v) ≤ 0 .

(6.4)

With this, we determine the most conservative outcome from

max
f(~v)
{log ptot} (mDM, σ) ≥ log(1− α) , (6.5)

and the best possible outcome from

min
f(~v)
{log ptot} (mDM, σ) ≥ log(1− α) . (6.6)

Here, α is the confidence level which we set to 90% in the following. In order to perform

this computation, we decompose the velocity distribution into a set of streams as defined

in Eq. (4.5). For this particular analysis, we discretize the velocity space into 3000 streams

in the interval [0,vmax]. Here, vmax is the largest possible velocity of a dark matter particle

in the rest frame of the detector which we calculate from the escape velocity from the

Milky Way vesc = 544 km/s [116]. With this decomposition, the optimization problem
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reads

Optimize: log p ({c~vi},mDM, σ)

Subject to: c~vi ≤ (∆ + 1)fMB(~vi) ∀ i

c~vi ≥ max
{

0, (1−∆)
}
fMB(~vi) ∀ i

∑

i

c~vi = 1 .

(6.7)

We note that this formalism is completely general and does not rely on the statistical

method used to describe the experiments under consideration. However, it is very hard,

sometimes even impossible, to solve this problem with standard techniques like Monte

Carlo methods for a large number of variables c~vi as required for the accurate modeling

of a function. In the case that the objective function is at most quadratic and convex,

one can apply the methods of convex optimization which are summarized in appendix B.

Those algorithms quickly solve those problems even for large number of streams, which

allows to tackle even problems for which the velocity distribution is described in three

dimensions. Here, we use the interior-point algorithms provided by the CVXOPT [300,323]

package to efficiently solve the optimization problems discussed in this chapter.

In addition to the astrophysical uncertainties due to the shape of the velocity distribu-

tion, there are several other sources of uncertainties. A major astrophysical uncertainty

stems from the local dark matter density as discussed in section 2.2.1. As it enters linearly

into the computation of the expected signals in direct dark matter searches, a deviation

from the canonical value of 0.3 GeV/cm3 leads to a rescaling of the signal. As in chapter 4,

we highlight this by multiplying our results with the factor ρloc, 0.3 ≡ ρloc/(0.3 GeV/cm3).

In addition to this, we take into account the uncertainties of the reference velocity distri-

bution when determining the best and the worst possible outcome. Concretely, we assume

the SHM velocity distribution, confer Eq. (2.17), described by the velocity of the Sun v�
with respect to the galaxy and the escape velocity from the Milky Way vesc. We vary

those parameters in the range 220-240 km/s [324,325] in the case of v� as well as between

499 km/s and 608 km/s for vesc [116]. We note that when building specific models for the

Milky Way, the parameters v�, vesc and ρloc are correlated, confer Ref. [268]. However,

we stay agnostic about specific Milky Way models and vary the parameters individually

in their corresponding ranges as this leads to conservative results. Finally, when analyz-

ing results from direct detection experiments, we take into account the time-dependent

velocity of the Earth with respect to the Sun. When solving the optimization problem in

Eq. (6.7), we use the point in time that results in the largest maximum respectively the

smallest minimum of the objective function.

6.2. Applications

As demonstrated in the remainder of this chapter, many problems related to local dark

matter searches can be expressed or well approximated by quadratic functions and there-

fore be solved efficiently. To this end, we apply our improved formalism to the following
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Figure 15.: Most conservative and most aggressive 90% C.L. upper limits for the
null results of XENON1T-2017 (left) and PICO-60 (right) assuming spin-
independent (left) respectively spin-dependent interactions (right). In both
plots, we highlight the impact of deviations from the SHM by including upper
limits for various choices of ∆ between 0 and 104. These plots were taken
from Ref. [4].

problems. First, we bracket the impact of uncertainties in the velocity distribution on

upper limits from direct detection experiments, neutrino telescopes as well as combined

limits using both. Furthermore, we investigate how astrophysical uncertainties affect the

reconstruction of dark matter parameters from a putative signal. With this, we are able

to find the allowed region in parameter space as a function of ∆.

6.2.1. Impact on limits from direct detection experiments

We start by deriving the most conservative and most aggressive upper limits on the

interaction cross section between dark matter and nuclei. Concretely, we use the null

results from the XENON1T experiment as published in 2017 [220] (which we denote by

XENON1T-2017 in the following) for spin-independent interactions as well as the results

from PICO-60 [237] for spin-dependent interactions. As the number of observed events

is in both cases zero, we write the p-value for Nsig predicted events given an expected

background of NBG as

log(p) = −(NBG +Nsig) , (6.8)

where we neglect uncertainties of the background. In the specific case of XENON1T-2017

and PICO-60, the background is given by NBG = 0.36 respectively NBG = 0.331. In

order to calculate the expected dark matter signal, we use the efficiency to detect nuclear

recoils from [326, 327] in the case of XENON1T-2017 and from [236] for PICO-60. For

further details on those experiments, we refer to appendix C.

In Fig. 15, we show the most conservative as well as the most aggressive upper limits

for several values of ∆ between 0 and 104. We note that neither the most aggressive nor

the most conservative upper limit changes for ∆ > 104. In all cases, we vary the velocity

of the Sun in the galactic rest frame v� and the escape velocity from the Milky Way vesc
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within 220-240 km/s respectively 499-608 km/s. When allowing the velocity distribution

to vary freely, i.e. for very large ∆, we find that the most conservative upper limits

vanish. This is to be expected from the results presented in section 4.2 and the optimized

velocity distribution corresponds to one stream placed below the detection threshold of

the experiment. Furthermore, we find that the impact of astrophysical uncertainties is

strongest for small dark matter masses as only fast dark matter particles are able to cause

detectable recoils in this case. Due to this, even small changes in the high velocity tail of

the distribution can degrade the most conservative exclusion limits significantly for light

dark matter particles. For the most aggressive upper limit, we find that the exclusion

strength increases by at most an order of magnitude compared to the most stringent

SHM limit. This is due to the fact that the most probable speed of the SHM is close

to the velocity that leads to the largest scattering rate at direct detection experiments

for the dark matter masses considered here. Specifically for the upper limits derived

from XENON1T-2017, we find that the most aggressive, halo-independent upper limit is

only marginally stronger than the limit derived from the SHM for mDM ' 100 GeV. The

reason for this is that the mean velocity of the SHM and the velocity of the optimal stream

coincide for those dark matter masses. For lighter or heavier dark matter particles, both

velocities differ notably and the upper limits can be strengthened by approximately an

order of magnitude again.

With our method, it is also possible to obtain the optimized velocity distributions.

Extending the content published in Ref. [4], we depict the most conservative and the

most aggressive upper limits for XENON1T-2017 in Fig. 16. In both plots, we show the

optimized distributions for the same values of ∆ that were used in Fig. 15. As discussed

in Ref. [4], it is also possible to determine the optimal velocity distribution for the most

aggressive upper limit analytically

fRmax(v) =fMB(v)
[
(1 + ∆)Θ(v − v1)Θ(v2 − v)

+ (1−∆)Θ(1−∆)
(

1−Θ(v − v2)Θ(v1 − v)
)]
. (6.9)

Here, the velocities v1 and v2 with v1 < v2 can be calculated for a given dark matter

mass and ∆. We find that the high and low velocity tails of the optimized distribution

are depleted while the number of dark matter particles with v1 < v < v2 is increased with

respect to the SHM. This is also apparent from the right plot of Fig. 16. We furthermore

observe that the support of the function fRmax(v) decreases as we are able to rewrite the

normalization condition
∫

dv fRmax(v) = 1 into

∫ v2

v1

dv fMB(v) ' 1

∆
, (6.10)

for ∆ ≥ 1. For very large ∆, the support goes to zero and the optimized velocity distri-

bution finally becomes a stream with a velocity such that the recoil rate is maximized.

This is to be expected from the results of section 4.2 as the constraint on the velocity

distribution from Eq. (6.1) becomes irrelevant for ∆→∞.
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Figure 16.: Optimized velocity distributions for the most conservative (left) and most
aggressive (right) upper limits derived from XENON1T-2017 for a dark matter
mass of 100 GeV. We indicate the possible deviations from the SHM as light
colored regions for each value of ∆. Furthermore, we show the optimized
velocity distributions as dark shaded region. In both plots, we depict the
optimized velocity distributions for the same values of ∆ as in Fig. 15.

In contrast to the most aggressive upper limits, the most conservative upper limits

deviate significantly from the SHM and even vanish for ∆→∞. The velocity distribution

that gives the weakest upper limit reads

fRmin(v) = fMB(v)
[
(1 + ∆)

(
Θ(v′1 − v) + Θ(v − v′2)

)
+

(1−∆)Θ(1−∆)
(

Θ(v − v′1) + Θ(v′2 − v)− 1
)]
, (6.11)

where the velocities of the streams v′1, v
′
2 are labeled such that v′1 < v′2. As for the most

aggressive upper limits, those velocities can be calculated given the dark matter mass

and ∆. The features of this solution are opposite to those in Eq. (6.9). The low and

high velocity tails are more populated than for the SHM while the number of particles

with velocities v′1 < v < v′2 is decreased. This gives rise to the smallest signal as direct

detection experiments are most sensitive between v′1 and v′2. The normalization condition

for ∆� 1 reads

∫ v′1

0
dvfMB +

∫ vmax

v′2

dvfMB '
1

∆
, (6.12)

which again implies that the support of fRmin(v) decreases as ∆ → ∞. Therefore, the

solution converges to streams when ∆ → ∞. In this limit, we furthermore find that

v′2 exceeds the escape velocity while v′1 → 0. This implies that the optimized velocity

distribution consists of one stream below the threshold of the experiment. Therefore, the

dark matter-nucleon scattering cross section is unconstrained for large values of ∆. As a

result, we find that the most conservative upper limit can vary between the upper limit

derived from the SHM and being completely unconstrained.
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6.2.2. Impact on limits from neutrino telescopes

In this section, we illustrate the impact of astrophysical uncertainties on the upper limits

derived from neutrino telescopes. We use the 3 year data sample of the neutrino flux at

IceCube from the direction of the Sun reported in Ref. [250]. It consists of the DeepCore

(DC) and the IceCube (IC) sample which we use for dark matter masses below respectively

above 100 GeV. Those samples are given in several bins of the angle Ψ which is defined as

the angle between the reconstructed track of the event and the direction of the Sun. As

the uncertainties of the direction reconstruction increase for small energies, we take into

account all seven angular bins for the analysis of the low energy DC sample. Conversely,

we use the three bins with the smallest angles Ψ from the direction of the Sun for the IC

sample.

We construct the p-value by modeling IceCube as a counting experiment with a single

bin both for the DC and the IC sample. We take into account background uncertainties

by summing those in quadrature for each bin in Ψ and then taking the 1σ downward

fluctuation of the background. The number of observed events and the expected number

of background events are then

DeepCore (7 bins): Nobs = 427 NBG(−1σ) = 414 ,

IceCube (3 bins): Nobs = 926 NBG(−1σ) = 931 .
(6.13)

We obtain the p-value with the cumulative Poisson probability distribution

pA(Nsig) = P (k ≤ Nobs|NBG +Nsig) , (6.14)

where A = DC, IC. For a confidence level of 90%, we obtain an upper limit on the

number of signal events of N90%
sig = 35.0 for IceCube and N90%

sig = 39.9 for DeepCore,

which is in good agreement with the upper limits reported in [250]. With this, we set

conservative upper limits on the dark matter-nucleon cross section without the need for

an event-by-event likelihood. We note that a counts based analysis of IceCube leads to

stronger limits for small dark matter masses and weaker limits for heavy dark matter in

comparison to a likelihood based analysis, see Ref. [328]. As we are interested in at most

quadratic objective functions, we approximate the logarithm of the p-value with second

order polynomials. Concretely, we use the following polynomials

log(pDC) = −0.319− 0.0155Nsig − 0.0008N2
sig ,

log(pIC) = −0.823− 0.0276Nsig − 0.0004N2
sig .

(6.15)

We find that those fitting functions deviate at most 10% from the full p-value for Nsig ∈
[0, 10], decreasing to 1% for Nsig ∈ [10, 100]. Finally, we relate the number of signal events

and the capture rate following Ref. [250] in order to stay as close to the full analysis of the

IceCube collaboration as possible. We note that Ref. [250] explicitly assumes equilibrium

of capture and annihilation which is expected for the currently probed scattering cross

sections. However, Fig. 9 suggests that this should be taken into account for future results
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Figure 17.: Most conservative and most aggressive upper limits from neutrino telescopes
for spin-independent (left) as well as spin-dependent interactions (right). Here,
we assume annihilation into W+W− (τ+τ− for mDM < mW ). In both plots,
we show the most aggressive and most conservative upper limits for several
choices of the parameter ∆ that quantifies the deviation from the SHM. These
plots were taken from Ref. [4].

of IceCube.

In Fig. 17, we show the 90% C.L. upper limits on the spin-independent and spin-

dependent scattering cross sections derived from the null results of IceCube assuming

annihilation into W+W− (τ+τ− for mDM < mW ). We indicate the impact of astrophys-

ical uncertainties by considering deviations of the SHM between ∆ = 0 (SHM limits)

and ∆ = 104 (halo-independent limits), where we again observe that the limits do not

change for ∆ > 104. We find that the most aggressive upper limits are at most an or-

der of magnitude stronger than the limits derived from the SHM. In concordance with

the results from chapter 4, the most conservative upper limits remain finite for ∆ → ∞
assuming dark matter particles lighter than 250 GeV for spin-independent interactions

respectively 100 GeV for spin-dependent interactions. For heavy dark matter, the most

conservative upper limits vanish for large ∆. As the maximal velocity for which capture

in the Sun is possible is small in this case, no dark matter particles can be captured for

a velocity distribution that predicts only fast particles. This, in turn, implies vanishing

most conservative upper limits on the interaction cross section from IceCube.

The optimized velocity distribution that leads to the most aggressive upper limits on

the scattering cross section can be parametrized as

fCmax(v) = fMB(v)
[
(1 + ∆)Θ(v1 − v) + (1−∆)Θ(1−∆)Θ(v − v1)

]
, (6.16)

where we are able to calculate the velocity v1 given ∆ and the dark matter mass. In

addition to the content published in Ref. [4], we show those optimized distributions in

the right plot of Fig. 18 for spin-independent interactions. The shape of these velocity

distributions is a consequence of the fact that the capture rate decreases monotonically

with increasing velocity of the stream. Therefore, the capture rate is maximized when the

low velocity tail is as populated as possible which is depicted in the right plot of Fig. 18.
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Figure 18.: Optimized velocity distributions for the most conservative (left) and the most
aggressive upper limits (right) on the scattering cross section for a dark mat-
ter mass of 100 GeV. We derive those distributions from the null results of
IceCube assuming spin-independent interactions. For each value of ∆, we in-
dicate the largest possible deviations from the SHM as light colored regions.
Furthermore, we highlight the optimized velocity distributions as dark shaded
region. In both plots, we depict the optimized velocity distributions for the
same values of ∆ as in Fig. 17.

With this observation, we are able to calculate the velocity v1 from the normalization

condition, which can be rearranged into

∫ v1

0
fMB(v) dv =

1− (1−∆)Θ(1−∆)

1 + ∆− (1−∆)Θ(1−∆)
. (6.17)

When ∆ increases, the value of v1 decreases as fMB(v) is a non-negative function. There-

fore, fCmax(v) converges to a δ-function at v = 0 for large ∆ which is in concordance with

the findings in section 4.2.

On the other hand, the optimized velocity distribution leading to the most conservative

upper limit reads

fCmin(v) =fMB(v)
[
(1 + ∆)Θ(v − v′1) + (1−∆)Θ(1−∆)Θ(v′1 − v)

]
, (6.18)

which maximally populates the high velocity tail as the capture rate decreases monoton-

ically with increasing velocity of the stream. This is shown in the left plot of Fig. 18 for

the specific case of spin-independent interactions. Again, we are able to calculate v′ from

the normalization condition

∫ vesc

v′1

fMB(v) dv =
1− (1−∆)Θ(1−∆)

1 + ∆− (1−∆)Θ(1−∆)
. (6.19)

Increasing the deviation from the SHM, the velocity v′1 increases as the right side of the

equation is proportional to ∆−1 for large deviations. In the limit ∆ → ∞, we obtain

a δ-function at v = vesc as expected from the results of the halo-independent analysis

presented in section 4.2. For heavy dark matter, this leads to vanishing most conservative

upper limits as the maximal velocity for which capture is kinematically possible in the

68



6.2. Applications

Sun decreases with the dark matter mass, confer Eq. (3.52).

6.2.3. Impact on limits from direct detection experiments and neutrino

telescopes

Several works highlighted the complementarity of direct detection experiments and neu-

trino telescopes for constraining the dark matter-nucleon cross section, see Refs. [2, 4,

98, 285, 301, 302] and section 4.2 for a discussion of this in terms of a halo-independent

analysis. Here, the complementarity is evident from the optimized velocity distributions

shown in Figs. 16 and 18. For the most conservative upper limit and for ∆ → ∞, we

find fRmin(v) = δ(v) for direct detection experiments while fCmin(v) = δ(v − vesc) for

neutrino telescopes. Conversely, the velocity distributions for the most aggressive upper

limit converge to fRmax(v) = δ(v−v1) with v1 > 0 for direct detection experiments and to

fCmax(v) = δ(v) for neutrino telescopes. Given the completely different features for both

detection techniques, we expect that the optimized distributions for the combined upper

limits are non-trivial unless one detection technique is far more sensitive than the other.

But even in this case, the fact that direct detection experiments and neutrino telescopes

probe together the whole velocity space is enough to prevent that upper limits vanish in

the limit ∆→∞.

We obtain the most conservative and the most aggressive limits following Eq. (6.7).

The total p-value for different experiments is given by

log ptot =
∑

k∈expts

log pk , (6.20)

where each individual contribution log pk is at most quadratic in the recoil rate or the cap-

ture rate. We then apply the techniques described in section 6.1 to solve the optimization

problem.

