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Abstract
This work reports, for the first time, the analysis of tensor analyzing powers
(T20, T21, T22) along with the differential cross-section (CS) and the vector
analyzing power iT11 for the 6Li +12C elastic scattering at 30 and 50 MeV
within the framework of an optical model (OM) using microscopic shallow non-
monotonic (NM) potentials. The NM potential is generated from the energy
density functional formalism (EDF) (Brueckner et al (1968) Phys. Rev. 168
1184) using a realistic two-nucleon interaction incorporating the Pauli exclu-
sion principle. The shallow NM potential can describe the experimental angular
distributions of CS and analyzing powers of the elastic scattering data. The OM
analysis of the data at 30 and 50 MeV does not indicate their sensitivity on the
nuclear matter incompressibility K.
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1. Introduction

The elastic scattering of 6Li on 12C has been of considerable interest over the past few decades,
not only because they exhibit interesting transitional features [1] between the light (mass
number, A � 4) and heavy (A � 12) ions, but also for the strong refractive [2] nature of its
angular distribution [3]. In combination with a weak absorption, the refractive effect gives
rise to nuclear rainbow, i.e. large angle Airy oscillations followed by an exponential fall-off.
Generally, they are not expected to manifest in scattering of loosely bound nuclei (e.g. 6Li)
because of the suppression caused by projectile breakup effect [4]. The refractive 6Li +12 C
scattering is clearly an exception, and it was attributed [5] to the distinguishing cluster (α+ d)
structure in 6Li. The knowledge of projectile-target potential between 6Li and 12C thus holds
the key to shed some light on the present understanding of nuclear structure and interactions
in the nuclear realm. An understanding of the interaction between lithium isotopes, the heavi-
est formed in primordial nucleosynthesis, is likely to be important for understanding of stellar
synthesis of heavier species.

As noted by Pakou et al [6, 7], the widely used microscopic potentials of 6,7Li-nucleus from
double folding (DF) need an energy-dependent renormalization of NR = 0.5–0.7 to repro-
duce the experimental cross section (CS) data. Sakuragi and his group [4, 8, 9] elegantly
demonstrated that the large NR can be done away with the use of the continuum-discretized
coupled channels (CDCC) method. A CDCC calculation generates a repulsive dynamic polar-
ization potential (DPP) to take care of NR. Moreover, as shown by [10, 11], the large vector
analyzing powers (VAP) of 6,7Li-nucleus elastic scattering can be generated by the DPP
originated in coupled channel (CC) and CDCC calculations.

Microscopic potentials, derived from the energy density functional (EDF) theory [12] incor-
porates the Pauli effect of anti-symmetrization, and are non-monotonic (NM) and shallow
[13]. They account well for α elastic scattering [[13], and references therein] and α induced
non-elastic processes [14–18] including the band-mixing of rotational states with bandheads
Iπ = 1

2
+

and 3
2
+

[19] in 29Si and 29P. The NM potentials are also found successful to reproduce
the prominent refractive pattern in the 16O +16O elastic scattering [20]. Also the sensitivity
of NM potentials on the incompressibility K for cold nuclear matter as elucidated in [20]
opens a doorway to deduce the value of K. The repulsive real part in the EDF-derived NM
potential can also generate the effects of DPP through simple CC as shown in Basak et al
[11], to describe satisfactorily VAP in 6Li +28Si scattering without needing either renormal-
ization in the NM potential or any static spin–orbit (SO) potential. The NM potentials are
also found to reproduce in the simple optical model (OM) by Basak et al [21] the magni-
tudes and opposite signs of VAP of 6Li and 7Li elastic scattering by 58Ni at Elab = 20 MeV
and by 120Sn at 44 MeV in addition to the CS data again without requiring a renormalization.
The success of the NM potentials has been ascribed mainly to the microscopic consideration
of the Pauli principle in the EDF theory. The various successes enjoyed by the NM poten-
tials have stimulated us to undertake the present investigation. Reber et al [22] and Kerr
et al [23] applied successfully a J-dependent absorption in the framework of OM to describe
their experimental data of VAP (iT11) and tensor analyzing powers (TAPs), T20, T21 and T22

at 30 and 50 MeV after introducing the Thomas spin–orbit SO and complex tensor TR of
[24–26].

