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4D to general even dimensions with the signature (2n — 1, 1). In the original BM-theory in D = (3, 1),
the conventional Einstein equation emerges from a theory based on the vector-spinor field y, from a
lagrangian free of both the fundamental metric g, and the vierbein e,™. We first improve the original
BM-formulation by introducing a compensator y, so that the resulting theory has manifest invariance

gi{:fﬁ;gibowe” theory under the nilpotent local fermionic symmetry: .y = D, € and 8¢ x = —€. We next generalize it to D =
Vector-spinor (2n — 1, 1), following the same principle based on a lagrangian free of fundamental metric or vielbein
Tensors-spinors now with the field content (¥;u;....n_1> @p"*s Xpuq-pun_)» Where ¥y (OF Xpqoopeyp) is @ (n—1) (or
Metric-less formulation (n — 2)) rank tensor-spinor. Our action is shown to produce the Ricci-flat Einstein equation in arbitrary
Einstein equation D = (2n—1,1) space-time dimensions.

Even space-time dimensions © 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In late 1970’s, Bars and MacDowell (BM) presented an interesting re-formulation of the general relativity by A. Einstein, based on a
purely vector-spinor field ¥, in four-dimensions (4D) [1]. Its action has only two fundamental fields: a vector-spinor v, and a Lorentz
connection @, ". The v, is a Majorana vector-spinor similar to the spin-3/2 field used in supergravity [2]. In other words, neither the
fundamental metric g,, nor the vierbein e,™ is present in the basic lagrangian. Interestingly enough, upon using reasonable ansitze,
the v, -field equation yields the conventional Einstein field equation, as desired. The basic philosophy behind the result in [1] is that a
vector-spinor 1, is more fundamental than the metric g, or vierbein e, ™, that controls the ‘geometry of space-time’.

The action of BM-theory 14(10) =/ d*x Lflo) has the very simple lagrangian [1]?

0 i - 0 v i N 0
) =~ e (R ys Ry ) = = £ (§, ysyistn) Rps™ (1.1)

where R, and R,;"* are the field-strengths of ¥, and w,"™:

ng)) = (3,1L1/fv - %wursyrs‘/fv) —(wovy=Dyyy —Dyiy (1.2a)
R =0,0," — 8y0, " + 0, o’ — oy oud (1.2b)

Most importantly, there is neither metric g, nor vierbein e,™ introduced to define the lagrangian L‘fto) [1].
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As will be explained in section 2, the field-equations of v, and w," in (2.1) are satisfied by the peculiar ansdtze (2.2), based on the
covariantly-constant Majorana-spinor 6. Under these ansitze, the field equations of v, and w," are reduced to the Ricci-flat equation
Ruv(e) = 0,2 ie., the Einstein equation in vacuum with the torsion-free Lorentz connection in general relativity.

The original BM-formulation [1] seems to work only in 4D, and therefore our 4D space-time is uniquely singled out. This is because of
the combination of the totally antisymmetric 4th rank constant tensor €#"??, multiplied by the bilinear form of the 2nd-rank gravitino
field-strength Rﬁ)&. One possible generalization is to increase the rank of the vector-spinor v, to a tensor-spinor ;... (n>2). But we
are discouraged to do so, due to the common problem of the consistency with higher-rank spinors [3][4]. Even for a vector-spinor v,
supergravity [2] theory is supposed to be the only consistent interacting system. It is nowadays a common notion [5][6] that unless we
introduce infinite tower of massive higher spins as in (super)string theory [7], no higher-spin fields can interact consistently.

However, in our recent paper on supersymmetric BF-theories in diverse dimensions [8], we consider systems with higher-rank tensor-
spinor vy,,....,, Without inconsistency. Our system is also shown to embed integrable models in lower dimensions, such as super KP
systems. This example indicates that such higher-rank tensor can exist consistently even with consistent non-trivial interactions.

In the original BM-theory [1], there is also a technical weak point. It is related to the invariance of the action Iflo) under the ‘gradient’
symmetry: 8¢y, = D, €. We will improve this point in the next section by introducing the Proca-Stéckelberg-type [9] compensator field y,
such that our improved action is invariant under the symmetry d.. Since 8¢, = D€ is regarded as nilpotent local fermionic symmetry
[10][11][12][13][14], the original BM-theory [1] can be re-interpreted as nothing but an application of nilpotent local fermionic symmetry.