In Fig. 19, we show the most conservative and the most aggressive upper limits on the

spin-independent respectively on the spin-dependent scattering cross section as a function

of ∆. For the former, we use the null results from XENON1T-2017 [220] and IceCube [250]

while for the latter we combine PICO-60 [237] and IceCube. In both cases, we use the IC

and the DC sample to construct the p-value for IceCube as outlined in section 6.1. As

for direct detection experiments and neutrino telescopes individually, the most aggressive

upper limits are at most an order of magnitude stronger than the upper limits derived

from the SHM. Remarkably, the most conservative upper limits are also not too different

to the limits derived from the SHM. For spin-independent interactions, the upper limits

are bounded over the whole mass range considered here even in the limit ∆ → ∞. This

is also true for spin-dependent interactions but only for dark matter masses smaller than

3 TeV. For heavier dark matter, the maximal velocity for which capture in the Sun is

possible, confer Eq. (3.52), is smaller than the minimal velocity that is necessary to induce

a detectable recoil at PICO-60. Therefore, a velocity distribution that is non-zero only in

this gap evades constraints from IceCube and from PICO-60 simultaneously. Due to this,

it is not possible to derive a most conservative upper limit in this specific case. However,
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Figure 19.: Most conservative and most aggressive upper limits assuming spin-
independent (left) respectively spin-dependent interactions (right). We com-
bine the null results from IceCube and XENON1T-2017 for spin-independent
interactions respectively IceCube and PICO-60 for spin-dependent interac-
tions. In both plots, we show the most aggressive and the most conservative
limit for several choices of the parameter ∆ that quantifies the deviation from
the SHM. Here, we explicitly assume annihilation into W+W− (τ+τ− for
mDM < mW ). These plots were taken from Ref. [4].

we note that the limits for ∆ → ∞ can be significantly weaker than the SHM limits if

one experiment is much more sensitive to the interaction under investigation.

Extending the content published in Ref. [4], we depict the optimized velocity distribu-

tions for the combined limits from direct detection experiments and neutrino telescopes

in Fig. 20. Here, we study the specific case of WIMPs with a mass of 100 GeV and

constraints on the spin-independent scattering cross section from XENON1T-2017 and

IceCube. Comparing this to Fig. 15, we observe that the optimized distributions are very

similar to those that give the most aggressive respectively the most conservative limit

at XENON1T-2017. This is to be expected as direct detection experiments are more

sensitive to spin-independent interactions than neutrino telescopes. However, the most

conservative upper limits do not vanish in the limit ∆ → ∞ as IceCube is sensitive to

this region. Due to the complementarity of direct detection experiments and neutrino

telescopes, the velocity distribution that minimizes the recoil rate leads to a large cap-

ture rate. This is also apparent from the comparison of Figs. 15, 17 and 19 as the most

conservative combined upper limit for mDM = 100 GeV is several orders of magnitude

weaker than the upper limit derived from XENON1T-2017 but still stronger than the up-

per limit from IceCube. For the most aggressive limit, the optimized velocity distribution

maximizes the signal at XENON1T-2017. Since IceCube is also sensitive to this region in

velocity space, the combined limits are stronger than those derived from XENON1T-2017

alone, compare Fig. 15 and Fig. 19.

6.2.4. Parameter reconstruction for general velocity distributions

In the following, we study the impact of astrophysical uncertainties on the reconstruc-

tion of dark matter properties in case of a future signal. Henceforth, we consider the
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Figure 20.: Optimized velocity distributions for the most conservative (left) and the most
aggressive upper limits (right) on the scattering cross section for a dark mat-
ter mass of 100 GeV. We assume spin-independent interactions and the null
results of XENON1T-2017 as well as IceCube. Furthermore, we indicate the
largest possible deviations from the SHM as light colored regions for each
value of ∆. We highlight the optimized velocity distributions as dark shaded
region. In both plots, we depict the optimized velocity distributions for the
same values of ∆ as in Fig. 19.

XENON1T detector and construct an approximate likelihood for a total exposure of 730

days. We assume that the current target mass of 1042 kg stays constant over two years of

exposure and we assume that the detector is sensitive to nuclear recoil energies between

3 keV and 70 keV. We conservatively assume that the detector does not undergo a major

upgrade and that the nuclear recoil detection efficiency is given by [326, 327] over the

whole exposure time. In order to reconstruct dark matter properties from a number of

counts, we introduce Nbins = 4 bins which we define in such a way that each bin contains

at least 5 events for a given dark matter mass and scattering cross section. We estimate

that the uncertainty in the signal rate in each bin is given by σi =

√
N

(i)
obs. Note that we

do not include backgrounds or systematic uncertainties here as we do not have access to

the relevant information. In case of a signal, those information could be provided by the

experimental collaboration which would allow us to include those uncertainties. Here, we

describe XENON1T by an approximate Gaussian likelihood

logLXe = −1

2

Nbins∑

i

(
N

(i)
sig −N

(i)
obs

)2

σ2
i

, (6.21)

where Nobs is the observed number of events. Furthermore, Nsig is the number of dark

matter events for a given velocity distribution f(~v), dark matter mass mDM and scattering

cross section σ.

In order to infer the median significance for discovery, we construct the so-called “Asi-

mov data set” [329] by setting N
(i)
obs = N

(i)
sig for a benchmark dark matter mass and

scattering cross section. This procedure is based on the Wald equation [330]. Concretely,

we generate the data set for mDM = 50 GeV and σp
SI = 1.5 × 10−46 cm2 as well as as-
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Figure 21.: Reconstruction of a putative signal after two years of XENON1T exposure.
The left plot shows the allowed region in the (mDM, σ

p
SI) parameter space for

various values of ∆. We indicate with a white cross the true dark matter
parameters of mDM = 50 GeV and σp

SI = 1.5 × 10−46 cm2. Furthermore, the
right plot shows the allowed dark matter masses as a function of ∆. These
plots were taken from Ref. [4].

suming the SHM. For this specific benchmark point, we expect 34 dark matter events at

XENON1T over the final exposure. We note that this approach could be extended to

benchmark-free forecasting methods, for example the technique presented in Ref. [211].

As the likelihood in Eq. (6.21) is quadratic in Nsig, it is at most quadratic in the velocity

distribution and can therefore be optimized with the routines of convex optimization. We

then maximize the likelihood with respect to the velocity distribution for several choices of

∆. With this, we construct allowed regions in parameter space by profiling over all velocity

distributions that deviate by at most ∆ from the SHM. The allowed region consists of all

points in parameter space (mDM,σp
SI) that satisfy [329,331]

max
f(~v)

{
log L(mDM, σ

p
SI)
}
> log Lmax −

1

2
χ2
γ% , (6.22)

where log Lmax is the maximum of the likelihood over all dark matter masses, scattering

cross sections and velocity distributions. Furthermore, χ2
γ% is the critical χ2 value for two

degrees of freedom. As we are interested in contours with a confidence level of 90%, we

set χ2
γ% ≈ 4.605.

In the left plot of Fig. 21, we depict the allowed region in parameter space reconstructed

from the putative signal. As in the discussions in the previous sections, the allowed region

for ∆→∞ extends to arbitrary large cross sections but has a finite lower limit. For very

large cross sections, the signal can be reproduced by modifying the velocity distribution

in such a way that most of the dark matter particles are too slow to be detected by

XENON1T. Similar conclusions can also be found in Ref. [310]. In addition to this, the

dark matter mass is bounded from below. Regardless of the deviation from the SHM,

dark matter particles lighter than 14 GeV cannot reproduce the putative signal. For dark

matter masses between 100 GeV and 5000 GeV, XENON1T probes a large part of the

relevant velocity space. Therefore, large deviations from the SHM are needed to hide a
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significant fraction of the velocity distribution below the threshold as apparent from the

right plot of Fig. 21. Concretely, deviations as large as ∆ & 103 are necessary for those

dark matter masses in order to make large cross sections compatible with the observed

signal.

In the right plot of Fig. 21, we furthermore show the allowed dark matter masses as

a function of the distance ∆ to the SHM. Assuming the SHM velocity distribution, the

putative signal can be reproduced for dark matter masses larger than ∼ 25 GeV for some

dark matter-nucleus cross section. If the velocity distribution is completely free to vary,

the signal can be reproduced for dark matter masses larger than mDM & 10 GeV. For

smaller dark matter masses, the shape of the signal for a 50 GeV WIMP is sufficiently

distinct to any predicted spectrum derived from arbitrary velocity distributions. Espe-

cially for light dark matter, the signal at large recoil energies is hard to reproduce even

for very large deviations from the SHM.

In the left plot of Fig. 22 we show the allowed region of dark matter masses and inter-

action cross sections that reproduce the putative signal and do not violate the constraints

from IceCube. For this analysis, we describe IceCube by a single bin likelihood

logLIC = −1

2

(Nsig +NBG −Nobs)
2

σ2
, (6.23)

where we adopt the observed number of events Nobs, the background events NBG and

uncertainties σ as described in (6.13). We obtain the total likelihood by summing the

individual parts, i.e. logLXe and logLIC. The current sensitivity of IceCube is not enough

to probe the signal of a dark matter particle with a mass of 50 GeV and a spin-independent

scattering cross section of 1.5×10−46 cm2 assuming the SHM. However, IceCube provides

useful constraints as it tests some extreme velocity distributions that are able to reproduce

the putative signal. When additionally using the constraints from IceCube, the allowed

region is bounded from above for σp
SI even in the limit ∆→∞ as apparent from the left

plot of Fig. 22. This is due to the fact that the solutions that reproduce the putative

signal for large cross sections predict a large fraction of slow dark matter particles. As

the maximal velocity for which capture in the Sun is possible is small for dark matter

particles with masses larger than 5 TeV, the spin-independent scattering cross section is

not bounded from above for those masses. At intermediate masses between 500 GeV and

5 TeV however, it can be well reconstructed and is constrained to be within roughly a

narrow band.

In the right plot of Fig. 22, we show the allowed dark matter masses compatible with

the putative signal and the constraints from IceCube. For small deviations from the SHM,

i.e. ∆ . 0.1, the dark matter mass is constrained to be between 30 GeV and 300 GeV. For

O(1) distortions however, the dark matter mass range for which the putative signal can

be reproduced gradually broadens. When finally imposing no constraints on the velocity

distribution, we find that dark matter masses larger than ∼ 20 GeV are allowed for some

scattering cross section.
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Figure 22.: Reconstruction of a putative signal at XENON1T after two years exposure
including constraints from IceCube. In the left plot, we depict the allowed
region in the (mDM, σ

p
SI) parameter space for various values of ∆. We indicate

with a white cross the true dark matter parameters of mDM = 50 GeV and
σp

SI = 1.5 × 10−46 cm2. The right plot shows the reconstructed range of dark
matter masses compatible with the signal at XENON1T and the constraints
from IceCube as a function of ∆. These plots were taken from Ref. [4].

6.3. Discussion and summary

In this chapter, we improved the method presented in chapter 4 in order to analyze

direct dark matter searches in a statistically rigorous way. Furthermore, the updated

method allows us to bracket the astrophysical uncertainties as a function of the distance

to some reference velocity distribution and to reduce the bias in the reconstruction of dark

matter parameters from a future signal. Concretely, we used the SHM as reference in the

analyses presented in this chapter. We parametrized the deviation by a single parameter

∆ with values between 0 and ∞. Fixing ∆ = 0 corresponds to an analysis in terms of

the reference velocity distribution while a large value of ∆ gives rise to an analysis that

is completely agnostic of the velocity distribution. We recovered the halo-independent

method presented in chapter 4 in the limit ∆→∞ and concluded that it is contained in

the more general method derived in this chapter. Uncertainties of the local dark matter

density were included by rescaling the results. As an additional feature, it is possible

to extract the optimal velocity distribution of the problem under consideration with the

updated method.

As in chapter 4, the approach which was presented in this chapter relies on the decom-

position of the velocity distribution into streams. This requires only minimal assumptions

on the velocity distribution and can be applied to arbitrary types of analyses. The op-

timization problems which we encountered here are challenging to solve with standard

approaches like Monte Carlo parameter scans due to the large amount of free param-

eters that were necessary to model the velocity distribution. Instead, we used convex

optimization techniques that allow to solve large scale optimization problems efficiently.

Concretely, we restricted the types of analyses to convex problems that are at most

quadratic in the velocity distribution. As we showed in this chapter, rare event searches

74



6.3. Discussion and summary

can be modeled or approximated in many cases by such convex optimization problems.

In the case of a signal, a likelihood that is at most quadratic in the velocity distribution

is justified as soon as the Gaussian limit is approached. If the problem cannot be mod-

eled by a quadratic function, the results of this method can be used as an initial guess

for computationally more expensive but exact methods like [301] to determine the dark

matter mass.

We illustrated various applications of this method in the previous sections. We brack-

eted the impact of astrophysical uncertainties on upper limits derived from direct detec-

tion experiments respectively neutrino telescopes. Furthermore, we calculated combined

upper limits from both experimental techniques, derived in statistically rigorous way. Fi-

nally, we reconstructed a putative signal at XENON1T with minimal assumptions on the

velocity distribution. For each application, we performed the analyses for deviations from

the SHM ranging between ∆ = 0 and ∆→∞.

From those applications, we derived several key conclusions. For direct detection ex-

periments, the upper limits on the scattering cross section can be improved by at most

an order of magnitude when being completely agnostic of the velocity distribution. In

contrast to this, we found that the upper limits can be weakened infinitely for ∆ → ∞
by populating only the low velocity tail of the distribution that is inaccessible due to the

finite detection threshold of the experiment. Furthermore, we investigated the impact of

astrophysical uncertainties on the upper limits derived from the null results of neutrino

telescopes. We found that the sensitivity can be improved by a factor . 10 when adjust-

ing the velocity distribution in such a way that the expected neutrino flux from the Sun

is maximized. In contrast to the upper limits derived from direct detection experiments,

we observed that the most conservative upper limits derived from neutrino telescopes do

not vanish for ∆ → ∞ if the dark matter particle is lighter than several hundreds of

GeV. In this case, the upper limits are at most a factor of 1000 weaker compared to those

derived from the SHM. For heavy dark matter, the maximal velocity that leads to capture

in the Sun is smaller than the escape velocity. Therefore, the most conservative upper

limit vanishes in this case as the optimized velocity distribution predicts only dark matter

particles that are too fast to be captured in the Sun. When combining limits from direct

detection experiments and neutrino telescope in a statistically rigorous way, we observed

that the upper limits remain finite for all but the largest dark matter masses considered

here. Concretely, we found that the most conservative and the most aggressive combined

upper limits only differ by less than two orders of magnitude for dark matter masses

between 100 GeV and 1 TeV. For very heavy dark matter, the combined upper limits can

vanish again as those dark matter particles cannot be captured in the Sun unless they

are very slow.

Finally, astrophysical uncertainties play an important role when analyzing a dark mat-

ter signal. In the case of a signal in a direct detection experiment, we found that un-

certainties in the velocity distribution severely reduce the precision of the reconstruction.

In addition to this, the interaction cross section cannot be constrained from above when

being completely agnostic of the shape of the velocity distribution. However, including
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upper limits from neutrino telescopes in the analysis allowed us to extract an upper bound

on the cross section. We furthermore found that the mass of the dark matter particle can

be well reconstructed for deviations ∆ . 1 from the SHM and including null results from

neutrino telescopes.
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Chapter 7.

Analysis of the annual modulation signal

measured by DAMA

The content of this section was published in Ref. [2] and we explicitly indicate additional

information that was not published. The following discussion is also based on results from

Ref. [1].

In contrast to the standard approach of direct detection experiments to measure the

total number of recoil events, the DAMA collaboration [22,23,332] searches for the annual

modulation of the recoil rate that is due to motion of the Earth around the Sun. The

advantage of this approach is that the background is expected to be time-independent

which reduces the need for an excellent background reduction. In addition to its uncom-

mon detection technique, DAMA is also unique in the sense that it observes a signal that

is in concordance with the expectations from dark matter. Concretely, the DAMA collab-

oration observed an annual modulation of the recoil rate over 14 years which corresponds

to a significance of more than 9σ [22, 23] for a modulation signal. This signal is present

in two data sets released in 2013 [22] (DAMA-2013) and 2018 [23] (DAMA-2018).

From Figs. 6 and 7 we observe that the dark matter interpretation of the DAMA signal,

assuming the SHM, is in tension with both direct detection experiments and neutrino

telescopes for spin-independent as well as spin-dependent interactions. Furthermore, it

was shown in Ref. [304] that the same conclusion holds for arbitrary dark matter-nucleon

interactions described by the effective theory of Refs. [204–206]. As those conclusions are

only valid when assuming the SHM, we analyze in this chapter the annual modulation

signal at DAMA with minimal assumptions on the halo model. We do this in two different

ways. First, we confront the annual modulation signal to null results from other direct

dark matter searches in a halo-independent way. From this analysis, we obtain the regions

in parameter space for which the annual modulation signal cannot be explained by dark

matter regardless of the velocity distribution. Second, we reconstruct the dark matter

mass and scattering cross section from the annual modulation signal in a halo-independent

way. Comparing this to the results assuming the SHM allows us to determine the impact

of astrophysical uncertainties on the parameter reconstruction from the DAMA data.
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7.1. Confronting the DAMA-2013 annual modulation signal

to null results

In this section, we confront the annual modulation signal observed by DAMA-2013 [22]

to several other experiments for spin-independent and spin-dependent interactions. Con-

cretely, we use the measured annual modulation amplitude in the energy bins [2.0, 2.5],

[2.5, 3.0] and [3.0, 3.5] keV of (1.75±0.37)×10−2, (2.51±0.40)×10−2 and (2.16±0.40)×
10−2 day−1 kg−1 keV−1 and model the modulation amplitude as described in Eq. (3.48).

We adopt the quenching factors QNa = 0.30 and QI = 0.09 as measured by the DAMA

collaboration [333] but we note that there are claims that the quenching factors are en-

ergy dependent, see Refs. [334]. Furthermore, we include the effect of channeling and

dechanneling as described in [335] and we adopt the largest channeling fraction. This

lowers the DAMA-2013 detection threshold and the analysis is therefore conservative in

ruling out parameter space.

