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ATEQMETPHTOX MHAEIZ

EIZITQ

Let no person ignorant of geometry enter here

This quotation is supposed to have been written over the
entrance to Plato’s (MAdatwv, 428-348 BCE) academy,
according to a later commentary. If it actually was an
inscription, it may have been in capital letters (but probably
without spaces between the words), but in the commentary, it
probably was in lower-case, and that is how it is usually given:

AyewUETPNTOG UNdElG eloiTw
We originally included quotations, such as this one, without

translations, but here we will provide translations and notes.
Todd Krause has been very helpful with these translations.




To G. D. — Whosoever loveth me loveth my hound
— THOMAS MORE

G. D. was Larry’s dog, named Gilbert's Disease.
and Phyllis is Mike’s wife.

Thomas More (1477 - 1535)
Gene Raskin (1909 - 2004)

To Phyllis — Those were the days

— G. RASKIN

Larry Shepley & Gilbert, August 1976



PREFACE

In the past decade cosmology, both theoretical and observational, has
had a dramatic renascence. This book not only reflects this renewed
interest but attempts to spur further theoretical research in this most
majestic of fields. Here we do not treat observational cosmology, so well
covered by Peebles’ Physical Cosmology. Instead we expand on one field
within general relativity.

This book is aimed at one who already knows a bit of relativity (say
Track 1 of Misner, Thorne, and Wheeler’s Gravitation — we use their sign
conventions). The book, however, is self-contained, emphasizing a modern
tensor analysis approach to relativistic cosmology. This modern approach
should be attractive to the beginning graduate student as well as to the
expert who wishes to extend his knowledge of cosmology.

The most spectacular results of the highly mathematical approach have
been the singularity theorems of 1965-68. The thrust of the first half of
the book is toward an introduction of these theorems. The second half
delves into specific cosmological problems, and includes an introduction
to the insights gained by the application of Hamiltonian techniques. A
book of this type should include several features, which we have incor-
porated. We have outlined the book by means of flow charts for specific
chapters and for the entire book. The last chapter tries to point the
direction future mathematical and observational cosmology research should
take. We have given a graded set of exercises, from simple calculations
to deep questions worthy a Ph.D. thesis. Our bibliography includes nearly
500 important references in all aspects of mathematical cosmology.

A quick paragraph of prejudices: We are general relativists; hence we

have shied away from the Brans-Dicke and other alternative theories. The

vii



viii PREFACE

expansion of the universe showed Einstein that his cosmological constant
was unnecessary, and we follow him in discarding it. Finally, we are

prejudiced against the apotheosizing of any cosmological principle. We

| . o
shall let the real universe behave as it will. William Shakespeare (1564 - 1616)

Both of us want to thank John Wheeler and Charles Misner: Sonnet 38
If my slight Muse do please these curious days,

The pain be mine, but thine shall be the praise.

Both of us have received financial support at all stages from the National
Science Foundation, for which we are greatly indebted. Both of us
appreciate the atmosphere provided by the Center for Relativity Theory of
the University of Texas at Austin. One of us (M.R.) thanks the Department
of Applied Mathematics and Theoretical Physics, Cambridge, and Dennis
Sciama at the Department of Astrophysics, Oxford, for their hospitality,
and the Science Research Council of Great Britain for financial support.
Our friends and colleagues are too numerous; we thank them all. We have
especially entertained the comments and ideas of Richard Matzner, George

Ellis, Barry Collins, and Ray Sachs. Princeton University Press has been

more patient than we ever could have imagined. William Hickling Prescott (1796 - 1859)
d/ The History of The Conquest of Peru

The Preface is the last part of a book to be written. As Prescott di
we end ... “‘with feelings not unlike those of the traveller who, having
long journeyed among the dreary forests and dangerous defiles of the

mountaing, at length emerges on some pleasant landscape smiling in tran-

quility and peace.’’

West Lake Hills, Texas MICHAEL P. RYAN, JR..
April, 1974 LAWRENCE C. SHEPLEY
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1. COSMOLOGY: THE STUDY OF UNIVERSES

Who that well his warke beginneth,
The rather a good ende he winneth
— JOHN GOWER

It is difficult to explain to a layman the fact that the universe expands.
How, he asks, can the universe expand? Into what is it expanding? We
tell him that he does not have the correct picture in mind. Indeed the
universe can ‘‘expand’’ in spite of the fact that it is everything and does
not in any sense develop into unoccupied space. Instead, we tell him that
distances between astronomical objects are becoming larger and larger as
time moves forward.

Our layman will then turn to the title of this chapter and ask: If our
universe is everything, what need is there to study other universes? And
again the answer is very straightforward. We must simplify the study of
cosmology; we must attempt to model the real universe in a mathematically
tractable structure. In cosmology we study aspects of the real universe
and possible aspects of the real universe. It is in fact often instructive
to study features which we know not to be present in the real universe. No
better example occurs than the study of anisotropic cosmological models,
for so far as we can tell the physical universe is completely isotropic.
However, an anisotropic model gives an extremely important example of
the type of structure which may dominate the very early stages of cosmic
expansion.

Our concern is not with the full range of physical and astrophysical
cosmology, but rather with the geometrical and mathematical principles of
general relativity as applied to cosmology. We shall treat expansion; we

shall treat singularities; in short we shall discuss the arena of astrophysics

When | was starting my dissertation, |
asked a housemate for suggestions for an

opening statement. He suggested

"Cosmology is the study of universes,"
which | promptly typed. A minute later my
friend, to be difficult, asked how there
could be universes, since there was only
one Universe. | replied that | liked the first

version, and that is how it stayed.

LCS

John Gower (~1330 - 1408),
Confession Amantis




4 1. COSMOLOGY: THE STUDY OF UNIVERSES

and the boundary of that arena. OQur study is limited to the simplest
structure — homogeneous cosmologies ~ for the simplicity evoked by the

homogeneity symmetry nonetheless allows very complex models.

The Problem of Fall

The most serious problem of modern theoretical cosmology is the
existence of the initial singularity or ‘‘big bang.”’ In all cosmological
models this singularity appears. It is a region of infinitely dense matter,
of infinitely strong gravitational forces. It is the beginning of spacetime,
the boundary where our theories of space and time must be false. In the
early days of gravitational physics, a problem of similar moment was the
problem of fall (Koyre, 1955), The close analogy between the problem of
singularity and the problem of fall is instructive.

Galileo established laws of inertia and some properties of gravitation.
The question then arose: What is the path of a body falling under the in-
fluence of gravity? This question was not trivial, for the detailed law of
gravitation had not yet been formulated. Several complicating features
arose to slow the solution to the problem of fall: The mathematics
(geometry) was not up to the problem; physicists found the mathematical
reasoning difficult to apply. The new laws of physics were not well
understood; the best mathematicians often had wrong ideas of the con-
cepts involved. Finally, the center of attraction, the earth, is rotating;
this rotation complicated the investigations of many researchers.

In the early seventeenth century, before the mathematical and physi-
cal ideas of Newton had appeared, the problem of fall was not solved. To
introduce this problem in modern terms, imagine that an observer is
stationed in the gravitational field of a point particle and throws out a
small projectile. The path this projectile will follow can be discovered
through step by step calculation making use of the fact that the projectile
is always accelerated toward the central attractive point. A compact
formula for the path was not available in the seventeenth century, but one

special case is easily solved. A requirement of symmetry greatly
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simplifies the calculation. The initial velocity of the projectile is directly
toward the central massive point, this being a naturally symmetric direction.
The result is obvious: The projectile will hit the massive center in a

finite time. (See Figure 1.1.)
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Fig. 1.1. The Problem of Fall in Pre-Newtonian Gravitation. (A) Numerical
integration gives the orbit of a projectile P fired from a given Observer in a
given direction. M is a central attractive point particle. (B) The path of P
is found even more easily when the initial velocity is directly toward M. P
hits M after a finite time. (C) In the more general case (non-radial), does the
projectile P spiral in to hit M ... (D) or does P ‘‘bounce’ back, missing
M and remaining in a stable orbit?
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The problem that remained unsolved before Newton was the fate of any
other projectile. Will it spiral in to hit the central point? Is there a built
in end-point to the problem of orbit tracing? In this case no planet could
have a stable orbit unless non-gravitational forces operated.

The central problem of modern cosmology bears a striking resemblance
to the Renaissance problem of fall. Just as one particulatly ‘‘symmetric”’
projectile path ends in disaster, so cosmological models chosen by the
strongest symmetry requirements exhibit singular beginning points.

The cosmological models dealt with in this book, for example, are re-
quired to be symmetric under a three-dimensional group of isometries so
that computation of their properties will be simple. Unlike the special
projectile path that ended in disaster, however, these cosmological model:
are very general. Many properties, such as matter rotation, can be arbi-
trarily chosen (up to seven adjustable parameters). In spite of this
generality, every cosmological model evolves a singularity of some sort.

The problem of fall was solved by recognizing that only very special
initial conditions lead to destruction of the orbiting particle. This methoc
of escaping trouble does not work in gravitational collapse of stars. Pen-
rose, Hawking, Geroch and others have shown that whatever shape or
state of motion a star is in when it starts to collapse, it will unavoidably
reach a singular state. In cosmology, also, the relaxation of symmetry
does not prevent the singularity. In cosmology this singularity appears
as the beginning of the universe, although in some models a second
singularity appears as the universe recollapses on itself. It is the begin-

ning singularity that is disturbing, for it is an effect without a cause.

The Beginnings of Modern Cosmology
The problem of fall was an important chapter in the history of gravi-
tation. At that time, too, appeared the very first applications of gravita-
tion to cosmology. To understand the principles, techniques, and
problems of modern cosmology it is worthwhile to look at selected inci-

dents over the past several hundred years which have culminated in the

theory of general relativistic cosmology.
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Whether a static, matter-filled universe is reconcilable with Newton’s
theory of gravity was the subject of perhaps the earliest correspondence
which could be termed modern cosmology. In four letters to Richard
Bentley, Newton explored the possibility that matter might be spread
evenly throughout an infinite space. It was Bentley’s suggestion that
this even distribution might be stable, but Newton felt the matter would
tend to coagulate into large massive bodies. However, he apparently also
thought that these massive bodies themselves could be stably spread
throughout all space. Modern Newtonian cosmology, which is remarkably
similar to relativistic cosmology, shows that Newton was wrong about
this stability. The many other discussions of cosmology in the time of
Newton wete more of a theological or descriptive nature and do not have
what modern researchers feel is the correct outlook: the explanation of
cosmic features by use of terrestrial physical laws.

This situation, that the laws of physics known on earth were not
applied to cosmological problems, continued with one notable exception.
This exception was the effect commonly known as Olbers’ Paradox (Jaki,
1969). Olbers’ Paradox is the problem of why the night sky is dark.
About a century before Olbers both Halley and Cheéseaux realized that al-
though the light from a star diminishes as the square of the distance to
the star, the number of stars in a spherical shell increases as the square
of the radius of the shell. The accumulated effect of the light intensity
sould make the night sky as bright as the surface of the sun. In all fair-
ness to Olbers the general scientific community was not able to appreciate
fully the work of Halley and Chéseaux because of an insufficient sense of
cosmic infinity. The problem is an especially important one, however, in
that it depends critically on whether the universe is finite in space, finite
in time, or static. The modern resolution of the paradox is that the uni-
verse is expanding and that the matter in the universe has a finite age.

In particular, it is not a good enough explanation merely to postulate

finite space sections in the universe.
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The history of contemporary cosmology really began with Einstein’s
application of the principles of general relativity., Curiously Newtonian
gravitation was not employed in cosmological theory until some time after
relativistic cosmology was founded. Seeliger (1895) and Neumann (1896)
had prepared the way for a cosmological constant in the 1890’s, however.

Einstein’s cosmology is an example of a slight lack of confidence in
general relativity. So strong was his belief that the universe was static
that he introduced a cosmological term to modify his original theory. Had
he anticipated the work of Friedmann and shown that general relativity re-
quired an expanding universe, most researchers of the period would have
found his theory unacceptable. Einstein himself at first refused to believe
the results of Friedmann and only reluctantly accepted the idea that a
non-static cosmological model is possible.

When Hubble completed his redshift survey, the results were astound-
ing. They showed that there is a systematic redshift of light from distant
galaxies, increasing as the distance to these galaxies. There have been
many attempts to explain this redshift, some of which are quite ingenious.
But the most widely accepted explanation, the explanation which now fits
several other pieces of data, is that the universe is expanding. When most
people accepted the notion of a non-static universe, an enormous number
of cosmological models, both relativistic and non-relativistic, appeared.
The best expression of the spherically symmetric relativistic cosmological
models was presented by Robertson (1929), the mathematical niceties
being a product both of Robertson (1935, 1936) and Walker (1936). We
will call these models FRW universes to acknowledge the pioneering
work of Friedmann. More general cosmologies, including models which
result from the application of Newtonian gravitation, were presented by
Milne (1934) and Milne and McCrea (1934). It is interesting to note that
static cosmological models are not possible in Newtonian theory without
the addition of a term much like the cosmological constant of Einstein.

Relativistic cosmologies and Newtonian cosmologies share an impor-

tant feature. The expansion typically begins with a bang: There is a



1. COSMOLOGY: THE STUDY OF UNIVERSES [+]

finite time in the past of any given observer where the density is infinite.
This infinite density epoch represents the most fundamental problem of con-
temporary cosmology. The description of a singularity, whether of infinite
density or of another type, and the proof in general of its existence, has
only been carried through in recent years. Penrose, Hawking, Geroch,
Misner — these are the names of the people who, with many others, have
shown that singularities are a common feature of cosmological models. At
present the detailed physical interpretation of these singularities remains
an unresolved problem.

Although general relativity cosmology was the first cosmological
theory, others have come and gone, sometimes without adequate reason
for giving them up. Milne’s theory, Hoyle’s steady state theory, and others
have at times been actively investigated but at present are no longer of
interest. In the case of the steady state theory there is good, but by no
means conclusive evidence that the theory does not meet observation. In
particular, the discovery of the 3 K black body background radic emission
is accepted by most people as evidence that the universe was significantly
different in the past, in violation of the principle of the steady state uni-
verse,

Nowhere in this volume do we mention the cosmological principle
except here. This principle is a fancy name for a simplifying set of
assumptions. Its application results in homogeneous cosmologies, and to
some, the principle also implies either a steady state situation or a static
model. We prefer to leave the terminology of ‘‘principle’’ to the past,
where it was a guide and a solace to researchers. Where we make sym-
metry assumptions, we state them as mere assumptions to aid in the
solution of equations. We do not accept a cosmological principle as a
Procrustean law, but leave to the observer the question of whether the

universe has chosen to obey any of these assumptions.
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Outline

We treat in this book a general consortium of cosmic problems. As a
map to our treatment, we have drawn up a flow chart printed on the end
papers of this volume. The flow starts with the general mathematical and
physical foundations of general relativity and proceeds to relativistic
hydrodynamics. The mathematics proceeds to the detailed theory of sym-
metry and singularity. Detailed applications to homogeneous cosmologies
follow. We end with Hamiltonian techniques and with some remarks on
astrophysical studies. Our conclusion is ‘A Call to Arms,”’ for we feel

that there are many interesting cosmological problems to be solved.



2. GEOMETRY IN THE LANGUAGE OF FORMS

Francis Bacon (~1561 - 1626),

So if a man’s wit be wandering, Lo studi
udies

let him study the mathematics
— FRANCIS BACON

2.1. Points, Manifolds, and Geometrical Objects
Nothing is so vital to general relativity as the physical reality of an

“event,’’ or point, in spacetime, completely separate from coordinate sys-
tems used to describe it. On the surface of the earth Moscow is Moscow
no matter what latitude or longitude we assign to it. Modern mathematics
recognizes this separateness in the concept of a manifold, the set of
points on which is placed the geometry of spacetime.

In general relativity the manifold is spacetime. A point of the mani-
fold is identified with a physical event. A sample event is shown in

Figure 2.1. As a point in a manifold it is independent of any coordinate

system.

coonoooonpOaEaQoboERoDOOORooDNoCOoCoOOOonUoLUDOOR

X 2 : rf}f ﬁ'i‘ Hﬂ;{x:&

|

Event: Ball hits ground

Fig. 2.1. Motion picture of a region in spacetime surrounding the event of a ball
colliding with the ground. The event is that location in space and time when the
ball just touches the ground. No matter the speed of film travel, the magnifica-
tion of the lens, or the orientation of the camera — these are coordinate effects
and do not affect the nature of the event itself.

11
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i 2. Differential Geometry

n-dimensional
Euclidean
coordinate space

Topology Differentiability

Commutator or
Lie Derivative
{See Chapter 6)

2.2 Vector
Fields

2.4 Differen-
tial Forms

2.5 Covariant
2.3 Metric, Differentiation
a special

tensor

2.6 CURVATURE

Summary of
Useful
Formulas

Einstein's
Equations
(See Chapter 3)

Fig. 2.2. Logical relations among some of the ideas of Chapter 2. Chapter 2
includes examples and other minor ideas not shown here.

This identification of an event with a mathematical point was a daring
step due to Newton. Recently, the alternate concept has developed of a

sponge-like construct which gives the appearance of smoothness only
1
down to the scale of quantum fluctuations (~ (hG/c3)2 = 1.6 x 10’33c:m).

At that scale the smoothness vanishes (Weyl, 1949; Wheeler, 1962b; Pen-
rose, 1966). We shall not adopt this alternate viewpoint. Instead we will
stay with the classical view of spacetime as a continuous and differenti-
able manifold.

On this manifold we shall place ‘‘geometrical objects’’ (Veblen and
Whitehead, 1932; Schouten, 1954), the simplest of which are function,
vector field, metric, and differential form. We shall develop these con-
cepts in this chapter to the extent needed for the analysis of homogeneous

cosmologies (see the flow diagram in Figure 2.2) in a form independent of
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coordinate systems. Definitions will be short and many proofs will be
omitted (see standard works on differential geometry, e.g., Helgason,
1962, or Hicks, 1965). We shall end the chapter with a description of the
three-sphere, a manifold we shall meet later on in the Friedmann-
Robertson-Walker (FRW) universes. We shall also give a short table of

useful formulas which have been developed in the chapter.

Definition of Manifold — Topology and Differentiability

A manifold is a set of points, basic subsets of which are labeled open
sets. The open sets obey the property that any union of open sets is
open (the set 0< x< 1 is an open set in the real line). Some of the sub-
sets of the manifold will be closed (the complement of an open set;
example 0< x < 1) and some neither open nor closed (0<x< 1), A set
such as a manifold upon which open and closed subsets are defined is a
topological space. An open set containing the point P is a neighborhood
of P.

The defining properties of a manifold M are: (1) M is a topological
space; (2) about every point P in M there is at least one neighborhood
(open set) N in which a coordinate system (a local homeomorphism be-
tween points in N and the points in the n-dimensional space R" of real
numbers) may be set up. An open set N together with a coordinate sys-
tem in N is called a coordinate patch or coordinate neighborhood. The
number of coordinate patches needed to cover a manifold may be greater
than one. Figure 2.3 shows an ordinary sphere (82), which needs two
coordinate patches.

In order for a manifold to be useful in physics it must have a structure
which distinguishes between differentiable and non-differentiable func-
tions. An allowed coordinate system is one in which the coordinate func-
tions are all differentiable. A differentiable manifold is one covered by a
collection of allowed coordinate patches with the property that wherever

coordinate patches overlap, one system is given in terms of the other by
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Fig. 2.3. A Spherical Surface 82. The left hand drawing represents the Earth
as photographed from space. Two coordinate patches are drawn on the right as
flat maps. The upper one especially is distorted near the edge — this distortion
is a well-known coordinate effect.

infinitely differentiable (C™) functions (weaker differentiability require-
ments are sometimes useful; Munkres, 1963).

A function on M is differentiable when it is a differentiable function
of these coordinates. Another coordinate system on an open set N is
allowed if it consists of n (the dimension of M) differentiable functions
x? which uniquely specify all points in N. Any covering of M by
allowed coordinate patches defines its differentiable structure. It is inter-

esting to note that the differentiable structure need not be unique: Milnor
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(1956) gives an example of a manifold which admits two, non-equivalent

differentiable structures.

2.2. Vector Field: A Derivation

In mathematics the concept of vector field is closely tied to the con-
cept of differentiability: A vector field is a differential operator. In order
to connect this concept with the usual physical concept of a vector as an
arrow connecting two points (P and Q), consider a function f on the
manifold M. The change in f between the points P and Q depends on
the vector 56 and the function itself. If P and Q are in the same

coordinate patch (AxY the difference of their coordinates),

f(Q) — £(P) = Af ~ Ax9(0f/9x%) = vectorial derivative . 2.1

The dependence of Af on displacement is contained in the linear differ-

ential operator

Ax%(3/9x%) = Axoﬁa ,

to be thought of as the vector 56

Modern differential geometry refines this idea of a vector as follows:
(1) Take the limit as Ax? > 0 to define a local concept (tangent vector)
which preserves the directional properties of I;(S (2) Insure that this
concept is independent of coordinates. (3) Define the concept of vector
field, consisting of a tangent vector at each point of the manifold.

The resulting coordinate-independent concept of a vector field is that
of a differential operator on M, an operator V which carries differenti-

able functions on M into other differentiable functions. V must be:

(i) linear VIE(P)+ g(P)] = VE(P) + Vg(P)
(ii) a derivative operation V(fg)= gV + fVg .

Bases
An important example of a vector field is the one obtained by differ-

entiation with respect to a coordinate. Consider a coordinate neighbor-
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hood N with n functions xF{u=1,-,n) whose values x*(P) are the

coordinates of the point P. As an example, we define the operator 82 by

3,f = éfgxlzxz,--‘zxn_) )
ax2

This differential operator is the vector tangent to lines defined by x* =
const, p # 2. In the approximation of (2.1) d,f gives the change in f
between P = (xl,xz, <y and Q= (xl, %%+ 1,--<). The operator 62 is
considered to lie in spaces tangent to the manifold at each point P (see
Hicks, 1965; Helgason, 1962). This 82 is portrayed as an arrow pointing
along the x? coordinate direction at P and at every other point of M
(Figure 2.4).

In a similar fashion d, 83, e, én are defined. The n operators 8#
are base vectors. The base vectors are linearly independent; that is,
every vector field in N may be expressed uniquely as a linear combina-
tion of the 8” with coefficients which are differentiable functions in N:

V = v050 .
The n functions v’ are components of the tangent vector field V, or
the contravariant components of the vector field V.

At the point P the vector field V has the value V(P)=v(P)d,,.
The set of all vectors V at P is the tangent space M, of M at P.
Mp is clearly n-dimensional.

V has existence independent of coordinate systems. Let us therefore
consider new coordinate functions X defining the basis d*. The com-

ponents of V may change, but not V itself:

If we let V act on the function x#, we find

vl = @x*/05%v9 . 2.2)
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Fig. 2.4. A Two-Dimensional Manifold M. The coordinate patch N is an open
set in which the coordinates x, and X uniquely describe points. The basis
vectors 81 and (32 are parallel to the grid lines in N. X is a vector field,and
two linearly independent vector fields, such as XI, X2 form a basis for the set
of vector fields in M.

We shall call a set of base vectors derived from a set of coordinates a
coordinated basis.
Not every basis is a coordinated basis. Any n vector fields linearly

independent in an open set of M may be used as a basis in that open set.
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To determine if a given set Xy, ""Xn of vector fields is a basis, first
write each vector in some convenient coordinated basis,
1 n 42
Xy =% dy + -+ %70 = x,79

n g

i 1 'ERd n 0
Xnnxnc31+ +xn8n xnéa.

i

The set {X;! is a basis if the matrix (xiO(P)) has non-zero determinant

at every point P. Other terms for a set of basis vectors are repére mobile

or ennuple in general, triad when n = 3, and tetrad or vierbein when n=4.
To arrive at an example of a non-coordinated basis consider ordinary

spherical coordinates. In the coordinated basis 1d ,dg, 8(;3} the velocity

of a particle is

_ o rd g d ¢ J r_dr 8 _d8 b _ dod
V~v8—;+v a-6+v 8?5’ where V“dt’v wdt’v = 3t

Usually, however, the velocity components are defined to be:

or _dr 0 d8 b _ . g do
V=g Vg V —rsm9dt.

This definition uses the formula
Ve X s %0 Pxy
where
X -2 X-L1 B x- 2
The vectors Xr' X@, X¢) form a non-coordinated basis.

Commutators

A coordinated basis has the property

@,9, 9,3, = 0
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for any function f. For a more general basis X# XV—-XVXu is not neces-
sarily zero. We shall find non-commuting bases useful in describing the

general homogeneous manifold.

We make the notion of commutator precise by defining the commutator

of two vector fields U, V to be the operator

fu,vl =uv-vu,
2.3)

it

(U, vlf = Uvf) - v(US) .
The commutator has the derivative property

[u,vifg = flu,vlg + glu,vif

and is therefore a vector field. The commutator satisfies the Jacobi

identity
[u,lv,wll « [v,w,ull + Iw,[u,v]l = 0 for all vector fields U, V,W. (2.4)

The commutator [U, V] is also called the Lie derivative (Chapter 6)
of V with respect to U. That is,

Lyv =lu,vl. (2.5)
In a coordinated basis (coordinates x#), if U=u’d,, V=v7d, then
L,V =1[U,vl = @9,V ~v?d u)d, . (2.6)

In a non-coordinated basis, U= ﬁ“Xu, and V= \?“XW so that

- (oK Ay _ S SAy AR AV A

[0, VI = kX, ¥H-vHX, @9 +ak v Cp 1 X, 2.7
The functions C;\W arise from the expansion of the vector field [X#, Xy]
in the basis §X#§ as \
[xu,x,,] = CL Xy - (2.8)

The functions C;\w are the structure coefficients of the basis Xu.
In a general basis the C;};u do not vanish. In fact, it can be shown that
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if Cﬁv = 0 the basis is a coordinated basis (Hicks, 1965). If the mani-
fold admits a group of isometries (Chapter 6), the most convenient basis

is one with the Cﬁy determined by the group structure.

2.3. The Metric
In relativity a gravitational field is described as curvature in the

spacetime manifold. The bending of particle paths is due jointly to:
(1) non-gravitational forces, and (2) the curvature of the manifold itself.
A path (geodesic; see Chapter 3) which is bent only because of the curva-
ture of the manifold is the world line of a test particle moving in a gravi-
tational field. In relativity the metric of the manifold determines its
curvature. The relation between curvature and metric is reminescent of
that between the electromagnetic four-potentials and the electromagnetic
field (Wheeler, 1962b).

A cosmological model is not only a manifold, but a manifold-with-metri
a pseudo-Riemannian manifold, (Riemannian manifold is reserved by us
for a manifold with a positive-definite metric.) Because the metric plays
such an important role in relativity we shall discuss it before we consider

other geometrical objects.

Metric: Distance Measure and Operator

To many physicists, a mefric is a structure which determines the
distance between two nearby points and the angle between two lines.
More precisely, a metric is a bilinear, non-singular function on the set of
pairs of vector fields. We shall use this second definition. In the next
section we shall show that a metric is a second-rank covariant tensor
field.

Actually we may connect the two definitions of metric quite naturally.
Consider two nearby points P and Q in a pseudo-Riemannian manifold
M. We suppose P and Q to be in the same coordinate patch, the differ-

ences in their coordinates being Ax#. The square of the distance be-

tween them be written
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The gy are the components of the metric. The matrix B is symmetric
and a function of position on M. We use As? by convention, even though
in relativity As? may be negative. We now define an operator dx*
which acts on the differential operator d/dx" to produce 8#:
1 =

PRI T L

ox 0, uév
On writing the vector PQ as Ax?d/9x%, we can identify As? as the

“‘dot product’’ of 56 with itself:
As? = g Ax7Ax lax(@/0x7) [dx " (@/9x)] = g(X,X) . 2.9

The operator g, dx#dx" is a bilinear, non-singular function on pairs of
vector fields.

Mathematically a metric is an operator which acts on two vector fields
U and V to produce a function (written g(U,V) or U-V). Such a metric
is required to be:

(i) bilinear
U-(V+W)=U-V+U-W, U+W)-V=U-V+W-V,

(ii) symmetric

Uu-v=VvV-U,
and
(iii) non-singular

If U-V=0 forall U, then V=0 .

In a general basis we define n? functions by

gﬂy

g = X, X, = eX,X,) . (2.10)
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These functions are the components of the metric in the basis §Xﬂi. At e
point P the function 8 has the value g;w(p)' By (ii) and (iii), re-
spectively, the matrix g;w(p) is symmetric and non-singular (det g&w(P)
# 0). In general relativity we also require that M be four-dimensional an
gﬂy(P} have signature (—+++) everywhere.

A Non-Singular Metric
In Chapter 5 we will refer to ‘‘non-singular metrics,”’ points of
“singularity’’ and so forth, and will define these concepts more precisely
there. Briefly, a metric is non-singular in an openset N if in N the
metric obeys (i), (ii), and (iii) above. If in following a metric about a
manifold M we come to a point P where either (i), (ii), or (iii) breaks
down we shall call the operator at that point a metric which is singular,
Strictly this is an abuse of language, since at P we have left the subset
M” of M which has a metric on it.

One cannot use a particular set of functions B = Xp X, to deter-
mine the truly singular points of the metric. At the edge of a coordinate
patch, for example, det gw/(P) may vanish. This zero may mean that the
X# have become degenerate at P or that the XH are no longer differenti
able vector fields (so that Cgﬁ are not finite, differentiable functions
near P). To recognize a frue from an apparent singularity we must attemp
to find another basis {f,} such that 555 and é'm/ are finite, differenti
able functions at P(EW(P) must also be non-singular). Such a basis

always exists if the singularity is not a true one.

2.4. Differential Forms

The geometrical language of forms is especially useful in describing
antisymmetric, covariant tensor fields. In modern differential geometry we
define this concept without reference to coordinates, using the concepts
of operation. We define a differential form (of first degree), also called a
one-form, as a linear operator on vector fields. That is, if @ is a one-
form and U a vector, w(U) is a function, so that w(U)(P) is a real

number.
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Dual Bases

If %Xiﬁ is a basis we define a set of one-forms {wt} by
w“(XV) = S{f . (2.11)

The functions »#(X,) are the constant functions 8. These ot are
called the duals of X# or the basis dual to %Xiﬁ. The most general one-

form © can be written as a linear combination of the dual basis forms w#:

o
w—bom .

The duals of a coordinated basis ia‘u} are written dx®”. The form
dx# is not a component of a vector but one of a set of n linear operators.

These forms will be called a coordinated basis of forms. In this basis

_ o
w = aadx .

As with vectors we require ® to be unchanged under change of coordi-

nates from x# to ¥
w =a,d¥% = a dx .
It is not difficult to show that:

i, = ao(o"xo/a)'c‘r) . 2.12)

Note that the a, transform like the ‘““covariant components of a vector

field”’ of the older literature.

If w=b,0’ and U=u’X, then
() = byu? . (2.13)

This expression is called the contraction of @ with U.

Multiplication of Forms — Tensors — The Metric
In older literature the complicated geometrical objects known as

tensors were defined by the transformation properties of their components.
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In even older literature these objects were defined by the tensor multipli-
cation of covariant and contravariant vectors which were combined to pro-
duce a general tensor. Modern differential geometry has returned to the
earlier method, We shall define tensor multiplication ® on one-forms.

Helgason (1962) shows how to extend this to vector fields, and so on to

build up tensors.

The tensor product w ® o of two one-forms is a bilinear operator act-

ing on pairs of vector fields (U, V):
(w2 o) (U, V) = oU)a(V) . 2.149)
In a coordinated basis (w=a, dx?, o=b.dx’, U= u}’é?},, V= v565):
©@8)(U,V) = @, u)bgP) | (2.15)

and w ® ¢ may be written as

v
w® 0 = aubvdx“@’dx .

The tensor product on forms and vectors is used to build up tensors of
arbitrary rank. The product of r forms and s vectors is a tensor of co-
variant rank r and contravariant rank s. The general tensor is the sum
of such elementary products. The typical tensor can be written as a linear

combination of basis elements:

Ta"'BumVXa®~--®XBw“®m®wV : (2.16)

The functions Ta"'Bﬂ__.V are the components of the tensor. Contraction

is an operation which lowers the covariant and contravariant ranks each by
one by the operation illustrated in (2.13).
If {o*l is a basis for one-forms, w# ® @ is a basis for all covariant

tensors of rank two, i.e., for all bilinear operators which act on pairs of

vector fields. The bilinear operator - or g (the metric) can be expressec

as
- v
g=g,ol %0

or
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U-V = g, V) = @, 0'ea”)(U,V) .

Because of the non-singularity of g, g cannot be expressed as a simple
product of one-forms ® @ ¢, but g must be a linear combination of at
least n such elementary products. It is easy to show

X#‘XL} =gy = ’g‘w .

It is customary to write

wteb = % whew + oot |, .17

and, since B = By

[

ds? = g owfw¥ . (2.18)

g iy

We write the bilinear operator g as ds? in remembrance of 2.9).
In general covariant and contravariant vectors are distinct objects.
Given a metric g, however, an equivalence relation is set up between

contravariant vectors X and covariant vectors . X is said to be the

contravariant image of o if

g(X,Y) = w(Y) for all vectors Y . 2.19)

Because g is non-singular, X is uniquely defined by this relation if w
is given. Conversely, o is uniquely determined by X. In component
form (in a basis), the relation between the components a# of X, b’1 of w

(whete X:auxu, w:bym”, and iXﬂ} and {wH} are dual bases) is

a? = b, . (2.20)

Often bli is written as ay-
The contravariant metric tensor g is the second-rank, symmetric,

contravariant tensor whose components g'” are the components of the

matrix inverse of (g;w)' The tensor g acts on a pair of covariant vector

fields w, o to yield a function. If w,o are the covariant images of the



26 2. GEOMETRY IN THE LANGUAGE OF FORMS

contravariant vector fields X, Y, then g is uniquely given in a basis-

independent manner by the expression
gw,0) = gX,Y) . (2.21)
In a basis, we write

w = a#w’u, o = c#wﬂ ) )
Bud = 8, B,uC =Cy

= af = M
XaX#,YcX#

e=eX, X, g=g,o0t” (2.22)

@") = (g,)"

ghv a,c, = gy, atc¥

The metric g and its contravariant form g may be used to contract a
tensor T on two contravariant or two covariant indices. If the components
of T in some basis are, for example, TaBycS’ then the contraction with
gaB on the first two indices is the tensor whose components are g“B T, B)

Just as we singled out the symmetric part of o ® w¥ we can write
the antisymmetric part 1
wAo = 5 woo—-o8w) , 2.23)
the wedge product of w and o. The wedge products of basis forms
ot A w¥ are a basis for the space of two-forms on M. The generic two-
form is F =f,, ot A o¥. The components f,, are an antisymmetric
matrix of functions. The wedge product of a two-form and a one-form is a
three-form. This process may be carried out to any rank, n products de-

fining n-forms (functions are zero-forms).

Exterior Differentiation or Curl; Structure Coefficients
Every physicist is familiar with quantity called the ‘‘differential’’ of

a function, df(t) = é—l{ dt. This concept is refined in modern differential



2.4. DIFFERENTIAL FORMS 27

geometry by use of an operator d, called the curl, gradient or exterior
derivative operator, operating on r-forms. We shall first define d on
functions, then proceed to forms of higher rank.

The operator d on a function f is defined by

df = (X, Dok (2.24)

in a basis {Xﬂi whose dual basis is {wfl. A basis-free definition of d
is that d is a linear operator carrying a function f{ into the unique one-
form df defined by df(U)= Uf, where U is any vector field. In a

coordinated basis we have the familiar expression

df = (c?“f)dx“ . (2.25)

We uniquely extend d to forms of higher rank by the requirements:
i) d converts an r-form into an (r+ 1)-form; ii) d(dw)= 0 for any o;
iii) dw A0)=dw A0+ (=1 w Ado if © is an r-form (remember, func-
tions are zero-forms).

It is from df in a coordinated basis that we get the notation dx# for
basis one-forms. If we operate on the n coordinate functions x# with
d we get dx*, n one-forms which can be easily shown to be identical
to the duals dx# of the vectors Gu.

From ii) above we have d(dx")= 0. We shall find that this expression
is equivalent to the statement that the 8# all commute (their structure
coefficients are zero). Let {wf] be a basis of one-forms dual to a basis
{X 1 which has non-zero commutators. The curl of any «F is a two-form

@
dw” and hence a linear combination of the basis of two-forms {wfAw"}:

dot = Dg war\wﬂ .

It can be shown that the Dg B are related to the structure coefficients

Chpg of (2.8) by
1
Dgﬁ = -5 cgﬁ . (2.26)
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A Picture of a One-Form — Closed and Exact Forms

We shall try to give an intuitive picture of a ‘‘form”’ which we have
defined in an abstract way. We shall use the property of d that: If
dw = 0, then @ =da for some form a, at least in a limited region
{Spivak, 1965).

A closed form o is one which has dw = 0. An exact form & is one
which can be written & = da for some a. As we stated above each
closed form « is exact, at least over limited regions. Whether dw = 0
implies o = da everywhere on M depends on the topology of M.