In our present paper, we will also accomplish the generalization of the original BM-theory [1] into general even dimensions D = 2n

2n—1
——
with the signature 2n —1,1) = (+, +,---, +.-), with the manifest action-invariance under the tensor-spinor symmetry: 8¢V ,...u_; =

(n —1)Dyy, €0 p1_11- Our lagrangian in D = 2n has only three fields ¥,...u,_,» @u™ and xu,...u,_,» Where the 1st and the last fields are
Majorana-spinors, with a possible additional index for the 2 of Sp(2), depending on D = (2n —1, 1).

2. An improved action with invariance

In the BM-formulation with the lagrangian (1.1) [1], there are only two fundamental fields ¥, and w, ", whose field equations are [1]

8[,(0) )
W“ =— "™ (ysyrsy)Rpe ™ =0, (21)
"
(0)
8L , _ )
st == 4T @uysvisRipg) 0. (21b)
"

Note that neither the metric g;,, nor the vierbein e;,™ is involved in these field equations.
These field equations are solved under the following ansitze [1]*

Y = (V) =e " (ymb) , Dub =0, (2.2)

where e, ™ is the conventional vierbein. The Majorana-spinor 6 resembles the fermionic coordinates in superspace [15], but the difference
is that it is a covariantly-constant spinor [1], as (2.2) shows. First of all, (2.1b) implies that

iehvPo (auySVrsRﬁ)og) N (§y5yvyrsyt9) Tp(rt
< 2e(00) (Trsh + 2e " Tg)) +ie@ys0) €rs™ (Teu + 261" Tuy) 0
= Tl +2eH Ty £ 0 = Tpu' =0, (2.3)

*

where Tp, = Tr". The last equation in (2.3) is obtained by taking the trace of the 1st equation in (2.3) via T, = 0. We also regard two
sectors (A9) and i(6ys) as two independent sectors, but they are mutually consistent. This implies that wps(e) = (1/2)(Cmrs — Cinsr —
Crsm) with Cy," = 20,e.)". In our present paper, we do not regard the torsion-freedom T " Z 0 as one of the ansitze, but it is implied
by the w-field equation under the other ansdtze (2.2).

Second, the Riemann tensor in (2.1a) is now Ry, (w(e)) = Ry,"*(e), satisfying the Bianchi identity Rymrs)'(e) =0 and Rpnrs(e) =
Rrsmn(e). Using this identity and the ansdtze (2.2), we see that the Ricci-flatness (or Einstein equation in empty space-time):

i€ (Vs Vis¥n)Roo™ (@) = +4e(¥"0) [Ryuv(e) — 1guvR(@)] =0 . (2.4)

In the ansdtze (2.2), the vierbein e,™ is introduced, not as the basic fundamental field in the theory, but is defined by the no-fermion
background-state |B) and one-fermion state |B, o) as (Blwﬂﬁ\B,a) :eﬂm(ym)aﬂ [1].

As has been mentioned, a weak-point in this original BM-theory [1] is the lack of action-invariance principle. For example, the la-
grangian £4(10) in (1.1) is not invariant under the proper vector-spinor transformation ¢, = D, €, because SSRW(O) =1/ (yrs€R"™ #
0. To improve this point, we replace the bare v, -field in (1.1) by the field-strength of the Proca-Stiickelberg field x [9], following tensor-
hierarchy formulations [16][17] or our previous work on nilpotent local fermionic symmetry [10][11][12][13][14]. To be more specific, we
introduce a Proca-Stiickelberg compensator field x [9] in its modified field strength

Pu=Dux+vu (2.5)

3 The symbol = stands for a field equation.
4 We use the symbol = for an ansatz, in order to reproduce conventional general relativity.
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which is invariant: 8P, =0 under the infinitesimal local fermionic symmetry

Sep=Dp€, dex=—€. (2.6)
The P, and the modified R, satisfy their Bianchi identities
DyPo= - =R + 1R 2.7
nwPv = ZR[LI) s Ruww=Ruy+ 7R " VrsX) (2.7a)
1
D Rup) = ZRipuv” (rsPipy) - (2.7b)

In other words, we can simply replace v, everywhere in the original BM-theory by P, to make the improved action I4 = [ d*x L4
invariant under (2.6). Namely, the lagrangian (1.1) is improved to

L4= %6”’”’00 (ﬁ,w Vs Rp(f) = %lepﬂ (511 J/SVrst) Rpe" (@) . (2.8)

As usual [9], the compensator x is gauged away by the use of (2.6), and there is no essential effect in physical degrees of freedom. For
example, the new y-field equation is a sufficient condition of the v -field equation. However, the important mission of y is to make the
modified action I4 = f d*x £4 manifestly invariant under &c.