As the annual modulation signal at DAMA-2013 is present in multiple energy bins, we

optimize the outcome of a null experiment A such that the signal is reproduced in the p

energy bins N
(Bα)
min ≤ N (Bα) ≤ N (Bα)

max , where α = 1, . . . , p. In addition to this, we consider

q additional experiments reporting upper limitsN (Bα) ≤ N (Bα)
max for α = p+1, . . . , p+q. For

a given dark matter mass mDM and scattering cross section σ, we calculate the minimum

of the outcome of experiment A subject to those constraints. We conclude that the signal

claim is incompatible with the null results from other experiments in a halo-independent

way if

min{N (A)}(mDM, σ) ≥ N (A)
max . (7.1)

This problem has p + q upper limit constraints and p lower limit constraints as well as

one equality constraint from the normalization of the velocity distribution. However, p

upper or lower limit constraints are not saturated as upper and lower limits cannot be

fulfilled simultaneously. From Eq. (B.30), we conclude that there are at most p + q + 1

and at least 1 streams.

In Fig. 23, we show the allowed regions in parameter space when confronting the

DAMA-2013 signal to one null experiment in a halo-independent way. The corresponding

optimization problem reads

min
f(~v)

[
N

(A)
f(~v) (mDM, σ)

]
, (7.2)

subject to S
(DAMA[2.0,2.5])

l.l. ≤ S(DAMA[2.0,2.5])

f(~v) (mDM, σ) ≤ S(DAMA[2.0,2.5])

u.l. ,

S
(DAMA[2.5,3.0])

l.l. ≤ S(DAMA[2.5,3.0])

f(~v) (mDM, σ) ≤ S(DAMA[2.5,3.0])

u.l. ,

S
(DAMA[3.0,3.5])

l.l. ≤ S(DAMA[3.0,3.5])

f(~v) (mDM, σ) ≤ S(DAMA[3.0,3.5])

u.l. ,
∫
f(~v) d3v = 1 ,

where we consider the modulation signal in the three lowest DAMA-2013 bins. Here, we
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Figure 23.: In this figure, we confront the DAMA-2013 signal to various null results. The
left column depicts the allowed region for spin-independent interactions from
the combined analysis of DAMA-2013 and PandaX (upper plot) as well as
for DAMA-2013 and the neutrino telescopes IceCube and Super-Kamiokande
(lower plot). The same is shown in the right column but for spin-dependent
interactions. Here, we use null results from PICO-60 (upper plot) and neu-
trino telescopes (lower plot). The region in parameter space for which the
DAMA-2013 signal is compatible with the corresponding null result in a halo-
independent way is shown in color. Furthermore, we depict the best fit re-
gions for the DAMA-2013 signal derived from the SHM as gray shaded re-
gion [233, 234]. We denote the upper limits of the null experiments derived
from the SHM by solid respectively dotted black lines.

use constraints from the direct detection experiments PandaX [217,218] and PICO-60 [237]

as well as from the neutrino telescopes IceCube [250] and Super-Kamiokande [252]. To

solve this optimization problem, we discretize the velocity integrals and introduce 100000

streams. In Fig. 23, we additionally show the upper limits placed by the null experiments

assuming the SHM as well as the regions favored by DAMA-2013 for spin-independent

[233] and spin-dependent interactions [234]. For the direct detection experiments, we

properly model the motion of the Earth around the Sun during the exposure time of

the experiment. We parametrize the motion of the Earth following Ref. [238] and we

discretize the path of the Earth in time intervals of two weeks. In Fig. 23, we denote the

region of parameter space for which the DAMA-2013 signal is incompatible with one of the

null results as white region. We observe that direct detection experiments (upper plots)

probe and exclude the DAMA-2013 signal for large dark matter masses while neutrino
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telescopes exclude the parameter space for light dark matter. This is due to the fact that

neutrino telescopes cannot probe fast moving, heavy dark matter while direct detection

experiments are less sensitive to slow and light dark matter.

When assuming the SHM, PandaX respectively PICO-60 exclude the preferred regions

in parameter space inferred from the DAMA-2013 signal by more than four orders of

magnitude. However, we find that parts of the parameter space cannot be excluded in a

halo-independent way. This conclusion heavily relies on the fact that we take into account

the channeling effect [335]. Neglecting it, we find no region in parameter space for which

the signal is compatible with PandaX or PICO-60 constraints. Using constraints from

PandaX Run 8 [217] and Run 9 [218], we are able to exclude the DAMA-2013 signal in

the whole parameter space except for a region at low masses, i.e. mDM ≤ 20 GeV, and

large cross sections σSI ≥ 10−38 cm2. For PICO-60 however, we find a much larger region

in parameter space that cannot be excluded in a halo-independent way. This is due to

the fact that the energy threshold to detect nuclear recoils in PICO-60 is much higher

than for DAMA-2013. Therefore, it is easier to find streams that cannot be detected by

PICO-60 but are visible in DAMA-2013.

As apparent from Eq. (B.30) and the previous discussion, we expect between four and

one streams for the combined analysis of one direct detection experiment and the DAMA-

2013 signal in three energy bins. In Tab. 2, we show some examples of optimal velocity

distributions that reconcile DAMA-2013 with null results from direct detection experi-

ments. For the analysis of the DAMA-2013 modulation signal confronted to PandaX,

we show the velocity distribution that minimizes the expected number of events for the

benchmark parameters mDM = 10 GeV and σSI = 10−37 cm2. In the spin-dependent

case, we tabulate the velocity distribution that minimizes the number of events expected

at PICO-60 for mDM = 3000 GeV and σSD = 10−34 cm2. The optimal stream configu-

ration for the combined analysis of PandaX and DAMA-2013 consists of three streams

with similar absolute values of the velocities. As discussed in general above, the chan-

neling effect [335] plays a crucial role for this solution as it lowers the velocity that is

necessary to induce a detectable recoil in DAMA-2013. The streams are placed such

that they are below or close to the PandaX threshold of v
(PandaX)
min = 259.6 km/s which

yields a tiny signal. However, those streams give rise to the correct modulation amplitude

as the threshold to induce a nuclear recoil that is detected in the highest energy bin is

v
(DAMA[3.0,3.5])

min = 143.9 km/s. The velocity distribution that minimizes the outcome at

PICO-60 has similar features. As tabulated in Tab. 2, it consists of four streams below

the threshold of v
(PICO-60)
min = 120.0 km/s. Those streams have velocities between 95 km/s

and 118 km/s. Thus, no signal is expected at PICO-60. As before, the streams reproduce

the correct modulation amplitude at DAMA-2013 as the velocity threshold of the highest

energy bin v
(DAMA[3.0,3.5])

min = 20.3 km/s is smaller than the velocities of the streams. For

both examples discussed above, the optimal velocity distribution consists of streams close

to the threshold of the null experiment. Therefore, even a small width of the stream might

spoil the solution and exceed the upper limits placed by PandaX or PICO-60. More pre-

cisely, the solutions presented in Tab. 2 are in tension with PandaX and PICO-60 if the
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stream 1 stream 2 stream 3 stream 4

c~vi 0.54 0.28 0.18 −
~vi [km/s] (−10,−123, 191) (100,−167,−161) (56, 119,−183) −

|~v (PandaX)
i ,max | [km/s] 257.1 264.3 255.1 −
|~v (DAMA)
i,June | [km/s] 256.1 245.0 195.7 −
|~v (DAMA)
i,Dec | [km/s] 198.8 263.2 255.1 −

c~vi 0.35 0.34 0.17 0.14
~vi [km/s] (−91, 10, 20) (−1, 100, 2) (35, 46,−52) (−37,−62, 74)

|~v (PICO-60)
i ,max | [km/s] 112.4 117.5 107.3 94.1

|~v (DAMA)
i,June | [km/s] 109.9 89.6 49.0 133.0

|~v (DAMA)
i,Dec | [km/s] 85.9 117.3 107.0 74.1

Table 2.: Examples for optimized velocity distributions assuming constraints from direct
detection experiments. We tabulate solutions that reconcile the DAMA-2013
modulation signal in the three lowest energy DAMA-2013 bins and null results
from PandaX for the benchmark point mDM = 10 GeV and σSI = 10−37 cm2.
For spin-dependent interactions, we use constraints from PICO-60 for mDM =
3000 GeV and σSD = 10−34 cm2. We show the velocities of the streams ~vi in the
galactic rest frame and the corresponding weights c~vi . Furthermore, we include
the velocities of the streams in the rest frame of the Earth and integrated over the
exposure time of PandaX respectively PICO-60. Finally, we depict the stream
configuration at June and December in the rest frame of the Earth, where the
minimum and the maximum of the DAMA-2013 signal is expected. This table
was taken from Ref. [2].

streams are smeared by Gaussians with widths larger than ∆v = 1.7 km/s respectively

∆v = 1.6 km/s.

As shown in Fig. 23, we find a lower limit of the cross section that is necessary to

reconcile the DAMA-2013 signal with upper limits from direct detection experiments.

However, there is no upper limit on the cross section. In order to see this, we study

the optimized distribution shown in Tab. 2 for the combined analysis of DAMA-2013 and

PandaX. The optimized stream configuration consists of three streams placed at velocities

close to 260 km/s. An increase in the cross section can be balanced by decreasing the

normalization of the weights by the same factor. In order to fulfill the constraint that the

velocity distribution has to be normalized, we introduce an additional stream below the

threshold of all experiments. This stream does not contribute to any of the experiments

and we choose the weight in such a way that the normalization condition is fulfilled.

Therefore, it is always possible to find a velocity distribution that reconciles DAMA-2013

and a direct detection experiment for a larger cross section.

In the bottom row of Fig. 23, we show the region in parameter space for which the

DAMA-2013 signal cannot be reconciled with results from neutrino telescopes. Here,

we use the limits derived from IceCube and Super-Kamiokande assuming annihilation

into W+W− (τ+τ− for mDM < mW ). As for the constraints from direct detection ex-
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stream 1 stream 2 stream 3 stream 4

c~vi 0.56 0.44 6× 10−5 −
~vi [km/s] (120,−623,−357) (110,−643,−337) (110, 177,−297) −

|~v (Sun)
i | [km/s] 728.0 734.2 362.8 −

|~v (DAMA)
i,June | [km/s] 728.0 735.4 333.0 −
|~v (DAMA)
i,Dec | [km/s] 734.2 729.1 392.6 −

c~vi 0.51 0.47 0.02
~vi [km/s] (70, 107,−167) (−60,−113, 173) (−50,−103, 143) −

|~v (Sun)
i | [km/s] 210.3 215.2 183.2 −

|~v (DAMA)
i,June | [km/s] 180.5 244.9 212.9 −
|~v (DAMA)
i,June | [km/s] 240.1 185.4 153.5 −

Table 3.: Examples for optimized velocity distributions assuming constraints from neu-
trino telescopes. We tabulate solutions that reconcile the DAMA-2013 modu-
lation signal in the three lowest energy bins and null results from the neutrino
telescopes IceCube as well as Super-Kamiokande. Concretely, we assume anni-
hilation into W+W− (τ+τ− for mDM < mW ). We use the benchmark points
mDM = 10 GeV and σSI = 10−37 cm2 for spin-independent interactions as well
as mDM = 3000 GeV and σSD = 10−34 cm2 for spin-dependent interactions. We
show the velocities of the streams ~vi in the galactic rest frame and the cor-
responding weights c~vi . Furthermore, we include the velocities of the streams
in the rest frame of the Sun. Finally, we depict the stream configuration at
June and December in the rest frame of the Earth, where the minimum and
the maximum of the DAMA-2013 signal is expected. This plot was taken from
Ref. [2].

periments, we find the optimized velocity distribution in the case of spin-independent

and spin-dependent scattering. We show in white the region in parameter space where

the DAMA-2013 signal is in tension with the upper limits on the annihilation rate from

neutrino telescopes. Conversely, the region in parameter space where DAMA-2013 can

be reconciled with neutrino telescopes is colored. For spin-independent as well as for

spin-dependent interactions, we find a region at large dark matter masses and large cross

sections that cannot be ruled out in a halo-independent way. For the former interaction

type, we find the region at mDM & 4 TeV and for the latter at mDM & 250 GeV. Fur-

thermore, we observe an allowed region for spin-independent interactions at dark matter

masses between 20 GeV and 40 GeV as well as for cross sections between 10−42 cm2 and

10−41 cm2.

The optimized velocity distributions that minimize the tension between the DAMA-

2013 signal and upper limits from neutrino telescopes consist of one to four streams,

confer Eq. (B.30). In Tab. 3, we show the stream configuration for the same benchmark

points as in Tab. 2, i.e. mDM = 10 GeV and σSI = 10−37 cm2 as well as mDM = 3000 GeV

and σSD = 10−34 cm2. In the case of spin-independent interactions, the optimal stream

configuration consists of three streams of which two are placed at very large velocities.
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The remaining stream has a small weight c~v3 ∼ O(10−5) and therefore barely contributes.

More precisely, all streams contribute to the first three DAMA-2013 bins in June as

well in December as they have velocities larger than v
(DAMA[3.0,3.5])

min = 143.9 km/s. For

spin-dependent interactions however, the optimal velocity distribution consists of three

streams with velocities between 180 km/s and 220 km/s. As apparent from Eq. (3.52),

the maximal velocity for which capture in the Sun is kinematically possible decreases for

heavy dark matter. Therefore, the capture rate from those streams is small. In contrast,

all streams contribute to the scattering rate at DAMA-2013 and therefore reproduce the

modulation signal.

For the regions in parameter space where DAMA-2013 can be reconciled with upper

limits from neutrino telescopes, we do not find that they extend to arbitrary large cross

sections. In contrast to constraints from direct detection experiments, increasing the cross

section cannot be compensated by a stream below the detection threshold of DAMA-2013.

This would yield a large capture rate and therefore a large annihilation rate inside the Sun

as the capture rate is largest for slow dark matter particles. Therefore, the regions in which

the DAMA-2013 data set is compatible with neutrino telescopes in a halo-independent

way have an upper and a lower bound on the cross section.

As apparent from the optimal velocity distributions shown in Tab. 2 and Tab. 3, the

optimal stream configurations are very different when considering constraints from direct

detection experiments compared to constraints from neutrino telescopes. For the former,

the velocity distribution must be small at large velocities in order to avoid a large scatter-

ing rate at the direct detection experiment. For neutrino telescopes however, the reverse

is preferred as streams with low velocities lead to a large capture rate in the Sun. It is

therefore interesting to study whether there exist velocity distributions that can reconcile

the DAMA-2013 signal with constraints from direct detection experiments and neutrino

telescopes.

In Fig. 24, we show the minimal number of events at PandaX and PICO-60 with the

constraints that the DAMA-2013 modulation amplitude is reproduced in the three energy

bins under consideration as well as that the upper limit from neutrino telescopes is not

violated. We find that the DAMA-2013 signal cannot be reconciled with the null results

from PandaX and the neutrino telescopes IceCube and Super-Kamiokande assuming spin-

independent dark matter-nucleus interactions. For dark matter masses between 5 GeV

and 10 TeV, the minimal number of events expected at PandaX is O(103) which is much

larger than the 90 % upper limit from PandaX NPandaX
u.l. = 6.7. For very large dark matter

masses mDM � 10 TeV, we find a velocity distribution that reconciles the experiments.

This is due to the fact that neutrino telescopes do not probe this region. However, such

heavy dark matter particles are in tension with the unitarity limit for thermally produced

dark matter [336]. For spin-dependent interactions, we find velocity distributions that

reconcile DAMA-2013 with the null results from PICO-60 and neutrino telescopes. Those

solutions exist for dark matter particles heavier than ∼ 4.5 TeV for which the limits from

neutrino telescopes can be evaded due to v
(NT)
max decreasing with increasing dark matter

mass, confer Eq. (3.52). However, the optimal stream configurations are fine tuned and
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Figure 24.: In this figure, we show the DAMA-2013 signal confronted to null results from
direct detection experiments and neutrino telescopes. In the left plot, we
assume spin-independent interactions and constraints from PandaX as well as
IceCube and Super-Kamiokande. We depict the minimal number of events
at PandaX that is compatible with the DAMA-2013 signal and the upper
limits from neutrino telescopes as a solid line. We additionally include the
upper limit from PandaX on the number of nuclear recoil events as a dashed
line. In the right plot, we assume spin-dependent interactions and constraints
from PICO-60 as well as IceCube and Super-Kamiokande. We indicate the
minimal number of events at PICO-60 by a solid line and the upper limit on
the number of events by a dashed line. These plots were taken from [2].

even a small width of the streams spoils the solutions. Concretely, we find that smearing

the streams with Gaussian distributions with a width of σv & 1.7 km/s is enough to spoil

the solutions.

We note that the analysis presented in this section is conservative and some of the

allowed parameters might be excluded in a more detailed analysis. The DAMA collab-

oration observes a signal that is well fit by a cosine modulation with maximum in June

and minimum in December, compare [22, 23]. Our optimized solutions consist of only

few streams, therefore the time dependence of the recoil rate can be different from a co-

sine function, see Ref. [240]. Another caveat is that the annual modulation amplitude in

Eq. (3.48) predicts the minimum of the recoil rate to be in winter and the maximum to be

in summer. For streams however, the absolute minima and maxima might occur at other

times of the year. Therefore, we expect that the region in parameter space for which the

DAMA-2013 signal is compatible with null searches shrinks further if we constrain the

shape of the modulation signal.

7.2. Halo-independent analysis of the DAMA data

Here, we study the DAMA data released in 2018 [23] that features two additional low

energy bins compared to DAMA-2013. As we show later in this section, the modulation

signal in those additional two bins is hard to reproduce for spin-independent interactions

assuming the SHM, confer also Ref. [235]. Instead of repeating the analysis presented

in the previous section, we reconstruct both the dark matter mass and the interaction

84



7.2. Halo-independent analysis of the DAMA data

cross section from the annual modulation signal. We do this once assuming the SHM and

once in a fully halo-independent way, which allows us to check whether the tension for

spin-independent interactions can be alleviated when being agnostic about the velocity

distribution. Furthermore, this gives hints on the impact of astrophysical uncertainties

on the interpretation of the DAMA-2018 signal. In contrast to the previous discussion in

this chapter, the following analysis was not published previous to this work.

