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We construct a class of three-dimensional photonic
quantum random number generators (QRNGs)
and prove that each of them generates maximally
unpredictable digits via measurements that are robust
to errors. This shows that every sequence generated is
strongly incomputable; hence its quality is provably
better than that of every pseudo-random sequence.
These results suggest that incomputability in physics
is real and practically applicable. Finally, we present
photonic implementations of three-dimensional
QRNGs and discuss device independence.

1. Introduction
Quantum random number generators (QRNGs) have
increased in the last decade because higher quality
of randomness is required in many areas, from
cryptography, statistics and information science to
medicine, physics and the many pitfalls of pseudo-
random number generators (PRNGs), sometimes
catastrophic [1]. QRNGs are generally considered to
be ‘better than PRNGs’ because they are based on
the ‘fundamental unpredictability of well-chosen and
controlled quantum processes’ [2], a statement that
requires more scientific arguments than a simple
assertion, particularly because the notion of ‘true
randomness’ is mathematically vacuous [3].

The first photonic QRNG called Quantis was produced
by ID Quantique in 2001, and it is based on the standard
beamsplitter experiment, see figs 1 and 2 in [4]. For an
experimental analysis of the quality of Quantis, see [5–8].

In this paper, we present a uniform method to
construct a class of photonic three-dimensional QRNGs
based on a universal unitary operator and a method to
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derive a valid preparation of quantum value indefinite states (that satisfy the located Kochen–
Specker Theorem [9]) whose measurements produce outcomes with a pre-given probability
distribution.

The new method generalizes the constructions of three-dimensional QRNGs described in
[10,11], where two natural probability distributions have been considered. The method uses
a fixed universal unitary operator—obtained as a composition of two-dimensional unitary
operators—and a valid value indefinite state repeatedly measured; the outcomes obtained by
the measurements have a pre-given probability distribution. In this way, the located Kochen–
Specker Theorem [12] applies and guarantees that every sequence of quantum random ternary
digits obtained in this manner is maximally unpredictable and robust to errors. In particular,
every quantum random sequence generated is strongly incomputable (bi-immune [13]); that is, no
algorithm can compute more than finitely many exact values of the sequence; this property, which
is much stronger than incomputability, implies that the quality of the photonic three-dimensional
QRNG is provably better than that of any pseudo-random generator.

Some QRNGs, like those based on a standard beamsplitter, have no certification and rely
instead on a statistical analysis of experimental outcomes. Other QRNGs, like [14], are certified
by Bell Theorem [15] or a located variant of Kochen–Specker Theorem [9]. The strength of
certification depends on its assumptions. The certification of the three-dimensional QRNGs
discussed in this article is unique because (i) the assumptions used have been experimentally
validated [16], (ii) the robustness of measurements was proved theoretically [17,18], and (iii) the
quality of very long strings of quantum random digits generated with the three-dimensional
QRNGs was experimentally shown to be better than that of the best PRNGs using non-statistical
randomness tests [16]. No other QRNG, among the many reviewed in the recent survey of the
state-of-the-art of QRNGs [19], is certified to such a degree.

Finally, the Kochen–Specker Theorem is valid only for Hilbert spaces of dimension at least
three; hence the certification given in this paper does not work for the two-dimensional QRNGs
[20], in particular for the beamsplitter used by Quantis [2].

The paper is organized as follows. Section 2 is devoted to notation, definitions and prerequisite
results; in §3, we construct a universal photonic unitary operator, and in §4, we construct a class
of valid quantum value indefinite observables. Section 5 presents the formal certification of the
quantum random generator and shows that every sequence produced by the three-dimensional
QRNG is incomputable: no sequence produced by such a three-dimensional QRNG can be reproduced
exactly by any algorithm, in particular, by any pseudo-random generator. In §6, we present a photonic
realization of the three-dimensional QRNG. Section 7 discusses device independence. Section 8
includes conclusions and two open questions. The appendix contains short comments on the
Kochen–Specker theorem (§a), the dimensionality of photons and value indefiniteness (§b).

2. Notation, definitions and prerequisite results
The positive integers, reals and complex sets are denoted by N, R and C, respectively. Consider the
alphabets A2 = {0, 1}, A3 = {0, 1, 2}. Strings over the alphabet A3 are denoted by x, y, u, w. Infinite
sequences over the alphabet A3 are denoted by x = x1x2 . . .; the prefix of length m of x is the string
x(m) = x1x2 . . . xm. Sequences can also be viewed as A3-valued functions defined on N. A sequence
x over the alphabet A3 is called 3-bi-immune if there is no partial computable function ϕ : N → A3
such that its domain dom(ϕ) is infinite and ϕ(i) = xi for every i ∈ dom(ϕ) [21].

Next, we present the necessary notions and assumptions of quantum theory, followed by the
main result, which allows the ‘algorithmic location’ of value indefinite observables. A definite
value is precisely a (deterministic) hidden variable specifying, in advance, the result of the
measurement of an observable.