Note that the previous procedure of getting the Ricci-flatness equation Ryn(e) = 0 is not affected by the modification of Yy to Py,
because we can always require x = 0 as an additional ansatz to (2.2).
Accordingly, the original ansdtze (2.2) is modified to

*

Py =) =e, " (ym0) , Dub =0, x

The BM-theory [1] has neither metric nor vierbein, but it is induced out of the vector-spinor v, or P, by the relationship [1]

0. (2.9)

PuPv) =—00) 8| gassical = — v (2.10)

under the ansatz P, = e (Ym0).
The fermionic generators Q. for our local transformation ¢ in (2.6) satisfy the nilpotent anti-commutator:

{Qu, Qp}=0. (211)

In other words, our modified BM-theory of [1] is noting but an example of many other previously-established nilpotent local fermionic
theories [10][11][12][13][14]. In our generalization to D = (2n — 1, 1), we will use the modified field-strength P17 of the higher-rank
generalization of the compensator x—2;.

3. The Lagrangian in general D=(2n—-1,1)

As has been stated, the field content of our system is (Y17, ">, Xin—21).> Accordingly, we have to define the generalized ys-tensor
Yan+1, as described in the Appendix. Our action is I, = fdznx Lon with

"en ooy 5
Lan=="m2 € (Rinyont1 Reny) (3.13)
i" ey n—11n-11'nv (5 rs
= +8[ m—1)I]2 € (P[n—l]V2n+1VrSP[n—lj’) Ruv™ (3.1b)

where the constant ¢, depends on D =(2n—1,1) as

o +1 (n=4(mod4)) ,

(3.2)
—1  (n#4(mod4)) ,

associated with the flipping property explained in Appendix. The €[?" is the 2n-th rank totally antisymmetric constant tensor in D =
(2n —1, 1), while the field-strengths of ;1] and xp—2; are defined by

Rpuspize-pin =+ 1Dy pageopn) + g0 = DRupig) " Vs Xipisepua)) - (3.3a)
Pra-pnos =+ 0= DDy Xy ptn11 MV pigepiny (3.3b)
satisfying their Bianchi identities
_ 1
Dy Rz pngr1 =+ §nR[//-1Mz\rs()/rsplm»--unﬂ]) ) (3.4a)
1
Dy Puyeopin) =+ HRMI"'V«n . (3.4b)

5 The symbol [n] stands for totally antisymmetric n space-time indices: [n] = [;1;--u], in order to save space.
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Egs. (3.3) and (3.4) with generalized Chern-Simons terms follow the same pattern as the general tensor-hierarchy formulations [16][17],
even though the latter have been developed only for bosonic fields.

As in general tensor-hierarchy formulation [16][17], the ¥ and y-fields have their proper gauge-symmetries. In particular, x[—2; itself
is also a tensor with its own gauge symmetry:

ey opn_g =M = DD €pyenpin_q] (3.5a)
Se X1 pns = — €pgopin_s > (3.5b)
SnVpteptn = — %(” = 1) = 2)Rypy )" WMz pn_11) (3.6a)
X pins =+ (0= 2)Dpi Npyoopin_s] - (3.6b)

In the previous case of 4D with n =2, the x-field was not a gauge field lacking its proper gauge symmetry. Relevantly, the field strengths
R and P are invariant under 8¢ and &y:

8¢Rmj=0, 8Ppn-1=0, (3.7a)
STIR[M =0, 5,777[,1,]] =0. (3.7b)
The field equations for ¥, w and x are
8[:211 n+1 . -1 17 .