7.2.1. Statistical modeling of DAMA-2018

In order to determine the most likely parameters to reproduce the DAMA-2018 data, we

adopt a maximum likelihood method. In the following, we focus on spin-independent as

well as spin-dependent interactions. However, the same formalism can be applied to other

interaction types. We base our analysis on the maximum likelihood ratio

L(mDM, σ | Sm,obs)

L(m̂DM, σ̂ | Sm,obs)
, (7.3)

where the quantities with hats denote the maximum likelihood estimators. Furthermore,

Sm,obs are the observed modulation amplitudes in the DAMA-2018 data set in the energy

bins under consideration. A pair of parameters (mDM, σ) is allowed at a confidence level

α if

2 ln (L(mDM, σ | Sm,obs)) ≥ 2 ln(Lmax)− 2 ln(∆Lα) (7.4)

where Lmax = L(Sm | m̂DM, σ̂) is the global maximum of the likelihood and ∆Lα is

determined by the confidence level. In order to find the allowed region in parameter space,

we first determine the global maximum of the likelihood. We then scan the parameter

space and evaluate Eq. (7.3) for each point to check whether it is allowed.

Following Ref. [247], we assume that the DAMA-2018 data are normally distributed in

each bin. With this, the condition of Eq. (7.4) can be rewritten in terms of the chi-square

distribution

χ2(mDM, σ | Sm,obs) ≤ χ2
min + ∆χ2

α , (7.5)

where χ2
min denotes the global minimum and ∆χ2

α depends on the confidence level α.

The chi-square distribution is a quadratic function depending on the observed and the

predicted modulation amplitude as well as the uncertainty of the amplitude

χ2
DAMA(mDM, σ | Sm,obs) =

∑

bins

(
S

(bin)
m (mDM, σ)− S

(bin)
m,obs

)2

σ2
bin

, (7.6)

where Sm,obs denotes the modulation amplitude observed in the DAMA-2018 data.

This can be expanded in terms of streams by using the fact that the velocity distribution
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enters linearly when computing the modulation amplitude

S(bin)
m (mDM, σ) =

∑

i

S
(bin)
~vi

(mDM, σ) c~vi , (7.7)

where the stream response functions S
(bin)
~vi

can be calculated from Eq. (3.48) using the

decomposition into streams given in Eq. (4.2). Using this expansion for the chi-squared

distribution describing the DAMA-2018 data given in Eq. (7.6), we obtain a quadratic

polynomial in the primal variables c~vi

χ2
DAMA(mDM, σ | Sm,obs) =

∑

bins

1

σ2
bin

((
S

(bin)
m,obs

)2
− 2 S

(bin)
m,obs

∑

i

S
(bin)
~vi

(mDM, σ) c~vi

+
∑

i,j

S
(bin)
~vi

(mDM, σ) S
(bin)
~vj

(mDM, σ) c~vi c~vj


 . (7.8)

This allows us to write the maximum likelihood ratio of Eq. (7.3) as a quadratic opti-

mization problem with linear constraints

minimize: χ2
DAMA(mDM, σ | {c~vi}) (7.9)

subject to: c~vi ≥ 0 ∀ i
∑

i

c~vi = 1 .

This problem is equivalent to a second order cone problem and we solve it for each pair

of parameters (mDM, σ) using the routines provided by the Python module CVXOPT [300].

7.2.2. Reconstructing dark matter properties from DAMA-2018

In order to find the allowed region in parameter space when assuming the SHM, we

proceed as described in the previous section and directly use Eq. (7.5). For the halo-

independent analysis however, we minimize the chi-square distribution with respect to

the velocity distribution for each dark matter mass and scattering cross section. A point

in parameter space is compatible with the annual modulation signal if it fulfills

min
f(~v)
{χ2

DAMA(mDM, σ | Sm,obs)} ≤ χ2
DAMA,min + ∆χ2

α , (7.10)

where χ2
DAMA,min is the minimum of the chi-square distribution with respect to the dark

matter mass, cross section and velocity distribution.

In Fig. 25, we show the results for an analysis assuming the SHM (top panel) as well as

a fully halo-independent analysis (lower panel). We show the contours corresponding to a

confidence level of 90% respectively 99% which are derived using Eq. (7.5) or Eq. (7.10).

Furthermore, we mark the best fit point, i.e. where the minimum of the chi-square

distribution is attained, by a star and give the concrete values in the lower left corner of

the plot. If the global minimum of the chi-square distribution is degenerate, we do not
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Figure 25.: Regions in parameter space that are compatible with the DAMA-2018 mod-
ulation signal at a confidence level of 90% respectively 99%. Shown are the
regions when assuming the SHM (upper row) and when being agnostic about
the velocity distribution (lower row). In each case, we study spin-independent
(left) and spin-dependent interactions (right).

indicate the best fit point and neither give a best fit dark matter mass nor the best fit

scattering cross section.

When assuming the SHM, spin-independent interactions provide a bad fit to the DAMA-

2018 data. Concretely, the best fit point has a reduced chi-square of 2.67 which is equiv-

alent to a p-value of 0.0067. We note that this observation coincides with the findings

of Refs. [235, 291]. The bad fit is due to the fact that the lowest two energy bins of the

DAMA-2018 data are incompatible with the signal shape expected from spin-independent

interactions. However, the data set from 2018 [23] has a lower energy threshold compared

to the 2013 data set which does therefore not contain the problematic bins. Thus, spin-

independent interactions provide an acceptable fit to the DAMA-2013 data set as found

by Ref. [247]. In contrast to this, spin-dependent interactions reproduce the DAMA-2018

signal reasonably well when assuming the SHM. In this case, we find a minimal reduced

chi-square of 1.14 which yields an acceptable fit. We obtain two allowed regions at dark

matter masses of approximately 10 GeV respectively ∼ 50 GeV. They are very small and

are located approximately at the same interaction cross section of σp
SD ∼ 10−36 cm2. This

leads to very strong predictions that are in conflict with the results of other direct dark

matter searches that constrain spin-dependent interactions, confer Figs. 6 and 7.

In order to asses the impact of the velocity distribution on the parameter reconstruction
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from the DAMA-2018 signal, we minimize the chi-square distribution with respect to the

velocity distribution for each dark matter mass and scattering cross section. For spin-

independent interactions, we find that the modulation signal can be perfectly reproduced

for a large number of dark matter masses and scattering cross sections. Furthermore, the

allowed region in parameter space at a confidence level of 90% respectively 99% increases

significantly. We conclude that the spin-independent scattering cross section has to be

larger than ∼ 2 · 10−42 cm2 and the dark matter mass has to be larger than 5 GeV in

order to reproduce the DAMA-2018 signal. For spin-dependent interactions, we obtain

similar results. Being agnostic about the velocity distribution again leads to perfect fits

for a large region in parameter space. For an arbitrary velocity distribution, we find that

the correct modulation signal can only be reproduced for a spin-dependent scattering

cross section larger than ∼ 10−37 cm2 and for dark matter particles heavier than 5 GeV.

As in the analysis presented in section 7.1, the reconstructed regions in parameter space

are not bounded from above neither for the spin-independent nor for the spin-dependent

scattering cross section. This is again due to the fact that increasing the scattering

cross section can be compensated by adding a stream below the detection threshold of

DAMA-2018. We note that the lower bound on the allowed dark matter masses is due to

kinematics and the energy threshold Eth ∼ 3 keV of DAMA-2018.

For both types of interactions, the smallest possible cross section is still in conflict with

the upper limits derived from the SHM. However, this does not imply that the modulation

signal is excluded by the results of other direct dark matter searches as the optimized

velocity distribution could significantly degrade the upper limits. This is also apparent

from Figs. 15 and 17. In order to check whether the DAMA-2018 signal is compatible with

other experiments, we need to perform a combined halo-independent analysis similar to

section 7.1. The computational effort of such an analysis is tremendous as the chi-square

distribution has to be modeled in general by a symmetric N3×N3 matrix where N is the

number of discrete velocities for a single spatial dimension. For 100 discrete velocities per

spatial dimension, the resulting matrix has N3 (N3 + 1)/2 ≈ 1012 independent entries.

This analysis is beyond the scope of this work, as each spatial dimension has to be

discretized into several hundreds of discrete velocities in order to model the velocity

distribution accurately.

7.3. Discussion and summary

In this chapter, we analyzed the dark matter interpretation of the DAMA annual mod-

ulation signal. First, we confronted the DAMA-2013 signal to null results from other

dark matter experiments. Concretely, we used constraints from direct detection experi-

ments as well as from neutrino telescopes, assuming annihilation into W+W− (τ+τ− for

mDM < mW ). For constraints from one individual dark matter search, we found velocity

distributions that are able to reproduce the modulation signal in the three lowest energy

bins of the DAMA-2013 data set. When considering combined constraints from direct

detection experiments and neutrino telescopes, we observed that the DAMA-2013 signal
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can only be reconciled for dark matter masses larger than 165 TeV for spin-independent

interactions and for mDM & 4.5 TeV assuming spin-dependent interactions. We stress

that those solutions arise only when assuming the channeling effect that allows to detect

nuclear recoils below the energy threshold at DAMA. We furthermore note that the opti-

mized distributions are fine tuned as smearing the streams with Gaussians with a width

of σv & 1.7 km/s spoils the solutions.

Using the DAMA-2018 data set, we observed that uncertainties in the velocity distri-

bution significantly affect the reconstruction of parameters. When assuming the SHM, we

obtained small regions in parameter space that are compatible with the modulation sig-

nal. For general velocity distributions however, these regions increase significantly and it

is only possible to extract the smallest dark matter mass and scattering cross section that

could reproduce the modulation signal. Concretely, we found that the spin-independent

scattering cross section has to be larger than ∼ 2 ·10−42 cm2 and the dark matter particle

has to be heavier than ∼ 5 GeV. For spin-dependent interactions, we obtained the same

lower bound on the dark matter mass while the spin-dependent scattering cross section

has to be larger than ∼ 10−37 cm2. We note that the lower bound on the dark matter

mass is due to kinematics and the energy threshold Eth ∼ 3 keV of DAMA-2018.
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Chapter 8.

Impact of sub-halos on direct dark

matter searches

The content of this chapter was published in Ref. [5] unless explicitly stated otherwise.

As a consequence of structure formation, the Milky Way halo contains a large variety

of substructure. Dark matter sub-halos for example are expected to have masses ranging

from 10−6M� to ∼ 1011M�, confer Fig. 26. Due to this large spread, substructure affects

the Milky Way on all scales and can leave characteristic imprints.

On scales of our Solar System, the Milky Way halo could be affected by individual

substructures. By studying the motion of stars in the solar neighborhood mapped by

Gaia [107, 108], Ref. [102] showed that the surrounding of the Solar System is largely

influenced by a non-virialized component. This additional component could originate

from the tidal disruption of a massive satellite [102]. Other examples of substructures

that could influence the dark matter halo in the solar neighborhood are stellar streams

like Sagittarius [136–138] or S1 [139]. If the Earth is currently affected by one of these

structures, the signal at direct detection experiments could be enhanced. The impact of

known substructure in the proximity of the Sun was investigated for the Sagittarius stream

in [138] and for the S1 stream in [139]. Furthermore, the sub-halos predicted by N-body

simulations were used to estimate the effect on direct detection experiments [337–341].

As dark matter substructure is expected to exist in a huge variety of masses and sizes, it

might not only have impact on the solar neighborhood but also leave detectable signatures

on galactic scales. One possible effect is an enhancement of the γ-ray signal from the

Milky Way halo due to the presence of sub-halos [342–347]. Since some dwarf spheroidal

galaxies host a large amount of dark matter and have large concentration parameters,

the annihilation rate of dark matter particles could be significantly enhanced in these

structures. Therefore, several studies [348–355] investigated the γ-ray signal originating

from the direction of known dwarf spheroidal galaxies. This signal might even be boosted

by smaller subsub-halos that are bound to dwarf spheroidal galaxies [135]. Neutrinos

from dark matter annihilations in those structures are currently impossible to detect as

the signal is too faint due to the large distance between the dwarf spheroidal galaxy

and the Earth as well as due to the small interaction cross section of neutrinos. Another

signature of dark matter sub-halos are gaps or similar features [356–360] in stellar streams

that can be detected by a high precision astrometric survey like Gaia [107, 108]. Those

features arise due to the gravitational perturbations induced by a sub-halo that passes
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Figure 26.: The left plot shows the sub-halo mass functions from the semi-analytical model
of Ref. [135] and from two parametric models with α = 1.8 and α = 2.0. The
right plot depicts the parameter α of the sub-halo mass function for the three
models shown in the left plot. The plots were taken from [5].

close to the stream. Furthermore, the signal of high energy neutrinos originating from

dark matter annihilations in the Sun could be affected by sub-halos [361]. As discussed

in detail in section 3.3.2, this annihilation signal depends on the amount of dark matter

the Sun captures over time. As the Sun traverses the Milky Way, encounters with sub-

halos lead to an increased capture rate during passage of the sub-halo. This, in turn,

could affect the neutrino signal from the Sun today as the relaxation into equilibrium is

extended over time.

In the following, we investigate a specific source of astrophysical uncertainties and de-

termine the impact of dark matter sub-halos on direct detection experiments and neutrino

telescopes. We extend previous works studying the enhancement of the dark matter sig-

nal at direct detection experiments by taking into account sub-halos as light as 10−5M�,

whereas previous studies [337–341] were restricted to the resolution of N-body simulations

which is at best 105M�. Furthermore, we quantify the enhancement of the neutrino signal

from dark matter annihilation in the Sun by tracing the number of dark matter particles

captured by the Sun over the whole lifetime.

In addition to the properties and the distribution of dark matter sub-halos that were

introduced in section 2.3, we adopt the semi-analytical sub-halo mass function from [135].

We furthermore investigate more general sub-halo mass functions that are parametrized

via

dN

dM
= A ·M−α, (8.1)

where A is the normalization and α is the exponent of the power law. We determine

A by fitting the parametric model to the sub-halo mass function from [135]. In the left

plot of Fig. 26, we compare the parametric models for α = 1.8 and α = 2.0 to the full

sub-halo mass function calculated in [135]. From this, we observe that the parametric

model with α = 1.8 (α = 2.0) predicts the most heavy (light) sub-halos as well as the

least light (heavy) sub-halos. Those two parametric models are therefore ideally suited
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to study the impact of uncertainties in the sub-halo mass function. We furthermore show

the power law index α extracted from the results of Ref. [135] in the right plot of Fig. 26.

It is obtained by fitting the sub-halo mass function of [135] in mass bins to the parametric

model in Eq. (8.1). As apparent from this plot, α = 1.8 and α = 2.0 are good estimators

for the lowest and the largest values of α. In order to be consistent with the sub-halo

mass function, we use the distributions of the sub-halo properties ρs, rs and rt that were

kindly provided by the authors of Ref. [135] via private communications.

We are interested in signatures of dark matter from a smooth background as well as from

sub-halos. For the smooth background halo, we adopt the SHM with a local dark matter

density ρloc
SHM and a velocity distribution fSHM(~v) as shown in Eq. (2.17). We furthermore

describe sub-halos as detailed in section 2.3.1 but we work in the rest frame of the Sun

respectively the Earth. Therefore, we have to take into account the relative velocity ~vrel

of the sub-halo and the respective celestial body. In the specific case of the Sun, the

relative velocity is given by ~vrel = ~v� − ~vsh, where ~v� and ~vsh are the velocities of the

Sun respectively the sub-halo in the Galactic rest frame. This leads to a time-dependent

dark matter density ρloc
sh [r(t)] at the position of the Sun, where r(t) is the distance of the

detector to the sub-halo center that changes as the Sun traverses the sub-halo. We obtain

the velocity distribution of dark matter particles bound to the sub-halo in the rest frame

of the respective celestial body via a Galileo transformation of Eq. (2.25)

fsh|~vsh(~v) =
1

(2πσ2
sh)3/2

exp

[
−|~v + ~vrel|2

2σ2
sh

]
. (8.2)

Since we assume that the velocities of the sub-halos follow a Maxwell-Boltzmann dis-

tribution, we conclude that the speed of the sub-halo is much larger than its velocity

dispersion σsh for all but the heaviest sub-halos, see Fig. 4. Therefore, the dark matter

particles bound to the sub-halo behave effectively as a stream of dark matter particles

with velocity ~vrel

fsh|~vsh(~v) ' δ(~v + ~vrel) . (8.3)

With this, we can finally calculate the flux of dark matter particles at the position of the

Sun or the Earth. It has two components, one from the smooth Milky Way dark matter

halo which is described by the time-independent quantities ρloc
SHM and fSHM(~v) as well as a

component from dark matter sub-halos that is characterized by the time-dependent dark

matter density ρloc
sh [r(t)] and velocity distribution fsh,~vsh(~v). The flux is given by

F (~v, t) = v

(
ρloc

SHM

mDM
fSHM(~v) +

ρloc
sh [r(t)]

mDM
fsh|~vsh(~v)

)
, (8.4)

where v is the velocity of the dark matter particle in the rest frame of the Sun or the

Earth.
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8.1. Impact of sub-halos on direct detection experiments

As described in detail in section 3.3.1, the signal of dark matter at a direct detection

experiment is characterized by the number of scattering events N during the exposure of

the experiment. Here, we write the scattering rate of dark matter particles in terms of

the flux F (~v, t), confer Eq. (8.4), in order to include the contribution of the smooth Milky

Way halo as well as the sub-halos. The scattering rate at current times t0 then reads

R =
∑

i

∫ ∞

0
dER εi(ER)

ξi
mTi

∫

v≥v(ER)

min,i

d3v F (~v + ~v⊕, t0)
dσi
dER

(v,ER) , (8.5)

where mTi and ξi are the mass respectively the mass fraction of a nucleus Ti. Furthermore

εi is the probability to detect a nuclear recoil off the target nucleus i and dσi
dER

is the

differential WIMP-nucleus scattering cross section of a dark matter particle with the

nucleus Ti. Finally, ~v⊕ denotes the velocity of the Earth in the galactic rest frame and

the minimal velocity of a dark matter particle that is necessary to observe a detectable

recoil in the detector is given by v
(D)
min,i(ER) =

√
mTi ER/(2µ

2
Ti

).

As we assume that the dark matter particles bound to a sub-halo behave effectively

as a stream, we show in Fig. 27 the scattering rate due to such a stream normalized

to the scattering rate RSHM expected from the smooth background halo as a function

of the velocity with respect to Earth ~vrel. For this, we denote the scattering rate of a

stream with velocity distribution δ(~v + ~vrel) and dark matter density ρloc
SHM by R

ρlocSHM

δ(~v+~vrel)
.