We can obtain a picture of a general exact one-form by constructing a

set of n—1-dimensional hypersurfaces in an n-dimensional manifold M

dat w

Fig. 2.5. One-Forms in 3-d Space, Schematically Indicated. Because dt is
closed, or curl-free, so that d(dt)=0, dt locally determines a set of 2-dimen-
sional surfaces (t=const). Here t, x, and y are coordinates in the space
in which dt and @ exist. The one-form @ shown is w=cos tdx+sin t dy,
and so dw AW ,é 0. The structure determined by  is a spiral or screw ar-
rangement of 2-dimensional surface elements defined as the locus of end-
points of vectors X such that w(X)= 0.
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labeled by a parameter t. The parameter t is a function wiaich is constant
on these hypersurfaces. We may identify dt, the curl of t, with the
hypersurfaces themselves (see Figure 2.5) and portray dt as an arrow
perpendicular to the hypersurfaces.

If we want to portray an arbitrary one-form o, consider o at a point
P. At P o may be represented by a small “‘chip’’ of a hypersurface
which contains all the vectors U such that w(U)=0. If do Ao =0,
the form is said to be hypersurface orthogonal and the chips can be sewn
together to form a surface. If o is curlfree, dw = 0, the chips can be
sewn together without stretching. If dw A @ £ 0, the chips cannot, even
with distortion, be combined to form a surface.

To portray an r-form we may extend the rﬁethod just outlined. For an
t-form o, (n—r)-dimensional chips at P are determined by the vectors U
such that o(U) = 0. Again the condition that we may sew these chips
together (possibly by distorting them) in a finite region to make an
{n—r)-dimensional hypersurface is do A 0 = 0. This condition is obviously
satisfied when do = 0, in which case o is the curl of an (r—1)-form, and

the sewing together involves no stretching.

2.5. Covariant Differentiation

In tensor analysis covariant differentiation V is an operation which
is a type of differentiation which (a) reduces to partial differentiation on
functions; (b) converts a tensor T to one of higher covariant rank; (c)
applied to the metric gives zero; (d) contains Christoffel symbols which
are symmetric in their lower two indices. We shall define an operator with
these four properties expressed in a coordinate independent manner. There
will be two important new directions, however.

First, we shall concentrate on VU, covariant differentiation with
respect to the vector field U rather than on V. The operation VT on a
tensor T produces T, where T is a tensor of one higher covariant rank
than T, but VUT for a vector field U is a tensor of the same rank as

T. Second, our definition will be invariant under a change of basis. In



30 2. GEOMETRY IN THE LANGUAGE OF FORMS

non-coordinated bases we shall find that the analogues of the Christoffel

symbols need not be symmetric.

Vy as a Differentiation Operator
We shall list four defining properties of VU. The first two are:
(I) Vy is an operation which carries a tensor field into another

tensor field VU(T) of the same rank and which is linear in U:

V(fU +gv) = fVy + eVy, f,g functions; U,V vector fields. .27
This property is equivalent to property (b) above.
(II) The operator V; applied to a function gives

Vyf = Uf . (2.28)
When applied to tensor products, VU is a derivative operator:
VyBeT) = V()T + s8 Vy(T) . 2.29)

These properties are the analogues of (a). Also, VU commutes with con-
traction C in the sense that the result of applying V{; and C toa
given tensor field is independent of the order of application.

Using (I) and (II) we can show that (for any function f and vectors

U, V) VyEV) = fV5(V) + (UDHV .

If we write U=u? X5 V= vUXU then V(fV) may be computed if we

know VX (XV) for all p,v. This derivative defines the connection

vp o -

fficient rwa b
coefficients 1 g, by V., (X)=T0%x (2.30)
Xﬂ 14

We know that VX (X,) is a vector field; the I_’f# are just its compo-

nents in the basis iXHZ.

If we let U=ut XV, V= VVX#, then our definitions give rise to a

useful formula:
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Vo) = w7Vy 7X) = w7lX, v+ v I, X (2.31)

The quantity VX (V) is a vector field, so we can write Vy V)= VO,#XG,
;L 3

where the va; are its set of components. Writing Xu[vg] = vg;l we

H
have
Vx#m = 7 )X, = (7 s T DX, (2.32)

and

VoW = (vﬂ;ou")x# . (2.33)

These expressions are common in relativity, but here v“a is not aav“
t

PL / p .
and Faﬁ #~ FBC‘ in general.
We may also compute VU(w) whete @ is a one-form, with w= aowa.

The result is

H (73

VX () = Vy (aga)a) = (X#aa—raﬂar)w
# K (2.34)

= (aa’# - I‘;“ a,.)co':7
With these formulas we can compute VU(T) for any tensor T. For
instance, the second rank tensor B ot ® ¥ has the covariant deriva-
tive
v r r v
VXK(gcho“®cu ) = (X, g‘w—FVK gw—Fqum)w“ ®w” . (2.35)

The Vanishing of VU(g) and of Torsion — The First Cartan Equation
In order to make the Fgﬁ unique it is necessary to specify two

additional properties of Vy;:
(III) The covariant derivative of the metric tensor g vanishes:

V(@ = 0 .

Because of (2.35) we can then write

g"ujsa Q)a = (F:’; g}l,(}%r’fa go'],:)wa s (2.36)
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where B g = X, 8 (Note that the curl of the function & is dg{“”:

8 a @®.) Let us define the connection forms

wl = ngaw"’ . (2.37)

Property (III) then can be written

dg,, = @, + @, Oy = Buo®y - (2.38)

(IV) The final property we shall demand of VU is zero torsion (see
Helgason, 1962). That is:

VW) = Vi) = U, vl = £,v) .

Because of their limited usefulness in general relativity (although see
Edelen, 1962, and Einstein, 1955) we shall not consider covariant deriva-
tives with non-zero torsion.

It can be shown that in a basis {X;j (Cgﬁ defined above)
B _TH _TH
Chg =T -Thg . 2.39)
This relation implies

dot = _%—Cgﬂma rof - —F‘éawaAwB ,

or

dob = — 0¥ A’ . (2.40)

This is, for zero torsion, the first Cartan equation.

We may use (2.37) and (2.40) to compute FSB for a general basis. If
we define a basis {X#} such that v is a constant in that basis (2.38)
reduces to Wy T O, = 0. This special case is often useful in relativity.
In general, however, we have

I'tg = %— ¢%(er0 8+ 80 B,a ~8aB,0)

+ 3 CClgreg e Clg e g C,) 2.41)
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where g‘mgm/ = 5g and L = X, AN A case of special interest is
Cgﬂ = 0 (a coordinated basis). In this case (2.41) reduces to a well-

known form: the Christoffel symbols.

2.6. Curvature — The Second Cartan Equation
Let us define (without motivation for the moment) the curvature

operation on two general vector fields U and V to be

Eventually we shall use this operation to define the gravitational field.
The operation R(U,V) is a tensor of one covariant rank and one contra-
variant rank, since it operates on a vector field to produce another vector

field, and since for any function f
R(U, V)(fW) = fR(U, V)(W) .

The proof of this property is straightforward, but tedious.

The Riemann Curvature Tensor
Using R(U,V) we can define a tensor field of three covariant ranks
and one contravariant rank which operates on three vector fields U,V,W

and one differential form ® to produce a function:
R(U,V,W,w) = f . (2.43)
This tensor is the Riemann curvature tensor. The definition of R is
R(U,V,W,0) = olRU, V)W] . (2.44)

(R(U, V)W is a vector field, so R(U,V,W,w) is a function.)

To be a tensor, R must be linear in all its entries. It is obviously
linear in w and we know that R(U, V) is a linear operator. We shall
leave it to the reader to prove linearity in U and V.

For a basis §Xﬂ§, R(Xﬂ, X, )(X,) is the vector field

g
R(X, X,)(X,) = Ry, X, .
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The ng are a set of functions called the components of the Riemann

curvature tensor.
. . o
In a coordinated basis (U=u Bg, {a#, ’31/1: 0)

[R@,,3,) W, = 7, ~u? )9, (2.45)

which implies the familiar equation:

uar;l)pL . ua;‘uu = Rgpy u® . (2.46)

In a general basis, a long computation shows

o c o N7 o T o T o
Ra,uv = Fav,u - Fapn,v + Iav Fm - Fau rn/ - C;w 1"ai’ ’ (2.47)
where I'J = X#Fgl’ and C:w = qu - F‘ZV. In a coordinated basis

this reduces to the usual expression for ng/.

The Second Cartan Equation

Using (2.47) we can show that the curvature forms

6‘; = d(uﬁ + cog A wﬁ (2.48)

have the useful property (the second Cartan equation)

T

o - ZRE 0% h0 (2.49)

Equations (2.38), (2.40) and (2.49) are all we need to compute the
connection coefficients and the Riemann curvature tensor for a metric in
any basis. Taken together, (2.38) and (2.40) may be solved for cu"j (this
is usually much simpler then computing F‘fv in a coordinated basis). A
straightforward computation gives the 6‘5 and (2.48) allows us to read off

the components R‘rﬁor directly.

The Ricci tensor components RHV and the scalar curvature R are:

Ry, =Rl R=¢g"R,, . (2.50)



2.7. METRIC, VECTOR FIELDS, AND STRUCTURE COEFFICIENTS 35

The Einstein field equations are

1
Ry — 7 8uR=T,, - 2.51)

(T#v are the components of the stress-energy tensor in terms of the o

and in a system of units where 8z G/c? = 1)

2.7. The Three-Sphere as an Example of a Differentiable Manifold:
Metric, Vector Fields, and Structure Coefficients
The three-sphere s3 is the set of all points in four-dimensional

Euclidean space R* with coordinates xl, x2, %3, x* such that

4
s &M -1, (2.52)
[,L:I

In R* we also use the Euclidean metric g = 8#'/ u,v=1,2,3,4).

We should like to construct a set of basis vectors for the manifold S3.
We need three linearly independent vectors X, X,, X; at every point of
s3. Because every point of s? isalsoa point of R* we can write any
vector at a point of s3 as Xi = ai#au’ where the ai“ are functions of
x! , x2, x3, x*. For any function f on 53, Xi(f) must be a function on
s3, so the ai“ need be defined only for points in s3. Consider the

three vectors in R%:

X, = xzc?l - xlé‘z + x483 - x384
X, = %39, — x*9, —x'9, + x%9, (2.53)
Xy = x*, + x30, - %%, —x'9, .

Each of these three vectors is a vector in s% when xl,)c2,>c3,x4 satisfy

(2.52). The Xi are linearly independent and it can be shown that

xi'Xj = §ij’ i,j = 1, 2, 3 - (2.54)

Thus the Xi form an orthonormal basis for S°.
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Computing the commutators of the vectors (2.53) we find

{XI,XZ] = 2X3 et cyc

so that the structure coefficients are given by

i
cly, = 2e,, . (2.55)

Thus the Xi are a non-degenerate basis everywhere on SS, and the
metric whose components are defined by (2.54) is non-singular everywhere
on S3.
Coordinates on S°
No coordinate system will cover all of 53, but consider the coordi-
nates % = xi, i=1,2,3 at every point where x*> 0. The %' are good
coordinates everywhere in this region. The three coordinated basis vectors

9} can be written in terms of the 8“ of R* as

(2.56)

where x* = [1-—(x1)2 - (X2)2 - (X3)2]2~

The metric g has components in this basis:
-1
- . _ =i 2
g - 93, - 0y -% @ (1- 36)

We see that gij has a singularity at x* = 0, but this singularity is
sSpurious, as it is due to the breakdown of the coordinates "}Ei at x% =0.
We know that the metric is actually non-singular because there exists a
basis ?Xii in which its components are regular everywhere: (2.53). In
terms of the 3} we may write

Xy =§251 —§1§2+ x43‘3
=3 4 =1
X =x§1-x§2-x§3

X, = x*3, + 7, - 743, .
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Let us now consider the three-sphere of radius b, that is the points

2
in R* such that 3 x!)" = b%. We define Y, = aX; where the X; are
given by (2.53) (with the new restriction z(xi)z = bz). For the moment

we choose a= — %—, so that
_ 1,2
Y Y}-— 3 b 513‘
2.57)
[Yi,Yj}: ~£g;¥s

Let us now change to a new basis {?ii where

i;' = aiSY

1 s 7

the ais being a matrix of constants such that zais ait = Bst (ais is a

1
3x 3 orthogonal matrix). Equation (2.57) remains valid for the ?i, if the

determinant of aij is one. The {Y;} and {Y;} bases will be useful in
the discussion of spatially homogeneous cosmologies based on the three-

dimensional orthogonal group.

Table 2.1. Summary of Useful Formulas

VECTOR FIELDS:
V({E+g) = V() + V()
Vifg) = gV(F) + fV(g)

Coordinated basis: !
gk

V=vua# where au-—:é—xﬁ—

General basis:
o ~0.
x#: ﬂaa,v=v X,
o0 -
V(f)zfgo_v , where f)ozxa(f)
(in a coordinated basis Xu(f)-:aﬂf)

Changing coordinated bases:

3
—okg kg gr9xF v
Ve y &PL v gu,v afuv

ONE FORMS:

dx“(av) = &M , Where c')u = 8_3_;
A general form:

w=a dxt

dx is a coordinated basis of forms

A general basis:
_ER 40 T O
wtt=£ Ldxd, w=a 0
A vasis 1@ is dual to a basis of

vectors §X0¥ if wU(Xr)z(SG;

If m:auwﬂ, Uzu‘uxu, co(U)zauuu
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Table 2.1. Summary of Useful Formulas

VECTOR FIELDS:

Changing general bases:
V=vMX  and if EHxApVxV,
—H_ o a=1H v = UF
vP=(A )VV and V=v Xll

Commutators:
[u,vlzuv-vu

S?UVE{U,V]

In a basis Xu: U:uﬂxu, vzv“x#

[u,vi=fufx uv") -~ v#(quU) +
uquCinXU where

T
[x“,xv]zc HVXU

Tensor Product of Vectors: U® V

Metric Tensor:

(Continued)

ONE FORMS:
Changing bases:
Coordinated: m:a“dxﬂrgﬂd}?ﬂ,
- Oxt
B o e B
Voary o#
Non-coordinated: &‘)":Aﬂu v

- -1, v — —
ay:(A )ﬂ avand wzaﬁ‘wu

Tensor Product of Forms: 0® @

Wedge Product: wAG= é— (WRT—~ 0B W)
Wo= %— (WU + UW)

Exterior Derivative:
On functions: df= auf dxH

On general forms: d2 =0

dleArd)=doAc+(~DwAdo
(r the order of w)

. _ 1l . o 7
On a basis: da)-u-~§»Cm,a) Aw .

g=g,olew”, gUV=U-V, eX, X )=g,,

The one form u=u,wH is the image of the vector U:uf‘xu if {wt! is dual to

{xd} and uu-—-gw/u .

Covariant Derivative:
On functions: VUfz Uf.

On the tensor product of two vectors 8,T: VU(S®T)=VU(S)®T+S®(VU(T)

V)=t Vyn+ [u@lv

If U=uMx . V=vuXH, VU(V):\.10{'&/"“0,4»Iwor,rvr])(”zucr(v“;o,)xp~

w

where VUX“EUVIv X _ and v‘u’vsxl/(vﬂ).

v o

On one-forms: Vxﬂ(a))= (av,ﬂ~

vt o

{2 -
oo, if wzaua)‘u, where a;l.V:XV(aﬂ)'
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Table 2.1. Summary of Useful Formulas
(Continued)

Cornnection Forms:
=TH 2
oh =Tk o
i i i H . P H = 3 L

The metric has zerc covariant derivative: dgw/.uww*wvu, cuw/-gyao v
The condition: [U,V}:%(V):VUV wva is the condition for zero torsion.
It implies CH A

implies Cg=T"lg,~Tap
and also du)u:—~cg)ﬂy/\mv (The first Cartan equation).
B N P ) . -

In general: I"aﬁ~2 g (goa,ﬁ*gaﬁ,a gaﬁ,a)

1 7 Uo T
+5(—C‘;B+gmgwcgﬁ+grﬁg Coa}'

The Curvature Tensor:
R, V)=V, Vy, -V Vy .-V[U vl R(U,V,W,0)=a[RU, v)W]
R(Xa,Xﬁ) (X#)ERZC‘BXU R is the Riemann curvature tensor
4 o 10 2 o T g T g
In general: R#aﬁ~ru8,a F#a,B+FﬂﬁF7(1 F#a FTB CaBPlu. .
The components of the Ricci tensor are: R(IBERZO‘Q’ the Ricci scalar is R:—‘:RC;z .

Einstein’s field equations are R if 877G,/c4:1 (T,  stress-

1
_LReg =T
Ty ST T

energy tensor). nd
The Curvature Forms: Antisymmetric Second Derivative of
G = doM + ot A o Components of a Vector Field in a
v v a v Coordinated Basis:

1 a a _uZ - a g
¥, = TR g rof Vo =R ow
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3. SPACETIME AND FLUID FLOW

I came like water and like wind I go
—~ OMAR KHAYYAM

3.1. Relativity and Hydrodynamics

In this chapter we shall concentrate on the description of a fluid in
general relativity and fluid-filled cosmological models. Emphasis in this
chapter will be on the use of the coordinate free language of Chapter 2 for

relativistic hydrodynamics. Figure 3.1 is an outline of the chapter.

Hydrodynamics

In the theory of relativity we study the behavior of a four-dimensional
manifold M on which there is a metric of signature (—+++). The path
of any particle in this manifold is affected by the curvature of the mani-
fold. This matter in turn determines the geometry through Einstein’s field
equations 1
R#V -5 Rg‘w = k le , 3.1
with Ry being the components of the Ricci tensor; R the Ricci scalar,
R= gaB R, B and T‘W the components of the stress-energy tensor. We
shall choose units such that the Einstein gravitational constant k=8 G/c*
equals one.

We shall usually fill our model universes with a smooth, perfect
(isotropic pressure) fluid, as is customary in cosmology. DeVaucouleurs
(1970), Yu and Peebles (1969), and Misner (1967c, 1967d, 1968) have
described cosmological models in which the matter cannot be described
by such a perfect fluid. Birkhoff (1960) has pointed out that many well-

known non-smooth hydrodynamic phenomena such as shock waves,

40
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3.5 Raychaudhuri
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Fig. 3.1. Flow Chart of Chapter 3.

Perfect Fluid

cavitation, and turbulence should not be ignored. For simplicity, however,

we shall follow the usual practice and discuss perfect-fluid models.

Fluid Stress-Energy Tensor
The stress-energy tensor T appears as the source term in Einstein’s
field equations. Although T may be defined in several different ways,
we will use the definition most practical for perfect-fluid cosmologies.
This method (Eisenhart, 1924) concentrates on the algebraic structure of
T, a second-rank, symmetric tensor., We choose units so that G = (8?7)’1 s

c=1.



42 3. SPACETIME AND FLUID FLOW

In coordinate free language, T has the form
T={(w+pludu+ pg 3.2)

where u is a timelike, unit-magnitude differential form (covariant vector
field), g is the metric field, and w and p are scalars, the energy
density and pressure respectively. The fluid velocity is most often
written in the contravariant form U, that is, as a vector field. The field
u is the covariant image of U (indices lowered by use of g).

For most cosmological purposes p =~ 0, so we shall often use the
approximation p= 0 (‘‘dust-filled’”’ models). This approximation breaks
down during highly condensed phases of the evolution of the universe
where even the concept of a fluid breaks down and a kinetic theory
(Bichteler, 1967) or quantum approach should be used.

Let us now consider the components of T in some basis. In a vector
field basis §X“§ (#=0,1,2,3)g has components 8 = g(X'u,XV), and u
has components

uy, = u(X#), where g‘wu#uy = -1, 3.3)
The contravariant vector field U is U= v X;u where u, = g’w w?. We
have defined U to be a unit vector field, g(U,U) = uy, u# = ~1. In the
basis §X‘u}, (3.2) becomes

wa = (w+p)u#uv + Py - 3.4)

The energy density w is equal to p(l+¢€), where £ is the internal
energy, and p is the rest-mass density (see Taub, 1967). The function
p is found by multiplying the number of particles per unit volume by the

rest mass of each, and consequently obeys the “‘continuity law’’

eu”)., = 0. (3.5)

The entropy S of the fluid is related to €, p and p by the thermo-
dynamic equation 0dS = de + pd(1/p) where 0 is the temperature.
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The scalars w and p are the timelike and spacelike eigenvalues of
T respectively, there being three spacelike eigenvalues, each p. This
degeneracy of the spatial eigenvalues is due to the isotropy of the pressure

— the defining characteristic of a perfect fluid (Eisenhart, 1924).

3.2. Thermodynamics, The Bianchi Identity, and Conservation Laws

We assume equilibrium thermodynamics for cosmological models (see
Taub, 1959), that is, the constancy of entropy along the fluid flow lines:
VyS = S . u# = 0. The equilibrium thermodynamics hypothesis implies

- v - "
w’ﬂu“ =V w=—(w+pu . (3.6)

From quite general, physical considerations it can be shown that T

obeys the conservation law

™ - 0. 3.7

In the case of a perfect fluid this law separates into two equations, (3.6)

and

w0’ = —wep)p 0w, ~8,7), (3.8)

This latter equation is completely analogous to the conservation of

momentum equation of Newtonian hydrodynamics (Euler’s equations of

motion, see Birkhoff, 1960).

The Bianchi Identity
Equations (3.7) and (3.1) imply

(R"V -1 Rﬁ“y)m -0 3.9)

if Einstein’s field equations hold. This latter equation is actually a
geometric identity. If we take the curl of the curvature forms 9‘“1/, we
find dO¥ = dot A %, 9, Weinsert OF = %—— R”mba AP

and dot = —-cu“v Ao’ to find

-—a)“a/\dw

Rigpgrof A w”aa = 0. (3.10)
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This identity is called the Bianchi identity. Equation (3.8) is the twice-

contracted version of the Bianchi identity,

The Equation of State
In a basis (not necessarily a coordinated basis) the full Einstein field

equations for a perfect fluid read
1 = “+
R;w -5 Rg#b’ = (w+p)u#uv pg;w . 3.11)

We contract with gh to find R=w — 3p (since u u, == 1). We may

therefore rewrite (3.11) as

1
R,uz/ = (w+p)u# u, + 5 (w——p)gw . 3.1

We now have ten partial differential equations for the By plus (3.3),
(3.6) and (3.8) relating w, p and ut. Notice that we lack one equation,
as the above are fifteen equations for sixteen unknowns.

This type of indeterminacy occurs in Newtonian hydrodynamics
{Courant and Friedrichs, 1948) and as in that case, supplementary thermo-
dynamic conditions lead to a well-defined problem. In princjple we shall
give a set of equations

e=1p,8); p-=1095), (3.13)
where £,p,5 were defined above. These, with the equation S’# wt =0,
give seventeen equations for seventeen unknowns. In fact, in cosmology,
we usually assume $ to be a group invariant (constant in space) and
therefore S = const. A fluid with constant S is called isentropic, and

its pressure obeys an equation of the form
p = p(w), (3.14)

which is called an equation of state. We shall always assume the exist-
ence of such an equation of state (for a more physical treatment of equa-

tions of state see Harrison, Thorne, Wakano, and Wheeler, 1965).
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The equations of state we shall generally use are
1) vacuum: T;w =0, or w=p=0.
2) dust: p= 0.
This is closest to the present universe, and it serves as a very
good model for the general case.
3) gamma-law: p= yw where y is a constant.
The radiation or photon gas is a special case of this for y = %— .

This is a good model for a highly condensed cosmology.
1

1+ =
4) polytropic: p = kw . &k = const.; n = const. {the poly-

tropic index).

3.3. Geodesics and Clouds of Particles

In the dust case Equation (3.8) becomes
u,. u’ =0 (3.15)

which is the equation for a geodesic. A test particle, a small particle
which reacts to gravitational forces only, also follows a geodesic path
(Bergmann, 1942). Because of these two cases we will consider geodesics

in general.

Geodesic, a Parametrized, Self-Parallel Path
A geodesic is, first of all, a parametrized path, a map from a segment

of the real line R into a manifold M:
p:R->M

(forevery t in R, p(t) is a point in M). The numbers in R are the
domain of parameters, while the set of points p in M is the image or
range of p in M. The one-dimensional subset of M mapped out by p
is a path or world-line. The vector U tangent to the path is the operator

which acts on functions f restricted to the image of p, yielding
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Uf =

df(ggt)) f (3.16)
The vector U is a map from R to the tangent space of p(t) for each t.
The path p is said to be differentiable or ‘‘smooth’ if in an allowed
coordinate system {x*}, p is represented by n (= dimension of M)
differentiable functions of t, x*(t). Similarly a vector field W on p is
smooth if the components of W are differentiable functions of t in any

allowed coordinate system. The components of the tangent vector U are

= c—i}%ﬂ ie. U= u“c?u .
Paths whose tangent U obeys U-U< 0, U-U=0; U-U>0 are
called timelike, null, and spacelike, respectively. In relativity all massive
particles travel along timelike paths, while photons travel along null paths
Tachyons, hypothetical particles with spacelike world-lines, have not yet

been found in nature.

It is easy to see that VW for any vector W defined on p is well-
defined, including VUU. A geodesic path p is a path whose tangent
vector obeys
VyU = aU 3.17)
where a is some function. This equation says that the transport of U
along U (by the symbolic use of VU) is parallel to U (see Figure 3.2).

Reparametrization (a change of coordinates in the parameter segment
R) changes the function a. There is always a parametrization of a

geodesic path for which a = 0, that is
VUU = 0 or, in terms of components u".oua =0. (3.18)
A parameter 7 which makes (3.18) true is called an affine parameter. We

may construct another affine parameter 7 out of 7 by 7=ar+b, a# 0.

If we contract (3.18) with u” we find

U-U = const. along p, if an affine parameter is used.



3.3. GEODESICS AND CLOUDS OF PARTICLES 47

X
(A}
P ;
/
/
\L' /
X
P
B8

Fig. 3.2. Geodesics and Non-Geodesics. (A) X is a vector at the point P.
(B) L is a geodesic through P whose tangent coincides with the vector X
at P. L’ is a path, but not a geodesic, which also has as tangent at P the
vector X. (C) A geodesic is characterized by the following property: If its
tangent is parallely translated along the geodesic path to Q, then the paral-
lel translate X will coincide with the tangent at Q, i.e. X.. With a non-
geodesic path, Sxe parallel translate XQf will not coincide with the tangent
X~ of the path at Q-

Without loss of generality we may choose r such that U-U=2*1 or 0.
If U-U=1 (U spacelike) 7 is called the proper distance along U. If
U-U=-1 (U timelike) r is called proper time. We may still choose an
affine parameter even if U is null, but U-U = const. is useless in this

case as U-U= 0 for any parameter.
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It is an interesting property of a geodesic segment that it is an extren
path between its endpoints P and Q. That is, (3.18) is the Euler-

Lagrange equation for a variational principle of the form

dgt dx¥ _
5fg;w Eoir e

While a geodesic is extremal it is not necessarily the ‘“‘shortest’’ path
between P and Q. Nor is it true that there must exist a geodesic be-

tween any two points, even if the manifold has no artificially set bound-

aries (Calabi and Markus, 1962).

Motion of a Cloud of Particles

Let us now consider a cloud of non-colliding particles, that is, a set
of timelike paths such that one and only one path passes through any
point in the manifold M. Such a cloud is represented by a timelike vector
field everywhere on M. If the cloud consists of particles which interact
only gravitationally, then U is a geodesic field. Whether U is geodesic
or not, we shall choose parameters sothat U-U = ~1.

If we join two nearby paths by an infinitesimal line segment, and
remember from Chapter 2 that such a segment is equivalent to a contra-
variant vector, then we can speak of the vector W joining two paths (see
Figure 3.3). We shall parametrize the paths so that W joins points with
the same parameter. We can extend such a definition to a vector field ove:
an open region in M.

We will now show that QUW = 0, where QUW = [U, W] is the Lie

derivative of W along p. To do this, write QUW in some basis ixu} as
EgWH = wh ju? -t w (3.19)

In a coordinated system Tre symmetric on p and v) the covariant

it
derivatives may be replaced by ordinary derivatives. Now choose a coordi

nate system {r,yif where yi is a three-parameter set labelling particles
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Time

Fig. 3.3. Coherent Motion of a Cloud of Test Particles. Each particle is
represented by a path with tangent vector field U, parametrized by proper
time 7. The vector field W connects the path P1 with another typical
particle path PZ' the connection being between points at the same proper
time. W has the property that ‘EUW =0,

and 7 is the affine parameter along particle paths. In this coordinate
system uf =0 (since v =8#;). Since W joins points with the same

affine parameter, the contravariant components of W are independent of
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along the path. Thus wH ju”=dwH/dr vanishes. Because we are using

a coordinated basis,
SUW = 0. (3.20)

This is a basis independent statement, So it is true in all bases.

Reaction of a Cloud of Test Particles to Curvature —
Equation of Geodesic Deviation

When U is a geodesic vector field and W any vector field such that
EUW = 0, then the second derivative of W provides information on the
effect of curvature on the cloud. This information takes the form of the
equation of geodesic deviation. We shall not go into observational topics
here, but the equation of geodesic deviation does have observational

application (see Kristian and Sachs, 1966).

To derive the equation of geodesic deviation, we first rewrite (3.19)

as (this uses zero torsion, Section 2.5):

VW= VU =0.

On taking the covariant derivative of this equation with respect to U:

Vy VW = Vy Ve U=V, ViU = ROUWU @3.21)

we have the equation of geodesic deviation. In a coordinated basis (see,

for example, Weber, 1961):

W#;ar Wy = Ruorp wd wh . (3.22)

3.4. Acceleration, Rotation, Shear, and Expansion
Many properties of a cloud of particles do not depend on the Einstein
field equations. A cloud is represented by a timelike vector field U, and

we parametrize U by proper time (whether U is geodesic or not) so that

U-U = ~1. The cloud may be thought of as a continuous fluid. In a basis
{X 1, U has the form U= v/ X,. The covariant components of U are
o

Uy = Byl -
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The first covariant derivative of U may be written in the form

B , 1
Ugpp = —au U, F Oy, oyt T hﬁlV , (3.23)
where
o :[l(u cu, Ly oy ]h" W
p " |2 Vo TRl T3 T ator | R opt v
1 O T
Opu = 7 Vo r = IR,
o -, (3.24)
o

a# = u[,l;@'u ’

h#“/ = gpw‘““p“v .

The tensor h whose components are h is the projection operafor onto

1%
the set of vectors perpendicular to U. The properties of h are hﬂ" u’=0,
hyoh?, =hy, 1% =3, and b w”=wht if w'u = 0. Ehlers (1961) has

given the above quantities the following names (we label terms by their
1

components) a, - acceleration, Oy rotation tensor (w = [cumcuar]z
1

is the rotation), — shear tensor (0 = {o’”a‘”]z — the shear),

"
0 ~ (volume) expansion. Notice that @y is antisymmetric, % is

. o o
symmetric and traceless, and a, u = Wygl = Oypl = 0.

Fermi Transport and Fluid-Flow Parameters

What is the physical signicance of acceleration, rotation, shear,
expansion? The acceleration measures the response of a particle to non-
gravitational fields (its departure from geodesic motion). In a perfect
fluid the acceleration is determined by the pressure gradient (see 3.8).

The other quantities defined by (3.24), rotation, expansion, and shear,
measure the rate at which the cloud deforms with respect to a Fermi-
transported basis (Synge, 1960). This basis is a set of three vectors

{Xih each of which is orthogonal to U and each of which obeys
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‘?Uxi = ((VUU)-Xi)U, and Xi~U =0 (3.25)

If the three vectors are chosen orthonormal at a point P then (3.25) pre-
serves not only their orthonormality, but also the fact that X;-U= 0 all
along the path generated by U from P. Fermi-transport has the following
properties: 1) If U is geodesic (3.25) reduces to the natural requirement
that V ;X = 0. 2) A point gyroscopic (for example, an electron) which is
accelerated will precess according to (3.25) (Synge, 1960).

To measure the cloud’s deformation, we consider the vector W con-
necting two nearby particles. We have shown that EUW - [U,wl=0, and
by proper choice of the affine parameters for different particles we can
set W-U= 0. The components of W in the Fermi-transported basis
W, = X;-W are physically measurable, and changes in W; along a path
and 6. We use (3.20) and (3.25) to show:

are described by Oy Oy

VoW =VyW - X)= (VU X, + W-0)(Vy U)X, = (VU)X . (3.26)

In a comoving basis (% = 5“0, X, has components Xia = 5ia (i=
1,2,3)), ®oy = gy = hou = 0 and also, hij = 8- The equation for

VyW; shows that in a time &7 in this basis the change in W, oW, is

o+ 3 o) wsar . 3.27)

5Wi = (cu is t 9

If W is allowed to trace out a surface § at r =0, (3.27) shows how
S will deform in a time Or: S will expand by a relative volume 667, and
S will rotate and shear by amounts given by @ Or and 4T b7. Thus
(3.26), or more precisely (3.27), justifies the names given the quantities
defined in (3.24).

Invariant Definition of Rotation

Of the quantities defined in (3.24), rotation plays a special role in
the collapse of a cosmological model (see next section). We shall there-
foré examine it in some detail. It is interesting to note that the rotation
tensor has an especially simple definition in terms of differential forms

and is equivalent to a vector (! which is orthogonal to U.
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Consider the covariant fluid velocity u. At a point P, in spacetime
Ty 8yp = 0, and = (1,0,0,0)

(this can always be done at one point). As we move away from B, in the

we take coordinates so that B

spacelike hypersurface t = x0 = const., the particle velocities acquire
spacelike components unless u is orthogonal to the hypersurface. The
existence of these spacelike components indicate rotation with respect to
an inertial frame.

The covariant vector u need not be the gradient of the function which
defines the hypersurface in order to be normal to the hypersurface. How-
ever, u must be of the form u = rdf, where r and f are functions. We
shall take this form to be the defining characterization for vanishing rota-
tion. It can be shown that u = rdf can only be satisfied if (u a covariant
vector field)

duau=0. (3.28)

The differential three-form du A u is a completely antisymmetric co-
variant tensor of rank three. It has components Qaﬁy in a coordinated
basis, and there are at most four independent components. We now define
a vector field, §}, the ‘““dual’’ (in the sense of differential forms) of !'.:2,

*du A u, where -é~
lg| q
QF = (xduau) = 37 gﬂaﬁyﬂaﬁy , 3.29)

(with |g| the absolute value of the determinant of 8 and £MPY the
completely antisymmetric array with 123 -y 1). The vector field @ is
always orthogonal to u(QH u, = 0) and is called the rotation vector (Godel,
1950; Taub, 1959). In a comoving basis (ut = (1,0,0,0)Q, = 0, and the
three spacelike components Qi are equivalent to the three independent
components of Dy
3.5. The Raychaudhuri Equation and the Conservation of Rotation

If U is geodesic (a#* vanishes) an interesting formula due to
Raychaudhuri (1955b) describes the rate of change of ¢, the expansion.

Raychaudhuri’s equation in the case of vanishing pressure (or, as in the
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Friedmann-Robertson-Walker models, if the fluid velocity is geodesic in
spite of p# 0) is equivalent to the (00) component of the field equations
RW = {w+ p)uuuy + %— (w—p) A In any spatially homogeneous model
the spacelike homogeneous (t = const.) hypersurfaces may be described
by a timelike geodesic field tangent to the t-axis. In this case & is the
relative expansion rate of the t= const. hypersurface and Raychaudhuri’s
equation governs 6.

The general form of Raychaudhuri’s equation is

(Expansion) ~ (energy density) (shear) (expansion)+(rotation)
derivative term term term term

Rotation enters with a sign opposite to the rest of the terms, so it is
especially significant.

Raychaudhuri’s equation follows from the definition of the Riemann
tensor in terms of the commutator of covariant differentiation (see Section
2.6). For a vector field u (components u#) we have, in a coordinated

basis,
- ag
UusaB ~ Yp;fa = R uaplo -

We raise the u index, contract on g and «, and contract again with u‘B.

We find:
6% - -R,; Wi -0 rw? . (3.30)

6"0 u? + %—
This is the Raychaudhuri equation.

For a fluid stress-energy tensor, RUTuGuT = %— (w+3p) which is
greater than or equal to zero if p> —~w/3. Even if the u? of (3.30) is
not the local fluid velocity but the velocity of a cloud of test particles
(a* £ 0) and T is the fluid velocity field then '{i“u‘a < -1 since u and
i are both timelike and unit. Consequently R . W’ > %— (w+3p)> 0 if
p> —w/3. If we only allow small negative pressures then all the terms

in (3.30) contributing to 4 Oug are negative except for the term in w?.
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Rotation and Gravitational Collapse — Conservation of Rotation

If rotation is zero and U = dx*/dr for some parameter 7 then
dd 142 ¢, (3.31)
Hence if 6 £ 0 at some time 7,

d
S0 > 173,

so O - = in a finite proper time along the particle path. This infinite
value of the expansion is indicative of a singularity of sorts: It shows
that particle paths cross.

When U is the cosmic fluid velocity this singularity is a true singu-
larity as defined in Chapter 5. When U describes the motion of a non-
rotating cloud of test particles the singularity at ¢ = = may or may not
be physically real. (Even in Minkowski space, if we aim a cloud of parti-
cles at a point,  will blow up.) Detailed examination is needed in this
case.