We denote the observable projecting onto the linear subspace spanned by a vector |ψ〉 as Pψ =
|ψ〉〈ψ |/|〈ψ |ψ〉|. We then fix a positive integer n> 2 and let O ⊆ {Pψ | |ψ〉 ∈ C

n} be a non-empty set
of one-dimensional projection observables on the Hilbert space C

n.
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The quantum measurement of an observable is non-contextual if its outcome is independent
of the ‘context’, i.e. is independent of how the observable is measured. The formal definitions
are as follows. A set C ⊂ O is a context of O if C has n elements and for all Pψ , Pφ ∈ C with
Pψ �= Pφ , 〈ψ |φ〉 = 0. A value assignment function (on O) is a partial function v : O → {0, 1} assigning
values to some (possibly all) observables in O.1 An observable P ∈ O is value definite (under the
assignment function v) if v(P) is defined; otherwise, it is value indefinite (under v). Similarly, we
call O value definite (under v) if every observable P ∈ O is value definite.

We assume the following hypotheses:

— Admissibility: Let O be a set of one-dimensional projection observables on C
n and let v :

O → {0, 1} be a value assignment function. Then v is admissible2 for O if for every context
C of O, we have that

∑
P∈C v(P) = 1, i.e. only one projection observable in a context can be

assigned the value 1.
— Non-contextuality of definite values: The outcome obtained by measuring a value

definite observable (a pre-existing physical property) is non-contextual, i.e. it does not
depend on other compatible observables which may be measured alongside it.

Value indefinite observables are essential because, as we will show, measuring one such
observable produces a ‘random’ outcome. To measure a value indefinite observable, we have to
‘effectively find’ one, so the existential Kochen–Specker Theorem is insufficient.3 Motivated by
Einstein et al.’s definition of physical reality ([22], p. 777):

If without in any way, disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists a definite value before observation corresponding to this
physical quantity.

we adopt the following [18]:

— Eigenstate principle: If a quantum system is prepared in the state |ψ〉, then the projection
observable Pψ is value definite.

In detail, if a quantum system is prepared in an arbitrary state |ψ〉 ∈ C
n, then the measurement

of the observable Pψ should yield the outcome 1, hence, if Pψ ∈ O, then v(Pψ ) = 1.

Theorem 2.1 (Located Kochen–Specker [9,17,18]). Consider a quantum system described by the
state |ψ〉 in a Hilbert space Cn, n ≥ 3. Choose a state |φ〉 that is neither orthogonal nor parallel to |ψ〉
(0< |〈ψ ||φ〉|< 1). If the following three conditions are satisfied: (i) Admissibility, (ii) non-contextuality,
and (iii) eigenstate principle, then the projection observable Pφ is value indefinite.

We assume knowledge of elementary computability and algorithmic information theories over
different size alphabets [3] and quantum optics [23]. Finally, we use two- and three dimensions
for ‘two’ and ‘three’ dimensionalities, respectively.

3. A universal photonic unitary operator
In this section, we present a set-up satisfying the conditions of theorem 2.1 that guarantees the
value indefiniteness of the observables, does not rely on probabilistic results, and ensures maximal
unpredictability and robustness to errors (as in the case of multiple photon emission).

To fulfil the Hilbert space dimensional requirement, we can use a collection of theoretical
beamsplitters representing the state of a spin-14 particle [9] as described by its corresponding

1The partiality of the function v means that v(P) can be 0, 1 or indefinite.

2That is, in agreement with quantum mechanics predictions.

3Even in case the finite set has two elements.

4Many results in this section hold for an arbitrary three-dimensional particle.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

un
e 

20
23

 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220543

..........................................................

unitary decomposition, where the desired probability distribution can be achieved with careful
state preparation.

(a) Spectral decomposition
In this section, we prove a slightly more general form of theorem 2.1 in terms of spectral
decomposition.

According to theorem 2.1, if a quantum system is prepared in state |ψ〉, a one-dimensional
projection observable can only be value definite if it is an eigenstate of that observable.

Theorem 3.1. Let O be an observable with spectral decomposition O =∑n
i=1 λiPλi , where λi denotes

each distinct eigenvalue with corresponding eigenstate |λi〉. Then, O has a predetermined measurement
outcome if and only if each projector in its spectral decomposition has a predetermined measurement
outcome.

Thus, theorem 2.1 works for the outcome of the measurement of an observable with non-
degenerate spectra. Furthermore, let C = {P1, . . . , Pn} be a context, i.e. a maximal set of compatible
projection observables and let v be a value assignment function such that v(P1) = 1 under C. It
then follows that if any pair (P1, Pi) is measured, then the system will collapse into the eigenstate
|φ〉 of the projection observable P1 with eigenvalue 1. As all observables in C are physically
co-measurable and

∑n
j=1 Pj = 1, we deduce that |φ〉 is an eigenstate of Pi with corresponding

eigenvalue 0, hence v(Pi) = 0. Similarly, if v(Pi) = 0 for all i �= 1, then v(P1) = 1. Hence, the
admissibility property of v serves as a generalization of the sum rule corresponding to the
physical interpretation of the measurement process.

