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Abstract
We study the Calogero–Moser derivative nonlinear
Schrödinger NLS equation

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 + (𝐷 + |𝐷|)(|𝑢|2)𝑢 = 0

posed on theHardy–Sobolev space𝐻𝑠
+(ℝ)with suitable 𝑠 >

0. By using a Lax pair structure for this 𝐿2-critical equation,
we prove global well-posedness for 𝑠 ≥ 1 and initial data
with sub-critical or critical 𝐿2-mass ‖𝑢0‖2

𝐿2 ≤ 2𝜋. More-
over, we prove uniqueness of ground states and also classify
all traveling solitary waves. Finally, we study in detail the
class of multi-soliton solutions 𝑢(𝑡) and we prove that they
exhibit energy cascades in the following strong sense such
that ‖𝑢(𝑡)‖𝐻𝑠 ∼𝑠 |𝑡|2𝑠 as 𝑡 → ±∞ for every 𝑠 > 0.
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1 INTRODUCTION ANDMAIN RESULTS

This paper is devoted to the study of the Calogero–Moser derivative nonlinear Schrödinger
equation, which can be written as

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 + (𝐷 + |𝐷|)(|𝑢|2)𝑢 = 0 (CM-DNLS)

for 𝑢 ∶ 𝐼 × ℝ → ℂ with some time interval 𝐼 ⊂ ℝ. Here and in what follows, we use the standard
notation 𝐷 = −𝑖𝜕𝑥 and hence |𝐷| denotes the Fourier multiplier with symbol |𝜉|.
We remark that Equation (CM-DNLS) was introduced in [1] as a formal continuum limit of

classical Calogero–Moser systems [27, 28]. Also, prior to [1], a defocusing version given by

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 − (𝐷 + |𝐷|)(|𝑢|2) = 0 (INLS)

was introduced in [30] under the name intermediate nonlinear Schrödinger equation (INLS), as
describing envelopewaves in a deep stratified fluid.Wewill concentrate on (CM-DNLS), because it
offers richer dynamics, for example,multi-soliton solutionswith turbulence in Sobolev norms (see
Theorem 1.3 below). However, part of our results can be extended to this defocusing version above.

1.1 Symmetries, phase space, and Hamiltonian features

We observe that Equation (CM-DNLS) admits the invariance by phase, scaling and translation,

𝑢(𝑡, 𝑥) ↦ e𝑖𝜃𝜆1∕2𝑢(𝜆2𝑡, 𝜆𝑥 + 𝑥0), 𝑥0 ∈ ℝ, 𝜃 ∈ ℝ, 𝜆 > 0,

which makes it a 𝐿2-critical equation on the line. It also enjoys the Galilean invariance

𝑢(𝑡, 𝑥) ↦ e𝑖𝜂𝑥−𝑖𝑡𝜂2
𝑢(𝑡, 𝑥 − 2𝑡𝜂), 𝜂 ∈ ℝ,

as well as the pseudo–conformal symmetry found by Ginibre and Velo for the 𝐿2-critical NLS.
Recall that a special case of this space-time transform reads

𝑢(𝑡, 𝑥) ↦
1

𝑡1∕2
e
𝑖
𝑥2

4𝑡 𝑢

(
−
1
𝑡
,
𝑥
𝑡

)
.

Inwhat follows,we are interested in solutions of (CM-DNLS) satisfying the additional condition
that

𝑢(𝑡) ∈ 𝐻𝑠
+(ℝ) ∶= {𝑓 ∈ 𝐻𝑠(ℝ) ∶ supp(𝑓) ⊂ [0, +∞)},

where 𝐻𝑠(ℝ) denotes the usual Sobolev space based on 𝐿2(ℝ). The spaces 𝐻𝑠
+(ℝ) will serve as

phase spaces on which we study (CM-DNLS) as a Hamiltonian system.
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4010 GÉRARD and LENZMANN

Recall that𝐻0
+(ℝ) = 𝐿2

+(ℝ) denotes the Hardy space of holomorphic functions on the complex
upper half-plane. If we letΠ+ ∶ 𝐿2(ℝ) → 𝐿2

+(ℝ) denoteCauchy–Szegő orthogonal projection onto
𝐿2
+(ℝ) given by

Π+(𝑓)(𝑥) ∶=
1
2𝜋 ∫

∞

0
𝑒𝑖𝜉𝑥𝑓(𝜉) 𝑑𝜉,

then Equation (CM-DNLS) can be written as

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 + 2𝐷+(|𝑢|2)𝑢 = 0.

Here 𝐷+ ∶= 𝐷Π+ can be seen as the compression of 𝐷 = −𝑖𝜕𝑥 onto the Hardy space 𝐿2
+(ℝ).

The positive Fourier frequency condition supp(𝑓) ⊂ [0, +∞) is interpreted as a chirality con-
dition in [1]. In fact, such a condition naturally appears if one thinks of the Benjamin–Ono
equation,

𝜕𝑡𝑣 + 𝜕𝑥|𝐷|𝑣 − 𝜕𝑥(𝑣
2) = 0, (BO)

which is known to be well-posed for real valued functions 𝑣; see [22, 26]. Introducing the new
unknown 𝑢 = Π+𝑣, the condition 𝑣 = 𝑣 reads 𝑣 = 𝑢 + 𝑢, so that (BO) is equivalent to

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 + 𝐷(𝑢2) + 2𝐷+(|𝑢|2) = 0.

This way, (CM-DNLS) and its defocusing sibling can be seen as 𝐿2-critical versions of (BO).
Notice that the pseudo-conformal symmetry does not preserve chirality and that the Galilean

transformation acts on chiral solutions of (CM-DNLS) only if 𝜂 ≥ 0.
Now, let us come to the Hamiltonian properties of (CM-DNLS). To this end, we introduce the

following gauge transformation

𝑣(𝑥) ∶= 𝑢(𝑥) e
−

𝑖

2
∫ 𝑥

−∞
|𝑢(𝑦)|2 𝑑𝑦

, (1.1)

which turns out to be a diffeomorphism of 𝐻𝑠(ℝ) into itself for every 𝑠 ≥ 0. An elementary
calculation shows that (CM-DNLS) is equivalent to the equation

𝑖𝜕𝑡𝑣 + 𝜕𝑥𝑥𝑣 + |𝐷|(|𝑣|2)𝑣 −
1
4
|𝑣|4𝑣 = 0. (1.2)

This is a Hamiltonian PDE with the standard symplectic form 𝜔(ℎ1, ℎ2) = Im⟨ℎ1, ℎ2⟩𝐿2 and the
energy functional

𝐸(𝑣) ∶=
1
2
‖𝜕𝑥𝑣‖2

𝐿2 −
1
4
⟨|𝐷|(|𝑣|2), |𝑣|2⟩𝐿2 +

1
24

‖𝑣‖6
𝐿6 .

By classical product identities for the Hilbert transform 𝖧 (see Appendix C for details), the energy
functional 𝐸 can be written as

𝐸(𝑣) =
1
2 ∫ℝ

|𝜕𝑥𝑣 +
1
2
𝖧(|𝑣|2)𝑣|2 𝑑𝑥 ≥ 0.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4011

Inverting the gauge transformation (1.1) and in view ofΠ+ =
1

2
(1 + 𝑖𝖧), we find that 𝐸(𝑢) = 𝐸(𝑣)

is an energy functional for (CM-DNLS) given by

𝐸(𝑢) =
1
2 ∫ℝ

|𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢|2 𝑑𝑥. (1.3)

In summary, we deduce that (CM-DNLS) is a Hamiltonian equation generated by the energy
functional 𝐸(𝑢) and the symplectic form

𝜔♯
𝑢(ℎ1, ℎ2) ∶= Im⟨ℎ1, ℎ2⟩𝐿2 + ∫ ∫ℝ×ℝ

Re(𝑢ℎ1)(𝑥)Re(𝑢ℎ2)(𝑦)sgn(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦,

which is just the pullback of the standard symplectic 𝜔 under the gauge transformation 𝑢 ↦ 𝑣
defined in (1.1). Recall that we will study (CM-DNLS) as Hamiltonian PDE on the phase spaces
𝐻𝑠

+(ℝ) corresponding to chiral solutions. It is interesting to note that 𝜔♯
𝑢 provides a non-standard

symplectic form on the spaces𝐻𝑠
+(ℝ) with 𝑠 ≥ 0.

Next, we discuss the conservation laws exhibited by (CM-DNLS). Due to symmetry by com-
plex phase shifts, spatial translations and its Hamiltonian nature, we easily obtain the following
conserved quantities:

𝑀(𝑢) = ∫ℝ
|𝑢|2 𝑑𝑥 (𝐿2-mass), 𝑃(𝑢) = ∫ℝ

(𝐷𝑢𝑢 −
1
2
|𝑢|4) 𝑑𝑥 (Momentum),

𝐸(𝑢) =
1
2 ∫ℝ

|𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢|2 𝑑𝑥 (Energy).

In the expression for the conservedmomentum𝑃(𝑢), the nonlinear term |𝑢|4 arises due to the non-
standard symplectic structure 𝜔♯

𝑢. In fact, we will show below that𝑀(𝑢), 𝑃(𝑢) and 𝐸(𝑢) belong to
an infinite hierarchy of conservation laws {𝐼𝑘(𝑢)}∞𝑘=0

based on a Lax pair structure for (CM-DNLS);
see Section 2.
Finally, we briefly comment on the 𝐿2-critical nature of (CM-DNLS). As one may expect, there

exists a special solution which separates solutions into small and large data. Indeed, we will prove
that the energy 𝐸(𝑢) has a unique (up to symmetries) minimizer given by the rational function

(𝑥) =

√
2

𝑥 + 𝑖
∈ 𝐻1

+(ℝ),

which we refer to as the ground state for (CM-DNLS); see Section 4. An elementary calculation
shows that 𝑢(𝑡, 𝑥) = (𝑥) provides a static solution of (CM-DNLS) and its 𝐿2-mass is found to be

𝑀() = ∫ℝ

2

1 + 𝑥2
𝑑𝑥 = 2𝜋.

As we will see below, this number 2𝜋 provides a threshold in the analysis of (CM-DNLS).
Consequently, we shall refer to solutions 𝑢(𝑡) ∈ 𝐻𝑠

+(ℝ) with

𝑀(𝑢0) < 𝑀(), 𝑀(𝑢0) = 𝑀(), 𝑀(𝑢0) > 𝑀()

as having sub-critical, critical, and super-critical 𝐿2-masses, respectively. The main results of this
paper will address these various regimes.
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4012 GÉRARD and LENZMANN

1.2 Main results

As a starting point, we first establish local well-posedness of (CM-DNLS) for initial data in𝐻𝑠
+(ℝ)

with 𝑠 > 1∕2. For sufficiently regular initial data in𝐻𝑠
+(ℝ) with 𝑠 > 3∕2, this follows from Kato’s

classical iteration scheme for quasilinear evolution equations. Extending the local well-posedness
to less regular data in 𝐻𝑠

+(ℝ) with 1∕2 < 𝑠 ≤ 3∕2 can then be achieved by adapting arguments
from [13], which in turn is inspired by Tao’s gauge trick for the Benjamin-Ono equation [35].
However, for the rest of the paper, we will be mainly be concerned with solutions of (CM-DNLS)
such that 𝑢(𝑡) ∈ 𝐻𝑠

+(ℝ) with some integer 𝑠 ≥ 1.
The general question of global well-posedness for (CM-DNLS) seems to be rather delicate

because of the focusing 𝐿2-criticality of the nonlinearity, which might generate blowup of solu-
tions in finite time. The following result establishes global well-posedness for initial data with
finite energy and 𝐿2-mass that is less or equal to the ground state mass.

Theorem 1.1 (Global Well-Posedness Result). Let 𝑠 ≥ 1 be an integer. Then (CM-DNLS) is globally
well-posed for initial data in 𝑢0 ∈ 𝐻𝑠

+(ℝ) with 𝐿2-mass

𝑀(𝑢0) ≤ 𝑀() = 2𝜋.

Moreover, we have the a-priori bound

sup
𝑡∈ℝ

‖𝑢(𝑡)‖𝐻𝑠 < +∞,

provided the strict inequality𝑀(𝑢0) < 𝑀() holds.

Remarks 1.1.

(1) In the case of sub-critical 𝐿2-mass, the a-priori bounds on ‖𝑢(𝑡)‖𝐻𝑠 will follow from exploiting
an infinite hierarchy of conservation laws for (CM-DNLS). We refer to Section 5 for a detailed
discussion.

(2) The case of critical 𝐿2-mass when 𝑀(𝑢0) = 𝑀() is rather delicate to handle and will fol-
low from ruling out the so-called minimal mass blowup solutions for (CM-DNLS) with finite
energy. A key element in the proof will be the slow algebraic decay of the ground states.

(3) It is an interesting open question whether global-in-time existence holds for large initial
data in 𝐻𝑠

+(ℝ) with 𝑠 ≥ 1 and 𝐿2-mass 𝑀(𝑢0) > 𝑀(). As a striking example below, there
exist smooth global-in-time solutions for (CM-DNLS) given by multi-solitons, which always
blowup in infinite time due to unbounded growth of all Sobolev norms ‖𝑢(𝑡)‖𝐻𝑠 for any 𝑠 > 0.

(4) By applying the pseudo-conformal transformation to the static solution (𝑥), we obtain the
explicit solution

𝑢sing(𝑡, 𝑥) =
1

𝑡1∕2
𝑒𝑖𝑥

2∕4𝑡(𝑥
𝑡

)
∈ 𝐿2(ℝ) for all 𝑡 > 0,

which solves (CM-DNLS) and becomes singular as 𝑡 → 0−. Due to slow algebraic decay of
(𝑥), we find that 𝑢sing(𝑡) ∉ 𝐻1(ℝ) has no finite energy1 and, moreover, we see that the
solution 𝑢sing(𝑡) ∉ 𝐿2

+(ℝ) fails to be chiral. Still, this explicit example shows that we cannot
expect global well-posedness for (CM-DNLS) with arbitrary initial data in the scaling-critical

1 A closer inspection shows that 𝑢sing(𝑡, ⋅) ∈ 𝐻𝑠(ℝ) for all 0 ≤ 𝑠 < 1∕2.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4013

space 𝐿2(ℝ). It remains an intriguing open question if initial data in 𝐿2
+(ℝ) will always lead

to global-in-time solutions for (CM-DNLS).

Next, we turn our attention to sufficiently regular solutions 𝑢(𝑡) ∈ 𝐻𝑠
+(ℝ) of (CM-DNLS) with

initial data having critical or super-critical 𝐿2-mass:

𝑀(𝑢0) ≥ 𝑀() = 2𝜋.

In this regime of sufficiently large data, we expect (CM-DNLS) to possess traveling ground state
solitons as well as multi-soliton solutions. As a main result in this setting, we completely classify
all traveling solitary waves for the Calogero–Moser DNLS with finite energy by showing that are
given by the ground state (𝑥) up to scaling, phase, translation, and Galilean boosts preserving
the chirality condition.

Theorem 1.2 (Classification of Traveling Solitary Waves). Every traveling solitary wave for
Equation (CM-DNLS) in𝐻1

+(ℝ) is of the form

𝑢(𝑡, 𝑥) = 𝑒𝑖𝜃+𝑖𝜂𝑥−𝑖𝜂2𝑡𝜆1∕2(𝜆(𝑥 − 2𝜂𝑡) + 𝑦)

with some 𝜃 ∈ [0, 2𝜋), 𝑦 ∈ ℝ, 𝜆 > 0, and 𝜂 ≥ 0.
In particular, every traveling solitary waves 𝑢(𝑡) ∈ 𝐻1

+(ℝ) for (CM-DNLS) have critical 𝐿2-mass
𝑀(𝑢) = 𝑀().

Remarks 1.2.

(1) The condition 𝜂 ≥ 0 enters through the chirality condition 𝑢(𝑡) ∈ 𝐻1
+(ℝ) and thus travel-

ing solitary waves can only move to right. If we take negative values 𝜂 < 0 above, we obtain
left-moving traveling solitary waves 𝑢(𝑡) ∈ 𝐻1(ℝ) solving (CM-DNLS); see Section 4 for the
definition of traveling solitary waves.

(2) A key step in the complete classification above is to establish uniqueness of (non-trivial) min-
imizers of the energy 𝐸(𝑢), which is equivalent to classifying all solutions 𝑢 ∈ 𝐻1

+(ℝ) of the
nonlinear equation

𝐷𝑢 − Π+(|𝑢|2)𝑢 = 0.

We refer to Section 4 below for details including a more general result assuming only that
𝑢 ∈ 𝐻1(ℝ).

As our final main result, we study the dynamics ofmulti-soliton solutions for (CM-DNLS); see
Section 6 below for a precise definition using the Lax pair structure. For the Calogero–Moser
DNLS, it turns out that multi-solitons 𝑢 = 𝑢(𝑡, 𝑥) are rational functions of 𝑥 ∈ ℝ in the Hardy
spaces 𝐿2

+(ℝ). As an interesting fact, we remark that they necessarily have a quantized 𝐿2-mass
given by

𝑀(𝑢) = 2𝜋𝑁 with 𝑁 = 1, 2, 3, …

In the special case when 𝑁 = 1, the multi-solitons are given by the ground state(𝑥) up to sym-
metries. For 𝑁 ≥ 2, we note that multi-solitons have super-critical 𝐿2-mass. As a consequence,
the proof of their global-in-time existence is far from trivial and will follow from the analysis of a
suitable inverse spectral formula based on the Lax structure. As an outcome, we obtain a detailed
dynamical description in the long-time limit. Here, a surprising feature is the general ”turbulent”
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4014 GÉRARD and LENZMANN

behavior of multi-solitons with 𝑁 ≥ 2, leading to unbounded growth of higher Sobolev norms
(energy cascades) as follows.

Theorem 1.3 (Growth of Sobolev Norms). For every 𝑁 ≥ 2, every multi-soliton 𝑢 = 𝑢(𝑡, 𝑥) for
(CM-DNLS) exists for all times 𝑡 ∈ ℝ and it exhibits growth of Sobolev norms such that

‖𝑢(𝑡)‖𝐻𝑠 ∼𝑠 |𝑡|2𝑠 as 𝑡 → ±∞,

for any real number 𝑠 > 0.

Remarks.

(1) In Section 6, we make a detailed analysis of the dynamics of multi-solitons. After having
established their global-in-time existence, we show that there exists a sufficiently large time
𝑇 = 𝑇(𝑢0) ≫ 1 such that a multi-soliton reads

𝑢(𝑡, 𝑥) =
𝑁∑

𝑘=1

𝑎𝑘(𝑡)

𝑥 − 𝑧𝑘(𝑡)
for 𝑡 ≥ 𝑇, (1.4)

with residues 𝑎1(𝑡), … , 𝑎𝑁(𝑡) ∈ ℂ and pairwise distinct poles 𝑧1(𝑡), … , 𝑧𝑁(𝑡) ∈ ℂ− that sat-
isfy a complexified version of the rational Calogero–Moser system for𝑁 classical particles. A
detailed investigation (exploiting on the Lax pair structure) then yields that the poles—except
for 𝑧1(𝑡) – will all approach the real axis asymptotically, that is,

Im 𝑧𝑘(𝑡) → 0 as 𝑡 → +∞ for 2 ≤ 𝑘 ≤ 𝑁.

A careful analysis of this fact then leads to the precise growth bound in Theorem 1.3. The limit
𝑡 → −∞ can be handled in the same way.

(2) It is a subtle fact that multi-solitons 𝑢(𝑡, 𝑥)may fail to be of the form (1.4) for all times 𝑡 ∈ ℝ.
That is, we can have collisions of poles in finite time, which renders the form (1.4) invalid.
To handle this collision scenario (see explicit examples for 𝑁 = 2 in Section 6), we will make
use of a general representation formula of 𝑢(𝑡, 𝑥) in terms of an inverse spectral formula. See
Section 6 for details.

(3) It is an interesting open question whether the growth phenomenon in Theorem 1.3 is stable
under perturbations of multi-solitons.

1.3 Comments on the Lax structure

Acentral feature of (CM-DNLS) is the fact that it admits a Lax pair. That is, as detailed in Section 2,
we can recast the dynamical evolution into commutator form

𝑑
𝑑𝑡

𝐿𝑢 = [𝐵𝑢, 𝐿𝑢], (1.5)

where the Lax operator 𝐿𝑢 is given by

𝐿𝑢 = 𝐷 − 𝑇𝑢𝑇𝑢̄. (1.6)
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4015

This defines an unbounded self-adjoint operator acting the Hardy space 𝐿2
+(ℝ) with a suitable

operator domain, depending on the regularity of 𝑢. Here 𝑇𝑏(𝑓) = Π+(𝑏𝑓) denotes the Toeplitz
operator on 𝐿2

+(ℝ) with symbol 𝑏.
As an important consequence of (1.5), we will find an infinite hierarchy of conservation laws in

terms of expressions

𝐼𝑘(𝑢) = ⟨𝐿𝑘
𝑢𝑢, 𝑢⟩ with 𝑘 = 0, 1, 2, …

provided that 𝑢(𝑡) ∈ 𝐻𝑠
+(ℝ) is a sufficiently regular solution of (CM-DNLS). It is an intriguing

feature, due to the 𝐿2-criticality of the problem, that the hierarchy {𝐼𝑘(𝑢)}𝑘∈ℕ will generally pro-
vide a-priori bounds on solutions only if we have sub-critical 𝐿2-mass; see Theorem 1.1. This is
in striking contrast to many other completely integrable PDEs (e. g., KdV, Benjamin-Ono, cubic
NLS etc.) where the corresponding hierarchy of conservation laws yields control over any smooth
solutions without any assumption on its size.
In Section 5, we examine the spectral properties of the Lax operator 𝐿𝑢 in more detail. Based on

a key commutator formula, we find a sharp bound on the number of eigenvalues𝑁 of the form

𝑁 ≤ ‖𝑢‖2
𝐿2

2𝜋
. (1.7)

Furthermore, we prove that every eigenvalue of 𝐿𝑢 is simple. As interesting aside, we remark that
this bound not only applies to isolated eigenvalues, but also to eigenvalues which are embedded
in the essential spectrum 𝜎ess(𝐿) = [0,∞). Moreover, we emphasize the fact that we can easily
generate embedded eigenvalues of 𝐿𝑢 by action of the Beurling–Lax semigroup {𝑒𝑖𝜂𝑥}𝜂≥0 acting
on 𝐿2

+(ℝ); see Section 5 again.
In terms of spectral theory, it is a natural question to study which potentials 𝑢 ∈ 𝐿2

+(ℝ) will
lead to equality in the general bound (1.7). Here we will find a distinguished class of potentials
given by rational functions of the form

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
∈ 𝐻1

+(ℝ),

where 𝑄, 𝑃 ∈ ℂ[𝑥] are suitable polynomials with deg𝑄 = 𝑁 and deg 𝑃 ≤ 𝑁 − 1; see Proposi-
tion 5.2. We will refer to these 𝑢(𝑥) = 𝑃(𝑥)∕𝑄(𝑥) as above as multi-soliton potentials and the
corresponding solutions will be called multi-solitons for (CM-DNLS). As an immediate conse-
quence of saturating the bound (1.7), we obtain the multi-solitons 𝑢(𝑡, 𝑥) have quantized 𝐿2-mass
with

𝑀(𝑢) = 2𝜋𝑁.

Another noteworthy feature of any multi-soliton solution 𝑢(𝑡, 𝑥) is that it is completely
supported in the pure point spectrum of the Lax operator, that is, we have

𝑢(𝑡) ∈ 𝑝𝑝(𝐿𝑢(𝑡)),

where 𝑝𝑝 denotes the𝑁-dimensional space spanned the eigenfunctions of 𝐿𝑢. This fact will allow
us to derive a very explicit inverse spectral formula representing a multi-soliton. This will enable
us to prove global-in-time existence and,more strikingly, the growth bounds states in Theorem 1.3.
In the future, we plan to further refine the spectral analysis of 𝐿𝑢 in order to study the long-time
behavior of solutions of (CM-DNLS) beyond the case of multi-solitons.

