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Abstract
We study the Calogero-Moser derivative nonlinear
Schrodinger NLS equation

id,u+0d,u+ D+ |D)(ul>u=0

posed on the Hardy-Sobolev space H', (R) with suitable s >
0. By using a Lax pair structure for this L?-critical equation,
we prove global well-posedness for s > 1 and initial data
with sub-critical or critical L?-mass ||u, ||i2 < 27. More-
over, we prove uniqueness of ground states and also classify
all traveling solitary waves. Finally, we study in detail the
class of multi-soliton solutions u(t) and we prove that they
exhibit energy cascades in the following strong sense such
that [|u(t)||gs ~s |t|?* ast — +oo for every s > 0.
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1 | INTRODUCTION AND MAIN RESULTS

This paper is devoted to the study of the Calogero—Moser derivative nonlinear Schriodinger
equation, which can be written as

idu+0d,u+ D+ |D(ul>Hu=0 (CM-DNLS)

foru : I Xx R — C with some time interval I ¢ R. Here and in what follows, we use the standard
notation D = —id, and hence |D| denotes the Fourier multiplier with symbol |£|.

We remark that Equation (CM-DNLS) was introduced in [1] as a formal continuum limit of
classical Calogero-Moser systems [27, 28]. Also, prior to [1], a defocusing version given by

id,u+ 0, u—(D+|D])(ul?>) =0 (INLS)
was introduced in [30] under the name intermediate nonlinear Schridinger equation (INLS), as
describing envelope waves in a deep stratified fluid. We will concentrate on (CM-DNLS), because it

offers richer dynamics, for example, multi-soliton solutions with turbulence in Sobolev norms (see
Theorem 1.3 below). However, part of our results can be extended to this defocusing version above.

1.1 | Symmetries, phase space, and Hamiltonian features
We observe that Equation (CM-DNLS) admits the invariance by phase, scaling and translation,
u(t,x) = e 2u(1%t, Ax + xp), x, €R,0 € R,1> 0,
which makes it a L?-critical equation on the line. It also enjoys the Galilean invariance
u(t,x) > i’ y(t x — 2tn), 3 €R,

as well as the pseudo-conformal symmetry found by Ginibre and Velo for the L?-critical NLS.
Recall that a special case of this space-time transform reads

2
1 X 1
u(t,x) — —el4tu<—— E).

t1/2 t’t

In what follows, we are interested in solutions of (CM-DNLS) satisfying the additional condition
that

u(®) € HL(R) :={f € H(R) : supp(f) C [0, +c0)},

where H*(R) denotes the usual Sobolev space based on L?(R). The spaces HY (R) will serve as
phase spaces on which we study (CM-DNLS) as a Hamiltonian system.
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4010 | GERARD and LENZMANN

Recall that H 3(R) = Li(R) denotes the Hardy space of holomorphic functions on the complex
upper half-plane. IfweletIT, : L*(R) — Li(R) denote Cauchy-Szeg6 orthogonal projection onto
L% (R) given by

LW =5 [ e fE s,

0

then Equation (CM-DNLS) can be written as
id,u + 9y u+ 2D, (Jul*)u = 0.

Here D, := DII, can be seen as the compression of D = —id,, onto the Hardy space Li(lR).
The positive Fourier frequency condition supp(f) C [0, +c0) is interpreted as a chirality con-
dition in [1]. In fact, such a condition naturally appears if one thinks of the Benjamin-Ono
equation,

9,0 + d,|D|v — 3,(v?) = 0, (BO)

which is known to be well-posed for real valued functions v; see [22, 26]. Introducing the new
unknown u = I1, v, the condition v = v reads v = u + u, so that (BO) is equivalent to

id,u + 9, u + D(u?) + 2D, (Jul?) = 0.
This way, (CM-DNLS) and its defocusing sibling can be seen as L?-critical versions of (BO).
Notice that the pseudo-conformal symmetry does not preserve chirality and that the Galilean
transformation acts on chiral solutions of (CM-DNLS) only if > 0.

Now, let us come to the Hamiltonian properties of (CM-DNLS). To this end, we introduce the
following gauge transformation

v(x) 1= u(x) e_é S P v, (L1)

which turns out to be a diffeomorphism of H*(R) into itself for every s > 0. An elementary
calculation shows that (CM-DNLS) is equivalent to the equation

1
id,v + 9,0 + |D|(Jv]*)v — Z|v|4v =0. 1.2)

This is a Hamiltonian PDE with the standard symplectic form w(h,, h,) = Im(hy, h,);> and the
energy functional

Il . 1 2 1 2 2 1 6
B(v) 1= 18,0112, = Z(DI0P), 0Pz + 5510l

By classical product identities for the Hilbert transform H (see Appendix C for details), the energy
functional E can be written as

E() = %/ 10,0 + %H(lvlz)vlzdx >0.
R
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Inverting the gauge transformation (1.1) and in view of 1, = é(l + iH), we find that E(u) = E(v)
is an energy functional for (CM-DNLS) given by

E(u) = %/ 16, — T, (ju el dox. 13)
R

In summary, we deduce that (CM-DNLS) is a Hamiltonian equation generated by the energy
functional E(u) and the symplectic form

i) =t o)+ [ [ ReGihGOReG@R)0)sgnce - ) dx dy,
RxR

which is just the pullback of the standard symplectic w under the gauge transformation u — v
defined in (1.1). Recall that we will study (CM-DNLS) as Hamiltonian PDE on the phase spaces
H? (R) corresponding to chiral solutions. It is interesting to note that wﬁ provides a non-standard
symplectic form on the spaces H% (R) with s > 0.

Next, we discuss the conservation laws exhibited by (CM-DNLS). Due to symmetry by com-
plex phase shifts, spatial translations and its Hamiltonian nature, we easily obtain the following
conserved quantities:

M(u)=/|u|2 dx (L?*-mass), P(u)=/(DuE—%|u|4)dx (Momentum),
R R

E(u):% / 16,2 — iTL, (Jul?)ul?dx (Energy).
R

In the expression for the conserved momentum P(u), the nonlinear term |u|* arises due to the non-
standard symplectic structure wﬁ. In fact, we will show below that M(u), P(u) and E(u) belong to
an infinite hierarchy of conservation laws {I;(u)};?_, based on a Lax pair structure for (CM-DNLS);
see Section 2.

Finally, we briefly comment on the L?-critical nature of (CM-DNLS). As one may expect, there
exists a special solution which separates solutions into small and large data. Indeed, we will prove

that the energy E(u) has a unique (up to symmetries) minimizer given by the rational function

V2
R(x) = — € H (R),
()= 2= € HL(R)
which we refer to as the ground state for (CM-DNLS); see Section 4. An elementary calculation
shows that u(t, x) = R(x) provides a static solution of (CM-DNLS) and its L?>-mass is found to be

2
M(R) = dx =2m.
(R) /[R1+x2 =

As we will see below, this number 27z provides a threshold in the analysis of (CM-DNLS).
Consequently, we shall refer to solutions u(t) € H3 (R) with

M(ug) < M(R), M(ug) = M(R), M(ug) > M(R)

as having sub-critical, critical, and super-critical L>-masses, respectively. The main results of this
paper will address these various regimes.
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4012 | GERARD and LENZMANN

1.2 | Main results

As a starting point, we first establish local well-posedness of (CM-DNLS) for initial data in HS (R)
with s > 1/2. For sufficiently regular initial data in H} (R) with s > 3/2, this follows from Kato’s
classical iteration scheme for quasilinear evolution equations. Extending the local well-posedness
to less regular data in HS (R) with 1/2 < s < 3/2 can then be achieved by adapting arguments
from [13], which in turn is inspired by Tao’s gauge trick for the Benjamin-Ono equation [35].
However, for the rest of the paper, we will be mainly be concerned with solutions of (CM-DNLS)
such that u(t) € HS (R) with some integer s > 1.

The general question of global well-posedness for (CM-DNLS) seems to be rather delicate
because of the focusing L?-criticality of the nonlinearity, which might generate blowup of solu-
tions in finite time. The following result establishes global well-posedness for initial data with
finite energy and L?-mass that is less or equal to the ground state mass.

Theorem 1.1 (Global Well-Posedness Result). Let s > 1 be an integer. Then (CM-DNLS) is globally
well-posed for initial data in uy € H,(R) with L*-mass

M(up) < M(R) = 27.

Moreover, we have the a-priori bound

sup [|u(t)lps < +o0,
teR

provided the strict inequality M(uy) < M(R) holds.
Remarks 1.1.

(1) In the case of sub-critical L?>-mass, the a-priori bounds on [|u(t)|| ;s will follow from exploiting
an infinite hierarchy of conservation laws for (CM-DNLS). We refer to Section 5 for a detailed
discussion.

(2) The case of critical L>-mass when M(u,) = M(R) is rather delicate to handle and will fol-
low from ruling out the so-called minimal mass blowup solutions for (CM-DNLS) with finite
energy. A key element in the proof will be the slow algebraic decay of the ground states R.

(3) It is an interesting open question whether global-in-time existence holds for large initial
data in H: (R) with s > 1 and L?-mass M(ug) > M(R). As a striking example below, there
exist smooth global-in-time solutions for (CM-DNLS) given by multi-solitons, which always
blowup in infinite time due to unbounded growth of all Sobolev norms ||u(t)|| s for any s > 0.

(4) By applying the pseudo-conformal transformation to the static solution R(x), we obtain the
explicit solution

=L iap(X 2
ting(t, ) = e R<?) € IAR) forallt >0,
which solves (CM-DNLS) and becomes singular as ¢ — 0~. Due to slow algebraic decay of
R(x), we find that ug,,(t) € H 1(R) has no finite energy' and, moreover, we see that the
solution ug,,(t) & Li(R) fails to be chiral. Still, this explicit example shows that we cannot
expect global well-posedness for (CM-DNLS) with arbitrary initial data in the scaling-critical

L A closer inspection shows that Uging(t,-) € H¥(R) forall 0 <5 < 1/2.
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space L?(R). It remains an intriguing open question if initial data in Li(IR) will always lead
to global-in-time solutions for (CM-DNLS).

Next, we turn our attention to sufficiently regular solutions u(t) € H} (R) of (CM-DNLS) with
initial data having critical or super-critical L?-mass:

M(uy) > M(R) = 2.

In this regime of sufficiently large data, we expect (CM-DNLS) to possess traveling ground state
solitons as well as multi-soliton solutions. As a main result in this setting, we completely classify
all traveling solitary waves for the Calogero-Moser DNLS with finite energy by showing that are
given by the ground state R(x) up to scaling, phase, translation, and Galilean boosts preserving
the chirality condition.

Theorem 1.2 (Classification of Traveling Solitary Waves). Every traveling solitary wave for
Equation (CM-DNLS) in H', (R) is of the form

u(t, x) = O+ =’ Q2R (A(x — 2nt) + y)

with some 6 € [0,27),y € R,A > 0,andn > 0.
In particular, every traveling solitary waves u(t) € H}F(IR) for (CM-DNLS) have critical L?>-mass
M(u) = M(R).

Remarks 1.2.

(1) The condition 7 > 0 enters through the chirality condition u(t) € Hi(IR) and thus travel-
ing solitary waves can only move to right. If we take negative values < 0 above, we obtain
left-moving traveling solitary waves u(t) € H'(R) solving (CM-DNLS); see Section 4 for the
definition of traveling solitary waves.

(2) A key step in the complete classification above is to establish uniqueness of (non-trivial) min-
imizers of the energy E(u), which is equivalent to classifying all solutions u € H! (R) of the
nonlinear equation

Du — 11, (Jju|*)u = 0.

We refer to Section 4 below for details including a more general result assuming only that
u € H'(R).

As our final main result, we study the dynamics of multi-soliton solutions for (CM-DNLS); see
Section 6 below for a precise definition using the Lax pair structure. For the Calogero-Moser
DNLS, it turns out that multi-solitons u = u(t, x) are rational functions of x € R in the Hardy
spaces Li(IR). As an interesting fact, we remark that they necessarily have a quantized L?-mass
given by

M(u)=2zN withN =1,2,3,...

In the special case when N = 1, the multi-solitons are given by the ground state R(x) up to sym-
metries. For N > 2, we note that multi-solitons have super-critical L%-mass. As a consequence,
the proof of their global-in-time existence is far from trivial and will follow from the analysis of a
suitable inverse spectral formula based on the Lax structure. As an outcome, we obtain a detailed
dynamical description in the long-time limit. Here, a surprising feature is the general “turbulent”
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4014 | GERARD and LENZMANN

behavior of multi-solitons with N > 2, leading to unbounded growth of higher Sobolev norms
(energy cascades) as follows.

Theorem 1.3 (Growth of Sobolev Norms). For every N > 2, every multi-soliton u = u(t, x) for
(CM-DNLS) exists for all times t € R and it exhibits growth of Sobolev norms such that

lullgs ~s [E1* as t — xoo,
for any real number s > 0.
Remarks.
(1) In Section 6, we make a detailed analysis of the dynamics of multi-solitons. After having

established their global-in-time existence, we show that there exists a sufficiently large time
T = T(ug) > 1 such that a multi-soliton reads

u(t,x) = i ak—(t) fort>T, (1.4)
k=1 X — Zk(t) -

with residues a;(t), ..., ay(t) € C and pairwise distinct poles z;(t), ..., zy(t) € C_ that sat-
isfy a complexified version of the rational Calogero-Moser system for N classical particles. A
detailed investigation (exploiting on the Lax pair structure) then yields that the poles—except
for z,(t) - will all approach the real axis asymptotically, that is,

Imz (t) >0 as t—>+c0 for2<k<N.

A careful analysis of this fact then leads to the precise growth bound in Theorem 1.3. The limit
t - —oo can be handled in the same way.