This article reports the performance of NM potentials to describe the refractive 6Li +12C
elastic scattering data on CS, iT11 and TAPs, T20, T21 and T22 at 30 and 50 MeV in the simple
OM potential for the first time.
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2. Non-monotonic potentials for 6Li+12C system

2.1. EDF formalism

The EDF theory [12] describes the energy of a fermionic system as

E =

∫
ε
[
ρ(�r)

]
d3�r, (1)

where ρ(r) is the density distribution (DD) of the system and ε
[
ρ(�r)

]
is the energy density [19]:

ε
[
ρ(�r)

]
= B(ρ, ξ)ρ+

(
�

2

8M

)
η(∇ρ)2 + Coulomb terms. (2)

For symmetric nuclei like 6Li and 12C, the neutron excess, ξ = (N − Z)/A = 0, and the binding
energy per nucleon of the system B(ρ, ξ) read as [20]

B(ρ, ξ = 0) = 0.3

(
�

2

M

) (
3π2

2

)2/3

ρ2/3 + v(ρ, ξ = 0), (3)

where M is the nucleon mass, and v(ρ, ξ) is the nucleonic mean field. For infinite symmetric
nuclear matter (ISNM) [20, 27],

v(ρ, ξ = 0) = λ1ρ+ λ2ρ
4/3 + λ3ρ

5/3. (4)

To apply to finite nuclei, two correction terms are incorporated in equation (2): the inhomo-
geneity correction6 term with a free parameter η, and the Coulomb (last two) terms.

The density-dependent mass formula embodied in the EDF (equation (2)) provides infor-
mation on the nuclear equation of state (EOS) (i.e. the energy per nucleon, E/A, as a function
of density) and on the compressibility of nuclear matter at various densities including the satu-
ration density ρ0. The curvature of E/A(ρ) of nuclear matter around the saturation point ρ = ρ0

is termed as the nuclear incompressibility:

K = 9ρ2

[
∂2

∂ρ2

(
E
A

)]
ρ=ρ0

. (5)

2.2. EDF calculations for the 6Li + 12C system

A detailed discussion on the derivation of NM potentials from the EDF theory and the sensi-
tivity of the EDF potentials on K can be found in [13, 20]. We mention here only the salient
points on their derivation from EDF.

In the EDF calculations, the density distribution (DD) of the composite system is cal-
culated assuming a sudden approximation, i.e. as a simple sum of the density distributions
(DDs) of the projectile and the target nucleus. The parameters of the original DD functions
of 6Li and 12C, respectively, from [28, 29], are transformed to the two-parameter Fermi (2pF)
function,

ρ(r) = ρ0[1 + exp {(r − c)/z}]−1, (6)

6 It incorporates the part of nuclear interaction that is not included in the mean field.
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Table 1. The parameters of the equivalent 2pF DD function for 6Li and 12C nuclei with
the calculated (Calc.) and experimental (Expt.) binding energies.

2 pF DD parameters Binding energy

Nucleus c (fm) z (fm) ρ0 (fm−3) Calc. (MeV) Expt. (MeV)

6Li 1.333 0.577 0.2118 33.1 32.0
12C 2.294 0.434 0.1752 91.9 92.2

Table 2. Mean-field parameters (λ), the volume integral per nucleon pair (JR/72) for the
EDF-derived potentials and the inhomogeneity parameter η for two different K values.

K(MeV) λ1 λ2 λ3 η JR/72 (MeV fm3)

188 −741.28 +1179.55 −467.54 8.0 −145.25
219 −756.50 +1195.53 −451.07 8.95 −143.75

for use in the EDF calculations. The equivalent parameters of the 2pF function are taken from
[21] and given in table 1.