For dark matter masses greater than 100 GeV, the scattering rate for large velocities is

smaller than expected from the SHM while it is enhanced for small velocities. For light

dark matter however, the enhancement occurs for fast streams while the scattering rate is

zero for slow streams. This is due to fact that the detection threshold is very important

for light dark matter. If the particles in the stream are to slow, the energy transfer is

too small to cause an observable recoil in the detector. For large velocities however, the

enhancement is large as most of the velocities probed by the SHM do not contribute to

the scattering rate.

With this, we investigate the case that the Earth currently traverses a sub-halo with

mass M and concentration parameter cV that moves with a relative velocity ~vsh in the

galactic rest frame. We calculate the recoil rate at a direct detection experiment from

Eq. (8.5) by specifying the properties of the sub-halo. The increment of the scattering

rate with respect to the expectation from the SHM is given by

IR ≡
R

RSHM
− 1 ' ρloc

sh [r(t)]

ρsh
SHM

R
ρlocSHM

δ(~v+~vrel)

RSHM
, (8.6)

where we assume that the velocity distribution of dark matter particles bound to the

sub-halo is approximately a stream, confer Eq. (8.3), with velocity ~vrel = ~v⊕−~vsh and ~v⊕
is the velocity of the Earth in the rest frame of the galaxy. We show the contours of IR in

Fig. 28. Here, ρloc
sh [r(t)] is the density of dark matter particles bound to the sub-halo as a

function of the current distance r(t0) of the Earth to the center of the sub-halo. We find
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Figure 27.: Scattering rate for a stream in the case of XENON1T [221] (left) and CRESST
[228] (right). We assume that the stream has a velocity |~vrel| in the rest frame
of the detector and a local dark matter density ρloc

SHM. In both cases, we use the
DDCalc [326, 327] package to compute the detector responses. A gray dashed
line separates the plot into two regions, where the scattering rate is enhanced
(suppressed) with respect to the SHM in the upper (lower) part of the plot.
These plots were taken from [5].

that the increment increases if the contribution of the sub-halo to the local dark matter

density, i.e. ρloc
sh [r(t)]/ρsh

SHM, is large. Additionally, a velocity distribution that is more

favorable to detect dark matter recoils than the SHM increases IR.

In the following, we calculate the probability that the Earth currently traverses a sub-

halo and obtain the increment IR due to the sub-halo. The probability that a sub-halo

with mass M and concentration cV contributes currently with a dark matter density ρ̃ to

the local dark matter density at Earth is given by

P (ρ̃,M, cV ) = P (D,M, cV )

[
d ρ̃(D,M, cV )

dD

]−1

for D < Rvir(M, cV ) , (8.7)

where P (D,M, cV ) is the probability to find the center of a sub-halo with mass M and

concentration cV at distance D from Earth. We calculate this probability by multiplying

the probability P (M) to find a sub-halo with mass M with the conditional probability

P (cV |M) to observe a concentration parameter cV given a sub-halo mass M . Finally, we

multiply this by the probability that the Earth is located at distance D from a sub-halo

center, given that the sub-halo has mass M and concentration parameter cV . In total,

we obtain

P (D,M, cV ) = P (M)P (cV |M)P (D|M, cV ) . (8.8)

We calculate the probability to find a sub-halo with mass M from the sub-halo mass

functions shown in Fig. 26. This probability is given by the sub-halo mass function

divided by the total number of sub-halos Nsh in the Milky Way, i.e.

P (M) =
1

Nsh

dN

dM
. (8.9)
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Figure 28.: Increment of the scattering rate from one single sub-halo encounter as a func-

tion of the ratios R
ρlocSHM

δ(~v+~vrel)
/ρloc

SHM and ρloc
sh [r(t)]/ρsh

SHM. A white region indi-
cates the parameters for which IR < 1 while colored regions indicate larger
increments. This plot was taken from Ref. [5].

Furthermore, we calculate the conditional probability P (cV |M) from the supplementary

data kindly provided by the authors of Ref. [135]. With this, we obtain the probability of

the Earth currently being located at distance D from a sub-halo center given M and cV

P (D|M, cV ) ≡ 1

Nsh

dNsh(D)

dD
=

4πD2n̄sh(D)

Nsh
for D < Rvir(M, cV ) , (8.10)

where dNsh(D) is the number of sub-halos in a spherical shell with radius D and thickness

dD. Therefore, we write dNsh(D) = 4πD2n̄sh(D)dD with the average density of sub-halos

n̄sh(D) at distance D

n̄sh(D) =
1

2

∫ 1

−1
nsh[r(D,ψ)] d cos(ψ) . (8.11)

Here, nsh(r) is the number density of sub-halos as a function of the distance of the Earth to

the Galactic Center r(D,ψ) =
√
D2 + r2

⊕ − 2 r⊕D cos(ψ). Furthermore, r⊕ ≈ r� denotes

the distance of the Earth to the Galactic Center and ψ is the angular separation between

the Sun and the Galactic Center. Concretely, we assume that the spacial distribution

of sub-halos does neither depend on the mass M nor on the concentration parameter cV

of the sub-halo. This is motivated by the hydrodynamical N-body simulation conducted

in Ref. [154], which suggests that baryonic disruption affects heavy sub-halos at small

distances from the galactic center. However, the spatial distribution of sub-halos depends

only mildly on sub-halo properties at larger distances from the galactic center which is

relevant for this work.

We calculate the probability that one sub-halo contributes a dark matter density ρ̃ to

the local dark matter density at Earth by marginalizing the sub-halo mass M and the
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8.1. Impact of sub-halos on direct detection experiments

concentration parameter cV in Eq. (8.7):

Psingle(ρ̃) =

∫ Mmax

Mmin

dM

∫ cV,max

cV,min

dcV P (ρ̃,M, cV ) . (8.12)

We restrict the integration of the mass in Eq. (8.12) to sub-halos heavier than 10−6M�
and lighter than 1012M� as dictated by the sub-halo mass function. The integration over

cV ranges from 0 to ∞, however concentration parameters outside the interval [1, 35] are

heavily suppressed. We show this probability distribution in the left plot of Fig. 29 for
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Figure 29.: Probability of a contribution ρ̃ to the local dark matter density at the position
of the Earth from a single sub-halo (left) and from some sub-halo (right) in the
Milky Way. In both plots, we indicate O(1) overdensities by a gray dashed
line. Both plots show the probability distributions under consideration for
both the full sub-halo mass function from [135] as well as for the same sub-
halo mass function restricted to sub-halos heavier than 105M�. In both plots,
the probability distribution at large ρ̃ is suppressed when only heavy sub-halos
are considered. These plots were taken from Ref. [5].

the sub-halo mass function from [135]. The probability that a single sub-halo contributes

significantly to the local dark matter density at Earth is negligible, as evident from the

plot. This is to be expected as the volume of an individual sub-halo is small in comparison

with the Milky Way. Indeed, we find that the total probability Psingle to observe any

contribution from a single sub-halo to the local dark matter density at the position of the

Earth from Eq. (8.12) is negligible

Psingle =

∫
dρPsingle(ρ) ≈ 5 · 10−17 . (8.13)

As shown in the left plot of Fig. 29, those conclusions do not change when only considering

sub-halos heavier than 105M�.

As the number of sub-halos bound to the Milky Way is large, it is likely that some

sub-halo contributes to the local dark matter density. The probability that the Earth is

immersed by any single sub-halo is given by

P1 = Nsh Psingle (1− Psingle)
Nsh−1 ≈ Nsh Psingle (1− Psingle)

Nsh ∼ 12% . (8.14)
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Furthermore, the probability that the Earth is currently located within two sub-halos

simultaneously is given by

P2 =

(
Nsh

2

)
(Psingle)

2 (1− Psingle)
Nsh−2 ≈ 1

2
(Nsh Psingle)

2 P0 = 0.7% , (8.15)

and it is even more unlikely that three or more sub-halos contribute to the local dark

matter density in the Solar System at the same time. Therefore, we neglect the possibility

that the Earth is located within multiple sub-halos at the same time. We then calculate

the probability P (ρ̃) that some sub-halo contributes with ρ̃ to the local dark matter

density by rescaling the probability distribution in Eq. (8.12) such that

∫
dρP (ρ) = A

∫
dρPsingle(ρ) = P1 , (8.16)

where A is a constant. From this, we obtain the probability distribution P (ρ̃) as

P (ρ̃) =
P1

Psingle
Psingle(ρ̃), (8.17)

which is shown in the right plot of Fig. 29 for the sub-halo mass function from [135].

As depicted in the plot, there is a probability of 0.1 % to find an overdensity ρ̃ that is

equal to the dark matter density expected from the smooth background halo. Larger

contributions are more unlikely, e.g. for an overdensity as large as 10 ρloc
SHM we find a

probability of 10−3 %. In Fig. 29, we also show the probability distributions derived from

the sub-halo mass function of [135] when neglecting contributions from sub-halos lighter

than 105M�. This is approximately the resolution of current N-body simulations. As

apparent from the plot, neglecting light sub-halos decreases the probability to have large

overdensities ρ̃ in the solar neighborhood. This is to be expected as a large overdensity is

either due to the Earth passing through a heavy sub-halo or a passage close to the center

of a sub-halo. The first possibility is well approximated by considering only sub-halos

with masses larger than 105M�. However, taking into account the full sub-halo mass

function results in a significantly larger probability of observing a passage close to the

center of a sub-halo. Concretely, neglecting light sub-halos decreases the probability to

find ρ̃ as large as ρloc
SHM by a factor of approximately 3. Larger overdensities like 10 ρloc

SHM

are suppressed by a factor of ∼ 10.

Having calculated the velocity distribution of a dark matter particle bound to a sub-

halo as well as the probability distribution for ρ̃, we determine the increment IR of

the scattering rate due to a sub-halo. More concretely, we consider the experiments

XENON1T [221] and CRESST [228] as they offer an interesting comparison between an

experiment with a large exposure and an experiment with a low detection threshold. In

Fig. 30, we show plots of the probability distributions of IR for both experiments and

for dark matter masses of 5 GeV, 100 GeV and 10000 GeV. For all dark matter masses

and both experiments, we find that there is a probability . 7 · 10−4 for increasing the

scattering rate by an O(1) factor. In order to quantify the impact of the sub-halo mass
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Figure 30.: Probability distributions for the increment IR assuming dark matter masses
of 5 GeV, 100 GeV and 10000 GeV. The left column of plots shows P (IR)
for XENON1T [221] and the right column for CRESST [228]. In all plots,
we use the DDCalc [326, 327] package to compute the detector responses. A
gray dashed line indicates the probability for an O(1) enhancement of the
scattering rate. These plots were taken from [5].
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function, we also analyze two parametric models where dN/dM follows a power law

∝ M−1.8 respectively ∝ M−2.0. The choices of the power law indices are motivated by

the upper and lower limits of the parameter α(M) from [135]. We show this in the right

plot of Fig. 26. When considering those parametric models, we find that the probability

to have an O(1) (O(10)) enhancement of the scattering rate can be a factor of ∼ 3 (∼ 4)

larger than obtained with the full sub-halo mass function from Fig. 26.

8.2. Enhancement of the neutrino signal from the Sun

The idea that dark matter substructure might influence the capture of dark matter in

celestial bodies like the Sun was first introduced in [361]. As discussed in detail in sec-

tion 3.3.2, dark matter particles that traverse the Sun lose energy via scatterings with

nuclei in the Sun. If the energy loss is large enough, the dark matter particle is captured

gravitationally by the Sun. Here, we write the capture rate of dark matter particles in

the Sun, confer equation (3.57), in a time-dependent way by defining it in terms of the

flux of dark matter particles at the position of the Sun from Eq. (8.4):

C(t) =
∑

i

∫ R�

0
4π r2 dr ηi(r)

∫

v≤v(Sun)max,i(r)
d3v

F (~v, t)

v2
w2(r)

∫ 2µ2Ti
w2(r)/mTi

mDMv2/2
dER

dσi
dER

(w(r), ER) .

(8.18)

We determine the number density of the ith nuclear species from the Solar model AGSS09

[254]. Furthermore, we consider spin-independent and spin-dependent interactions for

the differential scattering cross section dσi/dER. Concretely, we assume the Helm form

factor [185,187] for spin-independent interactions and the form factors from Ref. [207] for

spin-dependent interactions.

As the number of dark matter particles captured by the Sun changes over time, we

describe it by the differential equation

dN(t)

dt
= C(t)− CAN(t)2 , (8.19)

as discussed in section 3.3.2. We neglect the evaporation off nuclei in the Sun as we are

interested in dark matter particles heavier than 4 GeV [261]. Furthermore, the constant

CA quantifies how efficient dark matter particles are depleted via annihilation. We cal-

culate this following the procedure discussed in Refs. [249, 256] as well as summarized in

section 3.3.2. In the case of a smooth and constant Milky Way dark matter distribution

described by the SHM, the capture rate is constant over time, i.e. C(t) = CSHM. In the

following, we define the time t = 0 as the time of the formation of the Sun and therefore

N(t = 0) = 0. For a time-independent capture rate CSHM, the solution of Eq. (8.19) is
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given by

N(t) =

√
CSHM

CA
tanh

(
t

τ

)
= NSHM tanh

(
t

τ

)
, (8.20)

where τ = 1/
√
CSHMCA is the equilibration time. If equilibrium between capture and

annihilation of dark matter particles is achieved, i.e. t � τ , the number of dark matter

particles in the Sun becomes constant and is equal to NSHM ≡
√
CSHM/CA.

As discussed in section 3.3.2, the annihilation rate today at t = t0 ' 4.6 Gyr is given

by

ΓA =
1

2
CAN(t0)2 , (8.21)

where N(t0) is the number of dark matter particles captured in the Sun today. In the

case of the time-independent capture rate from the constant Milky Way dark matter

distribution C(t) = CSHM, the annihilation rate is given by the simple formula

ΓA =
CSHM

2
tanh2

(
t0
τ

)
t0�τ−−−→ CSHM

2
. (8.22)

In the limit that equilibrium is achieved until current times, i.e. t0 � τ , there is one

annihilation event per two captured particles. This simple relation is often used when

converting the capture rate that is predicted by a given dark matter model to the annihila-

tion rate constrained by neutrino telescopes. However, there are cases where equilibrium

is not achieved, for example in scenarios in which the annihilation rate is p-wave sup-

pressed [362] or for very small dark matter-nucleus cross sections. As a consequence of

this, the annihilation signal is suppressed by a factor tanh2
(
t0
τ

)
and Eq. (8.22) overesti-

mates the strength of the annihilation signal.

8.2.1. Impact of a single sub-halo encounter

On top of the smooth Milky Way dark matter density, we consider an additional, time-

dependent contribution from sub-halos. For one single sub-halo encounter between t = t−
and t = t+, the capture rate of dark matter particles in the Sun is given by

C(t) = CSHM + Csh(t)Θ(t− t−)Θ(t+ − t) , (8.23)

where Csh(t) denotes the capture rate from the sub-halo. As an approximation, we only

deal with complete sub-halo passages of the Sun, i.e. the Sun enters and exits the sub-

halo. Therefore, we replace the time-dependent capture rate from the sub-halo Csh(t) by

its mean value between t = t− and t = t+

Csh(t) ' 〈Csh(t)〉 ≡ 1

∆t

∫ t+

t−

dt Csh(t) . (8.24)

That is, we approximate the time-dependent deviations of the capture rate by step func-

tions with height 〈Csh(t)〉 for t− ≤ t ≤ t+.
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Under this approximation, we solve Eq. (8.19) analytically which yields

N(t) =





√
CSHM

CA
tanh

( t
τ

)
if t ≤ t− ,

√
CSHM

CA

tanh
(
t−
τ

)
+
√

1 + 〈Csh(t)〉
CSHM

tanh
{√

1 + 〈Csh(t)〉
CSHM

(t−t−)
τ

}

1 +
(√

1 + 〈Csh(t)〉
CSHM

)−1
tanh

(
t−
τ

)
tanh

{√
1 + 〈Csh(t)〉

CSHM

(t−t−)
τ

} if t− < t ≤ t+ ,

N(t+) +
√

CSHM
CA

tanh
(
t−t+
τ

)

1 +N(t+)
(√

CSHM
CA

)−1
tanh

(
t−t+
τ

)] if t > t+ ,

(8.25)

where τ =
√
CSHMCA is the equilibration time expected from the smooth Milky Way

dark matter distribution. In this solution, we identify three dimensionless quantities

that fully parametrize N(t) after the Sun has left the sub-halo: The duration of the

passage relative to the equilibration time ∆t/τ , the time elapsed after leaving the sub-

halo relative to the equilibration time (t0−t+)/τ and the time averaged capture rate from

the sub-halo relative to the capture rate from the smooth background 〈Csh(t)〉/CSHM. The

latter depends on the properties of the sub-halo as well as the dark matter model under

consideration and is calculated for each sub-halo individually. The passage time relative to

the equilibration time can be estimated independently of the sub-halo properties. Given

an impact parameter L and assuming that the Sun crosses the sub-halo following a straight

line, the distance the Sun travels inside the sub-halo is ∆d = 2
√
r2
t − L2. For the Sun

moving with velocity vrel with respect to the sub-halo, the time spent within the sub-halo

is given by ∆t = ∆d/vrel. For dark matter models of interest, the equilibration time is of

the order of the age of the Sun τ . t0 and hence

∆t

τ
≤ 2 rt
vrel τ

' 2 rt
v� t0

� 1 , (8.26)

where we used that vrel ' v�. This also holds in the case that capture and annihilation are

out of equilibrium as this implies τ � t0. Therefore, the approximation ∆t/τ � 1 is valid

unless there are sub-halos whose diameter is larger than the distance the Sun traveled

since her formation. This is not the case for the sub-halos predicted by the sub-halo mass

function of [135].

In this limit, the number of captured dark matter particles after the Sun leaves the

sub-halo is given by

N(t) = NSHM tanh

[
t− t−
τ

+ artanh

(
N(t−) + ∆N

NSHM

)]

' NSHM

[ (N(t−) + ∆N)/NSHM + tanh t−t−
τ

1 + (N(t−) + ∆N)/NSHM tanh t−t−
τ

]
, (8.27)

where N(t−) is the number of captured particles at the time the Sun entered the sub-

halo. Furthermore, ∆N is the number of particles captured from the sub-halo during the

passage. This, in turn, is equivalent to the product of the average capture rate from the
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Figure 31.: In this plot, we sketch time evolution of the number of dark matter particles
in the Sun. We indicate the time the Sun enters the sub-halo as well as the
current time as gray dashed vertical lines. We furthermore denote by gray
dashed horizontal lines the number of captured particles from the smooth
background dark matter distribution as well as the number of particles cap-
tured when additionally assuming a sub-halo encounter. This plot was taken
from [5].

sub-halo and the time spent inside the sub-halo, i.e.