Wir) e Y (an 1 Vs Pin-1p) Rin™ =0 (3:82)
8Lon __ i ein=11nl 5 Vans1VrsRim) =0 (3.8b)
aw,urs 2n[(n—1)! ]2 [n—1]1/2n41 Vrs/~[n] 5 .
8L 8L

M o (n—1)D, [ —2—) =o0. (3.8¢)

S Xin—21 pln—2]

4. Our action yields Einstein equations in D=(2n-1,1)

The ansitze we need for the action Iy, to yield the conventional Einstein equation (Ricci-flat equation in vacuum) are the generalization
of (2.9):

PM]"'Mn—l = (ylll"'ll«n—le) = emrl "'eunrn (VF1~~~fn9) ’ (4.1a)
D0 =0, Xma =0. (4.1b)

The satisfaction of w-field equation (3.8b) works in a fashion parallel to the n =2 case. First, (4.1b) and (3.3a) imply that

Ropr-opn = nDyu, [e“2t28ﬂ3t3 : "eﬂn]tn(yfz“'fn@)] = %n(n = DTy 1) Velpzon1®) (4.2)
so that our w-field equation (3.8b) is equivalent to
(g)’m[n_zluvyrsyw[n—Z]@) Tu" =0 . (4.3)

We used here the Hodge-duality (A.2) in Appendix for the y2,41. Note also that once we have introduced the vielbein e,™ in (4.1), we
can freely change the world-indices u, v, -- into local Lorentz-indices m, n, --.

Second, our next objective is to show that the equation Trs! = 0 comes out as the necessary condition of the w-field equation under
the ansdtze. To this end, we note that among many possible y-matrix terms, only

©@y"P9)£0 (p=0,3,4,7,8,---), (4.4)

survive, while all others are zero [18]. The lemma considerably simplifies (4.3). First of all the number of y-matrices sandwiched by the
6’s in (4.3) are at most six, while we have to consider only (9y°19), (@y319) and (@y#19). Moreover, (6y319) is impossible, due to the
even number of y-matrices sandwiched.

Since we can regard the two groups of terms: (@y'%16) and (@y!46) as independent, if the former groups imply that T, = 0, then
the latter group of terms vanish, because they are all proportional to Ty’

We concentrate on the (y[919)—terms. We recast the y-matrix part of (4.3) into

ym[n—ZJuvyrsyW[n_ZJ (4.5a)
= (=D)"y™ M sy 21yw — (D" = 2y ™Y sy sy (4.5b)
= +(=D" M2y Y vw + A=D1 = 2)Y ™ g Y sy v

— (D" =2y MY sy — (=DM = 2)@0 = 3)y g " Y g yw (4.50)

From (4.5a) to (4.5b), we have separated yy, from yp—2jw into ypm—21yYw. from (4.5b) to (4.5c), we commuted y;s with or yp—3;.
At this stage, it is easy to see that only the 1st-term in (4.5c) contributes to %, while all the remaining three terms do not produce
the y[%-term. In fact, the 2nd-term of (4.5c) has the anti-symmetrized indices [rs] and [muv], so it has the two irreducible terms:

4
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(¢ Vrsmuv + 775[r[mj/s]”” )Yw (4.6)

where the constants £ and 1 depend on the dimensionality D = (2n — 1, 1). For example, there is no structure like S[T[més]“y"], because
there arises no term like ! out of y™[ " 314V}, ,—3). Hence, there is no way to produce a y% after multiplying the parentheses in
(4.6) with yw.

Similarly, the 3rd term in (4.5¢) is proportional to y™"“¥y,y,,, which can produce only Y8, 3 and y[2! but no y!%-term. Finally,
the 4th term in (4.5¢) is also similar, because it has the irreducible terms

£ yrsmwuv + n/ 8[r[mys]wu1/] (4.7)
without any y[9-term.
Eventually, the w-field equation is reduced to (4.5c) only with its 1st term, which is easy to evaluate:
(gym[n72]uvyrsyw[n72]9) Tqu ’y(O)
==D"@Y™ Y Y2 Vs yw®) Tun™ | o)
:(_1)n+(n—2)(n—3)/2 ((Znn_—13))!! (g)/muv)/rs)/we) Tuvw|y(0)
=(—1)Hm2DO2 28 G) (Trs™ +2"Ts)) =0 = Ty =0 . (4.8)

All terms left over contain Ty linearly, so they vanish as necessary condition of the solution T,s! = 0. Most importantly, the torsion-

freedom T,' =0 is the unique result of our w-field equation, but it is not required from outside, unlike our other ansitze. No other
solution with Tp," # 0 to our w-field equation (3.8b) is possible under (4.1).