If w?£0 thenitis possible that 6 will never become infinite. When
the cloud of particles is the source of the gravitational field (U the fluid
velocity) then the possibility of 0 remaining finite for all time suggests
that a rotating, non-singular cosmological model may exist. Maitra (1966)
has given an example of a rotating, non-singular, dust-filled model. His
model is not a cosmological model, however, because of its axial sym-
metry, and only pecular non-singular models are known (see, for example,
Collins, 1974).

Because of the special position of rotation, we shall derive the law
of conservation of rotation. This law governs the behavior of w? during
epochs when 0 and R,, u?y’ become large. This conservation of rota-
tion law is of practical use only in limited circumstances (notably when
the shear vanishes; see Ehlers, 1961; and Ellis, 1967). In these cases,
and in an approximate manner in other cases, this law can tell if w?

can become large enough to dominate R, , u? ur, 92, and o2 in (3.30).
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Assuming u to be a geodesic field, so that w are the components

v py
of du, we find from d’u = 0:
%—wz"‘\ A %—5@2 + 2&}{;#&)0&0*‘& = 0. 3.32)

When oMoy o'\ﬂ vanishes (3.32) may be integrated using the fact that
0 is the relative rate of expansion of the volume V of a small region of
fluid (Ehlers, 1961, has integrated (3.32) and has extended the result to

“conformally geodesic’’ clouds, in which the acceleration is proportional

to a gradient). We write
dv (3.33)

where 7 is the proper time along the path of particle p,. Equation (3.32)

becomes 9

dow 2 dv _ - 3
—a—;+’3—-v-—;~0, or w = AV s

1] L
o

where A is a constant on each world line of the cloud.
If the cloud is a real fluid cloud, with rest density p, then p obeys

the continuity law (3.5). This law can be integrated to show

p =BV !, (3.34)

where B is constant on the path p,. Near gravitational collapse, V is
g7

small, and one might think that w? dominates the effect of p in R, u’u
This domination by w? might cause one to think that collapse to a singu-
larity would not ensue. However, the detailed effects of R#V wtu” and
of 0, must be studied before any definitive statement concerning a

1=
singularity can be made.
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Who knows from whence this great creation sprang?
...The Most High Seer that is in highest heaven, /

He knows it — or perchance even He knows not —
From the RIG-VEDA

4.1. Field Equations of the Closed FRW Universe
The closed Friedmann-Robertson-Walker (FRW) universe (Friedmann,

1922; Robertson, 1929; Walker, 1935) is the most provocative and important
cosmological model which has been devised since Bruno. It is also one
of the simplest. It is isotropic, spatially homogeneous, and fluid-filled.
Each spatial section is closed (compact, yet without boundary, finite in
extent and volume). Compactness of the spatial sections was considered
vital by Einstein (1917) in his earliest cosmological ideas and it is still
an intriguing idea, if not necessary as once postulated.

The most shocking feature of this model is its expansion: The volume
of the spatial sections changes with time. This expansion leads to a
singularity at a finite time in the past when the volume of a spatial section
becomes zero and matter becomes infinitely dense and infinitely hot (the
Big Bang at the beginning of the universe). This singularity and the fact
that physically reasonable models have such a singularity lead to an
interest in singularities and in homogeneous models as vehicles to study
such singularities. Whether such singularities are obligatory is an un-
answered question at the moment.

The FRW models serve as an introduction to the study of homogeneous
models. This chapter describes them mathematically. We will also briefly

mention cosmography. (Figure 4.1 is a flow chart.)

57

The Rig-Veda was probably
composed in northwestern India
between 1700 & 1100 BCE.
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3. General Perfect Fluid Spatial Homogeneity
Relativity Equations of and lsotropy (See
State Given Chapter 6)

Closed, Open,
o1 Flat

[4. FRIEDMANN - ROBERTSON-WALKER M’)DELS‘

4.3 FRW Cosmology: A detailed
4,1 Closed FRW Model treatment of applications is
with pressureless not given here, bu§ a4 SUMMATY
fiuid or "dust” IThe ”Big Bang” l and guide to the literature
is given here and elsewhere
in the book

Redshift vs

Distance
Element
Formation

4.2 General FRW
Model including
multifluid models

All FRW Models
have singular-
ities (See

Chapter 5)

Galaxy

Formation
Primordial
Radig Noise

Miscellaneous

Necessary to
study more

complicated
models

Observational
ffects

Fig. 4.1. Flow Chart of Chapter 4.

The Metric of the Closed FRW Universe

In a coordinated basis (coordinates xo, xl, xz, x3) the metric of the

closed FRW universe is (g;w = 8# . (9V) (Weber, 1961)

—2
g11=g22=g33=G2(1+r2) , g00=-1, guvzo,pt}él/, @

i

with G = G(xy), 2 (x1 )2 + (}(2)2 + (x3)2 .

The manifold on which this metric is placed is the set of all points whose
coordinates lie in the range —= < x;<=(i=1,2,3) and ~T, < x% < T,
(for some numbers T, T, ).

At first glance no x¥ = const slice of this manifold seems compact,
and the manifold even seems singular at r = oc; but let us consider the

basis
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Xy = dO
X, = ~§~ a3 xd)d, -%- (x2x3_x‘)52+}{ Qe+ 1-1)d,

A —~x3)51+‘—13- (2(x2)2+1~r2}82+%- x>+ x1)d, (4.2)
X, - ‘% Qs 1-2)d, '“flz“ (x1x2+x3)82»—~%~ '~ ),

Fig. 4.2, The Closed FRW Universe. Spacelike invariant hypersurfaces are
topologically three-spheres and are metrically isotropic. Consequently the
homogeneous hypersurfaces in the FRW universe may be represented as ex-
panding and contracting spheres. These spheres collapse to a point after a
finite. amount of time. The matter density p becomes infinite at the time of

collapse.

Time
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A simple computation shows that [Xi, Xj} = Eijk Xy (gijk is the complete-
ly antisymmetric symbol with £;,5 = 1), and [X(}’Xi} = 0. In this basis

the metric is
1 2
XO‘XO:_I’ XO'XI:O’ Xi‘X]:i—G-G (Slj. (43}

This metric and the commutation relations among the space vectors show
that at x° = const. the geometry of the space section is a three-sphere
(see Section 2.7) of radius G(xg).

At this point we mention a way of picturing the closed FRW universe.
The equator of a three-sphere is a two-sphere. Since all equators are
equivalent, we shall then picture each x¥ = const. surface as a sphete

which evolves in time (Figure 4.2).

Connection Forms and Ricci Tensor
In order to give a complete description of the metric (4.3) we need
only give the functional form of G(xo). In order to compute G(xo) we
shall use the basis (00, oi), where the of are the duals of the vectors

Yo = dy; Y= % X, . In this basis (gpw) = (nIW) = diag(~1,1,1,1), and

(2.38) reads O#V + GV# =0 (a”v being the connection forms). The com-
putation of do yields
do® = ddx%) = 0; do* = G 0,01 44 5003 et cyc.{ - means 4 .(4.4)
G G dx©
From the first Cartan equation, dot = —o# A 0", we find
o _G u 1 _2 3
Cu=gO 0= g0 et cyc. 4.5)

The curvature forms, O =do# + o# A 0% , can be readily com-

V!
puted. Two typical examples are



4.1. FIELD EQUATIONS OF THE CLOSED FRW UNIVERSE 61

From é?%f = % R“Vaﬂcra Ao we find

o _ G ogi G 4,
R = & Rjij S+ 2(x,3~1,2,3,1£j, no sum) (4.6)
G* G
with all the rest of the Riemann tensor components zero.
By summation we find the Ricci tensor, which is diagonal, to be

. i i
G G,p,G , 8 @.7

Roo==3F: Rir=Ryy =Ry3 =5

Time-Evolution and Singularity

We now want to insert (4.7) into the field equations
R, =puu, + Lpg (4.8)
v v © 7 PR :

The T;w giving the right-hand side is that of dust (fluid matter with
p=0), sothat w=p, the rest-mass density. We will later include
pressure.

In our orthonormal frame, since uy, = —1= ‘“02 + “12 + u22 + v.132
we have |uy| > 1. The fact that Ry, is diagonal implies u; =0, i=
1,2,3, so we take uy, = (-1,0,0,0). The field equations (4.8) now re-

duce to . .
G_,, 3G, 12
-65=r; 3G2+G2~p‘ 4.9

If we consider the equation TH, =0 we find that it reduces in the
dust case to u“.c,u‘7 = 0 (compare equation 3.8) which here is a tautology,

and (pu“).‘l = 0. This latter equation reads
plp = FOOU ’
With the help of (4.5) this equation can be rewritten as

p/p = ~3G/G > pG> = M = const. , (4.10)
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104

(C)

oo I 2 3 4 5 6 7 8

Fig. 4.3. A) Rvs t for a k=0 FRW Universe. The solid line is the solution for
pressureless matter, and the dashed line is for radiation with the constant ]
chosen so that the energy density of the radiation is equal to that of the dust at
R=10. B) Rvst for ak=+1 FRW Universe. Again the solid line is dust and
the dashed line radiation. The constants p and I" were chosen so that the dis-
tance between the two zeros of R would be the same. C) Ryvst for ak = —1
FRW Universe. The solid line is dust and the dashed line radiation. The con-
stants u and I" were chosen as in 4.3A.
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The content of the field equations now reduces to the single equation

36, 12 M 4.11)
¢? & &

The solution to (4.11) is illustrated in Figure 4.3, The details of the form
of G are not as important as the fact that G becomes zero at a finite
value of the time coordinate x°: As G - 0, p » . Since %" is the
proper time measured by an observer travelling with the fluid, such an
observer will run into an epoch of infinite density with a finite time. In
addition he or she has emerged from an infinitely dense region a finite
time in his past. These two regions are barriers — barriers beyond which
the equations cannot predict the form of G(xo) or p. These barriers or
“‘singularities’’ represent a breakdown of some aspect of the postulates

which lead to the closed FRW universe.

4.2. The General FRW Model — Mathematics and Mystery

The present universe is described quite well by an FRW model even
though the general FRW model has the type of singularity discussed above.
The general model which is isotropic everywhere is also homogeneous
(Walker, 1935). Friedmann (1922, 1924) investigated the closed and open
isotropic, homogeneous models and Robertson (1929, 1933, 1935-6) shows
that these plus the flat model are the only isotropic, homogeneous cosmol-
ogies.

Form of the Metric

The metric of the general FRW model may be written as
ds? = —dt? + R*do? , 4.12)

where R is a function of t and dok2 is the metric of a three-space of
constant curvature k. The three-curvature k is independent of t, and
without loss of generality we may always choose k=11,0. When k=+1,

dalg is the metric of a three-sphere, and the metric ds? includes that
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of the “closed’” FRW model described above. If k= 0, d002 = (dxl‘)2 +
2 2

(dxz} + (dx3) , and the t = const. three-surfaces are flat. If k= —1,
dail is the metric of a hyperbolic space.

We can write the metric of each of these types of three-spaces in an

2 - - -

orthonormal frame as éai = (&;1)2 + )+ (ms)g, with do'= %Cljkm-‘ AW
for some constants Ci}-k, The Cijk for k=+1, 0,~1 are respectively
the structure constants for homogeneous spaces of Bianchi types IX, I,

and V (we shall consider Bianchi-type spaces in detail in Chapter 6).
1

Let us define a time coordinate 7 by [y(r)}gdr = dt, where proper
time (t-time) is chosen by taking y = 1. Another useful choice for y
yields R()=e~" (Misner, 1969, and Hughston, 1969, use {0 for this
time variable). This second coordinate is valid only so long as R{t) is
a monotonic function: If a turnaround (a point where dR/dt = 0) occurs

then a new time coordinate must be chosen.

Affine Connection and Ricci Tensor
We shall compute the connection coefficients and the Ricci tensor in

an orthonormal basis {o#} defined by

gy =y 2dr; ol = Rl , (4.13)

for which ds? = quvo“ o¥. Table 4.1 gives the complete Einstein equa-
tions for a stress-energy-tensor T[.w = (W+p) Uy Uy + PRy From this
table we see that Rg; = 0 for all FRW metrics, so that u, = {-1,0,0,01
in our basis.

We can solve the field equations under the assumption of an equation
of state p= p(w) by solving either for R or y while taking the other to
have a fixed functional form. A help in the solution process is the con-

servation law T’w.y = 0 which in our case reduces in content to
¥

w +3(w+)5£:0 (4.14)
0 PPR ‘ ‘



4.2. THE GENERAL FRW MODEL 65

Table 4.1.

Computation of the Christoffel Symbols, Ricci Tensor, and

Einstein quatitms for the FRW Models
See Chapter 6 for values of the C;k for Bianchi Types IX (k=+1), [(k=0), V(k=~1),

General

FRW

2=77W0,p0v

d32 = qwapav

1

do# Note: 0=y %dr, R=R() and "=

&la

1

-Ryzoeixo'ie»%»l?"l

i s
cl,o%adt

I V. -
dot = ot AC ,OW+GV#~O

1
LR, 2 ~1 j
o=y o“a'l«uR (c: «—Cle—Cipo®

—dot cot ag® LRl o o@agP
¢9ﬁ‘y-da L HOT A V=3 R m}ga Aa

R E e |

lRZJ&i_S jAs
22 (C Jscji)OU

1 =2, s [
+ =R (st )Cgma AC
R” 3 R
Roo==% g "2V &
P 0 o
R, =R Ry, =0

sz(w+p)u#uv+2 (G p)gw

=[-1,0,0,0]

From wa(w+p)uﬂuv+p

S

R” 3 /R _1
- FY = Y = w43
R 2" R 2( P)
~ 12
R 1 1.
+2y( 4 = y + 5 = o (W — p)
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In the frame we are using, w o = Xo(w), where O’O(XO) = 1. Thus Xy =
1 ¥

y2 dg, sothe (4) symbol can be replaced by d/dr (denoted by ).
If we let R be a known function of 7 so that y(r) becomes the func-
tion to be solved for, we find:

2
y - R =3k (4.15)
12(R")

Thus, by giving p = p(w) we can solve (4.14) for w, then using our form

for R tofind y from (4.15) to complete the solutions,

Multifluid Solutions
If we choose as an example, p = Aw, A = const., we find from (4.14)

that a
~(1+3A)
w=BR3IA), 4BR -3k (4.16)

12(R")?

3(1+A)r' - %—Bea(”A)Te-%-kezr

Ifwelet R=e"", we find that w = Be y
(see Hughston, 1969). Equation (4.16) includes dust (A=0) and radiation

gas (A= %—).
The linearity in w of (4.14) allows a solution where two or more non-

interacting fluids are present. Suppose TH = 2 ((wa+ pa)u”a uVa+ pag‘m’]
a

has components (1,0,0,0). Then

4(§wa) R? - 3k

where each uy

= “4.17)
12(R")?
and (4.14) goes to
wo + 3wyt p) RYR) = £y 3 €,=0. (4.18)
a
(See Hughston and Shepley, 1970.) If & =&, =-+=£ =0 and p,(w,)

is known for each fluid, y() and wa(r) may be found if R() is given.
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We can extend this analysis to any member of non-interacting fluids as
long as u# =(1,0,0,0) for each of them.

If we choose R(r)=e~" fora specific solution, the proper time t
1 1

may be found by integrating dt/dr = y i;(r). The function y—é‘ is usually
not integrable in terms of elementary functions when many fluids are
present.
Dust and Radiation

Two very useful models of the physical universe are FRW models con-
taining dust (p(w)=0) and radiation (p(w)=w/3). Dust is often used
for the present universe, where pressure is effectively zero. Radiation is
used to describe the early universe because extremely hot gases are often
postulated to have this equation of state.

In these two cases the conservation law (4.14) can be solved to yield

w=MR™3, M= const (dust); w= I'R™*, I' = const (radiation) . (4.19)

With these forms for w the field equations reduce to one. The others are

redundant. For t-time (y=1, - = d/dt) we find that R is given by

RV 3k M
3(—-) + =L = 2 (dust) (4.20a)
R 4R2 R3
S5\2
3(%) + 3k _ T (adiation) . (4.20b)
4R? R*

Note that the dust equation becomes (4.11) if k=+1 and we let G = 4R.
The general solution to (4.20) (see Figure 4.3) for all three values of
k has R =0 at one moment. For k=+1 there is a turnaround time and

R » 0 at two different times. For k=0 or —~1, R is monotonic.

4.3. The ““Big Bang” and Cosmology
Why is the idea of a singularity where R = 0 disturbing? To answer

this question we must look at the real universe.
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A Picture of the Universe

At present the real universe is isotropic, expanding, and filled with a
roughly uniform (however, see De Vaucouleurs, 1970) cloud of clusters of
galaxies which do not interact with one another. The simplest model to
fit this observation is one of the FRW models filled with a zero pressure
fluid. That is, we assume we are in a ‘‘typical”’ position and that the
universe would look roughly the same anywhere.

We might expect that the universe may have been anisotropic and in-
homogeneous at earlier times and that it has settled down to the universe
we see today. The FRW models do not take this possibility into account.
It is usual, however, to ignore this objection and assume the FRW models
are true back to R = 0.

While in theory we could measure p(w) now, this measurement is pre-
sently beyond our observational capacities. We generally take equations
of state which are known from terrestrial phenomena, and as we mentioned

above, p now may be taken to be zero.

Observational Parameters

If we assume p{(w) to be known we can solve (4.14) if we can find
initial data from observation. To illustrate how this is done it is suffi-
cient to consider a dust-filled universe for which p = 0. In order to solve
(4.20a) we need to know R(ty), k, and M, where t; is the present.

The usual measurable quantities are: a) the present matter density
w(ty) (which gives us M/[R(to)]s); b) (R/R‘)}to, the Hubble constant;
and ¢) (R/R)}t

0

qg=(R R—zﬁ){ t0). The first two of the quantities allow us to solve (4.14)

{or some equivalent measure of the acceleration; e.g.,

for R(ty) if k=*1. Since we may always rescale R at any one time
by a change of coordinates if k= 0, we may arbitrarily set R(t,) in
this case.
Observation (c) is then redundant, since ——Bé/R - M/R3 (differentiate

(4.20a)). This relation provides a valuable check on our observations. If
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the redundant observation does not agree with the other two it must be

doubted whether general relativity is the proper theory to explain cosmology.
In fact, the three measurements do not agree, but generally there are

few qualms aibaut this disagreement. Although (R/R)| tg is well known,

w(ty) and (R/R) to are not. The uncertainty in w(t;) arises because

only luminous matter is measurable directly and there may be ‘‘dark’’

matter we do not see. The uncertainty in the acceleration is due to large

experimental error at the high redshifts needed to measure it. At present

the acceleration data imply k= +1 (see Sandage, 1972-73, and Chapter 15),

while the luminous-matter density implies k= —~1. Generally one chooses

between these two values on the basis of theoretical prejudice.

Cosmography

While we do not know the exact form of the metric of our universe, we
can use the FRW universes as a first guess. Moreover, the behaviors of
the k= %10 models are close enough for times before the present (which
is why it is so hard to distinguish among them) that we may use any one
of them to discuss a variety of problems. These problems include galaxy
formation, and element formation, under the influence of various equations
of state, p= p(w).

For many purposes the universe is best approximated by an FRW model
with two non-interacting fluids making up Tuv‘ The first of these is dust
(p=0) and the second radiation (p= %w). From the conservation law for
non-interacting fluids (4.14) radiation cbeys w = I'/R*, I' a constant.
The number density of photons n is proportional to R™3. The tempera-
ture T may be defined as the ratio w/n, so T R—l. The equation of

evolution for such a universe would be

3R/R? + _3235 - _M§ N “I‘z , (4.21)
4R2 R® R

The constant 1’ is determined by measurements of the black-body radia-

tion which appears to fill the universe (see Dicke et al., 1965). It is



Table 4.2. A Two-Fluid Model Contrasted with the Real Universe, The solution of equation (4.21) for k=0 provides the model:
A universe filled with non-interacting radiation (energy density w) and dust (energy density p). In this model the temperature
T is defined by T = w/p (T is the temperature of the radiation gas). The proper horizon X“ for an observer (defined more
precisely in Chapter 12) is the radius within which all matter can in principle be seen by the observer. This matter is the
only cosmic matter which can affect the observer.

This model is fit to the following observations: a) the present Hubble constant I‘Q/R = 1.7 x 10“18 sec—“{ (from egquation

1
15.1); this value sets the time now as t=3.8x10 7 sec; b) the present temperature of black body radiation T=2.7 K (cor-

. - ~3 . .
responding to w=4.4x10 34 gm cm ) These numbers are underlined below. The function R(x 1/T) is not plotted.

t (sec) T (°K) p (gm-* cm—B) w (gm* cm—3) XH (cm) Speculations or Observations
time temperature dust radiation horizon Concerning the Real Unjverse
The “‘Big Bang,’' a feature of theory,
0 o0 ) o0 0

not & feature of the real universe.

1,
31 65 02 33 Horizon = (P{G/c:;)/a. Quantized gravi-
9.5x10 4.8x10°° 6.0x10 1.6 10777  ty and geometry, ignored by model,
needed here.

2.7x 10744

Horizon = K/me = Compton radius of

6.4)<10n22 6.0><1020 1.2><1032 1.1><1048 3-9><10-” elef;tr?n. A quantx.xm field theory de-
scription of cosmic matter needed
here.

Copious elementary particles present.

4 12

X3 vy F. I3
5.6 % 105 8.3% 1012 1.4x% 107 In ‘“‘composite particle nrmdelt the
temperature has never been signifi-
cantly higher,

2.3x107 1.0x 10

8.3 1dx 1013 Nuclei begin to form. Electron neutri-
T ) nos are decoupled from other matter.

2.3x10° 1.0x10 56107

04
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1.5x10

7.7x10

3.8x10

4.1x10

11

12

17

18

3.4x10

4.0x103

1.2

11x107Y7

1.6x10720

5.5x10730

4.8x107

1.1x107

2.1x 10721

34

4.4x107

1.9x103%

9.4)(102)~

4.3x 1023

3.4x10%8

3.7x10%?

Approximate time when densities of
dust and radiation are equal. Tempera-
ture falls to point where hydrogen com-
bines. Matter and radiation henceforth
decoupled (model assumes decoupled
matter always). Start of present era;
radiation has little dynamical effect.
Galaxies start to form.

Present. Underlined numbers used to
fix parameters of model. Visible mass
density much below computed value of
p1 universe may thus be more nearly a
k= -1 model. Observed deceleration
parameter (see Chapter 15) somewhat
above that computed for this model:
universe may thus be more nearly a
k=+1 model.

If the universe is a k=+1 model, re-
contraction should be about to begin.

ADOTONWSOD UNV DONVE DIid,, HHL t'v

1l
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found to be much smaller than M. Thus at present the M/R® term is
dominant and describes the universe. As R becomes smaller in the past
T goes up (we may use T as a measure of the stage of evolition of the
universe). Eventually the term in F,ﬁ?d dominates (the ‘‘radiation-
dominated’’ epoch), so that (4.20b) describes the universe. Table 4.2
summarizes the behavior of such a two-fluid universe. It must be noted
that interaction between the radiation and matter does take place, so that
table is not strictly accurate. The table is fora k= 0 model since the
assumption that the terms in k are negligible before the present is an
excellent approximation. It is against the background of the universe
described above that the ideas of galaxy formation, element formation,
separation of matter from antimatter, anisotropy, and inhomogeneity at

early times, and singularities are usually discussed.

The ‘‘Big Bang”’
One feature of the general FRW universe is a singularity, R= 0, at
some finite time t;. We can see this singularity in (4.14) and (4.15)

(v = 1) which can be combined to give

R/R = — % (w+3p) . (4.22)

Since a real fluid cannot support large negative pressures we can take

p> — %w and write

d o111 . R?
P [(R/R) =14 g&.)_‘.? (w+3p) > 0 . (4.23)

This inequality implies that R/R must become infinite at a finite time
ty- Therefore R must go to zero at t; because of (4.15). As in Table

4.2 we can always choose t, = 0.

Infinite Density

We can say that p < w, because we want the speed of sound, Cg =
1

(dp/dw)2 to be less than the speed of light (¢ = 1). The two limits on p
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we have assumed, - é— w < p< w, may be used in (4.14) to show

R™2<w<R™S (so w0 as R-0).

This infinite density arises in every FRW model. (Remember we will
always set the cosmological constant A zero; there are singularity-free
FRW-type universes if A £ 0.)

The infinity in w means that the singularity at R= 0 is not due to
a poor choice of coordinates. A physically measurable quantity, w, be-
comes infinite for every observer at a finite time in his past. The FRW
models fail at t=t; and no present theory can predict the behavior of

the universe for t < t;.

The FRW Model as Motivation for the Study of Singularities

The astrophysicist can be content that an FRW model describes our
universe for a long time into the past. The relativity theorist, however,
is interested in large gravitational effects. These effects occur in the
FRW universes near t, — at the point where the model breaks down. He
asks himself if there is any model which is non-singular at earlier times
and approaches an FRW model at present. Evidence is mounting that there
is no such model, but in studying this problem two basic avenues of re-
search, each of interest in contexts far wider than cosmology have been
explored. These subjects are the theory of symmetries and the theory of

singularities. Much of the rest of this book is devoted to these two topics.
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...I tell you that I can trace my ancestry back
to a protoplasmal primordial atomic globule

— WILLIAM SCHWENCK GILBERT

5.1. The Riemannian Manifold Contrasted with the Pseudo-Riemannian
Manifold

Each FRW cosmological model is said to be singular. It has at least
one region within which the density is unbounded. A freely falling observ:
in this region, travelling toward increasing density, would see the matter
around him become infinitely dense in a finite amount of proper time. How-
ever, in the presently accepted viewpoint the points of infinite density
(singular points) are not within the model but are treated as an additional
structure, the boundary of the manifold proper.

At present there is no fully accepted method of defining the structure
of the singular boundary points of a general manifold. What is accepted —
and it is important to keep this concept in mind — is that each cosmologi-
cal model is a well-defined manifold-with-metric, at each point of which
the metric is non-singular, and that all singular points are on the boundary
of this manifold. If no boundary points can be reached by any observer,
the model itself is called non-singular, but if boundary points are not ‘‘at
infinity,;; and the original model cannot be extended beyond these points.
to a non-singular rﬁodel, then the model is called singular.

To define singularity it is first essential to have a well-formulated
notion of non-singularity. The criteria for non-singularity are well-defined
if the metric is positive definite (Riemannian) so we shall examine Rie-
mannian theory first. In spite of the fact that a cosmological model is a

pseudo-Riemannian manifold (it has a non-positive-definite metric), severa
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Fig. 5.1.

find common expression and usefulness in both cases. In addition, one
method of investigating a pseudo-Riemannian manifold is to define from it
a higher dimensional Riemannian manifold which is then treated by means
of the methods described below. As usual, we present a chart of the ideas
in this chapter (Figure 5.1). In addition we shall number various facts
(F1,F2,--+), criteria for completeness (Cl,--), and other statements for
comparison between the Riemannian and pseudo-Riemannian cases. In
order to keep the discussion as intuitive as possible, we shall state
theorems and facts without detailing many of the assumptions (such as

smoothness and connectivity) necessary for rigor.

Metric and Topology in a Riemannian Manifold
The special feature of a Riemannian manifold M which makes M far

simpler than the general pseudo-Riemannian manifold is the fact:



76 5. SINGULARITIES IN A SPACETIME

F(1) A (connected) Riemannian manifold is a metric space, a metric space
being a set with a well-defined distance between any two points. Here the
distance d(P,Q) between two points P and Q is the minimum of the
lengths of all lines from P to Q.

This distance function defines a topology, that is, an enumeration of
the open sets of M. This mefric topology is defined as follows: The sets
ifor fixed P, all Q suchthat d(P,Q)< e} are open. All open sets are
unions of these “‘basic’’ sets.

It is also true that: F(2) The metric topology is the same as the mani-
fold topology. That is, the metric topology enumerates the same sets as
being open as does the topology used to distinguish continuous from non-
continuous functions (Section 2.1). The proof (Helgason, 1962) uses the
fact that d(P, Q) is continuous in both variables.

To see the consequences of F(1) and F(2) we must make a point about
geodesics which we shall use later. This statement is true whether or not
the metric is positive definite, and comes directly from the concepts of
Section 3.2. A geodesic is a path whose tangent vector U obeys the
geodesic equation, which if the path is parametrized by an affine parameter
is:
VyU=10. 5.1
The equation is solvable, at least locally, to obtain U from initial data.
The affine parameter A (which in the Riemannian case measures path
length) is itself determined by the vector U at our initial point P. In
other words: F(3) Given any vector U at a chosen point P, there exists
a unique affinely parametrized geodesic passing through P whose tangent

vector coincides with U at P (Figure 3.2).

Completeness and Non-Singularity in a Riemannian Manifold
A Riemannian manifold M is non-singular if it satisfies either of two
““‘completeness’’ criteria below. The equivalence of these criteria is a

consequence of F(1), F(2), and F(3). That a complete manifold M is as
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extended as it can possibly be is also a consequence of these facts, This
latter consequence, as well as others, show that a complete Riemannian
manifold deserves the adjective non-singular.
If the completeness criteria are not satisfied, however, it may be
possible to identify the given manifold M as a subset of a larger mani-
fold M". On M’ we shall have a metric tensor, non-singular at all points,
which on the subset M coincides with the original metric on M. In this
case M is incomplete but not necessarily singular. Consider the oppo-
site instance where ‘‘not non-singular’’ does imply ‘‘singular.”’ An in-
complete (‘“‘not non-singular’’) manifold is said to be singular when it
cannot be imbedded as an open subset of any larger manifold M"
There are two distinct instances where a manifold M cannot be im-
bedded in a larger manifold M* of the same dimension: The case where
M is already infinite in extent, and therefore non-singular, and the case
where M is singular. If M cannot be extended, whether or not M is
singular, M is said to be maximal.
The criteria which a Riemannian manifold M must satisfy if it is to
be complete or non-singular are (Figure 5.2):
(C1) Complete metric topology: Every Cauchy sequence converges.
A Cauchy sequence is a sequence of points P;(i=1,2,-)
such that for any €> 0, there exists a number N (depending
on €) such that d(Pn,Pm)< e for all n,m greater than N.

(C2) Complete affine connection: Every geodesic can be continued
in both directions to infinite values of its affine parameter (the
parameter measuring path length). A manifold satisfying (C2)
may be called infinite in extent or geodesically complete.

In a Riemannian manifold criteria (Cl) and (C2) are equivalent! The
proof of this equivalence will not be given here (see Helgason, 1962).

The definition of a non-singular Riemannian manifold, as one which
satisfies (C1) and (C2), is reasonable, as is shown by exhibiting several
properties which hold in a complete Riemannian manifold M. These

properties are (Helgason, 1962): (P1) M is inextendible: M cannot be
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Fig. 5.2. A Half-Infinite Cylinder Illustrating Completeness Criteria in a Rieman-
nian Manifold. C1 and C2 are Cauchy sequences. G1 and G2 are geodesic seg-
ments. C, cannot be completed since it converges to a point on the boundary. Al-
though both G1 and G, are either infinite or extendible or both, the equivalence
of Cauchy completeness and geodesic completeness implies there are inextendible
geodesic segments. This manifold can be imbedded in a larger connected manifold
of the same dimension: a longer cylinder.

identified with a proper open submanifold of any connected Riemannian
manifold. Thus M is maximal. (P2) M is geodesically convex: Any

two points in M may be connected by a geodesic. (P3) If M is complete
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[satisfies (C1) or (C2)] then the manifold consisting of M with one point
deleted is incomplete.

Furthermore, (P4) Any compact Riemannian manifold M is complete.
A manifold M is compact if any given collection of open sets which
covers M contains a finite subcollection of these open sets which is
sufficient to cover M. A compact manifold is then a finite object in the
topological sense, independent of any reference to the metric. This
property of compact manifolds demonstrates that (C1) and (C2) are reason-
able in a sense which is basically aesthetic.

One accepted procedure for examining a manifold M for singularities
is: On M certain coordinate patches are used to express the metric. On
certain subsets of the coordinate patches the metric will appear to be
singular in all coordinate systems given. We must then study the manifold
M obtained by eliminating from M those points of apparent singularity
(if no point of apparent singularity exists, M= M). If M satisfies cH
and (C2), then M is non-gsingular. If, however, M does not satisfy (C1)
or (C2), we extend it to obtain M’, the largest non-singular manifold ex-
tension of M (M" may not, however, be unique). We must now focus on
M’ as the manifold of greatest interest. If M" does not satisfy (C1) or
(C2), and thus is still not infinite in extent, and if M  is inextendible, it
is said to be singular.

This process is far from simple, a major difficulty being the extension
of an incomplete manifold. The basic procedure can be performed on both
Riemannian and pseudo-Riemannian manifolds, however, if criteria for
non-singularity are given. Unfortunately, no fully accepted criterion for
non-singularity exists in the pseudo-Riemannian case. However, a modi-

fication of (C2) is more widely used than alternative proposals.

5.2. Pseudo-Riemannian Manifolds — Completeness and Definitions of
Non-Singular
In a pseudo-Riemannian manifold any two points may be joined by a

(broken) line of zero length. Facts (F1) and (F2) are therefore not true,



80 5. SINGULARITIES IN A SPACETIME

and criterion (C1) is meaningless. It is meaningful, however, to speak of
geodesics, and Fact (F3), that a direction at a point defines a geodesic,
is still true.

Criterion (C2), stating that a geodesic may be extended to indefinitely
large values of its affine parameter therefore does make sense. For time-
like or spacelike geodesics, the affine parameter is the proper time and
length respectively. For lightlike geodesics, the element of length is
always zero! An affine parameter may still be defined, however, as was
pointed out in Section 3.3. In any of these three cases, if 7 is an affine
parameter, then 7 = ar + b(a £ 0) is also an affine parameter, and infinite
extension in 7 is equivalent to infinite extension in 7. Criterion (C2)
requires every geodesic segment, in some affine parameter, to be infinitely
extendible. If (C2) holds for a manifold M, the manifold is called com-
plete, and completeness is vulgarly used as the definition of non-singularit

Other criteria for non-singularity have also been formulated. Some,
like (C2), are conditions on all members of certain classes of geodesics
(Kundt, 1963). These criteria make sense only in a pseudo-Riemannian
manifold, where geodesics are classified as spacelike (U-U = 1), time-
like (U-U=-=1), or null (U-U = 0), An example is the criterion (C2t),
t-completeness: Every timelike geodesic may be extended to infinite
values of its proper time. Related to (C2t) is the stronger (C2th): com-
pleteness of paths of bounded acceleration: Every timelike path of bounde:
acceleration may be extended indefinitely. Such a path need not be a geode
Its defining characteristic is that the quantity (ua;bub) (ua;cuc) is a
bounded function along the path if the path is parametrized by proper time
(uaua = ~1).

Kundt (1963) and Geroch (1967, 1968b) have shown by specific exam-
ples that there are pseudo-Riemannian manifolds in which these various
criteria break down. An important example is due to Geroch (1968b). &
geodesically complete model containing a finite but inextendible path of

bounded acceleration. The path corresponds to a rocket which leaves the
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universe with a finite expenditure of fuel. It shows that (C2) is too weak
a definition for non-singularity in a physical sense.

Nevertheless criterion (C2) is useful and simple. It has been applied
in several general singularity theorems. We therefore give the status of
the properties (P1) to (P4) of Section 5.1. (P1) is still a consequence of
criterion (C2): If every geodesic in M may be indefinitely extended,
then M may not be imbedded as an open submanifold in a larger M’
(P2), however, is not a consequence of (C2): The DeSitter (1917) universe
is a counterexample (Calabi and Markus, 1962). On the other hand, (P3)
is still true: If M is complete, M minus one point is incomplete. (P4)
does not hold: A compact pseudo-Riemannian manifold is not necessarily

complete (see Section 5.3 for an example).

Mathematical Non-Singularity

Completeness (as embodied in C2 or C2tb) is not a completely
satisfactory definition of non-singularity because of the failure of (P4):
(P4) was shown to fail when Misner (1963) exhibited a compact, incom-
plete manifold (Misner’s example will be presented in the next section).
This example, because it is compact, can be covered by a finite number
of well-behaved coordinate patches; in this sense the model is uniformly
well-behaved. Yet (C2) would deny this model the name “‘non-singular.”’

Misner (1963) proposed an alternate criterion for non-singularity. It is:
(C3) Every finite segment of a given geodesic is contained in a compact
subset of the manifold. A finite segment (which may be open or closed)
of a geodesic is defined in terms of any affine parameter 7: It is a geo-
desic segment whose points have affine parameters 7 taken from a finite
segment of the real line. A closed segment is automatically compact and
is itself a compact subset of M (Figure 5.3).