∆N ≡ 〈Csh(t)〉∆t . (8.28)

In Fig. 31, we show a sketch of the number of captured particles as a function of time.

As depicted in this figure, large increments occur when the number of particles captured

from the stream is large or in the case of a recent encounter, i.e. (t0 − t+)/τ � 1.

Under the assumption that the velocity distribution of dark matter particles bound to

the sub-halo is well approximated by a stream as given in Eq. (8.3), we rewrite Eq. (8.28)

into

∆N = CρSHM

δ(~v+~vrel)

〈ρloc
sh [r(t)]〉
ρSHM

∆t , (8.29)

where CρSHM

δ(~v+~vrel)
is the capture rate given a stream with velocity ~vrel and dark matter

density ρSHM. We show the dependence of the capture rate on the velocity of the stream

in Fig. 32. Furthermore, 〈ρloc
sh [r(t)]〉 is the dark matter density of the sub-halo averaged

along the path of the Sun through the sub-halo. For a constant impact parameter and

assuming that the relative velocity between the Sun and the sub-halo is constant over

time, we approximate this quantity as

〈ρloc
sh [r(t)]〉 ' 1

∆t

∫ t+

t−

dt ρloc
sh [r(t)] =

1

2
√
r2
t − L2

∫ √r2t−L2

−
√
r2t−L2

dx ρloc
sh [
√
x2 + L2] . (8.30)
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Figure 32.: Capture rate for a stream with velocity |~vrel| in the rest frame of the Sun and

a local dark matter density ρloc
SHM. A gray dashed line separates the plot into

two regions, where the scattering rate is enhanced (suppressed) with respect
to the SHM in the upper (lower) part of the plot. This plot was taken from [5].

Here, we used that the time spent by the Sun inside the sub-halo is given by ∆t =

2
√
r2
t − L2. Using the NFW profile from Eq. (2.19) and defining z ≡ L/rt, we rewrite

this into

〈ρloc
sh [r(t)]〉 =

ρs
(1− c2

V z
2)


 2

cV
√

1− z2
√

1− c2
V z

2
artanh



√

1− z2
√

1− c2
V z

2

(1 + z)(1 + cV z)


− 1

1 + cV


 .

(8.31)

In the limiting cases of L � rs and L � rs, we simplify this to be solely dependent on

L, cV and rt

〈ρloc
sh [r(t)]〉 '





ρs
cV (1 + cV )2

[
1 +

2

3

(
1 + 3cV
1 + cV

)(
1− L

rt

)]
for rt > L� rs

− ρs
cV

[
log

L

rs
+

cV
1 + cV

− log
cV

1 + cV
− log 2

]
for L� rs .

(8.32)

As expected for a cuspy profile like the NFW, the mean dark matter density diverges in

the limit L→∞ and the largest enhancement occurs for passages of the Sun close to the

sub-halo center.

Following the same rationale as in section 8.1, we define the increment IΓ of the anni-

hilation rate as

IΓ =
Γ(t0)

ΓSHM(t0)
− 1 '

[ (N(t−) + ∆N)/NSHM + tanh t0−t−
τ

1 + (N(t−) + ∆N)/NSHM tanh t0−t−
τ

]2
tanh

(
t0
τ

)−2

− 1 ,

(8.33)

where ΓSHM(t0) = 1
2CSHM tanh(t0/τ) is the annihilation rate expected from the smooth

Milky Way dark matter distribution. In Fig. 33, we show the increment as a function
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of (t0 − t−)/τ and ∆N . For this, we assume that capture and annihilation processes

were in equilibrium before the Sun entered the sub-halo and would be in equilibrium

when considering solely the smooth Milky Way dark matter distribution. Concretely, this

implies N(t−) = NSHM as well as tanh(t0/τ) = 1. As apparent from this figure, large

increments occur for large ∆N/NSHM and when the Sun recently left the sub-halo, i.e. for

small (t0− t−)/τ . If equilibrium is not achieved at the time the Sun entered the sub-halo,

the increment is even larger since N(t−) < NSHM. This is especially relevant for capture

of dark matter in the Earth as equilibration is usually not achieved there.

Similar to section 8.1, we derive the probability distribution for the number ∆N of par-

ticles captured from the sub-halo. The probability to find a certain ∆N along with M, cV

and vrel is related to the probability of crossing the sub-halo with an impact parameter

L via

P (∆N,M, cV , vrel) = P (L,M, cV , vrel)

∣∣∣∣
d∆N(L,M, cV , vrel)

dL

∣∣∣∣
−1

for L < rt . (8.34)

As apparent from Eq. (8.29), ∆N depends on L via 〈ρloc
sh [r(t)]〉 as given in Eq. (8.30)

and via the duration of the sub-halo encounter ∆t = 2
√
r2
t − L2/vrel. The probability

P (L,M, cV , vrel) that the Sun encounters a sub-halo characterized by M, cV and vrel with

an impact parameter L is given by

P (L,M, cV , vrel) = P (M)P (cV |M)P (vrel)P (L|M, cV , vrel) , (8.35)

where P (M) and P (cV |M) are discussed in detail in section 8.1. In addition to this, the

probability P (L|M, cV , vrel) that the Sun traverses a sub-halo with impact parameter L

given M, cV and vrel is equal to the probability to find the center of such a sub-halo at a

perpendicular distance L from the Sun’s path during passage time ∆t. This is equal to the

number of sub-halos in a cylindrical shell with radius L, length vrel∆t and thickness dL

divided by the total number of sub-halos Nsh. We approximate the amount of sub-halos

inside the cylindrical shell as

dNsh(L,M, cV , vrel) ' 2πLdLvrel∆t n̄sh(L) . (8.36)

With this, we finally obtain the probability for the Sun passing the sub-halo center with

impact parameter L as

P (L|M, cV , vrel) ≡
1

Nsh

dNsh(L,M, cV , vrel)

dL
' 2πLvrel∆t n̄sh(L)

Nsh
. (8.37)

Here, n̄sh(L) is the average number of sub-halos at a perpendicular distance L from the

trajectory of the Sun

n̄sh(L) =
1

2π

∫ 2π

0
nsh [r(L,ψ)] dψ , (8.38)

parametrized in terms of the galactocentric radius r.
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Figure 33.: Increment of the annihilation rate from one sub-halo encounter as a function
of (t0−t−)/τ and ∆N/NSHM. The white region indicates parameters for which
IΓ < 1 while the colored regions indicate larger increments. In this plot, we
explicitly assume that capture and annihilation of dark matter particles in the
Sun were in equilibrium prior to the encounter with the sub-halo. This plot
was taken from [5].

From Eq. (8.35) we finally obtain the probability distribution of the number ∆N of

captured particles from any sub-halo by marginalizing M, cV and vrel

Psingle(∆N) =

∫ Mmax

Mmin

dM

∫ ∞

0
dcV

∫ vmax

0
dvrel P (∆N,M, cV , vrel) . (8.39)

In Fig. 34, we show the probability distributions for (∆N/NSHM) · (τ/t0) assuming dark

matter masses of 5 GeV, 100 GeV and 10000 GeV. We use this quantity instead of

∆N/NSHM in order to highlight the impact of equilibration. If dark matter annihilates

efficiently, the equilibrium number of captured particles decreases. Therefore, decreasing

τ increases the number of particles captured from the sub-halo relative to the equilibrium

number, i.e. ∆N/NSHM. However, this can be canceled by the factor τ/t0 which behaves

in the opposite way. In each plot of Fig. 34, we show the probability distributions for the

sub-halo mass function from Ref. [135] and for two parametric models that approximate

the halo mass function by a power law dN/dM ∼ Mα with α = 1.8 as well as α = 2.0.

We find the largest values of ∆N for α = 1.8 as this predicts the most heavy sub-halos,

confer Fig. 26. Conversely, we observe the smallest amount of particles captured from

the sub-halo in the case of α = 2.0 for which the sub-halo mass function is steepest. In

addition to this, we find that the distributions for heavy dark matter reach larger values

of ∆N and are flatter. This is due to the small maximal velocity at which heavy dark

matter particles can be captured by the Sun. Therefore, most of the sub-halo encounters

give rise to no additionally captured particles. However, if the velocity of the sub-halo

with respect to the Sun is small, the factor ∆N/NSHM can be large as the number of

particles captured from the smooth Milky Way dark matter halo is small for heavy dark

matter. This gives rise to the flat tail of the distributions for heavy dark matter.
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Figure 34.: Impact of a single sub-halo encounter parametrized as (∆N/NSHM)·(τ/t0). We
include plots for three different dark matter masses and for spin-independent
(left) respectively spin-dependent interactions (right). These plots were taken
from [5].
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8.2.2. Impact of multiple sub-halo encounters

From the large amount of sub-halos predicted by the sub-halo mass functions in Fig. 26,

we expect that the Sun traversed multiple sub-halos. In this case, the number of captured

particles N(t) and ultimately the annihilation rate could be enhanced further than dis-

cussed in the previous section if the Sun encounters a second sub-halo while the number

of captured particles still relaxes back into equilibrium. This scenario is shown in Fig. 35

0 1 2 3 4 5
t [Gyr]

N
(t

) N(t0)

NSHM

t0t1t2

SHM

SHM + sub-halo

SHM + two sub-halos

Figure 35.: In this plot, we sketch the time evolution of the number of captured dark
matter particles in the Sun for multiple sub-halo encounters. We depict the
times the Sun enters a sub-halo as well as the current time as gray dashed
vertical lines. We furthermore denote by gray dashed horizontal lines the
number of captured particles from solely the smooth background and for the
case of two additional sub-halo encounters. This plot was taken from [5].

for two subsequent sub-halo encounters. As a consequence of this, even sub-halo passages

which happened far in the past can be relevant today. Since each sub-halo passage could

influence the annihilation rate inside the Sun, we expect that we observe a larger increase

of the annihilation rate than for the case of single sub-halo encounters.

In order to calculate the increment of the annihilation rate in the sun today, we have to

determine the expected number of sub-halo encounters N of the Sun during her lifetime.

We calculate this from Eq. (8.39) via

N =
t0
torb

Nsh

∫ ∞

0
d∆N Psingle(∆N) , (8.40)

where torb = 250 Myr is the orbital period of the Sun. We show the number of sub-

halo passages with an impact parameter smaller than 10−3 pc, 1 pc respectively 103 pc in

Fig. 36. As depicted there, the Sun is more likely to cross light sub-halos than heavy

ones as expected from the sub-halo mass function in Fig. 26. Furthermore, it is unlikely

that the Sun has experienced a close encounter with L < 10−3 until present times. In

general, we expect that the Sun passed through several sub-halos with mass M . 106M�.

Despite the fact that heavier sub-halos are larger, it is unlikely that the Sun crossed a
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8.2. Enhancement of the neutrino signal from the Sun

heavy sub-halo until present times, even at large distances, due to their scarcity.

Using this, we determine the number of sub-halo encounters n from a Poisson distribu-

tion with mean valueN and generate a large number of realizations to obtain a probability

distribution for IΓ. We assume that the encounters happen at times ti, i = 1, . . . , n, or-
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Figure 36.: Number of sub-halo passages with an perpendicular distance L smaller than
10−3 pc, 1 pc respectively 103 pc. In order to guide the eye, we indicate the
value of one sub-halo passage over the lifetime of the Sun with a gray dashed
line. This plot was taken from [5].

dered in such a way that 0 < tn < · · · < t0. Here, t0 is the age of the Sun and we draw

the times of the encounters from a flat distribution on the interval [0, t0]. Assuming, as

we did in section 8.2.1, that ∆t/τ � 1 and an initial value N(t = 0) = 0, we iteratively

solve Eq. (8.19) and obtain the number of particles bound to the Sun today as

N(t0) ' NSHM

[ (N(t1) + ∆N1)/NSHM + tanh t0−t1
τ

1 + (N(t1) + ∆N1)/NSHM tanh t0−t1
τ

]
. (8.41)

Here, the number of particles inside the Sun at time ti before the Sun entered the ith

sub-halo is given by

N(ti) ' NSHM

[ (N(ti+1) + ∆Ni+1)/NSHM + tanh ti−ti+1

τ

1 + (N(ti+1) + ∆Ni+1)/NSHM tanh ti−ti+1

τ

]
for i = 1, . . . , n , (8.42)

which, in turn, depends on the previous sub-halo encounter. For a specific dark matter

model, we draw the values of ∆Ni from the distributions shown in Fig. 34. Finally, we

obtain the increment of the annihilation rate from

IΓ =
Γ(t0)

ΓSHM(t0)
− 1 '

(
N(t0)

NSHM tanh(t0/τ)

)2

− 1 . (8.43)

We show the probability distributions for dark matter masses of 5 GeV, 100 GeV and

10000 GeV in Figs. 37, 38 respectively 39. For each dark matter mass, we determine the

probability distributions for three different values of the interaction cross section ranging
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down to values that are currently probed by direct detection experiments, confer Fig. 6.

In addition to the semi-analytic sub-halo mass function from [135] we show results for

two parametric models with dN/dM ∼M−α.

From Figs. 37, 38 and 39, we observe that large increments IΓ occur more likely for large

cross sections. As apparent from the definition of ∆N in Eq. (8.28), the ratio (∆N/NSHM)

increases when increasing the scattering cross section. This implies that recent encounters

become more important while at the same time the history of sub-halo encounters becomes

less important. Therefore, we find that the probability for large increments increases as

large values of IΓ often involve recent encounters. For dark matter-nucleon cross sections

smaller than the ones shown here, capture and annihilation processes are far away from

equilibration as apparent from Fig. 9. In this case, large increments are possible again

as capture from sub-halos can dominate. However, those cross sections cannot be probed

even with future upgrades of neutrino telescopes and we do not show results for those

here. Finally, we find that the probability to observe large increments is largest for power

law sub-halo mass functions with exponent α = 1.8 while it is smallest for α = 2.0. This

is to be expected as the number of heavy sub-halos is larger for a flat sub-halo mass

function.

8.3. Discussion and summary

In this chapter, we investigated the impact of dark matter sub-halos on direct detection

experiments and neutrino telescopes. We based our calculations on the sub-halo mass

function determined in Ref. [135] and used two parametric models with dN/dM ∼M−α
for α = 1.8 and α = 2.0 to asses the impact of deviations in the sub-halo mass function.

With this, we determined the probability of the Earth being currently immersed in a

sub-halo. Furthermore, we investigated the increment of the annihilation rate in the Sun

due to sub-halo encounters of the Sun until present days. We did this by drawing a large

number of sub-halo passage histories and calculating the annihilation rate by iteratively

solving Eq. (8.19).

We found that the impact of dark matter sub-halos can be non-negligible for direct

detection experiments, with a probability of 10−3 to obtain a O(1) enhancement of the

local dark matter density. We note that our results are consistent with those of previous

studies on the impact of sub-halos on direct detection experiments. For example, Ref. [337]

estimates that the probability of an O(1) enhancement in the local density from sub-

halos is roughly 1%. Although we found a smaller probability for such an enhancement,

uncertainties related to the precise sub-halo mass function could account for that. We

calculated the increment of the scattering rate due to sub-halos for two specific direct

detection experiments, XENON1T [221] and CRESST [228]. As depicted in Fig. 30, we

obtained that the probability for an increment of O(1) is also roughly 10−3 with slightly

larger or smaller values possible depending on the dark matter mass and the sub-halo

mass function.

For neutrino telescope experiments, we found that the impact of sub-halos is modest. As
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Figure 37.: Probability distributions of IΓ for spin-independent (left) and for spin-
dependent interactions (right) assuming a dark matter mass of 5 GeV. We de-
note O(1) increments with a gray dashed line. These plots are taken from [5].
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Figure 38.: Same as Fig. 37 but for a dark matter mass of 100 GeV. These plots were
taken from [5].
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Figure 39.: Same as Fig. 37 but for a dark matter mass of 100 GeV. These plots were
taken from [5].
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Chapter 8. Impact of sub-halos on direct dark matter searches

apparent from Figs. 37, 38 respectively 39, O(1) increments of the neutrino signal from

annihilating DM in the Sun have a probability . 10−5. Our results therefore suggest

that, for dark matter searches utilizing neutrino telescopes, this source of uncertainty

is small in comparison to the astrophysical uncertainties stemming from the local dark

matter density and velocity distribution as studied in chapters 4 and 6 respectively in

Refs. [363, 364]. Furthermore, Ref. [361] demonstrated that the impact of sub-halos on

the neutrino signal from annihilating DM in the Sun can be substantial if the sub-halo is

sufficiently dense and the time spent by the Sun inside the sub-halo is sufficiently long.

We found that such encounters are rare and that a realistic population of sub-halos is

likely to give only a modest enhancement.

In this work, we made several assumptions about the properties of dark matter sub-

halos, but the formalism developed here is applicable independent of those assumptions.

One major assumption is the NFW dark matter density profile of sub-halos. Recently,

Refs. [365,366] claimed that disrupted sub-halos are not well described by an NFW profile

but instead suggested an exponential profile ρ(r) ∝ r−γ exp(−r/Rb). The parameters γ

and Rb are determined from the ELVIS [367] and Via Lactea II simulations [368]. Due

to the resolution of those simulations in terms of the sub-halo mass, those parameters

can only be determined for sub-halos heavier than 107M�. As we observed in Fig. 29

that sub-halos lighter than 105M� contribute to the increment, we did not adopt this

density profile in this work. Furthermore, this approach can be applied to other dark

matter candidates, different from cold dark matter, that form structures like sub-halos.

This includes warm dark matter [369], for which the sub-halo mass function is suppressed

for light sub-halos, as well as candidates with special clustering properties [370, 371].

Furthermore, this formalism can be applied to axion searches due to the possibility that

axions form mini-clusters [372].
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Chapter 9.

Conclusions and outlook

Despite the mounting evidence for dark matter that has accumulated over almost 100

years, dark matter was inferred only through astronomical and cosmological observations.

