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We present a purely tensor-spinor theory of gravity in arbitrary even D = 2n space-time dimensions. 
This is a generalization of the purely vector-spinor theory of gravitation by Bars and MacDowell (BM) in 
4D to general even dimensions with the signature (2n − 1, 1). In the original BM-theory in D = (3, 1), 
the conventional Einstein equation emerges from a theory based on the vector-spinor field ψμ from a 
lagrangian free of both the fundamental metric gμν and the vierbein eμ

m . We first improve the original 
BM-formulation by introducing a compensator χ , so that the resulting theory has manifest invariance 
under the nilpotent local fermionic symmetry: δεψ = Dμε and δεχ = −ε. We next generalize it to D =
(2n − 1, 1), following the same principle based on a lagrangian free of fundamental metric or vielbein 
now with the field content (ψμ1···μn−1 , ωμ

rs, χμ1···μn−2 ), where ψμ1 ···μn−1 (or χμ1···μn−2 ) is a (n − 1) (or 
(n − 2)) rank tensor-spinor. Our action is shown to produce the Ricci-flat Einstein equation in arbitrary 
D = (2n − 1, 1) space-time dimensions.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In late 1970’s, Bars and MacDowell (BM) presented an interesting re-formulation of the general relativity by A. Einstein, based on a 
purely vector-spinor field ψμ in four-dimensions (4D) [1]. Its action has only two fundamental fields: a vector-spinor ψμ and a Lorentz 
connection ωμ

rs . The ψμ is a Majorana vector-spinor similar to the spin-3/2 field used in supergravity [2]. In other words, neither the 
fundamental metric gμν nor the vierbein eμ

m is present in the basic lagrangian. Interestingly enough, upon using reasonable ansätze, 
the ψμ-field equation yields the conventional Einstein field equation, as desired. The basic philosophy behind the result in [1] is that a 
vector-spinor ψμ is more fundamental than the metric gμν or vierbein eμ

m , that controls the ‘geometry of space-time’.

The action of BM-theory I(0)
4 ≡ ∫

d4x L(0)
4 has the very simple lagrangian [1]2

L(0)
4 = − i

4εμνρσ
(
R(0)

μν γ5 R(0)
ρσ

) ∇= − i
8εμνρσ

(
ψμ γ5γrsψν

)
R(0)rs

ρσ , (1.1)

where Rμν and Rρσ
rs are the field-strengths of ψμ and ωμ

rs:

R(0)
μν ≡ (

∂μψν − 1
4ωμ

rsγrsψν

)
−(μ ↔ ν) ≡ Dμψν − Dνψμ , (1.2a)

Rμν
rs ≡∂μων

rs − ∂νωμ
rs + ωμ

rtωνt
s − ων

rtωμt
s . (1.2b)

Most importantly, there is neither metric gμν nor vierbein eμ
m introduced to define the lagrangian L(0)

4 [1].
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As will be explained in section 2, the field-equations of ψμ and ωμ
rs in (2.1) are satisfied by the peculiar ansätze (2.2), based on the 

covariantly-constant Majorana-spinor θ . Under these ansätze, the field equations of ψμ and ωμ
rs are reduced to the Ricci-flat equation 

Rμν(e)
.= 0,3 i.e., the Einstein equation in vacuum with the torsion-free Lorentz connection in general relativity.

The original BM-formulation [1] seems to work only in 4D, and therefore our 4D space-time is uniquely singled out. This is because of 
the combination of the totally antisymmetric 4th rank constant tensor εμνρσ , multiplied by the bilinear form of the 2nd-rank gravitino 
field-strength R(0)

μν . One possible generalization is to increase the rank of the vector-spinor ψμ to a tensor-spinor ψμ1···μn (n ≥ 2). But we 
are discouraged to do so, due to the common problem of the consistency with higher-rank spinors [3][4]. Even for a vector-spinor ψμ, 
supergravity [2] theory is supposed to be the only consistent interacting system. It is nowadays a common notion [5][6] that unless we 
introduce infinite tower of massive higher spins as in (super)string theory [7], no higher-spin fields can interact consistently.

However, in our recent paper on supersymmetric B F -theories in diverse dimensions [8], we consider systems with higher-rank tensor-
spinor ψμ1···μn without inconsistency. Our system is also shown to embed integrable models in lower dimensions, such as super KP 
systems. This example indicates that such higher-rank tensor can exist consistently even with consistent non-trivial interactions.

In the original BM-theory [1], there is also a technical weak point. It is related to the invariance of the action I(0)
4 under the ‘gradient’ 

symmetry: δεψμ = Dμε . We will improve this point in the next section by introducing the Proca-Stëckelberg-type [9] compensator field χ , 
such that our improved action is invariant under the symmetry δε . Since δεψμ = Dμε is regarded as nilpotent local fermionic symmetry 
[10][11][12][13][14], the original BM-theory [1] can be re-interpreted as nothing but an application of nilpotent local fermionic symmetry.