The satisfaction of the y-field equation (3.8c) is the necessary condition of the -field equation (3.8a) with ansdtze (4.1), because the
former is given by a divergence of the latter equation (3.8a). So, we skip its confirmation.

The satisfaction of the v -field equation is highly non-trivial. First of all, since we have confirmed T,s{ = 0, we can restrict wy," to be
wy"(e). Accordingly, we can use the Bianchi identity Rynrs)'(€) =0, Rmrst(€) = Rmr(e) and Ryrsj(e) =0.

After substituting the ansatz (4.2) for R and w," ; " (e) into (3.8a), the original y-field equation is equivalent to
G[n_l][n_]]MV(V2n+1Vrs)’[n—l]’g)R;wrS 0 = (yrsym1m2~~-mn,1tug)Rwrs Z0. (4.9)

If we multiply (4.9) by the gamma-matrix y™2 ™ -1 from the left, we get

Vin—21Vesy ™M 210 RS 20, (4.10)

as the necessary condition of our ¥ -field equation upon our ansdtze (4.1). Note that the index m; in (4.9) is still a free index after the
multiplication, as symbolized by m in (4.10). There are only five free-indices r, s, m, ¢, u on the y-matrices in (4.10) that give only three
irreducible structures:

Yin—21Vrs ym[an]tu = Eﬂyrsmtu + TIHS[r[mVs]m] + f”fs[r[mas]tyu] . (411)
As before, the constants £§”, n” and ¢” depend on n of D = (2n — 1, 1). Using (4.11) in (4.10), we get

0 2 (Epr + i sy 4 5, M55 ) 0 Reu" o)
1 *
=—2¢"(y'0) [Rmt<e> - EnmfR(@} =—2"('0) Gm(e) = (¥°0)Grs(e) =0, (412)

where Gys(e) = Rys(e) — (1/2)nsR(e) is the Einstein tensor. The terms with n” do not contribute, because of the Bianchi identities
R[rst]u(e) =0 and R[rs] (6) =0.
In the last step in (4.12), we implicitly assumed that ¢” # 0. This can be explicitly confirmed for general n > 2, by multiplying (4.11)
by 8m"8:*yu1. To be more specific, we get
¢ = (-)DOmD2 ACEERS m=2) (4:13)
and therefore ¢” #0 for n > 2.
The proof of Gys(e) = 0 from (4.12) is as follows: We multiply (4.12) by (@) to get

0 = @) (¥°0) Grs(e) = (0y+7°0) Grs(e) = (00) Gre(e) => Grs =0 (QED.) (4.14)

The above method is simple, but started with the multiplication of our y-field equation (3.1a) by y™2"™-1 from the left. So, the final
condition (4.12) may be too strong. There is a direct way of proving the satisfaction of our r-field equation.

EM]-.~/Ln—1ln—1]pU ()/2n_"_l yTSP[n—”) Rp()'rs ;eﬂln.ﬂn—l[n—l]pﬂ (VZH+1 yrsy[n_ue) Rp(TI’S(e) ; 0 (4-1 53)
e +(Vm1 TMn-1tU J/rse)RturS (e)
— 22— 1) almy, el gy memet o RS o) (4.15b)

= +4(y™ " "™-1ID,(e), Ds(e)]0)

— 220 )BT (1Y T | Ry (e) 20 (415¢)
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From (4.15a) to (4.15b), we commuted y;s with y["~1. From (4.15b) to (4.15c), we have used [D:(e), Ds(e)] = (1/4)R;s“(e) yty. Fortu-
nately, each of the terms in (4.15c) vanishes, because of the ansatz Dy (e) 6 Z 0, and the Bianchi identities Rirtu)®(e) =0 and Ryyr(e) =0.
This shows that R;s(e) = 0 is the sufficient condition of our v -field equation under the ansitze (4.1).