So far, it has not been possible to determine the nature of the dark matter. As the only

experiment looking for the distinctive feature of an annual modulation in the recoil rate,

DAMA could establish a signal with more than 9σ significance which is compatible with

dark matter being constituted by weakly interacting massive particles. However, the

WIMP interpretation of this signal is in tension with the null results of other direct dark

matter searches. In this thesis, we have therefore investigated the impact of assumptions

on the astrophysics of dark matter when interpreting the outcome of two special classes of

experiments, direct detection experiments and neutrino telescopes. In particular, we have

focused on the class of WIMP dark matter models that predict a signal in both types

of experiments. We have also put special emphasis on the complementarity of direct

detection experiments and neutrino telescopes highlighting the benefits from combined

analyses.

After an introduction to the astro- and particle physics of dark matter as well as to

direct dark matter searches, we introduced a method that allows to analyze the results of

direct detection experiments and neutrino telescopes completely independent of the halo

model. It is based on the decomposition of the dark matter velocity distribution into

streams. When using the complementarity of both experimental approaches, we found

that the resulting upper limits are remarkably strong and for large masses only one order

of magnitude weaker than those obtained with the SHM. Furthermore, we calculated

the detection prospects of planned experiments in a halo-independent way considering

null results from current experiments and classified the parameter space according to

the detection prospects. The region in parameter space that could be tested contains all

parameters for which some velocity distribution gives rise to a detectable signal. Similarly,

the region that will be tested includes parameters for which the expected signal is large

enough to be detected for any velocity distribution. Finally, there is a region that cannot

be tested regardless of the velocity distribution.

We then showed that it is possible perform a halo-independent analysis in the context

of the non-relativistic effective field theory of dark matter-nucleus interactions. The ex-

tended method addresses simultaneously the particle physics uncertainties on the concrete

form of the dark matter-nucleon interaction as well as the astrophysical uncertainties on

the local dark matter density and velocity distribution. Using the example of the CDMS-
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Chapter 9. Conclusions and outlook

Si signal, we found that this signal is ruled out for any combination of Wilson coefficients

except in a small range of dark matter masses between roughly 1 GeV and 8 GeV. How-

ever, this region will be tested by next generation experiments, either confirming the

signal or ruling it out completely.

In chapter 6, we developed our analysis method further which allows us to calculate

the best and the worst signal at an experiment for a given deviation from a reference

halo model in a statistically rigorous way. Therefore, we introduced a parameter ∆ that

parametrizes the deviation from a given reference velocity distribution. The improved

method resembles the halo-independent analysis in the limit of very large deviations from

the reference distribution. Using this method, we bracketed the effect of a deviation

from the SHM on the upper limits derived from direct detection experiments, neutrino

telescopes as well as on combined upper limits. Furthermore, we analyzed how the re-

construction of the dark matter mass and the WIMP nucleon cross section is affected by

uncertainties in the halo model. In addition to this, we showed that neutrino telescopes im-

prove the reconstruction of dark matter parameters at a direct detection experiment even

if no signal is found at a neutrino telescope. Assuming a putative signal at XENON1T,

we explicitly calculated the allowed regions in parameters space for various values of the

parameter ∆.

As the dark matter interpretation of the DAMA signal is in tension with the null

results of other dark matter searches, we analyzed the this signal in-depth in chapter 7.

We found that the dark matter interpretation of the annual modulation signal can be

excluded in a halo-independent way for spin-independent interactions when using both

direct detection experiments and neutrino telescopes. For spin-dependent interactions,

it is excluded for dark matter masses smaller than ∼ 5 TeV as capture is inefficient for

larger dark matter masses. Furthermore, we analyzed the DAMA data of 2018 in a halo-

independent and statistically rigorous way. We found that a large region in parameter

space is compatible with the modulation signal when being completely agnostic about the

velocity distribution. However, we were able to establish lower bounds on the dark matter

mass and the scattering cross section. Concretely, we obtained that mDM & 5 GeV and

σp
SI & 2 ·10−42 cm2 respectively mDM & 5 GeV and σp

SD & 10−37 cm2 are required in order

to reproduce the modulation signal. We note that the lower bound on the dark matter

mass is due to kinematics and the energy threshold Eth ∼ 3 keV of DAMA data released

in 2018.

Finally, we investigated a concrete source of astrophysical uncertainties and quantified

the effect of dark matter sub-halos on direct detection experiments and neutrino tele-

scopes. Assuming a modern sub-halo mass function that extends to sub-halo masses as

light as 10−5M�, we found that O(1) effects on the recoil rate in direct detection exper-

iments occur with a probability of . 7 · 10−4. Therefore, the influence of dark matter

sub-halos on those experiments can be non-negligible. Since direct detection experiments

have only been conducted for the last 10 years, the only way to enhance the signal is

for Earth to be currently located in a sub-halo. We found that the probability for this

is roughly 12%. For neutrino telescopes in contrast, potentially all sub-halo passages of
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the Sun could contribute. Therefore, we calculated the probability of an enhancement in

the neutrino signal from the Sun by drawing many realizations of the sub-halo crossings

of the Sun during her lifetime. We then calculated the increment of the neutrino signal

from annihilating DM in the Sun for each individual crossing history. We found that the

probability of an O(1) enhancement is small with a probability of . 10−5. The impact of

dark matter sub-halos on the neutrino signal from annihilating DM in the Sun is therefore

modest.

Since the analysis methods developed in this work have a broad field of application,

we are currently working on some further studies. Concretely, we plan to publish a

Python module that solves the occuring optimization problems and is built on the CVXOPT

module [300]. It will be compatible with several external codes like DDCalc [326,327] and

WIMpy NREFT [373] that provide the expected recoil rate for direct detection experiments.

This makes it possible to analyze the effect of deviations from the SHM on any experiments

implemented in external codes or modeled manually by the user. In addition to the

distance measure introduced in Eq. 6.1, we are planning to implement additional measures

that are motivated by Lp norms or by information theory. Another planned project

is to analyze 3 years of IceCube data [250] to set limits on the Wilson coefficients in

the non-relativistic effective field theory for dark matter-nucleon scattering presented in

section 3.2.3. For this kind of analysis, neutrino telescopes are especially promising as

the large number of different target elements in the Sun ensures that all types of dark

matter-nucleon interactions can be probed. Finally, CRESST-III data [229] provide an

interesting application for the methods developed in this thesis. However, parts of the

CRESST background are not fully understood [374], especially the exponential rise of

the energy spectrum of the events at low energies. Therefore, the analysis method of

choice so far has been the optimum interval method [375] which has never been used in

conjunction with halo-independent approaches. In this project, we aim to close this gap

and analyze CRESST-III data using the optimum interval method but simultaneously

study the impact of deviations from the SHM.

In summary, the hunt for dark matter is one of the most active fields of physics. In

the future, planned experiments for all search strategies will help to find dark matter

or further narrow down the parameter space. Future direct detection experiments aim

to significantly increase the target mass and could even reach the neutrino floor. New

data releases and upgrades of neutrino telescopes will further improve the sensitivity to

WIMP annihilation in the Sun. However, the analysis of those experiments usually in-

volves simplifying assumptions on the local dark matter halo that might not be justified.

In light of the expected progress in direct dark matter searches, it is important to keep

track of those uncertainties as this could lead to erroneously ruling out parameter space

or significantly affect the reconstruction of WIMP parameters. It is therefore important

to develop and refine methods that allow to interpret the data of dark matter searches

without being prone to unjustified theoretical assumptions. Furthermore, the identifica-

tion of astrophysical effects that were not accounted for in the past is important to extract

the correct information from direct dark matter searches.
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Appendix A.

Response functions for non-relativistic

dark matter-nucleus scattering

In this appendix, we give the response functions Rττ
′

k that appear in the calculation of

the transition probability, confer Eq. (3.41). Here, v⊥2
T is the transverse velocity defined

in Eq. (3.42), mN ≈ 1 GeV is the mass of a nucleon, q denotes the momentum transfer

and jDM is the spin of the dark matter particle. For dark matter particles with spin 0 or
1
2 , we adopt the response functions from Ref. [206] which are given by
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Furthermore, the response functions for spin 1 particles are taken from Ref. [208] and

read
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Appendix B.

Convex optimization

In this appendix, we summarize the key concepts of convex optimization using proper

cones and introduce the relevant notation following closely Ref. [323]. Here, we solve

convex optimization problems with the Python package CVXOPT [300] that implements

primal-dual path-following interior-points methods. The discussion of those methods is

beyond the scope of this work and we refer to Refs. [323, 376] for detailed reviews of

interior-point methods. For the special case of linear programming problems, we addi-

tionally use the solver implemented in Mathematica [299].

In general, a convex optimization problem is defined as

minimize: f0(x) (B.1)

subject to fi(x) ≤ 0 ∀i = 1, . . . ,m

hi(x) = 0 ∀i = 1, . . . , p

where fi(x) : Rn → R and hi(x) : Rn → R are convex functions. In general, a convex

function f has to fulfill the condition

f (θ y + (1− θ) z) ≤ θ f(y) + (1− θ) f(z), (B.2)

for y, z ∈ Rn and θ ∈ [0, 1]. The vector x contains all primal variables and the function

f0(x) is the objective function. Furthermore, the constraints fi(x) ≤ 0 are called inequal-

ity constraints while hi(x) = 0 are equality constraints. Finally, a point x that fulfills all

constraints is called feasible and the feasible set consists of all those points. If fi(x) = 0

for some feasible x, the constraint is active at x. Conversely, fi(x) < 0 implies that the

inequality constraint is inactive.

B.1. Optimality conditions

In the following, we consider only minimization of the objective function. However, a

maximization problem can be converted into a minimization problem by multiplying the

objective function by a factor of (-1). The minimum of the objective function is called

the optimal value p? and is defined as

p? = inf
x
{f0(x) | fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p} . (B.3)
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As apparent from this definition of the optimal value, we are interested in the global

optimum of the problem presented in Eq. (B.1). However, for the special case of a convex

optimization problem, each locally optimal point is also the global optimum which is

among the most compelling features of this class of problems. We refer to chapter 4.2.2.

of Ref. [323] for a proof of this statement. Furthermore, x? is an optimal point if it is

feasible and fulfills f0(x?) = p?. The optimal set is given by

Xopt = {x | fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , p and f0(x) = p?} ,
(B.4)

and contains all optimal points.

The optimal points are subject to several conditions that are an important ingredient

for solving the optimization problem. Here, we assume that the optimization problem

has a differentiable objective and constraints. In order to derive optimality conditions,

it is necessary to define the dual optimization problem first. The Lagrangian of the

optimization problem in Eq. (B.1) is given by

L(x, η, λ) = f0(x) +
m∑

i=1

ηi fi(x) +

p∑

i=1

λi hi(x) . (B.5)

With this, one defines the Lagrange dual function

g(η, λ) = min
x

L(x, η, λ) , (B.6)

where η and λ are the dual variables. As this function depends linearly on η and λ, it is

convex regardless of whether the primal problem is convex or not. The dual problem is

then given by

max
η,λ

g(η, λ) (B.7)

Subject to η ≥ 0 ,

which is always a convex optimization problem. An interesting property of the dual

problem is weak duality. This guarantees that the optimal value of the dual problem g?

is not larger than the optimal value of the primal problem p?, i.e. g? ≤ p?. Under the

assumption that the primal problem is convex and that the equality constraints are affine,

Slater’s condition states that if there is a feasible point x with fi(x) < 0 for i = 1, . . . ,m

and hi(x) = 0 for i = 1, . . . , p then strong duality g? = p? holds. We refer to section 5.3.2

of Ref. [323] for a proof of this statement. This can also be expressed in terms of the

duality gap

f0(x)− g(η, λ) , (B.8)

which is zero for the primal and dual optimal points x?, η? and λ? assuming strong duality.
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B.1. Optimality conditions

The duality gap implies

f0(x)− p? ≤ f0(x)− g(η, λ) , (B.9)

which provides an excellent stopping criterion for algorithms. If there is a solution x?, η?

and λ? that fulfills f0(x?) = g(η?, λ?), then these points are guaranteed to be primal

respectively dual optimal and the algorithm can be terminated.

Under the assumption of strong duality, the Karush-Kuhn-Tucker (KKT) conditions [294,

295] provide a set of optimality criteria that has to be fulfilled by an optimal solution.

As before, we denote a primal optimal point by x? and a dual optimal point by (η?, λ?).

Since x? minimizes L(x, η?, λ?), the gradient of L with respect to x evaluated at x? has

to vanish, i.e.

∇xL(x, η?, λ?)
∣∣∣
x=x?

= ∇xf0(x)
∣∣∣
x=x?

+

m∑

i=1

η?i ∇xfi(x)
∣∣∣
x=x?

+

p∑

i=1

λ?i ∇xhi(x)
∣∣∣
x=x?

= 0 ,

(B.10)

which provides one condition for optimality. Following the definition given in Ref. [323],

the complete set of KKT conditions is defined as

fi(x
?) ≤ 0 i = 1, . . . ,m (B.11)

hi(x
?) = 0 i = 1, . . . , p (B.12)

η?i ≥ 0 i = 1, . . . ,m (B.13)

η?i fi(x
?) = 0 i = 1, . . . ,m (B.14)

∇xf0(x)
∣∣∣
x=x?

+
m∑

i=1

η?i ∇xfi(x)
∣∣∣
x=x?

+

p∑

i=1

λ?i ∇xhi(x)
∣∣∣
x=x?

= 0 . (B.15)

where the first two conditions ensure the feasibility of x?. The fourth condition is called

complementary slackness and implies that η?i vanishes if the constraint is not active, i.e.

fi(x
?) < 0. Conversely, η?i is non-zero if the ith inequality constraint is active. An optimal

solution of Eq. (B.1) has to fulfill this set of equations. Assuming that x?, η? and λ? fulfill

the KKT conditions, the following holds [323]

g(η?, λ?) = L(x?, η?, λ?)

= f0(x?) +
m∑

i=1

η?i fi(x
?) +

p∑

i=1

λ?i hi(x
?)

= f0(x?) , (B.16)

where the first step follows from Eq. (B.10) which implies that x? minimizes L(x, η?, λ?).

In the third step, we used complementary slackness in combination with h(x?) = 0 as x?

is feasible. This proves that all points satisfying the KKT conditions are indeed optimal

points provided that strong duality holds.
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B.2. Generalized inequalities

In this work, we focus on the special case of convex objective functions with general-

ized inequality constraints. Before discussing generalized inequalities, we introduce the

relevant terminology.

A cone K is defined by the property that for each element x1, x2 ∈ K and each real

number θ1, θ2 ≥ 0 the following condition holds

θ1 x1 + θ2 x2 ∈ K . (B.17)

This can be extended to the notion of proper cones by demanding that for a cone K ⊆ Rn

the following additional conditions are satisfied, confer [323]:

• K is convex, i.e. for each x1, x2 ∈ K and θ ∈ [0, 1] we have θ x1 + (1− θ)x2 ∈ K.

• K is closed.

• K is solid, i.e. it has a nonempty interior.

• K is pointed, i.e. we have that x ∈ K in conjunction with −x ∈ K implies x = 0.

The partial ordering P �K Q for P,Q ∈ K with respect to the cone K is defined as

P �K Q ⇔ P −Q ∈ K. (B.18)

In a similar way, the strict partial ordering P ≺K Q for P,Q ∈ K is defined as

P ≺K Q ⇔ P −Q ∈ intK, (B.19)

where intK denotes the interior of K.

Generalized inequalities extend inequality constraints from standard ordering on Rn,

i.e. Gx ≤ h, to partial ordering Gx �K y with respect to a proper cone K ⊆ Rn. In the

following, we additionally assume that the equality constraints hi(x) are affine functions.

Therefore, we extend our definition of the standard minimization problem to generalized

inequalities

minimize: f0(x) (B.20)

subject to Gx �K h
Ax = b .

Here, G is a k × n matrix, h is a Rk vector, A is a l × n matrix and b is a Rl vector. In

the following, we drop the subscript K for convenience.

The most intuitive example of generalized inequality constraints is the non-negative

orthant Rn+. As can be checked with the above conditions, Rn+ is a proper cone and

therefore implies a partial ordering x �Rn+ y. But this partial ordering is nothing but

component-wise inequalities of the vectors x and y, i.e. xi ≤ yi which can be written as

matrix-vector inequality Gx ≤ h.
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Another familiar proper cone is the set of positive semidefinite matrices Sn+ that implies

the partial ordering x �Sn+ y. Given the set Sn of symmetric n × n matrices, the set of

positive semidefinite matrices is defined as

Sn+ = {X ∈ Sn | vTX v ≥ 0 ∀v ∈ Rn}. (B.21)

In order to check that this set is a cone, we first check that it is convex. Assuming that

θ ∈ [0, 1] and A,B ∈ Sn+, the linear combination θ A + (1 − θ)B is indeed a positive

semidefinite matrix as

vT (θ A+ (1− θ)B) v = θ vTAv + (1− θ) vTBv ≥ 0 . (B.22)

Furthermore, the set is pointed as the only positive semidefinite matrix X for which both

X and −X are in Sn+ is the n×n matrix made out of only zeros. Finally, Sn+ is closed and

solid. Written down explicitly, the generalized inequalities defined via the set of positive

semidefinite matrices are given by

A(x) =
m∑

i=1

Ai xi ≤ B ⇔ A(x) �Sn+ B , (B.23)

where A1, . . . , Am and B are positive semidefinite n × n matrices and xi are the primal

variables.

Finally, we consider the example of second order cones Qn. They give rise to the partial

ordering x �Qn y and are defined as

Qn =
{

(x, t) ∈ Rn+|t ≥ ‖x‖2
}
, (B.24)

where ‖x‖2 denotes the Euclidean norm. In order to show that Qn is a proper cone, we

first prove that this set is convex. Assuming θ ∈ [0, 1] and (t1, x1), (t2, x2) ∈ Qn, the

linear combination θ (t1, x1) + (1− θ) (t2, x2) is also in Qn as

‖θ x1 + (1− θ)x2‖2 ≤ θ‖x1‖2 + (1− θ)‖x2‖2 ≤ θ t1 + (1− θ) t2 . (B.25)

This follows from the fact that the Euclidean norm is subadditive and absolutely homo-

geneous. Furthermore, the second order cone is pointed as the only vector for which both

v and −v are in Qn is the vector consisting of only zeros. Finally, Qn is closed and solid

from which follows that this set is a cone. Written down explicitly, second order cone

constraints are given by

‖Ax− b‖2 ≤ cTx+ d , (B.26)

where A is a real k × n matrix, b and c are Rk respectively Rn and d is a real number.