(b) A generalized spin-1 observable
The property spin (S) is the intrinsic form of angular momentum characteristic of elementary
particles. By deriving the spin state operator Sx, we can analyse the preparation state |Sz〉 effect on
the outcome probabilities. We consider the description of states that point in arbitrary directions
specified by the unit vector u = (ux, uy, uz) = (sin θ cosϑ , sin θ sinϑ , cos θ ), where θ ,ϑ are the polar
and azimuthal angles; we then define the spin observable operator S as a triplet of operators S =
(Sx, Sy, Sz) = h̄σσσ , where σσσ corresponds to the generalized Pauli matrices for a spin-1 particle. Then,
by adopting units in which h̄ is numerically equal to unity, we obtain the generalized observable
that describes the measurement context

S(θ ,ϑ) = u · S =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos(θ )
e−iϑ sin(θ )√

2
0

eiϑ sin(θ)√
2

0
e−iϑ sin(θ )√

2

0
eiϑ sin(θ )√

2
− cos(θ )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.1)

Note that Sz is given by S(0, 0) and Sx by S((π/2), 0).

(c) Unitary decomposition
By considering the orthonormal Cartesian standard basis |1〉 = (1, 0, 0), |0〉 = (0, 1, 0) and |−1〉 =
(0, 0, 1), and the eigenvalues {−1, 0, 1} of Sx we obtain the unitary matrix Ux corresponding to the
spin state operator Sx

Ux = 1
2

⎛
⎜⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎟⎠ . (3.2)

There is a well-known relationship between the set of 2 × 2 unitary matrices with determinant
one, SU(2), and the physical observables of quantum spin in a two-dimensional Hilbert space.
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Every matrix A =
(
α β
γ δ

)
in SU(2) satisfies A† = A−1 by definition, thus, we can express the linear

transformation of a vector by the matrix A as follows:

(
u′
v′

)
=
(
α β

−β∗ α∗

)(
u
v

)
. (3.3)

This relation plays an essential role in formulating a transformation produced by a lossless
beamsplitter and external phase shifter to represent the annihilation operators of the quantum
harmonic oscillator [23]. Here, the transmittance and reflectivity parameters are described within
the unitary matrix, and the input and output states are represented with modes (u, v) and (u′, v′),
respectively: (

u′
v′

)
=
(

cos θ ieiϑ sin θ
i sin θ eiϑ cos θ

)(
u
v

)
.

As demonstrated in [24], given an arbitrary unitary operator, we can represent a generalized
rotation through the decomposition of the unitary matrix Ux using a series of phase shifters and
beamsplitters implemented in an optical experiment. To this end, θ describes the square root of
the reflectivity and transmittance given by sin θ and cos θ , respectively, and ϑ represents the phase
of an external phase shifter on the second input port.

The non-unicity of unitary decompositions and the unavoidable imperfections in every
experimental set-up imply that only some choices are suitable for physical implementation.
Consequently, a unitary decomposition must be carefully constructed to reduce internal loss,
minimize the physical footprint and make the implemented transformation as close as possible to
the ideal one.

Imperfect parameter settings describing the optical elements of a photonic quantum circuit and
propagation losses due to manufacturing errors are the main factors impeding an ideal physical
realization. In what follows, we use the method [25] because the analysis in [26] concluded that it
achieves a more balanced mixture of the optical modes, a reduced propagation loss and a better
scaling of fidelity than the method [24].5

This arrangement can be achieved by left and right multiplying theoretical beamsplitter
matrices Bm,n and B−1

m,n to nullify successive diagonals of Ux while ensuring that no null element
of Ux is affected by subsequent operations.

Let

B1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

1√
3

0

i√
3

−i

√
2
3

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B2,3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0
1
2

− i
√

3
2

0
i
√

3
2

−1
2

⎞
⎟⎟⎟⎟⎟⎠

and

B−1
1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

− i√
3

0

1√
3

i

√
2
3

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠ ,

and note that B−1
2,3 = B2,3.