In our present paper, we will also accomplish the generalization of the original BM-theory [1] into general even dimensions D = 2n

with the signature (2n − 1, 1) = (

2n−1︷ ︸︸ ︷+,+, · · · ,+,−), with the manifest action-invariance under the tensor-spinor symmetry: δεψμ1···μn−1 =
(n − 1)D[μ1εμ2···μn−1] . Our lagrangian in D = 2n has only three fields ψμ1···μn−1 , ωμ

rs and χμ1···μn−2 , where the 1st and the last fields are 
Majorana-spinors, with a possible additional index for the 2 of Sp(2), depending on D = (2n − 1, 1).

2. An improved action with invariance

In the BM-formulation with the lagrangian (1.1) [1], there are only two fundamental fields ψμ and ωμ
rs , whose field equations are [1]

δL(0)
4

δψμ

= − i
4εμνρσ (γ5γrsψν)Rρσ

rs .= 0 , (2.1a)

δL(0)
4

δωμ
rs

= − i
4εμνρσ (ψνγ5γrsR(0)

ρσ )
.= 0 . (2.1b)

Note that neither the metric gμν nor the vierbein eμ
m is involved in these field equations.

These field equations are solved under the following ansätze [1]4

ψμ
∗= (γμθ) ≡ eμ

m(γmθ) , Dμθ
∗= 0 , (2.2)

where eμ
m is the conventional vierbein. The Majorana-spinor θ resembles the fermionic coordinates in superspace [15], but the difference 

is that it is a covariantly-constant spinor [1], as (2.2) shows. First of all, (2.1b) implies that

iεμνρσ (ψνγ5γrsR(0)
ρσ )

∗= + iεμνρσ (θγ5γνγrsγtθ) T ρσ
t

∗= 2e(θθ)
(
T rs

μ + 2e[rμTs]
) + ie(θγ5θ) εrs

tu (
T tu

μ + 2e[tμTu]
) ∗= 0

=⇒ T rs
μ + 2e[rμTs]

∗= 0 =⇒ T μν
r ∗= 0 , (2.3)

where Tm ≡ Tmr
r . The last equation in (2.3) is obtained by taking the trace of the 1st equation in (2.3) via Tm

.= 0. We also regard two 
sectors (θθ) and i(θγ5θ) as two independent sectors, but they are mutually consistent. This implies that ωmrs(e) ≡ (1/2)(Cmrs − Cmsr −
Crsm) with Cμν

r ≡ 2∂[μeν]r . In our present paper, we do not regard the torsion-freedom Tμν
r ∗= 0 as one of the ansätze, but it is implied

by the ω-field equation under the other ansätze (2.2).
Second, the Riemann tensor in (2.1a) is now Rμν

rs(ω(e)) ≡ Rμν
rs(e), satisfying the Bianchi identity R[mrs]t(e) ≡ 0 and Rmnrs(e) ≡

Rrsmn(e). Using this identity and the ansätze (2.2), we see that the Ricci-flatness (or Einstein equation in empty space-time):

iεμ
νρσ (γ5γrsψν)Rρσ

rs(e)
∗= + 4e(γ νθ)

[
Rμν(e) − 1

2 gμν R(e)
] .= 0 . (2.4)

In the ansätze (2.2), the vierbein eμ
m is introduced, not as the basic fundamental field in the theory, but is defined by the no-fermion 

background-state |B〉 and one-fermion state |B, α〉 as 〈B|ψμ
β |B, α〉 = eμ

m(γm)α
β [1].

As has been mentioned, a weak-point in this original BM-theory [1] is the lack of action-invariance principle. For example, the la-
grangian L(0)

4 in (1.1) is not invariant under the proper vector-spinor transformation δεψμ = Dμε , because δεRμν
(0) = (1/4)(γrsε)Rμν

rs 
=
0. To improve this point, we replace the bare ψμ-field in (1.1) by the field-strength of the Proca-Stückelberg field χ [9], following tensor-
hierarchy formulations [16][17] or our previous work on nilpotent local fermionic symmetry [10][11][12][13][14]. To be more specific, we 
introduce a Proca-Stückelberg compensator field χ [9] in its modified field strength

Pμ ≡ Dμχ + ψμ , (2.5)

3 The symbol .= stands for a field equation.
4 We use the symbol ∗= for an ansatz, in order to reproduce conventional general relativity.
2
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which is invariant: δεPμ = 0 under the infinitesimal local fermionic symmetry

δεψμ = Dμε , δεχ = −ε . (2.6)

The Pμ and the modified Rμν satisfy their Bianchi identities

D[μPν] ≡ 1

2
Rμν , Rμν ≡ R(0)

μν + 1
4 Rμν

rs(γrsχ) , (2.7a)

D[μRνρ] ≡ 1

4
R[μν|rs(γrsP|ρ]) . (2.7b)

In other words, we can simply replace ψμ everywhere in the original BM-theory by Pμ to make the improved action I4 ≡ ∫
d4x L4

invariant under (2.6). Namely, the lagrangian (1.1) is improved to

L4 = i
2εμνρσ

(
Rμν γ5 Rρσ

) ∇= i
2εμνρσ

(
Pμ γ5γrsPν

)
Rρσ

rs(ω) . (2.8)

As usual [9], the compensator χ is gauged away by the use of (2.6), and there is no essential effect in physical degrees of freedom. For 
example, the new χ -field equation is a sufficient condition of the ψ-field equation. However, the important mission of χ is to make the 
modified action I4 ≡ ∫

d4x L4 manifestly invariant under δε .