(2) Itisasubtle fact that multi-solitons u(t, x) may fail to be of the form (1.4) for all times t € R.
That is, we can have collisions of poles in finite time, which renders the form (1.4) invalid.
To handle this collision scenario (see explicit examples for N = 2 in Section 6), we will make
use of a general representation formula of u(t, x) in terms of an inverse spectral formula. See
Section 6 for details.

(3) Itis an interesting open question whether the growth phenomenon in Theorem 1.3 is stable
under perturbations of multi-solitons.

1.3 | Comments on the Lax structure

A central feature of (CM-DNLS) is the fact that it admits a Lax pair. That is, as detailed in Section 2,
we can recast the dynamical evolution into commutator form

d

ELM = [By, L], (1.5)

where the Lax operator L,, is given by

L,=D-T,T;. (1.6)
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This defines an unbounded self-adjoint operator acting the Hardy space Li(IR) with a suitable
operator domain, depending on the regularity of u. Here T}, (f) = I1.(bf) denotes the Toeplitz
operator on L2 (R) with symbol b.

As an important consequence of (1.5), we will find an infinite hierarchy of conservation laws in
terms of expressions

I(w) = (L*u,u) with k=0,1,2,..

provided that u(t) € HS (R) is a sufficiently regular solution of (CM-DNLS). It is an intriguing
feature, due to the L?-criticality of the problem, that the hierarchy {I) (u)};cy Will generally pro-
vide a-priori bounds on solutions only if we have sub-critical L?-mass; see Theorem 1.1. This is
in striking contrast to many other completely integrable PDEs (e. g., KdV, Benjamin-Ono, cubic
NLS etc.) where the corresponding hierarchy of conservation laws yields control over any smooth
solutions without any assumption on its size.

In Section 5, we examine the spectral properties of the Lax operator L, in more detail. Based on
a key commutator formula, we find a sharp bound on the number of eigenvalues N of the form

lual2,

N < oo 1.7

Furthermore, we prove that every eigenvalue of L, is simple. As interesting aside, we remark that
this bound not only applies to isolated eigenvalues, but also to eigenvalues which are embedded
in the essential spectrum oe.(L) = [0, o). Moreover, we emphasize the fact that we can easily
generate embedded eigenvalues of L, by action of the Beurling-Lax semigroup {e”’x}nzo acting
on Li(IR); see Section 5 again.

In terms of spectral theory, it is a natural question to study which potentials u € Li(IR) will
lead to equality in the general bound (1.7). Here we will find a distinguished class of potentials
given by rational functions of the form
_P™ 1

u(x) 20 € H (R),
where Q, P € C[x] are suitable polynomials with degQ = N and degP < N — 1; see Proposi-
tion 5.2. We will refer to these u(x) = P(x)/Q(x) as above as multi-soliton potentials and the
corresponding solutions will be called multi-solitons for (CM-DNLS). As an immediate conse-
quence of saturating the bound (1.7), we obtain the multi-solitons u(t, x) have quantized L?>-mass
with

M(u) = 27N.

Another noteworthy feature of any multi-soliton solution u(t,x) is that it is completely
supported in the pure point spectrum of the Lax operator, that is, we have

u(t) € gpp (Lu(t))y

where £, , denotes the N-dimensional space spanned the eigenfunctions of L,,. This fact will allow
us to derive a very explicit inverse spectral formula representing a multi-soliton. This will enable
us to prove global-in-time existence and, more strikingly, the growth bounds states in Theorem 1.3.
In the future, we plan to further refine the spectral analysis of L, in order to study the long-time
behavior of solutions of (CM-DNLS) beyond the case of multi-solitons.
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Finally, we remark that the Lax structure for (CM-DNLS) bears some resemblance to the Lax
structure for (BO), which is known to have the Lax operator

¥ =p-r,

acting on the Hardy space Li(IR); see for example [16]. Note that the occurrence of T, in L,(ABO)

instead of T,,T; in L, is consistent with the different degrees of the nonlinearity (quadratic
vs. cubic).

1.4 | Comparison to other PDEs

Let us comment on the energy cascade phenomenon in Theorem 1.3 in comparison to other
Hamiltonian PDEs on the line. Among the recently studied Hamiltonian PDEs on the line, the
closest one to (CM-DNLS) is certainly the derivative nonlinear Schrédinger equation,

i0,u + 9, u+id (Jul’u) =0, (DNLS)

which—like (CM-DNLS) - is L?-mass critical with a Lax pair structure. Using the Lax pair
structure, global existence was first proved in [20] in the space H*(R) n H*(R). Then global well-
posedness with uniform bounds in H®, s > 1/2 was obtained in [4, 5]. Quite recently, the flow map
was extended to the whole of L?(R) in [18], proving that all trajectories of (DNLS) are uniformly
equicontinuous with values in L?(R). All these results prevent any kind of energy cascade and are
therefore in strong contrast with the dynamics of (CM-DNLS), which turns out to be much richer.
Another integrable Hamiltonian PDE on the line is the cubic Szegé equation, see [31],

i6,u = L, (jul2u), 19)

where multi-solitons were recently studied in [17], and where energy cascades were displayed
under some degeneracy assumption of the spectrum of the corresponding Lax operator. There is
definitely some similarity in the approaches to multi-solitons in (1.8) and (CM-DNLS), particularly
in the inverse spectral formulae. However, let us emphasize that the spectral properties of the Lax
operators are very different, and that energy cascades for multi-solitons in (1.8) only occur under
some degeneracy assumption, while they always occur for multi-solitons in (CM-DNLS). This
suggests that the dynamics of (CM-DNLS) is particularly turbulent, even compared to the non-
dispersive Equation (1.8). We hope to explore other aspects of this dynamics in the near future.

1.5 | Notation

We denote by (f, g) = fR fg the L?-inner product of functions f, g on the line. We recall that IT,,
denotes the orthogonal projector from L?(R) onto the Hardy space Li(lR). Sometimes, we will
also use the notation II_ = 1 —IT, . Notice that, for every L2 function fs

IL(f) = I,(f).
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Finally, observe that the Hilbert transform H = —i sgn(D) is related to IT, by the identities

1 1

2 | WELL-POSEDNESS, LAX STRUCTURE, AND CONSERVATION
LAWS

In this section, we study the Cauchy problem for (CM-DNLS) in H% (R) with suitable s. As a key
element for obtaining global-in-time solutions, we will find a Lax pair structure on the Hardy-
type space HS , which will generate an infinite hierarchy of conservation laws. With this at hand,
we will derive a-priori bounds for initial u, € H (R) with integer s > 1 and sub-critical L?-mass
M(uy) < M(R).

2.1 | Local well-posedness
As starting point for local well-posedness, we consider the case of initial data in H} (R) with s >
3/2, where Kato’s classical iterative scheme for quasilinear evolution equations can be utilized.
We remark that the presence of the derivative term D (|u|?)u raises some analytic challenges that
need to be addressed.
Proposition 2.1. Lets > 3/2. Forany R > 0, thereis some T(R) > 0 such that, for every u, € H% (R)
with ||ugllys < R, there exists a unique solution u € C([-T,T]; H} (R)) of (CM-DNLS) with u(0) =
Ug.

Furthermore, the H?-regularity of u, for o > s is propagated on the whole maximal interval of

existence of u, and the flow map uy — u(t) is continuous on H*.

Proof. As already mentioned above, we apply a Kato-type iterative scheme to obtain this result.
For concreteness, we shall consider the case

s=2

in what follows. The general case s > 3/2 can be handled in an analogous way.
We first write (CM-DNLS) as

0;u = i0y u + 2T, T30, u + 2uH, 0, u, 21
where
T.f :=T,(af), Hpf :=T(bf) (2.2)

denote the Toeplitz and Hankel operators acting on Lfr(lR) with symbols a and b, respectively. Our
first observation is that the term H,, 0, u is of order O if u is smooth enough.
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3
Lemma 21. If u € H2(R), then H,8, : L2(R) - L2(R) is bounded with ||H,(3,f)ll;> <
ﬁ”u”Hyz”f”Lz Ifu,v € HA(R), then H,d,v € H2(R) with
|1H,0,vll g2 < Cllullgz vl g2

with some constant C > 0.

Proof. Let f € HL(R). Then

HEI© == [ a¢+nfmg. or o0

0
Consequently,
o) d 2
|HT@‘(§)|25/ [ +nlIE + Il fonI -
0
® . dp [T o~ ,dy
< [ wGenrenrsl [ ifors.
Thus

21 2w

3. 12, < / / e+ MPE+ P 2L 0
0 0

< /O 2P gIIfII = S lull, 12,

By density, this bound extends to all f € Li(R). This proves the first claim of the lemma.
For the second statement, we note that this follows from the first statement combined with
Sobolev embeddings and the identity
0yx (H,,0,0) = H,,0,(0xV) + 2H; 0,0 + Hy_,,050.
This completes the proof of Lemma 2.1. O

In view of (2.1), we consider the following iteration scheme

duftl =io, uktl + 2Tk T_k0y uk+t 4+ 2ukH 0 uk (2.3)

with initial datum u**1(0, x) = uy(x) € H fr(R). Notice that T, T is a self-adjoint operator. Hence
a standard energy methods yields the following result.

Lemma 2.2. Let u € C([-T,T], H2(R)) with some T >0, p €1{0,1,2}, and w, € HY(R), f €
LY([-T, T];Hf:(R)). Then there exists a unique w € C([-T, T];Hi(R)) such that

oiw = i0,,w + 2T, Tyw + f,  w(0,x) = wy(x).
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Furthermore,

sup [lw()llgr < Ce

T
C [p Iu®I2, dt(
|t|<T

lwollso + I1f g2iz0 )

Coming back to the scheme (2.3), we see that Lemmas 2.1 and 2.2 allow us to construct by
induction a sequence (uX) in C(R; Hf_(IR)) with u°(¢, x) = ug(x). We are now going to prove that
if ||ugllz2 < R and T(R) > 0 suitably chosen, then the sequence (u) is bounded in H i(IR) and
uniformly convergent in Lf_(IR) for |[t| < T(R).

Let us first prove that (1) is bounded in H_Z'_(IR) for |t| < T(R) with suitably chosen T(R) > 0.
Indeed, by using the second estimate in Lemma 2.1 together with the bound in Lemma 2.2 for
p = 2, we obtain

T T
C [ k@2, dt
|S|uP Uk (Ol < Ce Jr H2 (IIuoIIHz +/ ”uk(t)“?p df)-
t|I<T -T

Assume ||ug|lzz < R and let Ry = (1 + C)R. Since R; > CR, we can choose T = T(R) > 0 such
that

CeTRI(R + 2TR?) < R;.

By an elementary induction argument, we find that SUpP|; <1 (R) luk ()|l ;2 < R, for all k.
Next, we show that we have a contraction property of the sequence (1) in L_Z,_(IR) for |t| < T(R)
as follows. Observe that

8, (uk+t —uky = ia, (uk+! —uk) + ZTMkTakax(uk+1 —uk)+
+ 2T Ty — 2Tuk_1TEk_1)axuk + 2ukH 0, uk — 20 TH 1 0, ul L
Using the estimate of Lemma 2.2 with p = 0 and the bound on u* in H?, we infer

sup [lukt1(t) — uk(0)ll;2 < KT sup [|uk(e) — w1 (0)]l 12
[t]<T [t|<T

with some constant K > 0. If we choose T = T(R) > 0 from above small enough to ensure that
KT < 1, then the series SUP | |<1(r) luk+1(t) — uk(t)|| 2 is geometrically convergent.

Finally, the sequence (u*) is uniformly weakly convergent in C([-T,T]; Hf_(IR)) and strongly
convergent in C([-T, T]; Lfr(lR)). Hence its limit u(t) solves (2.1) — and therefore (CM-DNLS). (To
prove that the limit u(t) actually belongs to C([-T, T];Hfr(lR)), we can invoke Tao’s frequency
envelope method [35] or adapt an argument due to Bona-Smith [8].)

Uniqueness follows along the same lines as the contraction property in Lfr(R). The proof of
Proposition 2.1 is now complete. O

Following the analysis in [13], we can further lower the regularity for local well-posedness
to initial data in H? (R) with s > 1/2. In particular, we can reach the energy space H' (R) for
(CM-DNLS). In fact, the arguments adapt Tao’s frequency localized gauge transform introduced
to treat low regularity solutions for the Benjamin-Ono equation. For (CM-DNLS), we obtain the
following local well-posedness result.
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Theorem 2.1 (Local Well-Posedness in H} with s > 1/2). Let u, € H,(R) with some s > 1/2.
Then there exist a time T = T(||uy||ys) > 0 and some Banach space Z,r C C([-T,T]; H,(R)) and
a unique solution u € Zg 1 of (CM-DNLS) with initial datum u(0) = uy.

Furthermore, the H?-regularity of u, for o > s is propagated on the whole maximal interval of
existence of u, and the flow map u, — u(t) is continuous on H°.

Remark. Recall that (CM-DNLS) is L?-critical with respect to scaling. It remains a fundamental
open problem to understand the case u € HS (R) when 0 < s <1/2.