5The improvements are due to a more compact and symmetric interferometric structure.
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We then obtain the following decomposition:

B2,3 · B1,2 · Ux · B−1
1,2 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠= D. (3.4)

Thus, from (3.4), we get

Ux = B−1
1,2 · B−1

2,3 · D · B1,2 = B−1
1,2 · B2,3 · D · B1,2. (3.5)

In particular, with D consisting of single mode phase-shifts, there exists a diagonal matrix D′ and
a beamsplitter matrix B′

1,2 such that B−1
1,2 · D = D′ · B′

1,2. Indeed, setting

D′ =

⎛
⎜⎝1 0 0

0 i 0
0 0 −1

⎞
⎟⎠ and B′

1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

i√
3

0

− i√
3

−
√

2
3

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

hence we have

B−1
1,2 · D =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

− i√
3

0

1√
3

i

√
2
3

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎝1 0 0

0 −1 0
0 0 −1

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

i√
3

0

1√
3

−i

√
2
3

0

0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝1 0 0

0 i 0
0 0 −1

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2
3

i√
3

0

− i√
3

−
√

2
3

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= D′ · B′
1,2.

(d) Invariance of value-indefinite observables
To justify the use of the two-dimensional matrices representing beamsplitters to construct the three-
dimensional unitary operator, we have to prove that the two-dimensional decomposition induces
a mapping that preserves the three-dimensionality, hence value indefiniteness. In other words, we
must prove that the constructed system is genuinely in the Hilbert space C

3. Hence, the Kochen–
Specker Theorem applies; this is essential as this theorem is false in dimension two.

Recall that the group O(3) formed by the orthogonal transformations in a three-dimensional
vector space establishes significant results closely related to the conservation of angular
momentum; in particular, the representation theory of the rotation group SO(3) is strongly
associated with the theory of the spin of elementary particles [27] allowing the derivation of
the generalized spin-1 observable. Furthermore, there is an important relationship between
the groups SU(2) and SO(3), which is established by a bijective and continuous group
homomorphism Φ—the Lie group homomorphism—mapping SU(2) onto SO(3) with a
corresponding continuous inverse map Φ−1, see [28].

Consider the vector space V spanned by the orthonormal basis

{σ1, σ2, σ3} ≡
{(

0 1
1 0

)
,

(
0 i
−i 0

)
,

(
1 0
0 −1

)}
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formed with the Pauli matrices σx, σy, σz. Note that

σiσj = δijI +
∑

k

εijkσk,

where

εijk =

⎧⎪⎪⎨
⎪⎪⎩

1, if ijk is an even permutation,

−1, if ijk is an odd permutation,

0, otherwise,

with the inner product defined by 〈A, B〉 = (1/2)Tr(AB), for A, B in the basis. The orthonormality
of the chosen basis for V yields the correspondence with C

3. If U ∈ SU(2) and A ∈ V, then

UAU−1 = (U−1)∗AU∗ = (UAU−1)

and
Tr(UAU−1) = Tr(U−1UA) = Tr(A) = 0,

thus UAU−1 ∈ V. Furthermore,

U1U2AU−1
2 U−1

1 = (U1U2)A(U1U2)−1

and
Tr(UAU−1UBU−1) = 1

2
Tr(AB) = 〈A, B〉,

where A, B ∈ V and U, U1, U2 ∈ SU(2). The linear map ΦU : V → V defined by ΦU(A) = UAU−1

satisfies the following conditions:

ΦU1U2 =ΦU1ΦU2 ; 〈ΦU(A),ΦU(B)〉 = 〈A, B〉.
In particular, ΦU is an orthogonal transformation of V, hence Φ is a homomorphism from SU(2)
to O(3). Finally, note that ΦI equals the identity I. In particular, since SO(3) restricts the elements
of O(3) to the ones with determinant one, it follows that Φ maps SU(2) onto SO(3).6

Thus, the action of the two-dimensional decomposition of Ux on a spin-1 observable is a Lie
group preserving mapping to the measurement of a spin-1 system along the x-axis as described
by Ux (see §3b).

Furthermore, as Ux preserves the measurement context described by the spin state operator
Sx = S((π/2), 0), if the projection observable Pφ is value indefinite, then the projection observable
PUx(φ) is also value indefinite. We have proved

Theorem 3.2. The operator Ux defined by (3.5) preserves three-dimensionality, hence value
indefiniteness, i.e. if ψ is value indefinite, then Ux(ψ) is also value indefinite.

4. Construction of value indefinite quantum states
In this section, we construct value indefinite quantum states, which, by measurement, produce
outcomes with a given probability distribution (p1, p2, p3), where

∑
i pi = 1 and 0< pi < 1.

