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We show the existence of the α+α∗ cluster structure at the highly excited energy around Ex = 20
MeV in 8Be for the first time in the coupled-channel calculations. An extended double-folding
model derived using a realistic precise cluster wave function with a well-developed N + 3N
cluster structure for the first excited state of 4He was employed. The calculation reproduces the
experimental phase shifts in α + α scattering up to Ec.m. = 21 MeV well. The result shows
that the well-developed core-excited α + α∗ structure appears as resonances for L = 0 and 2
near the α + α∗ threshold which correspond to the experimental states at Ex = 20.20 MeV and
Ex = 22.24 MeV in 8Be.
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1. Introduction

The α cluster model was proposed [1–3] soon after the discovery of the neutron [4], before the
nuclear shell model [5,6] and the collective model, and was continued in 8Be [7] as the prototype
[8–11]. The cluster model has been shown to be successful not only in light nuclei [12,13] but also
in the medium [14,15] and heavy [16–21] mass ranges. On the other hand, the cluster structure with
core excitation has been known widely, for example, such as α+12C(0+

2 ) [22], α+16O(0+
2 ) [23],

α+40Ca( 0+
2 ) [24], α+208Pb(3−) [25,26] and 12C+12C(2+) molecular structure [27,28]. However,

the existence of the cluster structure with α-core excitation has not been confirmed because of the
highly excited states of α, which is the lightest tightly bound magic nucleus.

α+α scattering and its interaction potential have been most thoroughly studied both experimentally
[29–32] and theoretically [8–10,33,34]. The phenomenological potential with a repulsive core at
around R = 2 fm for the orbital angular momentum L = 0 and 2 waves was shown to originate from
the Pauli principle [8–10]. On the other hand, the systematic and unified study of anomalous large
angle scattering (ALAS), pre-rainbow and rainbow scattering and cluster structure in the bound and
quasi-bound energy region for the typical α+16O, α+40Ca and 16O+16O systems has shown that
the interaction potentials are deep [35–45] due to the Pauli principle [46]. A deep potential has been
considered to be favored for the prototype α + α system [46,47], although ALAS and/or rainbows
have not been observed clearly and typically because of the lightest double-closed identical boson
system. The phenomenological potentials with a repulsive core for α + α, such as in Ref. [48], which
has been widely used historically, is now understood as a mathematically supersymmetric partner
[49] of the deep potential such as in Ref. [47].

Although the potential for α +α has been established, it is to be noted that the experimental phase
shifts are reproduced successfully only at the low energy region below EL = 40 MeV where inelastic
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channels are closed [33]. Above EL = 42.4 MeV, where inelastic channels open, the experimental
phase shifts with a non-smooth complicated structure have not been explained. The coupled-channel
α + α∗ calculations, assuming a monopole vibration for the first excited state 0+

2 of 4He, were
attempted as early as in the 1970s [50,51]. An experimental search for the cluster structure α + α∗
was also done [52,53]. However, the existence of the α+α∗ cluster structure has not been confirmed.

The structure of 8Be at the highly excited energy region has also had attention paid to it from
the viewpoint of the cosmological lithium problem [54,55]. One of the candidates to reduce the 7Li
abundance is the 7Be(n,α)α reaction, and the 7Be+n channel is opened as an highly excited state of
8Be at Ex = 18.899 MeV. Because the direct 7Be(n,α)α breakup channel is strongly suppressed and
the 7Be(n,γα)α reaction remains the dominant process, the highly excited states of 8Be may affect
the reaction corresponding the α-emitting cross section of these states [54].

The purpose of this paper is to show the existence of the α +α∗ structure as a prototype of α–core
excited cluster structure for the first time, in which α is excited to the 0+

2 state at 20.21MeV, analyzing
α + α scattering using the coupled-channel method with an extended double-folding model derived
from the precise wave functions for 4He. We also show how the α cluster structure appears at a
highly excited energy region near the α +α∗ threshold. The paper is organized as follows. In Sect. 2
the extended double-folding model is presented. Sect. 3 is devoted to the coupled-channel analysis
of α + α scattering and the core excited α + α∗ cluster structure in 8Be. In Sect. 4 the core excited
α cluster structure in 8Be is discussed. Our conclusion is given in Sect. 5.