Criterion (C3) is applicable to both Riemannian and pseudo-Riemannian
manifolds. In the Riemannian case (C3) is equivalent to (C2). Fact (F2)
allows us in this case to extend the geodesic segment through the unique

limit point of the open segment, and it is thus indefinitely extendible.
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Fig. 5.3. A Cylindrical Segment Illustrating Misner’s Criterion for Mathematical
Non-Singularity. This cylinder has a pseudo-Riemannian metric of such a nature
that Gl is a geodesic segment of finite length which wraps around the cylinder
infinitely often. G1 has no single limiting point and therefore cannot be extend-
ed; the manifold is incomplete. The shaded patch surrounding G1 is compact
(closed, bounded), so the criterion for mathematical non-singularity is satisfied
as far as G, is concerned. However, (32 cannot be completed since it leads to
the boundary. Any set surrounding G(2 cannot be closed, hence cannot be com-
pact. Although this manifold is not non-singular, it can be extended to the math-
ematically non-singular example Misner’s T“ of Figure 5.7.

In an incomplete pseudo-Riemannian manifold M, an open geodesic
segment may have many limit points. However, (C3) insures that any
geodesic path which does go off to infinity (i.e., cannot be covered by a
compact set) must involve an infinite affine parameter. Moreover, (C3) is
a satisfactory definition in that (P1), (P3), and (P4) are satisfied (the
failure of P2, geodesic convexity, is not an especially disturbing feature).

We shall leave as an exercise the proof that (C3) implies (P1), (P3), and (P
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There are two objections which we can raise to the use of (C3) as a
definition of non-singular. First, (C3) deals with geodesic segments
rather than segments of paths of bounded acceleration. If these paths do
not obey the condition of criterion (C3) the manifold does not accurately
describe all points which can be reached by a physical observer. It is
not difficult to strengthen (C3) to include such paths, but in the models
we shall deal with such added complexity is not justified. We shall retain
(C3) as written.

A second objection to (C3) is more serious and throws doubt on apply-
ing any criterion but (C2) or (C2tb) as a definition of non-singular. Con-
sider any incomplete manifold M which still satisfies (C3). There is in
M a finite geodesic segment which is contained in a compact set, but
which does not have a unique limit point and cannot be extended. The
segment represents the world line of a test particle p. This particle, in
a finite amount of proper time, finds itself approaching many different
spacetime points at once. Clearly the particle p cannot be thought of as
a material particle which responds only to the gravitational field.

Does this objection mean that incomplete manifolds are singular even
if (C3) is satisfied? No, but it requires that incomplete manifolds be
examined more closely than complete ones. As an example, the vacuum
T-NUT-M space (Misner and Taub, 1968; see Chapter 8) is incomplete
but satisfies (C3). It is also a vacuum model and when matter is added it
becomes singular unambiguously (Section 10.2). The investigation of per-
turbations of this model (Misner and Taub, 1968) predicted that the model
would be singular when matter was added. Criterion (C3) is thus more
suited to the mathematician than to the physicist. We shall call (C3)

mathematical non-singularity.

What is a Singular Model?
We have discussed two definitions of non-singularity, (C2) and (C3),
each with strengths and weaknesses. A model which satisfies both and

which also satisfies (C2tb) is unambiguously non-singular. A model which



84 5. SINGULARITIES IN A SPACETIME

satisfies none of them and which is inextendible is unambiguously singular.
Often the inextendibility is the result of the existence of a finite geodesic
segment along which the density of matter is unbounded.

What, however, can we say of a model such as T-NUT-M? It satisfies
{C3) but not (C2). We are calling such a model mathematically non-singular
At the same time we shall recognize that in T-NUT-M a potential observer
may follow an incomplete geodesic path. We shall call the model physicall
singular. These two titles indicate that the model is of special complexity
and must be examined more closely (for example, by examining perturba-
tions in the model) to determine whether it is a viable cosmological model.

{C2) and (C3) are not as useful as one might hope when trying to prove
a given manifold is singular. Using them, we can recognize whether a
manifold is non-singular. However, even if a manifold is not non-singular,
then the possibility of extending it to a non-singular manifold must be in-
vestigated. Only if M is not non-singular and inextendible can M be
called singular, The proof that a true singularity exists is often extremely
difficult.

In some cases, however, the proof of singularity is not difficult. If a
manifold M is not non-singular (both (C2) and (C3) are not satisfied),
then there is a geodesic segment p and a Cauchy (converging) sequence
of points P, on p which has no limit point in M. If there exists a
scalar invariant R (one of the 14 given by Petrov, 1969) such that the
values of ﬁi on the P; do not approach a limit (for example the ﬁi
may tend to infinity), it is clearly impossible to extend M, and M cer-
tainly is singular.

However, this method cannot be used without care. An arbitrary scalar
invariant S cannot be employed. If, for example, S=1/R, and R tends
to zero at a point P, then clearly S tends to infinity. The infinity in S
does not indicate a singularity, while an infinity in R does (if R is one
of the Petrov invariants). Moreover, there may be a singularity at which
no scalar invariant becomes infinite, even in a Riemannian manifold. Con-

sider an ordinary two-dimensional cone imbedded in three-dimensional
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Euclidean space. This cone, without the central point, is singular in the
terminology of this section, but it is flat (no scalar invariant is ever non-
zero)! Thus our only hope of showing in general that a manifold is singular

lies in showing it is non-singular and yet inextendible.

5.3. The Structure of Singular Points

It is sometimes not enough simply to say that a manifold is unambigu-
ously singular. In a singular manifold a geodesic is prevented by a barrier
from being extendible. This barrier is termed a singular point, The singu-
lar point is not part of the manifold but is an abstract point added to the
manifold to give concrete realization to the notion of singularity.

The set of singular points — one for each inextendible path — may be
given a topology, even a metric. Not all such points are distinct, and it
is possible for many geodesics to be halted at the same singular point. It
is the description of the structure of the singularity point set which forms
a large part of the modern theory of singularities. We shall describe two
types of structures, one due to Geroch, the other to Schmidt and Sachs.
Other methods of determining structures of the singular points have been
proposed. Since it is not known which methods lead to the same results,

we can only say that much work along these lines remains.

Geroch’s G-Structure

Geroch (1968b) gave structure to the singularity of a manifold M by
structuring the set of incomplete geodesics. We have seen (Fact F2) that
to each pair (P,U), P a point in M, U a non-zero vector at P (this
set of pairs is the reduced tangent bundle of M), corresponds a geodesic
ray with a unique affine parameter. Some of these geodesics may be in-
complete and hence cannot be extended from P beyond a limiting value
/\0 of the affine parameter.

Suppose (P,U) gives rise to an incomplete geodesic, with A, the
limiting value of the affine parameter. Note that if a is a constant then

(P,aU) is an incomplete geodesic whose limiting affine parameter is A,/a.
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These two geodesics and many others define the same point in an abstract
space S to be identified as the singularity points. Other geodesics
emanating either from P or from other points in M may define other
points in S. That is, if G, is the set of incomplete geodesics, then §
is a set of equivalence classes of these rays.

Roughly speaking, (P,U) and (Q,V) are equivalent if the distance
between them becomes zero near the limiting values Ay and pj of their
respective affine parameters. To express the closeness of the endpoints
of (P,U) and (Q,V) we cannot use distance as such, for Fact (F2) is
not available in an incomplete manifold. Instead we must use special
open sets of the manifold chosen to achieve the same equivalence relation
that distance does in a Riemannian manifold.

To define the special open sets of M, we use the “‘natural topology”’
(for details see Geroch, 1968b) on the set of all pairs (P,U) given by the
topology of M. We consider ail geodesic rays (Q,V) near (P,U). If we
try to travel along these rays to all affine parameters in some neighborhood
of A,, we either obtain points in M or we are stopped because one or
another of the rays is incomplete. To every open set of geodesics sur-
rounding (P,U) and every open set of numbers containing A, we
associate that point set N which actually does lie in M and which is
obtained by traveling along the rays as described above. Any open sub-
set O of M containing such a set N is special. Any such special set
O is said to be a thickening of the end point of (P,U).

Two incomplete geodesic rays are equivalent if every thickening of
the end point of one is a thickening of the end point of the other (Figure
5.4). An equivalence class of geodesics defines a single point in the set
of singularities of §. § may be given a topology, even a metric. If the
procedure defining § is carried out in a Riemannian manifold, then S is
found to have the same structure as that given by explicit use of the posi-
tive definite metric. There is reason to believe, therefore, that the struc-

ture assigned to S in a pseudo-Riemannian manifold is reasonable.
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G

Fig. 5.4. Geroch’s G-Boundary. The left figure illustrates a thickening N of
the endpoint of the geodesic segment G. N consists of all points in the manifold
which are endpoints of geodesics near G. The right figure shows two equivalent
geodesics G1 and G2 —~ equivalent because every thickening Nl of the end of
G1 overlaps every thickening N2 of (32. The boundary point P, previously un-
defined, is realized by the equivalence class of geodesic segments.

Schmidt-Sachs Completion Method

Geroch’s G-boundary (the set S) is defined by the use of incomplete,
geodesics and ignores non-geodesic paths. Schmidt (1971) and Sachs (see
Eardley, Liang, and Sachs, 1972) have defined alternative methods of
identifying singular points. The methods associate with a spacetime mani-
fold M a higher dimensional manifold B which is Riemannian. Since B
has a positive definite metric its singular points Ty are well-defined.
Ty is a set of equivalence classes of Cauchy sequences which do not
converge in B. From Ty is then defined a set T of equivalence class-
es of points in Ty. T is the set of singular points to be associated with
M. Investigations of the relationship between T and S are cutrently

underway.
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With every timelike, unit contravariant vector field U(U-U=-1) can be

associated a symmetric covariant positive-definite tensor field hy; definec
by hy(X,Y) = gX,¥) + 2g(U, X)G(U, Y) . (5.2)
However, the tensor field hy; while positive definite, depends on U for
its definition and is therefore not canonically defined as a structure on M.
The various hU, however, are used in the Schmidt and Sachs construc-
tions.

A natural metric may be put on a manifold whose dimension is suffi-
ciently high that different points in it correspond to different vectors at
the same point in M. The particular manifold of Schmidt has as points
quintuples (P, X, X,,X,,X;), where P is apointin M and the X#
are a linearly independent quartet of vectors at P.

Sachs has modified Schmidt’s method by taking as his manifold the
unit hyperboloid in the tangent bundle of M (Figure 5.5). A point in this
manifold is a pair (P,U), where P is a pointof M and U is a unit
timelike vector at P. A coordinate patch on this manifold B may be de-
fined for every coordinate patch on M. If {x*} are coordinates in M in
a neighborhood of P, then a vector V has components vF. We first de-
fine the 8-dimensional manifold M x R* = A on which a coordinate patch
is {x%, v#]. The coordinate patch on B is in the hypersurface in A de-
fined by v = u*, where & P = =1,

A vector field in B is a linear differential operator W. In the coordi-
nate system {x%, uui,

Wewe LW (5.3)
dIx* duH
W will be tangent to B if dF(W)= 0, where F = B u*u” + 1. This
condition implies
€aB,01" Bw o 28 wW,7 = 0. (5.4)
Sachs' metric H on B is defined by means of the dot product of W

with another vector V with components (Vla, Vza):
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HOW, V) = g WV o b, VR TR WTWD (V) 4TV, VP, (5.5)
whetre haB = 8qB * 28,4 €8s uw?y’ (compare equation 5.2). The F(;Sv
are the components of the affine connection derived from the metric on M
in the coordinate system {x*]. H is positive definite and uniquely deter-
mined by g on M. Its components transform like the components of a
covariant tensor under changes of coordinates in B.

An important property of H is that if B is complete (according to
C1, C2, C3), then M is complete. We shall not prove this statement

here, but this theorem implies that completeness of B corresponds to

geodesic completeness of M.

<!
-
o
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Fig. 5.5, The Unit Hyperboloid Tangent Bundle B of a Manifold M. T, is the
set of all unit-length vectors at a point P in M. B is the set of all unit-length
vectors at all points of M. B is given a Riemannian (positive-definite) metric in
the Sachs method of completion, and its boundary TB is defined by a limiting
procedure. A second limiting procedure projects TB onto an abstract set of
points, realizing the boundary T of the original manifold.
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When B is incomplete, it is straightforward to give a structure to a
set to be identified with the singular points of B, as we need not con-
sider geodesics, but only Cauchy sequences in B. Some of these Cauchy
sequences will have a limit point in B and some will not. Moreover, two
distinct Cauchy sequences may approach the same point in B,

To distinguish endpoints of Cauchy sequences, we set up an equiva-
lence relation among these sequences. If a = (P,U) and B =(Q,V) are
two points in B, let D{z,B) be the distance from a to 3: The greatest
lower bound of the lengths of all paths joining a to 3. Two Cauchy
sequences L, =la;,a,,-} and L, =1B{,B,, -] are equivalent if for
every positive real number € there is an integer K such that D(ai,Bi)
< & for every i> K. Each equivalence class of Cauchy sequences is
taken to be a point in a set B.

It is easy to show that B is contained in B. The points in B which
are not in B are called Ty, the boundary of B. Not all distinct points
in Ty correspond to distinct points in T, the singularity set of M, how-
ever.

To define points in T, we must form equivalence classes in Ty. Two
equivalence classes F and G are themselves equivalent if there are
Cauchy sequences L, in F and L, in G of the form L, = {(P;,U;),
P, Uy, Ly =P V), (P,,V,),--}. Thus, F and G are equiva-
lent if one representative of F and one representative of G are formed
over the same sequence of points P, in M. If this equivalence relation-
ship is applied to all points in B, we obtain a set M, some of whose

points are equivalent to points in M. The ones which are not are the set

of singular points T.

Other Methods of Associating a Riemannian Space with M
The method of Schmidt depends on the manifold whose points are
(P, Xy, X;,X,,X;). We can define a positive definite tensor field hy on

M by defining
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- I - LM
hy(U, V)= 3 utvF, where U=u'X,, V=v¥X,

K
Schmidt uses hy in his definition of a metric analogous to that of Sachs.

Schmidt’s larger manifold is 20-dimensional where that of Sachs’ is
7-dimensional. Schmidt;s Riemannian manifold is the bundle of frames,
and the group structure associated with linear transformations among basis
vectors allows equivalence classes of incomplete paths to be formed an
especially clean way.

A 10-dimensional manifold using only orthonormal frames for X,u can
also be defined. The equivalence of the methods of Schmidt and Sachs
has yet to be demonstrated. It has been pointed out (by D. R. Brill) that
we can place a pseudo-Riemannian metric on Sachs’ manifold by replacing
h, B by g aB in our definition of H. Sachs’ process may then be applied
to this manifold (resulting in a 13-dimensional Riemannian manifold). A
whole series of pseudo-Riemannian manifolds with a final Riemannian
manifold may be built up this way. The Riemannian one is used to define
sets of singular points in M. At present it is unknown what the relation-
ship between the sets of ‘‘singular’’ points defined by these various

methods is, but we mention them all for completeness.

5.4. Examples of Singularities in Pseudo-Riemannian Manifolds
A) The simplest example is the Euclidean two-space R%. Endowed

with either a positive-definite or a Minkowskian flat metric, it is non-
singular and complete. Minkowski two-space with a light-like line removed
is an incomplete manifold which is of interest because it is completely
homogeneous (has a simply transitive group of isometries; see Chapter 6,
Section 7.1, and Wolf, 1967).

B) The next simplest example is the Riemannian Cone C. This cone

is a two-space of all points with coordinates r,0 such that the metric is

ds? = dr? + a?:2d6? , (5.6)
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where r is restricted tobe > 0, and 4 = 0 isg identified with 6 = 2.
When a=1, C is the same as R2 with the usual metric, except that the
point r=0 is excluded (as a metric component is singular there). When
a=1, C is incomplete, but it is extendible. If a # 1, C is singular:
incomplete and inextendible.

By rescaling 6 we can always make ds? the metric of the plane in
polar coordinates; thus C is flat. Thus geodesics are straight lines.
Consider a straight line aimed at r = 0. Since the line must stop at r=0,
there are geodesics in C with finite length. Hence C is incomplete
and therefore not non-singular.

Can C be extended to a non-singular manifold? Consider a small
geodesic triangle about r = 0 (Figure 5.6). As this triangle is made
smaller, the lengths of its sides go to zero; hence if C is to be com-
pleted r= 0 must correspond to a single point. Because C is flat and
because scalar curvature invariants are continuous functions, all these
invariants must be zero at r = 0. However, the sum of the angles of any
geodesic triangle must be # if the triangle has a flat interior (Eisenhart,
1926). That is not the case here: Every geodesic triangle with r= 0
inside it somewhere has #(3 —2a)} as the sum of its angles. Thus it is
impossible to complete C if a# 1. Hence C is a space which is both
flat and singular.

C) The next example has already been discussed in Chapter 4. It is
the closed FRW universe. Along the timelike geodesic which is the path
of a dust particle, the scalar curvature R eventually becomes larger and
larger. Finally after a finite proper time, R becomes infinite. The
largest non-singular part of the solution is the space obtained by eliminat-
ing these singular points, It is clearly incomplete, and just as clearly not
completable. Hence the Friedmann universe is singular.

D) The fourth example is the Schwarzschild metric (Tolman, 1934a).

In coordinates t, r, &, ¢ the metric is

-1
ds? - (1-22) " 4 + P(sin®0dg? +a0%) - (1-20)a? . (5.7)
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Fig. 5.6. The Cone. A) The cone C in polar coordinates, r, . The r coordi-
nate is restricted to positive values: r> 0. The #= 0 line is identified point-
wise with the € = 27 line. The metric in these coordinates is ds“=dr“+a*d

where a < 1. B) The cone in plane coordinates, x, y.2 The gefinirég property of
these coordinates is that the metric be of the form ds® = dx® + dy“. Lines L1
and L., are identified pointwise. The r =0 point (x=y=0) is not part of the
cone; neither is the dotted segment. A geodesic triangle PQR is drawn in. Note
that lines 1 and 2 are two halves of the same geodesic segment PQ. The cone is
singular: The r = 0 point may be reached by a geodesic of finite length. How-
ever, the r=0 point is not part of C, and C cannot be extended to include r=0.

The manifold is topologically the product of S?, the two-dimensional
sphere, and R? , the two-plane. Equation (5.7) holds only for r> 2m!
As r - 2m the metric components become singular. Moreover, the space
of t,r, 0, ¢ with r> 2m is incomplete.

This segment of a manifold can be extended. It has been known for a
long time that as r - 2m no scalar invariants become infinite, and geo-
desics do not converge. Thus at r = 2m there appears neither a conical
singularity (as at r=0 in C) nor a collapse singularity (as when R - o

in the Friedmann models).
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The definitive statement on the r= 2m ‘‘singularity’’ was made in-
dependently by Szekeres (1960) and Kruskal (1960) who gave new coordi-
nates (u,v) to extend (t,r) from the original segment of the manifold to
the maximal solution which can be formed. This maximal extension, how-
ever, is still not non-singular. Curvature invariants become infinite along
geodesic segments of finite length, at points corresponding to r= 0. Thus
the Kruskal-Szekeres extension cannot be further enlarged, and the

Schwarzschild solution is singular.

C

:r’

i

Fig. 5.7. The Misner Torus T2. The lines x = 0 and x = 27 are identified, as
are the lines y =0 and y = 2. The metric we have placedon T” is ds" = —
cos x dx” +2 sin x dxdy+cos x dy”. L is a geodesic of finite total length which
cannot be extended to infinite values of its affine path parameter. T" ismathe-
matically ngn-singular but incomplete. The small light cone gllustrated our con-
vention — T is a timelike direction while L is lightlike, 8 spacelike.
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E) The last example is one given by Misner (1963). It is an example
of a pseudo-Riemannian manifold which is compact and therefore mathemati-
cally non-singular in the sense of (C3), but which is incomplete, and there-
fore physically singular in violation of (C2). It is a torus T2 with
coordinates (x,y); the lines x= 0 and x= 27 are point wise identified

as are the lines y =0, y = 27 (Figure 5.7). The metric is given by:
ds? = — cos x dx? + 2 sin x dxdy + cos x dyz . (5.8)

The metric has determinant = —1 everywhere, so is non-singular on T2,
However, T2 with this metric is incomplete.
The geodesic equations for T? in terms of an affine parameter 7 are

(-=d/dr):

}'i+é—)1:2 sinxcosx-kjfsinzx——%jzz sinxcos x= 0,
5.9
¥+ %2 (l—%—sinzx) — XYy sin X coOS X + %&2 sin’x = 0.
Since r is an affine parameter one first integral of (5.9) is
—%%cos x + 2%y sinx + ycosx = E = £1,0 . (5.10)
Another first integral is
¥ + Ecosx = P, (5.11)

where P is a constant. Note that (5.10) and (5.11) imply P = (x sin x +
y cos x)2 so P is positive. Equations (5.10) and (5.11) are used in
Figure 5.7 to give the qualitative behavior of the geodesics. The light
cones at different points in T2 are also shown in Figure 5.7. It is clear
from the behavior of the geodesics and from the light cones that the only
geodesics infinitely extendible in both directions are the lines y = 0 and
y=m. And so T2, although compact, is incomplete (see Miller and

Kruskal, 1973).



6. ISOMETRIES OF SPACE AND SPACETIME

To seek the beauteous eye of heaven to garnish
Is wasteful and ridiculous excess
— WILLIAM SHAKESPEARE

6.1. The Lie Derivative

The field equations of general relativity are a complicated set of

coupled, non-linear partial differential equations. In cosmology we simpli-

fy these equations by imposing symmetries on the solution. Moreover, a

6. ISOMETRIES

6.1 Lie Derivatives 1&

6.2 Isometries: lLeave
Metric Invariant

Killing vectors have 'Lie Algebra”
structure, but "Lie Group" termin-
ology used, as difference is not
important for most of what we do

Extend to
all tensors

Killing Vector &

L.g=10
6.3 Invariant Basis {X ! Selected properties
" of these groups listed
defined by L X = 0. In particular: Section
Yields techniques =0 6.5 on Type IX models
for describing Implies ¢g =0

metrics invariant
under a given group

6.4 List of all
three-dimensional
groups

Application to
spatially homo-
geneous models.
Chapters 8-14

Application to models
homogeneous in space

and time. See Chapter 7

dimensional homogeneity structure

Kantowski's special case: A four-
(See Section 10.1)

Fig. 6.1. Flow Chart of Chapter 6.

96

From King John, Act IV, Scene ii.
A more complete quote is

“...with taper-light/To seek the
beauteous eye, etc.”

Shakespeare (1564 - 1616)
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symmetrical, or homogeneous, model thus obtained will not merely be sym-
metrical in appearance (which might imply that a preferred coordinate
frame is necessary). Rather the symmetry of the model will be expressed
in @ manner that is free of the encumbrance of special coordinates by the
use of differential forms and vector fields. Figure 6.1 is an outline of
this chapter.

A homogeneous cosmological model is a manifold M. The metric of M
is invariant under a certain (specified) group of transformations. That is,
each operation of the symmetry group corresponds to a map of M onto
itself. This map carries a point P into another point Q at which the

metric is the same when expressed in a coordinate-free manner.

Infinitesimal Transformations

The description of the invariance of a metric under a group (Lie group)
of isometries is achieved by directing attention to the infinitesimal trans-
formations (Lie algebra) in the group. Other members of the group can be
obtained from the infinitesimal members by exponentiation (tepeated appli-
cation of the infinitesimal members, Helgason, 1962). Thus, a symmetric
cosmological model is found by imposing the structure of a Lie algebra,
although Lie group terminoclogy is used.

To describe an infinitesimal transformation it is convenient temporarily
to use a coordinate system (see Yano and Bochner, 1953; Misner, 1964).
Consider a point P, in a neighborhood N in which coordinates
x#(u=1,---,n) are used. A point P in N will have coordinates xp*.
An infinitesimal transformation is of small effect and therefore carries
points in N’, a small neighborhood of P, which lies within N, into
other points of N. Our transformation may be described in N* by n
functions f# of the coordinates x*. The point P is carried to the point

Q in N with the coordinates “'Q“:

txp”) = £H4P) = XM . (6.1)
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An infinitesimal transformation has the form
fFHP) = xp“ + eaft(P) . 6.2)

The number £ is meant to be so small that points in N’ are carried only
to points in N. The vector field X = a“aﬂ describes the magnitude and
the direction of the transformation.

A transformation acting on a space induces a transformation which
carries a tensor at a point P into a tensor at the image point Q. This
transformation of tensors defines a new tensor T, e Whosevalue at Q
is the “‘same’’ as the value of T at P. To find the description of Tnew*
consider that the map (6.1), which bodily carries the point P to the point
Q, also applies as a coordinate change at P. (See Figure 6.2.) In that
case the change in the tensor components of T is:

= .. O 7 ..
Taﬁyé-- = Janjﬁv“x }'KS“TWW-. ,

where Ja# and K7 are the Jacobian matrix and inverse Jacobian matrix

Y
of the transformation. TaB },5 is now identified as a component of Thew

at the point Q:

Tnewaﬁ;gn Q =T, . ®J, JB,,-‘ K%, K- (6.3)
where
a df% o <7
= = K, = == . 6.4
T pa Y= e 6.4)

For the transformation (6.2), the Jacobian and its inverse are:
Jg =8+ ea” g; KA, =84 —eat  + 0E) . (6.5)
Hence a vector Y = b“au will change by the formula

Yyew = Dhew(@d, = [DH(®) + ed V()4 . (6.6)

new new
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(A)

29 29
28 28
7Q
27 =37 /
26 26
P
25 25/{
Il 12 13 14 15 1 12 13 14 15
30
29
28
P
27
26

Fig. 6.2. Active and Passive Transformations.

12 13 14 15 16

(C)

The same formulae describe the

active transformation carrying P to Q and the passive transformation of renam-

ing P by a change of coordinates.

Q is the new point, with coordinates given

by Xy = fl(xlp). The ‘‘passive’’ transformation changes the coordinates of P to

1

b4 =
P.new

J
fl(xP,original)'

The Lie Derivative

The value Y .. is what one would expect to see at Q if Y did not

change in the direction givenby X. Y-Y . is the observable change

in the vector Y. The measure of this change is:
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{Y“Ynew)‘a = b#{Q) - bﬂnew{o) = b’u{Q) - bp(P) - Sa"",v by(p}

= BHE% + ea®) - PP ET) — gat v BY(P) .

Dividing by € and letting € » 0, we have the Lie derivative of Y with

respect to X:
LY = a7 —ak b)), . ©.7)

This expression is simply the commutator of X and Y, as defined in

Chapter 2:
per LY = [X,v] . 6.8)

We extend the Lie derivative to arbitrary tensors by requiring that "Ex
act as a differentiation with respect to the tensor product, and that Exf =
Xf, where { is a function. In the coordinated system used above, if T

has components Taﬁy§, S‘EX’I‘ is given by:

o ao
(S?XT)aB},g = Taﬁya,aaa—T By& aa'0»~T ¥5 aB’g
6.9)
a o a o
+ T 8083,)/* T ‘Byoa 5
All of the commas (partial derivatives) may be replaced by semi-colons
(covariant derivatives) without affecting the truth of this relation. Thus

the Lie derivative is independent of both metric and connection.

6.2. Killing Vectors of a Group of Isometries

A transformation which leaves the metric g invariant is called an
isometry. An infinitesimal isometry is described by a vector £ called a
Killing vector (Killing, 1892), which is said to generate isometries. A

Killing vector thus satisfies
€rg-0. 6.10)

In order to apply (6.10) to the components of g in a general basis, we

make use of the fact that %c operating on the function g{X,Y) can be
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written in terms of £§ g, ffx, ESY, where X and Y are arbitrary vector
fields. Since Sf‘fg = 0, the derivative property of %;r implies

ElgX. V) = LeleX V] = @ (X ) + g@eX,Y) + gX,LeY)
i 6.11)

= g(l£,X1Y) + g(X, [£,YD) .

Suppose Xﬂ is a member of a general vector field basis which is in-

variant under Eg; EéeXﬂ = 0. In this basis:
£gy = LeleX,, X)) = 0. (6.12)

In other words, the derivatives of the functions g v in the direction &

are zero.
Equation (6.10) also leads to the Killing equation for the components

a, of the contravariant form of £ in an arbitrary basis:

a . +a, =0. 6.13)

We will not give the detailed calculations leading to (6.13) (see Yano and
Bochner, 1953).

It is important to notice that if £, and £, are two Killing vectors,
then the linear combination a, ‘fl + a, 52 is a Killing vector if a, a,
are two constants. However, if a;, a, are functions of position, a; 51 +
a,&, is a vector field, but not necessarily a Killing vector. £, 52] is

also a Killing vector.

Description of the Symmetry Group of a Manifold
We now turn to a manifold M whose metric is invariant under several
isometries. The set of isometries of M has the structure of a group: An
associative product is defined (the product of isometries A and B is A
followed by B), an inverse exists for each element, and a unit transforma-
tion (the identity) exists. The group of isometries is the symmetry group

of M.
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Isometries are obtained from the Killing vectors by exponentiation in
the same way that group elements are obtained from the infinitesimal
generators which form the Lie algebra of the group. In the abstract group
the commutators of the infinitesimal group elements define the structure
constants of the group. Thus if M i=1,---,m, are the basis elements

of the Lie algebra, then the structure constants of G are defined by

{(Jacobson, 1962):
lngomy) = €545 (6.14)

The Jacobi equation (2.4) applied to 7, shows that the Csij must

satisfy
S 2 8 a s a
C%jj sk + CjkCoi + Cii Csj = 0 (6.15)

Further, any set of Csij (antisymmetric in i, j) which satisfy (6.15) are
the structure constants for some Lie group.

The group of isometries of the manifold M is isomorphic to some ab-
stract group G. The Lie algebra commutator of (6.14) is replaced by the
commutator [,] of the Killing vectors ‘fi of the symmetry group. The
m independent Killing vectors §i {m may or may not be equal to n, the

dimension of M) obey

(€60 = C%¢s (6.16)

The structure coefficients in (6.16) are constants (functions independent
of position) and are equal to the structure constants of the Lie algebra of
the abstract group of isometries.

Suppose we are given a Lie group G, with structure constants Csij .
A manifold M is said to be invariant under the group G if there are m
(the dimension of G) Killing vector fields fi which obey the Lie algebra
relation (6.16).

A group G of dimension m is called simply fransitive on subspaces

if the §i’s are linearly independent as vector fields (zaifi = 0 ==
i

a; = 0, the a;, being functions). The orbit of a given point P, is the
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set of all points Q such that A(P,;)= Q for some A in the isometry
group G. The orbit is a subset H of M. These subspaces fill M, and
two different subspaces have no points in common. H is called a homoge-
neous or invariant subspace. If G is simply transitive, the dimension of
H is m, the dimension of G. If the dimension of H is less than m, G

is called multiply transitive on H.

6.3. Generation of an Invariant Basis

The description of a manifold M with symmetry group G is simplest
when an invariant basis is used. The members of such a basis are vector
fields Xu, each one of which is invariant under the group G. Therefore
Xli has zero Lie derivative with respect to any of the Killing vectors. If

£, is a member of a basis for the Killing vectors, we have
i

{gi,xu} =0@G=1,,m=dimG;p=1,-,n=dim M) . (6.17)

An invariant basis is useful because: 1) Equation (6.12) shows that each
metric component g = g(Xu,XV) is group invariant. Thus g is
constant on each homogeneous subspace generated by the group. 2) It can
easily be shown that the structure coefficients of the Xﬂ are constant on
each homogeneous hypersurface. The structure coefficients Daw/ are
defined by [X,,X 1=D% X;.

Not every abstract group can be used as a symmetry group for an
n-dimensional manifold. However, if G is the symmetry group of M, we
must say when an invariant basis can be found. We must also exhibit the
relation between the Douv and the structure constants Cijk of the group.

In this book we are primarily interested in three cases:

1) A manifold M of dimension 4 with the group G simply transi-
tive on all of M. The dimension of G is therefore 4, also.
M is called homogeneous or, for emphasis, homogeneous in
space and time (ST-homogeneous).

2) The manifold M has dimension 4 but G has dimension 3 and

is simply transitive. Thus G generates three-dimensional
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invariant hypersurfaces H. M is called spatially homogeneous,
or sometimes simply homogeneous. Some of the H’s may not
be spacelike, but they form a manifold-filling, one-parameter
family. Therefore, the metric depends on only one variable,
being independent of position on each H.

3) The third case is that of a manifold M on which G is multiply
transitive, but traces out three-dimensional invariant hypersur-
faces (and thus has dimension greater than 3). M is called
spatially-homogeneous in this case, also (special techniques

must be used; see Sections 6.4 and 11.4).

Existence of an Invariant Basis in a Homogeneous Manifold

In cases (1) and (2) an invariant basis iXﬂ§ may be found. Consider
a homogeneous manifold M of dimension n, invariant under a (simply
transitive) group of the same dimension. The Killing vectors 5#(‘“: 1,0
form a vector field basis of M. To construct an invariant basis {Xﬂ} we
need only give the components of Xu with respect to the £ - (The com-
ponents will not, in general, be constants.)

An invariant basis §Xu§ is constructed from n independent vectors
X;LO at a fixed point P, (vectors at P, not vector fields). We define
vector fields on M by translating the XuO using the Lie derivative, in

other words, requiring that
(£,,X,1=0 and X,(Py)=X,, .

The requirements are a set of first order differential equations. The inte-
grability conditions for these equations are automatically satisfied if the

C#* __ are the structure constants of a group.

g7
To determine the Daw/ we must pick explicit values for the X#O. An

especially natural choice is X;;O =& u(PO). The invariant vector fields

X;L are

O o s
X#-a#lfa, a#(PO)wﬁg‘
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The condition that Xii be invariant implies that at P,
(fﬂ 36;,.)(?@) = - C(;w .

We now use the equation

o 7 o
[Xu’xv} = {a;z(fa’avcffl = Dpvxa

i

a9 € )6 + &, d €, 6 1-a) € a7)E,
o e o .
to find the values of the D [ at Py:
o o
D W(PO) = —=C w
Since DO;W is independent of position of M, we therefore have

(X, X1 =-C% X%, . (6.18)

We may now take duals o of the Xu. The curl relations of the

are
do = + %. ch o ra . 6.19)

The C“m are constants identical to the structure constants of the in-
variance group. Moreover, because the Xp are invariant vectors, the
metric is expressed by ds? = g uvm“m”, the g v being constants. We
will use this basis later when discussing four-dimensional homogeneous
manifolds which satisfy Einstein’s equations for various stress-energy
tensors.
An Invariant Basis in a Spatially Homogeneous Manifold

The second case we will discuss in this section is that of a four-
dimensional manifold M invariant under a three-dimensional simply
transitive Lie group. This group, whose structure constants are denoted
Cijk (i,j,k=1,2,3), generates three-dimensional homogeneous hyper-
surfaces. A one-parameter family of these hypersurfaces fills M, which

is then considered the topological product Hx R, where H is a copy of
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the invariant three-dimensional subspaces, and R is a real line. Fora
given parameter t ¢ R, we will denote by H(t) the homogeneous hyper-
surface at t. The metric of M is independent of position in any invariant
hypersurface H(t), but may depend on the value of the parameter t.

To generate an invariant basis (invariant under the three-dimensional
group and consisting of four vector fields on M) choose one curve in M
corresponding to the real line R in the topological product. The tangent
to that curve is translated throughout each three-dimensional subspace
H(t) by means of Lie differentiation. Call this vector field XO' Three
other vector fields Xl, Xz’ X3, tangent to H{t) itself, are chosen at
the curve. They are translated to yield the three remaining vector fields
needed for a basis.

By definition, we have

[(Xg,Xjd=0. i=1,2,3. (6.20)

Note that the three X, have components independent of t, whereas X,
is simply d/dt. Moreover, the X, X,, X, may be chosen so that

s
[X;, X1 = —C%; X (6.21)

by using the procedures outlined in our discussion of homogeneous mani-

folds above.
Some Metrical Properties of the Invariant Basis

We can modify the invariant basis ixﬂi by finding a second invariant
basis §Y“§ with specified metrical properties. This additional specifica-
tion is allowed by the freedom to line up the various homogeneous hyper-
surfaces H(t), in other words, the freedom of choice of t-axis.

The Yu are to be linear combinations of the X“:
WO
Y# = b u(t)xa .

Each bgﬂ is a function of t alone because Y“ must be invariant under (
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We wish to retain the properties that Y, is tangent to H(t) and commutes

with Yq (Y, unaffected by translation in the direction Y ')

[¥,, ¥;l = [6% X, b5 X1 = 0
(6.22)

B

(% b8, ~ b bY,CS )X (-=d/db) .

This first-order, ordinary differential equation has a solution bi}-{t) given
any set of four functions b“o (with bDO;f?O). Thus we can specify both
the direction and the magnitude of Y.

Once Y, is chosen, the Yi are found by solving (6.22). However,

the Y, must also satisfy

5
v, vyl =~-c%vg . (6.23)

This requirement is consistent with (6.22). The proof of consistency is
that the t-derivative of (6.23) vanishes by virtue of (6.22) and the Jacobi
identity applied to the X

6.4. Allowed Isometry Groups; List of Three-Dimensional Groups

Not every group may serve as the isometry group of a four-dimensional
manifold with metric signature (—+++). The groups which are allowed
were classified by Petrov (1969). We will first make a few general remarks
and then will list all of the three dimensional groups (each of which may
be used as the isometry group of a spatially-homogeneous cosmological
model).