Note that the previous procedure of getting the Ricci-flatness equation Rmn(e)
∗= 0 is not affected by the modification of ψμ to Pμ , 

because we can always require χ ∗= 0 as an additional ansatz to (2.2).
Accordingly, the original ansätze (2.2) is modified to

Pμ
∗= (γμθ) ≡ eμ

m(γmθ) , Dμθ
∗= 0 , χ

∗= 0 . (2.9)

The BM-theory [1] has neither metric nor vierbein, but it is induced out of the vector-spinor ψμ or Pμ by the relationship [1]

(PμPν) = −(θθ) gμν

∣∣
classical

∗= − gμν (2.10)

under the ansatz Pμ
∗= eμ

m(γmθ).
The fermionic generators Q α for our local transformation δε in (2.6) satisfy the nilpotent anti-commutator:

{Q α, Q β} = 0 . (2.11)

In other words, our modified BM-theory of [1] is noting but an example of many other previously-established nilpotent local fermionic 
theories [10][11][12][13][14]. In our generalization to D = (2n − 1, 1), we will use the modified field-strength P[n−1] of the higher-rank 
generalization of the compensator χ[n−2] .

3. The Lagrangian in general D=(2n−1,1)

As has been stated, the field content of our system is (ψ[n−1], ωμ
rs, χ[n−2]).5 Accordingly, we have to define the generalized γ5-tensor 

γ2n+1, as described in the Appendix. Our action is I2n ≡ ∫
d2nx L2n with

L2n = − in+1cn

(n!)2
ε[n][n]′ (R[n]γ2n+1R[n]′

)
(3.1a)

= + in+1cn

8[ (n − 1)! ]2
ε[n−1][n−1]′μν

(
P [n−1]γ2n+1γrsP[n−1]′

)
Rμν

rs , (3.1b)

where the constant cn depends on D = (2n − 1, 1) as

cn =
{

+1 (n = 4 (mod 4)) ,

−1 (n 
= 4 (mod 4)) ,
(3.2)

associated with the flipping property explained in Appendix. The ε[2n] is the 2n-th rank totally antisymmetric constant tensor in D =
(2n − 1, 1), while the field-strengths of ψ[n−1] and χ[n−2] are defined by

Rμ1μ2···μn ≡ + nD[μ1ψμ2···μn] + 1
8 n(n − 1)R[μ1μ2|rs(γrsχ|μ3···μn]) . (3.3a)

Pμ1···μn−1 ≡ + (n − 1)D[μ1χμ2···μn−1] + m ψμ1···μn−1 , (3.3b)

satisfying their Bianchi identities

D[μ1Rμ2···μn+1] ≡ + 1
8 nR[μ1μ2|rs(γrsP|μ3···μn+1]) , (3.4a)

D[μ1Pμ2···μn] ≡ + 1

n
Rμ1···μn . (3.4b)

5 The symbol [n] stands for totally antisymmetric n space-time indices: [n] ≡ [μ1 ···μn], in order to save space.
3
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Eqs. (3.3) and (3.4) with generalized Chern-Simons terms follow the same pattern as the general tensor-hierarchy formulations [16][17], 
even though the latter have been developed only for bosonic fields.

As in general tensor-hierarchy formulation [16][17], the ψ and χ -fields have their proper gauge-symmetries. In particular, χ[n−2] itself 
is also a tensor with its own gauge symmetry:

δεψμ1···μn−1 =(n − 1)D[μ1εμ2···μn−1] (3.5a)

δεχμ1···μn−2 = − εμ1···μn−2 , (3.5b)

δηψμ1···μn−1 = − 1
8 (n − 1)(n − 2)R[μ1μ2|rs(γrsη|μ3···μn−1]) (3.6a)

δηχμ1···μn−2 = + (n − 2)D[μ1ημ2···μn−2] . (3.6b)

In the previous case of 4D with n = 2, the χ -field was not a gauge field lacking its proper gauge symmetry. Relevantly, the field strengths 
R and P are invariant under δε and δη:

δεR[n] = 0 , δεP[n−1] = 0 , (3.7a)

δηR[n] = 0 , δηP[n−1] = 0 . (3.7b)

The field equations for ψ, ω and χ are

δL2n

δψ [n−1]
= + in+1cn

4[(n−1)!]2 ε
[n−1][n−1]′μν(γ2n+1γrsP[n−1]′) Rμν

rs .= 0 , (3.8a)

δL2n

δωμ
rs

= − in+1cn
2n[(n−1)!]2 εμ[n−1][n](P [n−1]γ2n+1γrsR[n])

.= 0 , (3.8b)

δL2n

δχ[n−2]
= − (n − 1) Dρ

(
δL2n

δψρ[n−2]