Consider the standard Cartesian basis and the spin state operator Sx from §3b.
The desired probability distribution is

P(Sx, 1) = ∣∣〈1x|φ∗〉∣∣2 = p1,

P(Sx, 0) = ∣∣〈0x|φ∗〉∣∣2 = p2

and P(Sx, −1) = ∣∣〈−1x|φ∗〉∣∣2 = p3,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

where |1x〉, |0x〉 and |−1x〉 represent the eigenvectors of Sx with respect to the standard Cartesian
basis and |φ〉 is the preparation state. A preparation state is called valid if the conditions in (4.1)
are satisfied.
6An alternative derivation can be obtained by noting that SU(2) is isomorphic to unit quaternions.
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Thus, for a selection of valid preparation states |φ∗〉, we use corollary 3.1 to obtain

P(Sx, 1) =
∣∣∣∣12 〈1|φ∗〉 + 1√

2
〈0|φ∗〉 + 1

2
〈−1|φ∗〉

∣∣∣∣2 = p1,

P(Sx, 0) =
∣∣∣∣ 1√

2
〈1|φ∗〉 − 1√

2
〈−1|φ∗〉

∣∣∣∣2 = p2

and P(Sx, −1) =
∣∣∣∣12 〈1|φ∗〉 − 1√

2
〈0|φ∗〉 + 1

2
〈−1|φ∗〉

∣∣∣∣2 = p3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

For example, if we choose

x = ±
√

2
√

p2 + z = 〈1|φ∗〉, y = ±√
p2 ∓

√
2
√

p3 + z
√

2 = 〈0|φ∗〉

and

z = ±
√

p1

2
∓

√
p2√
2

±
√

p3

2
= 〈−1|φ∗〉,

we obtain

P(Sx, 1) = |〈1x|φ∗〉|2 = p1,P(Sx, 2) = |〈0x|φ∗〉|2 = p2

and

P(Sx, −1) = |〈−1x|φ∗〉|2 = p3.

We have proved:

Theorem 4.1. The following quantum states are value indefinite with respect to the standard Cartesian
basis

|φ〉∗ =
[
±

√
2
√

p2 + z
]
|1〉

+
[
±√

p2 ∓
√

2
√

p3 + z
√

2
]
|0〉 +

[
±

√
p1

2
∓

√
p2√
2

±
√

p3

2

]
|−1〉. (4.3)

for every combination of the signs + and −.

According to theorem 4.1, given a probability distribution (p1, p2, p3), every quantum state in
(4.3) is a valid preparation state for the three-dimensional QRNG, and this is obtained by choosing
a combination of signs for |φ∗〉.

Example 4.2. For the probability distribution (1/4, 1/2, 1/4), by setting

(+√p1, +√p2, +√p3) =
(

1
2

,
1√
2

,
1
2

)
,

we can obtain the valid preparation state

|φ〉 = [1 + z]|1〉 +
[

1√
2

−
√

2
2

+ z
√

2

]
|0〉 +

[
1
4

− 1
2

+ 1
4

]
|−1〉 = |1〉.

Similarly, for the probability distribution (1/3, 1/3, 1/3), we get the following valid preparation
states:

± 1√
3

(|1〉 + |−1〉) ± 1√
6

(|1〉 − |−1〉), 1√
6
|1〉 ±

√
2
3
|0〉 − 1√

6
|−1〉,

− 1√
6
|1〉 ±

√
2
3
|0〉 + 1√

6
|−1〉.
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5. Certification
In this section, we prove that every sequence produced by the proposed three-dimensional QRNGs
is incomputable, that is, no sequence produced by such a three-dimensional QRNG can be reproduced
exactly by any algorithm, in particular, by any pseudo-random generator. This shows that the quality of the
quantum random digits produced by every three-dimensional QRNG described in this paper is provable
better than the one produced by any pseudo-random number generator.

In detail, consider a process that algorithmically repeats the process of state preparation and
measurement, as described in §3, 4 and (c), and let x = x1x2 . . . be the infinite sequence produced
by the measurement outputs; here each xi is 0 or 1 or 2. Let O, C be two fixed sets of observables
and contexts, whose respective components Oi, Ci denote the observable and the corresponding
context of the i-th measurement. Let f : N × O × C → A3 be the function defined by f (i, Oi, Ci) = xi
for every i. The incomputability of x, which is equivalent to the incomputability of f , follows from
the non-contextuality of definite values; see Section B in [9] for details. We say that a measurement
outcome is predictable if f is computable; otherwise, f is incomputable, so it offers no method of
prediction [29].

A stronger result can be obtained by using the non-probabilistic model for unpredictability
[12,30]. To this end, we consider an experiment E producing a single-digit x ∈ A3. With a particular
trial of E, we associate the parameter λ (the state of the universe), which fully describes the
trial; λ is a resource from which one can extract finite information to predict the outcome of the
experiment E. The trials of E generate a succession of events of the form ‘E is prepared, performed,
the result is recorded, E is reset’, algorithmically iterated finitely many times.

Definition 5.1. An extractor is a physical device selecting a finite amount of information from λ

without altering the experiment E; the outcome is a string of digits 〈λ〉 over A3. A predictor for E is
an algorithm PE which halts on every input and produces and element of A3 or prediction withheld.

The predictor, PE, can use the information 〈λ〉 as input but must be passive, i.e. it must not
disturb or interact with E in any way.

Definition 5.2. A predictor PE provides a correct prediction using the extractor 〈 〉 for an
instantiation of E with parameter λ on the input 〈λ〉, in case it outputs an element of A3 (i.e. it
does not refrain from making a prediction) that is equal to x, the result of the experiment.