Some readers may question, where the condition R;s(e) = 0 emerges explicitly in the method above. Actually, the ansatz D MG 0
in (4.2) implies R;s(e) Z 0, as the necessary condition of D0 Z 0. Consider the commutator

[Du(e), Dy(©)]0 = J (¥ Ry =0 = (¥st0) Rmr™(€) =0 . (4.16)
Similar to (4.12) through (4.14), we multiply (4.16) by (6),") to get
@y u"Vst0) Rmr™ (€) = —2(80)Rmu(e) =0 == Rg(e) =0 . (417)

Here again, we used (5)/[2]0) X0 and Rmprst) = 0.

We can re-confirm our result from a different viewpoint. We can answer the question whether Ryn(e) = 0 is the only non-trivial
solution other than R,,"*(e) = 0 under (4.1). A short answer is in the affirmative, because we have confirmed that Einstein space-time is
the necessary condition of our y-field equation (3.8a) under (4.1), except for the flat space-time R;,,"*(e) Zo.

A long answer is as follows: The question is whether the condition

[Dy(e), Dy (e)10 = 1Rps"(€)(¥rs0) =0 (4.18)

allows non-trivial space-time other than the flat one: Ry," (e) Z 0. Mathematically, this question is very difficult to answer, because we
have to categorize all possible Riemann or Weyl curvature tensors in D = (2n—1,1) [19].

However, we can rely on a much simpler and empirical method in physics. Consider a possible Kaluza-Klein type simple dimensional-
reduction [20] of (4.18) in D =(2n —1,1) into D = (3, 1). From our experience with surviving supersymmetries in D = (3, 1) [21], we
know that for a D = (3, 1) space-time with a covariantly-constant spinor €, there is non-trivial curved space-time background. Since the
D = (3,1) part of the original Riemann tensor in (4.18) is non-zero, the original Riemann tensor in D = (2n — 1,1) has corresponding
non-vanishing components. In other words, we know empirically that the equation such as (4.18) has solutions with curved space-times in
D =(2n—1,1) with R;,,"(e) #0, but Ry, (e) Z 0 as desired.

We have thus confirmed that an Einstein space-time Gs(e) Z 0 in vacuum (or Ricc-flat space-time) is the necessary condition of our
y-field equation (3.8a) under the ansatze (4.1), other than the flat space-time R;,"(e) Z 0. We can conclude that our y-field equation
(3.8a) yields uniquely the Einstein space-time with G.s(e) = 0 under our ansitze (4.1) in D = (2n— 1, 1), other than the trivial flat space-
time Rys'(e) = 0. It is not far-fetched to conclude that (n — 1)-th rank tensor-spinor Ym—1; is more fundamental than the geometrical
metrics or vielbeins in general D = (2n —1, 1).

Some readers may wonder, what is the relationship corresponding to (2.10), i.e., how to define the metric g, in terms of tensor-spinor
WYyy--pun_q - TO this end, consider the n=3, D = (5, 1) case. For example, relating (ﬁme) to guy by®

87 PupPus) = — OVupyvP0) =500) gy (4.19)

does not work, because the most left-side needs the inverse metric g#?, and therefore, it does not define the metric in terms of v,
in a closed form. However, we can still solve (4.19) perturbatively for the metric as in quantum gravity. Defining g, = nyv + hyy and
gtV =nt¥ —h*Y + h*Ph,Y + O(h3) into (4.19), we can get the perturbative solution for hyy:

huy 00) = + XXupv” — 26Mu0X00?? (4.20)

where X,y po is defined by

Xuv.po = (PuvPpo) — 20pulvie (00) . (4.21)

In other words, we can express hy, in terms of P, at least perturbatively. Even though this is not a closed form, still our fundamental
field v, (or Pyy) defines the metric g,,. This is not limited to the special n =3 case, but we can get similar perturbative expressions
also for any arbitrary n=2, 3, 4, ---

5. Concluding remarks

In this paper, we have accomplished two major objectives: First, we introduced the compensator field x in D = (3, 1), so that the total
action of the original BM-theory [1] becomes invariant under the nilpotent local fermionic symmetry 8¢, = Dy € and ¢ x = —¢. In other
words, the original BM-theory [1] is re-interpreted as another example of local nilpotent fermionic symmetry [10][11][13][12][14].

The 2nd one is the generalization of the original theory [1] with the compensator y in D = (3, 1) to general space-time D = (2n—1,1).
For this generalization, both the recent developments in tensor-hierarchy formulation [16][17] and nilpotent local fermionic symmetry
formulations [10][11][13][13][12][14] played significant roles. The tensor-hierarchy formulation [16][17] is usually for bosonic fields, but
now it is applied to the tensor-spinor v¥;—1; combined with the compensator spinor xp—z;.