We will ignore such topological questions as whether a given four-
dimensional manifold can be given a metric with signature (—+++) at all.
Moreover, the global structure of the group will not be treated and we will

deal mainly with a Lie algebra structure, that is, with the Killing vectors.

Largest Groups ~ Isotropy
The isotropy group Ip of a point P is the set of all isometries

which leave P fixed. It is a subgroup of the symmetry group G. ¥ G
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is transitive (simply or multiply), all Ip are isomorphic. The isotropy

group of a point, 1, must be a subgroup of the (homogeneous) Lorentz

group L. The proff is straightforward if at P coordinates are chosen
such that gw}{P) =Ny = diag (~1,1,1,1). The isotropy group Ip then
leaves M invariant and thus must be a subgroup of L. G is therefore
restricted in that no isotropy group is allowed which is not a subgroup of L

The dimension of Ip must be less than or equal to 6 = dim L. The
dimension m of G itself for an n-dimensional manifold must be
m < n{n+1)/2 (Eisenhart, 1926). If n = 4, this maximum is 10; if n= 3,
this maximum is 6; and if n= 2, this maximum is 3.

Any 4-manifold with a 10 parameter group of isometries is a space of
constant curvature, so that R[w = ?\gw, with A = const. If the right side
of this equation is interpreted as a stress-energy tensor, Tij’ then Tij
corresponds to a fluid-filled universe with the pressure p equal to the
negative of the energy density w. Thus a space of constant curvature is
physically unrealistic unless A vanishes, in which case the space is flat.

In a 4-manifold, for 10> m > 6, G must act transitively. These
groups have been classified by Petrov (1969) and mostly do not interest
us. It is only when G has a simply transitive subgroup that the methods
of this section apply. An example of a space with a 10-dimensional group
but no 4-dimensional simply transitive subgroup is the DeSitter universe
(Calabi and Markus, 1962).

It is interesting to note that any four-dimensional group can serve as
the isometry group for at least one manifold: itself. None of these mani-

folds are physically realistic, for none can exhibit the observed expansion

of the universe (details in Chapter 7).

Spatially Homogeneous Models
If m< 6, the group may act transitively or else act on lower-
dimensional subsets. If the group acts transitively on three-dimensional
subsets, we call the manifold spatially homogeneous. An FRW model has

a six-dimensional group of isometries containing a) a three-dimensional
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isotropy subgroup and b) a three-dimensional, simply transitive subgroup
which acts on spacelike hypersurfaces.

The general spatially homogeneous cosmological model falls into one
of the following two categories: (1) Those spaces in which G has a
three-dimensional subgroup which acts simply transitively. (2) Spaces in
which the homogeneous spacelike hypersurfaces H have a transitive
group of isometries but not a simply transitive group.

The second category has been studies by Kantowski (1966). He found
that category (2) consists only of spaces with an isometry group of order
m = 4. All Lie algebras of order 4 have subalgebras of order 3 (see
Kantowski, 1966). It is only when this subalgebra generates two-surfaces
S of constant positive curvature (two-spheres) does a model in class (2)
arise rather than a model from class (1). Because the spacelike hypet-
surfaces H do not have a simply transitive group of isometries the method

outlined for obtaining an invariant basis is not directly applicable.

List of Three-Dimensional Groups

To conclude this section we list all of the three-dimensional Lie alge-
bras. Each algebra uniquely determines the local properties of a three-
dimensional group. Therefore the list is a compendium of all of the three-
dimensional groups except for global topological considerations which do
not concern us.

The list is given in Table 6.1. We use the classification and the nota-
tion given by Taub (1951). One coordinated representation is listed for
each differential form. The numbering system is due to Bianchi (1897);
for example, the first group is called ‘‘Bianchi Type I.”” If a space is
spatially homogeneous and has the group of Bianchi Type N (N=1,---,IX)
as a simply transitive isometry group then the model will be said to be

Type N-homogeneous or Type N. Thus the closed FRW universe is Type

IX-homogeneous.
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Table 6.1. List of Three-Dimensional Groups. This list is taken from Taub (1951}
and is basically a list of the three-dimensional Lie algebras in canonical form —
that is, global properties of the groups are not listed. The §i are Killing vectors;
§Xi§ is an invariant basis, so that [sfi, X,} = {}. The basis dual to {Xii is %a)l}.

The structure constants are defined by [fifj}:(lsij 55, and we also have {Xi’ Xj}

t. The coordinate system %xli is used to ex-

P i1 i s
““’Cijxs and dw “fcstw AW )
press these vectors with the coordinated basis 383 {(where 8i = c?,faxz) and dual

basis {dx% - of course, other conrdinated bases are often used, too.
Bianchi Types VI and VII are each a family of groups parametrized by h with-
in the limits listed.

i
Type L: Cjk::o’ 51:81. x1=c?1. W =dx . dw” =0
£,=9, X, =0, w? = dx? do? = 0
3.3 3
53:53 Xssas w” = dx dw” =0
P o -
Type II: Cy3=~Cl3,y=1. £ =0,
rest of Cljk:O 52:(93
«fa:dl+x382
Xy = (92 w! = dx? — xlasd. dob = w? AW
1 2.3 2
Xy =x 0, + 04 w” = dx dw“ =0
3,1 3_,
stal w” = dx dw
1 1 _
Type II: Cj3=—C 4y =1. £ =9,
i -
rest of Cjk:o 52_83
§3=81+x282
X =e* 0, ol = e dx?. do' = 0! A w?
2 3 2
. = dw” = 0
X2w33 W dx w
X3=¢31 w3 = ax* dw> = 0
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Table 6.1. List of Three-Dimensional Groups

{(Continued}
T el ool a1 a
ype IV: C'a=~Cly =1, £ =9,
(RS T B
Cha3=-Cygp=1 £, =95
2 2 2 .3 3
Chy=—-C%, =1 £y=0; + x"+x))d, + x70,
rest of Cijkz{)
x 1 ' 2 1! 3 1 1 3 2 3
Xlze 32 oW owoe dx” - x"e dg”. dw =w AW +wW AW
1 1 1
X, = xle* 82 +eX «3‘3 w?=e ™ ax’ dw? = w? A w®
X, =0, w3 = ax! dw3 =0
sl el =1 £ =9
Type V: C13—~C31~. . 1=9
2 2 B
Chyz=—CT3p =1 &=9;
i B 2 3
rest of Cly =0 §3m(71+x d, +x dy
1 1
Xl.-ex 82. w! = e™* dx? do’ =l Ao’
1
Xz_ex c?s w2=e’x dxs dwzx(ozi\a)s
Xy=0, w3 = dx! dw’ =0
sl =-cl =1 =9
Type VI: Cy3=~Cy =1. £ =9,
2 2 _
Ca3=-Cpp=h £2=9;
(40,1 £3=0; +x%0, + hx’d;
rest of Cijk:O
1 1
XlzeX 532‘ ol =e™® dx? . dw! = o! A w®
1 1
X2:ehx 33 w? = eHX g3 dw? = ho? A 03

X3*~f<91 w” = dx dw” = 0




112 6. ISOMETRIES OF SPACE AND SPACETIME

Table 6.1. List of Three-Dimensional Groups

(Continued)
el 2 - .
Type VI €5 =~C% =1 . £ =9,
1 1
Clhag=—Cyp=-1 £,=95
2 2 3 2,..3
C23:—C3th 53:81-»){ 2'&{}( ~.~hx)33

02 < 4)

i
rest of Cjk =0

X, = (A+kB)d, ~BJ,. w! = (C—kDYdx? — Ddx>.  do! = —0?rw®
X, = 882 + (A~kB) (33 w? = Ddx? + (C+kD)dx3 dw? = wlaw’ + hoaes
x3:al w> = dx! > =0
where: A = ekxlcas axl; B=-— aL ekxlsin axl;
C= e"kxlcos axl; D=~ é1—~ e’kxlsin axl;
3 3
and where k = g- and a = (1—k2)2 = ;— (4—-h2)2.

3 o3 3 :

1 1 1 - 1 2 g

Type VIIL C23=—-C 32 =1, §1:2-e X 51 +é-lex -—(x2) e ]82~—x2e ®
2 -

Cy=-Ch3=1  §,=0;

3 3 3 .
3 3 1 —x 11.x 2.2 x 2 —x
Clzz—CZIZI 53:59 al-é~[e +(x7) e ]Gz—xe

2 ]
X, = %{lJr(xl} ]al+;- [1»—2x1x2} 32——x183 .

1 2
X2 = - X (31 +% 82+83
1 1.2 1 1.2 1
x3=2-[1..(x ) }a1+5{~1+2x x“1d,y+x 0y
2 2 .
cul = olx1 +h1 %{xl} ]dx2+{x1»x2-(x1) ledxs . dwlz -m?‘A @'
&)2 = 2x1dx2 + (1 -—2x1x2)dx3 d(u\2 = a)st\ {ul

1.2 2 2 9, 1
w3 e d};:1 + {-—I+(x 3 ]dx?‘ & [x1+x ~(x1) XQ}dx“z dwsxw Awg
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Table 6.1. List of Three-Dimensional Groups

{Continued)
Type 1x: ¢l =-cl, =1 £ =4
pe il Loagg= 324 179
. 2
(3231 = «C213 =1 rfz = CO8 3281 ~cot xl sin x2§2 + g—’%&i{ 633
sin x
2
‘Csm = “CSZI =1 53 = —gin xzc?l —cot :@:1 cos x2f32 + (i?é% (33
i sin x
rest of Cjk =0
}(1 = —~gin x381 + S?ii‘.. 32 ~cot x1 cos x3 53.
sin x
XZ = COSs x391 + 93-%—!3—’-‘—1- 32 — sin x3 cot x1 53
sin x
X3=d,
col = —sin Ii:'?'clxI + gin x1 cos xsdxz. dca1 =co2 A (z)3
coz = CO8 xsdx1 + sin x1 sin xsrlx2 dmz nm‘?’ A wl
w3 = cos xldx2 + dx3 dm3 = wl A 602

Three of the groups listed deserve further comment: A) The group of
Type I is isomorphic to the three-dimensional translation group Tj; (the
group of translations of Euclidean three-space). A ““flat’”” FRW model is
Type I-homogeneous. The notation ‘“T;-homogeneous’’ is also used, but
should not be confused with a Russian usage for a different purpose.

B) The group of Type V is a simply transitive subgroup of an ‘‘open’’
FRW model. In an open FRW model, as well as in each closed and each
flat FRW model, there is also a three-dimensional isotropy group (which is
isomorphic to the three-dimensional rotation group).

C) The group of Type IX is isomorphic to SO(3,R), the group of
special (unit determinant), orthogonal, 3x 3 matrices with real coefficients

(isomorphic to the three-dimensional rotation group). A closed FRW model
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is “‘SO(3, R)-homogeneous’” or Type IX-homogeneous. More general Type
IX-homogeneous models are discussed in later chapters. The most genera

such model is anisotropic and has rotating matter.

The Subclassification Scheme of Ellis and MacCallum
It will be useful later to break up the groups we have discussed above
into subclasses. Ellis and MacCallum (1969) have studied spatially
homogeneous cosmologies based on the Bianchi groups and have classifie
them into subcategories for various uses. Actually these classifications
are classifications of the underlying symmetry groups, so we list the

various groups in Table 6.2 according to the Ellis-MacCallum scheme.

Table 6.2. The Classification Scheme of Ellis and MacCallum (1969). The struc-
ture constants are written in the form:
i si | si i
Cjk‘ jksm +5kaj wﬁjak

to define the matrix m = (m™)) and the triplet (a;)

Class A(ai = 0)

Bianchi Type m
I m=20
1 m = diag(1,0,0)
vI_y ms=-a
VIIO m = diag (-1, -1, 0)
A'2114 m = diag(-1,1,1)
X m= (31,')

Class B(a; £ 0)

Bianchi Type m .
=t _1osi
. m=ze o=-5%
v m = diag (1, 0, 0) a; = -513
i
v m=20 a, = - 83
._.1 _ 1 i
Vi1 m= g b-De a; = — 5 (DY
i h h ai
Vnh%() m:dlag(—l,—l,0)+2-a ai:"2”03

where
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6.5. The Three-Sphere in a Type IX Cosmology
Manifolds to which we will later devote much attention are the spaces
invariant under SO(3,R) or the group of Bianchi Type IX. This group has

as its structure constants

Cijk = Sijk or Cl23 =1 etecyc. (6.24)

The underlying space of SO(3.R) is actually a three-sphere s3 (Section
2.7) with antipodal points identified. However, for simplicity we may take
as the topological prototype H of the invariant subspaces the “simply
connected covering space’” of SO(3,R), namely the three-sphere s3 it-
self. Because of the importance of the FRW universe and other Type IX
cosmologies, we here extend the discussion given in Section 2.7.

The three basis vectors Yy, Yy, Y, of (2.57) serve not as Killing
vectors but as invariant vectors. Any metric placed on s® of the form
Y, Yj = g5 = const is invariant under SO(3,R). We prove this invariance
by finding three vectors fl, fz, ‘53’ on S such that [fi,Yj] = 0. The
structure constants of these vectors will be the Cljk of (6.24). The three

Killing vectors are

£ = 1 x%9, — L xlc}?2 y xd, + L x30,

2 2 2 2
1.3 1 4 1.1 1.2

1.4 1.3 1 .2 1.1
53 = -5X 81+2—x62—2—x 83+2-x d4
where, as in (2.53), the vectors Bu of R* have been used as the basis.
It may be noted that the Yi’s are obtained from the «fi’s in the manner
of Section 6.3. That is, Yi(PO) = fi(PO) where P, is the point on s3

with R* coordinates x4 = 1, x:1 = %% =x2 = 0.

Cosmologies
When a model universe M has the invariance group SO(3,R), the in-

variant hypersurfaces are taken to be three-spheres. If these spheres are
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spacelike, then any fourth invariant vector Y, will be timelike. As
shown in Section 6.3, this vector may be chosen very freely, One con-
venient choice is to take this vector perpendicular to the spacelike s3rs
and of unit length. In terms of the dual one-forms, the metric of M will

then be of the form ..
ds? = —dt? + gjj(Do'o) . (6.26)

Each &; is a function of the proper time t alone. The dt, w' are

duals of Yy, Y, and obey

d{dt) = O; do! = ©0? Ao et cyc ot dest = %— Eistws Aot (6.27)

The equations immediately remind us of the closed FRW universe and

1

the expression for its metric in terms of a basis dt, ¢°. In that example,

the o'’s were combinations of the wl’s of (6.26), chosen to put the
metric components in a simple form. Had we chosen to express the Fried-
mann metric in the o' basis, g;j would have the form
g = .1.% 6?5, with G=G() . (6.28)

The fact that &ij is diagonal and has three equal entries shows that
the metric of the FRW universe is isotropic. In other words, the FRW
universe has symmetries in addition to the homogeneity of spacelike
sections which is granted by invariance under SO(3,R) and expressed
by (6.26) and (6.27). This additional symmetry of the FRW universe — its
isotropy — may be expressed by the statement that its metric is invariant
under rotations about any axis in the homogeneous three-space H(t).

A universe which is rotationally invariant about only one axis in each
three space and which is invariant under SO(3,R) is the Taub universe

{see Chapter 8). This (vacuum) model has the metric

ds? = —dt? + b 21 + b2H + @H] (6.29)
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The manifold again is $3 x R. As we see by the form of this metric,
where the b’s are functions of t only, the Taub universe is spatially
homogeneous with invariance group SO@3, R}

The time evolution of the metric of the Taub universe is such that the
basis of (6.29) is not globally valid. The basis breaks down beyond the
Misner interface between the Taub geometry and the NUT geometry. At
this interface the homogeneous subspaces change character. Previously
spacelike, they become timelike (that is, orthogonal to a spacelike direc-
tion) in the region called “NUT space.”” In the NUT region it is impossi-
ble to take a timelike unit vector perpendicular to the invariant hyper-
surfaces. Another basis must be used. (Details in Chapter 8.)

A more general matter-filled SO(3, R)-homogeneous model may be
imagined. In this model gij is not diagonal as a function of t nor may
be made diagonal by changing the choice of @'. This model exhibits rota-
tion and anisotropy. There is a seven parameter family of such models.

Each one has a true singularity.
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A ecnu uTo M ocraercs
Upes 3BYKU JIUDH U TPYOH,
To BEUHOCTU XEpJIOM IMOXPEeTCH
U o6me#t He yiineT cynnGH.
— GAVRIIL ROMANOVICH DERZHAVIN

7.1. Exegesis and Exposition

We shall call a cosmological model in which the metric is the same

at all points of space and time homogeneous in space and time

(ST-homogeneous) (see Figure 7.1). Such a model is a manifold M on

L" ST-Homogeneous Modelﬁ}

7.1 Expression of metric in an invariant basis. Structure constants c*
the sought-for unknowns. Useful for an arbitrary four-dimensional
manifold invariant under a transitive group, with metric having the

signature (-,+,+,+)

G

P

Derivation of affine connection forms of

A ) ( Application to)
this manifold in terms of structure constants CLQQ vacuumn models

]

7.2 Application of conservation law
to a fluid-filled universe to eliminate
four C's. Use of four combinations of
the field equations

Derivation of Ricci

1f matter does not include a
fluid, other methods are needed.
This case not considered here

FaBpun n (FaBpw na) Poma HoBWY
Oep>xa BuH (1743 — 1816)

This and the quote on page 182 are two
stanzas of one poem. Derzhavin died in his
sleep after working late, and this poem was
found on a blackboard in his study. The
original rhyme scheme is ABAB. This is the
second stanza.

Literal translation:
If anything remains
Amid the sounds of lyre and trumpet
It is devoured by the maw of eternity
And does not escape the common fate.

A more poetic translation, keeping the
rhyme scheme but ignoring scansion:

If aught avoids the river’s draw

Mid lyre and trumpet’s debate

It's devoured by eternity’s great maw
And doesn’t escape the common fate.

Translation of Russian poems into rhymed
verse is usually considered almost
impossible. While in Russian it rolls
magnificently off the tongue, in English it
sounds like an advertising jingle (for
example, “You'll wonder where the yellow
went when you brush your teeth with

tensor in terms of y
structure constants C a

M

8

7.3 Derivation of the Godel
model. Assumption that matter
velocity u is a Killing vector

Derivation of fluid-filled models
more general than Godel's., All must
contain a non-zerc pressure p, which
may be positive or negative in dif-
ferent cases. This derivation is not
done here, but results are given

leads to a unique solution

i Derivation of models including electromag-

Investigation of properties
of Gidel universe to yield
clues about behavior of non-
singular universes

netic fields. Only an especially simple
model with charged matter and a magnetic
field is derived.
fluid pressure is replaced by a large

In this model a large

magnetic field

Fig. 7.1. Flow Chart for Chapter 7.

118

Pepsodent”).
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which a transitive (simply or multiply) group of isometries G acts. The
metric of M is most easily expressed in an invariant basis where the
g and the structure coefficients Caﬁy are all constant. Einstein’s
equations become purely algebraic. We shall show that all the solutions
are physically meaningless in some sense.

The archtypes of these universes are E, the Einstein universe
(Einstein, 1917) and G, the Gadel universe (Gédel, 1949). Cahen,
Debever, and Defrise (1967) have listed all possible vacuum models which
are ST-homogeneous. Ozsvath (1965a, see also Farnsworth and Kerr,
1966) has found all models containing a perfect fluid for which G has a

simply transitive subgroup.

An ST-Homogeneous Manifold M May or May Not Be Complete;
M is Certainly Unrealistic

An ST-homogeneous model may be incomplete. A homogeneous
Riemannian manifold cannot be incomplete, but a homogeneous pseudo-
Riemannian one may be (see manifold A of Section 5.4 and see Hermann,
1964).

The possibility of incompleteness is serious, but we are used to
dealing with cosmologies represented by incomplete manifolds (the FRW
universes). However, the existence of the nebular red shift (expansion)
cannot be reconciled with a manifold which is ST-homogeneous. This in-
compatibility is to be expected, as a constant matter density cannot be
“expanding.’’ In fact, for all ST-homogeneous universes filled with a
fluid, the expansion ¢ = uo,a is zero. The proof that 0 = 0 is instruc-

tive: The equation T“V.V = 0, in the case of a fluid, implies

w uu“ = ~(w+p)f ,
’ (7.1

p’ﬂ(uﬂua+§“a) S -—(w+p)ua;0u0'

If the universe is ST-homogeneous we must have w p=Py = 0. If we

demand (w+p)# 0 then (7.1) reduces to
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g-0,
(7.2)

o
U, . 0 = 0.

¥

Equation (7.2) implies the fluid matter moves along geodesic lines.

The fact that f = 0 implies that there is no Hubble expansion in
these universes (see Chapter 3). M is therefore unphysical in all cases.
M can be very interesting in that it displays in simple form properties of
more complex expanding universes. It is for this reason that we study

these models.

Two Methods of Simplification:
Canonical Metric and Canonical Structure Constants

We shall not consider spaces invariant under groups which are multiply
transitive with no simply transitive subgroup, except as illustrative exam-
ples in later chapters. In case G is simply transitive there exist four

linearly independent one forms «f for which

dewh = ‘1?- ct % a0”, CF = const. (7.3)

and for which the metric is

2. BV -
ds® = g0, gy = const. (7.4)

The C‘U“G, and g o 8re constants with respect to space and time.

Since the metric components are constant for the case above, we can
easily make B the orthonormal metric M = diag(~1,1,1,1). We shall
call this the canonical metric. Because of the invariance of Ty under

Lorentz transformation we may take
Sl AF T
st = At o

for any arbitrary Lorentz transformation z\“g and still retain the metric

M- We may use Lorentz transformations to expunge certain of the C‘uar
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The C“m, if treated as a set of unknowns must be chosen such that

the vector basis dual to be basis {wf} satisfies
(x,vl,z1 + (ly,zl,x1 + z,x}, vl = 0 .
That is, one must have
4 H# 4 “ T H -
CaﬁC@+CﬁyCm+CwCa5u0. (7.5)
Of course, the C”m must satisfy the basic symmetry requirement:

ch, = —Ch . (7.6)

ar

It is well-known that any set of C* _ which satisfies (7.5) and (7.6)
defines a Lie algebra of a Lie group (Helgason, 1962). Moreover, it is
(7.5) which allows us to express a metric, given in an invariant basis, in
a coordinated basis (Schouten, 1954).

We could, if we wish, choose the C“m from a list of canonical struc-
ture constants for four-dimensional groups (see Petrov, 1969), and solve
the field equations for g o This method is algebraically complicated,
so we shall restrict ourselves to choosing a canonical g w and solving

for various possible sets of CH__.
Once a set of g "y and C“m, is found which satisfies (7.5) and the

Einstein equations we are through. A manifold invariant under a simply
transitive Lie group is itself a Lie group (Helgason, 1962), so we may use
standard group-theory techniques to construct a concrete example of the
group. This example is equivalent to finding the metric of the spacetime
in a coordinated basis. This final procedure is not always easy, but it is

always possible.

Affine Connection Forms and Riemann and Ricci Tensors
Computing the affine connection forms, the curvature forms, R‘umﬁ

and R!W for universes homogeneous in space and time is an excellent
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exercise in the calculus of differential forms. We shall present the results
of these calculations and leave details to the reader.

The first step is to solve

L _H o
wh, = T'F o7,
dgw} =0 = g‘uowgv + gwyma;l, 7.7
dot = __&)110,\&)0'

for the I'* . The result is

o

. 1 r
I “ o = ‘2‘ (Cﬂw“gu Cprv gpo'" g}U Cp?a gpv) : (7'8)

154

Next we must compute the curvature forms qu = dm“v + w“a A wav, and

read off the Riemann tensor components from 9#1/ = -21~ Ruvaﬁ o% A a)‘B. The
result is
) O “
Ruuar =T #vpcpcrr * FupaI vr = 1 “WFPVO,. (7.9)
The final step is the calculation of RLW = Rg‘uav using all the sym-

metries of the C¥ . including the Jacobi relation (7.5). We find

1 ~r o 1 ~a or
R;u/ = "j’caucrv - ﬁ'copcﬁrvg B
1 7
v e g’TPCaanCBTp Bau 8By (7.10)

1 T T w
+ 5 Cop @ e, + CTp ) -

7.2. Vacuum Models, Fluid Models, and a Charged Fluid Model
We can now write Einstein’s equations for various kinds of matter
with this form for R;w' We shall present three types of solutions:
A) All ST-homogeneous vacuum models in which the group of iso-
metries is simply or multiply transitive.
B) All ST-homogeneous fluid models in which the group is simply

transitive, and
C) A one-parameter family of charged dust models.
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ST-Homogeneous Vacuum Models

The vacuum field equations are

R, = 0. (7.11)

There are only two classes of solutions to these equations (Cahen,
Debever, and Defrise, 1967; Cahen and McLenaghan, 1968):

(A) The first is given by the metric {(in variables u, v, %, y)

ds? = %— e 3 dxdy — [%—- (x% ~ yz)cos bu+xy sin bu] du? + (dx)? + (dy)2 .
(7.12)

This model has a multiply transitive group of isometries but no simply

transitive group.

{(B) The second class consists of the metric (in terms of x, y, x, t):
ds? = eZlcos (3z) (dx? — dt?) — 2 sin (V3z)dtdx]+ e 2Zdy? +dz%.  (7.13)

In the orthonormal frame the structure coefficients of this metric are con-
stant. This fact shows that this model is invariant under a simply transi-
tive isometry group. Each of these metrics may be multiplied by a con-
stant conformal factor to yield a new solution K*ds?.

Still other ‘“‘vacuum’’ solutions are possible if a cosmological constant

A is allowed. The field equations for such a model read

R, = =Ag - (7.14)
None of these models is of more than academic interest, however. They
are most properly interpreted as fluid models, with unphysical densities
and pressures.
Fluid Models

If we write the usual stress-energy tensor TuV = (w+p) , Uy, PRy,
and insert it into the Einstein equations we can solve for all possible
fluid models. While there is no comprehensive list of all fluid

ST-homogeneous models, Ozsvath (1966a; see Farnsworth and Kerr, 1966)
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has given a list of all models invariant under a simply transitive group.
The simplest expression of these models uses an orthonormal basis and

uses the Lorentz-transformation freedom to make

glu;j = T?F{L}’ u‘u = (-1r0y0r0) . (715)

Equations (7.2) now place restrictions on the Cﬁva' They read
'
8 = Cf() = {

ty.pu” = Cp = 0, (7.16)

Table 7.1 is a list of these models classified by the vector K;z = CUON,

Table 7.1. List of ST-Homogeneous Fluid Models. These models each have a
simply transitive isometry group. The classification is due to Ozsvath {(1965a),
and results of Farnsworth and Kerr (1966) are used. The Einstein model E and
the Godel model G are singled out due to their historical importance. An over-
all arbitrary multiplicative factor in the metric is omitted; moreover, the metrics
are put into a form to emphasize similarities between models. The metric and
structure constants are listed for one invariant basis, but a coordinated basis is
not given. The matter variables w (energy density), p (pressure), and utt (fluid
velocity) are given. The cosmological constant A used in the original papers
is here set to zero; rather p is allowed here to be non-zero.

Category 1 (KH = CUO[L = 0)

Class G (The Gadel model)

2 2 2
metric: ds? = —-2((1)0)2 + (a)l) + (&)2) + (0)3)
structure: dwo = —-(1)1 A c:)z; dml = w2 A 0)0;

dﬁ)z:wkol ; dco3=0.

matter variables: w=p= 1’—; att = (\/2, g, 0, 0).

b

Class E (The Einstein model)

2 2 2 2
metric: d52 = —-(a}o) + (a)l) + (wz) + (cos)
structure: dwo =0 ; t:la)1 = wz A a)3;

dm2 :a;3z\cu1; dw?’:wl sz.

matter variables: = - 3w i— = (1,0,0,0).
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Table 7.1. List of $T-Homogeneous Fluid Models
(Continued)

Class |

2 2 2 2
metric: d52 = ~(é)g) + {(z)l) + Bz(wz}{’ + {1+ 82}{&13}
where w+p >0 - L<82<3.
1 2 1 2 3

structure: d{z)G:Da) Aw”; dw =w” AwT;
2 3 1 3

dw’ =w” Aw ; dw =l Ao,
-1 2
where D? = [2a+85]7 (887~ 1 +8%)]
-1 2
matter variables: w = [882(1 + 82)} {3232 —5(1 + Bz) I

-1
p = M(SBZ} (1+Bz); so that p/w < ~ ;—

L
o= ([3]" 0o [222220]).

wWip

note: when B =1, the Einstein model results, but in a new basis

Class II
2 2 2 2
metric: d52 = -{1 +A2)(a;0) + {wl) + Az(wz) + (cu3)
1 2 1 2 0

structure: d&)0=——w AW";, dwo =" AW,

dw? =% A w! ; do® =D Al

2,1 2
where DZ =[2(1+4%)"1 [8a% —(1+a%)]

where D% >0 and w+p>0-3<A%<3+2y2 while w>0»>A2>!s-(11+4\/6)
2,1

]

; . 2,-1 2 1
matter variables: w = (84°) [5(1+A“)} — 4(1+A
-1
p=©8AYHT (1+A%); sothat p > w.

. :([29{1+A2) 0 0 p.w)
i,L w+p ¥ * * w+p *

note: when AZ = 3+2V/2, the Gidel universe results.

Class III
2 2 2 2
metric: ds® = -1 +A2)(a)o) + (&)1) + A2(®2) + (CUS)
2 1 2 [4]

structure: dmoz—culnw; dw =w Aw;

da)zszAml H da)3z0.

matter variables: w=p = (1 +A2)“ H

1

« a2y 2 00,0
uﬂ*‘(‘ y M My M0

note: when A =1, the Gddel model results.
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Table 7.1. List of ST-Homogeneous Fluid Models

(Continued)
o
Category 2 (K‘u =C o £ 0)»
2 2 2 2
metric: d52 = »(&)O) + (&)1) + (&32) + {603}

structure: dzi:)g = {(T»A)@l — Bcoz} A t;og;

do! = [(T+ 80’1+ Ol + D+5)102] A wd,
2 _ 1,0 . 27 .3

do” = [Bu  + D-S)w' + 1-CO)w™ 1 A w”,

dwd = 0.

where § and T are independent parameters, and where

A=2T(T2 ~48% —4)/E; B = 28T(T? +282 4+ 2)/E;

2

c=T44-1%-25%)/E, D= -6ST/E;

with E=T% 4 4128%2) + 401 + 5%y (4452,

w .
8 -2

matter variables: w = — ; AT - 3, p= T + g; so that b ; uft = (1, 0,0, 0).
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note: when S =0, T =2, the Godel model results.

The Einstein universe (E) is of historical interest (Einstein, 1917).

In this case the basis forms obey

d»® -0, dol= g1’ A ©k, ij,k=1,2,3. (7.17)

These equations show that w® = dt, where t is a ‘‘cosmic time,”’ and
that the t = const. surfaces are Bianchi Type IX spaces. We know that

w and p are constant, and we find
3
w o= .._39 = 7 (7.18)

so the pressure is large and negative.
In fact in all of the models of Table 7.1 p is fairly large compared

to w. In particular there is no pressureless (dust) model in the list.

Models with Electromagnetic Fields
Ozsvarth (1965b) has found all ST-homogeneous spacetimes filled with
a null electromagnetic field plus a perfect fluid. A null electromagnetic

field satisfies
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p =
FI'YF, = 0.

The equations read for a general electromagnetic field-plus-fluid

R, = Wrpu,u, + Sw=plg,, + F F, - LF, F7¢, ,  (7.19)

FHo = JH,

(see Weber, 1961), where JH# are the components of the current density
vector. A fluid may be expected to support a current density of the form
(Lichnerowicz, 1967):

J#* = Qu* + auTF*““ , (7.20)

where o is the conductivity.
An especially simple model in the limit of zero conductivity (o = 0)

is the following: In the orthonormal basis (gW = r;{w) this model has

the structure constants

2
COp = =VZ= =%y, €y =5 1-BY - ¢l = €%, - ¢, 2D

and all the rest are zero. The constant B is a free parameter, and we

find for the electromagnetic field:

F,=~-F,, =B, All others zero. (7.22)

The matter velocity U has the form U= @0, and the current density is

J# = Quu, with Q = /2 B. The energy density and pressure are

p=L1a-8), w-ja:8). (7.23)

Where B = 0 this model becomes the Gddel universe (see below).
When B £ 0, the form of Fu shows that B is the magnitude of a cos-
mic magnetic field. Thus this model replaces the large pressure in the

Gédel universe with a magnetic field. In fact when B =1, the pressure

p vanishes.
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7.3. The Godel Universe
The Godel universe G is an interesting example of an $T-
homogeneous universe containing a perfect fluid. It contains closed time-
like lines (it is acausal), and the matter velocity u is a Killing vector.
Both w and p are positive.
We investigate G in the orthonormal basis and use the freedom of
scaling and Lorentz transformation to write v = (1,0,0,0) and (w+p)=1

The field equations are

1
R, = 5#()5&8 + (5 ~p>?7w/ . (7.24)

Derivation of G
Let us define a matrix m¥, by mf, = CH . If we require u to be a
Killing vector (“u;v Uy = 0), we find mgu Mgy + mUV Top = 0, or
mij = —mji(i,jm 1,2,3) and mou = m% = 0,
The Jacobi equation (7.5) implies that either 11121 or Cz12 must
vanish. It can be shown that these two possibilities describe the same
model in different bases. These two bases are: (a) The one with sz £

in which case the Caﬁy are:

CO12 = —-CO21 =2, Cz12 = -—Cz21 =1, restzero. (7.25)

{(b) The one with t'f121 #£0; the CaB)/ are:

1 1 0 0 2 2 5.
~Clyp=Clhy=C,==Chy = V2; C%y = ~C%g=~1/V2; restzero
(7.26)
In both cases we find p=w = -12-
We next define the twist three-vector (related to the rotation of matter)
by

3, =0%,, 3,=¢%,, @,=-¢%, . (7.27)

In either (7.25) or (7.26) we find @, = ©, = 0, whereupon the Ry, field

equation reads



7.3. THE GODEL UNIVERSE 129

1 -2 1
ROO=*2~&}3 m§-+§:1'
We have chosen p positive so that &3 # 0 (in the Einstein universe we
choose p <0 toget @, =0).
Originally G was presented (Gédel, 1949) in a coordinated basis in

which the metric is

2

1
ds? = az[—(dxo)2 + (dxl} - %ezx (dx2)2

5 N (7.28)
+ (dx3} -~ 2e% dxedxz}, a = const,

We can identify this metric with ours by letting a =1 and

2 V2 4l 3

oaxl =-—§-ex ds?: w3 - dd®.  (7.29)

1
w® = dx0 + e* dxz; w
This leads to the same structure constants as (7.25).
Because of the group symmetry, there are at least four Killing vectors
on the manifold G, the generators of the group. In fact, there is a fifth
Killing vector. In the coordinated basis of (7.28) the five Killing vectors

are: d, 52, 83, dy -—x282 and one other:

1 1
£=-27%3; + xzal + [e—zx -%(x?f]az.

Acausality and Rotation

The Gédel universe contains closed timelike lines. This violation of
causality is one of the most interesting features of the model. In order to
consider this acausality let us first look at the hypersurface x> = const.
The structure of the forms w®, w!, @2, shows that this hypersurface is
in many ways similar to the t = const. hypersurface in a closed FRW
model. In the FRW case, however, the t = const. set is spacelike, and
in the Godel case the x° = const. set is timelike. There is a second,
more important difference: In the k= +1 FRW case the surface is S3,
and in the Gbdel case it is La, a space of Bianchi Type VIII, whose

group of isometries is the three-dimensional Lorentz group.
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The space L? is the unit hyperboloid
2 2 2 2
NS EE U B I W (7.30)

conveniently visualized as a subset of the abstract space (3:1 , yz, y3, y“)

or R*. Inthe hyperboloid, the vectors XO, Xl, X2 dual to 00, 01, o?

are invariant vectors.

Unwrapping the Gédel Universe

What of closed timelike lines? The curve defined by the intersection
of the plane y3 = y4 = 0 with the hyperboloid L3 has X, as its tangent
vector. Since (yl)2 + (yz}2 =1, this curve is closed. This curve is a
cheat however. Consider a cylinder imbedded in a Minkowski space. This
manifold has closed timelike lines, but a cylinder locally has the metric
of a plane. We may unwrap the cylinder and spread the resulting flat
portion of a plane out until it fills the entire plane. Our closed curve
{around the cylinder) becomes an open one, all without affecting the local
metric a bit! We can do the same with the sample curve we proposed for a
closed timelike line in G.

There are, however, curves in G which are closed and timelike and
which cannot be unwrapped (though none are geodesic, see Chandrasekhar
and Wright, 1961). One such curve (in the coordinates xo, x! , xz, x> of

7.28) is

szA(sin T - %— sin 7 cos 7); %' =—B cos 7, x%=—A sin r; x>=0 , (7.31)

where A and B are constants which need to be chosen properly and 7
is unbounded. The existence of this curve shows that the Godel universe

does not obey a global causality principle.

The Role of Pressure in the Gédel Universe
Positive pressure in the Gédel universe accompanies rotation in G.