 10970312, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22203, W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4016 GÉRARD and LENZMANN

Finally, we remark that the Lax structure for (CM-DNLS) bears some resemblance to the Lax
structure for (BO), which is known to have the Lax operator

𝐿(BO)
𝑢 = 𝐷 − 𝑇𝑢

acting on the Hardy space 𝐿2
+(ℝ); see for example [16]. Note that the occurrence of 𝑇𝑢 in 𝐿(BO)

𝑢

instead of 𝑇𝑢𝑇𝑢̄ in 𝐿𝑢 is consistent with the different degrees of the nonlinearity (quadratic
vs. cubic).

1.4 Comparison to other PDEs

Let us comment on the energy cascade phenomenon in Theorem 1.3 in comparison to other
Hamiltonian PDEs on the line. Among the recently studied Hamiltonian PDEs on the line, the
closest one to (CM-DNLS) is certainly the derivative nonlinear Schrödinger equation,

𝑖𝜕𝑡𝑢 + 𝜕𝑥𝑥𝑢 + 𝑖𝜕𝑥(|𝑢|2𝑢) = 0, (DNLS)

which—like (CM-DNLS) – is 𝐿2-mass critical with a Lax pair structure. Using the Lax pair
structure, global existence was first proved in [20] in the space𝐻2(ℝ) ∩ 𝐻̂2(ℝ). Then global well-
posedness with uniform bounds in𝐻𝑠, 𝑠 ≥ 1∕2was obtained in [4, 5]. Quite recently, the flowmap
was extended to the whole of 𝐿2(ℝ) in [18], proving that all trajectories of (DNLS) are uniformly
equicontinuous with values in 𝐿2(ℝ). All these results prevent any kind of energy cascade and are
therefore in strong contrast with the dynamics of (CM-DNLS), which turns out to be much richer.
Another integrable Hamiltonian PDE on the line is the cubic Szegő equation, see [31],

𝑖𝜕𝑡𝑢 = Π+(|𝑢|2𝑢), (1.8)

where multi-solitons were recently studied in [17], and where energy cascades were displayed
under some degeneracy assumption of the spectrum of the corresponding Lax operator. There is
definitely some similarity in the approaches tomulti-solitons in (1.8) and (CM-DNLS), particularly
in the inverse spectral formulae. However, let us emphasize that the spectral properties of the Lax
operators are very different, and that energy cascades for multi-solitons in (1.8) only occur under
some degeneracy assumption, while they always occur for multi-solitons in (CM-DNLS). This
suggests that the dynamics of (CM-DNLS) is particularly turbulent, even compared to the non-
dispersive Equation (1.8). We hope to explore other aspects of this dynamics in the near future.

1.5 Notation

We denote by ⟨𝑓, 𝑔⟩ = ∫
ℝ
𝑓𝑔 the 𝐿2-inner product of functions 𝑓, 𝑔 on the line. We recall thatΠ+

denotes the orthogonal projector from 𝐿2(ℝ) onto the Hardy space 𝐿2
+(ℝ). Sometimes, we will

also use the notation Π− = 1 − Π+. Notice that, for every 𝐿2 function 𝑓,

Π−(𝑓) = Π+(𝑓) .
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4017

Finally, observe that the Hilbert transform 𝖧 = −𝑖 sgn(𝐷) is related to Π± by the identities

Π+ =
1
2
(1 + 𝑖𝖧) , Π− =

1
2
(1 − 𝑖𝖧) .

2 WELL-POSEDNESS, LAX STRUCTURE, AND CONSERVATION
LAWS

In this section, we study the Cauchy problem for (CM-DNLS) in 𝐻𝑠
+(ℝ) with suitable 𝑠. As a key

element for obtaining global-in-time solutions, we will find a Lax pair structure on the Hardy-
type space𝐻𝑠

+, which will generate an infinite hierarchy of conservation laws. With this at hand,
we will derive a-priori bounds for initial 𝑢0 ∈ 𝐻𝑠

+(ℝ) with integer 𝑠 ≥ 1 and sub-critical 𝐿2-mass
𝑀(𝑢0) < 𝑀().

2.1 Local well-posedness

As starting point for local well-posedness, we consider the case of initial data in 𝐻𝑠
+(ℝ) with 𝑠 >

3∕2, where Kato’s classical iterative scheme for quasilinear evolution equations can be utilized.
We remark that the presence of the derivative term𝐷+(|𝑢|2)𝑢 raises some analytic challenges that
need to be addressed.

Proposition 2.1. Let 𝑠 > 3∕2. For any𝑅 > 0, there is some𝑇(𝑅) > 0 such that, for every𝑢0 ∈ 𝐻𝑠
+(ℝ)

with ‖𝑢0‖𝐻𝑠 ≤ 𝑅, there exists a unique solution 𝑢 ∈ 𝐶([−𝑇, 𝑇];𝐻𝑠
+(ℝ)) of (CM-DNLS) with 𝑢(0) =

𝑢0.
Furthermore, the 𝐻𝜎-regularity of 𝑢0 for 𝜎 > 𝑠 is propagated on the whole maximal interval of

existence of 𝑢, and the flow map 𝑢0 ↦ 𝑢(𝑡) is continuous on𝐻𝑠 .

Proof. As already mentioned above, we apply a Kato-type iterative scheme to obtain this result.
For concreteness, we shall consider the case

𝑠 = 2

in what follows. The general case 𝑠 > 3∕2 can be handled in an analogous way.
We first write (CM-DNLS) as

𝜕𝑡𝑢 = 𝑖𝜕𝑥𝑥𝑢 + 2𝑇𝑢𝑇𝑢𝜕𝑥𝑢 + 2𝑢𝐻𝑢𝜕𝑥𝑢, (2.1)

where

𝑇𝑎𝑓 ∶= Π+(𝑎𝑓), 𝐻𝑏𝑓 ∶= Π+(𝑏𝑓) (2.2)

denote the Toeplitz andHankel operators acting on 𝐿2
+(ℝ)with symbols 𝑎 and 𝑏, respectively. Our

first observation is that the term𝐻𝑢𝜕𝑥𝑢 is of order 0 if 𝑢 is smooth enough.
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4018 GÉRARD and LENZMANN

Lemma 2.1. If 𝑢 ∈ 𝐻
3

2
+(ℝ), then 𝐻𝑢𝜕𝑥 ∶ 𝐿2

+(ℝ) → 𝐿2
+(ℝ) is bounded with ‖𝐻𝑢(𝜕𝑥𝑓)‖𝐿2 ≤

1√
2𝜋

‖𝑢‖𝐻̇3∕2‖𝑓‖𝐿2 . If 𝑢, 𝑣 ∈ 𝐻2
+(ℝ), then𝐻𝑢𝜕𝑥𝑣 ∈ 𝐻2

+(ℝ) with

‖𝐻𝑢𝜕𝑥𝑣‖𝐻2 ≤ 𝐶‖𝑢‖𝐻2‖𝑣‖𝐻2

with some constant 𝐶 > 0.

Proof. Let 𝑓 ∈ 𝐻1
+(ℝ). Then

𝐻𝑢𝜕𝑥𝑓(𝜉) = −∫
∞

0
𝑢(𝜉 + 𝜂)𝑓(𝜂)

𝑑𝜂

2𝜋
for 𝜉 ≥ 0.

Consequently,

|𝐻𝑢𝜕𝑥𝑓(𝜉)|2 ≤ |||||∫
∞

0
|𝑢(𝜉 + 𝜂)||𝜉 + 𝜂||𝑓(𝜂)|𝑑𝜂

2𝜋

|||||
2

≤ ∫
∞

0
|𝑢(𝜉 + 𝜂)|2(𝜉 + 𝜂)2

𝑑𝜂

2𝜋
⋅ ∫

∞

0
|𝑓(𝜂)|2 𝑑𝜂

2𝜋
.

Thus

‖𝐻𝑢𝜕𝑥𝑓‖2
𝐿2 ≤ ∫

∞

0 ∫
∞

0
|𝑢(𝜉 + 𝜂)|2(𝜉 + 𝜂)2

𝑑𝜂

2𝜋

𝑑𝜉

2𝜋
‖𝑓‖𝐿2

≤ ∫
∞

0
|𝑢(𝜁)|2𝜁3 𝑑𝜁

4𝜋2
‖𝑓‖2

𝐿2 =
1
2𝜋

‖𝑢‖2
𝐻̇3∕2

‖𝑓‖2
𝐿2 .

By density, this bound extends to all 𝑓 ∈ 𝐿2
+(ℝ). This proves the first claim of the lemma.

For the second statement, we note that this follows from the first statement combined with
Sobolev embeddings and the identity

𝜕𝑥𝑥(𝐻𝑢𝜕𝑥𝑣) = 𝐻𝑢𝜕𝑥(𝜕𝑥𝑥𝑣) + 2𝐻𝜕𝑥𝑢𝜕𝑥𝑣 + 𝐻𝜕𝑥𝑥𝑢𝜕𝑥𝑣.

This completes the proof of Lemma 2.1. □

In view of (2.1), we consider the following iteration scheme

𝜕𝑡𝑢
𝑘+1 = 𝑖𝜕𝑥𝑥𝑢

𝑘+1 + 2𝑇𝑢𝑘𝑇
𝑢
𝑘𝜕𝑥𝑢

𝑘+1 + 2𝑢𝑘𝐻𝑢𝑘𝜕𝑥𝑢
𝑘 (2.3)

with initial datum 𝑢𝑘+1(0, 𝑥) = 𝑢0(𝑥) ∈ 𝐻2
+(ℝ). Notice that 𝑇𝑢𝑇𝑢 is a self-adjoint operator. Hence

a standard energy methods yields the following result.

Lemma 2.2. Let 𝑢 ∈ 𝐶([−𝑇, 𝑇],𝐻2
+(ℝ)) with some 𝑇 > 0, 𝑝 ∈ {0, 1, 2}, and 𝑤0 ∈ 𝐻

𝑝
+(ℝ), 𝑓 ∈

𝐿1([−𝑇, 𝑇];𝐻
𝑝
+(ℝ)). Then there exists a unique 𝑤 ∈ 𝐶([−𝑇, 𝑇];𝐻

𝑝
+(ℝ)) such that

𝜕𝑡𝑤 = 𝑖𝜕𝑥𝑥𝑤 + 2𝑇𝑢𝑇𝑢𝑤 + 𝑓, 𝑤(0, 𝑥) = 𝑤0(𝑥).
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4019

Furthermore,

sup|𝑡|≤𝑇
‖𝑤(𝑡)‖𝐻𝑝 ≤ 𝐶e

𝐶 ∫ 𝑇

−𝑇
‖𝑢(𝑡)‖2

𝐻2 𝑑𝑡
(‖𝑤0‖𝐻𝑝 + ‖𝑓‖𝐿1

𝑡 𝐻
𝑝

)
.

Coming back to the scheme (2.3), we see that Lemmas 2.1 and 2.2 allow us to construct by
induction a sequence (𝑢𝑘) in 𝐶(ℝ;𝐻2

+(ℝ)) with 𝑢0(𝑡, 𝑥) = 𝑢0(𝑥). We are now going to prove that
if ‖𝑢0‖𝐻2 ≤ 𝑅 and 𝑇(𝑅) > 0 suitably chosen, then the sequence (𝑢𝑘) is bounded in 𝐻2

+(ℝ) and
uniformly convergent in 𝐿2

+(ℝ) for |𝑡| ≤ 𝑇(𝑅).
Let us first prove that (𝑢𝑘) is bounded in 𝐻2

+(ℝ) for |𝑡| ≤ 𝑇(𝑅) with suitably chosen 𝑇(𝑅) > 0.
Indeed, by using the second estimate in Lemma 2.1 together with the bound in Lemma 2.2 for
𝑝 = 2, we obtain

sup|𝑡|≤𝑇
‖𝑢𝑘+1(𝑡)‖𝐻2 ≤ 𝐶e

𝐶 ∫ 𝑇

−𝑇
‖𝑢𝑘(𝑡)‖2

𝐻2 𝑑𝑡

(‖𝑢0‖𝐻2 + ∫
𝑇

−𝑇
‖𝑢𝑘(𝑡)‖3

𝐻2 𝑑𝑡

)
.

Assume ‖𝑢0‖𝐻2 ≤ 𝑅 and let 𝑅1 = (1 + 𝐶)𝑅. Since 𝑅1 > 𝐶𝑅, we can choose 𝑇 = 𝑇(𝑅) > 0 such
that

𝐶e2𝐶𝑇𝑅2
1 (𝑅 + 2𝑇𝑅3

1) ≤ 𝑅1.

By an elementary induction argument, we find that sup|𝑡|≤𝑇(𝑅) ‖𝑢𝑘(𝑡)‖𝐻2 ≤ 𝑅1 for all 𝑘.
Next, we show that we have a contraction property of the sequence (𝑢𝑘) in 𝐿2

+(ℝ) for |𝑡| ≤ 𝑇(𝑅)
as follows. Observe that

𝜕𝑡(𝑢
𝑘+1 − 𝑢𝑘) = 𝑖𝜕𝑥𝑥(𝑢

𝑘+1 − 𝑢𝑘) + 2𝑇𝑢𝑘𝑇
𝑢
𝑘𝜕𝑥(𝑢

𝑘+1 − 𝑢𝑘)+

+ 2(𝑇𝑢𝑘𝑇𝑢𝑘 − 2𝑇𝑢𝑘−1𝑇
𝑢
𝑘−1)𝜕𝑥𝑢

𝑘 + 2𝑢𝑘𝐻𝑢𝑘𝜕𝑥𝑢
𝑘 − 2𝑢𝑘−1𝐻𝑢𝑘−1𝜕𝑥𝑢

𝑘−1.

Using the estimate of Lemma 2.2 with 𝑝 = 0 and the bound on 𝑢𝑘 in𝐻2, we infer

sup|𝑡|≤𝑇
‖𝑢𝑘+1(𝑡) − 𝑢𝑘(𝑡)‖𝐿2 ≤ 𝐾𝑇 sup|𝑡|≤𝑇

‖𝑢𝑘(𝑡) − 𝑢𝑘−1(𝑡)‖𝐿2

with some constant 𝐾 > 0. If we choose 𝑇 = 𝑇(𝑅) > 0 from above small enough to ensure that
𝐾𝑇 < 1, then the series sup|𝑡|≤𝑇(𝑅) ‖𝑢𝑘+1(𝑡) − 𝑢𝑘(𝑡)‖𝐿2 is geometrically convergent.
Finally, the sequence (𝑢𝑘) is uniformly weakly convergent in 𝐶([−𝑇, 𝑇];𝐻2

+(ℝ)) and strongly
convergent in 𝐶([−𝑇, 𝑇]; 𝐿2

+(ℝ)). Hence its limit 𝑢(𝑡) solves (2.1) – and therefore (CM-DNLS). (To
prove that the limit 𝑢(𝑡) actually belongs to 𝐶([−𝑇, 𝑇];𝐻2

+(ℝ)), we can invoke Tao’s frequency
envelope method [35] or adapt an argument due to Bona-Smith [8].)
Uniqueness follows along the same lines as the contraction property in 𝐿2

+(ℝ). The proof of
Proposition 2.1 is now complete. □

Following the analysis in [13], we can further lower the regularity for local well-posedness
to initial data in 𝐻𝑠

+(ℝ) with 𝑠 > 1∕2. In particular, we can reach the energy space 𝐻1
+(ℝ) for

(CM-DNLS). In fact, the arguments adapt Tao’s frequency localized gauge transform introduced
to treat low regularity solutions for the Benjamin-Ono equation. For (CM-DNLS), we obtain the
following local well-posedness result.
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4020 GÉRARD and LENZMANN

Theorem 2.1 (Local Well-Posedness in 𝐻𝑠
+ with 𝑠 > 1∕2). Let 𝑢0 ∈ 𝐻𝑠

+(ℝ) with some 𝑠 > 1∕2.
Then there exist a time 𝑇 = 𝑇(‖𝑢0‖𝐻𝑠 ) > 0 and some Banach space 𝑍𝑠,𝑇 ⊂ 𝐶([−𝑇, 𝑇];𝐻𝑠

+(ℝ)) and
a unique solution 𝑢 ∈ 𝑍𝑠,𝑇 of (CM-DNLS) with initial datum 𝑢(0) = 𝑢0.
Furthermore, the 𝐻𝜎-regularity of 𝑢0 for 𝜎 > 𝑠 is propagated on the whole maximal interval of

existence of 𝑢, and the flow map 𝑢0 ↦ 𝑢(𝑡) is continuous on𝐻𝑠 .

Remark. Recall that (CM-DNLS) is 𝐿2-critical with respect to scaling. It remains a fundamental
open problem to understand the case 𝑢 ∈ 𝐻𝑠

+(ℝ) when 0 ≤ 𝑠 ≤ 1∕2.

Proof. We can adapt the estimates proven in [13] to our case. Suppose that 𝑢0 ∈ 𝐻𝑠
+(ℝ) with

some 𝑠 > 1∕2. For 𝜀 > 0, let 𝜂𝜀(𝑥) =
√

1

𝜀𝜋
e−|𝑥|2∕𝜀 be a Gaussian mollifier. Then 𝑢0,𝜀(𝑥) = (𝜂𝜀 ∗

𝑢0)(𝑥) satisfies 𝑢0,𝜀 ∈ 𝐻∞
+ (ℝ) ⊂ 𝐻2

+(ℝ). By Proposition 2.1, there exists a unique solution 𝑢𝜀 ∈
𝐶([−𝑇𝜀, 𝑇𝜀]; 𝐻

2
+(ℝ)) with 𝑢𝜀(0) = 𝑢0,𝜀. We can now apply the arguments in the proof of Theorem

1.1 in [13]. First, we can show that there exists 𝑇 = 𝑇(‖𝑢0‖𝐻𝑠 ) > 0 satisfying 𝑇𝜀 ≥ 𝑇 for all 𝜀 > 0.
Then following Proposition 3.2 in [13] we see that (𝑢𝜀) is Cauchy in 𝑍𝑠,𝑇 as 𝜀 → 0; we refer to
[13] for the definition of the Banach space 𝑍𝑠,𝑇 . Finally, the uniqueness of the limit of (𝑢𝜀) can be
proven by the estimate (3.40) in [13]. □

2.2 Lax pair and conservation laws

In this subsection, we will show that (CM-DNLS) admits a Lax pair with certain densely defined
operators 𝐿𝑢 and 𝐵𝑢 acting on the Hardy space 𝐿2

+(ℝ). Here we will exploit this fact to derive an
infinite hierachy of conservation laws. For an analysis of the spectral properties of 𝐿𝑢, we refer to
Section 6 below.
For 𝑢 ∈ 𝐻𝑠

+(ℝ) with some 𝑠 ≥ 0, we formally define the operators 𝐿𝑢 and 𝐵𝑢 acting on 𝐿2
+(ℝ)

by setting

𝐿𝑢 = 𝐷 − 𝑇𝑢𝑇𝑢̄ and 𝐵𝑢 = 𝑇𝑢𝑇𝜕𝑥𝑢̄ − 𝑇𝜕𝑥𝑢𝑇𝑢̄ + 𝑖(𝑇𝑢𝑇𝑢̄)
2 (2.4)

Here 𝑇𝑏(𝑓) = Π+(𝑏𝑓) denotes the Toeplitz operator on 𝐿2
+(ℝ) with symbol 𝑏 ∈ 𝐿2(ℝ) + 𝐿∞(ℝ).

For 𝑢 ∈ 𝐻1
+(ℝ) ⊂ 𝐿∞(ℝ), we readily check that 𝑇𝑢 and 𝑇𝑢̄ are bounded operators on 𝐿2

+(ℝ). Thus,
for 𝑢 ∈ 𝐻1

+(ℝ), it is straightforward to verify that 𝐿𝑢 is semibounded and a self-adjoint operator,
that is,

𝐿∗
𝑢 = 𝐿𝑢

with operator domain dom(𝐿𝑢) = 𝐻1
+(ℝ). For 𝑢 ∈ 𝐻2

+(ℝ), we readily check that 𝐵𝑢 = −𝐵∗
𝑢 is a

skew-adjoint and bounded operator on 𝐿2
+(ℝ).

Remark 2.1. In Appendix A below, we detail how 𝐿𝑢 can be defined via quadratic forms if we only
assume that 𝑢 ∈ 𝐿2

+(ℝ), which is a natural class in view of the 𝐿2-criticality of (CM-DNLS).

Next, we see that 𝐿𝑢 and 𝐵𝑢 form indeed a Lax pair for the Calogero–Moser DNLS.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4021

Lemma 2.3 (Lax Equation). If 𝑢 ∈ 𝐶([0, 𝑇];𝐻𝑠
+(ℝ)) solves (CM-DNLS) with 𝑠 ≥ 0 sufficiently large

(e.g., with 𝑠 = 2), then it holds

𝑑
𝑑𝑡

𝐿𝑢 = [𝐵𝑢, 𝐿𝑢].

Proof. We divide the proof into the following steps.
Step 1.We first calculate the commutators

𝐼 ∶= [𝑇𝑢𝑇𝜕𝑥𝑢̄, 𝐷], 𝐼𝐼 ∶= [𝑇𝜕𝑥𝑢𝑇𝑢̄, 𝐷], 𝐼𝐼𝐼 ∶= 𝑖[(𝑇𝑢𝑇𝑢̄)
2, 𝐷].

We find

𝐼 = 𝑇𝑢[𝑇𝜕𝑥𝑢̄, 𝐷] + [𝑇𝑢, 𝐷]𝑇𝜕𝑥𝑢̄ = 𝑇𝑢𝑇𝑖𝜕𝑥𝑥𝑢̄ + 𝑇𝑖𝜕𝑥𝑢𝑇𝜕𝑥𝑢̄,

𝐼𝐼 = 𝑇𝜕𝑥𝑢[𝑇𝑢̄, 𝐷] + [𝑇𝜕𝑥𝑢, 𝐷]𝑇𝑢̄ = 𝑇𝜕𝑥𝑢𝑇𝑖𝜕𝑥𝑢̄ + 𝑇𝑖𝜕𝑥𝑥𝑢𝑇𝑢̄.

In addition, we see

𝐼𝐼𝐼 = 𝑖𝑇𝑢𝑇𝑢̄[𝑇𝑢𝑇𝑢̄, 𝐷] + 𝑖[𝑇𝑢𝑇𝑢̄, 𝐷]𝑇𝑢𝑇𝑢̄

= 𝑖𝑇𝑢𝑇𝑢̄

(
𝑇𝑢𝑇𝑖𝜕𝑥𝑢̄ + 𝑇𝑖𝜕𝑥𝑢𝑇𝑢̄

)
+ 𝑖

(
𝑇𝑢𝑇𝑖𝜕𝑥𝑢̄ + 𝑇𝑖𝜕𝑥𝑢𝑇𝑢̄

)
𝑇𝑢𝑇𝑢̄.

As a next step, we consider the terms

𝐼𝑉 ∶= [𝑇𝑢𝑇𝜕𝑥𝑢̄, 𝑇𝑢𝑇𝑢̄], 𝑉 ∶= [𝑇𝜕𝑥𝑢𝑇𝑢̄, 𝑇𝑢𝑇𝑢̄], 𝑉𝐼 = 𝑖[(𝑇𝑢𝑇𝑢̄)
2, 𝑇𝑢𝑇𝑢̄].