Proof. We can adapt the estimates proven in [13] to our case. Suppose that u, € H3 (R) with
some s > 1/2. For € > 0, let n.(x) = \/le_mz/E be a Gaussian mollifier. Then uy(x) = (1, *
ETT ’

u)(x) satisfies uy, € HP(R) C H2(R). By Proposition 2.1, there exists a unique solution u, €
c(-T.,T.;H fr(lR)) with u.(0) = uy .. We can now apply the arguments in the proof of Theorem
1.1 in [13]. First, we can show that there exists T = T(||uy||gs) > 0 satisfying T, > T for all € > 0.
Then following Proposition 3.2 in [13] we see that (u.) is Cauchy in Z; as ¢ — 0; we refer to
[13] for the definition of the Banach space Z; . Finally, the uniqueness of the limit of (u.) can be
proven by the estimate (3.40) in [13]. [l

2.2 | Lax pair and conservation laws

In this subsection, we will show that (CM-DNLS) admits a Lax pair with certain densely defined
operators L, and B,, acting on the Hardy space Li(R). Here we will exploit this fact to derive an
infinite hierachy of conservation laws. For an analysis of the spectral properties of L,, we refer to
Section 6 below.

For u € HY (R) with some s > 0, we formally define the operators L, and B, acting on Li(R)
by setting

L,=D-T,T; and B, =T,Ts;—Ts ,Ty+i(T,Ty) (2.4)

Here T}, (f) = I1.(bf) denotes the Toeplitz operator on Li(IR) with symbol b € L*(R) + L*(R).
Forue H i(R) C L*(R), we readily check that T,, and T; are bounded operators on Li(R). Thus,
foru e Hi(R), it is straightforward to verify that L,, is semibounded and a self-adjoint operator,
that is,

L, =1L,

with operator domain dom(L,) = H.(R). For u € H2(R), we readily check that B, = —B;, is a
skew-adjoint and bounded operator on Li([R{).

Remark 2.1. In Appendix A below, we detail how L, can be defined via quadratic forms if we only
assume thatu € Li(IR{), which is a natural class in view of the L?-criticality of (CM-DNLS).

Next, we see that L, and B,, form indeed a Lax pair for the Calogero-Moser DNLS.
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Lemma 2.3 (Lax Equation). Ifu € C([0, T|; H}.(R)) solves (CM-DNLS) with s > 0 sufficiently large

(e.g., with s = 2), then it holds

d

ELu = [Bw Lu]-

Proof. We divide the proof into the following steps.
Step 1. We first calculate the commutators

I = [Tquxa’D], II = [Taquﬁ’DL III = l[(TuTﬂ)Z’D]
We find
I'=Ty[Ts 4,D]+ [Ty, DIT5 4 = TyTis,_a + Tig uTs,a

Il =Ty [Ty, D)+ [T5,4, DTy = T5 uTis.a + Tig, uTa-

xxU
In addition, we see
I = iT,T4[T, Ty D] +i[T,Tz DIT, Ty
= iT,Ta(TuTis,a + TiouTa) + i(TuTig.a + Tio uTa) TuTa-
As a next step, we consider the terms
IV =T, T5,0.TuTal, V= [T, Ta TuTal, VI=i[(T,T)* T, Tl
We find
v = TuTaxaTuTa - TuTaTuTaxaa V= TaquaTuTa - TuTaTaqua,
and, clearly, we have VI = 0. If we combine all commutator terms, we see
[B, L, =T1—-IT+1II-1V+V
=TuTig xa — Tig, uTa — 2Ty T3Ts Ty — 2T, T3 34T, Ty
=TuTis_a—Tis, uTa —2TuTo upTa
where in the last step we used that u € H} (R), which implies that
TaTsu+ToaTu = Tas uro,au = Tojup

holds on L% (R).
Step 2. We now calculate

d
L= —TaTa =TTy

= _Tiaxquﬁ - 2T1'I+(6x|u|2)uTﬂ - TuT—iaxxﬁ - 2TuTH+(5X|u|2)ﬁ

In view of the expression for [B,,, L, ] derived in Step 1, it remains to show the identity

T, @ luyuTa + TuT

TNCAND A TyTy upTa

(2.5)
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Indeed, using that u € H}, (R), we find

Tn,@dun = TuTnyeupy 304 TG s, = T g s e

Since 0, |u|? = I, (3, |u|?) + 1. (3, |u|?), we deduce that (2.5) holds true. This completes the proof
of Lemma 2.3. O

2] = 0, the skew-adjoint operator

Remark 2.2. Since we have that [L,, L
B, =B, —il?
also satisfies the Lax equation %Lu = [B,,L,]. A direct calculation shows that
B, = —iD? 4 2iT, DT (2.6)

Note that B, is an unbounded skew-adjoint operator on Li(R) with operator domain dom(B,,) =
H i(R). Actually, we first found the operator B,, in the analysis of the Lax structure of (CM-DNLS).
We also note that the relation between B,, and B, is reminiscent to the Lax structure for the
Benjamin-Ono equation used in [16].

As a consequence of the Lax equation, we obtain an infinite hierarchy of conservation of laws
for (CM-DNLS) as follows

Lemma 2.4 (Hierarchy of Conservation Laws). Let u € C([0,T], H}, (R)) be a solution of (CM-
DNLS) with sufficiently large s > 0. Then, for every A & o(Ly)), we have the conserved quantity

Hy(w) := (L, — AD ™ u,u).

n/2

+ (R))with some n € N, the quantities

As a consequence, ifu € C([0,T]; H

Ii(w) 1= (Lku,u) withk=0,..,n

n/2

are conserved, where (-, - denotes the dual pairing of H ;"/ *and H g

Proof. Let 4 & o(L,,), which by the Lax equation implies that 1 ¢ o(L,) for all u = u(¢) with
t € [0,T]. A quick calculation reveals that (CM-DNLS) can be written as

d,u=B,u
with the operator B, = B, — iL2; see also (2.6) above. Using that %Lu = [B,,L,], itis elementary
to verify that

d
EH&(M) =0.

Finally, we note the expansion

Hy(u) = ), A~ D(LEu, u)
k=0

85U8017 SUOWIWOD 8A1ER1D 3|edtjdde aup Aq peusencb a8 sspiie YO ‘88N JO Sa|n. 10} ARIqiT 8UIUO 8|1 UO (SUOIIPUCD-PUR-SWBIAL0D" A8 | 1M Ae1q 1 BUIUO//:SANY) SUOIPUOD pue swis | 8y} 885 *[1Z0z/80/ST] U0 Ariqi auliuo 811 ‘€0zzzedo/z00T 0T/I0pALoo A8 m Afeiq1jput|uo//sdny woly pepeojumod ‘0T ‘v20z ‘ZTE0L60T



THE CALOGERO-MOSER DERIVATIVE NONLINEAR SCHRODINGER EQUATION | 4023

for all real 1 < 0 sufficiently negative (using that L, is bounded below) and with u € HP’(R) =
Ns>oH} (R). Thus we deduce that I;(u) = (iju, u) are constant in time for solutions in

HY(R). The conservation laws Io(u), ..., I,(u) for solutions u € C([0,T ];Hi/ 2(IR)) follow from
an approximation argument, which we omit. O
2.3 | Global existence for sub-critical L>-mass

As an application of Lemma 2.4, we deduce the following global-in-time existence result.

Corollary 2.1 (Global Existence and Bounds for sub-critical L?>-Mass). Let u, € H 1 (R) with some
integer s > 1 and suppose that

M(uy) < M(R) = 27.

Then the corresponding solution u(t) € H' (R) of (CM-DNLS) exists for all times t € R with the
a-priori bound

sup ||u(t)|lgs < +o0.
teR

Remarks.

(1) The condition s > 1 arises from the current state of the local well-posedness theory for (CM-
DNLS). It is conceivable that, with some great effort though, that this result extends to initial
data in HY(R) = L3 (R) satistying [|u|?, < 27.

(2) From Theorem 1.3 we deduce that the infinite hierarchy of conservation laws

I (u(t)) = I (uy) withk=1,2,...

fail in general to produce a-priori bounds on H’-norms for s > 0 for solutions with initial data
with L?-mass M(ug) > M(R) = 27.

Proof. We first consider the case s = 1. By the local well-posedness theory in H}L(IR), we need
to find an a-priori bound on sup,; [[u(t)|| 1, where I C R denotes the maximal time interval of
existence. Indeed, we have the conservation laws
IO(u) = <u’u> = ”u”IZ‘p
L(w) = (Lyu,u) = (Du,u) — | Tzull?,.
Now, we use the sharp inequality (see Lemma A.1):
2 1 2
ITqull?, < = Ilull?,(Du, u).
Therefore if we assume that ||uO||i2 < 27, we deduce the a-priori bound

sup [[u(®)|l 12 < C(ug).
tel
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Next, we use the conservation of energy together with a standard Gagliardo-Nirenberg
interpolation and Sobolev inequality:

1 1
E(u) = 2I,(u) = (Liu,u) = (Du, Du) = (|l ID||ul) + 5 llull},

2 [18ull2, = Cllulld 19,2 2 18.ull?, = Cllull? , , 1.l 2.
From the a-priori bound on ||u(t)||1/2, we readily infer that sup,.; [[0,u(t)ll;2 < C(up). This
completes the proof for s = 1.
The remaining case of integer s > 2 follows by iteration and using the conserved quantities

I (w) = (L*u,u) = ||ul|?, , + lower order terms

2
Erk/2

with k =0, ..., 2s. We omit the details. O

2.4 | Proof of theorem 1.1 for M(u,) < M(R)

The assertions in Theorem 1.1 in the case M (u,) < M(R) follow directly from Corollary 2.1.
The critical case M(u,) = M(R) will be discussed in the following section.

3 | NONEXISTENCE OF MINIMAL MASS BLOWUP

The goal of this section is to rule out finite-time minimal mass blowup for (CM-DNLS) with finite
energy. As a consequence, we obtain that initial data u(0) € H5 (R) with some s > 1 with critical
L?-mass

M) =M(R) =27

will always lead to global-in-time solutions u € C(R; H: (R)), completing the proof of Theo-
rem 1.1.

Notice that the absence of minimal mass blowup is in striking contrast to focusing L?-critical
NLS, where the existence of minimal mass blowup is a direct consequence of applying the pseudo-
conformal transform to ground state solitary waves. For (CM-DNLS) on the other hand, we will
see below that the mechanism that prevents the existence of minimal mass blowup is due to the
slow algebraic decay of ground states R € H}F(R) with |R(x)| ~ ﬁ as |x| - +oo.

We begin with the L?-tightness property for H!-solutions on finite time intervals.
Lemma 3.1. Let I C R be an interval of finite length |I| < co and suppose that u € C(I, H'(R))

solves (CM-DNLS). Then the family {u(t)},¢; is tight in L>(R), that is, for every € > O there exists
R = R(¢) > 0 such that

/ lu(t,x)|*dx <e forallt €1.
[x|>R
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Remarks.

(1) Itshould be noted that no assumption on the size of the solution u(t), that is, we do not assume
that M(u,) is sufficiently small.

(2) Notice that we do not assume that u(t) belongs to the Hardy space H }r(R), but in fact we allow
for general H'-valued solutions of (CM-DNLS).

Proof. The idea is to adapt an elegant argument in [6] developed for studying minimal mass

blowup for L?-critical NLS. Let p € C*®(R) be a smooth real-valued function with bounded deriva-
tive 9,3 € L®(R). For any a € R and u € H'(R), the non-negativity of the energy implies that

E(el®y) > 0.

Expanding the right-hand side, we find

E(el®¥y) = % / 10, (e!¥u) — il (Ju|>)e!Pu|? dx
R

% / liad, Ypu + d,u — ill, (Ju|?)u|? dx
R

2
= % /R 10,1210, u|? dx + aRe (id, Ppu, du — il (Ju|>)u) + E(w).

Now we observe that

Re (i0,Pu, d,u) = / 3,9 - Im(wd, u) dx,
R

Re(id, u, ~ITL () = —3 Re(3,pu, (1 + iH)(|ufu) = -

N =

/ 8,9l dx,
R

using that 1, = %(1 + iH) and Re{u, iH(|u|*)u) = 0 since H(|u|?) is real-valued. Therefore, the

quadratic expansion in a together with E(e!*¥u) > 0 implies that

/ o) (Im(ﬁaxu) - %|u|4>dx
R

with the energy E; = E(u) > 0.
Next, we apply (3.1) to obtain the claimed L?-tightness bound. From (CM-DNLS) we deduce

1/2

< 2E0</ |5xzp|2|axu|2dx> , 3.1
R

3, ul? = —zax<1m(aaxu) - %lul“) (.2)

in view of Re(u(2iD, |u|*)u) = Re((d,|u|?)|ul?) = %6x|u|4. Now let y be a smooth nonnegative
function such that y(x) =0 for |x| <1/2 and y(x) =1 for |x| > 1. For R > 0, we set yp(x) =
x(x/R). Integrating by parts and using (3.2) and (3.1), we infer that

i/)(Rlulzdx :Z/GX)(R Im(ﬁaxu)—llul4 dx (3.3)
dt Jp R 2
1/2 FoMy
S Eo(/ |ax)(R|2|u|2dx> < R (3.4)
R
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with the conserved L?-mass M, = ||u||i2. If we integrate this bound over the finite time interval
I ¢ R with some ¢, € I fixed, we finally obtain

/XR(X)|“(t,x)|2dx S/)(R(X)Iu(to,x)l2 dx + %,
R R R

for all t € I. This readily implies the claimed tightness bound. [

Theorem 3.1 (No Minimal Mass Blowup). Let I C R with 0 € I and finite length |I| < co. Suppose
u € C(I; H'(R)) solves (CM-DNLS) with M(uy) = M(R) = 27. Then it holds

sup ||lu()|lg: < +o0.
tel

Remark. (1) Note again that we allow for general H'-valued solutions u(t).

Proof. We argue by contradiction. Without loss of generality, we can assume that I = [0, T) with
some finite time T € (0, +o0) and let u € C([0, T); H'(R)) satisfy

lim ||u(t = .
lim [[u(®)ll = +oo
Step 1. We first show that u(t) must have finite variance, that is, we have

/ |x|2|u(t, x)|>dx < +o0  fort €[0,T). (3.5)
R

Here we adapt a strategy developed for classifying minimal-mass finite-time blowup solutions for
L?-critical NLS; originally due to Merle in [25]. To prove the claim (3.5), we follow the arguments
laid out in [6, 19].