In the past, the importance of nilpotent local fermionic symmetry never drew enough attention. The reason is that the vanishing poor-
looking anti-commutator such as (2.11) does not seem to produce any significant interactions, at least, compared with supersymmetry or

6 There is no term like (y[419) because of the reason already explained with (4.5).
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supergravity [22]. We keep showing that that is not the case in our past papers [10][11][12][13][14]. In the present paper, we have shown
yet another important application of nilpotent local fermionic symmetry in terms of BM-theory [1] generalized to D = (2n — 1, 1) without
basic vielbeins.

We stress that the success of our formulation in this paper is based on the peculiar combination of both nilpotent fermionic symmetry
formulations [10][11][12]{13][14] and tensor-hierarchy formulations [16][17]. Our postulate for the gamma-matrix analysis (4.5) through
(4.7) and (4.11) also played a technically significant role. Without any of these formulations and techniques, our theory would not be
successful in such a straightforward way as in the present paper.

The original BM-theory was presented in late 1970’s [1]. There are four main reasons for the delayed development afterwards. First, the
tensor-hierarchy formulation [16][17] is the foundation of our present theory, in particular, for the invariance of our action I,; under two
distinct symmetries 8¢ and §; in (3.5) for ¥p—17 and x[n—2). In the original BM-formulation [1], the invariance of Iflo) was obscure. Second,
the categorization of all fermions in general even dimensional space-time is possible, thanks to the systematic analyses in [23][24]. This
is merely a technical point, but it still plays an important practical role in our formulation. Third, the non-trivial and crucial y -matrix
algebra, such as (4.5), (4.6), (4.7) and (4.11) in general D = (2n — 1, 1) was hard to handle. Fourth, the method (4.17) is very decisive for
our analysis, which does not seem well-known for general D = (2n — 1, 1) dimensions, even though a similar method works in Euclidian
space as (4.18).

We have not introduced a separate action for ‘matter’ fields in our formulation. However, our higher-dimensional Einstein field equa-
tion Eﬂa 207 in D= (2n — 1,1) creates Yang-Mills field equations, or o-model type scalar-field equations, out of simple dimensional
reductions [20]. Consider a simple dimensional-reduction [20] from D = (2n — 1, 1) into D = (3, 1) with the metric-tensor reduction

~ N[ 8uv —4ALYAYY —2Aup
(&) = ( on s ) (51)
For simplicity, we truncated scalar fields from the extra dimensions. The indices x, v, - =0, 1, 2, 3 are for D = (3, 1), while «, g, - = 1,. -,

2n—4 are for the extra D = (2n — 4, 0) compact dimensions. Correspondingly, the D = (3.1)-components of the Einstein equation yields

6uv@ =+Gpv(e) +2F,upavaa - %g/w(Fp(ra)z =0. (5.2)

This is nothing but the Einstein equation with the vector-fields A,* in D = (3, 1). Even though this mechanism covers only bosonic fields,
such as the vector fields and o-model scalar fields, we expect that fermionic fields may well be produced by a certain lagrangians that
contain neither metric nor vielbeins in the future.

An important aspect of our formulation is that the conventional metric and vielbein emerge out of higher-rank tensor-spinor ¥;_1)
in D = (2n — 1, 1). This is because of the ansdtze (4.1) absorbing higher-rank tensor-indices. The introduction of such higher-rank tensor
spinors has been regularly avoided in the past, because of possible inconsistent interactions [3]. However, the combination of the recent
formulations of nilpotent local fermionic symmetries [10][11][12][13][14] and tensor-hierarchy formulation [16][17] has made it possible
to consider such a sophisticated theory of pure tensor-spinors as the more fundamental physical quantities than geometrical metrics and
vielbeins in general D = (2n — 1, 1) dimensions.

We acknowledge W. Siegel for stimulating discussions about covariantly-constant spinors.
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Appendix A. Spinors in D=(2n-1,1)

We give here the general properties of spinors in D = (2n — 1, 1). First, the e-tensor has the properties €922~ — 41 and

Lemmapn i €7 = — (=120 =) 8m, " - Sy 1 (A1)
Accordingly, the generalized ys-matrix is defined by
_ in+1 (2n]
Vo1 = o Yi2n - (A2)

The factor of the power of i is fixed by the normalization (y2n+1)2 =+I.