2. The extended double-folding model

An extended double-folding model that describes all the diagonal and off-diagonal coupling potentials
derived from the microscopic realistic precise wave functions for 4He is given as follows:

V N
ij,kl(R) =

∫
ρ

(4He)
ij (r1)ρ

(4He)
kl (r2)vNN (r1 + R − r2)dr1dr2, (1)

where ρ
(4He)
ij (r) is the diagonal (i = j) or transition (i �= j) nucleon density of 4He calculated in the

microscopic four-body calculations in Ref. [56]. In the coupled-channel calculations we take into
account the 0+

1 (0.0 MeV) and 0+
2 (20.21 MeV) states of 4He. For the effective two-body interaction

vNN we use the M3Y interaction [57]. We introduce a normalization factor, NR. The Coulomb folding
potential V C

ij,kl(R) is similarly calculated in the folding model of Eq. (1) by replacing vNN by vCoul.

3. Analysis of α + α scattering and α + α* cluster structure

In Fig. 1(a) the calculated phase shifts for L = 0, 2 and 4 in α + α scattering calculated using the
coupled-channel method (solid lines) with a double-folding model are compared with the exper-
imental data [32]. Although NR = 0.999943 is used to reproduce the experimental ground state
energy of 91.84 keV from the α + α threshold and the α decay width 5.57 eV of 8Be [58] where
calculated values are 91.84 keV and 5.5 eV, the calculated phase shifts, cross sections and the dis-
cussions that come up later are not very sensitive to this fine adjustment. The results calculated in the
single channel by switching off the coupling (dashed lines) are also displayed for comparison. The
behavior of the experimental phase shifts for L = 0, 2 and 4 at Ec.m. < 20 MeV is reproduced well
by the calculations. What is noticeable in Fig. 1(a) is that the kinks at around Ec.m. = 20 MeV in the
experimental data, which cannot be reproduced in the single-channel calculations [47], are also seen
in the present coupled-channel calculations. Thus the kinks are found to arise from the coupling to
the excited 0+

2 state of 4He. The calculations give no kink for L = 4 at around Ec.m. = 20 MeV.
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α α
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Fig. 1. (a) The phase shifts in α + α scattering calculated using the coupled-channel method (solid lines) and
in the single channel (dashed lines) with a double-folding model are compared with the experimental data
for L = 0 (circles), L = 2 (diamonds) and L = 4 (triangles) taken from Ref. [32]. (b) The calculated elastic
α + α scattering cross section for L = 0 resonance just below the threshold energy (solid line). The dashed
line shows a fit by a Fano profile.

The irregular behavior of the calculated phase shift at around Ec.m. = 8 MeV is the redundant Pauli
forbidden 0s state in the α + α∗ channel, as discussed later.

Fig. 1(b) shows the resonance behavior of the cross section at around Ec.m. = 20 MeV for L = 0
due to the s-wave coupling to the J = 0+ resonance with the α + α∗ cluster structure in 8Be. It
shows a closed channel resonance (Feshbach resonance) [59–61] below the α + α∗ threshold, in
which the relative kinetic energy between two α particles is negative due to the loss of its energy
by the excitation of α to the 0+

2 state, and the wave function of the excited α + α∗ state shows an
exact bound state nature without scattering amplitudes at large distance (see Fig. 5a). The calculated
resonance behavior of the cross section can be well reproduced by the Fano resonance [62,63]
formula (Fano profile),