Let t, — T~ be a sequence of times. We define

1

. L 1/2
g, = — , v,(x) :=¢,/ ult,,,x) .
" ”axu(tn)”L2 ! " wen

Applying the Minimal Mass Bubble Lemma B.1 from Appendix B to v,, after passing to a
subsequence if necessary, there exist sequences x,, € R and 4,, > 0 such that 1, —» 0 and

AUt A (x + X)) = €®R(x)  strongly in LA(R)

for some 6 € [0, 27z[, with the ground state R € H}F(R) minimizing the energy functional E(u)
on H!(R). Thus we obtain

|u(tn, X)I* dx — IRII7,6x=1,x, = O
in the weak sense of measures. By the L?-tightness property in Lemma 3.1, we easily deduce

that 1,,|x,,| < C with some constant C > 0. From this fact (and passing to a subsequence) and
by translational invariance we can henceforth assume that 1,,x,, — 0 holds.
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Next, let € C;°(R) be a non-negative function such that ¥(x) = |x|? for |x| <1 and
10,3 (x)|? < Cy(x)with some constant C > 0. For R > 0, we set z(x) = R?*3(x/R) and we define

&0 = [ et P dx.
R
In analogy to (3.3) based on (3.1) we find
d
80| S [ Bl dx < Ve G6)

where the last step used that |99 |?> S g by construction. By integrating this on [¢, t,,] and using
that gz(t,) - 0 as n — oo, we deduce

g0 = [ Bl P dx ST =17 fort €[0.1)
R
Passing to the limit R — +o0, this yields
/ |x|?|u(t, x)|?dx S (T —t)*> fort e0,T). 3.7)
R

In particular, this implies that (3.5) holds, showing that u(¢) has finite variance.
Step 2. By Step 1, we have u, = u(0) € = = H'(R) n L?*(R; | x|*dx) and thus we can apply the
pseudo-conformal identity (see Lemma C.1) to conclude that

812E(eilXI*/41y,)) = / [x|2|u(t, x)|? dx < (T —t)2. (3.8)
R

If we pass to the limit t — T~, we obtain

E(elP*/4Ty) = o. (3.9)

Since ||ell*I*/ “Tuy||?, = 27, the uniqueness result in Lemma 4.1 implies that

ellXP*/4Ty (x) = R(x) (3.10)

up to translation, phase, and scaling. However, the fact that ell*I’/4Ty € % contradicts that R(x)
has infinite variance, that is,

/ |x|2|R(x)|? dx = +oo.
R

This contradiction shows that any u(t) € H'(R) solving (CM-DNLS) with M(u(0)) = M(R) = 27
cannot blowup in finite time. This completes the proof of Theorem 3.1. Therefore, the proof of
Theorem 1.1 is also complete. [l
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4 | GROUND STATES AND TRAVELING SOLITARY WAVES

In this section, we show that all ground states (minimizers) for the energy functional E(u) for
(CM-DNLS) are given by the rational function

V2

RX) =03

€ HL(R) (4.0)

modulo translation, phase, and scaling. As a second main result of this section, we prove that
all traveling solitary waves in H}r(R) for (CM-DNLS) are given by Galilean boosts (with positive
velocity) of R up to the symmetries just mentioned.

We start with the following key result, which shows uniqueness of non-trivial solutions of the
(first-order) Euler-Lagrange equation for minimizers of E(u).

Lemma 4.1 (Uniqueness of Ground States). Suppose that u € H'(R) with u # 0 solves
Du —TI, (Ju|*)u = 0.
Then it holds
u(x) = eAY?R(Ax +y)

with some 6 € [0,27),A >0,y €ER,and R € Hi(IR) is given by (4.1).
As a consequence, all minimizers u € H'(R) \ {0} for E(u) are of the form u = R modulo phase,
translation, and scaling.

Remarks.

(1) Note we that only assume that u € H'(R) and we obtain a posteriori that u € H}F(R) due to
its explicit form.

(2) As an interesting aside, we remark that the equation for u € H'(R) above can be recast into
the nonlocal Liouville equation on the real line:

IDjlw =e* inR. 4.2)

To prove this claim (neglecting any technicalities of function spaces for simplicity), we first

apply the gauge transform introducing the function v = e/ 2/ |”|2u, which leads to the
equation for v given by

1 .
o,V + 5H(|v|2)v =0 inR, (4.3)
where we recall that H denotes the Hilbert transform. It is easy to see non-trivial solutions

v are (up to a complex phase factor) strictly positive v > 0. Finally, if we definew : R - R
by setting w = log(v?), we readily check that w solves (4.2). In [11, 12, 37] it is proven that all

solutions w € LY(R; liiz) of (4.2) are explicitly given by
21
=log | ———— 4.4
w(x) 0g<1+ﬂ.2(x—y)> (44)
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with some constants 4 > 0 and y € R. From this uniqueness result for w, we could obtain
the result of Lemma 4.1. However, we will below give a self-contained (and short) unique-
ness proof based on Hardy space arguments and complex ODEs. This method also provides
(yet) another proof of the stated uniqueness result for w solving (4.2). See also [2] for a recent
uniqueness result for solutions w of the nonlocal Liouville equation |D|w = Ke” in R with
the prescribed function K : R — R.

Proof of Lemma 4.1. We introduce the function
w =11, (|ul?) € HL(R),
so that u’ = iuw and |u|?> = w + w. We obtain the complex ordinary differential equation
2

w =T, W'a+ 7w = I (iww + D) — iw@ + w)) = iw?,

using that H+(Ez) = 0 for w € H (R). Since w # 0, we deduce

= £

for some constant z € C with Im z < 0 because w € Li(R). Consequently,

I u
=1luw = — .
X—Zz

Thus we have (x — z)u(x) = ¢ with some constant ¢ € C. To determine ¢, we notice

| 2 2
xiZ=H+(|u|2)=n+< ] )z( ]

|x — z|? z—2)(x—2z)

This implies that |c|> = —2Im z = 2|Im z|. In summary, we have found that
V2| Imz
u(x) = e’ —xl_ ~ |

with some 8 € [0,27) and z € C_. From this fact we readily deduce that u(x) = e®A'/2R(Ax + y)
withA = —(Imz)~!' > 0andy = —Rez. O

Our next goal is to classify all traveling solitary wave solutions for (CM-DNLS). By a traveling
solitary waves (with finite energy), we mean solutions of the form

u(t,x) = 'R, ,(x — vt) (4.5)

where w € R is a frequency parameter and v € R denotes the velocity. Here the non-trivial pro-
file R, € H'(R) is allowed to depend on w and v. Note that a-priori we allow also for R, ,
in H'(R) and not just restricted to H} (R). We have the following complete classification result,
which shows that all traveling solitary waves for (CM-DNLS) are generated by Galilean boosts,
translations, scaling and phase transformations of the ground state R(x).
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Proposition 4.1. Letv,w € R and suppose u(t, x) is a traveling solitary wave for (CM-DNLS) with
profile R, ,, € H'(R) \ {0}. Then it holds

w=-2 and Ryu(v)=e: O R(x +)
withsome® € [0,27),A > 0,andy € R. Moreover, we have Royw € H}F(R) ifand onlyifv > 0 holds.

Proof. We divide the proof into the following steps.
Step 1. We easily check that R, , € H'(R) must solve

_axxRU,cu + ivava,cu - 2D+(|Rv,co|2)Ru,cu = (‘)Rv,w- (4-6)
The term ivd, R, , can be removed by a Galilean boost transform. That is, we write
Ruw®) = ez Ry(x). (4.7)

An elementary calculation yields that R; € H'(R) satisfies

[ S8

—8. Ry —2D,(|Ry|>)Ry = @R, with ®=w+%. (4.8)

Step 2. We claim that every solution R; € H'(R) of (4.8) has zero energy:
E(Rg) = 0. (4.9)
Since R4 # 0, we see from Lemma 4.1 that

Rc;):R

modulo symmetries. As a consequence, we obtain @ = 0 and therefore w = _v as claimed.

The proof of (4.9) follows from applying the gauge transform together with a Pohozaev-type
argument. Since D, (|R4|?) € L*(R), we notice that Equation (4.8) tells us that R5; € H(R)
holds. Next, we apply the gauge transform & discussed in Appendix C to R ;. That is, we set

i rx

S(x) 1= ®(R,)(x) = ¢ 2 /- Koy (1) (4.10)

We directly check that S € H?(R) and |S|?> = |R;|?. Using that |D| = H3, and IT, = %(1 +iH), a
calculation yields that

~3..S — (IDIISI?)S + %|S|4S = @s. (4.11)

If we integrate this equation against S, we directly obtain

/|axS|2—/|S|2(|D||S|2)+1/|S|6=os/|S|2. 4.12)
R R 4 R R
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Next, we integrate (4.11) against xd,.S over the compact interval [—R, R]. By taking the real part
and taking the limit R — +o0, we find the identity

1/ 2 1 6 @ 2
= [ 18,8 ——/|S| =——/|S|. (4.13)
2/, 7 T 24 2 Jn

For details of this step, we refer to Appendix C. The combination of (4.12) and (4.13) yields

1 21 2 2y, L 6 _
5 105k = [ ispapiisey+ 5 [ ise=o (414)

Recall that the right side can be written as a complete square (see Appendix C)
1 1 N2 1 i 5 5
5 [ 18xS+ SHUSIDSIPdx = 5 [ 10:Rs — 511 (IR;1))R 1 dx,
2 Jn 2 2 Jn 2

where the last step follows by using (4.10). Thus we deduce that (4.9) holds, which completes the
proof. O

4.1 | Proofoftheorem 1.2

This claim immediately follows from Proposition 4.1 by taking n = v/2.

5 | ANALYSIS OF THE LAX OPERATOR

In this section, we will further study the Lax operator
L,=D-T,T;

introduced in Section 2 above, where T}, (f) = I1.(bf) denotes the Toeplitz operator on Li(IR)
with symbol b. In particular, we will derive important commutator identities and prove simplicity
of eigenvalues of L, for general potentials u € H i(R) along with optimal bounds on the number
of eigenvalues of L,,. Moreover, we will define the notion of multi-soliton potentials below.

5.1 | Simplicity of eigenvalues and sharp bounds for L,

Given u € Hi(R)z, we recall that the operator L, defined above is an unbounded self-adjoint
operator on the Hardy space Li(R), with the operator domain H }L([R). First we show simplicity of
eigenvalues for L, together with a bound on the number of eigenvalues.

Proposition 5.1. IfL,y = Ay, then

Ku, )I* = 27197, - (GRY

2Recall that the regularity assumption can be relaxed to u € Li(R) via an approach using quadratic forms; see
Appendix A below.
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In particular, every eigenvalue of L, is simple, and the number N of eigenvalues of L, is finite with

2
2,

<
N 27

In particular, the operator L, has no point spectrum if ||u||i2 < 2m.

Remark. In [36], an identity reminiscent to (5.1) was derived for the Lax operator of the Benjamin-
Ono equation on the real line.

Proof. The key is to introduce the Lax—Beurling semigroup of contractions defined on Li(R) as
Sm)f(x) = e f(x), n>0.

and the corresponding adjoint semigroup defined as
S f =T, (1), 0 > 0.

Clearly, S(n) and S(n)* act on the domain H }r(R) of L,,. Also notice that, via the Fourier transform,
we have

SOy f&) = fE+mn), E20p20.

To complete the proof of Proposition 5.1, we need the following identity.

Lemma 5.1. Forevery f € H!(R), we have the following limit in the L*-norm,

i [ S22
m
n—0

L) == trau.

Proof of Lemma 5.1. Notice that, for £ > 0,

fﬂ”(§)=§f(§)—ﬁ/jﬁ@—{)[/jﬁf@w)dr @.
Set
A() = [S(U)*al’u ,§20.
Then
W(§>=f<§+n>—4;2n /jm&w—@[/j%f({ﬂ)dr d¢ .

PaSSing to the limit in L , We get
lim A(??)f(é) = f(% — —7[ u(§ ‘/0 ”(Z f T) T,

which yields Lemma 5.1. [l
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For future reference, we state the following lemma, which can be proved similarly to Lemma 5.1.

Lemma 5.2. Leta,b € Lfr(lR). Forevery f € Li(R), we have the following limit in the L?>-norm,

[S(n)*

. 1
lim T,TQTE:lf = E(f,b>a .

n—0

Let us come back to the proof Proposition 5.1. If we apply Lemma 5.1 to f = 3, we obtain

lim (AI = L,)S(n)*y
n—0 n

1
=9 - E@/’, uyu.
Taking inner product of both sides with ¢, we obtain

0= 112, - 51wl

which is (5.1). Now the next statements of Proposition 5.1 follow easily. Indeed, identity (5.1)
implies that the kernel of the linear form (., u) on any eigenspace is reduced to {0}, so that this
eigenspace is one dimensional. Finally, if 11, ..., 5 is an orthonormal system of eigenvectors, we
have

N
2
lull?, > ) [(u, 9;)|* = 272N.
j=1

This proof of Proposition 5.1 is now complete. [l

5.2 | Multi-soliton potentials

Next, we exhibit a class of potentials u € H }r(R) which are given by rational functions and which
optimize the general bound for the number N of eigenvalues of L,, found in Proposition 5.1 above.
To this end, we use g,,(L,) to denote the pure point spectrum of L, and correspondingly we
define

Epp(u) = span{y € ker(L, — AI) : 1 € opp(Ly,)}

to be the space spanned by the eigenfunctions of L,,. We have the following spectral characteriza-
tion result.