Definition 5.3. Fix an extractor 〈 〉 and a positive integer k. The predictor PE is k, 〈 〉-
correct if there exists an n ≥ k such that when E is repeated n times with associated
parameters λ1, . . . , λn and produces the outputs x1, x2, . . . , xn, then PE outputs the sequence
PE(〈λ1〉), PE(〈λ2〉), . . . , PE(〈λn〉) with the following two properties: (i) no prediction in the sequence
is incorrect, and (ii) in the sequence there are k correct predictions.

If PE is k, 〈 〉-correct, the probability that PE is operating by chance and may not continue to give
correct prediction is bounded by 3−n(n

k
)
< 2n/3n ≤ (2/3)k. This probability tends exponentially to 0

when k → ∞, so the confidence we have in a k, 〈 〉-correct predictor increases exponentially with k.
If PE is k, 〈 〉-correct for all k, then PE never makes an incorrect prediction, and the number of

correct predictions can be made arbitrarily large by repeating E enough times. If PE is not k, 〈 〉-
correct for all k, then we cannot exclude the possibility that every correct prediction PE makes is
simply due to chance. Consequently, we can define the predictability of a single trial

Definition 5.4. The outcome x of a single trial of the experiment E performed with parameter λ
is predictable (with certainty) if there exist an extractor 〈 〉 and a predictor PE which is k, 〈 〉-correct
for all k, and PE(〈λ〉) = x.

In this case, if the predictor PE outputs x, then PE never makes an incorrect prediction no
matter how many times it is used, practically finitely many, theoretically infinitely many.

Theorem 5.5. A sequence x ∈ Aω3 is 3-bi-immune if and only if no single digit of x can be predicted by
any predictor.
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Proof. Let x ∈ Aω3 be a 3-bi-immune sequence and assume that a digit xi of x can be predicted.
Fix an extractor 〈 〉, λ, and assume that there exists a predictor PE for x which is k, 〈 〉-correct for all
k ∈ N and PE(〈 λi〉) = xi. Define the partial function ϕ : N → A3 with the domain dom(ϕ) = {j ∈ A3 |
PE(〈 λj〉) is not withheld} and ϕ(j) = PE(〈 λj〉), j ∈ N.

By definition, PE is an algorithm which halts on every input and for infinitely many j ∈ N,ϕ(j) =
xj, hence the set {j ∈ N | ϕ(j) = xj} is computable, contradicting the 3-bi-immunity of x. Accordingly,
j �∈ dom(ϕ) if and only if PE(〈 λj〉) is withheld.

For the converse implication, suppose no single digit of x can be predicted and assume for the
sake of contradiction that x is not 3-bi-immune. Hence, there exists a partial computable function
ϕ : N → A3 with infinite domain and ϕ(i) = xi for every i ∈ dom(ϕ). Algorithmically we can extract
an infinite computable subset S of dom(ϕ) and set λj = j for the experiment which consists of the
computation of ϕ(j), j ∈ S. Thus, we can construct the predictor PE, which is k-correct for all k ∈ N,
by the formula:

PE〈λj〉) = PE(j) =
{
ϕ(j), if j ∈ S,

‘prediction withheld’, otherwise.

This is a contradiction as all xj with j ∈ S are correctly predicted by PE. �

Assume the Eigenstate principle, and the

epr principle: If a repetition of measurements of an observable generates a computable
sequence, then this implies these observables were valued definite.

Then, the following results, which follow from Theorem 3 in [30], guarantee the maximum
unpredictability of measurements of value indefinite observables:

Theorem 5.6. Let x be an infinite sequence obtained by measuring a quantum value indefinite
observable in C

3 in an algorithmic infinite repetition of the experiment E. Then no single-digit xi can
be predicted.

From theorem 5.5, we get

Corollary 5.7. Let x be an infinite sequence obtained by measuring a quantum value indefinite
observable in C

3 in an algorithmic infinite repetition of the experiment E, then x is 3-bi-immune.

Given theorem 4.1, every quantum state in (4.3) is value indefinite and measuring it with the
universal unitary operator Ux produces a quantum random ternary digit.

Corollary 5.8. Every three-dimensional QRNG that uses a value indefinite observable (4.3) and the
universal unitary operator (3.5) always generates sequences for which no single digit can be predicted. In
particular, every such sequence is 3-bi-immune.

Every PRNG generates a computable sequence of random digits, hence all digits are
algorithmically predictable. By contrast, according to corollary 5.8, no single digit is predictable,
so the three-dimensional QRNG is provable better than any PRNG.

6. Photonic realizations of three-dimensional QRNGs
With reference to the notation in §3, we observe that B2,3 · D = D · B2,3, hence we get

Ux = B−1
1,2 · B2,3 · D · B1,2 = D′ · B′

1,2 · B2,3 · B1,2.