We find

𝐼𝑉 = 𝑇𝑢𝑇𝜕𝑥𝑢̄𝑇𝑢𝑇𝑢̄ − 𝑇𝑢𝑇𝑢̄𝑇𝑢𝑇𝜕𝑥𝑢̄, 𝑉 = 𝑇𝜕𝑥𝑢𝑇𝑢̄𝑇𝑢𝑇𝑢̄ − 𝑇𝑢𝑇𝑢̄𝑇𝜕𝑥𝑢𝑇𝑢̄,

and, clearly, we have 𝑉𝐼 = 0. If we combine all commutator terms, we see

[𝐵𝑢, 𝐿𝑢] = 𝐼 − 𝐼𝐼 + 𝐼𝐼𝐼 − 𝐼𝑉 + 𝑉

= 𝑇𝑢𝑇𝑖𝜕𝑥𝑥𝑢̄ − 𝑇𝑖𝜕𝑥𝑥𝑢𝑇𝑢̄ − 2𝑇𝑢𝑇𝑢̄𝑇𝜕𝑥𝑢𝑇𝑢̄ − 2𝑇𝑢𝑇𝜕𝑥𝑢̄𝑇𝑢𝑇𝑢̄

= 𝑇𝑢𝑇𝑖𝜕𝑥𝑥𝑢̄ − 𝑇𝑖𝜕𝑥𝑥𝑢𝑇𝑢̄ − 2𝑇𝑢𝑇𝜕𝑥|𝑢|2𝑇𝑢̄,

where in the last step we used that 𝑢 ∈ 𝐻1
+(ℝ), which implies that

𝑇𝑢̄𝑇𝜕𝑥𝑢 + 𝑇𝜕𝑥𝑢̄𝑇𝑢 = 𝑇𝑢̄𝜕𝑥𝑢+𝜕𝑥𝑢̄𝑢 = 𝑇𝜕𝑥|𝑢|2
holds on 𝐿2

+(ℝ).
Step 2.We now calculate

𝑑
𝑑𝑡

𝐿𝑢 = −𝑇𝑢̇𝑇𝑢̄ − 𝑇𝑢𝑇 ̇̄𝑢

= −𝑇𝑖𝜕𝑥𝑥𝑢𝑇𝑢̄ − 2𝑇Π+(𝜕𝑥|𝑢|2)𝑢𝑇𝑢̄ − 𝑇𝑢𝑇−𝑖𝜕𝑥𝑥𝑢̄ − 2𝑇𝑢𝑇Π+(𝜕𝑥|𝑢|2)𝑢̄
In view of the expression for [𝐵𝑢, 𝐿𝑢] derived in Step 1, it remains to show the identity

𝑇Π+(𝜕𝑥|𝑢|2)𝑢𝑇𝑢̄ + 𝑇𝑢𝑇Π+(𝜕𝑥|𝑢|2)𝑢̄ = 𝑇𝑢𝑇𝜕𝑥|𝑢|2𝑇𝑢̄ (2.5)
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4022 GÉRARD and LENZMANN

Indeed, using that 𝑢 ∈ 𝐻1
+(ℝ), we find

𝑇Π+(𝜕𝑥|𝑢|2)𝑢 = 𝑇𝑢𝑇Π+(𝜕𝑥|𝑢|2) and 𝑇
Π+(𝜕𝑥|𝑢|2)𝑢̄ = 𝑇

Π+(𝜕𝑥|𝑢|2)𝑇𝑢̄.

Since 𝜕𝑥|𝑢|2 = Π+(𝜕𝑥|𝑢|2) + Π+(𝜕𝑥|𝑢|2), we deduce that (2.5) holds true. This completes the proof
of Lemma 2.3. □

Remark 2.2. Since we have that [𝐿𝑢, 𝐿
2
𝑢] = 0, the skew-adjoint operator

𝐵𝑢 = 𝐵𝑢 − 𝑖𝐿2
𝑢

also satisfies the Lax equation 𝑑

𝑑𝑡
𝐿𝑢 = [𝐵𝑢, 𝐿𝑢]. A direct calculation shows that

𝐵𝑢 = −𝑖𝐷2 + 2𝑖𝑇𝑢𝐷𝑇𝑢̄ (2.6)

Note that 𝐵𝑢 is an unbounded skew-adjoint operator on 𝐿2
+(ℝ) with operator domain dom(𝐵𝑢) =

𝐻2
+(ℝ). Actually, we first found the operator𝐵𝑢 in the analysis of the Lax structure of (CM-DNLS).

We also note that the relation between 𝐵𝑢 and 𝐵𝑢 is reminiscent to the Lax structure for the
Benjamin-Ono equation used in [16].

As a consequence of the Lax equation, we obtain an infinite hierarchy of conservation of laws
for (CM-DNLS) as follows

Lemma 2.4 (Hierarchy of Conservation Laws). Let 𝑢 ∈ 𝐶([0, 𝑇],𝐻𝑠
+(ℝ)) be a solution of (CM-

DNLS) with sufficiently large 𝑠 ≥ 0. Then, for every 𝜆 ∉ 𝜎(𝐿𝑢(0)), we have the conserved quantity

𝜆(𝑢) ∶= ⟨(𝐿𝑢 − 𝜆𝐼)−1𝑢, 𝑢⟩.
As a consequence, if 𝑢 ∈ 𝐶([0, 𝑇];𝐻

𝑛∕2
+ (ℝ)) with some 𝑛 ∈ ℕ, the quantities

𝐼𝑘(𝑢) ∶= ⟨𝐿𝑘
𝑢𝑢, 𝑢⟩ with 𝑘 = 0,… , 𝑛

are conserved, where ⟨⋅, ⋅⟩ denotes the dual pairing of𝐻−𝑛∕2
+ and𝐻

𝑛∕2
+ .

Proof. Let 𝜆 ∉ 𝜎(𝐿𝑢0
), which by the Lax equation implies that 𝜆 ∉ 𝜎(𝐿𝑢) for all 𝑢 = 𝑢(𝑡) with

𝑡 ∈ [0, 𝑇]. A quick calculation reveals that (CM-DNLS) can be written as

𝜕𝑡𝑢 = 𝐵𝑢𝑢

with the operator 𝐵𝑢 = 𝐵𝑢 − 𝑖𝐿2
𝑢; see also (2.6) above. Using that

𝑑

𝑑𝑡
𝐿𝑢 = [𝐵𝑢, 𝐿𝑢], it is elementary

to verify that

𝑑
𝑑𝑡

𝜆(𝑢) = 0.

Finally, we note the expansion

𝜆(𝑢) =
∞∑
𝑘=0

𝜆−(𝑘+1)⟨𝐿𝑘
𝑢𝑢, 𝑢⟩
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4023

for all real 𝜆 < 0 sufficiently negative (using that 𝐿𝑢 is bounded below) and with 𝑢 ∈ 𝐻∞
+ (ℝ) =

∩𝑠≥0𝐻
𝑠
+(ℝ). Thus we deduce that 𝐼𝑘(𝑢) = ⟨𝐿𝑘

𝑢𝑢, 𝑢⟩ are constant in time for solutions in
𝐻∞

+ (ℝ). The conservation laws 𝐼0(𝑢), … , 𝐼𝑛(𝑢) for solutions 𝑢 ∈ 𝐶([0, 𝑇];𝐻
𝑛∕2
+ (ℝ)) follow from

an approximation argument, which we omit. □

2.3 Global existence for sub-critical 𝑳𝟐-mass

As an application of Lemma 2.4, we deduce the following global-in-time existence result.

Corollary 2.1 (Global Existence and Bounds for sub-critical 𝐿2-Mass). Let 𝑢0 ∈ 𝐻𝑠
+(ℝ) with some

integer 𝑠 ≥ 1 and suppose that

𝑀(𝑢0) < 𝑀() = 2𝜋.

Then the corresponding solution 𝑢(𝑡) ∈ 𝐻𝑠
+(ℝ) of (CM-DNLS) exists for all times 𝑡 ∈ ℝ with the

a-priori bound

sup
𝑡∈ℝ

‖𝑢(𝑡)‖𝐻𝑠 < +∞.

Remarks.

(1) The condition 𝑠 ≥ 1 arises from the current state of the local well-posedness theory for (CM-
DNLS). It is conceivable that, with some great effort though, that this result extends to initial
data in𝐻0

+(ℝ) = 𝐿2
+(ℝ) satisfying ‖𝑢0‖2

𝐿2 < 2𝜋.
(2) From Theorem 1.3 we deduce that the infinite hierarchy of conservation laws

𝐼𝑘(𝑢(𝑡)) = 𝐼𝑘(𝑢0) with 𝑘 = 1, 2, …

fail in general to produce a-priori bounds on𝐻𝑠-norms for 𝑠 > 0 for solutions with initial data
with 𝐿2-mass𝑀(𝑢0) ≥ 𝑀() = 2𝜋.

Proof. We first consider the case 𝑠 = 1. By the local well-posedness theory in 𝐻1
+(ℝ), we need

to find an a-priori bound on sup𝑡∈𝐼 ‖𝑢(𝑡)‖𝐻1 , where 𝐼 ⊂ ℝ denotes the maximal time interval of
existence. Indeed, we have the conservation laws

𝐼0(𝑢) = ⟨𝑢, 𝑢⟩ = ‖𝑢‖2
𝐿2 ,

𝐼1(𝑢) = ⟨𝐿𝑢𝑢, 𝑢⟩ = ⟨𝐷𝑢, 𝑢⟩ − ‖𝑇𝑢̄𝑢‖2
𝐿2 .

Now, we use the sharp inequality (see Lemma A.1):

‖𝑇𝑢̄𝑢‖2
𝐿2 ≤ 1

2𝜋
‖𝑢‖2

𝐿2⟨𝐷𝑢, 𝑢⟩.
Therefore if we assume that ‖𝑢0‖2

𝐿2 < 2𝜋, we deduce the a-priori bound

sup
𝑡∈𝐼

‖𝑢(𝑡)‖𝐻1∕2 ≤ 𝐶(𝑢0).
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4024 GÉRARD and LENZMANN

Next, we use the conservation of energy together with a standard Gagliardo–Nirenberg
interpolation and Sobolev inequality:

𝐸(𝑢) = 2𝐼2(𝑢) = ⟨𝐿2
𝑢𝑢, 𝑢⟩ = ⟨𝐷𝑢,𝐷𝑢⟩ − 1

2
⟨|𝑢|2, |𝐷||𝑢|2⟩ + 1

12
‖𝑢‖6

𝐿6

≥ ‖𝜕𝑥𝑢‖2
𝐿2 − 𝐶‖𝑢‖3

𝐿6‖𝜕𝑥𝑢‖𝐿2 ≥ ‖𝜕𝑥𝑢‖2
𝐿2 − 𝐶‖𝑢‖3

𝐻1∕2
‖𝜕𝑥𝑢‖𝐿2 .

From the a-priori bound on ‖𝑢(𝑡)‖𝐻1∕2 , we readily infer that sup𝑡∈𝐼 ‖𝜕𝑥𝑢(𝑡)‖𝐿2 ≤ 𝐶(𝑢0). This
completes the proof for 𝑠 = 1.
The remaining case of integer 𝑠 ≥ 2 follows by iteration and using the conserved quantities

𝐼𝑘(𝑢) = ⟨𝐿𝑘𝑢, 𝑢⟩ = ‖𝑢‖2
𝐻̇𝑘∕2

+ lower order terms

with 𝑘 = 0,… , 2𝑠. We omit the details. □

2.4 Proof of theorem 1.1 for𝑴(𝒖𝟎) < 𝑴()

The assertions in Theorem 1.1 in the case𝑀(𝑢0) < 𝑀() follow directly from Corollary 2.1.
The critical case𝑀(𝑢0) = 𝑀() will be discussed in the following section.

3 NONEXISTENCE OFMINIMALMASS BLOWUP

The goal of this section is to rule out finite-timeminimal mass blowup for (CM-DNLS) with finite
energy. As a consequence, we obtain that initial data 𝑢(0) ∈ 𝐻𝑠

+(ℝ) with some 𝑠 ≥ 1 with critical
𝐿2-mass

𝑀(𝑢(0)) = 𝑀() = 2𝜋

will always lead to global-in-time solutions 𝑢 ∈ 𝐶(ℝ;𝐻𝑠
+(ℝ)), completing the proof of Theo-

rem 1.1.
Notice that the absence of minimal mass blowup is in striking contrast to focusing 𝐿2-critical

NLS, where the existence ofminimalmass blowup is a direct consequence of applying the pseudo-
conformal transform to ground state solitary waves. For (CM-DNLS) on the other hand, we will
see below that the mechanism that prevents the existence of minimal mass blowup is due to the
slow algebraic decay of ground states ∈ 𝐻1

+(ℝ) with |(𝑥)| ∼ 1|𝑥| as |𝑥| → +∞.

We begin with the 𝐿2-tightness property for𝐻1-solutions on finite time intervals.

Lemma 3.1. Let 𝐼 ⊂ ℝ be an interval of finite length |𝐼| < ∞ and suppose that 𝑢 ∈ 𝐶(𝐼,𝐻1(ℝ))
solves (CM-DNLS). Then the family {𝑢(𝑡)}𝑡∈𝐼 is tight in 𝐿2(ℝ), that is, for every 𝜀 > 0 there exists
𝑅 = 𝑅(𝜀) > 0 such that

∫|𝑥|≥𝑅
|𝑢(𝑡, 𝑥)|2 𝑑𝑥 ≤ 𝜀 for all 𝑡 ∈ 𝐼.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4025

Remarks.

(1) It should be noted that no assumption on the size of the solution𝑢(𝑡), that is, we donot assume
that𝑀(𝑢0) is sufficiently small.

(2) Notice that we do not assume that 𝑢(𝑡) belongs to the Hardy space𝐻1
+(ℝ), but in fact we allow

for general𝐻1-valued solutions of (CM-DNLS).

Proof. The idea is to adapt an elegant argument in [6] developed for studying minimal mass
blowup for𝐿2-criticalNLS. Let𝜓 ∈ 𝐶∞(ℝ) be a smooth real-valued functionwith bounded deriva-
tive 𝜕𝑥𝜓 ∈ 𝐿∞(ℝ). For any 𝑎 ∈ ℝ and 𝑢 ∈ 𝐻1(ℝ), the non-negativity of the energy implies that

𝐸(e𝑖𝑎𝜓𝑢) ≥ 0.

Expanding the right-hand side, we find

𝐸(e𝑖𝑎𝜓𝑢) =
1
2 ∫ℝ

|𝜕𝑥(e𝑖𝑎𝜓𝑢) − 𝑖Π+(|𝑢|2)e𝑖𝑎𝜓𝑢|2 𝑑𝑥
=

1
2 ∫ℝ

|𝑖𝑎𝜕𝑥𝜓𝑢 + 𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢|2 𝑑𝑥
=

𝑎2

2 ∫ℝ
|𝜕𝑥𝜓|2|𝜕𝑥𝑢|2 𝑑𝑥 + 𝑎Re ⟨𝑖𝜕𝑥𝜓𝑢, 𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢⟩ + 𝐸(𝑢).

Now we observe that
Re ⟨𝑖𝜕𝑥𝜓𝑢, 𝜕𝑥𝑢⟩ = ∫ℝ

𝜕𝑥𝜓 ⋅ Im(𝑢𝜕𝑥𝑢) 𝑑𝑥,

Re⟨𝑖𝜕𝑥𝜓𝑢,−𝑖Π+(|𝑢|2)𝑢⟩ = −
1
2
Re⟨𝜕𝑥𝜓𝑢, (1 + 𝑖𝖧)(|𝑢|2)𝑢⟩ = −

1
2 ∫ℝ

𝜕𝑥𝜓|𝑢|4 𝑑𝑥,
using that Π+ =

1

2
(1 + 𝑖𝐻) and Re⟨𝑢, 𝑖𝐻(|𝑢|2)𝑢⟩ = 0 since 𝐻(|𝑢|2) is real-valued. Therefore, the

quadratic expansion in 𝑎 together with 𝐸(e𝑖𝑎𝜓𝑢) ≥ 0 implies that

|||||∫ℝ
𝜕𝑥𝜓

(
Im(𝑢𝜕𝑥𝑢) −

1
2
|𝑢|4)𝑑𝑥

||||| ≤
√

2𝐸0

(
∫ℝ

|𝜕𝑥𝜓|2|𝜕𝑥𝑢|2 𝑑𝑥)1∕2

, (3.1)

with the energy 𝐸0 = 𝐸(𝑢) ≥ 0.
Next, we apply (3.1) to obtain the claimed 𝐿2-tightness bound. From (CM-DNLS) we deduce

𝜕𝑡|𝑢|2 = −2𝜕𝑥

(
Im(𝑢𝜕𝑥𝑢) −

1
2
|𝑢|4) (3.2)

in view of Re(𝑢(2𝑖𝐷+|𝑢|2)𝑢) = Re((𝜕𝑥|𝑢|2)|𝑢|2) = 1

2
𝜕𝑥|𝑢|4. Now let 𝜒 be a smooth nonnegative

function such that 𝜒(𝑥) ≡ 0 for |𝑥| ≤ 1∕2 and 𝜒(𝑥) ≡ 1 for |𝑥| ≥ 1. For 𝑅 > 0, we set 𝜒𝑅(𝑥) =
𝜒(𝑥∕𝑅). Integrating by parts and using (3.2) and (3.1), we infer that||||| 𝑑𝑑𝑡 ∫ℝ

𝜒𝑅|𝑢|2 𝑑𝑥||||| = 2
|||||∫ℝ

𝜕𝑥𝜒𝑅

(
Im(𝑢𝜕𝑥𝑢) −

1
2
|𝑢|4)𝑑𝑥

||||| (3.3)

≲
√

𝐸0

(
∫ℝ

|𝜕𝑥𝜒𝑅|2|𝑢|2 𝑑𝑥)1∕2

≲

√
𝐸0𝑀0

𝑅
(3.4)
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4026 GÉRARD and LENZMANN

with the conserved 𝐿2-mass 𝑀0 = ‖𝑢‖2
𝐿2 . If we integrate this bound over the finite time interval

𝐼 ⊂ ℝ with some 𝑡0 ∈ 𝐼 fixed, we finally obtain

∫ℝ
𝜒𝑅(𝑥)|𝑢(𝑡, 𝑥)|2 𝑑𝑥 ≤ ∫ℝ

𝜒𝑅(𝑥)|𝑢(𝑡0, 𝑥)|2 𝑑𝑥 +
𝐶|𝐼|
𝑅

,

for all 𝑡 ∈ 𝐼. This readily implies the claimed tightness bound. □

Theorem 3.1 (NoMinimal Mass Blowup). Let 𝐼 ⊂ ℝwith 0 ∈ 𝐼 and finite length |𝐼| < ∞. Suppose
𝑢 ∈ 𝐶(𝐼;𝐻1(ℝ)) solves (CM-DNLS) with𝑀(𝑢0) = 𝑀() = 2𝜋. Then it holds

sup
𝑡∈𝐼

‖𝑢(𝑡)‖𝐻1 < +∞.

Remark. (1) Note again that we allow for general𝐻1-valued solutions 𝑢(𝑡).

Proof. We argue by contradiction. Without loss of generality, we can assume that 𝐼 = [0, 𝑇) with
some finite time 𝑇 ∈ (0, +∞) and let 𝑢 ∈ 𝐶([0, 𝑇);𝐻1(ℝ)) satisfy

lim
𝑡→𝑇−

‖𝑢(𝑡)‖𝐻1 = +∞.

Step 1.We first show that 𝑢(𝑡)must have finite variance, that is, we have

∫ℝ
|𝑥|2|𝑢(𝑡, 𝑥)|2 𝑑𝑥 < +∞ for 𝑡 ∈ [0, 𝑇). (3.5)

Here we adapt a strategy developed for classifying minimal-mass finite-time blowup solutions for
𝐿2-critical NLS; originally due to Merle in [25]. To prove the claim (3.5), we follow the arguments
laid out in [6, 19].
Let 𝑡𝑛 → 𝑇− be a sequence of times. We define

𝜀𝑛 ∶=
1‖𝜕𝑥𝑢(𝑡𝑛)‖𝐿2

, 𝑣𝑛(𝑥) ∶= 𝜀
1∕2
𝑛 𝑢(𝑡𝑛, 𝜀𝑛𝑥) .

Applying the Minimal Mass Bubble Lemma B.1 from Appendix B to 𝑣𝑛, after passing to a
subsequence if necessary, there exist sequences 𝑥𝑛 ∈ ℝ and 𝜆𝑛 > 0 such that 𝜆𝑛 → 0 and

𝜆
1∕2
𝑛 𝑢(𝑡𝑛, 𝜆𝑛(𝑥 + 𝑥𝑛)) → e𝑖𝜃(𝑥) strongly in 𝐿2(ℝ)

for some 𝜃 ∈ [0, 2𝜋[, with the ground state  ∈ 𝐻1
+(ℝ) minimizing the energy functional 𝐸(𝑢)

on𝐻1(ℝ). Thus we obtain

|𝑢(𝑡𝑛, 𝑥)|2 𝑑𝑥 − ‖‖2
𝐿2𝛿𝑥=𝜆𝑛𝑥𝑛

⇀ 0

in the weak sense of measures. By the 𝐿2-tightness property in Lemma 3.1, we easily deduce
that 𝜆𝑛|𝑥𝑛| ≤ 𝐶 with some constant 𝐶 > 0. From this fact (and passing to a subsequence) and
by translational invariance we can henceforth assume that 𝜆𝑛𝑥𝑛 → 0 holds.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4027

Next, let 𝜓 ∈ 𝐶∞
0 (ℝ) be a non-negative function such that 𝜓(𝑥) ≡ |𝑥|2 for |𝑥| < 1 and|𝜕𝑥𝜓(𝑥)|2 ≤ 𝐶𝜓(𝑥)with some constant𝐶 > 0. For𝑅 > 0, we set𝜓𝑅(𝑥) = 𝑅2𝜓(𝑥∕𝑅) andwe define

𝑔𝑅(𝑡) = ∫ℝ
𝜓𝑅(𝑥)|𝑢(𝑡, 𝑥)|2 𝑑𝑥.

In analogy to (3.3) based on (3.1) we find

|||| 𝑑𝑑𝑡 𝑔𝑅(𝑡)|||| ≲ ∫ℝ
|𝜕𝑥𝜓𝑅|2|𝑢|2 𝑑𝑥 ≲

√
𝑔𝑅(𝑡) (3.6)

where the last step used that |𝜕𝑥𝜓𝑅|2 ≲ 𝜓𝑅 by construction. By integrating this on [𝑡, 𝑡𝑛] and using
that 𝑔𝑅(𝑡𝑛) → 0 as 𝑛 → ∞, we deduce

𝑔𝑅(𝑡) = ∫ℝ
𝜓𝑅(𝑥)|𝑢(𝑡, 𝑥)|2 𝑑𝑥 ≲ (𝑇 − 𝑡)2 for 𝑡 ∈ [0, 𝑇).

Passing to the limit 𝑅 → +∞, this yields

∫ℝ
|𝑥|2|𝑢(𝑡, 𝑥)|2 𝑑𝑥 ≲ (𝑇 − 𝑡)2 for 𝑡 ∈ [0, 𝑇). (3.7)

In particular, this implies that (3.5) holds, showing that 𝑢(𝑡) has finite variance.
Step 2. By Step 1, we have 𝑢0 = 𝑢(0) ∈ Σ = 𝐻1(ℝ) ∩ 𝐿2(ℝ; |𝑥|2𝑑𝑥) and thus we can apply the

pseudo-conformal identity (see Lemma C.1) to conclude that

8𝑡2𝐸(e𝑖|𝑥|2∕4𝑡𝑢0) = ∫ℝ
|𝑥|2|𝑢(𝑡, 𝑥)|2 𝑑𝑥 ≲ (𝑇 − 𝑡)2. (3.8)

If we pass to the limit 𝑡 → 𝑇−, we obtain

𝐸(e𝑖|𝑥|2∕4𝑇𝑢0) = 0. (3.9)

Since ‖e𝑖|𝑥|2∕4𝑇𝑢0‖2
𝐿2 = 2𝜋, the uniqueness result in Lemma 4.1 implies that

e𝑖|𝑥|2∕4𝑇𝑢0(𝑥) = (𝑥) (3.10)

up to translation, phase, and scaling. However, the fact that e𝑖|𝑥|2∕4𝑇𝑢0 ∈ Σ contradicts that(𝑥)
has infinite variance, that is,

∫ℝ
|𝑥|2|(𝑥)|2 𝑑𝑥 = +∞.