)
.= 0 . (3.8c)

4. Our action yields Einstein equations in D=(2n−1,1)

The ansätze we need for the action I2n to yield the conventional Einstein equation (Ricci-flat equation in vacuum) are the generalization 
of (2.9):

Pμ1···μn−1

∗= (γμ1···μn−1θ) ≡ eμ1
r1 · · · eμn

rn (γr1···rnθ) , (4.1a)

Dμθ
∗= 0 , χ [n−2]

∗= 0 . (4.1b)

The satisfaction of ω-field equation (3.8b) works in a fashion parallel to the n = 2 case. First, (4.1b) and (3.3a) imply that

Rμ1···μn

∗= nD[μ1

[
eμ2

t2 eμ3
t3 · · · eμn]tn (γt2···tnθ)

] ∗= 1
2 n(n − 1)T [μ1μ2|t(γt|μ3···μn]θ) , (4.2)

so that our ω-field equation (3.8b) is equivalent to

(θγ m[n−2]uvγrsγw[n−2]θ) T uv
w ∗= 0 . (4.3)

We used here the Hodge-duality (A.2) in Appendix for the γ2n+1. Note also that once we have introduced the vielbein eμ
m in (4.1), we 

can freely change the world-indices μ, ν, ··· into local Lorentz-indices m, n, ···.
Second, our next objective is to show that the equation Trs

t ∗= 0 comes out as the necessary condition of the ω-field equation under 
the ansätze. To this end, we note that among many possible γ -matrix terms, only

(θγ [p]θ) 
= 0 (p = 0, 3, 4, 7, 8, · · · ) , (4.4)

survive, while all others are zero [18]. The lemma considerably simplifies (4.3). First of all the number of γ -matrices sandwiched by the 
θ ’s in (4.3) are at most six, while we have to consider only (θγ [0]θ), (θγ [3]θ) and (θγ [4]θ). Moreover, (θγ [3]θ) is impossible, due to the 
even number of γ -matrices sandwiched.

Since we can regard the two groups of terms: (θγ [0]θ) and (θγ [4]θ) as independent, if the former groups imply that Trs
t ∗= 0, then 

the latter group of terms vanish, because they are all proportional to Trs
t .

We concentrate on the (θγ [0]θ)−terms. We recast the γ -matrix part of (4.3) into

γ m[n−2]uvγrsγw[n−2] (4.5a)

= (−1)nγ m[n−2]uvγrsγ[n−2]γw − (−1)n(n − 2)γ m[n−3]wuvγrsγ[n−3]γw (4.5b)

= +(−1)nγ m[n−2]uvγ[n−2]γrsγw + 4(−1)n(n − 2)γ m[s|[n−3]uvγ|r][n−3]γw

− (−1)n(n − 2)γ m[n−3]wuvγ[n−3]γrsγw − (−1)n4(n − 2)(n − 3)γ m[s|[n−4]wuvγ|r][n−4]γw . (4.5c)

From (4.5a) to (4.5b), we have separated γw from γ[n−2]w into γ[n−2]γw . from (4.5b) to (4.5c), we commuted γrs with or γ[n−3] .
At this stage, it is easy to see that only the 1st-term in (4.5c) contributes to γ [0] , while all the remaining three terms do not produce 

the γ [0]-term. In fact, the 2nd-term of (4.5c) has the anti-symmetrized indices [rs] and [muv], so it has the two irreducible terms:
4
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( ξ γ rs
muv + η δ[r [mγ s]uv] )γw , (4.6)

where the constants ξ and η depend on the dimensionality D = (2n − 1, 1). For example, there is no structure like δ[r [mδs]uγ v] , because 
there arises no term like γ [1] out of γ m[s|[n−3]uvγ|r][n−3] . Hence, there is no way to produce a γ [0] after multiplying the parentheses in 
(4.6) with γw .

Similarly, the 3rd term in (4.5c) is proportional to γ mwuvγrsγw , which can produce only γ [6], γ [4] and γ [2] but no γ [0]-term. Finally, 
the 4th term in (4.5c) is also similar, because it has the irreducible terms

ξ ′ γ rs
mwuv + η′ δ[r [mγ s]wuv] (4.7)

without any γ [0]-term.
Eventually, the ω-field equation is reduced to (4.5c) only with its 1st term, which is easy to evaluate:

(θγ m[n−2]uvγrsγw[n−2]θ) T uv
w
∣∣
γ (0)

=(−1)n(θγ m[n−2]uvγ[n−2]γrsγwθ) T uv
w
∣∣
γ (0)

=(−1)n+(n−2)(n−3)/2 (2n−3)!
(n−1)! (θγ muvγrsγwθ) T uv

w
∣∣
γ (0)

=(−1)n+(n−2)(n−3)/2 2(2n−3)!
(n−1)! (θθ)

(
T rs

m + 2[rm Ts]
) ∗= 0 =⇒ T μν

r ∗= 0 . (4.8)