These relations allow us to set the reflectivity, transmittance and phase shift values for
a physical realization via Mach–Zehnder interferometers: the following table provides the
correspondence between equation (3.4) and its physically realizable optical implementation in
figure 1.
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Ux

π

π

–η ηπ
2

–

2π
3

Figure 1. Physical realization of the universal unitary decomposition Ux by means of three-mode multiport interferometer.
An arrangement of Mach–Zehnder interferometers consisting of phase shifters and balanced directional couplers illustrates its
construction. Here, η= arccos(

√
2/3).

The generic arrangement in figure 1 can be realized with multi-mode interferometers (MMIs).
Single-mode waveguides are coupled into a multi-mode fibre characterized by a certain number
of allowed modes. Phase modulation can be achieved by using a thermal phase shifter. In silicon
devices, it can be implemented by connecting a resistive strip of silicon, beside the waveguide,
to a metal pad, to which voltage is applied to control the temperature. By integrating two MMIs
(acting as balanced beamsplitters) with a thermal phase shifter, a Mach–Zehnder Interferometer
with tunable reflectivity implements the arrangement in figure 1.

The effects of the inherent imperfections in the physical implementation of a three QRNG
have to be considered since the certification presented in §5 could be sensitive to experimental
implementation errors. For illustration, we consider the case of single-photon sources and
detectors. In an ideal case, a stream of single photons emitted at controlled intervals will traverse
the beamsplitter set-up, and a perfect single-photon detector will detect its final trajectory.
However, every experimental realization faces various limitations. There are several flavours
of single-photon sources. An attenuated light (e.g. generated by a light-emitting diode) offers a
sufficient, inexpensive and straightforward alternative when accounting for a photon generation
with a more significant separation than the coherence time of the source; separation is not a
problem as the limiting factor tends to be the dead time of the detector (the time interval after
a detection when the detector is unable to perceive incoming photons) [20,31]. Multiple photon
emission is not a problem either because the arrangement in figure 1 is based on uncorrelated
states [32,33]. Moreover, theorem 2.1, via the condition 0< |〈ψ ||φ〉|< 1, provides robustness
against non-ideal preparation state fidelity. Experimentally, some valid preparation states may be
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easier to obtain with higher fidelity, so an optimal choice will ensure the fidelity remains within
the given bound. In this way, the certification in §5 guarantees the maximal unpredictability and
strong incomputability, properties distinguishing the three-dimensional QRNGs from all others
[19,34]. In contrast to the three-dimensional QRNGs, multiple photon emission is a severe
problem for two-dimensional QRNGs reliant on Bell-type certification. Successively emitted
photon pairs may overlap within the detection time window, simultaneously triggering a
detection event that contributes to an artificial rate of photon count coincidences, hence the
possibility of falsely satisfying Bell’s inequality; the higher the frequency of multiple photon
emission, the greater the chances of this occurring [35].

7. Device independence
Various batteries of statistical tests such as NIST [36] are commonly used to probe the randomness
of the strings generated by a QRNG protocol. However, statistical randomness testing cannot
discern whether the tested strings originate from a genuine quantum process and have not
been generated algorithmically [16]. Various self-testing and semi-self-testing protocols have been
formulated [37–39] to address this issue.

Recent literature uses Bell-type inequalities and contextuality-based approaches to assert the
unpredictability of quantum measurements and formulate random number generation protocols.
The former relies on correlations that violate the constraints described by Bell’s Theorem
to certify that there is no local hidden variable describing the measurement outcomes. Here,
statistical randomness is extracted from the local measurement of entangled states while device-
independently witnessing quantum entanglement or non-locality by observing violations of
Bell-type inequalities. The latter relies on bounds derived from results, such as non-located
versions of the Kochen–Specker theorem (see appendix A), expressing the inability of a non-
contextual hidden variable model to reproduce the predictions of quantum mechanics; a measure
of minimum entropy quantifies the quality of randomness.

Due to their probabilistic framework and, in some cases, their inability to meet the
criteria for value indefiniteness due to dimensionality [40], these types of certification do
not guarantee the maximal unpredictability of its measurement outcomes. Nonetheless, these
approaches offer valuable alternatives for applications where trust cannot be placed in the
complete characterization of the device. These approaches can be seen as randomness expansion
protocols, requiring ‘highly’ random inputs to achieve full device independence [41,42]. Using
the outputs produced by the three-dimensional QRNGs as inputs for self-testing and semi-self-
testing randomness expansion protocols is a way to guarantee the quantum nature and maximal
unpredictability of the outcomes generated by these protocols.

8. Conclusion
We have described a class of three-dimensional QRNGs based on a universal photonic unitary
operator and a method to construct a class of value indefinite quantum states and proved
that it generates maximally unpredictable digits via measurements that are robust to errors. In
particular, every sequence generated is strongly incomputable. As discussed in §5, this proves
that their quality of randomness is better than that of every pseudo-random sequence.