This contradiction shows that any 𝑢(𝑡) ∈ 𝐻1(ℝ) solving (CM-DNLS) with𝑀(𝑢(0)) = 𝑀() = 2𝜋
cannot blowup in finite time. This completes the proof of Theorem 3.1. Therefore, the proof of
Theorem 1.1 is also complete. □
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4028 GÉRARD and LENZMANN

4 GROUND STATES AND TRAVELING SOLITARYWAVES

In this section, we show that all ground states (minimizers) for the energy functional 𝐸(𝑢) for
(CM-DNLS) are given by the rational function

(𝑥) =

√
2

𝑥 + 𝑖
∈ 𝐻1

+(ℝ) (4.1)

modulo translation, phase, and scaling. As a second main result of this section, we prove that
all traveling solitary waves in 𝐻1

+(ℝ) for (CM-DNLS) are given by Galilean boosts (with positive
velocity) of up to the symmetries just mentioned.
We start with the following key result, which shows uniqueness of non-trivial solutions of the

(first-order) Euler-Lagrange equation for minimizers of 𝐸(𝑢).

Lemma 4.1 (Uniqueness of Ground States). Suppose that 𝑢 ∈ 𝐻1(ℝ) with 𝑢 ≢ 0 solves

𝐷𝑢 − Π+(|𝑢|2)𝑢 = 0.

Then it holds

𝑢(𝑥) = e𝑖𝜃𝜆1∕2(𝜆𝑥 + 𝑦)

with some 𝜃 ∈ [0, 2𝜋), 𝜆 > 0, 𝑦 ∈ ℝ, and ∈ 𝐻1
+(ℝ) is given by (4.1).

As a consequence, all minimizers 𝑢 ∈ 𝐻1(ℝ) ⧵ {0} for 𝐸(𝑢) are of the form 𝑢 = modulo phase,
translation, and scaling.

Remarks.

(1) Note we that only assume that 𝑢 ∈ 𝐻1(ℝ) and we obtain a posteriori that 𝑢 ∈ 𝐻1
+(ℝ) due to

its explicit form.
(2) As an interesting aside, we remark that the equation for 𝑢 ∈ 𝐻1(ℝ) above can be recast into

the nonlocal Liouville equation on the real line:

|𝐷|𝑤 = e𝑤 in ℝ. (4.2)

To prove this claim (neglecting any technicalities of function spaces for simplicity), we first
apply the gauge transform introducing the function 𝑣 = e−𝑖∕2 ∫ 𝑥

−∞
|𝑢|2𝑢, which leads to the

equation for 𝑣 given by

𝜕𝑥𝑣 +
1
2
𝖧(|𝑣|2)𝑣 = 0 in ℝ, (4.3)

where we recall that 𝖧 denotes the Hilbert transform. It is easy to see non-trivial solutions
𝑣 are (up to a complex phase factor) strictly positive 𝑣 > 0. Finally, if we define 𝑤 ∶ ℝ → ℝ
by setting 𝑤 = log(𝑣2), we readily check that 𝑤 solves (4.2). In [11, 12, 37] it is proven that all
solutions 𝑤 ∈ 𝐿1(ℝ;

𝑑𝑥

1+𝑥2
) of (4.2) are explicitly given by

𝑤(𝑥) = log

(
2𝜆

1 + 𝜆2(𝑥 − 𝑦)

)
(4.4)
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4029

with some constants 𝜆 > 0 and 𝑦 ∈ ℝ. From this uniqueness result for 𝑤, we could obtain
the result of Lemma 4.1. However, we will below give a self-contained (and short) unique-
ness proof based on Hardy space arguments and complex ODEs. This method also provides
(yet) another proof of the stated uniqueness result for 𝑤 solving (4.2). See also [2] for a recent
uniqueness result for solutions 𝑤 of the nonlocal Liouville equation |𝐷|𝑤 = 𝐾𝑒𝑤 in ℝ with
the prescribed function 𝐾 ∶ ℝ → ℝ.

Proof of Lemma 4.1. We introduce the function

𝑤 ∶= Π+(|𝑢|2) ∈ 𝐻1
+(ℝ),

so that 𝑢′ = 𝑖𝑢𝑤 and |𝑢|2 = 𝑤 + 𝑤. We obtain the complex ordinary differential equation

𝑤′ = Π+(𝑢
′𝑢 + 𝑢

′
𝑢) = Π+(𝑖𝑤(𝑤 + 𝑤) − 𝑖𝑤(𝑤 + 𝑤)) = 𝑖𝑤2,

using that Π+(𝑤
2
) = 0 for 𝑤 ∈ 𝐻1

+(ℝ). Since 𝑤 ≢ 0, we deduce

𝑤(𝑥) =
𝑖

𝑥 − 𝑧

for some constant 𝑧 ∈ ℂ with Im 𝑧 < 0 because 𝑤 ∈ 𝐿2
+(ℝ). Consequently,

𝑢′ = 𝑖𝑢𝑤 = −
𝑢

𝑥 − 𝑧
.

Thus we have (𝑥 − 𝑧)𝑢(𝑥) = 𝑐 with some constant 𝑐 ∈ ℂ. To determine 𝑐, we notice

𝑖
𝑥 − 𝑧

= Π+(|𝑢|2) = Π+

( |𝑐|2|𝑥 − 𝑧|2
)

=
|𝑐|2

(𝑧 − 𝑧)(𝑥 − 𝑧)
.

This implies that |𝑐|2 = −2Im𝑧 = 2|Im 𝑧|. In summary, we have found that
𝑢(𝑥) = e𝑖𝜃

√
2|Im 𝑧|
𝑥 − 𝑧

with some 𝜃 ∈ [0, 2𝜋) and 𝑧 ∈ ℂ−. From this fact we readily deduce that 𝑢(𝑥) = e𝑖𝜃𝜆1∕2(𝜆𝑥 + 𝑦)
with 𝜆 = −(Im𝑧)−1 > 0 and 𝑦 = −Re 𝑧. □

Our next goal is to classify all traveling solitary wave solutions for (CM-DNLS). By a traveling
solitary waves (with finite energy), we mean solutions of the form

𝑢(𝑡, 𝑥) = e𝑖𝜔𝑡𝑣,𝜔(𝑥 − 𝑣𝑡) (4.5)

where 𝜔 ∈ ℝ is a frequency parameter and 𝑣 ∈ ℝ denotes the velocity. Here the non-trivial pro-
file 𝑣,𝜔 ∈ 𝐻1(ℝ) is allowed to depend on 𝜔 and 𝑣. Note that a-priori we allow also for 𝑣,𝜔

in 𝐻1(ℝ) and not just restricted to 𝐻1
+(ℝ). We have the following complete classification result,

which shows that all traveling solitary waves for (CM-DNLS) are generated by Galilean boosts,
translations, scaling and phase transformations of the ground state(𝑥).
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4030 GÉRARD and LENZMANN

Proposition 4.1. Let 𝑣, 𝜔 ∈ ℝ and suppose 𝑢(𝑡, 𝑥) is a traveling solitary wave for (CM-DNLS) with
profile𝑣,𝜔 ∈ 𝐻1(ℝ) ⧵ {0}. Then it holds

𝜔 = −
𝑣2

4
and 𝑣,𝜔(𝑥) = e

𝑖

2
𝑣𝑥

e𝑖𝜃𝜆1∕2(𝜆𝑥 + 𝑦)

with some 𝜃 ∈ [0, 2𝜋), 𝜆 > 0, and 𝑦 ∈ ℝ.Moreover, we have𝑣,𝜔 ∈ 𝐻1
+(ℝ) if and only if 𝑣 ≥ 0holds.

Proof. We divide the proof into the following steps.
Step 1.We easily check that𝑣,𝜔 ∈ 𝐻1(ℝ)must solve

−𝜕𝑥𝑥𝑣,𝜔 + 𝑖𝑣𝜕𝑥𝑣,𝜔 − 2𝐷+(|𝑣,𝜔|2)𝑣,𝜔 = 𝜔𝑣,𝜔. (4.6)

The term 𝑖𝑣𝜕𝑥𝑣,𝜔 can be removed by a Galilean boost transform. That is, we write

𝑣,𝜔(𝑥) = e
𝑖

2
𝑣𝑥𝜔̃(𝑥). (4.7)

An elementary calculation yields that𝜔̃ ∈ 𝐻1(ℝ) satisfies

−𝜕𝑥𝑥𝜔̃ − 2𝐷+(|𝜔̃|2)𝜔̃ = 𝜔̃𝜔̃ with 𝜔̃ = 𝜔 +
𝑣2

4
. (4.8)

Step 2.We claim that every solution𝜔̃ ∈ 𝐻1(ℝ) of (4.8) has zero energy:

𝐸(𝜔̃) = 0. (4.9)

Since𝜔̃ ≢ 0, we see from Lemma 4.1 that

𝜔̃ = 
modulo symmetries. As a consequence, we obtain 𝜔̃ = 0 and therefore 𝜔 = −

𝑣2

4
as claimed.

The proof of (4.9) follows from applying the gauge transform together with a Pohozaev-type
argument. Since 𝐷+(|𝜔̃|2) ∈ 𝐿2(ℝ), we notice that Equation (4.8) tells us that 𝜔̃ ∈ 𝐻2(ℝ)
holds. Next, we apply the gauge transform Φ discussed in Appendix C to𝜔̃. That is, we set

𝑆(𝑥) ∶= Φ(𝜔̃)(𝑥) = e
−

𝑖

2
∫ 𝑥

−∞
|𝜔̃(𝑦)|2 𝑑𝑦𝜔̃(𝑥). (4.10)

We directly check that 𝑆 ∈ 𝐻2(ℝ) and |𝑆|2 = |𝜔̃|2. Using that |𝐷| = 𝖧𝜕𝑥 andΠ+ =
1

2
(1 + 𝑖𝖧), a

calculation yields that

−𝜕𝑥𝑥𝑆 − (|𝐷||𝑆|2)𝑆 +
1
4
|𝑆|4𝑆 = 𝜔̃𝑆. (4.11)

If we integrate this equation against 𝑆, we directly obtain

∫ℝ
|𝜕𝑥𝑆|2 − ∫ℝ

|𝑆|2(|𝐷||𝑆|2) + 1
4 ∫ℝ

|𝑆|6 = 𝜔̃ ∫ℝ
|𝑆|2. (4.12)
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4031

Next, we integrate (4.11) against 𝑥𝜕𝑥𝑆 over the compact interval [−𝑅, 𝑅]. By taking the real part
and taking the limit 𝑅 → +∞, we find the identity

1
2 ∫ℝ

|𝜕𝑥𝑆|2 −
1
24 ∫ℝ

|𝑆|6 = −
𝜔̃
2 ∫ℝ

|𝑆|2. (4.13)

For details of this step, we refer to Appendix C. The combination of (4.12) and (4.13) yields

1
2 ∫ℝ

|𝜕𝑥𝑆|2 −
1
4 ∫ℝ

|𝑆|2(|𝐷||𝑆|2) + 1
24 ∫ℝ

|𝑆|6 = 0. (4.14)

Recall that the right side can be written as a complete square (see Appendix C)

1
2 ∫ℝ

|𝜕𝑥𝑆 +
1
2
𝖧(|𝑆|2)𝑆|2 𝑑𝑥 =

1
2 ∫ℝ

|𝜕𝑥𝜔̃ −
𝑖
2
Π+(|𝜔̃|2)𝜔̃|2 𝑑𝑥,

where the last step follows by using (4.10). Thus we deduce that (4.9) holds, which completes the
proof. □

4.1 Proof of theorem 1.2

This claim immediately follows from Proposition 4.1 by taking 𝜂 = 𝑣∕2.

5 ANALYSIS OF THE LAX OPERATOR

In this section, we will further study the Lax operator

𝐿𝑢 = 𝐷 − 𝑇𝑢𝑇𝑢̄

introduced in Section 2 above, where 𝑇𝑏(𝑓) = Π+(𝑏𝑓) denotes the Toeplitz operator on 𝐿2
+(ℝ)

with symbol 𝑏. In particular, we will derive important commutator identities and prove simplicity
of eigenvalues of 𝐿𝑢 for general potentials 𝑢 ∈ 𝐻1

+(ℝ) along with optimal bounds on the number
of eigenvalues of 𝐿𝑢. Moreover, we will define the notion ofmulti-soliton potentials below.

5.1 Simplicity of eigenvalues and sharp bounds for 𝑳𝒖

Given 𝑢 ∈ 𝐻1
+(ℝ)2, we recall that the operator 𝐿𝑢 defined above is an unbounded self-adjoint

operator on the Hardy space 𝐿2
+(ℝ), with the operator domain𝐻1

+(ℝ). First we show simplicity of
eigenvalues for 𝐿𝑢 together with a bound on the number of eigenvalues.

Proposition 5.1. If 𝐿𝑢𝜓 = 𝜆𝜓, then

|⟨𝑢, 𝜓⟩|2 = 2𝜋‖𝜓‖2
𝐿2 . (5.1)

2 Recall that the regularity assumption can be relaxed to 𝑢 ∈ 𝐿2
+(ℝ) via an approach using quadratic forms; see

Appendix A below.
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4032 GÉRARD and LENZMANN

In particular, every eigenvalue of 𝐿𝑢 is simple, and the number𝑁 of eigenvalues of 𝐿𝑢 is finite with

𝑁 ≤ ‖𝑢‖2
𝐿2

2𝜋
.

In particular, the operator 𝐿𝑢 has no point spectrum if ‖𝑢‖2
𝐿2 < 2𝜋.

Remark. In [36], an identity reminiscent to (5.1) was derived for the Lax operator of the Benjamin-
Ono equation on the real line.

Proof. The key is to introduce the Lax–Beurling semigroup of contractions defined on 𝐿2
+(ℝ) as

𝑆(𝜂)𝑓(𝑥) = e𝑖𝜂𝑥𝑓(𝑥) , 𝜂 ≥ 0 .

and the corresponding adjoint semigroup defined as

𝑆(𝜂)∗𝑓 = Π+

(
e−𝑖𝑥𝜂𝑓

)
, 𝜂 ≥ 0 .

Clearly, 𝑆(𝜂) and 𝑆(𝜂)∗ act on the domain𝐻1
+(ℝ) of 𝐿𝑢. Also notice that, via the Fourier transform,

we have

𝑆(𝜂)∗𝑓(𝜉) = 𝑓(𝜉 + 𝜂) , 𝜉 ≥ 0, 𝜂 ≥ 0 .

To complete the proof of Proposition 5.1, we need the following identity.

Lemma 5.1. For every 𝑓 ∈ 𝐻1
+(ℝ), we have the following limit in the 𝐿2-norm,

lim
𝜂→0

[
𝑆(𝜂)∗

𝜂
, 𝐿𝑢

]
𝑓 = 𝑓 −

1
2𝜋

⟨𝑓, 𝑢⟩𝑢 .

Proof of Lemma 5.1. Notice that, for 𝜉 > 0,

𝐿𝑢𝑓(𝜉) = 𝜉𝑓(𝜉) −
1

4𝜋2 ∫
𝜉

0
𝑢̂(𝜉 − 𝜁)

[
∫

∞

0
𝑢̂(𝜏)𝑓(𝜁 + 𝜏) 𝑑𝜏

]
𝑑𝜁 .

Set

𝐴(𝜂) ∶=

[
𝑆(𝜂)∗

𝜂
, 𝐿𝑢

]
, 𝜉 ≥ 0 .

Then

𝐴(𝜂)𝑓(𝜉) = 𝑓(𝜉 + 𝜂) −
1

4𝜋2𝜂 ∫
𝜂

0
𝑢̂(𝜉 + 𝜂 − 𝜁)

[
∫

∞

0
𝑢̂(𝜏)𝑓(𝜁 + 𝜏) 𝑑𝜏

]
𝑑𝜁 .

Passing to the limit in 𝐿2, we get

lim
𝜂→0

𝐴(𝜂)𝑓(𝜉) = 𝑓(𝜉) −
1

4𝜋2
𝑢̂(𝜉)∫

∞

0
𝑢̂(𝜏)𝑓(𝜏) 𝑑𝜏 ,

which yields Lemma 5.1. □
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4033

For future reference,we state the following lemma,which can be proved similarly to Lemma 5.1.

Lemma 5.2. Let 𝑎, 𝑏 ∈ 𝐿2
+(ℝ). For every 𝑓 ∈ 𝐿2

+(ℝ), we have the following limit in the 𝐿2-norm,

lim
𝜂→0

[
𝑆(𝜂)∗

𝜂
, 𝑇𝑎𝑇𝑏

]
𝑓 =

1
2𝜋

⟨𝑓, 𝑏⟩𝑎 .

Let us come back to the proof Proposition 5.1. If we apply Lemma 5.1 to 𝑓 = 𝜓, we obtain

lim
𝜂→0

(𝜆𝐼 − 𝐿𝑢)𝑆(𝜂)
∗𝜓

𝜂
= 𝜓 −

1
2𝜋

⟨𝜓, 𝑢⟩𝑢 .

Taking inner product of both sides with 𝜓, we obtain

0 = ‖𝜓‖2
𝐿2 −

1
2𝜋

|⟨𝜓, 𝑢⟩|2
which is (5.1). Now the next statements of Proposition 5.1 follow easily. Indeed, identity (5.1)
implies that the kernel of the linear form ⟨., 𝑢⟩ on any eigenspace is reduced to {0}, so that this
eigenspace is one dimensional. Finally, if 𝜓1, … , 𝜓𝑁 is an orthonormal system of eigenvectors, we
have

‖𝑢‖2
𝐿2 ≥

𝑁∑
𝑗=1

|⟨𝑢, 𝜓𝑗⟩|2 = 2𝜋𝑁.

This proof of Proposition 5.1 is now complete. □

5.2 Multi-soliton potentials

Next, we exhibit a class of potentials 𝑢 ∈ 𝐻1
+(ℝ)which are given by rational functions and which

optimize the general bound for the number𝑁 of eigenvalues of 𝐿𝑢 found in Proposition 5.1 above.
To this end, we use 𝜎𝑝𝑝(𝐿𝑢) to denote the pure point spectrum of 𝐿𝑢 and correspondingly we
define

𝑝𝑝(𝑢) = span{𝜓 ∈ ker(𝐿𝑢 − 𝜆𝐼) ∶ 𝜆 ∈ 𝜎𝑝𝑝(𝐿𝑢)}

to be the space spanned by the eigenfunctions of 𝐿𝑢. We have the following spectral characteriza-
tion result.

Proposition 5.2. Let 𝑢 ∈ 𝐻1
+(ℝ) be given and let𝑁 ≥ 1 be an integer. Then the following properties

are equivalent and preserved by the flow of (CM-DNLS).

(i) The space 𝑝𝑝(𝑢) has dimension𝑁 and is invariant under the adjoint semigroup {𝑆(𝜂)∗}𝜂≥0 and
it holds that 𝑢 ∈ 𝑝𝑝(𝑢).

(ii) There exist a polynomial 𝑄 ∈ ℂ[𝑥] of degree 𝑁, with all its zeros in ℂ−, and a polynomial 𝑃 ∈
ℂ[𝑥] of degree at most𝑁 − 1 such that

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
and 𝑃𝑃 = 𝑖(𝑄′𝑄 − 𝑄′𝑄).
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4034 GÉRARD and LENZMANN

Before we prove this result, let us make some general comments as follows. We refer to the
rational functions 𝑢 ∈ 𝐻1

+(ℝ) above as a multi-soliton potential or 𝑁-soliton potential. In
Section 6 below, we will study the time evolution of multi-soliton potentials, which correspond
to multi-solitons. In view of Proposition 5.1, we see that multi-solitons must have a quantized
𝐿2-mass according to

‖𝑢‖2
𝐿2 = 2𝜋𝑁

with some integer 𝑁 ≥ 1. As a generic example for a multi-soliton potential, we can take the
polynomial 𝑄 to have simple zeros, that is,

𝑄(𝑥) =
𝑁∏

𝑗=1

(𝑥 − 𝑧𝑗),

where 𝑧1, … , 𝑧𝑁 ∈ ℂ− are pairwise distinct. Then the condition in (ii) above yields that

𝑢(𝑥) =
𝑁∑

𝑗=1

𝑎𝑗

𝑥 − 𝑧𝑗
with

𝑁∑
𝑗=1

𝑎𝑗𝑎𝑘

𝑧𝑗 − 𝑧𝑘
= 𝑖 with 𝑘 = 1,… ,𝑁.

Let us also remark that, for a given polynomial 𝑄 ∈ ℂ[𝑥] of degree 𝑁 ≥ 1, there exist only a
finite number of polynomials 𝑃 ∈ ℂ[𝑥] satisfying the constraint in (ii) up to a constant complex
phase.We can find themas follows. Consider the polynomial𝐹 ∶= 𝑖(𝑄′𝑄 − 𝑄

′
𝑄) ∈ ℂ[𝑥] of degree

2𝑁 − 2. Suppose that

𝑄(𝑥) =
𝑁∏

𝑗=1

(𝑥 − 𝑧𝑗)

with zeros 𝑧1, … , 𝑧𝑁 ∈ ℂ−, which are not necessarily distinct. For 𝑥 ∈ ℝ, we get

𝐹(𝑥)|𝑄(𝑥)|2 =
𝑁∑

𝑗=1

−2Im𝑧𝑗|𝑥 − 𝑧𝑗|2 > 0 .

In particular, the zeroes of 𝐹 come in pairs as (𝛼𝑗, 𝛼𝑗), 𝑗 = 1,… ,𝑁 − 1, with 𝛼𝑗 ∉ ℝ. Thus we can
write

𝑃(𝑥) = 𝑐
𝑁−1∏
𝑗=1

(𝑥 − 𝛼𝑗),

where the constant 𝑐 ∈ ℂ is adjusted so that 𝑃𝑃 = 𝐹 holds. Of course, exchanging one 𝛼𝑗 with 𝛼𝑗

leads to a different 𝑃 and hence to a different function 𝑢.

Proof of Proposition 5.2. We first proof the equivalence of statements (i) and (ii). Finally, we address
the preservation by the flow of (CM-DNLS).
Step 1: (ii)⇒ (i). For 𝑢(𝑥) = 𝑃(𝑥)

𝑄(𝑥)
∈ 𝐻1

+(ℝ) as in (ii), we define

𝜃(𝑥) =
𝑄(𝑥)

𝑄(𝑥)
and 𝐾𝜃 ∶=

ℂ𝑁−1[𝑥]

𝑄(𝑥)
,
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4035

so that we have the orthogonal decomposition

𝐿2
+(ℝ) = 𝐾𝜃 ⊕ 𝜃𝐿2

+(ℝ) .

We claim that 𝐾𝜃 is an invariant subspace of 𝐿𝑢. Indeed, if 𝑓 = 𝐴∕𝑄 ∈ 𝐾𝜃, then

𝐿𝑢(𝑓) =
−𝑖𝐴′

𝑄
+

𝑖𝑄′𝐴

𝑄2
−

𝑃
𝑄
Π+

(
𝑃

𝑄

𝐴
𝑄

)

=
−𝑖𝐴′

𝑄
+ Π+

[
𝑃𝑃

𝑄𝑄

𝐴
𝑄

+ 𝑖
𝑄

′

𝑄

𝐴
𝑄

]
−

𝑃
𝑄
Π+

(
𝑃

𝑄

𝐴
𝑄

)

=
−𝑖𝐴′

𝑄
+ 𝑖Π+

(
𝑄

′

𝑄

𝐴
𝑄

)
+ Π+

(
𝑃
𝑄
Π−

(
𝑃𝐴

𝑄𝑄

))
.

Observe that, if 𝑅 ∈ 𝐿2(ℝ) is a rational function, and if the denominator of 𝑅 reads 𝑄+𝑄−, where
𝑄± is a polynomial with zeroes in ℂ±, then Π+(𝑅) is of the form 𝑃∕𝑄−, where 𝑃 is a polynomial
of degree less than the degree of 𝑄−. From this observation and the above identity, we conclude
that 𝐿𝑢(𝑓) ∈ 𝐾𝜃. Therefore 𝐿𝑢 is a self-adjoint endomorphism on the finite dimensional space𝐾𝜃,
which has dimension 𝑁. This implies that 𝐿𝑢 has at least 𝑁 eigenvalues. Since 𝑢 ∈ 𝐾𝜃, it follows
that 𝑢 is a linear combination of an orthonormal basis of eigenfunctions 𝜓1, … , 𝜓𝑁 ∈ 𝐾𝜃. From
Proposition 5.1 we conclude that

‖𝑢‖2
𝐿2 =

𝑁∑
𝑘=1

|⟨𝑢, 𝜓𝑘⟩|2 = 2𝜋𝑁.