All terms left over contain Trs
t linearly, so they vanish as necessary condition of the solution Trs

t ∗= 0. Most importantly, the torsion-
freedom Trs

t ∗= 0 is the unique result of our ω-field equation, but it is not required from outside, unlike our other ansätze. No other 
solution with Tmn

r 
= 0 to our ω-field equation (3.8b) is possible under (4.1).
The satisfaction of the χ -field equation (3.8c) is the necessary condition of the ψ-field equation (3.8a) with ansätze (4.1), because the 

former is given by a divergence of the latter equation (3.8a). So, we skip its confirmation.
The satisfaction of the ψ-field equation is highly non-trivial. First of all, since we have confirmed Trs

t ∗= 0, we can restrict ωμ
rs to be 

ωμ
rs(e). Accordingly, we can use the Bianchi identity R[mrs]t(e) ≡ 0, Rmrst(e) ≡ Rstmr(e) and R[rs](e) ≡ 0.

After substituting the ansatz (4.2) for R and ωμ
rs ∗= ωμ

rs(e) into (3.8a), the original ψ-field equation is equivalent to

ε[n−1][n−1]′μν(γ2n+1γrsγ[n−1]′θ)Rμν
rs ∗= 0 =⇒ (γrsγ

m1m2···mn−1tuθ)Rtu
rs ∗= 0 . (4.9)

If we multiply (4.9) by the gamma-matrix γ m2···mn−1 from the left, we get

(γ[n−2]γrsγ
m[n−2]tuθ)Rtu

rs ∗= 0 , (4.10)

as the necessary condition of our ψ-field equation upon our ansätze (4.1). Note that the index m1 in (4.9) is still a free index after the 
multiplication, as symbolized by m in (4.10). There are only five free-indices r, s, m, t, u on the γ -matrices in (4.10) that give only three 
irreducible structures:

γ[n−2]γrsγ
m[n−2]tu = ξ ′′γ rs

mtu + η′′δ[r [mγ s]tu] + ζ ′′δ[r [mδs]tγ u] . (4.11)

As before, the constants ξ ′′, η′′ and ζ ′′ depend on n of D = (2n − 1, 1). Using (4.11) in (4.10), we get

0
∗=

(����ξ ′′γ rs
mtu +������

η′′δ[r [mγ s]tu] + ζ ′′δ[r [mδs]tγ u]) θ Rtu
rs(e)

= − 2
3 ζ ′′(γ tθ)

[
Rmt(e) − 1

2
ηmt R(e)

]
= − 2

3 ζ ′′(γ tθ) Gmt(e) =⇒ (γ sθ) Grs(e)
∗= 0 , (4.12)

where Grs(e) ≡ Rrs(e) − (1/2)ηrs R(e) is the Einstein tensor. The terms with η′′ do not contribute, because of the Bianchi identities 
R[rst]u(e) ≡ 0 and R[rs](e) ≡ 0.

In the last step in (4.12), we implicitly assumed that ζ ′′ 
= 0. This can be explicitly confirmed for general n ≥ 2, by multiplying (4.11)
by δ[mrδt

sγu] . To be more specific, we get

ζ ′′ = (−1)(n−1)(n−2)/2 3·(2n−2)!
(n−1)!(n−1)

(n ≥ 2) , (4.13)

and therefore ζ ′′ 
= 0 for n ≥ 2.
The proof of Grs(e)

∗= 0 from (4.12) is as follows: We multiply (4.12) by (θγt) to get

0
∗= (θγt)(γ

sθ) Grs(e) = (θγtγ
sθ) Grs(e) = (θθ) Grt(e) =⇒ Grs

∗= 0 (Q.E.D.) (4.14)

The above method is simple, but started with the multiplication of our ψ-field equation (3.1a) by γ m2···mn−1 from the left. So, the final 
condition (4.12) may be too strong. There is a direct way of proving the satisfaction of our ψ-field equation.

εμ1···μn−1[n−1]ρσ (γ2n+1γrsP[n−1]) Rρσ
rs ∗=εμ1···μn−1[n−1]ρσ (γ2n+1γrsγ[n−1]θ) Rρσ

rs(e)
∗= 0 (4.15a)

=⇒ +(γ m1···mn−1tuγrsθ)Rtu
rs(e)

− 2
[

2(n − 1) δs
[m1γ r

m1···mn−1]tu + 4δr
uγ m1···mn−1t

s

]
θ Rtu

rs(e) (4.15b)

= +4(γ m1···mn−1tu[Dr(e), Ds(e)] θ)

− 2
[

2
�����������(n − 1) δs

[m1γ r
m1···mn−1]tu +���������

4(−1)nδr
uγ s

m1···mn−1t
]
θ Rtu

rs(e)
∗= 0 . (4.15c)
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From (4.15a) to (4.15b), we commuted γrs with γ [n−1] . From (4.15b) to (4.15c), we have used [Dr(e), Ds(e)] = (1/4)Rrs
tu(e) γtu . Fortu-

nately, each of the terms in (4.15c) vanishes, because of the ansatz Dm(e) θ ∗= 0, and the Bianchi identities R[rtu]s(e) ≡ 0 and R[ur](e) ≡ 0. 
This shows that Rrs(e)