σ(Ec.m.) = [4π(2L + 1)]
(ε + q)2

k2(1 + q2)(1 + ε2)
,

ε = Ec.m. − Eres

�/2
, q = −cotδb, (2)

where k and δb are the wave number of relative motion between two α particles and the background
phase at the resonance energy, respectively. This formula is reduced to the Breit–Wigner formula [64]
in a limit of δb = 0. We take δb = −50.0◦ (see Fig. 1a), the resonance energy Eres = 19.425 MeV
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Fig. 2. The calculated diagonal double folding potentials for the (a) α + α and (b) α + α∗ channels together
with the embedded Pauli forbidden states (red dashed horizontal lines), 0s and 1s in (a) and 0s in (b) for
L = 0, and the threshold energies (black dashed horizontal lines) are displayed. The Pauli allowed physical
states calculated in the coupled-channel method (solid horizontal lines), 2s in (a) and 1s in (b), and the elastic
scattering cross section (σ ) for L = 0 (the solid curve) are also shown.

and the width parameter � = 32 keV(dashed line). In Fig. 1(b), the calculated cross section shows
a typical Fano resonance and the asymmetric shape comes from the interference between the elastic
channel as a background continuum state and the 0+

2 channel as a discrete excited state. Although
the α width seems to be small compared with the experimental 0+

2 state of 8Be at Ex = 20.20 MeV
with the width about 350 keV [53,58], it may be due to the effect of the open channels such as p+7Li
and n+7Be in 8Be which are not taken into account in the present coupled-channel calculations.
The coupling with states at higher energies such as the 1− (T = 0) at 24.250 MeV, which has a
well-developed N+3N structure as a parity doublet partner [65] of the 0+

2 state at 20.210 MeV of
4He, is also not included in the present framework. These states could be an origin of the wiggles
in the highly excited states. A more involved coupled-channel calculation including higher excited
states would be a future subject of study. On the other hand, the positions of the resonance energy
are rather sensitive to the strength of the coupling potential.

In Fig. 2 the diagonal potentials for the α + α and α + α∗ channels are displayed. The diagonal
nuclear potential for the α + α channel is similar to that in Ref. [47]. This potential accommodates
the deeply bound redundant Pauli forbidden 0s and 1s states for L = 0 (Fig. 2a) and the 0d state
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Fig. 3. The relative wave functions (multiplied by R) for L = 0 of the redundant Pauli forbidden state (red
dashed lines) and the Pauli allowed states (blue solid lines) calculated in the bound state approximation for
the α + α and the α + α∗ channels with the diagonal potentials in Fig. 2.

for L = 2. The Pauli forbidden states play a role in damping the amplitudes of the physical wave
functions in the internal region, R < 2 fm, which corresponds to the core radius of the L-dependent
shallow potential with a repulsive core in Refs. [8–10]. The gross behavior of the phase shifts is
essentially reproduced by the diagonal α + α potential. The potential for α + α∗ is shallow, with
its strength being about a quarter of the α + α potential at R = 0 fm (Fig. 2b) and is extended
much to the outer region reflecting the N +3N cluster structure of the 0+

2 state of 4He. This potential
accommodates the redundant Pauli forbidden 0s state at −12.7 MeV, Ec.m. = 8 MeV, from the α+α∗
threshold energy for L = 0 (Fig. 2b).

In order to make it easier to understand the physical meaning of the Pauli allowed physical states and
their scattering state wave functions solved in the coupled-channel method, which will be discussed
in Fig. 4 and Fig. 5, we show in Fig. 3 both the Pauli forbidden and allowed wave functions of the
relative motion for L = 0, calculated in the bound state approximation in the single channel using
the α + α potential and the α + α∗ potential. In the α + α channel the Pauli allowed physical states
should satisfy the Wildermuth condition N = 2n + L = 4 with n being the number of the nodes in
the relative wave function. For the α + α∗ channel the physical states should satisfy the Wildermuth
condition N = 2. The number of the nodes in the Pauli allowed wave functions in Fig. 3 solved
in the bound state approximation satisfies the Wildermuth condition. For the α + α channel the
Pauli allowed wave function has two nodes with the outermost node at around 2 fm, which is the
well-known energy independent node discovered in Refs. [8,9] and corresponds to the radius of the
repulsive core potential for L = 0. For the α +α∗ channel the wave function of the Pauli allowed 0+
state has only one node at around 2 fm, which is also energy-independent due to the Pauli principle.