By invoking Proposition 5.1 again, we deduce that 𝐿𝑢 has exactly 𝑁 eigenvalues. Thus we have
shown 𝑝𝑝(𝑢) = 𝐾𝜃 and therefore we conclude dim 𝑝𝑝(𝑢) = 𝑁 as well as 𝑢 ∈ 𝑝𝑝(𝑢). Since the
semigroup {𝑆(𝜂)}𝜂≥0 leaves the space 𝜃𝐿2

+(ℝ) invariant, we obtain that its adjoint semigroup
{𝑆(𝜂)∗}𝜂≥0 leaves its orthogonal complement 𝑝𝑝(𝑢) = 𝐾𝜃 invariant.
Step 2: (i)⇒ (ii). Suppose that 𝑝𝑝(𝑢) has dimension𝑁 ≥ 1 and is invariant under the adjoint

semigroup {𝑆(𝜂)∗}𝜂≥0. Thus the orthogonal complement (𝑝𝑝(𝑢))
⟂ is invariant preserved by the

action of the semigroup 𝑆(𝜂) with 𝜂 ≥ 0. By the Lax–Beurling theorem [23], we conclude

(𝑝𝑝(𝑢))
⟂ = 𝜃𝐿2

+(ℝ)

with some inner function 𝜃 defined on the upper complex halfplane ℂ+. Furthermore, since𝑝𝑝(𝑢) is 𝑁–dimensional, one can choose 𝜃 of the form

𝜃(𝑥) =
𝑄(𝑥)

𝑄(𝑥)
, 𝑄(𝑥) =

𝑁∏
𝑗=1

(𝑥 − 𝑧𝑗) , Im𝑧𝑗 < 0 .

Consequently,

𝑝𝑝(𝑢) = (𝜃𝐿2
+(ℝ))⟂ = 𝐾𝜃 =

ℂ𝑁−1[𝑥]

𝑄(𝑥)
.
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4036 GÉRARD and LENZMANN

Since 𝑢 ∈ 𝑝𝑝(𝑢), there exists 𝑃 ∈ ℂ𝑁−1[𝑥] such that 𝑢 = 𝑃∕𝑄. Since 𝐿𝑢 is self-adjoint, we have

𝐿𝑢[(𝑝𝑝(𝑢))
⟂ ∩ 𝐻1

+(ℝ)] ⊂ (𝑝𝑝(𝑢))
⟂ ,

alternatively 𝐿𝑢(𝜃𝐻
1
+(ℝ)) ⊂ 𝜃𝐿2

+(ℝ). Let ℎ ∈ 𝐻1
+(ℝ). We have

𝐿𝑢(𝜃ℎ) = 𝜃𝐷ℎ + (𝐷𝜃)ℎ − 𝑢Π+(𝑢𝜃ℎ) = 𝜃𝐷ℎ + (𝐷𝜃)ℎ − |𝑢|2𝜃ℎ ,

because

𝑢𝜃 =
𝑃

𝑄

𝑄
𝑄

=
𝑃
𝑄

∈ 𝐿2
+(ℝ) .

We infer (𝐷𝜃)ℎ − 𝜃|𝑢|2ℎ ∈ 𝜃𝐿2
+(ℝ) for every ℎ ∈ 𝐻1

+(ℝ), or

𝐷𝜃
𝜃

− |𝑢|2 ∈ 𝐿2
+(ℝ) .

Notice that, for every 𝑥 ∈ ℝ,

𝐷𝜃
𝜃

=
𝑁∑

𝑗=1

2Im𝑧𝑗|𝑥 − 𝑧𝑗|2
hence𝐷𝜃∕𝜃 − |𝑢|2 is real valued, therefore it belongs to 𝐿2

+(ℝ) ∩ 𝐿2
+(ℝ) = {0}. Reformulating this

identity in terms of 𝑃 and 𝑄, we obtain 𝑃𝑃 = 𝑖(𝑄′𝑄 − 𝑄
′
𝑄).

Step 3: Preservation by the Flow. In order to prove the last part of Proposition 5.2, we intro-
duce the infinitesimal generator of the adjoint Lax–Beurling semi–group, namely the operator 𝐺
such that

𝑆(𝜂)∗ = e−𝑖𝜂𝐺 .

Notice that its operator domain is given by

dom(𝐺) = {𝑓 ∈ 𝐿2
+(ℝ) ∶ 𝑓|]0,+∞[ ∈ 𝐻1(]0, +∞[)}

and that

(̂𝐺𝑓)(𝜉) = 𝑖
𝑑𝑓

𝑑𝜉
for 𝜉 > 0.

In particular, the operator 𝐺 acts on 𝐾𝜃 for every finite Blaschke product 𝜃. We claim that
properties (i) and (ii) are equivalent to the following statement:
(iii) The space 𝑝𝑝(𝑢) has dimension 𝑁, contains 𝑢, and moreover 𝑢 ∈ dom(𝐺) with 𝐺𝑢 ∈

𝑝𝑝(𝑢).
Indeed, as we just observed, if 𝑢 is a 𝑁-soliton, then it satisfies (iii). Conversely, assume that

𝑢 ∈ 𝐻1
+ satisfies (iii). We appeal to a corollary of Lemma 5.1.

Lemma 5.3. Let 𝑓 ∈ dom(𝐺) ∩ 𝐻1
+ such that 𝐿𝑢𝑓 ∈ dom(𝐺). Then 𝐺𝑓 ∈ 𝐻1

+ and

𝐺𝐿𝑢𝑓 − 𝐿𝑢𝐺𝑓 = 𝑖𝑓 − 𝑖
⟨𝑓, 𝑢⟩
2𝜋

𝑢 .
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4037

Proof. For every ℎ ∈ dom(𝐺), we have

𝐺ℎ = 𝑖 lim
𝜂→0+

𝑆(𝜂)∗ℎ − ℎ

𝜂
.

Rewriting Lemma 5.1 as

lim
𝜂→0

[
𝑆(𝜂)∗ − 𝐼

𝜂
, 𝐿𝑢

]
𝑓 = 𝑓 −

1
2𝜋

⟨𝑓, 𝑢⟩𝑢.
Using that 𝐿𝑢 is a closed operator, the lemma follows. □

Applying Lemma 5.3 to 𝑓 = 𝑢, we infer that 𝐿𝑢(𝑢) ∈ dom(𝐺) and that

𝐺𝐿𝑢(𝑢) = 𝐿𝑢(𝐺𝑢) + 𝑖𝑢 − 𝑖
‖𝑢‖2

𝐿2

2𝜋
𝑢 .

In particular, 𝐺𝐿𝑢(𝑢) ∈ 𝑝𝑝(𝑢). Iterating this process, we conclude by an easy induction that, for
every integer 𝑘, 𝐿𝑘

𝑢𝑢 ∈ dom(𝐺) and that 𝐺𝐿𝑘
𝑢𝑢 ∈ 𝑝𝑝(𝑢). Now recall from Proposition 5.1 that 𝐿𝑢

has 𝑁 simple eigenvalues on 𝑝𝑝(𝑢), and that the component of 𝑢 on any eigenvector is different
from 0. Consequently, 𝑢 is a cyclic vector for 𝐿𝑢 in 𝑝𝑝(𝑢), namely the 𝑁 vectors 𝑢, 𝐿𝑢, … , 𝐿𝑁−1

𝑢 𝑢
form a basis of 𝑝𝑝(𝑢). From this we infer that 𝐺 acts on 𝑝𝑝(𝑢), and finally that 𝑆(𝜂)∗ acts on𝑝𝑝(𝑢), whence (i).
Let us prove that property (iii) is preserved by the flow of (CM-DNLS). Consider 𝑢0 satisfying

(iii), and denote by 𝑢 the solution of (CM-DNLS) with 𝑢(0) = 𝑢0, on its maximal time interval.
Notice that we know from (ii) that 𝑢0 belongs to every𝐻𝑠. Therefore, by the well-posedness result
Proposition 2.1,𝑢(𝑡) belongs to every𝐻𝑠, hencewe do not have toworry about its regularity.We are
going to use the Lax equation provided by Lemma 2.3. Denote by 𝑈(𝑡) the one-parameter family
of unitary operators on 𝐿2

+(ℝ) defined as

𝑑
𝑑𝑡

𝑈(𝑡) = 𝐵𝑢(𝑡)𝑈(𝑡) , 𝑈(0) = 𝐼 .

Then Lemma 2.3 implies

𝐿𝑢(𝑡) = 𝑈(𝑡)𝐿𝑢0
𝑈(𝑡)∗ . (5.2)

Consequently, 𝑝𝑝(𝑢(𝑡)) = 𝑈(𝑡)[𝑝𝑝(𝑢0)] has dimension 𝑁. Furthermore, in view of Lemma 2.4,
the spectral measure of 𝐿𝑢(𝑡) associated to the vector 𝑢(𝑡) is the same as the spectral measure of
𝐿𝑢0

associated to the vector 𝑢0. This implies that 𝑝𝑝(𝑢(𝑡)) contains 𝑢(𝑡). It remains to prove that
𝑢(𝑡) ∈ dom(𝐺) and that𝐺𝑢(𝑡) ∈ 𝑝𝑝(𝑢(𝑡)). Let us appeal to the reformulation of the dynamics as

𝜕𝑡𝑢 = 𝐵̃𝑢𝑢 ,

where 𝐵̃𝑢 = 𝐵𝑢 − 𝑖𝐿2
𝑢 according to (2.6). Given 𝜂 > 0, define

𝑣(𝑡, 𝜂) ∶= 𝑖
𝑆(𝜂)∗𝑢(𝑡) − 𝑢(𝑡)

𝜂
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4038 GÉRARD and LENZMANN

and observe that

𝜕𝑡𝑣(𝑡, 𝜂) = 𝐵̃𝑢𝑣(𝑡, 𝜂) + 𝑔(𝑡, 𝜂) , 𝑔(𝑡, 𝜂) ∶= 𝑖

[
𝑆(𝜂)∗

𝜂
, 𝐵̃𝑢(𝑡)

]
𝑢(𝑡) ,

which, in view of (5.2), can be solved as

𝑈(𝑡)∗𝑣(𝑡, 𝜂) = e−𝑖𝑡𝐿2
𝑢0 𝑣(0, 𝜂) + ∫

𝑡

0
e𝑖(𝜏−𝑡)𝐿2

𝑢0𝑈(𝜏)∗𝑔(𝜏, 𝜂) 𝑑𝜏 .

Using Lemma 5.2 and the expression of 𝐵𝑢, we obtain

Lemma 5.4. If 𝑢 ∈ 𝐻1
+(ℝ), we have, for every 𝑓 ∈ 𝐿2

+(ℝ),

lim
𝜂→0

𝑖

[
𝑆(𝜂)∗

𝜂
, 𝐵𝑢

]
𝑓 =

1
2𝜋

(⟨𝑓, 𝐿𝑢𝑢⟩𝑢 + ⟨𝑓, 𝑢⟩𝐿𝑢𝑢) .

Combining Lemma 5.4 with Lemma 5.1, we infer, locally uniformly in 𝑡,

lim
𝜂→0

𝑔(𝑡, 𝜂) = 2𝐿𝑢(𝑡)𝑢(𝑡) .

This shows that 𝑣(𝑡, 𝜂) has a limit 𝐺𝑢(𝑡) in 𝐿2
+ as 𝜂 → 0, characterized by

𝑈(𝑡)∗𝐺𝑢(𝑡) = e−𝑖𝑡𝐿2
𝑢0 𝐺𝑢0 + 2∫

𝑡

0
e𝑖(𝜏−𝑡)𝐿2

𝑢0 𝐿𝑢0
𝑈(𝜏)∗𝑢(𝜏) 𝑑𝜏

= e−𝑖𝑡𝐿2
𝑢0 𝐺𝑢0 + 2𝑡 e−𝑖𝑡𝐿2

𝑢0 𝐿𝑢0
𝑢0 .

Notice that, by (iii), the right hand side of the above equation belongs to 𝑝𝑝(𝑢0). Consequently,
𝐺𝑢(𝑡) ∈ 𝑈(𝑡)[𝑝𝑝(𝑢0)] = 𝑝𝑝(𝑢(𝑡)). This completes the proof. □

Remark. In fact, one can easily check that the operator 𝐿𝑢 restricted to the invariant subspace
𝜃𝐿2

+ = (𝐾𝜃)
⟂ has absolutely continuous simple spectrum with

𝐿𝑢(𝜃ℎ) = 𝜃𝐷ℎ for all ℎ ∈ 𝐻1
+(ℝ).

For any 𝑢 ∈ 𝐻1
+(ℝ), we notice that the operator 𝐿𝑢 has the essential spectrum 𝜎𝑒𝑠𝑠(𝐿𝑢) = [0,∞).

In the case of multi-solitons, we find that 0 is always an embedded eigenvalue.

Proposition 5.3. For any multi-soliton potential 𝑢 ∈ 𝐻1
+(ℝ), we have that

𝐿𝑢(1 − 𝜃) = 0,

where 𝜃(𝑥) = 𝑄(𝑥)

𝑄(𝑥)
with the notation from Proposition 5.2 (ii) above.

Proof. We observe that

𝐿𝑢(1 − 𝜃) = −𝐷𝜃 − 𝑢Π+(𝑢(1 − 𝜃)) = −𝐷𝜃 + 𝑢Π+(𝑢𝜃) .
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4039

Notice that the function

𝑢𝜃 =
𝑃

𝑄

𝑄
𝑄

=
𝑃
𝑄

belongs to 𝐿2
+(ℝ). Hence we can deduce

𝐿𝑢(1 − 𝜃) = −𝐷𝜃 + 𝑢𝑢𝜃 = 0,

because of the constraint in Proposition 5.2 (ii). □

6 DYNAMICS OFMULTI-SOLITONS

This section is devoted to the study of multi-solitons, that is, solutions 𝑢(𝑡, 𝑥) with initial datum
giving by amulti-soliton potential 𝑢0 ∈ 𝐻1

+(ℝ) (see Proposition 5.2 above). Bymeans of an inverse
spectral formula, we will be able to prove global-in-time existence for all multi-solitons. This is a
large data result which is beyond the scope of a-priori bounds. Second, we prove that all multi-
solitons with 𝑁 ≥ 2 exhibit an energy cascade (growth of Sobolev norms) as 𝑡 → ±∞.

6.1 Preliminary discussion

Let us first consider the following pole ansatz of the form

𝑢(𝑡, 𝑥) =
𝑁∑

𝑗=1

𝑎𝑗(𝑡)

𝑥 − 𝑧𝑗(𝑡)
∈ 𝐻1

+(ℝ), (6.1)

where 𝑎1(𝑡), … , 𝑎𝑁(𝑡) ∈ ℂ ⧵ {0} and pairwise distinct poles 𝑧1(𝑡), … , 𝑧𝑁(𝑡) in the complex lower
halfplane ℂ−. If we plug this ansatz into (CM-DNLS), then a straightforward calculation shows
that the self-consistency of (6.1) leads to the set of nonlinear constraints given by

𝑁∑
𝑗=1

𝑎𝑗(𝑡)𝑎𝑘(𝑡)

𝑧𝑗(𝑡) − 𝑧𝑘(𝑡)
= 𝑖 for 𝑘 = 1,… ,𝑁. (6.2)

Note that these conditions have already appeared in the discussion of multi-soliton potentials
(see Proposition 5.2 above). Furthermore, the equations of motions which govern the parameters
{𝑎𝑗(𝑡), 𝑧𝑗(𝑡)}

𝑁
𝑗=1 are found to be

𝑎̇𝑘 = 2𝑖
𝑁∑

𝓁≠𝑘

𝑎𝓁 − 𝑎𝑘

(𝑧𝑘 − 𝑧𝓁)2
and 𝑎𝑘𝑧̇𝑘 = −2𝑖

𝑁∑
𝓁≠𝑘

𝑎𝓁

𝑧𝑘 − 𝑧𝓁
(6.3)

with 𝑘 = 1,… ,𝑁. A tedious calculation shows that the constraints (6.2) are indeed preserved by
the time evolution determined by (6.3). Finally, we remark that the first-order system (6.3) can be
used to derive that

𝑧̈𝑘 =
𝑁∑

𝓁≠𝑘

8

(𝑧𝑘 − 𝑧𝓁)3
for 𝑘 = 1,… ,𝑁, (6.4)
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4040 GÉRARD and LENZMANN

which is again confirmed by a lengthy calculation that we omit here. We note that (6.4) can be
regarded as a complexified version3 of theCalogero–Moser (CM) system on the real line, whose
complete integrability was proven by J. Moser in [27] (see also [21, 28, 29]). Let usmention that the
pole dynamics of rational solutions of completely integrable PDEs are governed by (complexified
versions) of CM systems have also been found for the Benjamin-Ono, KdV and Half-Wave Maps
equations in [3, 7, 9].
However, we emphasize that working with the pole ansatz in (6.1) leads to the following caveats

that ultimately need to be addressed.

(1) Collision of poles: It may happen that 𝑧𝑗(𝑡) → 𝑧𝑘(𝑡) for some pair 𝑗 ≠ 𝑘 as 𝑡 → 𝑇 with some
finite time 𝑇 > 0. From (6.4) we expect that the solution 𝑧𝑘(𝑡) blows up in 𝐶2 as 𝑡 → 𝑇. But
the solution 𝑢(𝑡, 𝑥) itself may stay smooth as 𝑡 → 𝑇, whereas the pole ansatz (6.1) becomes
invalid only. Explicit examples of pole collisions will be given in Subsection 6.4 below.

(2) Showing that 𝑧𝑘(𝑡) ∈ ℂ−: The major step in showing global-in-time existence for multi-
solitons consists in proving that the poles 𝑧𝑘(𝑡) stay in the lower complex half-plane ℂ−.

To systematically tackle the problems (1) and (2), we will derive an inverse spectral formula for
multi-solitons, which entails the pole ansatz (6.1) as a special case. Furthermore, the dynamical
evolution of multi-solitons 𝑢(𝑡, 𝑥) will be encoded by the linear flow of a suitable matrix 𝖬(𝑡) ∈
ℂ𝑁×𝑁 such that

𝖬(𝑡) = 2𝖵𝑡 + 𝖶 (6.5)

with some constant matrices 𝖵 and𝖶 inℂ𝑁×𝑁 ; see Proposition 6.2 and (6.12)–(6.13) below. More-
over, we remark that solving classical CM systems on the real line by means of linear flows of
𝑁 × 𝑁-matrices was successfully used in [28]. Finally, notice that similar inverse formulae for
multi-soliton solutions were derived in the case of the Benjamin–Ono equation in [34] and in
the case of the cubic Szegő equation in [17]. However, in these two examples, the global well-
posedness result was established directly by other methods, while it seems to be the first time that
such inverse formulae provide global existence.

6.2 Inverse spectral formula and time evolution

Let

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
∈ 𝐻1

+(ℝ)

be a multi-soliton potential. We use the notation introduced in the proof of Proposition 5.2 with

𝜃(𝑥) =
𝑄(𝑥)

𝑄(𝑥)
and 𝐾𝜃 =

ℂ𝑁−1[𝑥]

𝑄(𝑥)
.

Recall that the Lax–Beurling semigroup 𝑆(𝜂) leaves the space 𝜃𝐿2
+ invariant, and hence its adjoint

semigroup 𝑆(𝜂)∗ leaves the subspace𝐾𝜃 invariant. This observation leads to the following formula,
where 𝐺 is the operator introduced in subsection 5.2.

3 That is, we formally generalize the positions 𝑥𝑗 ∈ ℝ to complex numbers 𝑧𝑗 ∈ ℂ−.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4041

Proposition 6.1. For every 𝑓 ∈ 𝐾𝜃 ,

𝑓(𝑥) =
1

2𝜋𝑖
⟨(𝐺 − 𝑥𝐼)−1𝑓, 1 − 𝜃⟩ for Im(𝑥) > 0 .

Proof. We start from the inversion Fourier formula for every element of 𝐿2
+(ℝ),

𝑓(𝑥) =
1
2𝜋 ∫

∞

0
e𝑖𝑥𝜉𝑓(𝜉) 𝑑𝜉 .

We claim that if 𝑓 ∈ 𝐾𝜃 we have

𝑓(𝜉) = ⟨𝑆(𝜉)∗𝑓, 1 − 𝜃⟩ , 𝜉 > 0 . (6.6)

Indeed, by the Plancherel theorem,

𝑓(𝜉) = lim
𝜀→0+ ∫ℝ

e−𝑖𝑥𝜉 𝑓(𝑥)

1 + 𝑖𝜀𝑥
𝑑𝑥 = lim

𝜀→0+

⟨
𝑆(𝜉)∗𝑓,

1
1 − 𝑖𝜀𝑥

⟩
,

since (1 − 𝑖𝜀𝑥)−1 ∈ 𝐿2
+. For the same reason 𝜃(1 − 𝑖𝜀𝑥)−1 ∈ 𝜃𝐿2

+ which is orthogonal to 𝐾𝜃 and in
particular to 𝑆(𝜉)∗𝑓. Therefore

𝑓(𝜉) = lim
𝜀→0+

⟨
𝑆(𝜉)∗𝑓,

1 − 𝜃
1 − 𝑖𝜀𝑥

⟩
,

which yields (6.6). It remains to plug (6.6) into the inversion Fourier formula, reminding that
𝑆(𝜉)∗ = e−𝑖𝜉𝐺 , and the proposition follows. □

Next, we are going to use Proposition 6.1 in the particular case 𝑓 = 𝑢. The interesting feature is
that the inner product in this formula takes place in 𝐾𝜃, of which we can choose an orthonormal
basis made of eigenvectors (𝜓1, … , 𝜓𝑁) of 𝐿𝑢 so that

𝐿𝑢𝜓𝑗 = 𝜆𝑗𝜓𝑗 for 𝑗 = 1,… ,𝑁.

Here and throughout the following we label the eigenvalues such that

𝜆1 = 0, 𝜆2, … , 𝜆𝑁,

where we recall that 0 is always an eigenvalue of 𝐿𝑢 by Proposition 5.3. In view of Proposition 5.1,
we can choose the normalisation

⟨𝑢, 𝜓𝑗⟩ =
√

2𝜋 for 𝑗 = 1,… ,𝑁.

Note that, because of Proposition 5.3, it holds

⟨1 − 𝜃, 𝜓𝑗⟩ = 0 for 𝑗 = 2,… ,𝑁.

Let us first discuss the case of ⟨1 − 𝜃, 𝜓1⟩. Notice that every element 𝑓 of 𝐾𝜃 is smooth on
]0, +∞[ with limits at 0+. In particular, we can pass to the limit in formula (6.6) as 𝜉 → 0+ to
obtain

𝑓(0+) = ⟨𝑓, 1 − 𝜃⟩ .
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4042 GÉRARD and LENZMANN

On the other hand, the identity 𝐿𝑢𝜓1 = 0 reads

𝜉𝜓̂1(𝜉) =
1

4𝜋2 ∫
𝜉

0
𝑢̂(𝜉 − 𝜁)

(
∫

∞

0
𝑢̂(𝜏)𝜓̂1(𝜏 + 𝜁) 𝑑𝜏

)
𝑑𝜁

so that

⟨𝜓1, 1 − 𝜃⟩ = 𝜓̂1(0
+) =

𝑢̂(0+)
2𝜋

⟨𝑢, 𝜓1⟩ =
𝑢̂(0+)√

2𝜋
. (6.7)

Coming back to the equation satisfied by 𝑢,

𝑖𝜕𝑡𝑢 + 𝜕2
𝑥𝑢 + 2𝐷+(|𝑢|2)𝑢 = 0 , (6.8)

and taking the Fourier transform, we observe that

𝑖𝜕𝑡𝑢̂(𝑡, 𝜉) − 𝜉2𝑢̂(𝑡, 𝜉) + 2∫
∞

0
e−𝑖𝑥𝜉𝐷+(|𝑢|2)(𝑡, 𝑥)𝑢(𝑡, 𝑥) 𝑑𝑥 = 0 .