We called the fact that @4 # 0 ‘““the existence of rotation.”’” What does
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this fact have to do with rotation in the sense of Chapter 3? There we
defined a rotation vector (! in terms of the curl of the fluid velocity u.

In the basis (7.29) u=w? and

du=do’=3%a,0" a0 = V2! aa?. (7.32)

[

From our definition of @ we find
1

k- f.3%; gsﬂaﬁy(dum)agy = LetBr(yant ao?nod),g, = (0,0,0,12/6).
(g = —1 in this basis). Thus OQF is non-zero, the non-zero component
being proportional to @ .

Rotation is necessary in the Gddel universe, as is shown by the Ray-
chaudhuri equation (3.30). Since 6 vanishes (3.30) requires that w? be
positive or else R, uw?u’ be negative (or at least non-positive). In the
Einstein universe Rmuauf vanishes, but where p> 0, R, ud s
positive, and hence rotation cannot vanish in G.

One final remark: The magnitude of p, p=w, is large in G, but
permissibly large. Zel’dovich (1961) showed that for a p= w equation
of state, sound waves propagate just at the speed of light ¢. For p any
larger the sound velocity would be greater than ¢ and the model unphysi-
cal.

The Gddel model is a gold mine of interesting properties which are
useful in examining homogeneous universes. By itself, however, it cannot,
any more than any other ST-homogeneous universe, be a model for the real
universe. The spatially homogeneous cosmologies discussed in the re-
mainder of the book have proved to be of immense importance and rele-

vance to the study of the real universe.
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Hic coquus scite ac munditer condit cibos

—~ PLAUTUS
8.1. Taub Space and NUT Space

The models of the preceding chapters have no expansion, and there-
fore other models must be used to describe the actual universe. We now
consider spatially homogeneous universes, those homogeneous in space

but not in time.

8, 9, § 10. Spatially Homogeneous Manifolds:
Isometry Group Transitive on 3-Dimensional Hypersurfaces

*

9.1 Simply Transitive Cases:
Great Generality allowed

10.1 Kantowski's Special Case:)
1tiply Transitive Group

Use list of groups
in Table 6.1 - Treated separately; all these )
gwfunction only of x°, models have singularities
with o° = d.xg, and
i 1.1 s ¢t
dwl = bl C w Aw
; st ’
CISt known constants

Applications, future and
current work surveyed, and
problems given in Chapters
A 11 to 15 and Appendix

9.3 Einstein’s Pieid
Bquations derived in
"Synchronous Basis”,
Other bases may be 3
used, however, and we
sometimes do so

9.2 2nd Fundamental Form
and other injtial data

16.2 Proof that the general
spatially homogeneous model
is incomplete. However, in-
completeness does not neces-
sarily imply mathematical

Perfect Fluid singularity

Msdelis \

10.1 Matter 10.2 General, may be rotating
velocity normal anisotropic

to H{1)

Type IX models and A Type V
certain others model

All are
singular

8.2 § 8.3 Incomplete
but mathematically

non-singular. Studied
in detail to illus-
trate this property

incompleteness need not coincide
even in matter-filled models

fhows that singularity and ‘\

A

Gingularity may be due to )
infinite density as in dust case

Fig. 8.1. Flow Chart for Chapters 8, 9, 10.

132

Titus Maccius Plautus
(~254 — 184 BCE)

This cook skillfully and
elegantly seasons a meal.
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We might hope that a vacuum metric mocks the behavior of the actual
universe, but this is not the case. Any amount of matter added to a
vacuum model changes its character drastically. Nevertheless, we shall
consider some vacuum models because the field equations are simpler and
their features can be studied in detail.

The most important vacuum spatially-homogeneous model is T-NUT-M
{Taub, 1951; a similar model of Newman, Tamburino and Unti, 1963; and
their connection by Misner and Taub, 1968). In this model the spacelike
sections evolve in a finite proper time from open to closed to open. Unlike
the Friedmann models T-NUT-M has no singularity but expands and con-
tracts in a non-singular framework. Unfortunately, T-NUT-M space is in-
complete: Some timelike geodesics cannot be extended indefinitely. More-
over, if any amount of matter is added to T-NUT-M it becomes singular

(see Chapter 10). Figure 8.1 is a logical outline of Chapters 8, 9, and 10.

Taub’s Vacuum Model
In 1951 Taub published an example of a vacuum solution which is
spatially homogenecus. That is, through each point passes a spacelike
section on which the metric is independent of position. The group struc-
ture of these space sections is “Bianchi-Type IX.”” The structure con-

stants of this group are

cijk =gy k=123, (8.1)

The group is also called SO(3,R), the group of special (unit determinant)
orthogonal 3x 3 matrices with real coefficients (SO(3,R) is isomorphic
to the group of rotations in three-dimensional Euclidean space).

On the spacelike sections the metric is
3do® - gi}-wimj , (8.2)

where g is a matrix of constants in space. This matrix varies in time

(from one hypersurface to the next). If the time coordinate is chosen to be
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proper time t measured perpendicular to these hypersurfaces, the full

space-time metric is o
ds? = —dt® + gij{t)a)lo}i . (8.3)

Without loss of generality we may assume £ diagonal for all time. (The
diagonal character is also true for such a model filled with a non-rotating
perfect fluid; see Chapter 9.) The metric, which will be extremely useful

later, can therefore be written:

Fig. 8.2. Taub-NUT-Misner Space. T-NUT-M is representable as a disc, which
becomes a flattened ellipsoid of revolution, thickens to a cigar-shaped ellipsoid
as its volume reaches a maximum, and collapses again to a disc. This descrip-
tion is for the synchronous system, which ig no longer a valid descriptive de-
vice after the collapse to zero volume has taken place. T-NUT-M space does
not have a geometric singularity at the time of collapse.
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2 2 2
ds? = —dt? + e ‘81(@‘)2 ‘e ‘82@2)2 ie ‘83@3}2). (8.4)
Taub’s model requires 8, = f8,, or
i
ds? = —de? + g’ + Y2 + @], (8.5)

Figure 8.2 illustrates Taub space in much the same way as we earlier por-
trayed the Friedmann universe. The function g= g(t) becomes zero after
a finite proper time, but y does not. The zero of g was originally

thought to indicate a singular point.

The NUT Space of Newman, Tamburino, and Unti
In 1963 Newman, Tamburino, and Unti described a model which they
called a ‘‘generalization’’ of the Schwarzschild metric. Misner (1963},
however, showed that the topology of ““NUT space’’ is different from the
topology associated with the Schwarzschild model. He discovered that the
topology of NUT space is s? x R, the Cartesian product of a three-sphere
with a line, the metric being independent of position on the three-sphere

section.
If we let w' be the same as before and use t to label the $? sec-

tions we find

ds? = +df? - g) + Y@’ + @, (8.6)

where g is a positive function of the coordinate t. This metric differs
from Taub space in that one of the directions in s3 is timelike and the
direction of the t coordinate is spacelike. Both metrics share the property

that g becomes zero at some bounded value of t while y remains finite.

The Misner Bridge
The similarity of (8.5) and (8.6) hints that these are actually the same
metric. Misner and Taub (1968) have shown that we can label the homogen-

eous hypersurfaces in such a way that Taub space and NUT space are both
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portions of one non-singular manifold, T-NUT-M space. In T-NUT-M
there are two regions with the NUT metric and one with the Taub metric.
The two boundaries between NUT and Taub are lightlike hypersurfaces
with the topology of S®. These homogeneous (invariant under SO(3,R))
hypersurfaces are called Misner bridges.

In the evolution coordinate to be used in the next section, T-NUT-M
consists of a one-parameter family of copies of S3. We will call the evolu
tion parameter t and the 53 copies H(t). As t varies H(t) ‘“‘evolves”
in that the metric of H{(t) varies. At large negative values of t, H(t) is
timelike (a2 NUT region). Near t =0, H(t) is spacelike (the Taub region)
At large positive values of t, H(t) is again timelike (the second NUT
region).

Through each point in the Taub region passes a compact (or closed)
spacelike hypersurface, namely H(t). In contrast, in each NUT region no
spacelike hypersurface is closed (Misner, 1963). (In these regions, H(t),
which is closed, is timelike.) Consequently, T-NUT-M represents a uni-

verse which evolves “from open to closed to open again.”’

8.2. The Metric of T-NUT-M

The point of view we will follow to obtain the metric of the T-NUT-M
model is: Postulate the existence of a Type IX vacuum model which is
mathematically non-singular. Some metric properties of this general model
suggest certain simplifications. Once the simplifications (which cause
the metric to be expressed in a form similar both to (8.5) and to (8.6)) are
imposed, the T-NUT-M metric may be straightforwardly and explicitly de-
rived. We will then show (in the next section) that T-NUT-M is indeed
mathematically non-singular and yet incomplete. We will defer many tech-
nical details to later chapters, where they will be discussed in terms of
matter-filled models in order to present a concise discussion of T-NUT-M
itself.

We have pointed out that in the general vacuum Type-IX model the

metric of the hypersurface H(t) can be written as
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3
do? = I a 0@

8= 1

No off-diagonal element ever appears as t varies if the gp; metric com-
ponents are all zero. We must allow the « ; to be positive, negative, or
zero, as one a; is less than zero in NUT space and greater than zero in
Taub space.

We shall show in another chapter that if H(t) is spacelike at some
time, it must become lightlike and then timelike in a finite proper time. If
the four geometry is to be mathematically non-singular at the time t; of
transition then the determinant of g v must remain non-zero. At tg
therefore, no more than one of the a ; can be zero. However, at ty, since
H{t) is lightlike, one of the a; does vanish.

We have shown that there is great freedom in choosing the zeroth basis
one-form. This freedom appears as a freedom in the forms of Eop Ryan
(1970) discusses this point in the vacuum case; we will exploit it in the
matter-filled case later. In the T-NUT-M model, the most convenient basis
is one in which gy = gp, = 8g3 = 0. Further, by calculation of Ry, at
t=ty, it canbe shown that a, = a, then. In both Taub space and NUT
space, a, =a; at all values of t. This property implies the existence
of a fourth Killing vector in addition to the three of SO(3,R) symmetry.

Can a, =a; onlyat t= to? The work of Misner (1969a) shows that

this possibility does not occur. We therefore write the metric as
2 2 2
ds? = ZgOledt + gn(wl) + ezﬁ(wz) + eZB(cu?’) .

Taub space corresponds to g;; > 0, and NUT space to g, < 0. Further,

we may parametrize the t coordinate so that gy = 1. In the basis
ol = ol azzeﬂmz, G3ze8w3 , 8.7

with g = gn(t}, the metric components are
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g

—~ 1

and = (g,) =] | (8.8)
0

Loniibon B B v
[N w i RS
[l > R
Ll = e R}
Lo B e B Y
[T e I ]
- OO

Ricei Tensor and Field Equations
We can now use the Cartan equations to compute the Riemann tensor

in the usual fashion. First, notice that of the connection forms o only

|24
all, GOA, O’IA, 023 are independent (A = 2, 3); all the others are given

by the equations relating the Yy (dglﬂ" =0+ %!i)’ The First Cartan

Equation do* = ”'U#a A 07 may be solved by inspection to yield
011 = ~«%— go! (where - z[%)
002 - gBO_Z
o .
o = gBo3
) (8.9)
612 _ _Baz N %_ e~21803
013 _ _% e—2,802 _ Bas
023 -1 e”zBdt + [1 - = ge 2‘8]01
2
From the Second Cartan Equation 6 = %— RE B 0% 0P and from
R‘w = RG;LGV the next step is to compute R[w. The vacuum field equa-
tions read:

Roo = —28 =287 + ;e -0,

Ry =5é+éB+reeF-0,
(8.10)

s

¥

Ry, =Ry3=gB+ gB + 2e(B)? e~2B _ %— ge““8 =0

Ry =8Rp; =Ry =Rg3 =Ry, =R;3=R,; = 0.
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All the field equations are identically satisfied except for the Rgo: Ryy
and R,, equations. Moreover, the R,y equation is easily shown to be
a consequence of the Ry, and R,, equations, these being the two inde-

pendent equations which give g and B.

The Solution

The general solution of Ry =0 is
1

B (Bé +...1_)5 , @®.11)

4B

where B is a positive constant chosen so t= 0 is a minimum of B. This
result, that eﬁ never becomes zero, shows the non-singularity of the
metric. At g= 0, eﬁ is non-zero, so the structure coefficients and the
determinant of g uv do not vanish. Hence g v has no singularity at
g = 0.

Inserting (8.11) into the R22 equation we find

2,2
- At#1-4B°C (A B const.). (8.12)
B(4B2t? + 1)

As a reminder, the full metric is

dszz—-2dtw1+g(w1)2+e26[(m2)2+(w3)21 with da)i=%‘€ijkwj1\wk. (8.13)

8.3, Complete and Incomplete Geodesics of T-NUT-M

T-NUT-M space is a vacuum space-time whose topology is S*xR. It
is a mathematically non-singular but incomplete model, and as such very
interesting and important, It serves as a simple example of such a cos-
mological model.

Since T-NUT-M is non-singular, every geodesic segment can be covered
by a compact (closed) subset of the manifold. We shall show that this
property holds. Since T-NUT-M is incomplete, some geodesic segments,
although coverable by a compact set, cannot be extended. We shall demon-

strate this property also.
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Group Symmetry Applied to Geodesics

A geodesic has a tangent vector X for which

VeX = 0. (8.14)

The points along the geodesic are labelled by an affine parameter u, and
the components of X in a given basis are functions of u. Given these
functions we can reconstruct the geodesic. In T-NUT-M let us use the
basis dual to (dt,o i} and let the components of X in this basis be

at (u=0,1,2,3). Equation (8.14) is a set of four equations for the four
unknowns af* (it contains function of t, but t is to be considered a
function of u given by a® = dt/du).

Symmetries in the metric simplify (8.14), each symmetry implying a
constant of motion, In T-NUT-M these constants are all that are needed
to describe completely the behavior of geodesics. We choose u such that

a%a_=E=1%1,0

o
(8.15)

2a%a! + g;(a1 )2 + (az)2 + (a‘?’)2 .

i

This is one constant of motion for (8.14).
If £ is a Killing vector of T-NUT-M space write

X¢ X)) = fu;v ata¥ + a”;v ayfu .

Since ¢ is a Killing vector fu'v + fV'# = 0, and since X is geodesic

a“;v a¥ = 0. Hence
d€ - X)/du = X¢-X) = 0; (8.16)

that is, the dot product £-X is constant along the geodesic.

There are four Killing vectors of T-NUT-M, three expressing spatial
homogeneity and one due to the fact that a; = a,. This one is the vector
dual to the one-form ol (notice that its contravariant components are

£l =8 so cf# = glp}‘ Since £F =5 a, = const. This implies
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ay; = a¥ + gai = const. = py . (8.17)

There are also three constants of motion

p; = £, X, (8.18)

where the & ; are the three generators of SO(3,R). We know that £ P =

1

Oinj, where Yi is dual to @*, and t’)ij is an orthogonal transforma-

tion (here a rotation matrix). Because O;) is a rotation,
p2 = E(pi}g = const.
i

Since ol = col, o? = sz, o3 = eﬁws, we have the formulas Y, X =
a;, Y, X= eﬁaz, Y, - X= eBa:,’, Therefore,

p2 = 312 + 82‘8822 + eQ[g.as2 = const.

and since a; is constant

i

pff =0 —p’= 2B@®’ + (&%) = const. 8.19)

(Remember a, = az, a, = a® in the {dt,oi§ basis.)

The Geodesic ‘‘Potential’’

From our definitions of pl , p“ , and E we find
2 —
P“Z - (aO) + gplze 28 = gE .

Since the a# are functions of u and a¥ - dt/du =t we find

lez = (t)z + g(E — ?l eW2B> . (8.20)

Notice that this equation looks exactly like the equation of a particle

moving in a potential, where u takes the place of time, t takes the place
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of position, p;};z takes the place of ‘‘total energy,”’ and g(E - plze—zﬁ)
is a “p@tentiaf” function V(t). Inserting our values for g and B from

(8.11) and (8.12) we find

2
L1 2.2 p
V(t) = éL_%_E_iE_L gﬂ.m?l_.....r i (8.21)

(Figure 8.3 shows V{(t) for one set of constants.)

In (8.21) the constants play different roles. A and B are fixed for
all discussion of any given manifold. E = 1,0 determines the character
of the geodesic (spacelike, timelike, null). The constant pl 2 is a con-
tinuously adjustable constant roughly equivalent to a measure of the com-

ponents of the geodesic in the 2 and 3 directions.

Incompleteness Without Singularity

T-NUT-M is mathematically non-singular in the sense of Chapter 5.
Any finite segment of a geodesic is coverable by a compact subset of the
manifold. This is true because V(t) becomes constant for t » =, so
only geodesics of infinite parameter length lead to t = +. (See Figure
8.3 for the timelike case.) Any finite geodesic segment must remain with-
in finite bounds of the t coordinate and so is coverable by a compact
subset of the manifold.

While T-NUT-M is non-singular, it is still incomplete, (in Chapter 5 we
indicated why incompleteness is thought of as ‘‘physically singular’’). In
the T-NUT-M case incompleteness unambiguously leads to singularity
once any amount of matter is added. What is the easiest way to see that

T-NUT-M is incomplete? In Figure 8.3 we see that a timelike geodesic

<

with py 2 <1 does not have enough energy to surmount the “‘potential
i

barrier.”’ From the form of the potential, t should oscillate as a function
of u, the affine parameter, but we shall show that in fact the geodesic
terminates at a finite value of u.

Consider equation (8.17) for py
i

al = (py - /e .
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From equation (8.20) for t we have
1

, 7
z gE + gp 2;’bz)

o
1]
Faje-s

p

gi(?n

!
IE

ol

NUT

;o Taub

Figure 8.4, T-NUT-M Space with Three Timelike Geodesics. Vertical directions
are the t coordinate {always lightlike, see text). Horizonta! directions correspond
to the ‘“‘one’’ direction in 83 (a closed direction). The ‘‘one’ direction is
periodic - the solid vertical lines are identified pointwise. Geodesics 1 and 2
terminate with total finite length. No. 1 cannot cross the Misner boundary: It
winds up too fast. No. 2 crosses the boundary but bounces back. The light cone
behavior shows it cannot return and must be terminated. Geodesic 3 has infinite
total length because it has enough “‘energy’’ to travel to t = 400,
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'f we take the + sign, (and Py > 0) thenas t-tg, glty) >~ 0 and al 5o,
This infinite value of a corr;s;)onds to geodesic No. 1 in Figure 8.4.
This geodesic ‘“‘wraps’’ around the “‘one’’ direction an infinite number of
times and does not cross the boundary between Taub and NUT space. How-
ever, potential-well considerations show that the approach to the Misner
boundary takes place in a finite proper time. Hence this geodesic is of
finite extent and inextendible. T-NUT-M space is incomplete!

Not all geodesics are incomplete. Consider geodesics 2 and 3 in
Figure 8.4. Soth originate in Taub space, cross into NUT space. Geo-
desic No. 2 bounces off the potential and tries to return to Taub space. It
encounters the same type of problem as No. 1 and is incomplete. Geodesic

No. 3, however, surmounts the barrier and travels to t =+,

The Collapse of Taub Space

In Taub’s (1951) model the volume of the spacelike homogeneous
hypersurface H(t) becomes zero at finite values of t. Rather than indi-
cating a singularity, however, this zero volume simply means that the Taub
model is that portion of T-NUT-M space in which g(t) > 0. T-NUT-M
space itself is a mathematically non-singular model, as we have seen.

T-NUT-M at first glance appears to be a useful model of the real uni-
verse. The behavior of T-NUT-M, with regard to collapse — the opening
of closed spacelike section — is exactly the behavior we might expect in
a non-singular, matter-filled universe. In a universe filled with matter, it
will be shown that the volume of spacelike hypersurfaces must become
zero in some observer’s finite proper time. In T-NUT-M this zero volume
is not indicative of a mathematical singularity; the closed spacelike sec-
tions become open with only the difficulty that some (not alll) of the time-
like geodesics are incomplete. As shown by work of Hawking (1967),
Geroch (1967), and others, non-singular cosmological models in which all
geodesics (in addition to the ones along which matter flows) are complete

do not exist in general.
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However, T-NUT-M is not adequate to describe the real universe near
a time of maximum contraction. Since T-NUT-M space is a vacuum model,
it can only be thought of as an approximation to the cosmos in which
matter is treated as test particles. Because some of the test particles
may travel on incomplete geodesics in T-NUT-M, the mode! itself, as it
stands, is not adequate to portray the cosmos. If some way could be
found to introduce matter into T-NUT-M in an explicit way so that none of
the matter travels on incomplete geodesics, then a non-singular cosmologi-
cal model would be the result. That it is impossible to introduce matter
into T-NUT-M without causing a singularity is a fact that will be shown
later.

One final remark should be made: Misner and Taub (1968) have shown
that there are two inequivalent ways of joining Taub space onto NUT
space through a lightlike boundary. In both ways the join is analytic. As
we saw, half of the timelike geodesics with origin in Taub space cross
the boundary to NUT space and half do not. In the second method of
gluing T and NUT together, these two sets of geodesics are (roughly)
interchanged. The half that made it before are brought to a halt, and those
geodesics that originally ran out of steam suddenly find themselves given
free passage. Non-analytic extensions may be considered also. A recent
mathematical discussion of this ambiguity in joining solutions across a
lightlike barrier has been carried through by Miller (1973) and Miller and
Kruskal (1973). A physical interpretation of this recent work has yet to

be given.
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IN THE SYNCHRONOUS SYSTEM
They take a serpentine course, their arms flash in

the sun — hark to the musical clank —
- WALT WHITMAN

9.1. The Metric and Connection Forms

The T-NUT-M model shows that a spatially homogeneous model can
have exciting characteristics. To extend our discussion to the general
spatially homogeneous model we must first develop some useful equations.
We shall compute the Ricci tensor of homogeneous models in a particularly
simple basis — the synchronous system. These equations will be appli-
cable to both matter-filled and vacuum models. In succeeding chapters we

shall use the synchronous system to discuss the existence of singularities

in these models. Figure 8.1 included a logical outline of Chapters 9 and 10.

The Proper Time Orthogonal to Homogeneous Hypersurfaces
Through every point in a spatially homogeneous model M passes an
invariant or homogeneous, three-dimensional hypersurface H. This hyper-
surface is generated by the three-dimensional isometry group G of the
model. A one-parameter family of these hypersurfaces fill M. The direc-
tion of the axis of this parameter t may be chosen quite freely. Once

this choice has been made, the one-forms w!, i=1,2,3, are found as in
Chapter 6. The wl satisfy the curl relations appropriate to the group G.
One very useful choice for the direction of t is the timelike direction
perpendicular to each hypersurface H. This choice defines the synchro-
nous system, so called because clocks are synchronized throughout the
spacelike surfaces (see Lifshitz and Khalatnikov, 1963). The existence

of such a timelike normal vector assumes that the H(t) are spacelike.
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Walt Whitman (1819 - 1892)
From "Cavalry Crossing a Ford"
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We parametrize by proper time, so that the four-dimensional metric is

ds? = —dt? + gijwiwj,
9.1
gij = gi}-(t) .
The one-forms ! obey
dw! = %— Cistws Aol {(9.2)

where the Cljk are the structure constants of G. The group structure of

the manifold implies the existence of a vector field basis dual to §-dt,wi§

such that

s
[YO’YI} = 0, [YI’YJ] = ~C IJYS 5

YO'YO = -ol, YO'Yi = 0, YIY) = gij(t)*

We could have begun with the existence of this vector field basis and pro-
ceeded to (9.1) and (9.2) as in Chapter 6.

The synchronous basis is essentially unique as long as the homogene-
ous hypersurfaces remain spacelike. That is, the hypersurfaces are picked
out by the group action unambiguously. The vector Y, is the unique
normal to these surfaces.

If the H(t) change from spacelike to timelike (as in T-NUT-M), the
synchronous system breaks down and another basis must be used. If a
singularity prevents this change of signature (as in any matter-filled model
with the same symmetry as T-NUT-M, for example) the synchronous system

is useful to describe the entire evolutionary history of the model.

The Orthonormal Basis
We shall now compute the Ricci tensor. Since this form of the Ricci
tensor will be applicable to the FRW and T-NUT-M solutions as well as
the generally spatially homogeneous model, we shall derive it in some

detail.
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We change bases to write (9.1) in the orthonormal synchronous basis,

defined by
6% =dt, o' = b (WS, 9.3)

where bzs bs; g and bij = bji' The matrix B = (bij} is the symmetric
square root of G = (gij). This choice of B puts the metric in diagonal or
Minkowski form. In the o basis

dszznwg%%“(&’f Y 0 0. (9.4)

1 1
Following Misner we shall write the scalar (det 8)3 as (det 8)3 =
"Q(t) {1 a scalar. Also, we write LB = (eB(t)u) where (B, (t}} is
a 3x3 traceless matrix (e’8 signifies matrix exponentiation; note that

det e = e _ 1), Therefore
B= (e lef). (9.5)

The curls of the o# will be needed to compute affine connection

forms. These curls are
do! = (-—-Qe"QeB. + e“Q(eﬁ. Y)dt A @S + e”geﬁis deS
08, + @By P e P _dtaos (9.6)

1 -0 s .t u
+§e eBisCtuw Aw"

i

Using the expression of ! in terms of o?,

i Q — s
w! = efe ﬁiso s 9.7)
we have
do! = kisthaS + %dlstasAat, (9.8)
where

- -4128 v @PyeP

_ Qeﬂ 5 (9.9
i s B .-
djkz isCtu® tje uk
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The expression for kij simplifies if B commutes with 3, for then
{@Bﬁ} e"ﬁt}- = ﬁij‘ Notice also that dljk has the same symmetry as C!jk
and satisfies the Jacobi equation:

i i . 4a

s a 38 . 48 3
61855+ A5y ¢ dP a5 = 0. (9.10)

Connection Forms in the Orthonormal Basis
We shall now compute the connection forms o ="K o7 using the

first Cartan equation and the vanishing of the covariant derivatives of the

metric. The latter equation reads, in our case,

Ty * Oy = 0 9.11)

{to lower or raise an index use rfuv). This equation implies

o 0 i i
o 00.00,0}.

E 1 =

- ol
=—07.

The first Cartan equation reads

FO“VU“AaVz 0; kisoo AocS s -21- distos/\ot:l"iw/a” N A

Enforcing the symmetry (9.11), we have

. {4 i i o o
kij:rl()j“rxjﬂ’ dlst“Flst"r ts’ r ;w"r V;L”O‘

The solution of these equations is

~ 0
[ 0~ 0,
ro. -r% Lo k)=t
.U . o2y 1] (9.12)
als | = N

~ 1 /4 t s
Mg = 5 @g—d'ig—d%5p),

whence
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a 5

i = bigo

: o 1 .. ) (9.13)
i s s

g}. ——-mija +§-(d js“d}is”d i}-)a .

it

9.2. Aside: The Second Fundamental Form of an Invariant Hypersurface
We have defined the symmetric and antisymmetric parts of kij as

Fij and m;; respectively, that is, in matrix language:

L= %(K+KT); M- %-(R&«KT) . (9.14)

From K = -—QI + (SB)‘GQS one can show that

P~ LeP - By meB . (9.15)

Initial Data

Equation (9.15) is a matrix equation relating M, L and eB; ef8
being symmetric and positive-definite, L being symmetric and M being
antisymmetric. Because the matrices are all 3x 3, we may solve (9.15)
uniquely for M. Because of this fact it is necessary only to give L, 8
and {1 at some time- ty to get a complete set of initial data. We shall
find this enumeration useful later when we wish to give initial conditions
for numerical solutions.

It is not surprising that (2, B, and L form a set of initial data for
homogeneous cosmologies. The equations of relativity, being hyperbolic,
require two items of initial data (Choquet, 1962): First, a ““function’’ (the
metric of an initial three-surface); and second, the ‘‘first derivative’’ of
this function (the second fundamentsal form of the initial surface, its ex-
trinsic curvature; see Wheeler, 1962b). The matrix e"Qe’B is directly
related to the three-dimensional metric of the homogeneous hypersurface.
From our definition of K we see that L is related to the time derivative
of e“QeB (both L and e“Qeﬁ have six independent components).

We can show directly that L is the second fundamental form of the

invariant hypersurface H(t) imbedded in the four-dimensional spacetime.
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The second fundamental form of a submanifold M in a manifold M is an
operation N(X,Y) acting on vectors XY of M. If we covariantly differ-
entiate Y of M’ in the direction X using the connection forms of M

the result is a vector Z in M. We define N(X,Y) as the component of

Z perpendicular to M” (Eisenhart, 1926). We write
N(X,Y) = (V!

where V is covariant differentiation in M and the superscript 1 (super-
perp) extracts the component of the result which is perpendicular to M

We can use the torsionless nature of VXY to show that

N(X,Y) = N(Y,X).

If M is a hypersurface, the perpendicular vectors form a one-dimensional
space, so N maps two vectors of M’ into a real number (the one compo-
nent of Zl)‘ Thus N is a tensor on M’ (depending on the detailed man-
ner in which M is imbedded in M).

For a spatially homogeneous manifold in the synchronous system, per-
pendicular means along the 00 direction (here M’ is H(t)). The com-
ponents of N in the basis X; dual to the ol are

0

This equation shows that L is indeed the second fundamental form of H(

9.3. The Ricei Tensor
We now calculate the components of the Ricci tensor in the fot}

basis.
The (00) component is (indices raised and lowered with Myyi use

the symmetries of Rm«'aﬁ):

o 0 0 4]
Rog = Riggo = =Ryg1 = Rgn = Riz03 -
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. 0 o0 v 0 0. 0
Since é?iniwa#aa , we compute 67 =do"; + 0" A0% and take

its 0i component:

0 .
R0; = by + Uig kgj — mg;{is (no sum on 1) . (9.17)
Therefore
Roo = —lss = lelis - (9.18)
Similarly we find
= RY - t t +t
Roj = Riogi = lggdigy + I gy = 0T g
¢ < 9.19)
=l digi + B g
Note that
s Q a _— - Q_— s
g = € eﬁsac be © Bbte ﬁcs =€e Bbtc bs ° (9.20)

This equation implies that the second term on the right in (9.19) vanishes
for some groups. For example, it is zero for the groups T;, L;, and

SO(3,R) (Bianchi Types I, VIII, and IX).

Example: Ry; and Rotation in Bianchi Type I Models
‘ As an example, consider a space invariant under TS(CIjk = 0). Since
dljk =0, (9.19) implies Ry; = 0. For a fluid-filled universe T, =
(w+p)u0 oy in our basis. Hence ROi =0 implies u; = 0 (or, since
u‘“u'/nm, = -1, u, = (-1,0,0,0)). Consequently, du=d(—dt)=0, so

that rotation is impossible in Type I universes.

The Spatial Components of the Ricci Tensor
A tedious computation shows
Ryj = by + Ll + ligmgy + Bgmg;
) . . (9.21)
t i i S (48 t i 4]
+ydig@grdly)) = 5d%,@% + dhe) + 2 dlg g
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We have used the fact that the three-dimensional Jacobi identity implies
t s
This completes the calculation of the Ricci tensor in the orthonormal
synchronous basis. For many purposes the synchronous system is very
useful. For some purposes we shall use other bases, as we did with the

T-NUT-M model.

9.4, Vacuum Models — Existence and Examples

In vacuum the Einstein field equations read

R, = 0.

Taub (1951) showed that solutions exist for all nine Bianchi types. These
models are generally of little physical interest, and investigations of their
global properties, especially the existence of singularities have not been
carried through.

Taub’s existence proof is outlined as follows: From Rij = 0 we have

b = ~Ljlss = ligmgj = lig mg; — 5 d'y @i+ dig)
. L (9.22)
t
+ §dsit(dsjt+d js) - Z{dlstdjst :
Our definition of e“Qe}8 gives
e 4 e By = @ rme e (9.23)
From (9.9) we have
i Qeﬁ CS “B -B uk
and (9.15) gives
my; = my; L) (9.24)

Thus the (ij) field equations may be put into the form
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L =f@QABL)),
Q - @8, L), (9.25)
i = h@,B,L).

Given (1, ’Sij* and Lij (one, five and six quantities respectively) at
time t; we can integrate this set of equations to find @, 8, and L at
any time t. Note that {1, Bij’ 5'}, and 'éij are sufficient initial data
for these differential equations since Lij may be determined from these
quantities,

Restrictions on the Initial Data

In the discussion above we used only the (ij) Einstein equations,
ignoring the four (Ou) equations. It is a general property of the Einstein
equations that the ch equations are consistent with the solution of the
Rij equations, and only act as restriction on the initial data (see Wheeler,
1962b). In our case they restrict the values of @, B, and L we may
specify at t,.

In the spatially homogeneous case Taub shows the effect of the re-

striction by examining

t s
Ro; = lopdls; + £ = O (9.26)
and
28 =Ry + Ry; + Ry, + Ry3
9.27)
2 t 4u 1,s s 148 4t
= Csg)” — Ll + digd gy - 78 ud a5 d s = 0

(8 is defined with a factor of two to conform to a convention used in
fluid-filled models.) These two equations must be satisfied if a set of
2, B, L that we pick as initial data is to be allowable.

We can readily show that Ry, = 0 and Ry, =0 are satisfied for all
time if they are satisfied at t = t, and if Rij = 0 for all time. The proof

uses the twice-contracted Bianchi identity:
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v 1
g Ry - nga“);v =0
which implies:

0 i v 0 0 v
Rg’{} = '"R,u;i - Rur Vo * RUF "o - (9.28)
It is easy to see that RW’ =0 at t=t, implies RO#’O =0 so RO# =0

remains true as long as Ri;’ = 0. The establishment of this fact completes
the demonstration that the (ij)} vacuum field equations are consistent with
the conditions imposed by the (Ou) equations, and that solutions therefore

exist for vacuum models for any of the Bianchi types.

A Bianchi Type lIl Homogeneous Model
Exact solutions of the vacuum field for various homogeneous cosmolo-
gies do not exist in any great number. The T-NUT-M and Kasner solutions
are important examples. Taub (1951) has given a solution for Type II. As
an example we shall give a Type Il solution in which the metric is given
except for one component function which is defined by an integration. It
represents a simple illustration of the above formal treatment.

Let us investigate the special case where e’8 is diagonal, with only

1)
one independent component:

P - diag(e?B, e P, Py, B-Bw . (9.29)

L then has the form

L = diag(l,,£,0) = diag 28 ~Q, —@+ B), -+ B)). (9.30)
The structure constants of the Type III group are
C223 = ~—Cz$2 =1, all others zero. (9.31)

The field equations reduce to three equations, the S equation and the

R ij equations:
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o, + 1 - 2B g
(9.32)
p » 1 2(8+Q
b by =0l + 20+ LB Do
If we solve the S equation and one of the two lower equations, the second
is automatically satisfied because of the consistency proof above.

The solution we find yields S + £l as an implicit function of t:

1
t—ty = e~ B+Q)2 5 Iog[e“(ﬁ*g)’;z + {e“(ﬁ*g}-y A)z] , (9.33)

where t; and A are constants. We can find 28 — Q from the S equa-
tion by

1 1
t, zzﬁ_fz:w%[ae%&*ﬂhe?(ﬁ*m}g + Liaem B, 2840y 2 (g 30

We have B+{ as a function of t so we can integrate this equation to
find 28~ (this is the integration referred to above). Adding and sub-
tracting these solutions, we find 8 and (.

This model is of interest primarily as an example. Its derivation is
typical of the method by which exact solutions for spatially homogeneous
vacuum models may be found. Although we have used the orthonormal

basis, a coordinated basis is readily found using Table 6.1.

Diagonalization of the General Bianchi Type IX Vacuum Model

The most important of the vacuum models is the Bianchi Type IX
(503, R)-homogeneous) model, a special case of which is T-NUT-M. We

can show that the most general vacuum type IX model has a diagonal

metric in the synchronous basis; that is
. 2 2 2 2 2
ds? = —dt? + e”zg[e 61(«:01) +e 182((02 te ﬁ3(w3}2] } (9.35)

If e‘8 is a diagonal matrix, then so is £, and this diagonal traceless

matrix may be parametrized by
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B = diag(B,+V3B_,B, -V3B_.-28,) . (9.36)

It is easy to show that 8 may be chosen diagonal at any one time by
transforming to a basis ol Oijmj, where Oij is an orthogonal matrix of
unit determinant, The &' satisfy the Type IX structure equations. There-
fore, by a suitable choice of Oij we may diagonalize 86 and hence f3
at the instant t,.

The fact that Ry; = 0 proves that [ remains diagonal. These equa-

tions read
812 sinh (B, —By,) = 0, et cyc. at t=t,. (9.37)

Thus either {;, =0 or B, = f3,,. In general either by the choice of t,
we may be sure that By, # B,,, so [, = 0; or accomplish {;, = 0 by
a further rotation of basis forms, so that L is diagonal at t;.

When e'B and L are diagonal at t=t,, M vanishes by (9.15), and
(9.22) shows that L is diagonal. Therefore, L remains diagonal for all
time, and hence eﬁ does also. Thus in the general vacuum Type IX
model we may assume 3 is diagonal.