These properties are common to any D = (2n — 1, 1). However, the detailed structure of spinors depends on n. According to [23][24],
fermionic structures repeat every eight space-time dimensions. We need the Majorana spinor 6 with the normalization (66) = +1 in even
space-time dimensions. To this end, we have to require that such a bilinear without any gamma-matrix sandwiched is non-vanishing. To
this end, we categorize all even space-time dimensions higher than three into four cases: D =(3+8p,1), D=(5+8p,1), D=(7+38p, 1)
and D=9+8p,1) (p=0,1,2,---),in turn:

(i) D=(3+8p,1): In this case, spinors can be Majorana-spinors [23][24], because the condition s=3+8p, t=11ie, s—t=8p+ 2 in the
notation of [24]. The flipping and hermitian-conjugation properties of two Majorana spinors are

7 Only for the discussion of dimensional-reductions, we use the ‘Hat’-symbol for fields and indices in D = (2n — 1, 1), while no hat-symbols for fields and indices in
D =(3,1) as in [20].
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+(XV¥) (m=0), (a)

Gy =—()M VO Gy My = F —Gyty)  m=1) . (b) (A3)
-Xr*y) (m=2), ()

@y™T=+@y™y) . (A.3d)

In (A.3a) through (A.3c), only m =1, 2 and 3 cases are given as examples. Eq. (A.3a) is desirable to normalize (96) = +1, while (A.3b) im-

plies c244p = —1. Eq. (A.3) also means that ™Sy = — (¥ y"™), that is used in the confirmation of the equivalence between two expressions
in (3.1). Our lagrangian (3.1) is real and does not vanish with the imaginary unit ‘i’ in front, because of (A.3c) and (A.3d).

(ii) D=(5+8p,1): In this case, since s=5+8p, t=1, s—t=8p +4 as in [23][24], spinors can be symplectic Majorana-spinors [23][24],
carrying the indices A, B, - = 1, 2 for the 2 of Sp(1):

+(X*¥a) m=0), (a)

@Ay Mya) = (1M DO2RGAY My gy = § @Ay g m=1) . (b) (A4)
—Xy*ea) (m=2) ., (c)

Gy Myt =+@" Y™ ya) (A4d)

where the contractions of the indices 4, B, - are by the Sp(1) metric €48 = —e84 with €12 = +1, like (Y2y™Mya) =By ™xa).

Accordingly, we have (646,) = +1, and c3+8p = —1. Relevantly, y™syA4 = —(¥Ay™). Sometimes, we make the 2-indices implicit, like

(046,) = (09) = 1. Our lagrangian (3.1) is real and does not vanish, due to (A.4c) and (A.4d).

(iii) D=(7+8p,1): In this case, spinors can be pseudo-Majorana-spinors, because s —t = 8p + 6 [23][24]:

B ~xv)  m=0. (@
@y = (=" My) = 3 —~Gyty)  (m=1) . (b) (A.5)
+Xy"*'y) m=2), (o)
@yt =—=n"@y™y) . (A.5d)
Due to (A.5a), we have to introduce an 2-index of Sp(1), so that (6"6,) # 0, even though (66) = 0. Accordingly, c444p = +1. Also, due to
(A.5d), we have to introduce the imaginary unit. Eventually, the original condition (89) = +1 is modified to i(640,4) = +1. Eq. (A.5¢) also

implies that y"syA = —(y4y"). Our lagrangian (3.1) is real and does not vanish, due to (/4y 9+8p XA) = +Ay 9+8p¥a) because of the
2-index.

(iv) D=(9+8p,1): In this case, spinors can be Majorana-spinors, because s —t = 8p + 8 [23][24]. The flipping and hermitian-conjugation
properties are

B +(X¥) m=0, (a)
WyMy) = —(=1)Mm=Dm=220 Myy — 1 —Gryry) (m=1) . (b) (A.6)
~Xy"™y) m=2), (o)

W@yl =+@y™y) . (A6d)
Due to (A.6a), we can define (66) = +1. Our lagrangian (3.1) is real and does not vanish, due to (A.6¢c) and (A.6d).
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