The potential V(R) (sum of nuclear and Coulomb parts) between the 6Li projectile and the
12C target at a separation distance of R is given [13, 20] by

V(R) = E[ρc(�r, R)] − E[ρ1(�r, R)] − E[ρ2(�r, R)]. (7)

Here ρ1(�r) and ρ2(�r) are, respectively, the DD functions of 6Li and 12C with their parame-
ters in table 1. ρc(�r) = ρ1(�r) + ρ2(�r) refers to DD of the composite nucleus in the sudden
approximation. Es are the total energies of the individual nuclei including the mean-field
v(ρ, ξ = 0) in the nuclear matter with K in equation (5).

EDF potentials for two different K-values, K = 188 MeV and K = 219 MeV are gener-
ated. The mean-field parameters for homogeneous ISNM (table 2) are taken from [20, 30]
for K = 188 MeV and those for K = 219 MeV are computed following the procedure of
[20].

Finally, the 6Li + 12C potentials are derived by employing the DD parameters from table 1
and the mean-field parameters from table 2 in the EDF theory. In achieving these, the inhomo-
geneity parameter for K = 188 MeV is η = 8 as in [13, 14, 21, 22] while that for K = 219 MeV
is adjusted to η = 8.95 (table 2) to reproduce the experimental binding energies of 6Li and
12C as noted in table 1.

The reliability of the EDF-generated NM potential can be assured from the favourable
closeness of the experimental binding energies of the colliding nuclei (see table 1) with the
EDF-calculated values from the chosen DD parameters in conjunction with the mean-field
parameters λ1, λ2, λ3, and the inhomogeneity η parameters in table 2. The volume integral
JR/72 values in table 2 reflect their dependence on K.

2.3. Potential parametrisation

The EDF-generated potential points of V(R) are parametrized with the analytic expression:

VN(R) = −V0

[
1 + exp

(
R − R0

a0

)]−1

+ V1 exp

[
−

(
R − D1

R1

)2
]
. (8)
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Table 3. Nuclear real parameters for the 6Li +12 C central potential with JR/72-values
and χ2 per degree of freedom (d.o.f.) for the fits. The Coulomb radius is RC = 3.612 fm.
The parameters of the EDF-188 and EDF-219 sets correspond the EDF-derived poten-
tials for K = 188 and K = 219 MeV, respectively. Set-1 and set-2 refer to the sets of
parameters, all adjusted empirically for a best possible fit to the 30 and 50 MeV exper-
imental data, respectively. Elab, V0 and V1 are in MeV; R0, R1, a0 and D1, in fm; and
JR/72, in MeV fm3.

Set Elab V0 R0 a0 V1 R1 D1 JR/72 χ2/d.o.f.

EDF-188 30/50 37.3 4.00 0.736 33.8 2.43 0.133 −145.25 388.9
EDF-219 30/50 41.0 4.00 0.734 46.7 2.49 0.118 −143.75 342.3
Set-1 30 28.0 4.602 0.54 75.0 0.35 2.175 −141.2 18.0
Set-2 50 32.0 4.006 0.82 150.0 0.47 1.076 −141.0 15.3

In the parameterization procedure, the EDF-derived potential points are found best described
by R0 = 4.0 fm with other parameters obtained by an analytic fit to potential points. The poten-
tial parameters, thus derived, are listed in table 3. The parameterized VN(R) in equation (8)
serves as the real part of the central potential in our complex optical potential (OP) which is
given by

U(R) = VC(R) + VN(R) + iW(R) + USO(R) + UTR(R), (9)

where VC(R), VN(R) and W(R) denote, respectively, the Coulomb, nuclear real and nuclear
imaginary potentials. VC(R) is assumed to be that due to a uniformly charged sphere of radius
RC.