In Chapter 8 we found no singularity if we took B, = f8,. Let us look
at this requirement from the standpoint of the general vacuum Type IX

equations. The field equations reduce to
Roo=0=30-30% 68,2 —68_°

Ry;=0=~ Q4+ B++\/r§[§__ + 35'2((‘2-ﬁ+—-\f§‘é_)

20 ;4(B++V”3'/3__) _ e4(ﬁ+-—\j§f3~) _ e~sB+ 2~ (}8++\/§B__)]
Ry, =0=-0+ B, —v3B_+30@-B, +V3B_) (9.38)
2Q -84(B+—v’§6_) B e‘*CBﬁv’?ﬁ”_) ~ e~8.3+ e 2 (B+~V’§5-)]
Rys-0=-0—28, +30@+28,)

1 29'9”‘8184, _ 64(B++V§5-)‘ 64(13+*\’;§6~>+ 23484%] )

,;.2.9
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£

From these equations it can be shown that e becomes zero at a finite
value of t, say t. If no singularity is to exist then, the hypersurface
H{t") must have a metric of signature (+,+,0), so that only one of the
coefficients in (9.35) vanishes at t". If that coefficient is the term multi-
plying ({333}2, we can say that at t" we have (0+28, -+, but Q-8

and B_ must each be finite. We can write Ry, + Ry, — Ry, — Ry as:

. * - . Q.... ) o Q«:_‘ )
4,0+ 6,07+ 6p_2 - 3 TP TR

. ﬁz(ﬂ«fg)L;—ffr\/’s*?i%_+ ei’vw-] (9.39)
. % ez(Q+ﬁ+)[63V}§5*_e“2\fj§ﬁ~] )

At t =t the condition that no singularity appears requires the left side
of (9.39) to be finite, The right side will then be finite only if B_ = 0 at
= t. This result is only a rough indication of why the T-NUT-M model

requires 8_ =0 for all t, for near t’ the basis used in (9.39) strictly

speaking becomes degenerate.

9.5. The T;-Homogeneous Model of Kasner

The general Type [ vacuum model is especially simple and important.
It is also known as the T;-homogeneous model because the Bianchi Type I
group is isomorphic to the three-dimensional translation group T,. This
model has been treated by Kasner (1921); Taub (1951); Misner (1967d);
and Lifshitz and Khalatnikov (1963). This metric is important in the dis-
cussion of matter-filled models near the moment of maximum compactifica-
tion (see Lifshitz and Khalatnikov, 1963, and Chapter 13). Each vacuum
T;-homogeneous model turns out to be either singular or flat: In the ab-
sence of a singularity the vanishing of the Ricci tensor implies the vanish-

ing of the full Riemann tensor (Taub, 1951).
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The Vacuum Field Equations for Type | Models
The structure constants of the group T, are zero: Cijk =0 = dijk.
Notice that this group structure implies Ry, = 0. If we examine the prev-
vious section we see that the proof of the diagonal form of the general
vacuum metric may be carried out in the Type | case also. Thus we need

only consider the metric
ds? = —dt® + e“zgezﬁijmimj here o' = dx'; (5.40)

with 8 =diag(B, + V3B_.B, — ;ifgﬁu,w25+). For this metric the vacuum

field equations read

szaz_ﬁ‘_z -0
B, -30B, - B_-30B_-0 (9.41)
20 -302-382-382-0.

Equations (9.41) combine to imply 0 - 30%- 0, or

1
2 = —fn [H(twtg)a}, H=const, or 3=0. (9.42)

If we again look at (9.41) we find
By = In(Bylt—t)’ ), By,o0y const. (9.43)
The solution for the full spatial metric is
g = e“zgez’%j = (t-—tg)wiAiSij (no sum) ,
where the A, and the o, are each constant. The o; obey (from 9.41)

oy +0,+0y =1, (9.44)

and
012 + 022 + -:}'32 = 1. (9.45)
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We can now see the final details of the general T;-homogeneous
vacuum model: First, if Q is zero the result is a flat model, g;j = const.
Second, if @ is non-zero the models are given by (9.43) where the o,
satisfy (9.44) and (9.45). Note that if only one of the o; is non-zero we

1

would have (gince dol=0 for Type I, the o’ are a coordinated basis

dx, dy, dz)
ds? = ——dt2 + t2ax? ¢ dyz + dz? . (9.46)

but a coordinate transformation shows that this is just the metric of a flat
manifold.

Equations (9.44) and (9.45) do not allow exactly one of the o; to
vanish; therefore, all other models have all three o; non-zero. In this
case the Riemann tensor is non-zero. Note that at t=t, thereis a
singularity: The determinankt of g vanishes () » + ). Moreover, at
t=t, two of the components of gij vanish (but one becomes infinite:
one o, must be negative). It is therefore impossible for the spacelike
hypersurface H(t) to become a nonsingular null hypersurface at t=t4,
and then to become a timelike hypersurface. The ‘‘metric’’ in a nonsingu-

lar null hypersurface would be reducible to the form

(gij) = diag(0,1,1) (9.47)

in a suitable coordinate system. The conclusion is that t=t, is a true
singularity. (The conclusion that t=t, is a singular time in this model
may be obtained in another way: Calculate the scalar Raﬁ 8 R}'&& B and
show that it becomes infinite at t = to!)

In summary, the T3~hom0geneous vacuum models either have a singu-
larity or are flat. It is interesting and important to contrast the behavior
of a T,-homogeneous vacuum solution with the behavior of T-NUT-M
space. In T-NUT-M space the matrix bij(t) does have vanishing determi-
nant at a value of t (actually the determinant vanishes at two different
values of t). However, when the determinant vanishes, g;; ig of the
form of (9.47). T-NUT-M actually has no metric singularity — the homoge-

neous hypersurface H(t) merely becomes lightlike at those values of t.
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The T3~homogeneous models are interesting in their own right, and
not merely as models to contrast with T-NUT-M. An equation just like
(9.43) describes the behavior of anisotropy in a fluid-filled model near a
point of maximum contraction. Kasner’s model thus proves to be of im-

portance in any discussion of the beginning of the real universe.
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A 1'horizon, par les brouillards
Les tintamarres des hasards,
Vagues, nous armons nos demons
Dans U'entre-deux sournois des monts
~ ALFRED JARRY

10.1. Singularities in Selected Models
A cosmological model containing a perfect fluid is a manifold on which

the metric obeys the field equations

R, = Wepu,u, + %—(W—p)gw} , 10.1)

where w is the energy density and p the pressure of the fluid; the u,
are the components of the fluid velocity field. It is accepted by most cos-
mologists that a perfect-fluid model can represent the real universe very
well (however, see deVaucouleurs, 1970, and Ellis, 1973).

Often the additional requirement of spatial homogeneity is imposed on
a fluid model. If isotropy is also required the Friedmann-Robertson-Walker
(FRW) models result (see Chapter 4). If homogeneity, but not isotropy, is
required, the resulting model will still be fairly tractible from a computa-
tional point of view. Such a model may well provide the best description
of large scale features of the real universe.

Any model which is used to describe the early stages of the universe
must be investigated for singularities. In this chapter we shall treat the
existence of singularities in spatially homogeneous, perfect-fluid models.
Figure 8.1 includes an outline of this discussion.

We shall take care to distinguish among: 1) coordinate singularities,

2} incompleteness, and 3) mathematical singularities which prevent the
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Alfred Jarry (1873 - 1907),
inventor of 'pataphysique

On the horizon, through the fogs,
The roars of the hazards,
Vaguely, we arm our demons

In the devious mountain passes
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extension of the manifold. Let us recall our definition of a mathematically
singular manifold M (Chapter 5). It contains a geodesic segment G of
finite affine parameter length, and there is no manifold M’ in which M

can be imbedded and in which G can be covered by a compact set.

Gravitational Collapse and Ry,
We shall write the Einstein equations in the orthonormal synchronous
system of the previous chapter. Of the Ricci tensor components, the Ry,

is of special importance, and we repeat it here:

Roo = fog — Uil » (10.2)

where the dot means d/dt, and Qij is given by (9.12). The fluid velocity
U is a timelike unit vector (the four components u, are functions of time

only, as are w and p)

u

gl = == —(ug) + () + ) + (wy)? (10.3)

The Ry, field equation is therefore

~{

'.ss =il = %‘(W‘" 3p) + (w+p)(u” +uy +u). (10.4)

The energy density w must be a positive definite function, and while p
could be slightly negative it is unlikely that p will be less than — %—W.
We make the assumption that p > —--31—w. This assumption implies that

the right side of (10.4) is strictly positive unless the model is a vacuum

model: : .
“Bss - gstzts >0 (or=0 if w=20). (10.5)

Collapse of the Invariant Hypersurface H(t)
The inequality (10.5) may be written

“gss - %“(gss}z - %[(g” ““522)2 + (04 ““5533)2 + ‘?33)2}

—2AC P + € + €315 0 (or=0 if w=0),



10.1. SINGULARITIES IN SELECTED MODELS 165

which implies

*éss“é‘{gssf>e {or>0 if w=0) .

If gss #0 we have

(10.6)

¥

.c.i_( 1 )3 L
di\l/ 3
Equation (10.5) shows that g&s cannot vanish for all t f w £ 0. Even
if w=0 (vacuum case), gss cannot vanish for all t, presuming the
model is evolutionary.

From (10.6) we see that |f

*sg
t, either toward the past or toward the future. If we look at (9.12) we see

| » o in a finite interval of (proper) time

that .
b, - =30 ; (10.7)
thus ESS becomes infinite when Q becomes infinite. It is important to
examine the sign of { . We know that f s is non-zero at some value of
t, say t;. If { _ is positive (expansion) then lig > at ty <t;. If
Ess is negative {contraction) then Ess - - oat ty >ty Furthermore,
suppose there existed a time t; at which ?SS is zero. From the Ry,
equation for w # 0 we find ess >0 for t<t, and Ess <0 for t>ty;
<l © > at a finite time in the past and at a finite time in
the future. It is not necessary, however, that Ess ever be zero: In the
flat and open FRW models one sign of I prevails throughout and 1]

becomes infinite at one time only. These models are infinitely expandible

in this case f

to times greater than this time of infinite WSSI.

Equation (10.7) requires Q - o; the possibility that Q -+ —oo does
not occur, as can be seen from the sign of gss' To show that {1 = oo,
that §ESS§ =+ o does not simply lead to a cusp (1 finite but Q infinite)
requires other field equations. The Rij equations in fact are inconsis-
tent with lgss§ + o unless e becomes zero. This point is treated in
greater detail for specific models later. Thus collapse may be either

toward the past or toward the future, but it is clear that some sort of

breakdown occurs in a finite time.
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What is Collapse — Singularity or Mere Coordinate Effect?

“‘Collapse’”” ({1-=) indicates that the matrix e“geﬁ becomes
singular. It may be, however, that there is no physical singularity, but
that we have come to a point at the edge of a coordinate patch where the
basis forms are no longer linearly independent. This latter occurrence
happens in T-NUT-M space. If the synchronous system is used to describe
the Taub universe, then this same “‘collapse’’ is found, but it only means
spacelike H(t) has become lightlike. In this case the limit of the unique
unit timelike vector normal to the spacelike surfaces is a lightlike vector.
This vector lies within the invariant surface at the ‘‘Misner’’ boundary.

As we have seen in Chapter 8, the use of a lightlike evolution parameter
eliminates the apparent singularity of the metric of T-NUT-M space.

Let us call t; the time when (1 » ~. We will sometimes use the
common terminology that the ‘‘volume’” of H(t) becomes zero when
e'Q -~ 0. The terminology stems from the connection of 6"3‘9 with a
three-dimensional volume element. The zero ‘‘volume’’ of H(ty;) may
indicate a singularity or it may be that one direction in H(ty) is lightlike.

In fact, if e“Q - 0 does not correspond to a true singularity, then
H(ty) must be lightlike. If H(ty) remained spacelike the unique timelike
normal could be used to construct a new synchronous system in which €
would be finite. H(ty) is lightlike and non-singular in T-NUT-M space,
but in a fluid-filled Type IX model, t, is a time of singularity. Ina
fluid-filled Bianchi Type V model e_Q = 0 does not necessarily corre-
spond to a singularity. (It should be pointed out that the example men-
tioned later does have both a mathematical and physical singularity at
another time when e‘Q £0.)

The global question of whether a general cosmological model need be
singular in the mathematical sense or whether there are non-singular theo-
retical models remains unanswered. Hawking and Ellis (1968) have shown
that any model which closely approximates the real universe now (if our

observations are correct) must have incomplete geodesics. The time when
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incompleteness occurs is in our past and is analogous to the time when
e“Q - 0 in a spatially homogeneous model.
The general spatially homogeneous model is incomplete. We shall

prove this fact below.

Models with Velocity Orthogonal to H(t)
In the case where the fluid velocity of a perfect-fluid spatially homoge-
necus model is orthogonal to each invariant hypersurface, collapse is
especially simple to describe. Assume that the fluid velocity u is ortho-

gonal to the H(t), that is, in the synchronous system

u, = (~-1,0,0,0). (10.8)

This hypothesis implies that u= —dt, and du= 0 (rotation vanishes).

In Type I models u is necessarily of the above form (ROi = (w+p) uouix{))
but in other spatially homogeneous models this need not be so. Note, how-
ever, that it is possible to have Uy #0 and du=0, so u=—dt is a
sufficient but not a necessary condition for non-rotation.

In Chapter 3 we showed that T“W.V = 0 implies, for fluids,

wrpu’ , = ~w  u; (10.9)

»

(w+ p}upt‘a,u‘Gr = —p O(uguﬂ+5‘7,u) . (10.10)

Equation (10.10) says nothing new in our case: Inserting o = 5”0 we

find up.auﬂr = 0, but this equation comes directly from the fact that
u = - dt.

Hypersurface Orthogonal Velocity ~ Collapse Means Singularity
If we write (10.9) out in full we find

—wd = (w%«p)ua.c, = (w+ p}(il0+u0§?83+ui dsis} . (10.11

With (10.8) this equation becomes
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wfp + gss = W‘g’ﬁ - 30=0. (10.12)

We now assume an equation of state p = p(w). (Since p and w are both
functions of t only, the existence of such a relation is certainly reason-
able.) We can define the ‘‘baryon number density”” n such that

dn dw

This definition allows us to solve (10.12):
ne=3% = M - const. (10.14)

Thus when - ~ at tg, N o,

This infinite value of n does indeed correspond to a singularity as n
is a matter variable defined solely in terms of the fluid’s internal prope:-
ties. We have assumed that p > — %w, and for sound velocity in the fluid
to be less than the speed of light we must have |p! < w. By our definition
of n, these two conditions imply that if n is infinite then w, the rest
energy density, is infinite.

We now return to our definition of mathematical singularity. The model:
of this section do possess a finite geodesic segment, namely the path
generated by u from some arbitrary time to t;. The limit point t, of
the segment does not lie in the manifold. The manifold cannot be extended

to cover a point at which n would be infinite and consequently the mani-

fold has a mathematical singularity.

The Kantowski-Sachs Model
Kantowski (1966) and Kantowski and Sachs (1966) have discussed the
one class of spatially-homogeneous models which cannot be described by
the formalism we have developed heretofore. The above formalism is de-
pendent on the existence of a three-dimensional group which is transitive
on each H{t). The Kantowski-Sachs mode! has hypersurfaces H(t) which

are invariant under a four-dimensional group, but not a three-dimensional

one.
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From Chapter 6, if H{t) is to be a homogeneous three-space, it must
be invariant under a group of dimension greater than or equal to three. A
five dimensional group implies the existence of a six-dimensional one
(Eisenhart, 1926). A six-dimensional symmetry group is the group of high-
est dimension possible and must contain a transitive, three-dimensional
subgroup. Consequently, only if the invariance group is of four-dimensions
does there exist the possibility that the formalism we have been using
could be inappropriate.

Because each four-dimensional Lie algebra contains a three-dimensional
subalgebra (Kantowski, 1966}, there exists a three-dimensional isometry
group if a four-dimensional one exists. If this three-dimensional group
acts on three-dimensional surfaces, our usual formalism may be used. Only
if the three-dimensional subgroup acts on two-dimensional surfaces need
we adopt new methods. The Kantowski-Sachs model is the only spatially-

homogeneous cosmology in which this situation occurs.

Ricci Tensor Components in a Synchronous Basis
Since the three-dimensional subgroup acts on two-spaces, the two
spaces must be surfaces of constant curvature. Kantowski showed that
two-surfaces of zerc and negative curvature give four-dimensional invari-
ance groups which have transitive, three-dimensional subgroups.
The only spaces that are of interest are those where the two-surfaces
are two-spheres. The commutation relations of the three Killing vectors

on each two-sphere are

[£,.6,] = &, etcye, (10.15)

and therefore the three-dimensional group is of Bianchi Type IX, but it is
not transitive on H(t). As Kantowski shows, the fourth Killing vector

must commute with these three. If we call this fourth vector 7, we have

&1=0, i=1,23. (10.16)
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In order to describe these models we shall use a synchronous basis
with the homogeneous hypersurfaces labelled by a parameter t, as before.
We shall label the two surfaces by a parameter r, so 7 = 3/Jr. Because
7 commutes with ‘fi’ 812 and g3 are zero, and gy, is a function of

t only. The metric can therefore be written
ds? = —dt? + e'zg{'ezﬁdr?‘ + e“B{dﬁz +sin’0d ézé} ,

), B=BM .

10.17
N ( )

i

The Ricci tensor components in the basis idt, dr, df, sinf dé! are readi-

ly computed to be
Roo = 3 = 3B + B2 - 37,

Ry = B -0 - 380+ 2002,
. 1 s ‘o 5 (10.18)

Rop = Ry = Rg3 = Ry = Ry3 = Ry3 = 0.

Consequently, when use is made of the field equations for a fluid, (10.1),

we see that u has only a t-component, and it is for this reason we have

inciuded the model here:
o= 5‘”0 )

Singularities
The Kantowski-Sachs model has a metric very similar to that of the
other models we have treated in this chapter. As might be suspected the

proof that the model has a true singularity is essentially the same as in

the previous case.
First, use R to show that e”ﬁ‘Q must vanish within a finite prope
00

time. We shall not give the details here. Next write (10.9) for this metric

and find . .
-2 =-3Q, or ne=3% - M - const.
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as in (10.14). The fact that n - = is a finite proper time leads to the

immediate conclusion that a mathematical singularity exists.

10.2. Is the General Spatially Homogeneous Model Mathematically
Singular or Simply Incomplete, and Thus Physically Singular,
Without Being Mathematically Singular?

Hawking and Ellis (1965) showed that the general fluid-filled spatially
homogeneous model is incomplete. Incompleteness may or may not be an
indication of a mathematical singularity, as was shown in Chapter 5. We
shall therefore proceed to examine the possibility that a non-singular,
fluid-filled, spatially homogeneous model exists.

Although no such model is found we shall prove that all models in-
variant under certain groups (including Bianchi Types I and IX) do have a
true singularity (this singularity may or may not involve an infinity in
some matter variable). Incompleteness is not always accompanied by a
singularity.

Collapse of the H(t)

We shall prove later that a model has a singularity if the matter con-

tained in some three-dimensional volume is compressed into a two-

dimensional set, and we shall discuss the general method of proving in-

completeness.
We saw above that for the spatially homogeneous metric there is a
time t, when |[[ | = . At other times this metric is represented by the

non-singular matrix 6-29623 (t). Since the volume element is proportional
1

to gz, g being the determinant of the metric, we see that at tys when
1 » o0, the “volume;; of H(t) vanishes. At t, either a singularity
appears or it is discovered that certain geodesic segments cannot be com-
pleted (Hawking and Ellis, 1965).

There are several possible explanations of the zero volume of H({t).
First, H(t) may be compressed from a three-dimensional to a two-
dimensional hypersurface. Later in this section we shall show that this

change in topology cannot occcur without a singularity. Second, there may



172 10. SINGULARITIES IN SPATIALLY HOMOGENEOUS MODELS

be a singularity at ty, whether it can be directly proved that H{ta) has
undergone a change in topology or not. Third, H(t,) may simply have
changed from spacelike to lightlike without singularity. This last possi-
bility is very interesting since it occurs in the mathematically non-singular

but incomplete T-NUT-M model.

Homeomorphism Between H(t) and H(t,)

The compression of H{t) from a three-dimensional to a two-dimensional
set (that is, a true zero volume) cannot occur in a non-singular model.
That is, the topology of H{t) cannot change with t. This conservation
of topology implies that the only alternative to a singularity at ty is for
H({O} to be lightlike. H{ig) has the “‘same’’ topology as H(tl) if H(tg}
and H(t;) can be put into a one-to-one correspondence in a continuous
manner {open sets map onto open sets). H(t,) is then homeomorphic to
H(t,) and the correspondence or mapping is a homeomorphism.

If we assume H(t,) is non-singular we can construct a homeomorphism
between H(t;) and H(t;) by means of the fluid velocity u. First, con-
sider the point py in H(tl). At p, we construct L, the pathof a
particle in the fluid. This path maps the real line R into a one-
dimensional set whose tangent at each point is the vector u. We continue
L until it hits H{t,) and fet Pg be the point at which L hits. Since
u is timelike and unit, and since t; is the first value of t for which
H(t) may be non-spacelike, L will certainly hit H(to}. in fact, H(tc}}
cannot itself contain a timelike line, hence L must pass through H(te}
(conservation of mass implies that L. cannot spontaneously stop short of
H(ty)). Thus h{p;)= p, defines a map h which maps H(t;) to H(ty).

It is essentially a necessary and sufficient condition for non-singulari-
ty that the world lines of fluid particles never cross. This criterion makes
h continuous (a homeomorphism). . Intuitively one can understand this re-
lationship by considering a volume of fluid material in H{t,). This
volume may neither become infinite or zero, nor develop holes if the fluid

is to remain continucus. In a spatially homogeneous model all fluid
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variables are independent of position in H(t), and thus the fluid does re-
main continuous. H(t,) is topologically equivalent to H(t;) so long as
no singularity develops. In particular, the equivalence holds even if the
character of the metric of H(t,) is different from that of Hit, ).

The homeomorphic invariance of the hypersurfaces H is closely con-
nected with the physically reasonable motion of a continuous fluid. We
explicitly do not allow fluid discontinuities, such as shock waves. Ina
non-homogeneous model, such an effect should properly be considered
(see Grishchuk, 1966; Taub, 1957). That the topology of H({t} cannot
change is important in a second sense. The invariance of topology repre-
sents in part the fact that we are using a classical theory. One of the
features of a quantized theory would be that changes in the topology of

spacelike hypersurfaces could perhaps be possible (Wheeler, 1962b).

The Necessity of Incompleteness

If a singularity appears at time t, the model is incomplete. Even if
no singularity in the mathematical sense appears, we shall show that it is
impossible for the model to be complete. The method (Hawking and Ellis,
1965) assumes that the model is complete and draws a contradiction with
the stipulation that all homogeneous hypersurfaces are three-dimensional.
The assumptions of completeness and non-singularity mean that H(t;)
exists and is lightlike. As we showed H(t,) must have the topology of
each spacelike H(t), that is, be three-dimensional. H(to), therefore,

contains a basis in which the metric is

(g;;) = diag(0,1,1). (10.19)

Thus there is a vector field T in H(tﬂ) which is null and perpendicular
to all vector fields in the hypersuiface; that is, T-X =0 if X is tan-
gent to H(t,). The contravariant vector field T is in the unique normal
direction to H(t,). Because T is perpendicular to H(t,) as well as
tangent to it, the one form corresponding to T (also written T) i= pro-

portional to the curl of a function r:
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T = adr .

Without loss of generality we may take « = 1. T is group invariant, curl-

free, null, and lies in H{to}, 50

VT =0,
(T 1is geodesic). T is parametrized by an affine parameter s, so

i L . i a . et
T = dx/ds; T# T7= 0= TT, .

We know that
— 154
Tg:;m' - Tu;rcr - TvR nor
and contracting on p and ¢ and contracting the result with T’ we find

‘ T -7
T, T+ TO, T = ~TIT'R,, . (10.20)

It is from this equation that we will draw the contradiction that proves in-

completeness.
The general vector in H(t,) is a linear combination of T and two

other independent, spacelike vectors X and Y which may be assumed
orthonormal and orthogonal to T. Because Tu'u ig symmetric (T curl-
free) and orthogonal to T we may expand it as

1
TW = 5@’(Xﬂ}(wf YHYV) £,

ﬂ . - l/‘_ . " . >
where § w = 0, SW = Svu’ Sw/T = (. The function 4 is the expansion
of T.

Equation (10.20) becomes

8,17+ 30+ 878 - ~TOTR, . (10.21)

Since S is orthogonalto T, and since only spacelike and null vectors

are orthogonal to T, S__ is positive definite: SG? §0 > 0. Since R#V
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is the Ricci tensor of a fluid-filled universe, R, TOT = TUT?{TG‘, +

%—gi??‘T} and ng’ = €W+ P)u(; 112, + pgg{, zmphes

O e T ) N
T7T'R,, = (w+p)(T%u, )" > 0.
This inequality implies that

g,rTr < %52, or (é'“l),r'r?' > 21.
Thus 7 must become infinite for some value of s, the affine path

parameter.
The Caustic Surface Mg and the Contradiction
Implied by its Existence

By our hypothesis of completeness, a set of points Mg (the caustic
surface) must exist on which # is infinite. For each individual path
defined by T there is one value of s (one point) where g is infinite,
80 MS is of lower dimension than H(te). Because T is a group invari-
ant vector and @ is a scalar, the set Ms must be transformed into itself
by the action of the group G.

However, the existence of Ms of lower dimension than H(t,) is a
contradiction, because all homogeneous hypersurfaces are topologically
the same. As we saw above, the existence of My of lower dimension
than three would imply that all of the matter in a three-dimensional volume
would be compressed infinitely. But the existence of My is implied by
the hypothesis that each geodesic segment in H(to) has unique endpoints.
Thus this hypothesis is impossible in a non-singular cosmological model.

Consequently all fluid-filled, spatially-homogeneous models are in-
complete. They may or may not be singular, vide T-NUT-M where T is
incomplete and does not necessarily have a unique endpoint. In fact, in
T-NUT-M the points where § = o are the entire hypersurface H(ty).
Hawking (1967) and others have shown by a similar technique which
avoids symmetry assumptions that a wide variety of cosmological models

are incomplete.
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The Bianchi Type IX Model. Mathematically Singular
as Well as Incomplete

We shall show that the general Bianchi Type IX model is not only in-
complete, but is singular in the sense of Chapter 5, that is, it cannot be
extended beyond t=t,. We shall show for a Bianchi Type IX model, or
indeed for any Bianchi Type model in which Csis = 0, that the fluid fiel¢
equations cannot be satisfied at t = t;.

We construct a general basis which would be valid if H(t,) were non-
singular and light-like. Let H(t) be invariant under a group G, and sup-
pose H(t,) has a lightlike geometry, i.e.: one lightlike and two space-
like eigendirections. Then in a neighborhood of a point in H(t,) there
exists a basis jo#! of one-forms such that: 1) ¢° isa gradient, o%=d
where t is the parameter labeling the H’s and 2) ol e"‘QeBija;j
where the ) are the three one-forms invariant under the group (c!a;i =

%—Cistwsamt). In this basis the metric will have the form

0 1 0 ¢
1 0 0
ew _lo o 1 0 (10.22)
0 0 0 1
where g(t) is a function which is zero at t =t,. Thus
2 0_1 132 . 22 3,2
ds“ = 2070 + g)(o) + (o) +(6”) . (10.23)

The lo#] system is not unique since t is not unique.

In this system the ‘‘zero’’ direction is lightlike. In Chapter 5 we
proved the existence of such a basis, and in Chapter 6 we showed how we
could choose the metric properties in the ‘‘zero’’ direction so that (10.23)
is valid. When g(t) is positive, we may make a transformation of coordi-
nates and recover the synchronous system, but when g(t) becomes nega-

tive H(t) has a timelike direction.
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The Einstein Equations

It is a straightforward, if tedious, process to compute the Einstein
eguations in this basis. It turns out that the Ry field equation, which
is a constraint equation, is sufficient for our purpose. It is a relation be-
tween (1, B, and their derivatives, and w, p, and uv# (at least at ty
when g=0). I CSSi = {J, however, this equation implies (w+p)< 0 at
ty, which is impossible.

Consequently to show that a singularity exists it is sufficient to cal-

culate R,, at the moment when g= 0. In our basis
0 2 3
Riy =Rigr * Riypy + Ry
6 0 1 0 1
= gRg1 + Ripyp + BRyp + Rigy3 + gR 55
and at g=0

0 0
Ry =R%p + Ry,

0 0 0 S 0 s
+ A
(dcr 2)12 + (da 3)1 + (O‘ SAO‘ 2)12 (O' s o 3)1

2 is to be taken.

where (), indicates that the coefficient of ol ag
The explicit form of o, is found by solving the equations do¥=-0" ao?
and dgu,v = gwaav + gmaau (temember that dgw/ # 0 because of the
function g(t)).

The result for R, is
2 2 2 3 2 1 -,48
Ryy = -5 @5+ d%,) - @) - @y - 5869 1024)
(at g=10).

If the group G is such that CSg =0, then d% =0 and R;; <0. The
property C?S: 0 is shown by the groups of Types I, VIII, and IX, but not
by the group of Bianchi Type V (see below).
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Singularity
The preceding subsection showed that if Csis =0 then R, <0 at
the time when g vanishes and H is lightlike. We have, however, from

Einstein’s equations

Ry, =(w+p) ul2 > 0 everywhere (10.25)

{p < —w 1is excluded on physical grounds). This inequality implies either
ul2 =0 (impossible, because at t = t,, g, vt = ~1 implies ugu, =
-1 - u22 - ug} or (w+p)=0 (vacuum). In a vacuum Type IX model

with /3 diagonal, we find that the R,, equation reads

2 2
R, = “lie Bl—e Ba

40
1 2 ]e ‘“Oy

or By =B, (T-NUT-M!).

In the general non-vacuum model (w+p)> 0 strictly so (10.24) and
(10.25) are contradictory. This contradiction means a non-singular model
cannot contain a perfect fluid. Therefore a fluid-filled, spatially homoge-
neous cosmological model with an isometry group whose structure con-
stants obey Csis = (0 must be singular.

This singularity appears precisely at the time when the volume of H{t]
vanishes, that is, when the synchronous system breaks down. We shall
later give an alternate proof of singularity for p= 0 in Type IX models
where we show that the matter density becomes infinite at t = t;. Further

insight concerning the existence of the singularity and its structure re-

sults from the Hamiltonian discussion of the next chapter.

A Type V Model in Which Incompleteness is not Accompanied
by a Matter Singularity

We have seen that all spatially homogeneous, fluid-filled models are
incomplete. Some are also singular, but by no means all (witness
T-NUT-M). Can a fluid-filled homogeneous model be non-singular even

if incomplete? If Csis £ 0, our proof of singularity breaks down and
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some spatially homogeneous models may not have a singularity at t = tg
despite their incompleteness. Shepley (1969a) has described a Type V
model in which there exists no barrier to evolution of the H(t) at t= to-
He did this by showing that the equations split into two groups, propaga-
tion and constraint, and that the constraint equations can all be satisfied
at t,, so H{t) may evolve past ty without trouble. The matter is non-
rotating and thus the mode! is singular somewhere, but it is useful to

emphasize the difference between “‘singular’’ and ““incomplete.’””’

Brill’s Electromagnetic Model
T-NUT-M is a vacuum Type IX model which is incomplete yet non-
singular. A fluid-filled Type IX model is singular. Brill (1964) has given
a non-singular Type 1X model containing an electromagnetic field but no
fluid. Brill;s model is incomplete, as is T-NUT-M.
The field equations for a model containing only an electromagnetic

field are (Weber, 1961)

1 o 1 or
Ruv -5 (FpaFu ”ZFU?F guv) , (10.26)
where F w is the electromagnetic field tensor. Because R, > 0 in
(10.2) the volume of a spacelike H(t) will collapse, thatis Q@ >~ ina
finite interval of proper time. Thus H(t) must approach a lightlike hyper-
surface at some time t, if no singularity appears. In the o* basis of
(10.23) Ry, < 0 (10.24). Although no fluid-filled mode! is compatible
with the inequality, in Brill’s model we have
1 1 2 2 N

Ry = 7 FigF° = 5 [F )7+ F3)7] (@t t=1tg). (10.27)

This form of R;, is consistent with R, = 0 if Flz = F13 =0 at tg,

and we may continue H(t) through t,.
Brill's universe is a manifold similar to T-NUT-M but filled with an

electromagnetic field. Though we have shown why it is mathematically

non-singular, it is incomplete. If it contained any amount of fluid it

would be singular.
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The Barrier to Classical Evolution

As shown above, some spatially homogeneous models are singular,
some not. All non-static models are at least incomplete, and all fluid
models known are singular. This singularity is a type of barrier. It pre-
vents evolution of the mode! beyond ty, when the spacelike invariant
hypersurface H(t) would become lightlike if no singularity appeared.

Any classical calculation of the time evolution of the geometry grinds
to a halt as it comes up to this stage of evolution. In this sense an
“‘obstacle’’ may be said to block further prediction of the geometry beyond
a certain lightlike hypersurface. This use of the word “‘obstacle’’ should
not be taken to mean that the physics stops here; only that classical
physics stops here. This is the place for the quantum form of general
relativity. There is no obstacle — except lack of wisdom ~ to calculating
the time evolution of the quantum state of the geometry. The ‘‘obstacle”’
is an obstacle only in this sense, that the classical predicting machinery
of relativity cannot penetrate it.

What if we drop the spatial homogeneity postulate, while retaining the
classical form of the theory? The works of Hawking, Geroch, and Penrose
show that incompleteness, at least, is a property of any model reasonably
close to a spatially homogeneous one, even though symmetry is dropped
as a postulate. Whether it is also necessary to have a mathematical singu-~
larity as in a Type IX model is an open question.

Non-homogeneous, complete models containing matter do exist. The
cylindrically symmetric universe of Maitra (1966) is stationary and
singularity-free because it is complete. In addition, the G&del universe
has positive matter density and positive (if unduly large) pressure. Here
there is a three-dimensional invariance group {a subgroup of the full five-
dimensional invariance group of isometries), but the three-dimensional in-
variant hypersurfaces are always timelike.

Maitra’s model and Gé:&dei;s model are unsatisfactory as cosmological
models. Neither containg a region which can be identified with our neigh-

borhood in the real universe. Moreover, any model which can serve as a
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practical and realistic cosmological model does have at least the property
of being incomplete (Hawking and Ellis, 1965). All explicitly known
models which can serve as cosmological models are mathematically
singular — not merely incomplete (although some are less singular than
others, see Collins, 1974). The existence of a singularity, its physical
meaning, and the effect of quantum mechanics on it, all are objects of

current thinking.
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Pexa BpeMEH B CBOEM CTDEMIeHbU
YHocuT Bce nena noneir

I TonuT B npornacTu 3a6BeHLA
Haponh, uapcTsa M uapei.

- GAVRIIL ROMANOVICH DERZHAVIN

11.1. Realistic and Approximate Cosmography

The previous chapters dealt mainly with mathematical notions. Here

we begin a series of four chapters on more physical questions appropriate

Hamiltonian Geometrization of Numerical Quantum
Methods Differential Equations Methods Mechanics
i
Einstein's /\J Quantum
Field General
Equations Relativity
Superspace
Symmetries
11.4 Mini-
superspace
11. HAMILTONIAN !
COSMOLOGY i J
4 13. Numerical
} Solutions for L /7
i Cosmological
1 Models
11.3 Qualitative 11.4 Quantum mluticna
Cosmology Cosmology of Hamilton's Equations

12. Applications to Type I )
and Type IX models

{ 12.3 Mixing } 62.1 Horizons) 62,1 Decay of Anisotmpa

Fig. 11.1. Flow Chart for Chapters 11, 12, 13.
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aBpun n (FaBpw na) Poma HoBny

Hepxa BuH (1743 — 1816)

This is the first stanza of the

Derzhavin poem; the meaning of the

stanza on page 118 follows from this
one. Again the rhyme scheme is
ABAB. Originally this was meant for

Chapter 4 (FRW).

Literal translation:
The river of time in its flowing
Carries away all affairs of men
And drowns in the abyss of oblivion
Peoples, tsardoms, and tsars

A poetic translation:
The river of time as it's flowing
Carries away all worldly things
And drowns in the abyss of unknowing
Peoples, kingdoms, and their kings.
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to the general spatially homogeneous cosmological model. The portrayal
of the real universe by a homogeneous model allows very complex problems
to be treated; at the same time, the high symmetry of the model makes
these problems tractable. Figure 11.1 is a flow chart for Chapters 11, 12,
and 13,

For the portraits we will paint of the universe (different portraits to
emphasize different features), we accept the theory of general relativity
without a cosmological constant. In our discussion of the FRW universe
in Chapter 4, and in a discussion of the existence of singularities, we
find that a dust-filled model (pressure assumed to be zero) is adequate
for the description of certain interesting features. These features, in
particular the qualitative behavior of the universe near a singularity, arise
in a model where the curvature satisfies Einstein’s equations for dust:

R —L1rg ~puu, . (11.1)
pr 2 ur uv
Here p is the matter density and u, the components of the covariant

velocity field in some convenient basis.