Passing to the limit as 𝜉 → 0+ and observing that 𝐷+(|𝑢|2) and 𝑢 both belong to 𝐿2
+, we infer

𝜕𝑡𝑢̂(𝑡, 0
+) = 0.

Hence 𝑢̂(0+) is a conserved quantity and, consequently, the inner product product ⟨1 − 𝜃, 𝜓1⟩ is
conserved as well. Let us come back to the inverse formula

𝑢(𝑥) =
1

2𝑖𝜋
⟨(𝐺 − 𝑥𝐼)−1𝑢, 1 − 𝜃⟩ , Im(𝑥) > 0 . (6.9)

In the orthonormal basis (𝜓1, … , 𝜓𝑁) of𝐾𝜃, we have just observed that the components of 𝑢 and of
1 − 𝜃 are conserved quantities. Next, let us discuss the matrix of 𝐺 in this basis, which we denote
as

𝖬 ∶= (⟨𝐺𝜓𝑘, 𝜓𝑗⟩)1≤𝑗,𝑘≤𝑁 .

Of course, the matrix 𝖬 = 𝖬(𝑡) will depend on 𝑡 as well through the evolution of the eigenfunc-
tions 𝜓𝑗 as given by the Lax structure in order to keep ⟨𝑢, 𝜓𝑗⟩ constant, that is, we have 𝜓̇𝑗 = 𝐵̃𝑢𝜓𝑗 .
Indeed, we will later use this to derive explicitly formulas for 𝖬. For notational ease, we will
sometimes omit the 𝑡-dependence of𝖬(𝑡).
We first consider the case 𝑗 ≠ 𝑘. For this We recall that every element of𝐾𝜃 belongs to dom(𝐺).

Then, for 𝑗 ≠ 𝑘, we observe that

(𝜆𝑘 − 𝜆𝑗)⟨𝐺𝜓𝑘, 𝜓𝑗⟩ = ⟨(𝐺𝐿𝑢 − 𝐿𝑢𝐺)𝜓𝑘, 𝜓𝑗⟩ = 𝑖⟨𝜓𝑘, 𝜓𝑗⟩ − 𝑖
⟨𝜓𝑘, 𝑢⟩⟨𝑢, 𝜓𝑗⟩

2𝜋
= −𝑖

so that

⟨𝐺𝜓𝑘, 𝜓𝑗⟩ =
𝑖

𝜆𝑗 − 𝜆𝑘
if 𝑗 ≠ 𝑘. (6.10)
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4043

Finally, let us discuss the diagonal elements ⟨𝐺𝜓𝑗, 𝜓𝑗⟩. Notice that their imaginary parts are easy
to calculate, since

Im ⟨𝐺𝜓𝑗, 𝜓𝑗⟩ =
1
2𝜋

Re

⟨
𝑑𝜓̂𝑗

𝑑𝜉
, 𝜓̂𝑗

⟩
= −

|𝜓̂𝑗(0
+)|2

4𝜋
= −

|⟨𝜓𝑗, 1 − 𝜃⟩|2
4𝜋

which is 0 whenever 𝑗 ≠ 1. For 𝑗 = 1, we use (6.7) to conclude

Im⟨𝐺𝜓1, 𝜓1⟩ = −
|𝑢̂(0+)|2

8𝜋2
.

As for the real part of the diagonal elements, we are going to compute their time derivatives if 𝑢
is a solution of (6.8). From the Lax pair formula, we may assume that

𝜓̇𝑗 = 𝐵𝑢𝜓𝑗 , 𝐵𝑢 = 𝑇𝑢𝑇𝜕𝑥𝑢 − 𝑇𝜕𝑥𝑢𝑇𝑢 + 𝑖(𝑇𝑢𝑇𝑢)
2 .

Then

𝑑
𝑑𝑡

⟨𝐺𝜓𝑗, 𝜓𝑗⟩ = ⟨[𝐺, 𝐵̃𝑢]𝜓𝑗, 𝜓𝑗⟩ = ⟨[𝐺, 𝐵𝑢]𝜓𝑗, 𝜓𝑗⟩ .
Passing to the limit in Lemma 5.4, we have

[𝐺, 𝐵𝑢]𝑓 =
1
2𝜋

(⟨𝑓, 𝐿𝑢𝑢⟩𝑢 + ⟨𝑓, 𝑢⟩𝐿𝑢𝑢 ).

Consequently, we get

⟨[𝐺, 𝐵𝑢]𝜓𝑗, 𝜓𝑗⟩ =
1
2𝜋

⟨𝐿𝑢𝜓𝑗, 𝑢⟩⟨𝑢, 𝜓𝑗⟩ + 1
2𝜋

⟨𝜓𝑗, 𝑢⟩⟨𝐿𝑢𝑢, 𝜓𝑗⟩
= 2𝜆𝑗 .

Summing up, we have proved that

𝑑
𝑑𝑡

⟨𝐺𝜓𝑗, 𝜓𝑗⟩ = 2𝜆𝑗 . (6.11)

The inverse spectral formula therefore reads, setting

𝛾𝑗 ∶= Re(𝖬𝑗𝑗) ,
√

2𝜚 e𝑖𝜑 ∶=
𝑢̂(0+)
2𝜋𝑖

, 𝜚 > 0.

The discussion above shows that the following results holds.

Proposition 6.2. If 𝑢(𝑡) ∈ 𝐻1
+(ℝ) is a multi-soliton potential such that 𝐿𝑢 has eigenvalues 𝜆1 =

0, 𝜆2, … , 𝜆𝑁 , then 𝑢 can be recovered as

𝑢(𝑡, 𝑥) =
√

2𝜚e𝑖𝜑⟨(M(𝑡) − xI)−1𝑋, 𝑌⟩ℂ𝑁 for Im𝑥 > 0,

where

𝑋 ∶= (1, … , 1)𝑇 , 𝑌 ∶= (1, 0, … , 0)𝑇 ,

𝖬𝑗𝑘 =
𝑖

𝜆𝑗 − 𝜆𝑘
(1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑁), 𝖬𝑗𝑗 = 𝛾𝑗 − 𝑖𝜚𝛿𝑗1 (𝑗 = 1,… ,𝑁).
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4044 GÉRARD and LENZMANN

Furthermore, the following evolution laws hold:

𝑑
𝑑𝑡

𝜑 = 0 ,
𝑑
𝑑𝑡

𝜚 = 0 ,
𝑑
𝑑𝑡

𝛾𝑗 = 2𝜆𝑗, (𝑗 = 1,… ,𝑁).

6.3 Global-in-time existence

In order to prove that𝑁-soliton solutions 𝑢(𝑡, 𝑥) can be extended to all times 𝑡 ∈ ℝ, we are going
to study the eigenvalues of the matrix 𝖬(𝑡) ∈ ℂ𝑁×𝑁 introduced above. To this end, we note that
the time evolution of𝖬(𝑡) stated in Proposition 6.2 can be written as

𝖬(𝑡) = 2𝖵𝑡 + 𝖶 (6.12)

with the constant complex 𝑁 × 𝑁-matrices 𝖵 = (𝖵𝑗𝑘)1≤𝑗,𝑘≤𝑁 and 𝖶 = (𝖶𝑗𝑘)1≤𝑗,𝑘≤𝑁 having the
entries:

𝖵𝑗𝑘 = 𝜆𝑗𝛿𝑗𝑘, 𝖶𝑗𝑘 =

⎧⎪⎨⎪⎩
𝛾𝑗 − 𝑖𝜚𝛿𝑗1 if 𝑗 = 𝑘,

𝑖

𝜆𝑗−𝜆𝑘
if 𝑗 ≠ 𝑘.

(6.13)

Recall that 𝜆1 = 0, 𝜆2, … , 𝜆𝑁 ∈ ℝ are real and pairwise distinct and 𝜚 > 0 is a strictly positive real
number, whereas 𝛾1, … , 𝛾𝑁 ∈ ℝ are real numbers (which are not necessarily pairwise distinct).
To prove that multi-soliton solutions extend to all times 𝑡 ∈ ℝ, we show that all the eigenvalues

of𝖬(𝑡) are always in the lower complex plane ℂ− = {𝑧 ∈ ℂ ∶ Im𝑧 < 0}.

Lemma6.1. For any 𝑡 ∈ ℝ, all eigenvalues of thematrix𝖬(𝑡)have strictly negative imaginary parts,
that is, it holds

𝜎(𝖬(𝑡)) ⊂ ℂ− for 𝑡 ∈ ℝ.

Remark. Below we will prove the remarkable fact that all the eigenvalues of 𝖬(𝑡) except for one
will asymptotically converge to the real axis as 𝑡 → ±∞. As a consequence, this implies that all𝑁-
solitons with𝑁 ≥ 2will have an algebraic growth of their Sobolev norms according to ‖𝑢(𝑡)‖𝐻𝑠 ∼|𝑡|2𝑠 for any 𝑠 > 0.

Proof. Let 𝑡 ∈ ℝ be given. For notational convenience we write 𝖬 = 𝖬(𝑡) in what follows. We
readily verify the identities

(𝖬 − 𝖬∗)𝑗𝑘
2𝑖

= −2𝜚𝛿1𝑗𝛿1𝑘, [𝖬, 𝖵] = [𝖶, 𝖵] = 𝑖𝐼 − 𝑖⟨⋅, 𝑋⟩𝑋, (6.14)

where ⟨⋅, ⋅⟩ℂ𝑁 denotes the standard inner product onℂ𝑁 and𝑋 = (1, … , 1)𝑇 ∈ ℂ𝑁 . Because of the
first identity above, any eigenvalue 𝑧 ∈ 𝜎(𝖬)must satisfy

Im 𝑧 ≤ 0.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4045

Let us prove that 𝑧 ∉ ℝ holds. We argue by contradiction as follows. Suppose that 𝑧 ∈ ℝ and let
𝑣 = (𝑣1, … , 𝑣𝑁)𝑇 ∈ ℂ𝑁 ⧵ {0} be a corresponding eigenvector, that is,

𝖬𝑣 = 𝑧𝑣.

Since we assume that 𝑧 is real, we can use the first identity in (6.14) to deduce that

0 =
1
2𝑖

⟨(𝖬 − 𝖬∗)𝑣, 𝑣⟩ℂ𝑁 = −2𝜚|𝑣1|2
and therefore 𝑣1 = 0. Projecting the equation𝖬𝑣 = 𝑧𝑣 onto the 1st mode and recalling that 𝜆1 = 0
by assumption, we infer

𝑁∑
𝑗=2

𝑣𝑗

𝜆𝑗
= 0.

This can be written as

⟨𝑤,𝑋⟩ = 0 with 𝑤 ∶=

(
0,

𝑣2

𝜆2
, … ,

𝑣𝑁

𝜆𝑁

)𝑇

.

Noticing that 𝖵𝑤 = 𝑣 and applying the second identity in (6.14), we find

𝖵(𝖬 − 𝑧𝐼)𝑤 = 𝑖(𝑤 − ⟨𝑤,𝑋⟩ℂ𝑁𝑋) = 𝑖𝑤. (6.15)

If we take inner product of the left side with 𝑤 and using that 𝖵 = 𝖵∗, we conclude

⟨𝑤, 𝖵(𝖬 − 𝑧𝐼)𝑤⟩ℂ𝑁 = ⟨𝖵𝑤,𝖬𝑤⟩ℂ𝑁 − 𝑧⟨𝑤, 𝖵𝑤⟩ℂ𝑁 = ⟨𝖬∗𝑣,𝑤⟩ℂ𝑁 − 𝑧⟨𝑤, 𝑣⟩ℂ𝑁

= 𝑧⟨𝑣, 𝑤⟩ℂ𝑁 − 𝑧⟨𝑤, 𝑣⟩ℂ𝑁 = 𝑧
𝑁∑

𝑗=2

|𝑣𝑗|2
𝜆𝑗

− 𝑧
𝑁∑

𝑗=2

|𝑣𝑗|2
𝜆𝑗

= 0,

where we used that 𝑧 ∈ ℝ and that 𝖬∗𝑣 = 𝖬𝑣 = 𝑧𝑣 holds thanks to the form of 𝖬 and 𝑣1 = 0.
Thus from (6.15) we deduce that 0 = 𝑖|𝑤|2. This shows that𝑤 = 0 and consequently we find 𝑣 = 0,
which is a contradiction. Therefore 𝑧 ∈ ℝ cannot be an eigenvalue of𝖬. □

As a direct consequence of Proposition 6.2 and Lemma 6.1, we deduce the following result.

Theorem6.1 (Global-in-TimeExistence). Suppose𝑢0 ∈ 𝐻1
+(ℝ) is an𝑁-soliton potential with some

𝑁 ≥ 1. Then the corresponding solution𝑢(𝑡) of (CM-DNLS)with𝑢(0) = 𝑢0 extends to all times 𝑡 ∈ ℝ.

Remark 6.1. The previous study shows that, to every 𝑁–soliton 𝑢, one can associate

Λ(𝑢) ∶= (𝜑, 𝜚, 𝜆2, … , 𝜆𝑁, 𝛾1, … , 𝛾𝑁) ∈ 𝕋 × (0, +∞) × ℝ2𝑁−1

with the condition that 𝜆1 = 0, 𝜆2, … , 𝜆𝑁 are pairwise distinct, so that√
2𝜚e𝑖𝜑 =

𝑢̂(0+)
2𝑖𝜋

and 𝜆1 = 0, 𝜆2, … , 𝜆𝑁 are the eigenvalues of 𝐿𝑢, while 𝛾𝑗 = ⟨𝐺𝜓𝑗, 𝜓𝑗⟩ − 𝑖𝜚𝛿𝑗1 if 𝐿𝑢𝜓𝑗 =
𝜆𝑗𝜓𝑗, ‖𝜓𝑗‖𝐿2 = 1.
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4046 GÉRARD and LENZMANN

We claim that the spectral mapping 𝑢 ↦ Λ(𝑢) is surjective. Indeed, assume we are given
(𝜑, 𝜚, 𝜆2, … , 𝜆𝑁, 𝛾1, … , 𝛾𝑁) ∈ 𝕋 × (0, +∞) × ℝ2𝑁−1 with the condition that 𝜆1 = 0, 𝜆2, … , 𝜆𝑁 are
pairwise distinct, and consider the associatedmatrix𝖬. According to Lemma 6.1, we already know
that the eigenvalues of𝖬 belong to the lower half plane, so that we may define 𝑢 as

𝑢(𝑥) =
√

2𝜚 e𝑖𝜑⟨(𝖬 − 𝑥𝐼)−1𝑋, 𝑌⟩ℂ𝑁 for Im𝑥 ≥ 0.

We claim that 𝑢 is a𝑁–soliton with 𝑄(𝑥) = det(𝑥𝐼 − 𝖬). Indeed, this is equivalent to the identity

|𝑢(𝑥)|2 =
1
𝑖

(
𝑄

′
(𝑥)

𝑄(𝑥)
−

𝑄′(𝑥)

𝑄(𝑥)

)
, 𝑥 ∈ ℝ . (6.16)

Using the expressions of 𝑢(𝑥) and 𝑄(𝑥), (6.16) is equivalent to

|⟨𝑍(𝑥), 𝑋⟩ℂ𝑁 |2 = ‖𝑍(𝑥)‖2

where𝑍(𝑥) ∶= (𝑥𝐼 − 𝖬∗)−1𝑌. The latter identity can be proved as follows. From (𝑥𝐼 − 𝖬∗)𝑍(𝑥) =
𝑌, we infer 𝖵(𝑥𝐼 − 𝖬∗)𝑍(𝑥) = 0. Taking the imaginary part of the inner product of both sides with
𝑍(𝑥), we obtain

0 = ⟨(𝖵(𝑥𝐼 − 𝖬∗) − (𝑥𝐼 − 𝖬)𝖵)𝑍(𝑥), 𝑍(𝑥)⟩ℂ𝑁

= ⟨[𝖵, (𝑥𝐼 − 𝖬∗)]𝑍(𝑥), 𝑍(𝑥)⟩ℂ𝑁 = 𝑖(|⟨𝑍(𝑥), 𝑋⟩ℂ𝑁 |2 − ‖𝑍(𝑥)‖2) .

Furthermore, from Proposition 6.2, the value of 𝑢̂(0+) can be obtained by identifying the coeffi-
cient of 1∕𝑥 in the expansion of 𝑢(𝑥) as 𝑥 → ∞. In order to complete the proof of the surjectivity,
we just have to check the following identities,

𝐿𝑢𝜓𝑗 = 𝜆𝑗𝜓𝑗 , ⟨𝐺𝜓𝑗, 𝜓𝑗⟩ = (𝛾𝑗 − 𝑖𝜚𝛿 − 𝑗1)‖𝜓𝑗‖2
𝐿2 ,

if we define 𝜓𝑗 as 𝜓𝑗(𝑥) = ⟨(𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑌⟩ℂ𝑁 , where 𝑌𝑗 denotes the column with 1 on the line
𝑗 and 0 on the other lines. This can be done by direct calculations. For instance, since 𝖵𝑌𝑗 = 𝜆𝑗𝑌𝑗

and 𝖵𝑌 = 0,

𝜆𝑗𝜓𝑗(𝑥) = ⟨(𝖬 − 𝑥𝐼)−1𝖵𝑌𝑗, 𝑌⟩ℂ𝑁 = ⟨(𝖬 − 𝑥𝐼)−1[𝖵,𝖬](𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑌⟩ℂ𝑁

= 𝐷𝜓𝑗(𝑥) + 𝑖⟨(𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑋⟩ℂ𝑁 ⟨(𝖬 − 𝑥𝐼)−1𝑋, 𝑌⟩ℂ𝑁

while

⟨(𝖬 − 𝑥𝐼)−1𝑋, 𝑌⟩ℂ𝑁 ⟨(𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑌⟩ℂ𝑁 = ⟨(𝖬∗ − 𝑥𝐼)−1𝑌𝑌𝑇(𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑋⟩ℂ𝑁

= (2𝑖𝜚)−1[⟨(𝖬 − 𝑥𝐼)−1𝑋, 𝑌⟩ℂ𝑁 − ⟨(𝖬∗ − 𝑥𝐼)−1𝑌𝑗, 𝑋⟩ℂ𝑁],

so that 𝑖⟨(𝖬 − 𝑥𝐼)−1𝑌𝑗, 𝑋⟩ℂ𝑁 ⟨(𝖬 − 𝑥𝐼)−1𝑋, 𝑌⟩ℂ𝑁 = −𝑢(𝑥)Π+(𝑢𝜓𝑗)(𝑥).

Belowwewill show that all multi-soliton solutionswith𝑁 ≥ 2 exhibit growth of Sobolev norms
such that (𝜙, 𝜚, 𝜆2, … , 𝜆𝑁, 𝛾1, … , 𝛾𝑁) ∈ 𝕋 × (0, +∞) × ℝ2𝑁−1 is given so that

‖𝑢(𝑡)‖𝐻𝑠 ∼ |𝑡|2𝑠 as 𝑡 → ±∞ for any 𝑠 > 0.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4047

This demonstrates that global-in-time existence for such 𝑢(𝑡, 𝑥) cannot be inferred from a-priori
bounds in 𝐻1. Furthermore, it shows that the infinite hierarchy of conversation laws {𝐼𝑘(𝑢)}∞𝑘=0
generally fail to produce a-priori bounds on solutions of (CM-DNLS) in the large data regimewith‖𝑢(0)‖2

𝐿2 > 2𝜋.

6.4 Explicit example: Two-soliton solutions

Before we study the case of 𝑁-solitons with arbitrary 𝑁 ≥ 1, it is instructive to first consider the
case𝑁 = 2 in detail. In this case, the constraints in Proposition 5.2 can be solved explicitly. Suppose
that

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
∈ 𝐻1

+(ℝ) (6.17)

is a two-soliton potential, that is, 𝑄 ∈ ℂ[𝑥] is a polynomial of degree 2 with zeros in ℂ− and 𝑃 ∈
ℂ[𝑥] is a polynomial of degree at most 1 satisfying the condition stated in Proposition 5.2 above.
We start with generic case by assuming that 𝑄(𝑥) has two different zeros 𝑧1 ≠ 𝑧2 in ℂ−. Then

condition (ii) in Proposition 5.2 implies that the polynomial 𝑃(𝑥) = const is constant and we find
that

𝑢(𝑥) =
𝑎1

𝑥 − 𝑥1
+

𝑎2

𝑥 − 𝑧2
,

2∑
𝑗=1

𝑎𝑗𝑎𝑘

𝑧𝑗 − 𝑧𝑘
= 𝑖 with 𝑘 = 1, 2.

The constraints on 𝑎1, 𝑎2 ∈ ℂ with given 𝑧1, 𝑧2 ∈ ℂ− can be solved explicitly as follows. Writing
for convenience 𝑦𝑗 = −Im𝑧𝑗 > 0, we find

|𝑎1|2
2𝑦1

− 𝑖
𝑎2𝑎1

𝑧2 − 𝑧1
= 1 , −𝑖

𝑎1𝑎2

𝑧1 − 𝑧2
+

|𝑎2|2
2𝑦2

= 1 .

Let us set

𝜉 ∶=
|𝑎1|2
2𝑦1

=
|𝑎2|2
2𝑦2

, 𝜂 ∶= −𝑖
𝑎2𝑎1

𝑧2 − 𝑧1
= −𝑖

𝑎1𝑎2

𝑧1 − 𝑧2
= 1 − 𝜉 .

Then

𝑎𝑗 =
√

2𝜉𝑦𝑗e
𝑖𝜃𝑗

and

1 − 𝜉 = 𝜂 = −2𝑖
√

𝑦1𝑦2 𝜉
e𝑖(𝜃1−𝜃2)

𝑧1 − 𝑧2
.

Now we discuss the two solutions, according to 𝜉 < 1 or 𝜉 > 1. If 𝜉 < 1,

1 − 𝜉 = 𝜉
2
√

𝑦1𝑦2|𝑧1 − 𝑧2| ,
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4048 GÉRARD and LENZMANN

hence

𝜉 =
1

1 +
2
√

𝑦1𝑦2|𝑧1−𝑧2|
.

Thus we get

𝑎1 = 𝑖

⎛⎜⎜⎜⎝
2𝑦1

1 + 2
√

𝑦1𝑦2|𝑧1−𝑧2|
⎞⎟⎟⎟⎠

1

2

𝑧1 − 𝑧2|𝑧1 − 𝑧2|e𝑖𝜃 , 𝑎2 =

⎛⎜⎜⎜⎝
2𝑦2

1 + 2
√

𝑦1𝑦2|𝑧1−𝑧2|
⎞⎟⎟⎟⎠

1

2

e𝑖𝜃 .

If 𝜉 > 1,

𝜉 − 1 = 𝜉
2
√

𝑦1𝑦2|𝑧1 − 𝑧2| ,

hence

𝜉 =
1

1 −
2
√

𝑦1𝑦2|𝑧1−𝑧2|
.

Therefore,

𝑎1 = −𝑖

⎛⎜⎜⎜⎝
2𝑦1

1 − 2
√

𝑦1𝑦2|𝑧1−𝑧2|
⎞⎟⎟⎟⎠

1

2

𝑧1 − 𝑧2|𝑧1 − 𝑧2|e𝑖𝜃 , 𝑎2 =

⎛⎜⎜⎜⎝
2𝑦2

1 − 2
√

𝑦1𝑦2|𝑧1−𝑧2|
⎞⎟⎟⎟⎠

1

2

e𝑖𝜃 .

Let us compute the remaining eigenvalue 𝜆 of 𝐿𝑢 in both cases. It is enough which is the trace of
𝐿𝑢 on pp = 𝐾𝜃 in view of Proposition 5.3. If {𝑗, 𝑘} = {1, 2}, one checks that

𝐿𝑢

(
1

𝑥 − 𝑧𝑘

)
= −𝑖

𝑎𝑗

𝑎𝑘(𝑧𝑘 − 𝑧𝑗)

1
𝑥 − 𝑧𝑘

+ 𝑖
𝑎𝑗

𝑎𝑘(𝑧𝑘 − 𝑧𝑗)

1
𝑥 − 𝑧𝑗

.