Proposition 5.2. Letu € H }F(R) be given and let N > 1 be an integer. Then the following properties
are equivalent and preserved by the flow of (CM-DNLS).

(i) Thespace £,,(u) has dimension N and is invariant under the adjoint semigroup {S(1)*},>, and
it holds that u € &,,(u).
(ii) There exist a polynomial Q € C[x] of degree N, with all its zeros in C_, and a polynomial P €
C[x] of degree at most N — 1 such that
P(x)

u(x) = 20 and PP =i(Q'Q - Q'Q).
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Before we prove this result, let us make some general comments as follows. We refer to the
rational functions u € H}r(R) above as a multi-soliton potential or N-soliton potential. In
Section 6 below, we will study the time evolution of multi-soliton potentials, which correspond
to multi-solitons. In view of Proposition 5.1, we see that multi-solitons must have a quantized
L?-mass according to

a2, = 27N

with some integer N > 1. As a generic example for a multi-soliton potential, we can take the
polynomial Q to have simple zeros, that is,

N
Q) =[x -z,
j=1

where z;, ..., zy € C_ are pairwise distinct. Then the condition in (ii) above yields that

N

aj . <
u(x) = z P with ]Zl

j=1 J = Zj_zk

a-Ek
I~ —i withk=1,..,N.

Let us also remark that, for a given polynomial Q € C[x] of degree N > 1, there exist only a
finite number of polynomials P € C[x] satisfying the constraint in (ii) up to a constant complex

— —/
phase. We can find them as follows. Consider the polynomial F := i(Q’'Q — Q Q) € C[x] of degree
2N — 2. Suppose that

N
Q) =[x -zp
Jj=1

with zeros zq, ..., zy € C_, which are not necessarily distinct. For x € R, we get

N

Fx) =y —7L>o.

QP ~ & Jx =z

In particular, the zeroes of F come in pairs as (ocj,&j), j=1,..,N —1,with a; ¢ R. Thus we can
write

N-1

P(x)=c H(x -aj),

j=1

where the constant ¢ € C is adjusted so that PP = F holds. Of course, exchanging one ; with a
leads to a different P and hence to a different function u.

Proofof Proposition 5.2. We first proof the equivalence of statements (i) and (ii). Finally, we address
the preservation by the flow of (CM-DNLS).

Step 1: (ii) = (i). For u(x) = % € HL(R) as in (ii), we define
Q Cn-
G(x)z% and K, :=%[)x],
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so that we have the orthogonal decomposition
L2(R) =Ky ®OL2(R).

We claim that Ky is an invariant subspace of L,,.. Indeed, if f = A/Q € Kg, then

—iA’ iQ'A P PA
L,(f) 9 + RE _6H+<36>

—_ —/ —
-, [rPa, @A)y (Fa
o) +H+[an“aol QH+<5Q>

—/ —
_od o (2 P (PA
-k +1H+<6Q>+H+<QH_<6Q>>.

Observe that, if R € L?(R) is a rational function, and if the denominator of R reads Q, Q_, where
Q. is a polynomial with zeroes in C,, then IT, (R) is of the form P/Q_, where P is a polynomial
of degree less than the degree of Q_. From this observation and the above identity, we conclude
that L, (f) € Kg. Therefore L, is a self-adjoint endomorphism on the finite dimensional space Kg,
which has dimension N. This implies that L, has at least N eigenvalues. Since u € Kp, it follows
that u is a linear combination of an orthonormal basis of eigenfunctions ¥, ..., 95 € Kg. From
Proposition 5.1 we conclude that

N
lull?, = ) K, )| = 27N.
k=1

By invoking Proposition 5.1 again, we deduce that L, has exactly N eigenvalues. Thus we have
shown &,,(u) = Ky and therefore we conclude dim &,,(u) = N as well as u € &, ,(u). Since the
semigroup {S(7)},>, leaves the space GLfr([R{) invariant, we obtain that its adjoint semigroup
{S()*},>0 leaves its orthogonal complement &, ,(u) = Ky invariant.

Step 2: (i) = (ii). Suppose that £, ,(u) has dimension N > 1 and is invariant under the adjoint
semigroup {S(7)*},>0. Thus the orthogonal complement (<S'pp(1,£))l is invariant preserved by the
action of the semigroup S(n) with > 0. By the Lax-Beurling theorem [23], we conclude

(gpp(u))i = QL_Z'_(R)
with some inner function 6 defined on the upper complex halfplane C,. Furthermore, since

Epp(u) is N-dimensional, one can choose 6 of the form

Q) Al
B(x) = 200 Q(x) = Jl:[l(x—zj), Imz; < 0.

Consequently,

Cn-lx]

Epp(u) = BLI(R)' =Kq = O
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Since u € &p,(u), there exists P € Cy_;[x] such that u = P/Q. Since L,, is self-adjoint, we have
Ly[(€pp)*t N HL(R)] C (&, ",
alternatively Lu(GH (R)) c GL2 (R). Leth € H! +(R). We have

L,(6h) = 6Dh + (DO)h — ull, (ubh) = 6Dh + (DO)h — |u|*6h ,

because
ub = 29 L €Li(R).
QQ Q@
We infer (D6)h — 6|u|?h € 6L2 (R) for every h € HL(R), or
D6
5~ lul? € LZ®).

Notice that, for every x € R,

D6 N 2Imz;

— 7.2
e j=1 |x Zjl

hence D6/0 — |u|? is real valued, therefore it belongs to L RN 12(R) +(R) = {0}. Reformulating this

identity in terms of P and Q, we obtain PP =i(Q Q- Q Q).

Step 3: Preservation by the Flow. In order to prove the last part of Proposition 5.2, we intro-
duce the infinitesimal generator of the adjoint Lax-Beurling semi-group, namely the operator G
such that

NOEES
Notice that its operator domain is given by
dom(G) = {f € L2(R) : fj0.+c0 € H'(I0, +00D)}

and that

(Gf)(§) = ld—g for £>0.
In particular, the operator G acts on Ky for every finite Blaschke product 8. We claim that
properties (i) and (ii) are equivalent to the following statement:
(iii) The space &,,(u) has dimension N, contains u, and moreover u € dom(G) with Gu €
Epp(w).
Indeed, as we just observed, if u is a N-soliton, then it satisfies (iii). Conversely, assume that
ue H}r satisfies (iii). We appeal to a corollary of Lemma 5.1.

Lemma 5.3. Let f € dom(G) N H! such that L, f € dom(G). Then Gf € H. and

6L.f ~L,Gf = if - it L2y
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Proof. For every h € dom(G), we have

Gh =i lim M.
n—0* n

Rewriting Lemma 5.1 as

lim [%,Lu]f —f- %(f,u)u.

7—0
Using that L,, is a closed operator, the lemma follows. O

Applying Lemma 5.3 to f = u, we infer that L,(u) € dom(G) and that

2
lull?,

GL,(w) = L,(Gu) +iu—i -

u.

In particular, GL,(u) € &,,(u). Iterating this process, we conclude by an easy induction that, for
every integer k, L’lju € dom(G) and that GLﬁu € &pp(u). Now recall from Proposition 5.1 that L,
has N simple eigenvalues on &,,(u), and that the component of u on any eigenvector is different
from 0. Consequently, u is a cyclic vector for L, in €,,(u), namely the N vectors u, Ly, ... LY
form a basis of £,,(u). From this we infer that G acts on &,,(u), and finally that S(7)* acts on
Epp(u), whence (i).

Let us prove that property (iii) is preserved by the flow of (CM-DNLS). Consider u, satisfying
(iii), and denote by u the solution of (CM-DNLS) with u(0) = u, on its maximal time interval.
Notice that we know from (ii) that u, belongs to every HS. Therefore, by the well-posedness result
Proposition 2.1, u(t) belongs to every H®, hence we do not have to worry about its regularity. We are
going to use the Lax equation provided by Lemma 2.3. Denote by U(t) the one-parameter family
of unitary operators on L2 (R) defined as

d
aU(t) =B, U@®), UO)=1.
Then Lemma 2.3 implies
Ly = U@L, U@)" . (5.2)

Consequently, £,,(u(t)) = U(t)[€pp(up)] has dimension N. Furthermore, in view of Lemma 2.4,
the spectral measure of L, associated to the vector u(t) is the same as the spectral measure of
Ly, associated to the vector u,. This implies that £,,(u(t)) contains u(¢). It remains to prove that
u(t) € dom(G) and that Gu(t) € &,,(u(t)). Let us appeal to the reformulation of the dynamics as

o,u =Byu,
where B, = B, — iL2 according to (2.6). Given 7 > 0, define

;S@)ul) —u(®)

u(t,n) := "
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and observe that

3 S(n)*
o;v(t,n) = Bu(t,n) +g(t,n), glt,n) := i[ ()

- Bu(t)] u(t) )

which, in view of (5.2), can be solved as

U v(t,n) = e Hov(0,n) + / D g e, dr
0
Using Lemma 5.2 and the expression of B,,, we obtain
Lemma 5.4. Ifu € H}(R), we have, for every f € L2(R),
[S(n)*
7

lim i
7n—0

1
’Bu] f=5-(f Lapu+ (f,u)Lu).
Combining Lemma 5.4 with Lemma 5.1, we infer, locally uniformly in ¢,
}}ij}(l) g(t,m) = 2Lyu(t) .

This shows that v(¢, n) has a limit Gu(t) in Lfr as 5 — 0, characterized by

t
U)*Gu(t) = e ity Gugy + 2/ el(f_t)letoLuo U(D)*u(r)dr
0

—itL? —itL?
=e "0Guy+2te Ly U .

Notice that, by (iii), the right hand side of the above equation belongs to £,,(u,). Consequently,
Gu(t) € UWDIEpp(ug)] = Epp(u(t)). This completes the proof. O

Remark. In fact, one can easily check that the operator L, restricted to the invariant subspace
GLi = (Kp)* has absolutely continuous simple spectrum with

L,(6h) =6Dh forallh € HL(R).

Foranyu € H }r(R), we notice that the operator L, has the essential spectrum o,4(L,,) = [0, ).
In the case of multi-solitons, we find that 0 is always an embedded eigenvalue.

Proposition 5.3. For any multi-soliton potential u € Hi(IR), we have that
L,(1-6)=0,

where 6(x) = ZE—X; with the notation from Proposition 5.2 (ii) above.
X

Proof. We observe that

L,(1 = 6) = —DO — ull, (u(1 — 6)) = —DO + ull, (u6) .
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Notice that the function

belongs to Li(IR). Hence we can deduce
L,(1-6)=-D6 +uub =0,

because of the constraint in Proposition 5.2 (ii). O

6 | DYNAMICS OF MULTI-SOLITONS

This section is devoted to the study of multi-solitons, that is, solutions u(t, x) with initial datum
giving by a multi-soliton potential u, € H i(IR) (see Proposition 5.2 above). By means of an inverse
spectral formula, we will be able to prove global-in-time existence for all multi-solitons. This is a
large data result which is beyond the scope of a-priori bounds. Second, we prove that all multi-
solitons with N > 2 exhibit an energy cascade (growth of Sobolev norms) as t — +co.

6.1 | Preliminary discussion

Let us first consider the following pole ansatz of the form

N

(1)
w0 =Y, xif—z(t) c HL(R), (6.1)
j=1 J

where a;(¢), ..., ay(t) € C\ {0} and pairwise distinct poles z;(¢), ..., zy(t) in the complex lower
halfplane C_. If we plug this ansatz into (CM-DNLS), then a straightforward calculation shows
that the self-consistency of (6.1) leads to the set of nonlinear constraints given by

i a;(O)ai(t)

————— =i for k=1,..,N. (6.2)
zj(t) — k(1)

j=1

Note that these conditions have already appeared in the discussion of multi-soliton potentials
(see Proposition 5.2 above). Furthermore, the equations of motions which govern the parameters
{a; (1), zj(t)}ﬁ.\’:1 are found to be

N N
ap —Q a
G =2 ) ——< and @z =-2i) — (6.3)
= (2 —2e) o Ze

with k = 1,..., N. A tedious calculation shows that the constraints (6.2) are indeed preserved by
the time evolution determined by (6.3). Finally, we remark that the first-order system (6.3) can be
used to derive that

2= —S— for k=1,..N, (6.4)
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which is again confirmed by a lengthy calculation that we omit here. We note that (6.4) can be
regarded as a complexified version® of the Calogero-Moser (CM) system on the real line, whose
complete integrability was proven by J. Moser in [27] (see also [21, 28, 29]). Let us mention that the
pole dynamics of rational solutions of completely integrable PDEs are governed by (complexified
versions) of CM systems have also been found for the Benjamin-Ono, KdV and Half-Wave Maps
equations in [3, 7, 9].

However, we emphasize that working with the pole ansatz in (6.1) leads to the following caveats
that ultimately need to be addressed.

(1) Collision of poles: It may happen that z;(t) — z(t) for some pair j # k as t — T with some
finite time T > 0. From (6.4) we expect that the solution z;(t) blows up in C? as t — T. But
the solution u(t, x) itself may stay smooth as t — T, whereas the pole ansatz (6.1) becomes
invalid only. Explicit examples of pole collisions will be given in Subsection 6.4 below.

(2) Showing that z,(t) € C_: The major step in showing global-in-time existence for multi-
solitons consists in proving that the poles z,(t) stay in the lower complex half-plane C_.