The shallow and extended properties of the potential for the α+α∗ channel in Fig. 2 are understood
naturally from the wave function of the 4He(0+

2 ) state. This state at Ex = 20.210 MeV with 100%
p-decay width [58] is located 0.396 MeV above the p+3H threshold (19.814 MeV) and 0.368 MeV
below the n+3He threshold (20.578 MeV) and has been shown to have the N + 3N cluster structure
[56,66]. The calculated rms radius, 3.16 fm in Ref. [66] and 4.2 fm in Ref. [56], is much larger than
that of the ground state of 4He, 1.63 fm. This is very large even compared with the calculated size,
3.2–3.8 fm [67–75] of the well-developed gas-like dilute three α cluster 0+

2 Hoyle state in 12C at
Ex = 7.654 MeV, located 0.287 MeV above the α threshold energy.

To see the underlying structure in the kink of the phase shift at around Ec.m. = 21 MeV for L = 2
seen in Fig. 1, the calculated elastic scattering cross section, the Argand diagram, and the calculated
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Fig. 4. (a) The calculated elastic α + α scattering cross section between Ec.m. = 20 and 22 MeV for L = 2,
(b) the Argand diagram A = (SL − 1)/2i for L = 2, with SL being the elastic scattering S matrix and (c) the
calculated inelastic scattering cross section to the 0+

2 channel for L = 2.

inelastic cross section to the 0+
2 channel are displayed in Fig. 4. We see a dip at Ec.m. = 21.01 MeV

in the elastic scattering cross section (Fig. 4a). This is related to the existence of the 2+ resonance in
the α + α∗ channel. Although the elastic cross section does not show a Breit–Wigner type behavior
of resonance because the phase shift does not pass through 90◦, the resonant nature can be confirmed
by looking into the Argand diagram [76–78]. As seen in Fig. 4(b), the diagram of the elastic channel
exhibits a rapid counterclockwise change of the phase as a function of energy at Ec.m. = 21.01 MeV,
which is the signature of a resonance in the coupled channels system. As a side note, the point where
the Argand loop crosses the vertical axis from right to left with increasing energy corresponds to the
phase shift of 90◦ in the case without coupled-channel effects. It is to be noted, however, that the
Argand loop does not generally imply the existence of a resonance unless a peak in the cross section
is accompanied [76,77]. Our calculated cross section to the 0+

2 channel for L = 2 in Fig. 4(c) clearly
shows a sharp peak at this energy. Thus it is found that an L = 2 resonance occurs at Ec.m. = 21.01
MeV above the α + α∗ threshold as a molecular resonance [27,28] with the centrifugal barrier. In
this molecular 2+ state, the calculated mixing probabilities inside R = 4.5 fm are 99.76% for the
α + α∗ component and 0.24% for the α + α component.

The experimental 0+ state at Ex = 20.20 MeV (� = 0.720 MeV) and the 2+ state at 22.24 MeV
(� ∼ 0.8 MeV) in 8Be [58] correspond well to the calculated 0+ state at Ec.m. = 19.45 MeV and
2+ state at Ec.m. = 21.01 MeV, respectively. That is, they have the α + α∗ cluster structure.