∗= 0 is the sufficient condition of our ψ-field equation under the ansätze (4.1).
Some readers may question, where the condition Rrs(e)

∗= 0 emerges explicitly in the method above. Actually, the ansatz Dμ(e) θ ∗= 0

in (4.2) implies Rrs(e)
∗= 0, as the necessary condition of Dμθ

∗= 0. Consider the commutator

[Dμ(e), Dν(e)] θ = 1
4 (γrsθ) Rμν

rs ∗= 0 =⇒ (γstθ) Rmr
st(e)

∗= 0 . (4.16)

Similar to (4.12) through (4.14), we multiply (4.16) by (θγu
r) to get

(θγ u
rγstθ)Rmr

st(e) = −2(θθ)Rmu(e)
∗= 0 =⇒ Rst(e)

∗= 0 . (4.17)

Here again, we used (θγ[2]θ)
∗= 0 and Rm[rst]

.= 0.

We can re-confirm our result from a different viewpoint. We can answer the question whether Rmn(e)
∗= 0 is the only non-trivial 

solution other than Rμν
rs(e)

.= 0 under (4.1). A short answer is in the affirmative, because we have confirmed that Einstein space-time is 
the necessary condition of our ψ-field equation (3.8a) under (4.1), except for the flat space-time Rμν

rs(e)
∗= 0.

A long answer is as follows: The question is whether the condition

[Dρ(e), Dσ (e)] θ = 1
4 Rρσ

rs(e)(γrsθ)
∗= 0 (4.18)

allows non-trivial space-time other than the flat one: Rμν
rs(e)

∗= 0. Mathematically, this question is very difficult to answer, because we 
have to categorize all possible Riemann or Weyl curvature tensors in D = (2n − 1, 1) [19].

However, we can rely on a much simpler and empirical method in physics. Consider a possible Kaluza-Klein type simple dimensional-
reduction [20] of (4.18) in D = (2n − 1, 1) into D = (3, 1). From our experience with surviving supersymmetries in D = (3, 1) [21], we 
know that for a D = (3, 1) space-time with a covariantly-constant spinor ε , there is non-trivial curved space-time background. Since the 
D = (3, 1) part of the original Riemann tensor in (4.18) is non-zero, the original Riemann tensor in D = (2n − 1, 1) has corresponding
non-vanishing components. In other words, we know empirically that the equation such as (4.18) has solutions with curved space-times in 
D = (2n − 1, 1) with Rμν

rs(e) 
= 0, but Rμν(e)
∗= 0 as desired.

We have thus confirmed that an Einstein space-time Grs(e)
∗= 0 in vacuum (or Ricc-flat space-time) is the necessary condition of our 

ψ-field equation (3.8a) under the ansätze (4.1), other than the flat space-time Rμν
rs(e)

∗= 0. We can conclude that our ψ-field equation 
(3.8a) yields uniquely the Einstein space-time with Grs(e)

∗= 0 under our ansätze (4.1) in D = (2n − 1, 1), other than the trivial flat space-
time Rrs

tu(e)
∗= 0. It is not far-fetched to conclude that (n − 1)-th rank tensor-spinor ψ[n−1] is more fundamental than the geometrical 

metrics or vielbeins in general D = (2n − 1, 1).
Some readers may wonder, what is the relationship corresponding to (2.10), i.e., how to define the metric gμν in terms of tensor-spinor 

ψμ1···μn−1 . To this end, consider the n = 3, D = (5, 1) case. For example, relating (PμρPνσ ) to gμν by6

gρσ (PμρPνσ )
∗= − (θγμργ ν

ρθ) = 5(θθ) gμν (4.19)

does not work, because the most left-side needs the inverse metric gρσ , and therefore, it does not define the metric in terms of ψμν

in a closed form. However, we can still solve (4.19) perturbatively for the metric as in quantum gravity. Defining gμν ≡ ημν + hμν and 
gμν = ημν − hμν + hμρhρ

ν +O(h3) into (4.19), we can get the perturbative solution for hμν :

hμν (θθ)
∗= + 1

4 Xμρ,ν
ρ − 1

40ημν Xρσ
ρσ , (4.20)

where Xμν,ρσ is defined by

Xμν,ρσ ≡ (PμνPρσ ) − 2ηρ[μην]σ (θθ) . (4.21)

In other words, we can express hμν in terms of Pμν at least perturbatively. Even though this is not a closed form, still our fundamental 
field ψμν (or Pμν ) defines the metric gμν . This is not limited to the special n = 3 case, but we can get similar perturbative expressions 
also for any arbitrary n = 2, 3, 4, · · · .

5. Concluding remarks

In this paper, we have accomplished two major objectives: First, we introduced the compensator field χ in D = (3, 1), so that the total 
action of the original BM-theory [1] becomes invariant under the nilpotent local fermionic symmetry δεψμ = Dμε and δεχ = −ε . In other 
words, the original BM-theory [1] is re-interpreted as another example of local nilpotent fermionic symmetry [10][11][13][12][14].