To systematically tackle the problems (1) and (2), we will derive an inverse spectral formula for
multi-solitons, which entails the pole ansatz (6.1) as a special case. Furthermore, the dynamical
evolution of multi-solitons u(¢, x) will be encoded by the linear flow of a suitable matrix M(t) €
CN*N such that

M(t) = 2Vt + W (6.5)

with some constant matrices V and W in CV*V; see Proposition 6.2 and (6.12)-(6.13) below. More-
over, we remark that solving classical CM systems on the real line by means of linear flows of
N X N-matrices was successfully used in [28]. Finally, notice that similar inverse formulae for
multi-soliton solutions were derived in the case of the Benjamin-Ono equation in [34] and in
the case of the cubic Szeg6 equation in [17]. However, in these two examples, the global well-
posedness result was established directly by other methods, while it seems to be the first time that
such inverse formulae provide global existence.

6.2 | Inverse spectral formula and time evolution
Let
P(x) 1
u(x)=—= e H,(R)
Qx) ~ 7
be a multi-soliton potential. We use the notation introduced in the proof of Proposition 5.2 with
Q(x) Cn-1lx]
O(x)=——= and Kyg=——"—
Q) T

Recall that the Lax-Beurling semigroup S(n) leaves the space 6L? invariant, and hence its adjoint
semigroup S(n)* leaves the subspace Ky invariant. This observation leads to the following formula,
where G is the operator introduced in subsection 5.2.

3 That is, we formally generalize the positions x; € R to complex numbers z; € C_.
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Proposition 6.1. Forevery f € K,
Fx) = zim.«(; —XIUf,1-8) for Im(x)>0.

Proof. We start from the inversion Fourier formula for every element of Li(R),

— 1 . ix¢ £
60 =5 /0 e f(©)dE .
We claim that if f € Ky we have

f© =) f1-6), £>0. (6.6)

Indeed, by the Plancherel theorem,

7(&) = lim L2 dx = lim <S(§)*f, ! > ,

=0+ Jn 1+iex 1—iex

since (1 —iex)™' € Li. For the same reason 8(1 — iex)™! € 9L_2F which is orthogonal to Ky and in
particular to S(§)* f. Therefore

1—iex

f& = tim (507,755

which yields (6.6). It remains to plug (6.6) into the inversion Fourier formula, reminding that
S(£)* = e7C and the proposition follows. O

Next, we are going to use Proposition 6.1 in the particular case f = u. The interesting feature is
that the inner product in this formula takes place in Ky, of which we can choose an orthonormal
basis made of eigenvectors (¥, ..., ) of L, so that

Lulp] :/‘tjlp] for J:1,,N
Here and throughout the following we label the eigenvalues such that
/11 = 0,12, ,/‘i.N,

where we recall that 0 is always an eigenvalue of L,, by Proposition 5.3. In view of Proposition 5.1,
we can choose the normalisation

(u,9;)=vV2r for j=1,..,N.
Note that, because of Proposition 5.3, it holds
(1-6,9;)=0 for j=2,..,N.

Let us first discuss the case of (1 — 6,1;). Notice that every element f of Ky is smooth on
10, + o[ with limits at 0. In particular, we can pass to the limit in formula (6.6) as £ — 0% to
obtain

fO)=(f,1-0).
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On the other hand, the identity L,,3; = 0 reads

¢ o
= 5 [ a6 -0( [ W@+ oar) at

so that

oo BOD a0
(1:1-8) =09 = ) = = (6.7)

Coming back to the equation satisfied by u,
idu+3d2u+2D,(lulP)u=0, (6.8)

and taking the Fourier transform, we observe that
[Se]
(0, )= 00,9 +2 [ D, (u )t xut,x) dx =0
0

Passing to the limit as £ — 0% and observing that D, (Ju|?) and u both belong to L2, we infer
atﬁ(t, O+) = 0.

Hence 9(0") is a conserved quantity and, consequently, the inner product product (1 — 6,;) is
conserved as well. Let us come back to the inverse formula

u(x) = %((G —xD)lu,1—8), Tm(x) > 0. 6.9)

In the orthonormal basis (¢4, ..., P) of Ky, we have just observed that the components of u and of
1 — 6 are conserved quantities. Next, let us discuss the matrix of G in this basis, which we denote
as

M = (G Yj)r<jkn -

Of course, the matrix M = M(¢) will depend on ¢ as well through the evolution of the eigenfunc-
tions ; as given by the Lax structure in order to keep (u,9;) constant, that is, we have P = B,y e
Indeed, we will later use this to derive explicitly formulas for M. For notational ease, we will
sometimes omit the t-dependence of M(t).

We first consider the case j # k. For this We recall that every element of K4 belongs to dom(G).
Then, for j # k, we observe that

(A = )G, ¥;j) = ((GL, — L,GY, ;) = iy, ;) — i =

(Yo ), ;)
2 -

so that

i
A =2

(G, 9j) = if j#k. (6.10)

85U8017 SUOWIWOD 8A1ER1D 3|edtjdde aup Aq peusencb a8 sspiie YO ‘88N JO Sa|n. 10} ARIqiT 8UIUO 8|1 UO (SUOIIPUCD-PUR-SWBIAL0D" A8 | 1M Ae1q 1 BUIUO//:SANY) SUOIPUOD pue swis | 8y} 885 *[1Z0z/80/ST] U0 Ariqi auliuo 811 ‘€0zzzedo/z00T 0T/I0pALoo A8 m Afeiq1jput|uo//sdny woly pepeojumod ‘0T ‘v20z ‘ZTE0L60T



THE CALOGERO-MOSER DERIVATIVE NONLINEAR SCHRODINGER EQUATION | 4043

Finally, let us discuss the diagonal elements (G, ;). Notice that their imaginary parts are easy
to calculate, since

1 dp; . %007 (), 1=6)
Im<G¢j’¢j>=ERe<d_§]’¢j>=_ ]47r =—— 47

which is O whenever j # 1. For j = 1, we use (6.7) to conclude

[a(0")|?
8m2

Im(GYy,9,) = —

As for the real part of the diagonal elements, we are going to compute their time derivatives if u
is a solution of (6.8). From the Lax pair formula, we may assume that

Z[)j = Buznbj , By = TuTaXﬁ - Taqua + i(TuTH)Z .
Then
d -
Passing to the limit in Lemma 5.4, we have
1
(G, Bulf = 5—((f, Lywpu + (f, )Ly ).

Consequently, we get

S by ) ) + 5w Lt )

22 .

Summing up, we have proved that

d
The inverse spectral formula therefore reads, setting

: o . 0(07)
Yj :=Re(M;;), \/20€'? := e , >0

The discussion above shows that the following results holds.

Proposition 6.2. If u(t) € H,(R) is a multi-soliton potential such that L, has eigenvalues 2, =
0,45, ..., Ay, then u can be recovered as

u(t, x) = /20e!? (M(t) — xI)"'X, Y )en for Imx > 0,
where

X:=(@1,..,DT, Yy :=(Q,0,..,07,
i
Aj— A
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Furthermore, the following evolution laws hold:

d d d o
6.3 | Global-in-time existence

In order to prove that N-soliton solutions u(¢, x) can be extended to all times t € R, we are going
to study the eigenvalues of the matrix M(t) € C¥*¥ introduced above. To this end, we note that
the time evolution of M(t) stated in Proposition 6.2 can be written as

M(t) = 2Vt + W (6.12)

with the constant complex N X N-matrices V = (Vji)i<jr<y and W = (W )1 <j k<n having the
entries:

}/J—195J1 1f]=k,
Vik =40k, Wi =9 _i if j # k.
A=A

(6.13)

Recall that 4; = 0,4,, ...,y € R are real and pairwise distinct and ¢ > 0 is a strictly positive real
number, whereas y1, ..., ¥y € R are real numbers (which are not necessarily pairwise distinct).

To prove that multi-soliton solutions extend to all times ¢ € R, we show that all the eigenvalues
of M(¢) are always in the lower complex plane C_ ={z € C : Imz < 0}.

Lemma6.1. Foranyt € R, all eigenvalues of the matrix M(t) have strictly negative imaginary parts,
that is, it holds

aM(t))cC_ forteR.

Remark. Below we will prove the remarkable fact that all the eigenvalues of M(t) except for one
will asymptotically converge to the real axis as t — +o0o. As a consequence, this implies that all N-
solitons with N > 2 will have an algebraic growth of their Sobolev norms according to ||u(t)||gs ~
|t]? for any s > 0.

Proof. Lett € R be given. For notational convenience we write M = M(¢) in what follows. We
readily verify the identities

(M — M)

where (-, -)c~ denotes the standard inner product on CY and X = (1,...,1)T € CV. Because of the
first identity above, any eigenvalue z € o(M) must satisfy

Imz <O0.
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Let us prove that z ¢ R holds. We argue by contradiction as follows. Suppose that z € R and let
v = (vy,...,uy)" € CN \ {0} be a corresponding eigenvector, that is,

Mv = zv.

Since we assume that z is real, we can use the first identity in (6.14) to deduce that
1 * 2
0= 5(('\/' —M*)v, v)en = —2¢|v, |

and therefore v; = 0. Projecting the equation Mv = zv onto the 1st mode and recalling that ; = 0
by assumption, we infer

al J

This can be written as

T
v v
(w,X)=0 with w:= <o, /1—2 . ﬁ) .
Noticing that Vw = v and applying the second identity in (6.14), we find

VM —zDw = i(w — (w, X)en X) = iw. (6.15)

If we take inner product of the left side with w and using that V = V*, we conclude

(w,VIM = zD)w)cn = (Vw, Mw)en — z{w, Vw)cn = (M*v, w)en — z{(w, V)eN
o2 N Mk

= z(V,W)cN — z{W, V)cN = Z Z -z 1= 0,
j=2 7

where we used that z € R and that M*v = Mv = zv holds thanks to the form of M and v; = 0.
Thus from (6.15) we deduce that 0 = i|w|?. This shows that w = 0 and consequently we find v = 0
which is a contradiction. Therefore z € R cannot be an eigenvalue of M. [

As a direct consequence of Proposition 6.2 and Lemma 6.1, we deduce the following result.

Theorem 6.1 (Global-in-Time Existence). Suppose uy, € H i(IR) is an N-soliton potential with some
N > 1. Then the corresponding solution u(t) of (CM-DNLS) with u(0) = u extendsto all timest € R.

Remark 6.1. The previous study shows that, to every N-soliton u, one can associate
A(u) = (¢, 9,/12, 7/1N’ Vis s )/N) eTx (0, +OO) X RZN_l

with the condition that A; = 0, 4,, ..., Ay are pairwise distinct, so that
+
\/20e!? = o7
i

and 4, =0,4,,..,dy are the eigenvalues of L,, while y; =(Gy;, ;) —igd;; if L,p; =
A 1Pl = 1.
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We claim that the spectral mapping u — A(u) is surjective. Indeed, assume we are given
(@,0, A2 e s ANs V1 s YN) € T X (0, +00) X R?N~1 with the condition that 1; = 0,4,,...,4y are
pairwise distinct, and consider the associated matrix M. According to Lemma 6.1, we already know
that the eigenvalues of M belong to the lower half plane, so that we may define u as

u(x) = 20e?(M—xI)"'X,Y)en for Imx > 0.

We claim that u is a N-soliton with Q(x) = det(xI — M). Indeed, this is equivalent to the identity

1{00) QM
|u(x)|2_ 7(%—@>, xeER. (6.16)

Using the expressions of u(x) and Q(x), (6.16) is equivalent to
(Z (), X)en |? = 12Ol

where Z(x) := (xI — M*)~'Y. The latter identity can be proved as follows. From (xI — M*)Z(x) =
Y, we infer V(xI — M*)Z(x) = 0. Taking the imaginary part of the inner product of both sides with
Z(x), we obtain

0 = ((V(xI — M*) = (xI = M)V)Z(x), Z(x))ew
= ([V, (xI = MM]Z(x), Z())en = i((Z(), X)en | = 1Z(I1P) -

Furthermore, from Proposition 6.2, the value of 4(0™) can be obtained by identifying the coeffi-
cient of 1/x in the expansion of u(x) as x — 0. In order to complete the proof of the surjectivity,
we just have to check the following identities,

Ly = A, (G b)) = (v — 98 — jII;117, ,

if we define 3; as 9;(x) = (M — xI )‘le, Y)cn, where Y; denotes the column with 1 on the line
Jj and 0 on the other lines. This can be done by direct calculations. For instance, since VY ; = 1;Y;
and VY =0,

Ai(x) = (M= xD)7'VY;, Y)en = (M —xI)7HV,M](M — xD)7'Y;, Y)ew
= Dy;(x) + {(M = xD)7'Y;, X)en (M = xD)7'X, Y)en
while
(M= xD7IX, Y)en((M = xD)7Y, Y)en = (M* = xD)T'YYT(M — xD) 7Y}, X)en
= Qig) (M= xD)7'X, Y)ev —((M* = xD)7'Y}, X)en],

so that i{((M — xI)7'Y ;, X)en (M — xI) 71X, Y)ev = —u(o)IL (uh;)(x).

Below we will show that all multi-soliton solutions with N > 2 exhibit growth of Sobolev norms
such that (¢, 9,15, ..., A, V1, > ¥n) € T X (0, +00) x R?N~1 is given so that

lulgs ~ [t|** ast — +oo forany s > 0.
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This demonstrates that global-in-time existence for such u(t, x) cannot be inferred from a-priori
bounds in H'. Furthermore, it shows that the infinite hierarchy of conversation laws {I Wb,
generally fail to produce a-priori bounds on solutions of (CM-DNLS) in the large data regime with
lu(O)|12, > 277.

6.4 | Explicit example: Two-soliton solutions

Before we study the case of N-solitons with arbitrary N > 1, it is instructive to first consider the
case N = 2indetail. In this case, the constraints in Proposition 5.2 can be solved explicitly. Suppose
that

_ P(x)

u(x) = ) € H1(R) (6.17)

is a two-soliton potential, that is, Q € C[x] is a polynomial of degree 2 with zerosin C_ and P €
C[x] is a polynomial of degree at most 1 satisfying the condition stated in Proposition 5.2 above.
We start with generic case by assuming that Q(x) has two different zeros z; # z, in C_. Then
condition (ii) in Proposition 5.2 implies that the polynomial P(x) = const is constant and we find
that
a ap o aja
X=X + xX—2z

u(x) = =i withk=1,2.