The central imaginary part W(R), assumed in the analysis, comprises a Gaussian-shaped
volume term and a surface term with a shifted Gaussian shape:

W(R) = −W0 exp

[
−

(
R

RW

)2
]
− WS exp

[
−

(
R − DS

RS

)2
]
. (10)

An effective spin–orbit (SO) potential with a standard Woods–Saxon (WS) form is considered:

USO(R) = 2
VSO

R
d

dR
[1 + exp((R − RSO)/aSO)]−1�l ·�I, (11)

where�l and�I are, respectively, the partial wave angular momentum and spin of 6Li.
The tensor part of the 6Li potential is complex, and taken from Reber et al [22]:

UTR(R) = − 8

6
√

3

[
VTa2

RT
d2

dR2
fR(R) + iWTa2

iT
d2

dR2
fI(R)

][
(�I · R̂)2 − 2/3

]
, (12)

where R̂ refers to the unit vector along �R. The form factors in equation (12) are defined as

fx(R) = [1 + exp {(R − Rx)/ax}]−1. (13)
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Table 4. Same as in table 3 for the imaginary potential parameters with the correspond-
ing volume integral per nucleon-pair JI/72 and the parameters of SO part of the OM
potential. JI/72 is in MeV fm3 and the depth and geometry parameters are, respectively,
in MeV and fm. Elab is in MeV.

Set Elab WS DS RS W0 RW VSO RSO aSO JI/72

EDF-188 30 25.0 3.365 0.22 13.0 4.0 0.15 5.495 0.17 −83.7
50 5.0 5.723 0.12 17.5 4.0 0.16 5.678 0.10 −92.8

EDF-219 30 25.0 3.365 0.22 13.0 4.0 0.15 5.495 0.17 −83.7
50 5.0 5.723 0.12 17.5 4.0 0.16 5.678 0.10 −92.8

Set-1 30 21.0 4.396 0.10 14.0 3.9 0.4 5.266 0.55 −76.1
Set-2 50 5.8 5.952 0.10 19.0 3.9 0.12 5.941 0.10 −93.5

3. Analysis and results

The experimental CS, iT11, T20, T21 and T22 data for the 6Li + 12C elastic scattering are
taken from [22, 23, 31]. The CS data are normalized to the Rutherford cross-sections, and
a systematic error of 15% is assumed for the CS points without any experimental error-bar.
The OM analyses are carried out using the code SFRESCO that incorporates the coupled-
channels code FRESCO2.5 [32] and is coupled with the χ2-minimization code MINUIT
[33]. The fitting parameters are obtained by minimizing χ2, normalized per degree of free-
dom (N − F) where N is the number of data points for a given incident energy and F is the
number of adjusted parameters. The χ2 per degree of freedom is referred as simply χ2

hereinafter in the text. The Coulomb radius is set to RC = 3.612 fm.

3.1. Fits with EDF-generated nuclear real part

At the onset, we choose the EDF-derived central potential VN(R) for K = 188 MeV given in
table 3. Firstly, the parameters of the real central part VN(R) are kept unchanged and the param-
eters for the imaginary W(R) and those of SO USO(R) are optimized through a sequence of
grid and global searches to minimize χ2 in fitting the experimental σ/σR and iT11 data. Next,
the parameters of tensor part UTR(R) are searched upon to minimize χ2 in fitting the iT11,
T20, T21 and T22 data. In the third step, all parameters of W(R), USO(R) and UTR(R) are read-
justed to improve description of the σ/σR, iT11, T20, T21 and T22 data. The final fits have
been done visually after taking guidance from the χ2 fits, since it is more important to repro-
duce the features in the angular distributions of the experimental data than naively minimizing
the χ2 only [34].

For the EDF-219 potential set with K = 219 MeV, which is close to the derived value of
K = 222 ± 5 MeV for the infinite cold nuclear matter by Hossain et al [20], the third and
the final steps have been accomplished in optimizing all the parameters excepting those of
the EDF-derived VN(R) using the experimental data of σ/σR, iT11, T20, T21 and T22. The χ2

for the best fits and the associated volume integrals JR/72 and JI/72, respectively, for the real
and imaginary parts of OP are also listed in tables 3, 4 and 5.