This implies

𝜆 = −𝑖
𝑎2

𝑎1(𝑧1 − 𝑧2)
− 𝑖

𝑎1

𝑎2(𝑧2 − 𝑧1)
.

After some calculations we obtain

𝜆 =
−(𝑦1 + 𝑦2)√
𝑦1𝑦2|𝑧1 − 𝑧2| < 0 and 𝜆 =

(𝑦1 + 𝑦2)√
𝑦1𝑦2|𝑧1 − 𝑧2| > 0

in the first and in the second case, respectively.
Finally, we consider the non-generic case when 𝑧1 = 𝑧2 = 𝑧 and 𝑄(𝑥) = (𝑥 − 𝑧)2. Then

𝐹(𝑥) ∶= 𝑖(𝑄′(𝑥)𝑄(𝑥) − 𝑄(𝑥)𝑄
′
(𝑥)) = 4𝑦(𝑥 − 𝑧)(𝑥 − 𝑧).
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4049

Writing 𝑦 = −Im𝑧 > 0 again, we have two possibilities:

𝑃(𝑥) =
√

4𝑦(𝑥 − 𝑧) , 𝑢(𝑥) =

√
4𝑦

𝑥 − 𝑧

and

𝑃(𝑥) =
√

4𝑦(𝑥 − 𝑧) , 𝑢(𝑥) =

√
4𝑦(𝑥 − 𝑧)

(𝑥 − 𝑧)2
.

Notice that the first case should not be confused with the case 𝑁 = 1, where

𝑄(𝑥) = 𝑥 − 𝑧 , 𝑢(𝑥) =

√
2𝑦

𝑥 − 𝑧
.

In the first case, we have

𝐿𝑢

(
1

(𝑥 − 𝑧)2

)
= −

1
𝑦

1

(𝑥 − 𝑧)2
,

so that 𝜆 = −𝑦−1, which can obtained from the first formula by letting 𝑧1 → 𝑧 and 𝑧2 → 𝑧.
Similarly, in the second case, one obtains that 𝜆 = 𝑦−1.
As a next step, we study the time evolution of two-solitons. For𝑁 = 2, the matrix𝖬(𝑡) is given

by

𝖬(𝑡) =

(
𝛾1 − 𝑖𝜚 −𝑖𝜆−1

𝑖𝜆−1 𝛾2 + 2𝜆𝑡

)
(6.18)

with some positive number 𝜚 > 0 and real numbers 𝛾1, 𝛾2 ∈ ℝ and 𝜆 ≠ 0 denotes the non-zero
eigenvalue of 𝐿𝑢. From Proposition 6.2 we deduce

𝑢(𝑡, 𝑥) =
e𝑖𝜑

√
2𝜚(𝛾2 + 2𝜆𝑡 + 𝑖𝜆−1 − 𝑥)

𝑥2 − (𝛾1 − 𝑖𝜚 + 𝛾2 + 2𝜆𝑡)𝑥 + (𝛾1 − 𝑖𝜚)(𝛾2 + 2𝜆𝑡) − 𝜆−2
(6.19)

with some constant 𝜑 ∈ [0, 2𝜋). The discriminant of the denominator of 𝑢(𝑡, 𝑥) is

Δ(𝑡) = (𝛾1 − 𝑖𝜚 − 𝛾2 − 2𝜆𝑡)2 + 4𝜆−2. (6.20)

Note that Δ(𝑡) = 0 if and only if 𝛾1 = 𝛾2 + 2𝜆𝑡 and 𝜚|𝜆| = 2. This corresponds to the degenerate
two-solitons, the cases 1 and 2 occurring according to the sign of 𝜆. Notice that, if 𝜚|𝜆| = 2, the
two-soliton solution of (6.8) will be degenerate at exactly one time 𝑡 ∈ ℝ characterized by 𝛾1 =
𝛾2 + 2𝜆𝑡.
Finally, let us study the large-time behaviour of a two-soliton. Let 𝑧+(𝑡) and 𝑧−(𝑡) denote the

poles of 𝑢(𝑡, 𝑥) at time 𝑡. We see that

𝑧±(𝑡) =
1
2

(
𝛾0 − 𝑖𝜚 + 𝛾1 + 2𝜆𝑡 ±

√
(𝛾0 − 𝑖𝜚 − 𝛾1 − 2𝜆𝑡)2 + 4𝜆−2

)
. (6.21)

As 𝑡 → ±∞, we obtain

𝑧+(𝑡) → 𝛾0 − 𝑖𝜚, Re 𝑧−(𝑡) = 2𝜆𝑡 + 𝑂(1), Im 𝑧−(𝑡) =
−𝜚

4𝜆4𝑡2
+ 𝑂(𝑡−3). (6.22)
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4050 GÉRARD and LENZMANN

The vanishing of Im 𝑧−(𝑡) as 𝑡 → ±∞ implies growth of the Sobolev norms for the two-soliton
solution. More precisely, we claim that

‖𝑢(𝑡)‖𝐻𝑠 ∼ 𝑐𝑠|𝑡|2𝑠 as 𝑡 → ±∞ for any 𝑠 > 0. (6.23)

To prove this, we note that 𝑧+(𝑡) ≠ 𝑧−(𝑡) for all 𝑡 ∈ ℝ (except for one time 𝑡 at most) and we have
that

𝑢(𝑡, 𝑥) =
𝑎+(𝑡)

𝑥 − 𝑧+(𝑡)
+

𝑎−(𝑡)

𝑥 − 𝑧−(𝑡)
, 𝑎±(𝑡) =

√
2𝜚e𝑖𝜑

𝛾1 + 2𝜆𝑡 + 𝑖𝜆−1 − 𝑧±(𝑡)√
Δ(𝑡)

.

From (6.22), we infer as |𝑡| → ∞ that

𝑎+(𝑡) = 𝑂(1) and 𝑎−(𝑡) ∼
1|𝑡| .

Since

𝑢̂(𝑡, 𝜉) = −2𝜋𝑖
(
𝑎+(𝑡)e

−𝑖𝑧+(𝑡)𝜉 + 𝑎−(𝑡)e
−𝑖𝑧−(𝑡)𝜉

)
for 𝜉 > 0,

we deduce the bound (6.23) from (6.22) and by direct calculation.

6.5 Long-time asymptotics

Wenow study the long-time behavior for𝑁-solitonswith general𝑁 ≥ 2. The key ingredient for the
general understanding is the following result about the long-time asymptotics for the eigenvalues
of the matrix𝖬(𝑡) in (6.12).

Lemma 6.2. There exists 𝑇0 > 0 sufficiently large such that all eigenvalues

{𝑧1(𝑡), … , 𝑧𝑁(𝑡)} ⊂ ℂ−

of𝖬(𝑡) are simple for |𝑡| ≥ 𝑇0. As |𝑡| → +∞, we have the asymptotic expansions:

Re 𝑧𝑘(𝑡) = 2𝜆𝑘𝑡 + 𝛾𝑘 + 𝑂(𝑡−1) for 𝑘 = 1,… ,𝑁

Im𝑧1(𝑡) = −𝜚 + 𝑂(𝑡−1), Im 𝑧𝑘(𝑡) = −
𝜚

4𝜆4
𝑘
𝑡2

+ 𝑂(𝑡−3) for 𝑘 = 2,… ,𝑁.

Proof. We use standard eigenvalue perturbation theory for

𝖠(𝜀) = 𝖠 + 𝜀𝖡

with a small parameter |𝜀| ≪ 1. Here 𝖠 = 𝖠∗ ∈ ℂ𝑁×𝑁 is a Hermitian matrix and 𝖡 denotes an
arbitrary matrix in ℂ𝑁×𝑁 .
Since𝖬(𝑡) = 𝑡(2𝖵 + 𝑡−1𝖶) and by taking 𝜀 = 𝑡−1, it suffices to study the eigenvalues of

𝖠(𝜀) = 𝖠 + 𝜀𝖡 with 𝖠 = 2𝖵 and 𝖡 = 𝖶,
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4051

where the constant matrices 𝖵 and𝖶 are displayed in (6.13). Because 𝖠 = 2diag(𝜆1, … , 𝜆𝑁) has𝑁
simple eigenvalues, standard perturbation theory yields that 𝖠(𝜀) has 𝑁 simple eigenvalue pro-
vided that |𝜀| ≪ 1 is sufficiently small. Thus for |𝑡| ≥ 𝑇0 with 𝑇0 > 0 sufficiently large, we see that
𝖬(𝑡) = 𝑡𝖠(𝑡−1) has 𝑁 simple eigenvalues {𝑧1(𝑡), … , 𝑧𝑁(𝑡)} which all belong to ℂ− by Lemma 6.1.
The derivation of the claimed asymptotics for the eigenvalues requires an expansion up to

order 𝜀3 = 𝑡−3. Let {𝜇1(𝜀), … , 𝜇𝑁(𝜀)} denote the eigenvalues of𝖠 + 𝜀𝖡, which are simple for |𝜀| ≪ 1
sufficiently small. From [32, Section XII.1] we recall that

𝜇𝑘(𝜀) = 𝜇𝑘 + 𝜇(1)
𝑘

𝜀 + 𝜇(2)
𝑘

𝜀2 + 𝜇(3)
𝑘

𝜀3 + 𝑂(𝜀4), with 𝜇𝑘 = 2𝜆𝑘 .

The first-order coefficient is the well-known expression

𝜇(1)
𝑘

= 𝖡𝑘𝑘 = 𝛾𝑘 − 𝑖𝜚𝛿𝑘1.

Next, the second-order contribution is purely real and given by

𝜇(2)
𝑘

= −
𝑁∑

𝑗=1,𝑗≠𝑘

1
𝜇𝑗 − 𝜇𝑘

𝖡𝑘𝑗𝖡𝑗𝑘 = −
1
2

𝑁∑
𝑗=1,𝑗≠𝑘

1

(𝜇𝑗 − 𝜇𝑘)3
∈ ℝ.

Finally, the third-order term reads

𝜇(3)
𝑘

=
𝑁∑

𝑗≠𝑘,𝓁≠𝑘

1

(𝜇𝑗 − 𝜇𝑘)(𝜇𝓁 − 𝜇𝑘)
𝖡𝑘𝑗𝖡𝑗𝓁𝖡𝓁𝑘 −

𝑁∑
𝑗≠𝑘

1

(𝜇𝑗 − 𝜇𝑘)2
𝖡𝑘𝑗𝖡𝑗𝑘𝖡𝑘𝑘.

For the proof of the lemma, it suffices to determine Im𝜇(3)
𝑘

for 𝑘 = 2,… ,𝑁. Since 𝖡𝑘𝑘 ∈ ℝ for
𝑘 ≥ 2 and 𝖡𝑘𝑗𝖡𝑗𝑘 ∈ ℝ if 𝑗 ≠ 𝑘, we see

Im
𝑁∑

𝑗≠𝑘

1

(𝜇𝑗 − 𝜇𝑘)2
𝖡𝑘𝑗𝖡𝑗𝑘𝖡𝑘𝑘 = 0 for 𝑘 = 2,… ,𝑁.

As for the first sum in the expression for 𝜇(3)
𝑘
, we notice the symmetry property

𝖡𝑘𝑗𝖡𝑗𝓁𝖡𝓁𝑘 = −𝖡𝓁𝑗𝖡𝓁𝑗𝖡𝑗𝑘 for 𝑗 ≠ 𝓁.

Thus we only need to consider the diagonal case when 𝑗 = 𝓁. This leads to

Im𝜇(3)
𝑘

= Im
𝑁∑

𝑗≠𝑘

1

(𝜇𝑗 − 𝜇𝑘)2
𝖡𝑘𝑗𝖡𝑗𝑗𝖡𝑗𝑘.

Recalling that 𝖡𝑘𝑗𝖡𝑗𝑘 ∈ ℝ for 𝑗 ≠ 𝑘 and 𝖡𝑗𝑗 ∈ ℝ if 𝑗 ≥ 2, we deduce

Im𝜇(3)
𝑘

= Im
1

(𝜇1 − 𝜇𝑘)2
𝖡1𝑘𝖡11𝖡𝑘1 = −

𝜚

4𝜆4
𝑘

for 𝑘 = 2,… ,𝑁,

using that 𝜇𝑘 = 2𝜆𝑘 and 𝜇1 = 2𝜆1 = 0. Since𝖬(𝑡) = 𝑡−1𝖠(𝑡−1), we obtain the claimed asymptotic
formulae. □

As a consequence of the preceding lemma, we obtain the following result.
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4052 GÉRARD and LENZMANN

Proposition 6.3. Let𝑢(𝑡, 𝑥) be an𝑁-soliton solution. Then there exists𝑇0 > 0 sufficiently large such
that

𝑢(𝑡, 𝑥) =
𝑁∑

𝑗=1

𝑎𝑗(𝑡)

𝑥 − 𝑧𝑗(𝑡)
for |𝑡| ≥ 𝑇0,

where {𝑧1(𝑡), … , 𝑧𝑁(𝑡)} ⊂ ℂ− denote the simple eigenvalues of𝖬(𝑡) and coefficients 𝑎1(𝑡), … , 𝑎𝑁(𝑡) ∈
ℂ ⧵ {0}.

Proof. By Lemma 6.2, the eigenvalues {𝑧1(𝑡), … , 𝑧𝑁(𝑡)} ⊂ ℂ− of𝖬(𝑡) are simple whenever |𝑡| ≥ 𝑇0,
where 𝑇0 > 0 is some sufficiently large constant.
Fix some time 𝑡 ∈ ℝwith |𝑡| ≥ 𝑇0. For notational convenience, we will omit the dependence of

𝑢(𝑡, 𝑥) and𝖬(𝑡) for the rest of the proof. Since 𝑢 ∈ 𝐻1
+(ℝ) is a multi-soliton potential, we have

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)

with some polynomial 𝑄 ∈ ℂ[𝑥] of degree𝑁 having all its zeros in ℂ− and some polynomial 𝑃 ∈
ℂ𝑁−1[𝑥] satisfying the condition in Proposition 5.2. Recall that𝖬 denotes thematrix (with respect
to a suitable orthonormalbasis) of the operator𝐺 acting on the invariant space𝐾𝜃 =

ℂ𝑁−1[𝑥]

𝑄(𝑥)
. From

[34, Lemma 3.3] we observe that 𝑄(𝑥) is the characteristic polynomial of 𝐺 acting on 𝐾𝜃. Hence
we conclude

𝑄(𝑥) = det(𝑥𝐼 − 𝖬).

Since 𝖬 has only simple eigenvalues, we find 𝑄(𝑥) =
∏𝑁

𝑗=1(𝑥 − 𝑧𝑗) with pairwise distinct zeros

𝑧𝑗 ∈ ℂ−. Since 𝑃𝑃 = 𝑖(𝑄′𝑄 − 𝑄
′
𝑄), we see that 𝑃 ∈ ℂ𝑁−1[𝑥] has no common zeros with 𝑄(𝑥).

Thus, by partial fraction expansion, we conclude that

𝑢(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
=

𝑁∑
𝑗=1

𝑎𝑗

𝑥 − 𝑧𝑗

with some 𝑎1, … , 𝑎𝑁 ∈ ℂ ⧵ {0}. □

6.6 Growth of Sobolev norms: Proof of theorem 1.3

Let𝑁 ≥ 2 and suppose 𝑢(𝑡, 𝑥) is an𝑁-soliton, which by Theorem 6.1 exists for all times 𝑡 ∈ ℝ. We
claim that

‖𝑢(𝑡)‖𝐻𝑠 ∼𝑠 𝑡2𝑠 as|𝑡| → +∞ (6.24)

for any 𝑠 > 0.
For convenience, we discuss the limit 𝑡 → +∞. (The case 𝑡 → −∞ follows by the same

reasoning.) We divide the proof into following steps.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4053

Step 1.We first derive the asymptotics for 𝑎1(𝑡), … , 𝑎𝑁(𝑡). From Proposition 6.3 we deduce that

𝑢(𝑡, 𝑥) =
𝑁∑

𝑗=1

𝑎𝑗(𝑡)

𝑥 − 𝑧𝑗(𝑡)
for 𝑡 ≥ 𝑇0 (6.25)

with some sufficiently large constant 𝑇0 > 0. Now we are in the position to use the system of
differential equations in (6.3) for the time evolution of 𝑎1(𝑡), … , 𝑎𝑁(𝑡). We claim that

𝑎𝑘(𝑡) =
𝛼

𝜆2
𝑘
𝑡
+ 𝑂(𝑡−2) for 𝑘 = 2,… ,𝑁 (6.26)

with some non-zero constant 𝛼 ∈ ℂ ⧵ {0}. Indeed, using that 𝑧̇𝑘 = 2𝜆𝑘 + 𝑜(1) as 𝑡 → +∞ by
Lemma 6.2, we deduce from (6.3) that

𝑎⃗(𝑡) = 𝐴(𝑡)𝑎⃗(𝑡) + 𝑏(𝑡)

where 𝑎⃗(𝑡) = (𝑎2(𝑡), … , 𝑎𝑁(𝑡)) ∈ ℂ𝑁−1 and 𝐴(𝑡) = (𝐴(𝑡))2≤𝑘,𝓁≤𝑁 ∈ ℂ𝑁−1 × ℂ𝑁−1, 𝑏(𝑡) =
(𝑏2(𝑡), … , 𝑏𝑁(𝑡)) ∈ ℂ𝑁−1 are given by

(𝐴(𝑡))𝑘𝓁 =
−𝑖

(𝜆𝑘 + 𝑜(1))(𝑧𝑘 − 𝑧𝓁)
= 𝑂(𝑡−1) for 𝑘 ≠ 𝓁, (𝐴(𝑡))𝑘𝑘 = 0,

𝑏𝑘(𝑡) =
−𝑖𝑎0(𝑡)

(𝜆𝑘 + 𝑜(1))(𝑧𝑘 − 𝑧1)
= 𝑂(𝑡−1)𝑎1(𝑡).

Herewe also used that |𝑧𝑘(𝑡) − 𝑧𝓁(𝑡)| ∼ 𝑡 as |𝑡| → ∞which follows fromLemma 6.2 togetherwith
the fact that all 𝜆𝑘 ≠ 𝜆𝓁 for 𝑘 ≠ 𝓁. Next, as a direct consequence of (6.3), we infer the conservation
law

𝐴 =
𝑁∑

𝑗=1

𝑎𝑗(𝑡) =
𝑢̂(𝑡, 0+)
−2𝜋𝑖

for 𝑡 ≥ 𝑇0, (6.27)

with some constant 𝐴 ∈ ℂ, where the last equation follows from taking the Fourier transform of
the right-hand side in (6.25). Sincewemust have 𝑢̂(𝑡, 0+) ≠ 0 by the discussion above, we conclude
that 𝐴 ≠ 0 as well. Hence we deduce that

𝑎⃗(𝑡) = 𝑂(𝑡−1)𝑎⃗(𝑡) + 𝑓(𝑡) (6.28)

where 𝑓(𝑡) = (𝑓2(𝑡), … , 𝑓𝑁(𝑡)) is given by

𝑓𝑘(𝑡) =
−𝑖𝐴

(𝜆𝑘 + 𝑜(1))(𝑧𝑘(𝑡) − 𝑧1(𝑡))
=

−𝑖𝐴

2𝜆2
𝑘
𝑡
+ 𝑂(𝑡−2),

thanks to the fact that 𝑧𝑘(𝑡) − 𝑧1(𝑡) = 2𝜆𝑘𝑡 + 𝑂(1) by Lemma 6.2 and 𝜆1 = 0. In view of (6.28), we
conclude that (6.26) holds with the constant 𝛼 =

−𝑖𝐴

2
≠ 0.

Finally, by the conservation law (6.27) together with (6.26) we immediately find

lim
𝑡→+∞

𝑎1(𝑡) = 𝐴 ≠ 0. (6.29)
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4054 GÉRARD and LENZMANN

Step 2. For 𝑡 ≥ 𝑇0, we write

𝑢(𝑡, 𝑥) =
𝑁∑

𝑗=1

𝜙𝑗(𝑡, 𝑥) with 𝜙𝑗(𝑡, 𝑥) =
𝑎𝑗(𝑡)

𝑥 − 𝑧𝑗(𝑡)
. (6.30)

We note that

𝜙̂𝑗(𝑡, 𝜉) = −2𝜋𝑖𝑎𝑗(𝑡)e
−𝑖𝑧𝑗𝜉𝟙𝜉≥0.

By Plancherel, we find

⟨𝜙𝑗(𝑡), 𝜙𝑘(𝑡)⟩𝐻𝑠 = −𝑖𝑎𝑗(𝑡)𝑎𝑘(𝑡)∫
∞

0
e−𝑖(𝑧𝑗(𝑡)−𝑧𝑘(𝑡))𝜉⟨𝜉⟩2𝑠 𝑑𝜉

To estimate this expression for 𝑗 ≠ 𝑘, we observe, by Lemma 6.2, that 𝜔𝑗𝑘(𝑡) ∶= 𝑧𝑗(𝑡) − 𝑧𝑘(𝑡)
satisfies Im𝜔𝑗𝑘(𝑡) < 0 as well as

𝜔𝑗𝑘(𝑡) = 2(𝜆𝑗 − 𝜆𝑘)𝑡 + 𝑂(1) ∼ 𝑡 as 𝑡 → +∞,

since 𝜆𝑗 ≠ 𝜆𝑗 when 𝑗 ≠ 𝑘. Integrating by parts sufficiently many times depending on 𝑠 > 0, we
deduce that |||||∫

∞

0
e−𝑖𝜔𝑗𝑘(𝑡)𝜉⟨𝜉⟩2𝑠 𝑑𝜉||||| ≲𝑠

1|𝜔𝑗𝑘(𝑡)| ∼
1
𝑡

for 𝑡 ≥ 𝑇0,

provided that 𝑗 ≠ 𝑘. If recall the bounds for 𝑎1(𝑡), … , 𝑎𝑁(𝑡) derived in Step 1 above, we can
conclude |||⟨𝜙𝑗(𝑡), 𝜙𝑘(𝑡)⟩𝐻𝑠

||| ≲𝑠
1

𝑡2
for 𝑡 ≥ 𝑇0 and 𝑗 ≠ 𝑘.

Next, we consider the case 𝑗 = 𝑘. This yields

⟨𝜙𝑗(𝑡), 𝜙𝑗(𝑡)⟩𝐻𝑠 ∼ |𝑎𝑗(𝑡)|2 ∫ ∞

0
e2Im(𝑧𝑗(𝑡))𝜉(1 + |𝜉|2𝑠)𝑑𝜉

= |𝑎𝑗(𝑡)|2( 1

2|Im 𝑧𝑗(𝑡)| +
𝐶𝑠

2|Im 𝑧𝑗(𝑡)|1+2𝑠

)
with the constant 𝐶𝑠 = ∫ ∞

0
e−𝑦𝑦2𝑠 𝑑𝑦 > 0. By combining the estimates for the coefficients

{𝑎1(𝑡), … , 𝑎𝑁(𝑡)} from Step 1 and the poles {𝑧1(𝑡), … , 𝑧𝑁(𝑡)} from Lemma 6.2 we finally obtain

⟨𝜙𝑗(𝑡), 𝜙𝑗(𝑡)⟩𝐻𝑠 ≃𝑠

{
1 for 𝑗 = 1,

𝑡4𝑠 for 𝑗 = 2,… ,𝑁,

for all times 𝑡 ≥ 𝑇0. In summary, we conclude

𝑡4𝑠 + 𝑡−2 ≲𝑠 ‖𝑢(𝑡)‖2
𝐻𝑠 =

𝑁∑
𝑗=1

⟨𝜙𝑗(𝑡), 𝜙𝑗(𝑡)⟩ + 𝑁∑
𝑗≠𝑘

⟨𝜙𝑗(𝑡), 𝜙𝑘(𝑡)⟩ ≲𝑠 𝑡4𝑠 + 𝑡−2.

This proves (6.24) and completes the proof of Theorem 1.3.
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APPENDIX A: DEFINITION OF THE LAX OPERATOR FOR 𝒖 ∈ 𝑳𝟐
+(ℝ)

In view of the 𝐿2-criticality of (CM-DNLS), it is worthwhile giving a definition of 𝐿𝑢 via quadratic
forms if we only assume that 𝑢 ∈ 𝐿2

+(ℝ) holds. We start with the following basic estimate.