=12~ Zk
The constraints on a;, a, € C with given z;, z, € C_ can be solved explicitly as follows. Writing
for convenience y; = —Imz; > 0, we find

2 — - 2
a a,a a,a a
lal” . 20 _ g 12_+|2|:1'
2y1 ZZ_Zl Zl_ZZ 2y2
Let us set
2 2 - -
a a a,a a,a
§1=|1|:|2|»775:—i 24 _ 1321_5.
2y 2y, Z, — 2, Z — 2,
Then
a]': 2§yjei61
and
. ei(el_GZ)
1-§=n==2i\yy»n{——~.
21— 2

Now we discuss the two solutions, accordingto £ < 1or & > 1. If £ < 1,

24/Y1Y2

—_— 9’
|21 — 25|

1-¢=¢
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hence
£ = 1
N
|z1-25]
Thus we get
1 1
2 2
o =i 2y 272 g g o 2y, ol
e 1y |z, —2,] > VY12 '
142222 17 %2 142322
|z1—23] |z1-23]
Ifé&>1,
24/MY2
E—-1=(——,
|21 — 2|
hence
g _ 1
_ 2 ’
|z1-2,|
Therefore,
1 1
2
@ = —i 2y 21— 23 ip _ 2y, i0
1= —i —e, a=|———] €.
VY12 |z1 — 25| \VY1)2
1-2— 1—-2Y"2
|z1—23] |z1-23]

Let us compute the remaining eigenvalue A of L,, in both cases. It is enough which is the trace of
L, on &, = K in view of Proposition 5.3. If {j, k} = {1, 2}, one checks that

< 1 > , aj 1 . aj 1
L{\— ) =-i +1i .
X =2z a(z —zp)x—2zk  a(z—z;) X =z
This implies

a a;

A=—i —1i .
a,(z; — z3) a,(z; — z1)

After some calculations we obtain

oWty g o Onty)

— — >0
\/}’1)’2|Z1 —Z,| \/}’1y2|Z1 —Z,|

in the first and in the second case, respectively.
Finally, we consider the non-generic case when z; = z, = z and Q(x) = (x — z)?. Then

F(x) 1= i(Q(0Q0) — Q)R (x) = 4y(x — 2)(x —2).
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Writing y = —Im z > 0 again, we have two possibilities:

ﬁ‘

4
PO = Vay(x - 2), u(x) = Y
and

Vay(x =2)

(x — 2)?

P(x) = \/4y(x - 2), u(x) =

Notice that the first case should not be confused with the case N = 1, where

\/@

xX—2z

Qx)=x—2z, ulx)=

In the first case, we have

1 1 1
L"((x—z>2>:’§<x—z>2’

so that 1 = —y~!, which can obtained from the first formula by letting z; — z and z, — z.
Similarly, in the second case, one obtains that 1 = y L
As a next step, we study the time evolution of two-solitons. For N = 2, the matrix M(¢) is given

by
—ip  —iA7!
mMey= (717 (6.18)
A7t oy, 24t

with some positive number ¢ > 0 and real numbers y;,y, € R and 1 # 0 denotes the non-zero
eigenvalue of L,,. From Proposition 6.2 we deduce

e®y/20(y, + 24t + i1 — x)

t,x)= 6.19
b= 5 (r1 —ig+y2+240x + (1 —i9)(y2 + 241) — 172 (619)
with some constant ¢ € [0, 277). The discriminant of the denominator of u(t, x) is

A(t) = (yy —ig — ¥, — 2At)% + 4472, (6.20)

Note that A(¢) = 0 if and only if y; = y, + 24t and ¢|4| = 2. This corresponds to the degenerate
two-solitons, the cases 1 and 2 occurring according to the sign of 1. Notice that, if ¢|4| = 2, the
two-soliton solution of (6.8) will be degenerate at exactly one time ¢t € R characterized by y; =
Y2 + 2At.

Finally, let us study the large-time behaviour of a two-soliton. Let z, (t) and z_(¢) denote the
poles of u(t, x) at time t. We see that

z,(t) = %(yo —ig 4y + 20t £ (o — o — 71 — 240 + 4/1—2). (6.21)

Ast — 400, we obtain

-9
4742

z,(t) > 7o —ig, Rez_(t)=21t+0(1), Imz_(t)= +0@1™3). (6.22)
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The vanishing of Im z_(¢) as t — +oo implies growth of the Sobolev norms for the two-soliton
solution. More precisely, we claim that

lu(®)|lgs ~ cslt]*® ast — +oo for any s > 0. (6.23)

To prove this, we note that z (¢) # z_(t) for all t € R (except for one time ¢ at most) and we have
that

_oa(n) a_(t) 3 WY1 F 24+ —z,()
ueN = o o 0= VRS VAD ’

From (6.22), we infer as |t| — oo that

a.()=0(1) and a_(t)~ﬁ.

Since
a(t, &) = —2mi(ay (e 2+ 08 + a_(1)e™2-08)  for &> 0,

we deduce the bound (6.23) from (6.22) and by direct calculation.

6.5 | Long-time asymptotics

We now study the long-time behavior for N-solitons with general N > 2. The key ingredient for the
general understanding is the following result about the long-time asymptotics for the eigenvalues
of the matrix M(t) in (6.12).

Lemma 6.2. There exists T > 0 sufficiently large such that all eigenvalues
{z1(),...,zy(®)} Cc C_
of M(t) are simple for |t| > T. As |t| — +oo, we have the asymptotic expansions:
Rezy(t) = 24kt + 7, + O(t™Y) fork=1,..,N

Imzy(t) = —g + O(t™), Imzy(t) = —4;’

+0(t73) fork=2,..,N.
K2

Proof. We use standard eigenvalue perturbation theory for
A(e) =A+¢B

with a small parameter |¢| < 1. Here A = A* € CN*V is a Hermitian matrix and B denotes an
arbitrary matrix in CM*N,
Since M(¢) = t(2V + t~'W) and by taking ¢ = ¢, it suffices to study the eigenvalues of

A(e)=A+eB with A=2VandB =W,
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where the constant matrices V and W are displayed in (6.13). Because A = 2diag(4,,...,4y) has N
simple eigenvalues, standard perturbation theory yields that A(¢) has N simple eigenvalue pro-
vided that |e| <« 1 is sufficiently small. Thus for |¢| > Ty with T, > 0 sufficiently large, we see that
M(t) = tA(t~!) has N simple eigenvalues {z;(t), ..., zy (t)} which all belong to C_ by Lemma 6.1.

The derivation of the claimed asymptotics for the eigenvalues requires an expansion up to
ordere® = t73. Let {i;(¢), ..., un(€)} denote the eigenvalues of A + B, which are simple for |¢| < 1
sufficiently small. From [32, Section XII.1] we recall that

1 )2 3) &3 +O(E4)

Mi(€) = pe + e + e + with yy = 24, .

The first-order coefficient is the well-known expression
1 ;
M,({) = Bk = ¥k — i¢6k1-

Next, the second-order contribution is purely real and given by

N N
) _ 1 1 1
My —ByBjk =—5 —= €R
J=§'¢k Hij = He 2 j=§¢k (kj = pa?

Finally, the third-order term reads

N N
©) 1 1
no= BijBjrBek — ), ——————BkjBjkBik-
k #;#k (1 — )t — ) JZ:‘C (j— >

For the proof of the lemma, it suffices to determine Im ,u(3) for k = 2,...,N. Since By, € R for
k >2andBy;Bj, € Rif j # k, we see

N
1
ImY —— B, BBy =0 fork=2,..,N.
j;{(ﬂj_,uk)z I

As for the first sum in the expression for ,uf), we notice the symmetry property
Bijj€B€k=_B€jB€ijk fOI'];éf

Thus we only need to consider the diagonal case when j = ¢. This leads to

—— BB Bj.
J?ék (luj luk)2 R

Recalling that By jBj; € R for j # k and B;; € R if j > 2, we deduce

G _ 1 ¢
Im m—— B BB,y =——— fork=2,..,N,
Hie (o — e 4t

using that y, = 24, and y; = 24; = 0. Since M(¢) = t~'A(t~'), we obtain the claimed asymptotic
formulae. ]

As a consequence of the preceding lemma, we obtain the following result.
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Proposition 6.3. Let u(t, x) be an N-soliton solution. Then there exists T, > 0 sufficiently large such
that

N
a;(t)
t, = —_— t| >T,,
u(t.x) = Y, = forlt =Ty
j=1 J
where{z;(t), ..., zy(t)} C C_ denote the simple eigenvalues of M(t) and coefficients a,(t), ..., an(t) €

C\ {0}

Proof. By Lemma 6.2, the eigenvalues {z,(t), ..., zy(t)} € C_ of M(t) are simple whenever |t| > T,
where T,y > 0 is some sufficiently large constant.

Fix some time ¢ € R with |t| > T,. For notational convenience, we will omit the dependence of
u(t, x) and M(¢) for the rest of the proof. Since u € HL(R) is a multi-soliton potential, we have

P(x)

u(x) = —=

Q(x)
with some polynomial Q € C[x] of degree N having all its zeros in C_ and some polynomial P €

Cpn—1[x] satisfying the condition in Proposition 5.2. Recall that M denotes the matrix (with respect

Cn-1lx]
. . . . . Q(X)

[34, Lemma 3.3] we observe that Q(x) is the characteristic polynomial of G acting on Ky. Hence

we conclude

to a suitable orthonormalbasis) of the operator G acting on the invariant space Kg = . From

Q(x) = det(xI — M).

Since M has only simple eigenvalues, we find Q(x) = H;V:l(x — z;) with pairwise distinct zeros

— p— —/
z; € C_. Since PP = i(Q'Q — Q Q), we see that P € Cy_;[x] has no common zeros with Q(x).
Thus, by partial fraction expansion, we conclude that

a .

N
u(x)—@—z !

T Q%) _jzlx—zj

with some ay, ...,ay € C\ {0}. O

6.6 | Growth of Sobolev norms: Proof of theorem 1.3

Let N > 2 and suppose u(t, x) is an N-soliton, which by Theorem 6.1 exists for all times t € R. We
claim that

(Ol gs ~ 25 as|t]| > +oo (6.24)
for any s > 0.

For convenience, we discuss the limit ¢ - +oo0. (The case t —» —oco follows by the same
reasoning.) We divide the proof into following steps.
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Step 1. We first derive the asymptotics for a;(¢), ..., ay(t). From Proposition 6.3 we deduce that

N .
u(t,x) = Z xif—g)(t) for t>T, (6.25)
Jj=1 J

with some sufficiently large constant T, > 0. Now we are in the position to use the system of
differential equations in (6.3) for the time evolution of a;(t), ..., ay(t). We claim that

a(t) = /1% +0(t™2) fork=2,..,N (6.26)
t
k

with some non-zero constant o € C \ {0}. Indeed, using that z;, = 24, + o(1) as t - +oo by
Lemma 6.2, we deduce from (6.3) that

() = A@)a) + b(t)
where  d(t) = (ay(t),...,an(®) € CN71 and  A(t) = (A(t))s<kr<y € CN1 x CNTL, b(t) =
(by(0), ..., by (1)) € CN~! are given by
—i
(A + o))z — 2¢)

—iay(t)
(A + o)z — z1)
Here we also used that |z (t) — z,(t)| ~ t as |t| = oo which follows from Lemma 6.2 together with

the fact that all A, # A, for k # €. Next, as a direct consequence of (6.3), we infer the conservation
law

(A®)ke = =0@™) fork#¢, (AW®)) =0,

b (t) = = 0(t™Hay (t).

a(t,0™)
fort > T 27
o fortzTo (6:27)

N
A=Y a;)=
j=1

with some constant A € C, where the last equation follows from taking the Fourier transform of
the right-hand side in (6.25). Since we must have 2i(t, 0") # 0 by the discussion above, we conclude
that A # 0 as well. Hence we deduce that

a() = ot=Ha) + f(t) (6.28)
where f(t) = (f5(t), ..., fx(0)) is given by

—iA _-iA
(A + o)z (D) = 22(1)) — 222

Ji(®) = o),

thanks to the fact that z, (t) — z;(t) = 24t + O(1) by Lemma 6.2 and 4; = 0. In view of (6.28), we
conclude that (6.26) holds with the constant a = % # 0.
Finally, by the conservation law (6.27) together with (6.26) we immediately find

lim a,(6) = A#0. (6.29)
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Step 2. For t > T, we write

a;(f)

@ (6.30)

N
u(t,x) = Y ¢;(t,x) with ¢;(t,x) =
j=1

We note that
$i(t, &) = —2mia;(t)e ¢ 1 5.

By Plancherel, we find
(#,(0, o (O)ps = —ia;(O)ar(e) / e EOZ W £y2s gg
0

To estimate this expression for j # k, we observe, by Lemma 6.2, that w;;(¢) := z;(t) — z(t)
satisfies Im w ;. () < 0 as well as

k() =2(4; =4 )t +0(1) ~t as ¢ — +oo,

since 1; # A; when j # k. Integrating by parts sufficiently many times depending on s > 0, we
deduce that
Ss fort > T,

/ e ag
0

_1r 1
()]t

provided that j # k. If recall the bounds for a;(t), ..., ay(t) derived in Step 1 above, we can
conclude

1
Ss_

2 fort >Tyand j # k.