The predicted values from the OM calculations are compared with the experimental data
in figures 1 and 2 for 30 and 50 MeV projectile energies. Our OM results for 5 observables
σ/σR, iT11, T20, T21 and T22 calculated using the EDF potentials for K = 188 and 219 MeV
are found almost similar and describe the experimental data reasonably well excepting the
case of T20 at 50 MeV, where the dip at the scattering angle of 55◦ and the bump at 80◦ could

6
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Table 5. Same as in table 4 for the tensor part of the OM potential and χ2/d.o.f. for
the fits.

Set Elab VT RRT aRT WT RIT AIT χ2/d.o.f.

EDF-188 30 +0.234 4.304 0.45 — — — 388.9
50 −0.140 4.922 0.55 — — — 50.0

EDF-219 30 +0.234 4.304 0.45 — — — 342.3
50 −0.140 4.922 0.55 — — — 44.0

Set-1 30 +0.173 4.235 0.30 −0.488 3.892 0.65 18.0
Set-2 50 −0, 135 5.151 0.50 — — — 10.1

not be reproduced. For the 30 MeV scattering, a small peak at θCM = 35◦ in the experimental
data of T20 is not reproduced by OM calculations.

Although the χ2 for the fits with the EDF-219 potential set is slightly lowered over that for
the EDF-188 set, as can be noted in table 3, no significant improvement in the data descrip-
tion can be sighted in the visual inspection of figures 1 and 2. This can be explained by the
fact that at both of 30 and 50 MeV incident energies, 6Li does not carry adequate energies to
reach the nuclear interior with R � 3 fm where the EDF-188 and EDF-219 potentials show
some difference (see figures 1 and 2).

3.2. Fits with empirically adjusted nuclear real part

All experimental data at the Elab = 30 and 50 MeV energies are re-analysed after freeing
the EDF-generated potential-parameters for adjustment in order to obtain better quality fits
to the experimental data. In the process, the parameters of the imaginary, SO and tensor
parameters are further tuned. This approach results in much better descriptions of data with
much reduction in the respective χ2 values and the final parameters are presented in tables 3–5
as set-1 for 30 MeV and set-2 for 50 MeV.

It should be noted here that the EDF-theory does not have an energy-dependent factor
built in it, and the EDF-generated potential is valid at low energies strictly at the zero excita-
tion energy of the composite nucleus, as observed in [20]. At higher incident energies, as our
previous work on α+90 Zr [13] suggests that the position D1 of the repulsive core moves
towards the surface region with increasing incident energy due to the changing configura-
tion of the nucleons in the composite nucleus formed during the interaction of the projectile
and the target, leading to the different Pauli effects.

However, the predictions with the empirically adjusted nuclear part of the central poten-
tial fail to improve description of the T20 data beyond ΘCM = 40◦. The predicted σ/σR,
iT11, T20, T21 and T22 are compared with the experimental data in figure 2. In particular, the
empirical set-1 potential for 30 MeV predicts the opposite signs of T20 analyzing powers near
the dip in experimental distribution around the scattering angle ΘCM = 55◦, reproduced well
by the EDF-188 potential in figure 1.

Improvement in the description of the experimental data using the empirical potentials,
particularly forging it in the cross section data, leads to radial distributions of the set-1 and
set-2 potentials very different from the EDF-derived, EDF-188 and EDF-219 potential sets in
figures 1 and 2. The increased repulsive behaviour of the empirical sets inside the nuclear
surface is likely to be linked to the dispersive effect at the onset of non-elastic channels
leading to a repulsive surface potential in the real part [35, 36].

7
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Figure 1. Predicted σ/σR, iT11, T20 and T22 for the 6Li + 12C elastic scattering at
30 MeV by the OM potentials with the real central nuclear parts (a) EDF-derived for
K = 188 MeV (dash-dot lines), (b) EDF-derived for K = 219 MeV (dash-dash lines)
and (c) from empirically adjusted (solid lines) are compared with the experimental data.
The central real parts of the nuclear potentials are also displayed to show their NM
feature.