The emergence of the resonances in the α + α∗ channel can be confirmed in another way by
investigating the drastic changes of the wave functions with Ec.m. in the vicinity of the resonance
energy. In Figs. 5(b) and 5(c) the wave functions in the elastic channel for L = 0 at around Ec.m. =
19.45 MeV calculated via the coupled-channel method are displayed as a function of Ec.m. from
19.35 MeV to 19.50 MeV in a small step. As the energy increases from Ec.m. = 19.35 MeV to 19.41
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MeV, the first node at around R = 1 fm moves outward, while the position of the second node at
R = 2 fm is almost energy-independent, which is due to the orthogonality to the forbidden 0s and 1s
states in the α + α channel indicated in Fig. 2(a). The Wildermuth condition N = 4 is satisfied for
these wave functions. What is to be noticed is that at 19.44, 19.45 and 19.46 MeV no node appears
at around R = 1 fm and the first node appears at R = 2 fm, which means that at these energies the
wave functions no longer satisfy the Wildermuth condition N = 4 for the elastic channel; that is, the
wave functions seem to disappear from the α + α channel. In fact, the calculated mixing probability
inside R = 4.5 fm at resonance energy 19.45 MeV shows the dominant α +α∗ component (99.82%)
while the α +α component is negligibly small, 0.18%. The wave functions at 19.44 and 19.45 MeV
are out of phase at around R = 3 fm with those at the lower energies 19.35, 19.38 and 19.41 MeV
as shown in Fig. 5(b). At 19.48 MeV, the first node appears again at R = 0.6 fm and the second
node remains at the energy-independent R = 2 fm, thus again appears in the α + α channel. The
energy interval between 19.435 MeV and 19.465 MeV, where the first node disappears, apparently
violating the Wildermuth condition in the α + α channel, corresponds to the width of the resonance
at Ec.m. = 19.45 MeV. In Fig. 5(a) the wave function of the inelastic channel as well as that of the
elastic channel on the resonance energy 19.45 MeV is shown. It should be noted that the number of
the node satisfies N = 2 on this resonance energy although N = 4 is satisfied at other energies, that
is, the number of node is decreased on the resonance. We see that the former has the first node at
R = 2 fm, satisfying the Wildermuth condition in the inelastic channel, and the latter has the first
node at R = 2 fm, violating the Wildermuth condition in the elastic channel. The inelastic channel
wave function is much extended to 8 fm, reflecting that it has the α+ α∗(3N + N ) structure.

In Fig. 5(a) the first node of the inelastic scattering wave function at 19.45 MeV, which appears
near R = 2 fm, is very close to that of the N = 2 wave function in Fig. 3(b) in the α + α∗
channel solved in the bound state approximation. This shows that in the resonance energies where
the Wildermuth condition in the α +α channel does not apparently work, the inelastic wave function
satisfies the N = 2 Wildermuth condition in the α + α∗ channel, being orthogonal to the redundant
Pauli forbidden 0s state indicated in Fig. 2(b). This is understood by looking into the properties of
the kink in the phase shift of L = 0 at Ec.m. = 8.1 MeV in Fig. 1. From the changes of the wave
functions with energy in the vicinity of Ec.m. = 8.1 MeV, which is very similar to the behavior seen
in Fig. 5, it is found that this kink is the redundant 0s Pauli forbidden state in the α + α∗ channel
in Fig. 2(b). Thus the Paul forbidden states in both the α + α and α + α∗ channels are correctly
incorporated in the present deep potential. The forbidden states in the α +α channel for L = 0 and 2
are in the deeply bound region, and the 0s forbidden state in the α + α∗ channel for L = 0 is also in
the deeply bound region below the α + α∗ threshold. Since the solved physical L = 0 state with the
α + α∗ structure is exactly orthogonal to this Pauli forbidden state, the present model calculations
are a mimic of Saito’s orthogonality condition model [79,80]. On the other hand, for L = 2 state
there is no forbidden state in the α + α∗ channel.

4. Discussion

We discuss why a state with the α+α∗ structure in 8Be was not obtained in the microscopic coupled-
channel calculations using the resonating group method in Ref. [51] where none of the calculated
phase shifts for L = 0, 2, and 4 as well as L = 1 and L = 3 pass through 90◦. This is probably
because the wave function for the 4He(0+

2 ) state was not appropriate since the monopole vibration
state was assumed. In fact, the precise wave function for 4He(0+

2 ) we used has a very extended
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Fig. 5. (a) The calculated scattering wave functions (multiplied by R) for the elastic and inelastic channels on
the resonance energy Ec.m. = 19.45 MeV for L = 0. The wave functions in the elastic channel in the vicinity
of the resonance energy show the drastic changes of the number of the nodes and the nodal position below (b)
and above (c) the resonance energy.