125



Appendix B. Convex optimization

B.3. Linear programming

A special class of convex optimization problems are linear programming problems, which

feature a linear objective as well as linear constraints. Despite its simple structure, this

class of problems has a wide field of application ranging from financial mathematics to

the optimization of processes encountered in industry. The first algorithm to solve these

problems was presented by George Danzig in 1946 [377], which is known today as the

Simplex algorithm.

The standard form of a linear programming problem is given by [323]

minimize: cTx (B.27)

subject to Gx ≤ h
Ax = b

xi ≥ 0 ∀i ,

where, c is a Rn vector while h and b are Rk respectively Rl vectors. Furthermore, G

and A are k × n respectively l × n matrices. We emphasize that all the primal variables

xi must be non-negative for linear programming. The reason for this restriction is that

problems with unrestricted primal variables can be transformed into the standard form by

writing a general primal variable zi as the difference of two non-negative primal variables,

i.e. zi = xi − yi. Furthermore, each linear inequality constraint can be converted into

an equality constraint by introducing k slack variables si. Combining primal and slack

variables into one vector y = (x1, . . . , xn, s1, . . . , sk), the problem in Eq. (B.27) can be

transformed into

minimize: cTx (B.28)

subject to Ay = b

yi ≥ 0 ∀i ,

where A is now a (k + l) × (n + k) matrix. Note, that we do not count the condition

that primal variables must be non-negative as inequality constraints in the case of lin-

ear programming. Concretely, we solve those problems numerically using the simplex

algorithm [377] as implemented in Mathematica [299] or the interior points solver from

CVXOPT [300].

As shown in chapter 8 of Ref. [378], the rows ai of the matrix A that are members of

the set {ai|Ay? = b, y?i 6= 0} must be linearly independent for the optimal solution y? of

this problem. As a i × j matrix can have at most min{i, j} linearly independent rows,

there are exactly min{n+ k, l + k} entries of y? that are larger than zero. As at most k

slack variables could be larger than zero, the number of positive primal variables is given

by

min{n+ k, l + k} − k ≤ Number of xi 6= 0 ≤ min{n+ k, l + k} . (B.29)
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In practice, the number of primal variables n is much larger than the number of con-

straints, i.e. n� k, l which implies

l ≤ Number of xi 6= 0 ≤ l + k . (B.30)

Therefore, the number of positive primal variables is at least equal to the number of

equality constraints and can be as large as the total number of constraints. This observa-

tion is especially useful to get analytic insight into the solutions and for some objective

functions, this can be used to determine the solution.

B.4. Quadratically constrained quadratic problems

Another convex optimization problem that occurs frequently is a quadratic objective func-

tion with quadratic constraints (QCQP). However, quadratic constraints are not directly

covered by the generalized inequalities discussed in section B.2 and therefore the problem

has to be transformed.

In the following, we show that QCQPs are equivalent to second order cone problems

(SOCP), confer Eq. (B.26). In general, a QCQP is given by

minimize: xTQx+ vT x (B.31)

subject to: xT P x+ wT x ≤ k
Gx � h
Ax = b

with real and positive definite matrices Q and P as well as Rn vectors v and w. The

generalization to multiple quadratic constraints is straight forward. By introducing new

variables t0, t1, the constraints of the optimization problem are transformed into affine

respectively solely quadratic constraints. The transformed problem reads

minimize: t0 + vT x (B.32)

subject to: t1 + wT x ≤ k
Gx � h
Ax = b

xTQx ≤ t0
xT P x ≤ t1,
t0, t1 ≥ 0 .

A useful relation to transform solely quadratic constraints into conic form is described in

Ref. [323] (see problem 4.26). It relates a solely quadratic constraint to a second order
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cone constraint, confer Eq. (B.26), via

uTu ≤ y z ⇔
∥∥∥∥∥

(
2u

y − z

)∥∥∥∥∥
2

≤ y + z, (B.33)

where y and z are non-negative real numbers and u is a Rn vector. Using the Cholesky

factorization for positive definite matrices, the matricesQ and P decompose into a product

of a matrix and its transpose, i.e. Q = q qT and P = p pT. With this, we define

u = qTx (B.34)

y = 1 (B.35)

z = t0 . (B.36)

By combining these definitions with Eq. (B.33), we finally state the QCQP in conic form

minimize: t0 + vT x (B.37)

subject to: t1 + wT x ≤ k
Gx � h
Ax = b
∥∥∥∥∥

(
2 qTx

1− t0

)∥∥∥∥∥
2

≤ 1 + t0

∥∥∥∥∥

(
2 pTx

1− t1

)∥∥∥∥∥
2

≤ 1 + t1.

t0, t1 ≥ 0 ,

where all constraints are now generalized linear inequalities.
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Appendix C.

Analysis of direct dark matter searches

In the following, we summarize the assumptions we made when analyzing direct dark

matter searches in this work. We note that we used the DDCalc [326, 327] package to

compute the detector responses of the CRESST [228] and XENON1T [221] (2018 data

release) experiments and refer to those references for further information. The following

information were published in Refs. [2–4].

CDMS-Si The CDMS-Si results presented in Ref. [225] are based on an exposure of

140.2 kg×days and three events have been observed with reconstructed recoil energies of

8.2 keV, 9.5 keV and 12.3 keV. As we aim to explain those events by dark matter recoil

events, we restrict the region of interest to the energy range [7.6 keV, 12.9 keV], where we

take into account energy fluctuations of up to 2σE and we assume an energy resolution

of σE = 0.3 keV as suggested in [275, 379]. Finally, we extract the efficiency to detect

nuclear recoils from the blue solid curve shown in Fig. 1 of Ref. [225].

DAMA The DAMA experiment [332] searches for the annual modulation of the recoil

rate due to the changing alignment of the motion of the Sun and the Earth over the course

of the year. The data released in 2013 [22] and 2018 [23] favor an annihilation signal with

more than 9σ confidence [22, 23] in the lowest energy bins of the data as expected from

dark matter. We extract the the energy resolution from figure 20b of Ref. [332] which can

be parametrized as follows [247]

σ(Eee) = (0.448 keVee) ·
√

Eee

keVee
+ 0.0091 · Eee , (C.1)

where Eee is the electron equivalent recoil energy in keVee which is related to the recoil

energy ER via Eee = QiER. Here, Qi is the quenching factor for a specific target nucleus.

Concretely, we adopt the quenching factors QNa = 0.30 and QI = 0.09 as determined

by the DAMA collaboration [333]. Furthermore, we assume that the probability to de-

tect a nuclear recoil in the energy bin [E−, E+] is given by εi(ER) = Φ (QiER, E−, E+).

Following Ref. [247] and assuming that it is Gaussian, this probability is given by

Φ(Eee, E−, E+) =
1

2

[
erf

(
E+ − Eee√
2 · σ(Eee)

)
− erf

(
E− − Eee√
2 · σ(Eee)

)]
, (C.2)
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where erf(x) denotes the error function. For some applications, we additionally take into

account the channeling effect studied in Ref. [335].

LUX-ZEPLIN The LUX-ZEPLIN (LZ) [303] experiment is a future experiment and

the successor of LUX [380] and ZEPLIN [381]. The goal of LZ is to further increase the

fiducial mass from 145 kg to 5.6 tonnes and to refine the xenon based direct detection

technology. With a projected exposure time of 1000 days, LZ will gather an unprecedented

exposure of 5600 tonnes×day. As the detector technology is similar to LUX and PandaX,

we use the efficiency determined for LUX which we extract from figure 2 of [216] and a

nuclear recoil acceptance of 50%.

PandaX During Run 8 [217] and Run 9 [218] with an combined exposure of 3.3·104 kg×
days, the PandaX collaboration observed three candidates for nuclear recoils. Therefore,

the upper limit on the expected number events is 6.7 at a confidence level of 90%. We

calculate the expected number of events by extracting the detection efficiency from figure

2 of [218] and assuming an energy threshold of Eth = 1.1 keVnr. Furthermore, we take

into account the fact that only half of the nuclear recoil band is used by multiplying the

event rate by an additional factor of 0.5 .

PICO-60 (2017 data release) The PICO-60 experiment [237] employs a C3F8 target

and gathered an exposure of 1167 kg × days. In this work, we use the data released in

2017 [237]. As the PICO collaboration hasn’t observed any events, this leads to an upper

limit of 3.00 expected events at a confidence level of 95% when assuming no background

events. When deriving the p-value for the PICO-60 experiment in chapter 6, we take into

account a background of 0.331 events. We extract the energy dependent efficiency from

the black and red dashed curves in Fig. 4 of Ref. [236] and shift them by 0.1 keV towards

larger recoil energies to account for the slightly increased detection threshold in Ref. [237]

compared to Ref. [236].

SuperCDMS The SuperCDMS experiment [226] observed 11 candidate events with

a total exposure of 577 kg×days. This leads to an upper limit of 16.6 expected events

at a confidence level of 90%. We extract the energy dependent efficiency from figure 1

of [226] and define the region of interest between 1.6 keVnr and 10 keVnr as suggested

by Ref. [226].

XENON1T (2017 data release) The XENON1T data released in 2017 [220] include

no candidates for nuclear recoil events despite an exposure of 35.6 tonnes × days. In

chapter 4, we conservatively set the number of expected background events to zero which

results in an upper limit of 3.00 signal events at a confidence level of 95% while we assume

a background of 0.36 events when constructing the p-value in chapter 6. Furthermore,

we adopt the efficiency to detect nuclear recoils provided by the DDCalc package [326].

It has been obtained by simulating fluctuations of the S1 and S2 signal and using the

appropriate scintillation and ionization yields. From those simulations, the analysis cuts
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as given in [220] were then used to determine the efficiency to detect nuclear recoils. For

further information, we refer to Ref. [326].

Neutrino telescopes In order to determine the capture rate of dark matter particles in

the Sun, we adopt the solar model AGSS09 [254]. For spin-independent interactions, we

include the 29 most abundant nuclei in the Sun while we take into account the scattering

off hydrogen and 14N for spin-dependent interactions. For the former, we assume the

Helm form factor [187] and for the latter the form factors provided in Ref. [207]. In this

work, we use the latest results on the neutrino flux from the Sun due to dark matter

annihilation from IceCube [250] and Super-Kamiokande [252]. For Super-Kamiokande,

we use DarkSUSY [265] to convert the upper limits on the neutrino flux from dark matter

annihilation into upper limits on the annihilation rate.
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Appendix D.

Optimized velocity distributions for a

halo-independent analysis in the effective

theory of dark matter-nucleon

interactions

In this appendix, we explicitly determine the optimal velocity distributions for a halo-

independent analysis in the effective theory of dark matter-nucleon interactions, confer

chapter 5. We note that the following discussion was published in Ref. [2]. Working in

the detector rest frame, we decompose the velocity distribution as a linear superposition

of n streams with fixed velocity:

f(~v) =

n∑

i=1

a2
~vi
δ(~v − ~vi) , (D.1)

where a2
~vi

is the (non-negative) weight of the stream with velocity ~vi. Using this, the

number of events at the direct detection experiment E can be decomposed as:

N
(E)
f(~v) (c) =

n∑

i=1

a2
~vi
N

(E)
~vi

(c) =

n∑

i=1

D∑

p,q=1

a2
~vi
cp

(
N(E)
~vi

)
pq
cq , (D.2)

where N
(E)
~vi

(c) denotes the number of expected signal events for a given set of coupling

constants c = {cp}, p = 1, ..., D, in case that the velocity distribution is a stream with

fixed velocity ~vi.

Assuming constraints from two experiments E1 and E2, the optimization problem reads:

maximize

n∑

i=1

D∑

p,q=1

a2
~vi
cp

(
N

(E0)
~vi

)
pq
cq , (D.3)

subject to
n∑

i=1

D∑

p,q=1

a2
~vi
cp

(
N

(E1)
~vi

)
pq
cq ≤ N (E1)

u.l. ,

and

n∑

i=1

D∑

p,q=1

a2
~vi
cp

(
N

(E2)
~vi

)
pq
cq ≤ N (E2)

u.l. ,
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effective theory of dark matter-nucleon interactions

and
n∑

i=1

a2
~vi

= 1 .

We maximize the objective function with respect to the constraints by introducing the

Lagrangian

L({a~vi}, {~vi}, {cp}, s1, s2, λ1, λ2, λ3) =
n∑

i=1

D∑

p,q=1

a2
~vi
cp(N

(E0)
~vi

)pqcq

− λ1

( n∑

i=1

D∑

p,q=1

a2
~vi
cp(N

(E1)
~vi

)pqcq + s2
1 −N (E1)

u.l.

)

− λ2

( n∑

i=1

D∑

p,q=1

a2
~vi
cp(N

(E2)
~vi

)pqcq + s2
2 −N (E2)

u.l.

)

− λ3

( n∑

i=1

a2
~vi
− 1
)
, (D.4)

where {~vi} ≡ {~v1, ...~vn} and {a~vi} ≡ {a~v1 , ..., a~vn} are the velocities and weights of the

n streams used in the decomposition of the velocity distribution and {cp} ≡ {c1, ..., cD}
denotes the Wilson coefficients of the D effective operators used in our effective theory

approach. Furthermore, λ1, λ2 as well as λ3 are Lagrange multipliers and s2
1 and s2

2

are (non-negative) slack variables, introduced to recast the upper inequality constraints

into equality constraints. Using the Karush-Kuhn-Tucker conditions discussed in ap-

pendix B.1, the maximization conditions are:

∂L

∂a~vj
= 2a~vj





D∑

p,q=1

cp

[
N

(E0)
~vj
− λ1N

(E1)
~vj
− λ2N

(E2)
~vj

]
pq
cq − λ3



 = 0, (D.5)

j = 1, ..., n ,

∂L

∂~vj
= a2

~vj

D∑

p,q=1

cp




∂N

(E0)
~vj

∂~vj


− λ1


∂N

(E1)
~vj

∂~vj


− λ2


∂N

(E2)
~vj

∂~vj





pq

cq = 0, (D.6)

j = 1, ..., n ,

∂L

∂s1
= 2λ1s1 = 0 , (D.7)

∂L

∂s2
= 2λ2s2 = 0 , (D.8)

∂L

∂λ1
=

n∑

i=1

D∑

p,q=1

a2
~vi
cp(N

(E1)
~vi

)pqcq + s2
1 −N (E1)

u.l. = 0 , (D.9)

∂L

∂λ2
=

n∑

i=1

D∑

p,q=1

a2
~vi
cp(N

(E2)
~vi

)pqcq + s2
2 −N (E2)

u.l. = 0 , (D.10)

∂L

∂λ3
=

n∑

i=1

a2
~vi
− 1 = 0 , (D.11)
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∂L

∂cp
=

n∑

i=1

D∑

q=1

2a2
~vi

[
N

(E0)
~vi
− λ1N

(E1)
~vi
− λ2N

(E2)
~vi

]
pq
cq = 0, p = 1..., D . (D.12)

We note that the optimal points fulfill the following condition

n∑

j=1

a~vj
∂L

∂a~vj
−

D∑

p=1

cp
∂L

∂cp
= 0 . (D.13)

Substituting Eq. (D.5) and Eq. (D.12) as well as using Eq. (D.11) we obtain

0 = −2λ3

(
n∑

i=1

a2
~vi

)
= −2λ3 , (D.14)

from where we conclude that λ3 = 0.

In addition to this, Eq. (D.7) is satisfied either when s1 = 0 or when λ1 = 0, and

Eq. (D.8) is satisfied either when s2 = 0 or when λ2 = 0. A vanishing slack variable

implies that the upper limit is saturated. Therefore, λ1 6= 0 (λ2 6= 0) implies that, for the

parameters that maximize the number of signal events at E0, the upper bounds from E1

(E2) are saturated. Similarly, λ1 6= 0 and λ2 6= 0 at the same time imply that the upper

bounds from E1 and E2 are simultaneously saturated.

In the case that both λ1 and λ2 do not vanish, Eq. (D.5) reads

a~vj

(
〈N (E0)

~vj
〉 − λ1〈N (E1)

~vj
〉 − λ2〈N (E2)

~vj
〉
)

= 0, j = 1..., n , (D.15)

with 〈...〉 ≡ 〈c|...|c〉. Since there are only two non-vanishing Lagrange multipliers, it

follows that these equations can only be satisfied if

〈N (E0)
~v1
〉 − λ1〈N (E1)

~v1
〉 − λ2〈N (E2)

~v1
〉 = 0 , (D.16)

〈N (E0)
~v2
〉 − λ1〈N (E1)

~v2
〉 − λ2〈N (E2)

~v2
〉 = 0 , (D.17)

a~vj = 0 , j = 3, ...n , (D.18)

for some stream velocities ~v1, ~v2
1. We conclude that the optimized velocity distribution

corresponds to a superposition of two streams with weights a~v1 and a~v2 satisfying the

normalization condition a2
~v1

+ a2
~v2

= 1. It can be cast as

f(~v) = αδ(~v − ~v1) + (1− α)δ(~v − ~v2) (D.19)

with 0 ≤ α ≤ 1. In the case where the upper limit on the number of events at either E1

or E2 is not saturated, one of the Lagrange multipliers vanishes and a similar calculation

reveals that the optimized velocity distribution consists of just one stream. This case is

also described by Eq. (D.19) when fixing α = 0 or 1.

1If some of the equations (D.15) are linearly dependent, there are also solutions with three or more
non-zero a~vj . However, it is straightforward to show that in such a scenario there is always a solution
with two non-zero a~vj giving rise to the same number of expected events in all three experiments.
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Andrews, É. Aubourg, S. Bailey, E. Balbinot, R. Barnes, and et al., The Ninth

Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the

SDSS-III Baryon Oscillation Spectroscopic Survey, ApJS 203 (Dec., 2012) 21,

[arXiv:1207.7137].

[110] N. Bozorgnia, A. Fattahi, D. G. Cerdeno, C. S. Frenk, F. A. Gómez, R. J. J.
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