4. Discussion and conclusions

The study examines for the first time the NM potential, embodying a repulsive core, on the
tensor analyzing powers in the framework of simple OM potential. The TR tensor poten-
tial, originally proposed Satchler [24] and tried on the 6Li + 12C scattering by Reber et al
[22, 37] and Kerr et al [23, 38], in conjunction with the NM central real, effective SO and
imaginary parts of the interaction potential U(R) in equation (9), are able to reproduce fea-
tures in the angular distributions of CS and analyzing power data. In particular, iT11, T21,
T22 data are well accounted for in OM using normal J-independent imaginary potential. In
the overall picture, our predictions seem to have reproduced the experimental data somewhat
better than the calculations reported in [22, 23] involving the J-dependent absorption and are
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Figure 2. Same as in figure 1 for 6Li +12 C elastic scattering at 50 MeV.

found to be no less inferior to the findings from the coupled-channels (CC) calculations in [37,
38]. However, our calculations provide a poor show in the description of the experimental T20

data at both energies considered herein. Our study confirms the observation of [22, 23] that
T21 is most sensitive to the central and tensor UTR interactions. Other analyzing powers are
sensitive to central, SO and tensor terms.

Satisfactory performance of our NM potentials in describing the CS and analyzing power
data suggests two important points. Firstly that the action of the repulsive core not only
plays the role of the equivalent dynamic polarization potential partially, which in conjunction
with a static SO potential, can remove the renormalization problem with the DF potentials
[4, 8, 9] and solve the enigma of the opposite signs of the VAPs in the 6Li and 7Li elas-
tic scattering by the same target nucleus [10]. Use of the Pauli-based repulsive core in the
EDF-generated NM potentials has shown to produce the same effects [11, 21] in OM. As
the repulsive core in our framework is understood to emerge from the Pauli blocking embed-
ded in our EDF formalism, our conjecture has been that Pauli blocking reproduces DPP, at
least partially, even in OM. However, the seemingly large empirical adjustment of the real

9
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repulsion reported in the present work needs to be studied further. We suspect that the large
difference between the EDF sets and the empirical NM potentials may lie in forging fits
to the experimental CS data (figures 1 and 2), which may involve contributions from non-
direct processes. It is expected that future work will make it clear how much of the DPP
and breakup effects can be explained solely through an EDF-based approach. Secondly, the
repulsive core associated with the NM potential in equation (8), although J-independent, does
the job of J-dependent absorption [22, 23] as it simulates an l-dependent barrier potential
which attenuates more of the lower partial waves than the higher ones. The latter accrues the
satisfactory descriptions of data in the simple OM by EDF-originated NM potentials in the
present work.

Our work does not show significant K-dependence on the predicted σ/σR, iT11, T20, T21

and T22 at both projectile energies of 30 and 50 MeV. This is evidenced in the small differ-
ence between the χ2 values fittings the experimental data using the EDF-188 and EDF-219
potentials at each of incident energies (see table 5). This is not surprising as at lower ener-
gies surface effect dominates the elastic scattering while K-dependence of the EDF-derived
potential occurs in the nuclear interior with R � 3 fm (see figures 1 and 2). The scattering
from the nuclear interior contributes to the refractive scattering as discussed in [3, 13, 20, 39].
Michel and Ohkubo in [39] suggest that the broad dip at θCM ∼ 105◦ in the CS distribution
of Elab = 30 MeV is due to the second Airy minimum (A2) arising from the refractive scat-
tering. The potential effect at the same radial position of nuclear interior as producing the A2
minimum does not have adequately strong K-dependence to induce a conspicuous K-sensitive
effect on the CS and analyzing powers. One needs to study the elastic scattering at higher ener-
gies where first Airy minimum A1 following by nuclear rainbow scattering with exponent-type
falloff in cross sections [20, 40, 41] is visible in the CS angular distribution.

It remains to investigate why T20 beyond the scattering angle θCM ∼ 40◦ at Elab = 50 MeV
could not be reproduced even with the empirical adjustment of the EDF-generated NM poten-
tials for the real part of the central potential. It may be related to a correlated effects from
the central, SO, tensor and also additional DPP arising from coupling to the resonant breakup
states of 6Li and inelastic states of 12C, not considered in the present work.
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