N + 3N cluster structure, which is essential in causing a strong coupling between the α + α and the
α + α∗ channels.

In Fig. 6 the energy levels with the α + α and the α + α∗ cluster structure obtained in the present
calculations are compared with the experimental energy levels and the energy levels calculated using
the tensor-optimized shell model (TOSM) with the AV8’ force and the Minnesota force [81] and the
Monte Carlo calculations [82]. The present calculation reproduces not only the experimental energy
levels of the ground band but also the highly excited 0+

2 and 2+
2 states well. On the other hand, the

shell model calculations locate the first excited 0+ state considerably lower than the experimental
energy level. Although the structure of this 0+ state is not discussed in Ref. [81], it could correspond
to the 0+ state with the α + α∗ cluster structure if the shell model space is enlarged sufficiently. In
the ab initio calculations, Wiringa et al. [82] got no highly excited J = 0+, 2+ states with T = 0
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Fig. 6. The energy levels of 8Be of the experimental data [58], the present coupled channels α cluster model
calculations and the tensor-optimized shell model calculations [81], TOSM (a) with the AV8’ force and TOSM
(b) with the Minnesota force, and (c) variational Monte Carlo calculation and (d) Green’s function Monte
Carlo calculation[82], are compared.

in the Green’s function Monte Carlo calculations and a 0+
2 at 28.62 MeV in the variational Monte

Carlo calculations, which is far from the experimental 0+
2 state.

The rotational constant k = �
2/2J = 0.25 MeV, with J being the moment of inertia, of the

α + α∗ cluster band estimated from the experimental states shows that the moment of inertia of the
band is about twice as large as that of the ground band with k = 0.57 MeV. This large moment of
inertia is reasonable considering that the α∗ has a very extended N + 3N cluster structure, as seen in
Fig. 5(a), where the wave function of the 0+

2 state is extremely extended up to more than 8 fm with
the dilute density distribution compared with the α + α cluster structure of the ground state 0+. We
note that this band is very similar in extended nature to the K = 0+

2 band with k = 0.28 built on the
Hoyle state at 7.65 MeV in 12C [73,83] and the K = 0+ band at 16.7 MeV in 16O with very large
moment of inertia, k = 0.064 MeV in Ref. [84] and k = 0.095 ± 0.020 MeV in Ref. [85] with the
dilute α+12C (0+

2 ; 7.65 MeV) structure [22,86].
The present α + α∗ cluster picture of the second 0+ state seems to be supported in a microscopic

three-cluster model calculation in Ref. [87], which locates a 0+
2 state located at 1.44 MeV above the

p+ 7Li threshold (18.254 MeV), although its cluster character is not discussed in detail. The present
results make an impact on the cluster structure study in nuclei by reinforcing the importance of the
concept of core excitation in the lightest nuclei, which has been known in medium-weight and heavy
nuclei. Also, as for the 7Be(n,4He)4He reaction, it would be intriguing to investigate the incident
energy dependence of the cross sections including the coupling to the α + α∗ channel at 20.2 MeV
of 8Be.

5. Conclusion

We have studied the α + α∗ cluster structure at the highly excited energy in 8Be in the coupled-
channel calculations using the double-folding model derived from the precise cluster wave function
for the first excited state of 4He(0+

2 ). We found that the well-developed core-excited α+α∗ structure
appears near the α+α∗ threshold as a closed channel resonance (Feshbach resonance) for L = 0 and
a molecular resonance for L = 2 which correspond to the experimental states at Ex = 20.20 MeV
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and Ex = 22.24 MeV in 8Be, respectively. The present coupled-channel cluster model approach,
which has been powerful for the cluster structure study with core excitation such as the α+40Ca∗(0+

2 )
[24], α+16O∗(0+

2 ) [23] and α+12C∗(0+
2 ) [22] systems, is again found to be powerful for the lightest

prototype α + α∗ cluster structure with α-core excitation in 8Be.
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