The 2nd one is the generalization of the original theory [1] with the compensator χ in D = (3, 1) to general space-time D = (2n −1, 1). 
For this generalization, both the recent developments in tensor-hierarchy formulation [16][17] and nilpotent local fermionic symmetry 
formulations [10][11][13][13][12][14] played significant roles. The tensor-hierarchy formulation [16][17] is usually for bosonic fields, but 
now it is applied to the tensor-spinor ψ[n−1] combined with the compensator spinor χ[n−2] .

In the past, the importance of nilpotent local fermionic symmetry never drew enough attention. The reason is that the vanishing poor-
looking anti-commutator such as (2.11) does not seem to produce any significant interactions, at least, compared with supersymmetry or 

6 There is no term like (θγ [4]θ) because of the reason already explained with (4.5).
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supergravity [22]. We keep showing that that is not the case in our past papers [10][11][12][13][14]. In the present paper, we have shown 
yet another important application of nilpotent local fermionic symmetry in terms of BM-theory [1] generalized to D = (2n − 1, 1) without
basic vielbeins.

We stress that the success of our formulation in this paper is based on the peculiar combination of both nilpotent fermionic symmetry 
formulations [10][11][12][13][14] and tensor-hierarchy formulations [16][17]. Our postulate for the gamma-matrix analysis (4.5) through 
(4.7) and (4.11) also played a technically significant role. Without any of these formulations and techniques, our theory would not be 
successful in such a straightforward way as in the present paper.

The original BM-theory was presented in late 1970’s [1]. There are four main reasons for the delayed development afterwards. First, the 
tensor-hierarchy formulation [16][17] is the foundation of our present theory, in particular, for the invariance of our action I2n under two 
distinct symmetries δε and δη in (3.5) for ψ[n−1] and χ[n−2] . In the original BM-formulation [1], the invariance of I(0)

4 was obscure. Second, 
the categorization of all fermions in general even dimensional space-time is possible, thanks to the systematic analyses in [23][24]. This 
is merely a technical point, but it still plays an important practical role in our formulation. Third, the non-trivial and crucial γ -matrix 
algebra, such as (4.5), (4.6), (4.7) and (4.11) in general D = (2n − 1, 1) was hard to handle. Fourth, the method (4.17) is very decisive for 
our analysis, which does not seem well-known for general D = (2n − 1, 1) dimensions, even though a similar method works in Euclidian 
space as (4.18).

We have not introduced a separate action for ‘matter’ fields in our formulation. However, our higher-dimensional Einstein field equa-
tion Ĝμ̂ν̂

∗= 07 in D = (2n − 1, 1) creates Yang-Mills field equations, or σ -model type scalar-field equations, out of simple dimensional 
reductions [20]. Consider a simple dimensional-reduction [20] from D = (2n − 1, 1) into D = (3, 1) with the metric-tensor reduction(̂

gμ̂ν̂

) =
(

gμν − 4Aμ
γ Aν

γ −2Aμβ

−2Aνα δαβ

)
. (5.1)

For simplicity, we truncated scalar fields from the extra dimensions. The indices μ, ν, ··· = 0, 1, 2, 3 are for D = (3, 1), while α, β, ··· = 1,. ···,
2n−4 are for the extra D = (2n − 4, 0) compact dimensions. Correspondingly, the D = (3.1)-components of the Einstein equation yields

Ĝμν (̂e) = +Gμν(e) + 2F μ
ρα F νρ

α − 1
2 gμν(F ρσ

α)2 .= 0 . (5.2)

This is nothing but the Einstein equation with the vector-fields Aμ
α in D = (3, 1). Even though this mechanism covers only bosonic fields, 

such as the vector fields and σ -model scalar fields, we expect that fermionic fields may well be produced by a certain lagrangians that 
contain neither metric nor vielbeins in the future.

An important aspect of our formulation is that the conventional metric and vielbein emerge out of higher-rank tensor-spinor ψ[n−1]
in D = (2n − 1, 1). This is because of the ansätze (4.1) absorbing higher-rank tensor-indices. The introduction of such higher-rank tensor 
spinors has been regularly avoided in the past, because of possible inconsistent interactions [3]. However, the combination of the recent 
formulations of nilpotent local fermionic symmetries [10][11][12][13][14] and tensor-hierarchy formulation [16][17] has made it possible 
to consider such a sophisticated theory of pure tensor-spinors as the more fundamental physical quantities than geometrical metrics and 
vielbeins in general D = (2n − 1, 1) dimensions.