Finally, we discussed photonic implementations of three-dimensional QRNGs (§6), showed
their superiority over two-dimensional QRNGs based on Bell-type certification (§5) and the use
of three-dimensional QRNGs in device-independent protocols (see §7).

The strong incomputability of every sequence generated by the three-dimensional QRNGs
studied in this paper contributes to the much-studied and debated problem of incomputability
in physics [43–46]. This paper suggests that incomputability in physics is real and practically
applicable, a fundamental phenomenon for understanding nature.
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As many applications require binary random strings, the following computable alphabetic
morphism ϕ : A3 → A2

ϕ(a) =

⎧⎪⎪⎨
⎪⎪⎩

0, if a = 0,

1, if a = 1,

0, if a = 2,

,

transforms by sequential concatenation ternary strings/sequences into binary ones and preserves
the certification discussed in §5 for the probability distribution 1/4, 1/2, 1/4; for proofs, see [21]
and §7 in [11].

Finally, we conjecture that (i) the certification of the three-dimensional QRNGs presented in
this paper can be strengthened to Martin–Löf randomness [3,47], and (ii) in contrast to three-
dimensional beamsplitters, two-dimensional beamsplitters ‘lose’ information; hence they do not
generate maximally unpredictable random sequences.

Data accessibility. This article has no additional data.
Authors’ contributions. J.M.A.T.: formal analysis, validation, writing—review and editing; C.S.C.: conceptualization,
formal analysis, validation, writing—original draft.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. No funding has been received for this article.
Acknowledgements. We thank A. A. Abbot, E. H. Allen, M. J. Stay, C. Stoica, L. Velez and K. Svozil for discussions
and comments, and the anonymous referees for constructive suggestions; they all improved the paper.

Appendix A

(a) Kochen–Specker Theorem
In contrast to the Bell Theorem [15,48], which gives only bounds on probability distributions
under the locality assumption, the Kochen–Specker Theorem shows that assuming non-
contextuality, it is impossible to assign ‘classical’ definite values to all possible quantum
observables in a consistent manner.

Theorem Appendix A.1 (Kochen–Specker [49–52]). Let n ≥ 3. Then there exists a (finite) set of
one-dimensional projection observables O on the Hilbert space C

n such that there is no value assignment
function v satisfying the following three conditions: (i) every element in O is value definite under v, (ii) v
is admissible for O, and (iii) v is non-contextual.

If the conditions for the Kochen–Specker Theorem are satisfied, the outcomes of all quantum
measurements on a quantum system cannot be simultaneously predetermined.

It has been shown that for every set of observables, there exists an admissible assignment
function under which the set of observables is value definite, and at least one observable is
non-contextual [30]. Hence the incompatibility between the Kochen–Specker assumptions is not
maximal: not all observables need be value indefinite. However, the set of values indefinite
has constructive Lebesgue measure one, that is, with probability one, every observable is value
indefinite [17].

Finally, all proofs of theorem A.1 are non-constructive, in the sense that the proof of the existence
of the finite set of observables is not algorithmic. This implies that this theorem cannot be used
directly to construct QRNGs. By contrast, the proof of theorem 2.1 is constructive. More details
about the Kochen–Specker contextuality can be found in [53].

(b) Spin, dimensionality of photons and value indefiniteness
Although photons are spin-1 particles, they are considered massless. Helicity is the projection
of the spin onto the direction of momentum. One of the spin states would be symmetric to a
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rotation about an axis that is normal to the direction of travel for the photon, which indicates zero
momentum; hence, one can think of this state as acting in the rest frame where the velocity is zero,
and since a photon travels at the speed of light, this state is usually dismissed.

However, the mathematical peculiarities of photons indicate that there is valuable three-
dimensional information encoded in the traditionally dismissed state. A two-dimensional view of
the photonic structure does not fulfil the dimensional requirements imposed by theorem A.1. Still,
a three-dimensional analysis allows this result to localize value indefiniteness with a photonic
quantum process. To illustrate the relevance of the underlying three-dimensional structure of
photons, consider the case of virtual photons, which can be described as ‘light that passes between
two particles of matter without explicit measurement of its properties’. In the case of virtual
photons, the helicity state zero has to be considered since we can no longer think of them as
massless. Rather than regarding photons as being real or virtual, one can argue that all photons
are virtual or that they occur in a continuum of real and virtual; this continuum can be observed
as virtual attributes exhibited by real photons, as in the case of nanophotonics [54], or in a vacuum
where ‘virtual photons can be transformed into real ones that can be observed experimentally’.
The structure and behaviour of virtual and real photons are complex phenomena that are not yet
fully understood. Their peculiarities in dimensionality, as described mathematically and observed
experimentally, require that dimensionality is preserved in a quantum system that uses photons
to guarantee value indefiniteness.
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