[CAOXNGI

Next, we consider the case j = k. This yields

<¢j(t),¢j(t)>Hs ~ |aj(t)|2/ eZIm(Zj(t))§(1 + |§|25)d§
0

1 C
=|a;(t)]? + >
12,0 (ZIIij(t)l 2|Iij(t)|1+zs>

with the constant C; = fooo e 7y*dy > 0. By combining the estimates for the coefficients
{a,(t), ..., an(t)} from Step 1 and the poles {z,(t), ..., zy(¢)} from Lemma 6.2 we finally obtain

1 for j =1,
. l', (t s
(¢]( ) ¢]( ))H s {t4s forj=2’---’N’

for all times t > T. In summary, we conclude

N N
4+ 72 S N1, = (b0, 8,(0) + D ($5(0, (D)) S 1% +172,

j=1 j#k

This proves (6.24) and completes the proof of Theorem 1.3.
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APPENDIX A: DEFINITION OF THE LAX OPERATOR FOR u € Li(IR)
In view of the L?-criticality of (CM-DNLS), it is worthwhile giving a definition of L, via quadratic
forms if we only assume that u € Li(IR) holds. We start with the following basic estimate.

1

Lemma A.1. Foreveryu € L3 (R)and f € HE(IR), we have Tz f € L2 (R) with
ITaf 12, < 5= Iul?.Df. £)
Proof. Applying the Fourier transformation, we have
o +0o0 R — d77
Tzf(§) = JE+maG) .
0 v

Thus, by the Cauchy-Schwarz inequality,

+o0 déd +o0 d
[ imeras< [ / feenr S22 [ aor 32

+o0 R d +o0 d
<[ afers [ uamegl,
0

0

and the claim follows from Plancherel’s theorem. O
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Next, we define L, for given u € Li(IR) via a densely defined quadratic form on Li(IR) as
follows. For f,g € Hi/ 2([R{), we set

Qu(f,8) =(Df,8 —(Tuf,Tzg) -
We claim that, for every ¢ > 0, there exists a constant C.(u) > 0 such that

1/2
+

1/2

Vhe H"(R), |ITzhllr> < &Dh,h) "~ + C.(wllhllL: . (A1)

Indeed, for every 4 > 0, set
Uy 1= 1[071[(]_))1,{ > Us) = I[A,+oo[(D)u .

Then |[us;llz2 = 0as A — +co, while
1/2
A
lucalle < (E) llullzz -
Choose 4 = A(g, u) such that (27)"'/?||us; |2 < &. Then, by Lemma A.1,

[Tkl < ITa, hllz2 + 1 Ta_, hllz2 < e(Dh, by

Usy Uy + ”u'</1”L°<’”h'”L2 5

and (A.1) follows. Applying (A.1), we obtain
<Df’f> > Qu(fvf) > (1 - 252)<Df’ f> - 2C5(u)2”f”iz . (AZ)

Choosing € small enough, we find a constant K = K(u) > 0 such that

Qu(f.8) 1= Qu(f.8) + Kw)f.g)

is an inner product on H Jlr/ 2([R), defining a norm which is equivalent to the standard one. Then
we just define

1/2
+

1/2

dom(L,) ={f € H,//"(R) : 3C > 0s.t.1Q,(f,8)| < Cligll;> for g € H'"(R)}

and

(Lu(f),8) = Qu(f,g) for f € dom(L,)and g € HY*(R).

Then the standard theory of quadratic forms (see [33]) implies that dom(L,,) is dense in H }r/ 2([RJ{),
hence in L2 (R), and that L, is self-adjoint and bounded below. Furthermore, using the quadratic

form Q,,, Lemma 5.1 and Proposition 5.1 extend easily to the case u € L% (R).

APPENDIX B: VARIATIONAL PROPERTIES OF E(u)
We recall the energy functional

E(u) = %/ 181 — iTL, ([u|2)ul? dx,
R
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where we allow for general u € H'(R), which are not necessarily in the Hardy-Sobolev space
H }F(R). It is elementary to show that E : H'(R) — R is weakly lower semi-continuous, that is,
if u, — u weakly in H'(R) then

lim inf E(u,) 2 E(u). (B.1)

Lemma B.1 (Minimal Mass Bubble Lemma). Suppose (v,,),en € H'(R) is a sequence such that

sup vyl < +00 and  ||0yv,llz2 = foralln € N.
n>1

with some constant yu > 0. In addition, we assume that
y}gilo E(v,) =0.
Then it holds that
lim inf [jo, |12, > [IRII?, = 2.
Here equality holds if and only if, after possibly passing to a subsequence,
v, (x + x,) = ePA1V2R(Ax) strongly in LA(R)
with some constants 6 € [0,27), 1 > 0, and some sequence x, € R.

Proof. We will give a proof that is based on a compactness lemma in [24]. Alternatively, we could
use more refined analysis with a profile decomposition [15].

By rescaling v, — u~'/?v,(u'-), we can assume that ||d,v,||;> = 1 for all n € N. From the
triangle inequality and the form of E(u), we find that

||1_[+(|Un|2)vn”L2 > ||axvn”L2 - ”axvn - iH+(|Un|2)Un”L2 =1-vy 2E(vn)-
Since E(v,) — 0 by assumption, we deduce that
1S I (Jv)vnllze S I (oa Dz lvellzs S NoalPllzslvallzs S loalle,

by Holder’s inequality and the classical fact that T, : L*(R) — L3(R) is bounded. Thus we have
found that

loallzs = C >0

with some constant C > 0. On the other hand, by the fact sup, ||v,|l51 < +co and by Sobolev
embeddings, we deduce that

vl <€ and - loglls < Gy

with some constants C;, C, > 0. Thus, by applying the pgr-Lemma in [14], we deduce that there
exist constants ¢ > 0 and § > 0 such that

uxeR : v, (x)| >€})>6 forallneN,
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where u denotes the Lebesgue measure on R. Hence we can apply Lieb’s compactness lemma
in [24] to deduce that, after passing to a subsequence, there exists a sequence of translations
(Vnen C R such that

v,(- +y,) = v weaklyin H'(R)

for some v € HY(R) with v £ 0.
By translation invariance of the energy E, we can henceforth assume that y,, = 0 for all n.
Furthermore, the weak lower semi-continuity of E implies that

0= nlim E(v,) > E(v).

On the other hand, we have E(v) > 0 in general and hence we conclude E(v) = 0. By Lemma 4.1,
the equality E(v) = 0 for v # 0 holds if and only if

v(x) = ePAY2R(Ax + )

with some constants 8 € [0,27), 1 > 0 and y € R. Since v, — v in L?, the weak lower semi-
continuity of the L?-norm implies that

: : 2 2 _ 2 _
lim inf o, |2, > [0]12, = I1R|2, = 27.

Finally, we have equality (after passing to a subsequence if necessary) ifand only ifv,, — v strongly
in L?(R), which completes the proof. O

APPENDIX C: USEFUL IDENTITIES AND GAUGE TRANSFORMATION
For sufficiently regular and decaying functions v : R — C and the Hilbert transform H, we have
the following identities:

2

Re(xv,H(v))=%/Rvdx , (Cy

Re (3,0, H(jo)v) = = (vf, IDI[v]?), (€2)
1

H(lv|?), vH(Jv|») = 6dx. C3

OH(oP). oG0P = 5 [ ol ax (©3)

Let us check these identities. Using the Plancherel theorem, we have

) 0
Re(ro,HW) = —5- [ Re[GER0@1d + 5 [ RelG30(00)d5 = 51O,
0 —0

which is (C.1).
Since H preserves real valued functions, we have

Re (3,0, H(Iol?)v) = (RelT8,01, H(IvP) = 5(3.(10%), H(oP) = =3 (10, Ha.(oP?)

which leads to (C.2) since H3,, = |D|.
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Finally, setting ¢ := |v|?, we have ¢ = IT, ¢ + IT ¢ and
ol = / >dx = /(H+9 + 19 dx = 3/[(H+§>)2H+9 + 11, 0(IT,9)*] dx ,
R R R

because H is preserved by the product (if s is large enough) and the ranges of IT,, and of I1_ are
orthogonal. We obtain

/Q3dx=3/ [T, ol?odx = %/(92+(H9)2)9dx,
R R R

/93dx:3/9(H9)2dx,
R

whence

which is precisely (C.3).

C.1 | Derivation of Pohozaev identity
In this paragraph we provide the details for the proof of Proposition 4.1 when deriving the
Pohozaev type identities. We integrate (4.11) against x8,.S over the compact interval [-R, R]. By
taking the real part, we find
R — — 1 —~ R,
Re/ <—xS S" — xS (|D]|S|?)S + ZxS |S|4S>dx = cZ)Re/ xS Sdx.
-R -R

For the first term on the left-hand side, we find
R 1 (R 1 R 1 (R
Re/ xS S"dx = —/ x0,|S)>dx = —xlS/(x)|2| - —/ |S7(x)|? dx.
x 2/, 2 ® 2/,
In view of |[D| = HJ,, and integrating by parts, we obtain
R 1 /R
Re/ xS (ID||S|?)S dx = 5/ x0,|SI2(HA,|S|?) dx
—R —-R

2

1 (o)
—>E</_ooax|5|2dx> =0 as R— +oo,

where we also used (C.1). Next, we notice

1

R 1 R R
<Q 4 — 6 _ = 6
Re /_Rxax5|5| S dx = =x|S()| ]_R 6/_R S|6 dx

~ R @ oR o [ 2
@Re x0,SSdx = =x|S(x)| ‘ - = [S(x)|* dx.
_R 2 -R 2 J 5

Since |S|? + |S’|?> € L1(R), there exists a sequence R,, — +oo such that x(|S(x)|? + |S'(x)|?) = 0
with x = +R,, as n — oo and we obtain

1/ 2 1 6 @ 2
= [ 10,S] dx——/lSl dx=——/|S| dx.
2 R * 24 R 2 R
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C.2 | Gauge transformation and pseudo-conformal law
Let s > 0 be given. We consider the nonlinear map

Lx 2
® : H'R) » H'(R), u(x) - u(x)e 2 /-0 (C.4)
Clearly, we have mass preservation property M[®(u)] = M(u) and it can be shown that @ :
H3(R) — H3(R) is a diffeomorphism. We refer to the map @ as the gauge transform. We remark
that the map ® (with different numerical factors in the exponential term) also plays an important
role for the derivative NLS (DNLS).

Suppose u(t) € H*(R) (not necessarily restricted to H} (R)) solves (CM-DNLS) on some time
interval I C R. Then v(¢t) = ®(u(t)) € H5(R) is found to solve the derivative type NLS equation:

i0,0 = ~3,,0 ~ (IDI[oP)o + Flolv, (€5)
using that I1, = %(1 + iH) and |D| = HJ,. We readily check that (C.5) has the conserved energy
Bw) == [ 100 -1 [ wRADIR) + o= [ [vf° )
2 * 4 Jn 24 | ’ ’
From identities (C.2) and (C.3), we have

/ 16 — i, (ulPul? = B(u) )
R

N =

~ 1 1
Bw) =3 [ 18,0+ FHuPP =
R

since v = ®(u) and I, = %(1 + iH).
Now, let = = {u € H'(R) : xu € L?>(R)} denote the space of solutions with finite variance and
energy (not necessarily restricted to the Hardy space).

Lemma C.1 (Pseudo-Conformal Law). Suppose that u € C([-T,T]; H'(R)) solves (CM-DNLS)
with u(0) = ug € X. Then u(t) €  forallt € [-T, T] and we have

d2

E/R|x|2|u(f,x)|2dx=16E(u0) fort € [-T,T].

As a consequence, it holds that
812E(elXI* /41y, ) = / [x|2|u(t, x)|? dx
R

forallt € [-T,T|witht # 0.

Remarks.

(1) Recall that the ground state R(x) = x—\f €EH i(IR) does not belong to X. In fact, it can be shown
that all multi-solitons for (CM-DNLS) fail to have finite variance as well.

(2) In view of the non-negativity E(u) > 0, we see that the classical Zakharov-Glassey argu-
ment to prove existence for negative energy data (with finite variance) cannot be invoked
for (CM-DNLS).
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Proof. Letu(t) = ®(u(t))fort € [T, T]. We readily check that ® : ¥ — X holds and, in particular,
we have v, = v(0) € Z. Recall that v € C([-T, T]; H'(R)) solves (C.5). By following arguments
for standard-type NLS, see, for example, [10][Section 7.6], we can deduce that v(t) € X for all
t € [-T, T]. Moreover, by calculations analogous to L?-critical NLS (see [10] again), we find the
variance-virial identities

i/ |x|2|v(t,x)|2dx=4/xIm(Uaxv)dx, (C.8)
dt Jp R

d? ~

w/Rlxlzlv(t,x)lzdx = 16E,, (C.9)

with vy = ®(u,) and E, = E(v,). By integrationin t € [-T,T], we obtain that the variance V(t) =
Jw 1XI?10(t, X)|? dx is given by

V(t) = 8Eyt? + Apt + V, (C.10)

with the constants Ag = 4 fR xIm(vyd,vy)dx and V= V(0). For t € [-T,T] with t # 0, we
observe

~. 2 1 iyl2 1 1
B 00 =875 [ 10, o = 3 [ nPanin+ 5 [ tol?)
R R R

Finally, we go back to the function u = u(¢,x). Here we note that |u(t, x)| = |v(t,x)| and
E(vy) = E(uy) since v(t) = ®(u(t)). This proves this first claim in Lemma C.1. For the sec-
ond statement, we remark that ® commutes with multiplication by e!*’/4 for  # 0, that is,
we have ®(ell**/41y) = ell**/4@(y,) = ell**/41y,. Therefore E(ell**14vy) = E(e!*I*/41y,). This
completes the proof. O
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