Lemma A.1. For every 𝑢 ∈ 𝐿2
+(ℝ) and 𝑓 ∈ 𝐻

1

2
+(ℝ), we have 𝑇𝑢𝑓 ∈ 𝐿2

+(ℝ) with

‖𝑇𝑢𝑓‖2
𝐿2 ≤ 1

2𝜋
‖𝑢‖2

𝐿2⟨𝐷𝑓, 𝑓⟩ .
Proof. Applying the Fourier transformation, we have

𝑇𝑢𝑓(𝜉) = ∫
+∞

0
𝑓(𝜉 + 𝜂)𝑢̂(𝜂)

𝑑𝜂

2𝜋
.

Thus, by the Cauchy–Schwarz inequality,

∫
∞

0
|𝑇𝑢𝑓(𝜉)|2 𝑑𝜉 ≤ ∫

+∞

0 ∫
+∞

0
|𝑓(𝜉 + 𝜂)|2 𝑑𝜉 𝑑𝜂

2𝜋 ∫
+∞

0
|𝑢̂(𝜂)|2 𝑑𝜂

2𝜋

≤ ∫
+∞

0
𝜁|𝑓(𝜁)|2 𝑑𝜁

2𝜋 ∫
+∞

0
|𝑢̂(𝜂)|2 𝑑𝜂

2𝜋
,

and the claim follows from Plancherel’s theorem. □
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4057

Next, we define 𝐿𝑢 for given 𝑢 ∈ 𝐿2
+(ℝ) via a densely defined quadratic form on 𝐿2

+(ℝ) as
follows. For 𝑓, 𝑔 ∈ 𝐻

1∕2
+ (ℝ), we set

𝑢(𝑓, 𝑔) = ⟨𝐷𝑓, 𝑔⟩ − ⟨𝑇𝑢𝑓, 𝑇𝑢𝑔⟩ .
We claim that, for every 𝜀 > 0, there exists a constant 𝐶𝜀(𝑢) > 0 such that

∀ℎ ∈ 𝐻
1∕2
+ (ℝ) , ‖𝑇𝑢ℎ‖𝐿2 ≤ 𝜀⟨𝐷ℎ, ℎ⟩1∕2 + 𝐶𝜀(𝑢)‖ℎ‖𝐿2 . (A.1)

Indeed, for every 𝜆 > 0, set

𝑢<𝜆 ∶= 𝟏[0,𝜆[(𝐷)𝑢 , 𝑢≥𝜆 ∶= 𝟏[𝜆,+∞[(𝐷)𝑢 .

Then ‖𝑢≥𝜆‖𝐿2 → 0 as 𝜆 → +∞, while

‖𝑢<𝜆‖𝐿∞ ≤
(

𝜆
2𝜋

)1∕2‖𝑢‖𝐿2 .

Choose 𝜆 = 𝜆(𝜀, 𝑢) such that (2𝜋)−1∕2‖𝑢≥𝜆‖𝐿2 ≤ 𝜀. Then, by Lemma A.1,

‖𝑇𝑢ℎ‖𝐿2 ≤ ‖𝑇𝑢≥𝜆
ℎ‖𝐿2 + ‖𝑇𝑢<𝜆

ℎ‖𝐿2 ≤ 𝜀⟨𝐷ℎ, ℎ⟩1∕2 + ‖𝑢<𝜆‖𝐿∞‖ℎ‖𝐿2 ,

and (A.1) follows. Applying (A.1), we obtain

⟨𝐷𝑓, 𝑓⟩ ≥ 𝑢(𝑓, 𝑓) ≥ (1 − 2𝜀2)⟨𝐷𝑓, 𝑓⟩ − 2𝐶𝜀(𝑢)
2‖𝑓‖2

𝐿2 . (A.2)

Choosing 𝜀 small enough, we find a constant 𝐾 = 𝐾(𝑢) > 0 such that

̃𝑢(𝑓, 𝑔) ∶= 𝑢(𝑓, 𝑔) + 𝐾(𝑢)⟨𝑓, 𝑔⟩
is an inner product on 𝐻

1∕2
+ (ℝ), defining a norm which is equivalent to the standard one. Then

we just define

dom(𝐿𝑢) = {𝑓 ∈ 𝐻
1∕2
+ (ℝ) ∶ ∃𝐶 > 0 s. t. |𝑢(𝑓, 𝑔)| ≤ 𝐶‖𝑔‖𝐿2 for 𝑔 ∈ 𝐻

1∕2
+ (ℝ)}

and

⟨𝐿𝑢(𝑓), 𝑔⟩ = 𝑢(𝑓, 𝑔) for 𝑓 ∈ dom(𝐿𝑢) and 𝑔 ∈ 𝐻
1∕2
+ (ℝ) .

Then the standard theory of quadratic forms (see [33]) implies that dom(𝐿𝑢) is dense in𝐻
1∕2
+ (ℝ),

hence in 𝐿2
+(ℝ), and that 𝐿𝑢 is self-adjoint and bounded below. Furthermore, using the quadratic

form 𝑢, Lemma 5.1 and Proposition 5.1 extend easily to the case 𝑢 ∈ 𝐿2
+(ℝ).

APPENDIX B: VARIATIONAL PROPERTIES OF 𝑬(𝒖)
We recall the energy functional

𝐸(𝑢) =
1
2 ∫ℝ

|𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢|2 𝑑𝑥,
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4058 GÉRARD and LENZMANN

where we allow for general 𝑢 ∈ 𝐻1(ℝ), which are not necessarily in the Hardy-Sobolev space
𝐻1

+(ℝ). It is elementary to show that 𝐸 ∶ 𝐻1(ℝ) → ℝ≥0 is weakly lower semi-continuous, that is,
if 𝑢𝑘 ⇀ 𝑢 weakly in𝐻1(ℝ) then

lim inf
𝑛→∞

𝐸(𝑢𝑛) ≥ 𝐸(𝑢). (B.1)

Lemma B.1 (Minimal Mass Bubble Lemma). Suppose (𝑣𝑛)𝑛∈ℕ ⊂ 𝐻1(ℝ) is a sequence such that

sup
𝑛≥1

‖𝑣𝑛‖𝐿2 < +∞ and ‖𝜕𝑥𝑣𝑛‖𝐿2 = 𝜇 for all 𝑛 ∈ ℕ.

with some constant 𝜇 > 0. In addition, we assume that

lim
𝑛→∞

𝐸(𝑣𝑛) = 0.

Then it holds that

lim inf
𝑛→∞

‖𝑣𝑛‖2
𝐿2 ≥ ‖‖2

𝐿2 = 2𝜋.

Here equality holds if and only if, after possibly passing to a subsequence,

𝑣𝑛(𝑥 + 𝑥𝑛) → e𝑖𝜃𝜆1∕2(𝜆𝑥) strongly in 𝐿2(ℝ)

with some constants 𝜃 ∈ [0, 2𝜋), 𝜆 > 0, and some sequence 𝑥𝑛 ∈ ℝ.

Proof. We will give a proof that is based on a compactness lemma in [24]. Alternatively, we could
use more refined analysis with a profile decomposition [15].
By rescaling 𝑣𝑛 → 𝜇−1∕2𝑣𝑛(𝜇

−1⋅), we can assume that ‖𝜕𝑥𝑣𝑛‖𝐿2 = 1 for all 𝑛 ∈ ℕ. From the
triangle inequality and the form of 𝐸(𝑢), we find that

‖Π+(|𝑣𝑛|2)𝑣𝑛‖𝐿2 ≥ ‖𝜕𝑥𝑣𝑛‖𝐿2 − ‖𝜕𝑥𝑣𝑛 − 𝑖Π+(|𝑣𝑛|2)𝑣𝑛‖𝐿2 = 1 −
√

2𝐸(𝑣𝑛).

Since 𝐸(𝑣𝑛) → 0 by assumption, we deduce that

1 ≲ ‖Π+(|𝑣𝑛|2)𝑣𝑛‖𝐿2 ≲ ‖Π+(|𝑣𝑛|2)‖𝐿3‖𝑣𝑛‖𝐿6 ≲ ‖|𝑣𝑛|2‖𝐿3‖𝑣𝑛‖𝐿6 ≲ ‖𝑣𝑛‖3
𝐿6 ,

by Hölder’s inequality and the classical fact that Π+ ∶ 𝐿3(ℝ) → 𝐿3(ℝ) is bounded. Thus we have
found that

‖𝑣𝑛‖𝐿6 ≥ 𝐶 > 0

with some constant 𝐶 > 0. On the other hand, by the fact sup𝑛 ‖𝑣𝑛‖𝐻1 < +∞ and by Sobolev
embeddings, we deduce that

‖𝑣𝑛‖𝐿2 ≤ 𝐶1 and ‖𝑣𝑛‖𝐿8 ≤ 𝐶2

with some constants 𝐶1, 𝐶2 > 0. Thus, by applying the 𝑝𝑞𝑟-Lemma in [14], we deduce that there
exist constants 𝜀 > 0 and 𝛿 > 0 such that

𝜇({𝑥 ∈ ℝ ∶ |𝑣𝑛(𝑥)| > 𝜀}) ≥ 𝛿 for all 𝑛 ∈ ℕ,
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4059

where 𝜇 denotes the Lebesgue measure on ℝ. Hence we can apply Lieb’s compactness lemma
in [24] to deduce that, after passing to a subsequence, there exists a sequence of translations
(𝑦𝑛)𝑛∈ℕ ⊂ ℝ such that

𝑣𝑛(⋅ + 𝑦𝑛) ⇀ 𝑣 weakly in𝐻1(ℝ)

for some 𝑣 ∈ 𝐻1(ℝ) with 𝑣 ≢ 0.
By translation invariance of the energy 𝐸, we can henceforth assume that 𝑦𝑛 = 0 for all 𝑛.

Furthermore, the weak lower semi–continuity of 𝐸 implies that

0 = lim
𝑛→∞

𝐸(𝑣𝑛) ≥ 𝐸(𝑣).

On the other hand, we have 𝐸(𝑣) ≥ 0 in general and hence we conclude 𝐸(𝑣) = 0. By Lemma 4.1,
the equality 𝐸(𝑣) = 0 for 𝑣 ≢ 0 holds if and only if

𝑣(𝑥) = e𝑖𝜃𝜆1∕2(𝜆𝑥 + 𝑦)

with some constants 𝜃 ∈ [0, 2𝜋), 𝜆 > 0 and 𝑦 ∈ ℝ. Since 𝑣𝑛 ⇀ 𝑣 in 𝐿2, the weak lower semi–
continuity of the 𝐿2-norm implies that

lim inf
𝑛→∞

‖𝑣𝑛‖2
𝐿2 ≥ ‖𝑣‖2

𝐿2 = ‖‖2
𝐿2 = 2𝜋.

Finally,wehave equality (after passing to a subsequence if necessary) if and only if 𝑣𝑛 → 𝑣 strongly
in 𝐿2(ℝ), which completes the proof. □

APPENDIX C: USEFUL IDENTITIES AND GAUGE TRANSFORMATION
For sufficiently regular and decaying functions 𝑣 ∶ ℝ → ℂ and the Hilbert transform 𝖧, we have
the following identities:

Re⟨𝑥𝑣, 𝖧(𝑣)⟩ =
1
2𝜋

|||||∫ℝ
𝑣 𝑑𝑥

|||||
2

, (C.1)

Re ⟨𝜕𝑥𝑣, 𝖧(|𝑣|2)𝑣⟩ = −
1
2
⟨|𝑣|2, |𝐷||𝑣|2⟩, (C.2)

⟨𝑣𝖧(|𝑣|2), 𝑣𝖧(|𝑣|2)⟩ =
1
3 ∫ℝ

|𝑣|6 𝑑𝑥. (C.3)

Let us check these identities. Using the Plancherel theorem, we have

Re⟨𝑥𝑣, 𝖧(𝑣)⟩ = −
1
2𝜋 ∫

∞

0
Re[𝑣(𝜉)𝜕𝜉𝑣(𝜉)] 𝑑𝜉 +

1
2𝜋 ∫

0

−∞
Re[𝑣(𝜉)𝜕𝜉𝑣(𝜉)] 𝑑𝜉 =

1
2𝜋

|𝑣(0)|2 ,

which is (C.1).
Since 𝖧 preserves real valued functions, we have

Re ⟨𝜕𝑥𝑣, 𝖧(|𝑣|2)𝑣⟩ = ⟨Re[𝑣𝜕𝑥𝑣], 𝖧(|𝑣|2⟩ =
1
2
⟨𝜕𝑥(|𝑣|2), 𝖧(|𝑣|2⟩ = −

1
2
⟨|𝑣|2, 𝖧𝜕𝑥(|𝑣|2⟩ ,

which leads to (C.2) since 𝖧𝜕𝑥 = |𝐷|.
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4060 GÉRARD and LENZMANN

Finally, setting 𝜚 ∶= |𝑣|2, we have 𝜚 = Π+𝜚 + Π+𝜚 and

‖𝑣‖6
𝐿6 = ∫ℝ

𝜚3 𝑑𝑥 = ∫ℝ
(Π+𝜚 + Π+𝜚)

3 𝑑𝑥 = 3∫ℝ
[(Π+𝜚)

2Π+𝜚 + Π+𝜚(Π+𝜚)
2] 𝑑𝑥 ,

because 𝐻𝑠
± is preserved by the product (if 𝑠 is large enough) and the ranges of Π+ and of Π− are

orthogonal. We obtain

∫ℝ
𝜚3 𝑑𝑥 = 3∫ℝ

|Π+𝜚|2𝜚 𝑑𝑥 =
3
4 ∫ℝ

(𝜚2 + (𝐻𝜚)2)𝜚 𝑑𝑥 ,

whence

∫ℝ
𝜚3 𝑑𝑥 = 3∫ 𝜚(𝐻𝜚)2 𝑑𝑥 ,

which is precisely (C.3).

C.1 Derivation of Pohozaev identity
In this paragraph we provide the details for the proof of Proposition 4.1 when deriving the
Pohozaev type identities. We integrate (4.11) against 𝑥𝜕𝑥𝑆 over the compact interval [−𝑅, 𝑅]. By
taking the real part, we find

Re∫
𝑅

−𝑅

(
−𝑥𝑆

′
𝑆′′ − 𝑥𝑆

′
(|𝐷||𝑆|2)𝑆 +

1
4
𝑥𝑆

′|𝑆|4𝑆)𝑑𝑥 = 𝜔̃Re∫
𝑅

−𝑅
𝑥𝑆

′
𝑆 𝑑𝑥.

For the first term on the left-hand side, we find

Re∫
𝑅

−𝑅
𝑥𝑆

′
𝑆′′ 𝑑𝑥 =

1
2 ∫

𝑅

−𝑅
𝑥𝜕𝑥|𝑆′|2 𝑑𝑥 =

1
2
𝑥|𝑆′(𝑥)|2|||𝑅−𝑅

−
1
2 ∫

𝑅

−𝑅
|𝑆′(𝑥)|2 𝑑𝑥.

In view of |𝐷| = 𝖧𝜕𝑥 and integrating by parts, we obtain

Re∫
𝑅

−𝑅
𝑥𝑆

′
(|𝐷||𝑆|2)𝑆 𝑑𝑥 =

1
2 ∫

𝑅

−𝑅
𝑥𝜕𝑥|𝑆|2(𝖧𝜕𝑥|𝑆|2) 𝑑𝑥

→
1
2𝜋

(
∫

∞

−∞
𝜕𝑥|𝑆|2 𝑑𝑥)2

= 0 as 𝑅 → +∞,

where we also used (C.1). Next, we notice

Re ∫
𝑅

−𝑅
𝑥𝜕𝑥𝑆|𝑆|4𝑆 𝑑𝑥 =

1
6
𝑥|𝑆(𝑥)|6|||𝑅−𝑅

−
1
6 ∫

𝑅

−𝑅
|𝑆|6 𝑑𝑥

𝜔̃Re∫
𝑅

−𝑅
𝑥𝜕𝑥𝑆𝑆 𝑑𝑥 =

𝜔̃
2
𝑥|𝑆(𝑥)|2|||𝑅−𝑅

−
𝜔̃
2 ∫

𝑅

−𝑅
|𝑆(𝑥)|2 𝑑𝑥.

Since |𝑆|2 + |𝑆′|2 ∈ 𝐿1(ℝ), there exists a sequence 𝑅𝑛 → +∞ such that 𝑥(|𝑆(𝑥)|2 + |𝑆′(𝑥)|2) → 0
with 𝑥 = ±𝑅𝑛 as 𝑛 → ∞ and we obtain

1
2 ∫ℝ

|𝜕𝑥𝑆|2 𝑑𝑥 −
1
24 ∫ℝ

|𝑆|6 𝑑𝑥 = −
𝜔̃
2 ∫ℝ

|𝑆|2 𝑑𝑥.
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THE CALOGERO–MOSER DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION 4061

C.2 Gauge transformation and pseudo-conformal law
Let 𝑠 ≥ 0 be given. We consider the nonlinear map

Φ ∶ 𝐻𝑠(ℝ) → 𝐻𝑠(ℝ), 𝑢(𝑥) ↦ 𝑢(𝑥)e
−

𝑖

2
∫ 𝑥

−∞
|𝑢(𝑦)|2 𝑑𝑦

. (C.4)

Clearly, we have mass preservation property 𝑀[Φ(𝑢)] = 𝑀(𝑢) and it can be shown that Φ ∶
𝐻𝑠(ℝ) → 𝐻𝑠(ℝ) is a diffeomorphism.We refer to the mapΦ as the gauge transform. We remark
that the mapΦ (with different numerical factors in the exponential term) also plays an important
role for the derivative NLS (DNLS).
Suppose 𝑢(𝑡) ∈ 𝐻𝑠(ℝ) (not necessarily restricted to 𝐻𝑠

+(ℝ)) solves (CM-DNLS) on some time
interval 𝐼 ⊂ ℝ. Then 𝑣(𝑡) = Φ(𝑢(𝑡)) ∈ 𝐻𝑠(ℝ) is found to solve the derivative type NLS equation:

𝑖𝜕𝑡𝑣 = −𝜕𝑥𝑥𝑣 − (|𝐷||𝑣|2)𝑣 +
1
4
|𝑣|4𝑣, (C.5)

using thatΠ+ =
1

2
(1 + 𝑖𝖧) and |𝐷| = 𝖧𝜕𝑥. We readily check that (C.5) has the conserved energy

𝐸(𝑣) =
1
2 ∫ℝ

|𝜕𝑥𝑣|2 −
1
4 ∫ℝ

|𝑣|2(|𝐷||𝑣|2) + 1
24 ∫ℝ

|𝑣|6. (C.6)

From identities (C.2) and (C.3), we have

𝐸(𝑣) =
1
2 ∫ℝ

|𝜕𝑥𝑣 +
1
2
𝖧(|𝑣|2)𝑣|2 =

1
2 ∫ℝ

|𝜕𝑥𝑢 − 𝑖Π+(|𝑢|2)𝑢|2 = 𝐸(𝑢) (C.7)

since 𝑣 = Φ(𝑢) and Π+ =
1

2
(1 + 𝑖𝖧).

Now, let Σ = {𝑢 ∈ 𝐻1(ℝ) ∶ 𝑥𝑢 ∈ 𝐿2(ℝ)} denote the space of solutions with finite variance and
energy (not necessarily restricted to the Hardy space).

Lemma C.1 (Pseudo-Conformal Law). Suppose that 𝑢 ∈ 𝐶([−𝑇, 𝑇];𝐻1(ℝ)) solves (CM-DNLS)
with 𝑢(0) = 𝑢0 ∈ Σ. Then 𝑢(𝑡) ∈ Σ for all 𝑡 ∈ [−𝑇, 𝑇] and we have

𝑑2

𝑑𝑡2 ∫ℝ
|𝑥|2|𝑢(𝑡, 𝑥)|2 𝑑𝑥 = 16𝐸(𝑢0) for 𝑡 ∈ [−𝑇, 𝑇].

As a consequence, it holds that

8𝑡2𝐸(e𝑖|𝑥|2∕4𝑡𝑢0) = ∫ℝ
|𝑥|2|𝑢(𝑡, 𝑥)|2 𝑑𝑥

for all 𝑡 ∈ [−𝑇, 𝑇] with 𝑡 ≠ 0.

Remarks.

(1) Recall that the ground state(𝑥) =
√

2

𝑥+𝑖
∈ 𝐻1

+(ℝ) does not belong toΣ. In fact, it can be shown
that all multi-solitons for (CM-DNLS) fail to have finite variance as well.

(2) In view of the non-negativity 𝐸(𝑢) ≥ 0, we see that the classical Zakharov–Glassey argu-
ment to prove existence for negative energy data (with finite variance) cannot be invoked
for (CM-DNLS).
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4062 GÉRARD and LENZMANN

Proof. Let 𝑣(𝑡) = Φ(𝑢(𝑡)) for 𝑡 ∈ [−𝑇, 𝑇].We readily check thatΦ ∶ Σ → Σholds and, in particular,
we have 𝑣0 = 𝑣(0) ∈ Σ. Recall that 𝑣 ∈ 𝐶([−𝑇, 𝑇];𝐻1(ℝ)) solves (C.5). By following arguments
for standard-type NLS, see, for example, [10][Section 7.6], we can deduce that 𝑣(𝑡) ∈ Σ for all
𝑡 ∈ [−𝑇, 𝑇]. Moreover, by calculations analogous to 𝐿2-critical NLS (see [10] again), we find the
variance-virial identities

𝑑
𝑑𝑡 ∫ℝ

|𝑥|2|𝑣(𝑡, 𝑥)|2 𝑑𝑥 = 4∫ℝ
𝑥Im(𝑣𝜕𝑥𝑣) 𝑑𝑥, (C.8)

𝑑2

𝑑𝑡2 ∫ℝ
|𝑥|2|𝑣(𝑡, 𝑥)|2 𝑑𝑥 = 16𝐸0, (C.9)

with 𝑣0 = Φ(𝑢0) and 𝐸0 = 𝐸(𝑣0). By integration in 𝑡 ∈ [−𝑇, 𝑇], we obtain that the variance𝑉(𝑡) =
∫
ℝ
|𝑥|2|𝑣(𝑡, 𝑥)|2 𝑑𝑥 is given by

𝑉(𝑡) = 8𝐸0𝑡
2 + 𝐴0𝑡 + 𝑉0 (C.10)

with the constants 𝐴0 = 4 ∫
ℝ
𝑥Im(𝑣0𝜕𝑥𝑣0) 𝑑𝑥 and 𝑉0 = 𝑉(0). For 𝑡 ∈ [−𝑇, 𝑇] with 𝑡 ≠ 0, we

observe

8𝑡2𝐸(e𝑖|𝑥|2∕4𝑡𝑣0) = 8𝑡2
(

1
2 ∫ℝ

|𝜕𝑥(e𝑖|𝑥|2∕4𝑡𝑣0)|2 −
1
4 ∫ℝ

|𝑣0|2(|𝐷||𝑣0|2) + 1
24 ∫ℝ

|𝑣0|6)
= 8𝑡2𝐸0 + 𝐴0𝑡 + 𝑉0 = 𝑉(𝑡).

Finally, we go back to the function 𝑢 = 𝑢(𝑡, 𝑥). Here we note that |𝑢(𝑡, 𝑥)| = |𝑣(𝑡, 𝑥)| and
𝐸(𝑣0) = 𝐸(𝑢0) since 𝑣(𝑡) = Φ(𝑢(𝑡)). This proves this first claim in Lemma C.1. For the sec-
ond statement, we remark that Φ commutes with multiplication by e𝑖|𝑥|2∕4𝑡 for 𝑡 ≠ 0, that is,
we have Φ(e𝑖|𝑥|2∕4𝑡𝑢0) = e𝑖|𝑥|2∕4𝑡Φ(𝑢0) = e𝑖|𝑥|2∕4𝑡𝑣0. Therefore 𝐸(e𝑖|𝑥|2|4𝑡𝑣0) = 𝐸(e𝑖|𝑥|2∕4𝑡𝑢0). This
completes the proof. □
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