We acknowledge W. Siegel for stimulating discussions about covariantly-constant spinors.
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Appendix A. Spinors in D=(2n−1,1)

We give here the general properties of spinors in D = (2n − 1, 1). First, the ε-tensor has the properties ε012···(2n−1) = +1, and

1
r!εm1···m2n−r [r] ε[r]s1···s2n−r = −(−1)r[ (2n − r)! ] δ[m1

s1 · · · δm2n−r ]s2n−r . (A.1)

Accordingly, the generalized γ5-matrix is defined by

γ2n+1 ≡ − in+1

(2n)! ε[2n]γ [2n] . (A.2)

The factor of the power of i is fixed by the normalization (γ2n+1)2 = +I .
These properties are common to any D = (2n − 1, 1). However, the detailed structure of spinors depends on n. According to [23][24], 

fermionic structures repeat every eight space-time dimensions. We need the Majorana spinor θ with the normalization (θθ) = +1 in even 
space-time dimensions. To this end, we have to require that such a bilinear without any gamma-matrix sandwiched is non-vanishing. To 
this end, we categorize all even space-time dimensions higher than three into four cases: D = (3 + 8p, 1), D = (5 + 8p, 1), D = (7 + 8p, 1)

and D = (9 + 8p, 1) (p = 0, 1, 2, · · · ), in turn:

(i) D=(3+8p,1): In this case, spinors can be Majorana-spinors [23][24], because the condition s = 3 + 8p, t = 1 i.e., s − t = 8p + 2 in the 
notation of [24]. The flipping and hermitian-conjugation properties of two Majorana spinors are

7 Only for the discussion of dimensional-reductions, we use the ‘Hat’-symbol for fields and indices in D = (2n − 1, 1), while no hat-symbols for fields and indices in 
D = (3, 1) as in [20].
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(ψγ [m]χ) = −(−1)(m−1)(m−2)/2(χγ [m]ψ) =
⎧⎨⎩

+(χψ) (m = 0) , (a)

−(χγ μψ) (m = 1) , (b)

−(χγ μνψ) (m = 2) , (c)
(A.3)

(ψγ [m]χ)† = +(ψγ [m]χ) . (A.3d)

In (A.3a) through (A.3c), only m = 1, 2 and 3 cases are given as examples. Eq. (A.3a) is desirable to normalize (θθ) = +1, while (A.3b) im-
plies c2+4p = −1. Eq. (A.3) also means that γ rsψ = −(ψγ rs), that is used in the confirmation of the equivalence between two expressions 
in (3.1). Our lagrangian (3.1) is real and does not vanish with the imaginary unit ‘i’ in front, because of (A.3c) and (A.3d).

(ii) D=(5+8p,1): In this case, since s = 5 + 8p, t = 1, s − t = 8p + 4 as in [23][24], spinors can be symplectic Majorana-spinors [23][24], 
carrying the indices A, B, ··· = 1, 2 for the 2 of Sp(1):

(ψ Aγ [m]χA) = −(−1)(m−1)(m−2)/2(χ Aγ [m]ψA) =

⎧⎪⎨⎪⎩
+(χ AψA) (m = 0) , (a)

−(χ Aγ μψA) (m = 1) , (b)

−(χ Aγ μνψA) (m = 2) , (c)

(A.4)

(ψ
A
γ [m]χA)† = +(ψ

A
γ [m]χA) , (A.4d)

where the contractions of the indices A, B, ··· are by the Sp(1) metric ε AB = −εB A with ε12 = +1, like (ψ Aγ [m]χA) ≡ ε AB(ψ Bγ
[m]χA). 

Accordingly, we have (θ AθA) = +1, and c3+8p = −1. Relevantly, γ rsψ A = −(ψ Aγ rs). Sometimes, we make the 2-indices implicit, like 
(θ AθA) ≡ (θθ)

∗= 1. Our lagrangian (3.1) is real and does not vanish, due to (A.4c) and (A.4d).

(iii) D=(7+8p,1): In this case, spinors can be pseudo-Majorana-spinors, because s − t = 8p + 6 [23][24]:

(ψγ [m]χ) = −(−1)m(m−1)/2(χγ [m]ψ) =
⎧⎨⎩

−(χψ) (m = 0) , (a)

−(χγ μψ) (m = 1) . (b)

+(χγ μνψ) (m = 2) , (c)
(A.5)

(ψγ [m]χ)† = −(−1)m(ψγ [m]χ) . (A.5d)

Due to (A.5a), we have to introduce an 2-index of Sp(1), so that (θ AθA) 
= 0, even though (θθ) = 0. Accordingly, c4+4p = +1. Also, due to 
(A.5d), we have to introduce the imaginary unit. Eventually, the original condition (θθ) = +1 is modified to i(θ AθA) = +1. Eq. (A.5c) also 
implies that γ rsψ A = −(ψ Aγ rs). Our lagrangian (3.1) is real and does not vanish, due to (ψ Aγ 9+8pχA) = +(χ Aγ 9+8pψA) because of the 
2-index.

(iv) D=(9+8p,1): In this case, spinors can be Majorana-spinors, because s − t = 8p + 8 [23][24]. The flipping and hermitian-conjugation 
properties are

(ψγ [m]χ) = −(−1)(m−1)(m−2)/2(χγ [m]ψ) =
⎧⎨⎩

+(χψ) (m = 0) , (a)

−(χγ μψ) (m = 1) . (b)

−(χγ μνψ) (m = 2) , (c)
(A.6)

(ψγ [m]χ)† = + (ψγ [m]χ) . (A.6d)

Due to (A.6a), we can define (θθ) = +1. Our lagrangian (3.1) is real and does not vanish, due to (A.6c) and (A.6d).
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