Cosmological Studies with Spatially Homogeneous Models
In a spatially homogeneous model, space-time is filled with a one-
parameter set of invariant hypersurfaces H(t). Spatial homogeneity means
that the metric on each H(t) is described in terms of constants. As t
changes, the H(t) are said to “‘evolve,’”’ and the metric becomes a set of
functions of t only. We are able to exhibit this fact by using a set of
differential forms coi (i=1,2,3, and labels three one-forms) to express

the three-dimensional metric of H{t). The mi obey

dot = 3 ClgoS nal. 1.2
The Cist are the structure constants of the group of isometries. The
full four-metric is obtained by taking the curl of t, dt, to be the fourth

differential form used, ©? = dt. The metric is given by
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2 :
ds? = g ool (11.3)

The spatial homogeneity is expressed by the statement that the functions

g, are functions of t only:

L

= g, .
Cosmologies of Types I, V, and IX

It is desirable to look at spatially homogeneous models because of the
enormous simplification in the equations which they involve: Instead of
partial differential equations, ordinary differential equations appear (the
danger, of course, is that any simplification of this kind is too much; des-
troying the essential randomness of nature may produce singularities which
would not occur in less special situations).

However, of the nine types of three-dimensional groups, three stand
out. The first is the simplest, T,, (Bianchi Type I). All directions in
an invariant hypersurface are infinite, and all Type I models possess singu
larities. T, is the spatial-homogeneity group of the “‘flat’’ FRW models.

The second especially interesting group is SO(3,R) (Bianchi Type
1X). The Type IX cosmologies are vetry general (seven adjustible parame-
ters even if the pressure p is taken to be zero) and therefore have been

studied extensively. The structure constants are
i S
Cjk’gijk or Ch, = letcyc.

The Type IX cosmologies, which include the closed FRW models, all have
true singularities. The invariant hypersurfaces are closed and may be
taken as copies of the three-sphere s3,

The third group, Bianchi Type V, is the spatial-homogeneity group of
the open FRW metrics. This group generates spacelike sections with con-
stant negative curvature. Type V models have been moderately well

studied, but we shall not treat them thoroughly here (see Matzner, 1969).
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We shall discuss Type IX cosmologies here more thoroughly than other
types, since these models have been and are studied abundantly. These
models allow not only expansion but also rotation and shear, and in general
are anisotropic. All of these models do have singular points, as we have

shown and shall show again.

11.2. Hamiltonian Cosmology ~ The Homogeneous Cosmology As a
Bouncing Particle

The application of Hamiltonian methods to cosmology grew out of the
study of spatially homogeneous models. It was noted by Misner (1968)
that the R, field equation gives a first integral for the Rij field equa-
tions. In consequence, R,, can be used to construct a Lagrangian whose
variation gives the Rij equations. This construction is especially use-
ful in the case of spatially homogeneous models, in which the invariant
hypersurfaces H(t) can be parametrized by some set of parameters
pa(t) (a=1,--,n). The field equations resemble Lagrange’s equations
for a particle moving in an n-dimensional space. In this case, the problem
of determining the metric becomes similar to a particle problem, which has
long been studied, namely that of a particle bouncing around in a potential
well.

Once one has a Lagrangian formulation, it is useful to reformulate the
problem using a Hamiltonian. This reformulation was done by Misner
{1969b) who used the Hamiltonian method for general relativity due to
Arnowitt, Deser, and Misner (ADM) (1962). Misner’s approach has since
been used successfully by many authors to study homogeneous cosmolo-
gies (for a review, see Ryan 1972d). This approach has also lead to the
idea of quantum cosmology and minisuperspace which we shall discuss
briefly, We shall also discuss objections to the use of Misner’s
Hamiltonian formulation for certain Bianchi types (those whose group

structure constants obey C%, # 0).



186 11. HAMILTONIAN COSMOLOGY

The ADM Formulation
The ADM formulation is a procedure for reducing the Einstein action,
I= fof:g“déx, to canonical form. One begins by writing the action in
the first-order Palatini (1919) form in which the I'¥, ~ and the g, are
varied independently. This action is then reparametrized by introducing
quantities N
N-(=*g%%) 2, N, - tegp gy, €0, and P, (11.4)

where the superscript 4 denotes a four-dimensional geometrical object,
and the superscript 3 will be used for objects on selected three-
dimensional hypersurfaces. The gij (i,j=1,2,3) are the ij components
of the metric {gij = 4gij) and the frij are defined in terms of the 4gmj
and the d’fﬁwj, while C% and C! are algebraic combinations of the
rrij, the gij and their derivatives. ADM show that the Einstein action

(from which the field equations can be derived) reduces to

/08 .
I= (lﬁn)“lf[n’”( -9{1>-Nc°-Nicl}d4x (11.5)

{we have discarded a total divergence). The nij, gijr N and N; areto
be varied separately. Varying N and N, gives c%-0 and Ci= 0, a
set of constraints on 8ij and i) (in fact they are the R;, and Ry;

Einstein equations). While we single out x% as t in (11.5), the action
is still invariant under changes of all four coordinates and is completely

general up to this point,

The novelty of the procedure of ADM is that they reduce (11.5) to
“‘basic’’ variables, essentially two of the gij and their conjugate.e. i,
They do this reduction by choosing four of the twelve g;; and 71 as
coordinates (intrinsic coordinates) and by solving the four equations
cl-o, Cl- 0 to eliminate four more. This prescription is rather vague
because each case needs careful study to see which variables should be

chosen as coordinates and which should be eliminated by solving the

constraints,
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We write the final version of the action as

.. 0g.:
I= (16@‘*nt5 ‘355 d*x | (11.6)

subject to the constraints C0 = 0, cl2 0. The C’s are

L .
C0= — @ PReg” [ F -y (11.7)

ij

ct . “.:z,»;if%j ) (11.7b)

where g = det(gij}, 3R is the scalar curvature of t = const. surfaces,
indices are raised and lowered by means of gijs and | means covariant
differentiation on t = const. surfaces.

Equations (11.7a) and (11.7b) are vacuum equations. For some cosmo-

logical questions it will be necessary to consider models with matter. To

1
include matter we need an action of the form 1= f[(_4g)2 R+§‘3M]d4x,

where the Lagrangian density EM satisfies

1

Bffmdx = ——f’{‘uv(~4g)55guvd4x . (11.8)

Once we have such an action we must break up EM intoc terms such as
pdg, NEQM and N igi}d' the first of these introducing new independent
variables connected with matter and the second two modifying the con-
straints C%= 0, C1=0 toread 0 =%+ 8% -0, cl'=cl+ & -0
Such a Lagrangian density exists for electromagnetic fields (see
Hughston and Jacobs, 1970) and for fluids (Schutz, 1971). In certain fluid
cases in spatially homogeneous models it is also possible to construct a
Lagrangian density SM = NQM + Nigim, where QOM and QiM are
functions of metric variables and constants of motion (see Ryan, 1972d).
This Lagrangian density introduces no independent matter variables and

merely serves to modify the constraint equations.
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11.3. Application to Homogeneous Cosmologies
The ADM formulation is very useful when applied to Class A Bianchi-
type cosmologies and to the Kantowski-Sachs universe. In these cases

we write the metric as

ds? = —dt? + R} e“zﬂe:‘)ﬁi}-miwj , (11.9)

where B isa 3x3 symmetric matrix and Q a scalar, both being func-

tions of time only. R, is a constant included for convenience in choosing

! are invariant forms which obey

units. For Bianchi-type universes the o
dot = %Ci}-kwi A mk, with the Ci}-k the structure coefficients of the par-
ticular group under consideration. For the Kantowski-Sachs model ! =dr,
w? = df, w3 =sin fd¢ for coordinates r, 8, .

Whenever () is a monotonic function of t, we can choose { as our
time coordinate. This choice represents the first step of the ADM proce-
dure, that is, choosing a function of the gij and wij as a coordinate; in

this case () = --16-&1 [det(gij)]. The metric now becomes
ds? = - (N2 + N;NHd0? + 2N 0o’ + RZ 20 ezB(Q)ijwia)j . (11.10)

where N=N@), N, =N, (D).
Inserting this metric into (11.6) we find

1= (16«)“1f2[e8is 7S, e"‘Btj B - (*dldx . (11.11)

where 98 = %— [deBeP + e=BdeP 1.

Because we are considering homogeneous universes we can integrate
over the space variables in (11.11) and eliminate them. Following Misner
(1969b) we rescale the differential forms which appear in the metric or

choose a subset of the manifold to make [ d%x = (477)2. This integration

leads to

1=2n f [ zrste‘fgtjdﬁij—(ﬂkk)dﬂ] ‘ (11.12)
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We now define the matrix pjj as
pij = 2 (&P S eP - Ls..alp (11.13)

and proceed to parametrize f3 ij and Pij in order to reduce the first term

in the integrand of (11.12) to the form p add, . We write

/ -4 g
B e 3T TP g PR I I (11.14)
where
0 1 o 0 0 0
ky=|-1 0 0}, ky =10 0 1 (11.15)
0 0 0 0 -1 0
and
Bq = diag(ﬁ++\/§5__,ﬁ+~\/§ﬁ_,—26+). (11.16}
The conjugate variables are defined by
~hry —Oky —~¢u<3/ 3P¢,
6p.. = 4 + PSR A—
pijj = € e e a;p, +a,p_+a, Sinh V3B
3(p¢sint,l: ~ Py, c0S @ sinys + pgcos¢r sin6)
(11.17)

+a4

sinfsinh (38 + V3B_)

3(p§sin2¢r sinf — pésin;[r cosys + pz;}COS!;,I sim)r cos(})l Py 9,(1 .71;,(3
e e ‘e .
sings sinf sinh(38, - V3B_) f

+(15

010
with a; = diag(1,1,~2), a, = diag “/3,-V3,0), ay= [(1} 8 8:‘, a, =

001 000 .
0 00}ag={0 0 1|. This parametrization makes our action take
100 010

the form

I mf (p,dB, +p_dB_+pgdf+pydd + p,diy — HA(] (11.18)

where H = 2ﬁ(nkk).
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We can obtain H as a function of Bt’ P+, Pgs Py Péxg,ﬁi’,(i’, and 1
by solving c’-o (this is the second step of the ADM procedure). We

find t
H? - 6p;;pyj — 24 ¢ R . (11.19)

where Pi; Pij is a quadratic form in the variables B+,B~,§,<;5,gz’; and
their conjugate momenta, and gsR is a function of these variables and .

At this point we have not completed the ADM reduction. We still have

to solve .
Clipi,?g, ?Gﬁ: p@:ﬁi:aswyé’g) = {} (1120)

and eliminate three of the variables. In practice it is sometimes more use-
ful to leave these three equations unsolved, and think of (11.18) as an
action subject to the three constraints (11.20).

To give the metric completely we need only specify N and N;. We
cannot specify these functions in the general case arbitrarily because the
specifications of N and N, and of coordinate choices are the same. In
the cases we will consider we may choose N; arbitrarily but must compute

N with the coordinate choices we have made above. The simplest choice

for Hamiltonian cosmology is 0

i
Our choice of {! as time implies that

N = ule 3 a2r D), at.21)

where all the variables in H must be solved for as functions of {). The
choice N;= 0 is not the only possible one. Ryan (1972d) discusses
other choices and their meanings; we shall not consider them here.

The only other idea we need to consider to apply Hamiltonian methods
to homogeneous cosmologies is that of matter — we need a matter Lagran-
gian. We shall consider fluid models as examples, and as was mentioned,
Ryan (1972d) gives a matter Lagrangian for a fluid in Bianchi-type uni-

verses which is valid for universes of Ellis-MacCallum Class A (including
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Bianchi Types I, II, VI_,, VII,, VIII, IX, see Table 6.2). A special case

is the Lagrangian for dust (p=0):
i

€y = = 2N+ Ry 2e2 e 26,y uY - 2Nguuggll, (11.220)

For a fluid with p = kw and o = 0,

£y = —2uNR~3ke3KL (11.22b)

In these equations u; are space components of the fluid velocity (chosen
so that the geodesic equations are solved as extra equations) and p is a

constant of motion derived from the fluid equations defined by (p=density):
no= NpuDROSe“SQ . (11.23

With this Lagrangian we can complete the Hamiltonian formulation
for dust-filled models. Notice that it is of the form £, = N&%, + N, &1,
discussed above, so the addition of matter leaves (11.18) unchanged but
with the Hamiltonian (11.19) rewritten as
1
- 24n2g2 00 (11.24)

2 2
H® = H ¢

and the constraints C!= 0 modified to imply

i, _ 1 gi
SITEE v (11.25)
The variables B,,0,¢,¢, and their conjugates P+ Pgs Py Py remain
the only independent variables. They are solved for as functions of {
provided the u; are also solved for as functions of {1 by use of the
auxiliary geodesic equations. The matter density p is determined from

the constant of motion p.
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Application of the Hamiltonian Formulation

The Hamiltonian formulation has never been fully investigated for all
possible Bianchi types, but Jacobs and Hughston (1970) have applied the
method to vacuum models in which the matrix B is diagonal. In this case
the action reduces to

= f p,dB, + p_dB_ ~ HdQ, (11.26)
with

H? = p 2+ p_2 ~ 24n%¢°R (11.27)

where g’R is a function of Q, B, and B_. This Hamiltonian is the
same as that of a particle (the universe point) moving in two dimensions
on the B +B~~plane, with g3R acting as a potential (a time-dependent
potential because it is a function of (1). In fact, we can let ggR =
- R04e“4Q(V—- 1), where V= V(B+,,8_~_). It turns out that the potentials
V(B,,B_) for all Bianchi types have exponentially steep walls in B+B__-
space. Table 11.1 gives V for all of the Bianchi types with 8 diagonal.
It also gives the constraints Ci- 0 reduced to statements about P, and
p_. Figure 11.2 shows the walls associated with V(ﬁ*,ﬁ__) for all nine
Bianchi types.

MacCallum and Taub (1972) have raised questions about the validity
of this Hamiltonian approach for certain Bianchi types. They object to
variations with homogeneity imposed from the start. By not making such
an assumption they obtain results for models of Ellis-MacCallum Class B
(Csis # 0) which are different from the Jacobs-Hughston picture as out-
lined above. Table 11.1 and Figure 11.2 describe the potentials even for
the Class B cases correctly. Unfortunately the Einstein equations in
some of the Class B cases are not completely described by equations de-
rived in the Hamiltonian method using the listed potentials. These cases

are still being studied, but see Ryan (1974).
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Table 11.1. The Potentials in Hamiltonian Cosmology for all Diagonal Bianchi

Type Models. 5 Q
In general the potentialis V=1 :-%Ra“e“z 3?, and for diagonal B, 3R is:

3o 1o w2 20 28 28 _ik_ijl x -2 -2
R“‘“ERO & Q{e i1.@ m om —2m ije i}.«riZaiaje ij}'
where m,. and a, are defined in Table 6.2, and m*i, is the classical adjoint of
the matrix m .. Some of the Class B cases, Types III, IV, VIh RE Vnh;é(}’ are
not correctly éeacribed by the Hamiltonian method, although these potentials are
nonetheless useful (Ryan,1974).For Class A as well as diagonal Type V models,

the Hamiltonian method is correct.

Bianchi Type Potential Constraint
I None None
4(B + \,fg )
I 1+le T F A None
4B
I 1+%e + 3p, ~\3p_=0
4 438
1 + 2 - ~
v 1+2—e {8+§~e 1 p, =0
46
v 1+4e T P, =
4
4 2 + h+1
2li+h+h =3Bl
Vi 1+3{1+ +h%le p_ \/Eh_l P,
2 484» 2
vt L+ze [cosh(4y/38 )+2n° —1] None (h=0)
p_=13p, (h£0)
48
VI 1+ % e ‘'lcoshay3B )—1] None
-8 -28
+}3~e ++§'—e +cosh(2\f§B~)
4
X 1 +-23—e +[cosh(4\/§B__)~ 1] None

-8, -2
e P
3 3

+ coshizyfgﬁ__)
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Fig. 11.2. The Potentials for Bianchi-Type Models.
for each Bianchi type, and the dashed arrows give the velocity of the wall asso-
ciated with the potential. The symbol x marks the position of a generic universe

point, See

Table 11.1,

An equipotential is shown
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Qualitative Cosmology

The Hamiltonian for Bianchi-type and Kantowski-Sachs models resem-
bles a particle Hamiltonian with exponential potentials. This form leads
to an interesting method of approximate solution for these universes. Be-
cause of the steepness of the potentials we may replace them by infinitely
hard walls to a good approximation. These walls lie along the equipoten-
tials shown in Figure 11.2 for each of the different diagonal Bianchi types.
Far from the walls the universe point will move in a straight line. It will
bounce off the walls from time to time. With straight-line motion between
wall encounters and a derived set of “‘bounce laws’’ one can build up a
solution in the form of a diagram which matches the behavior of a homogen-
eous universe quite well. We shall give examples of this procedure in the
next chapter. Of course, there are some special situations in some models
in which no bounces occur. In these cases the detailed shapes of the
walls must be accounted for, and special care must be taken. Collins and
Stewart (1971) and Collins (1971) have studied many properties of Bianchi-
type universes by means of a similar qualitative method.

As a final note, the pictorial qualitative solution is, of course, equiva-
lent to a series of analytic solutions: The straight-line portions of the
pictorial solution correspond to an analytic solution characterized by a
set of parameters. The bounce laws predict changes in these parameters
which occur suddenly from time to time. This approach has been taken by

Belinskii, Khalatnikov, and Lifshitz (1970).

11.4. Quantum Cosmology and Minisuperspace
Quantum cosmology should be the application of the quantum theory of

gravity to the cosmological problem. That is, one should examine the
equations of quantized general relativity to find solutions that become the
Friedmann-Robertson-Walker (or some more complicated cosmological
solution) metrics as e""ﬂaw. The obstacle to this scheme is that quantum
gravity is not well enough understood to make it possible to find such

solutions. DeWitt (1967a,b,c) and Misner (1969b) have studied compromise
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models in which homogeneity is imposed before the gravitational field is
quantized. In practice this is what is known as quantum cosmology. It
can be hoped that the models which result will at least have some of the
more important features of a real quantum solution.

Quantum gravitation deals with wave functions whose domain is the
set of positive-definite metrics (or geometries) on three-dimensional hyper-
surfaces (Wheeler, 1968). This domain set is called superspace. The
subset of all homogeneous three-geometries, as it is applied to cosmology
and the problem of quantum cosmology, is called minisuperspace (Misner,

1972). We will briefly discuss this concept below.

Application of the Quantum Principle
The action (11.18) with the Hamiltonian of (11.24) has the form of a
particle action. We can quantize this action in the usual way by replacing

various quantities by operators

H o —i0/0Q, py > —i0/0By, By > ~10/06, by, » 10/, py - ~i0/30.

These operators are used to find a wave function W(K),Bi,qs,r,&r,é’) as a
solution of a differential equation. There are three difficulties with this
program: (1) The Hamiltoaian is explicitly time-dependent ({}-dependent);
(2) H is a square-root Hamiltonian; and (3) We must find some way of
handling the constraints Cl- 0. The first of these difficulties is merely
computational — one usually does not encounter a time-dependent Hamil-
tonian in elementary quantum mechanics. The second difficulty is more
fundamental, but methods for handling square-root Hamiltonians exist.
The third difficulty is basic, and we should discuss it briefly before
studying Type I and diagonal and symmetric Type IX universes as exam-
ples.

There are two different ways of handling the constraints ci- 0, and
the arguments apply also to the important constraint C% - 0 which we
have solved above. In fact, the ADM method obtains (11.24) by solving
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c®-o classically to give our expression for H. This procedure is the
spirit of the ADM method — we must solve the constraints classically to
arrive at the “‘true’’ action for the gravitational field before quantizing.
The other method (the Dirac method) for quantizing the action (11.18) is

to retain both C% = 0 and cli- 0 as operator equations. This method
was used by DeWitt (1967a,b,¢) to study the quantum behavior of FRW
universes. These two methods lead to different equations for quantum uni-
verses, and we shall use a symmetric Type IX model later to illustrate
this difference.

Consider now a Type I vacuum universe, in which

1

H=(p2+p % . (11.28)

There are three methods of quantizing a square-root Hamiltonian such as
this one: (i) the square-root method of Schweber, Bethe, and DeHoffmann
(1955); (ii) the Dirac (1947) method of linearization; and (iii) the Schréd-
inger (1926)-Klein (1927)-Gordon (1926) (SKG) method. We shall not dis-
cuss the first method, which involves spectral techniques. We will only
mention that the Dirac method leads to a linear two-component spinor
equation, and at present we lack an experimental quantity to associate
with the spinor components (see Ryan, 1972d). The SKG method seems to
be best, even though we have the usual problem of possibly non-positive-
definite probability densities.

The SKG method works with H? and leads to

2 2
...'.33.\.? + ,Q....ql + Q...‘i_'. = 0 (11.29)
a0 g2 ap?

for the wave function ¥(Q, Bi)‘ This equation has solutions

i + —~EM
¥ Ael(pgﬁ*’ p_ﬁ_l (A, py, E constants with
5 (11.30)

2
E=t(p +p 9.
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The positive and negative signs for E correspond to expanding and con-
tracting universes respectively. A surprising feature of this solution is
that there is no evidence of quantum mechanics causing the universe to
avoid a singularity. If we make up a wave packet from the functions ¥,
we find that this wave packet marches sedately out to {1 = = without any

tendency to avoid the singularity.

Minisuperspace

Superspace (Wheeler, 1968) is the set of all three-geometries. General
relativity can be thought of as the development of a three-geometry in
“‘time,”’ the meaning of time depending on how one breaks four-dimensional
spacetime into time and space. General relativity can be thought of, then,
as the study of tracks in superspace, different tracks corresponding to
different evolutions of metrics and to different choices of “time.;; Super-
space is a very valuable concept for homogeneous cosmologies because
it reduces from an infinite dimensional space to a finite dimensional mini-
superspace, when homogeneity is imposed. In fact, for the Bianchi-type
universes discussed in this chapter, superspace is B+,B_,<;!>,:,{;,0, Q-
space,

It can be shown (Misner, 1972) that the constraint c%-0 is equiva-
lent to an equation of motion in minisuperspace for gij , the three-metric
for a homogeneneous cosmology. In superspace (ij) represents one tensorial

index, and the equation of motion is

2 (0, g1y (1) - %.‘R;(ii), with 2 = dg(i)/ar (11.31)

for some affine path parameter A. R is the scalar curvature computed

from gi‘j. The covariant derivative is taken with respect to the metric of

superspace @ (1} )(kl ),

Stiaa) = ®ikdji * jukin — 2881 - 11.32)
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Table 11.2. The Misner Metrics of Minisuperspace.
A) For any Bianchi-type model:
2 v
ds” = 24[-a{} +3By; agij}
B) For diagonal Bianchi-types:
ds? = 24[-d0% +dB,% +aB_2]

ey g
C) For Bianchi-types with one off-diagonal term (5 = e

ﬁde 3

ds? = 24[-d0% + 4B, % +aB_2 +§. sinh?(2y38_)dr?]

-Or, - )
Kle txsﬁde Kaeéxl

Dy For Bianchi-types with [ =e and for general

Bianchi-types:
, 2
ds? = 24[-d0%+dB,% +aB_? +§ sinh?(2y3B )0

o 2 -~
+ 33_ sinh?(38, +3B_) (0?) 4% sinh?(38, —V3B_) !y’

where: o' = sin@ deh and ol = singr df — cos ¢ sinf dg
o? = df {fzzcoszﬂd@—«sintj;sinﬁdé
0> =cosf deb 0% = — (@f+cos0 deh)

respectively. The matrices Kg and Ky are:
g 1 o0 0 0o 0
Ky = -1 0 0}, K, = 0 o 1.
0 0 0o o -1 0

Note that (11.31) is very nearly a geodesic equation, and DeWitt (1967a,b,c)
and Gowdy (1970) have proposed new metrics for superspace to replace
(11.32) for which (11.31) becomes a geodesic equation. In Table 11.2 we
list the Misner metrics of minisuperspace corresponding to (11.32) for
Bianchi-type metrics.

Superspace gives us an idea of how to proceed to parametrize homogen-
eous cosmologies. Notice that the quantum-mechanical equations we have
obtained above contain terms in, say, piz which have been changed
directly to ° ,’8‘8&2‘ We ignored the problem of factor ordering in H.

The ADM method, in which all of the constraints are solved before quantiz-

ing provides an unambiguous factor ordering, at least for the models



200 11. HAMILTONIAN COSMOLOGY

considered above. Another method of consistently determining a factor
ordering is to write the equation for ¥ as a covariant Laplace-Beltrami
operator in superspace applied to the wave function ¥ plus “potential;;
terms. The Laplace-Beltrami operator in superspace depends on the
superspace metric. In the next chapter we will see that factor ordering
becomes more important in non-diagonal Type IX models. U we use
Misner’s (1972) metric (11.32) we find quantum mechanical equations for
Type I which are the same as (11.29). If we use DeWitt’s metric \’%g{ij)(k:
we find that —d2¥ /902 is replaced by — 0*¥/9Q? —%-5“{‘/‘&51, but other-

wise the equations remain the same.



12. TYPE I MODELS AND TYPE IX MODELS -
THE SIMPLEST AND THE MOST INTERESTING

We must use time as a tool, not as a couch €——
— JOHN KENNEDY

Type I models are the simplest of anisotropic models, but already
illustrate some of the intriquing features of all Bianchi-type models, par-
ticularly in their Hamiltonian formulation. Type IX models illustrate the

full range of problems encountered in classical and quantum cosmology.

12.1. Type I Models
In Chapter 11 we defined the quantities 8, S_, and €, the general
Type I metric being

/3 -
ds? = —dt? + e"zn[eg(ﬂ++\/36—)(dxi)2 + ez(ﬁ+ \/?B")(dxz)z

+ e-4B+(dx3)2] .

From (11.19) and (11.22b), with appropriate resealing of i and R,, we

find

H2 = p+2 rp 24 “e—s(la—k)ﬂ ) az.1)

where () plays the role of time in H, and p, and p_ are momenta
conjugate to 3, and B _ respectively. As a technical aside we mention
that this form of H assumes that the matrix B is diagonal. The diagonal
assumption, however, does not restrict the generality of the fluid Type I

model. The constant k comes from the solution of

T, =0 for T,, = %(mp)u# 4, + PRy P kW 12.2)

which implies

w = pe3FOQ (12.3)

201

John Fitzgerald Kennedy
(1917-1963)

quoted in Reader’s Digest,
August 2000. JFK is also listed
as the source of the quotation
“We must use time as a tool, not
as a crutch.” This information,
which seems suspect, comes
from an internet search.
Personally, | prefer the crutch
quotation. LCS
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From the form of H, we see that

p, = const., p_ = const.

Therefore the universe point moves in a straight line across the B.B -

plane with velocity
1 1

(@B, /40 + @B_/dPT" - (p,%+p_2) HT . (12.4)
1
Notice that H - (pﬁ + ;)__2)2 = const. as {} » = (near the singularity).
To complete the description of the fluid-filled model we need only

{(t). From (11.21), we have

dQ/dt = ﬁ_ R, 3He! . (12.5)
Near the singularity where H becomes a constant this equation is par-
ticularly easy to integrate. The asymptotic form of ({t) shows that a
true singularity exists in every Type I model since the physical observable

w blows up in a finite amount of proper time t.

The Decay of Anisotropy

The Hamiltonian description of the evolution of Type I models allows
us to show directly that the observed anisotropy of the universe decreases
as one moves from the singularity toward the present. By ‘‘observed
anisotropy’’ we mean anisotropy in the Hubble constant, which is not the
same in all directions. In an anisotropic model the redshifts of galaxies
and the temperature of the 3K black-body radiation are anisotropic.

Misner (1968) has shown that this anisotropy is described by n;o ij j,

where n is the direction vector of an observation and where
oi}.xz[ il ebve deteﬁ]‘ (12.6)

An especially convenient measure of the root-mean-square anisotropy is

tr{o } 4§95 - For diagonal Type I universes we find
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tr(e?) = 6[(dB, /d2)? + (dB_/d0)?1(d/dt)?

2 .
6{12?:1?03) (p+2 +p“2}eég = eﬁQ .

i

(12.73

i

Thus as () decreases from = (remember (I decreases monotonically as
t increases) anisotropy decays. Decay of anisotropy of some sort may,
in fact, be the reason for the presently observed isotropy of the 3K black-
body radiation.

Horizons

Because of the finite age of the universe, light can reach an observer
typically only from a limited amount of matter. The farthest distance an
observer can see in a given direction is called the horizon distance. The
existence of a horizon thus depends on the existence of a singularity, and
this concept gives important insight concerning the singularity and astro-
physical processes. For example, the spacelike sections of a Type IX
model are each finite in diameter, and it is possible for certain horizons
to be larger than this diameter. A model with such large horizons is
called ”mixing"m’ for each material object can influence every other piece
of matter. These models will be discussed later in this chapter.

Horizons are most easily defined and computed in a Type I model, but
in these mixing does not occur. Let n; be a given spatial direction (that
is, a triplet of numbers such that n12 + n22 + n32 =1; n; is a direction
in an orthonormal frame of the t = const hypersurface). We will denote
by t, the time coordinate of the observer and by t, the time of the
initial singularity (the horizon, of course, depends only on t, —t, and
not on the spatial position x! of the observer, due to the spatial homoge-
neity). We draw a lightlike line in direction n; from the observer, back-
ward in time until it meets the singularity.

Let the observer, for convenience, be at x1= 0. The lightlike line
obeys the differential law

E H : 1 -
~dt? + e 2P e2B axldni = 0, where Lo at t-t . (12.8)
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We now assume f to be diagonal and n; to be an eigendirection: That
is, n;=1 for some given i, the other components being zero. The light-

like line equation is

—df? + e 2B dxy? = 0 (no sum on i) (12.9)

and the coordinate of the horizon is
t

. i
xig(ty) = f =B, at . (12.10)
‘o
This result gives the coordinate of the farthest point that can be seen. At

time t,, this point is at proper distance X‘H(tl) from the observer, where

T

|
X"‘XH

Fig. 12.1. Horizons. The horizon length for an observer A at time 7 isg the
maximum spatial distance he can see in a given direction, The time 7, corre-
sponds to the initial singularity (the ‘*Big Bang’'). Because the model is spati-
ally homogeneous, the horizon lengths in i direction for observers A and B
are equal if the values of 7 are the same. x’H i a function of 7, however.
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t
XLt = e‘geﬁhf =B dt . (12.11)
‘o

The horizon size may be infinite. In certain models there is one and
only one direction with an infinite value of Xiﬁ* These models are highly
special; in the generic model all horizon sizes are finite.

If the horizon size at time ty is finite, then Xiﬁ(ti) +0 as t; - ty-
This important result shows that near the singularity, in the general Type |
model, a piece of matter can be influenced only by its nearest neighbors.
At the present time, because of the expansion of the horizon, an observer
is continually being influenced by new stars. This effect could be impor-

tant in modern astrology (Figure 12.1).

12.2. Bianchi Type IX Universes in the Hamiltonian Approach

Aside from the general Bianchi Type I models, which for the fluid-filled
case exhibits unbroken straight-line motion, the most thoroughly studied
Bianchi-type model is of Type IX. Type IX models may be broken down
into subclasses of varying degrees of complexity. The simplest are those
in which the Bij of (11.9) is diagonal (the diagonal case) studied by
Misner (1969a,b). Slightly more complicated is the symmetric or non-
tumbling case in which B has exactly one off-diagonal element. The
Hamiltonian form for its Einstein equations was considered by Ryan
(1971a). The most complex case is the general case in which is a general
3x 3 matrix. The Hamiltonian formulation for this case was also given by
Ryan (1971b).

The Diagonal Case

We can make [ diagonal by choosing ¢ =0, 8§ =7/2, ¢ =0 in

(11.18). This choice reduces the action (11.18) to

1- p,dB, + p_df_ — HAQ, (12.12)
with
B2 = p 2+ p 2+ e v, B)-1) (12.13)
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in vacuum. In this case we can generally ignore matter for large enough
) (that is, near the singularity): The matter terms in the Hamiltonian do
not depend on ﬂ{»P B_ becgfzse figﬁ =0 and SO& = const. Because
”713%} = 0 the constraints C! = 0 are identically satisfied. V as a func-
tion of 5.1, and B_ is given in Table 11.1. The equipotentials of V

are shown in Figure 12.2.
The complicated form of V implies that it will be almost impossible

to find an analytic solution for BJQ), B_«&1) which is valid everywhere.

8-

-3

-2

w

Fig. 12.2. The Potential V(A , ) for Type IX Models
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However, the technique of qualitative cosmology allows us to display an
approximate solution in the form of a diagram. The hard-wall approxima-
tion implies that the universe point moves in a triangular well with unit
velocity (since (4B, /d0)* + (dB_/dQ2) ~ 1 far from the walls). This
well is shown in Figure 11.2. Because V(B,,8_) is multiplied by e“‘*ﬂ,
the size of this well changes with time and Misner (1969b) has shown that
the walls expand isotropically with velocity dﬁwang’dﬂ A %— Thus the
universe point will catch up with the wall if its angle of incidence is not
too large. Generically the motion will be that of a particle bouncing
around in a triangular box.

We now need a set of “‘bounce laws’’ for the reflection of the universe
point from the walls. Because the walls are moving in {-time, reflection
is not specular. Instead the angle of incidence 8, is related to the
by

angle of reflection 0 out

3 sin {8!n)

Sin(ﬁout) = mg—@;;-}-. (12.14)

When the universe point moves through the body of the triangle H is a
constant, but this constant changes suddenly during a bounce. The inci-

dent H, H;, is related to H after reflection, Houe by

H; sin(@;,) = Hyuesin (0,0 - (12.15)

It is now possible to draw a qualitative picture of B+, B _ as a func-
tion of the time . The picture makes use of the straight-line-constant-
speed property of the motion of the universe point between bounces. It
also makes use of the bounce laws. An example is shown in Figure 12.3.

A situation where the qualitative solution is not sufficient to give us
all the importanm information is during a “‘mixing bounce.”” (**Mixing’’
will be discussed below.) This type of bounce occurs when the universe
point moves almost directly into one of the corner channels. In this case
the universe point begins to oscillate rapidly between the two walls of the
channel, finally reversing direction and moving out of the channel. The

mixing bounce will be studied in more detail in below.
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Fig. 12.3. A Series of Bounces of the Universe Point in a Type IX Potential. The
dashed lines show the expanding potential wall at various times, and the solid
line is the track of the universe point.

The Symmetric or Non-Tumbling Case

In the simplest case with rotating matter 3 has precisely one off-
diagonal entry. The terms “symmetric’’ (Gédel, 1950) and ““non-tumbling”’
(Matzner, Shepley, Warren, 1970) are both used for this case. In terms of
the parameters of (11.18), we have ¢ =0, 6 = /2, and ¢ is allowed to
vary. In this model we must allow matter, and here we let this matter be
=Py u,). The equation T‘w;y = 0 can be
shown to be satisfied if

a pressureless fluid (T

uy = u, = 0, uy = € = const.
and
7= const. = Nou®e 3R 3 (12.16)
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in the invariant frame {dQ,o!}. Using the metric of the symmetric case

and the constants 7 and C we find

1
= - 2 5 — 2
8, - ~ 21+ R 2% PPy Lon per 22 P a1y

If we let 367°Ry' = 1 and define = 487%%, C = 3272 £ T then the
action {11.18) reduces to g

I:fm dB, + p_dB_ + pydd — HA , (12.18)

with
2
H2-p2ip 24 3py

—48
Pt V@B, B_)-1)
* sinhi(’zvﬁﬁ“; ¢ @8

(12.19)
30 2 20 45 *1“2
+ pe (1+4C“e*“*e Y,

where V(B ,B_) is the same as that given in Figure (12.2) for the

diagonal case.

When we compute i, j for our metric we find that the constraint

cl-o implies

Py = nC . (12.20)
This constant value of Py is consistent with the field equations since
H is cyclic in ¢. We replace Py by pC and arrive at a Hamiltonian
for B,. The equation for ¢ is then given by

¢ = Moyl e (12.21)

and so ¢ may be found as a function of (& once 8, and B_ are given
as functions of 1.

We can now construct a diagrammatic solution by means of the wall
approximation. The additional potential terms in H add additional walls.

The potential 3;@2;'35511 (2V3B_) is called the centrifugal potential, and

i
28,
the wall it generates is the centrifugal wall. “emgg‘z{}+ 4C2ezge *}2 s
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~0

I

.
T ——— - — -~ - -
»

Bl-B.-0 ’

Fig. 12.4. The Walls Associated with the Potentials in a Symmetric or Non-
Tumbling Type IX Model. The solid line is the gravitation wall; the dotted line
is the rotation wall; and the dashed line is the centrifugal wall. The arrows
attached to the walls show their respective velocities.

N

o g - - -

the rotation potential, and the wall it generates is the rotation wall. The
positions and velocities of these walls are shown in Figure 12.4. It is
interesting to note that S_ is most naturally interpreted as a radial
coordinate in the parametrization and therefore is strictly positive. When
we find s by integrating (12.21), we see that s will only change during
bounces off the centrifugal wall. The diagrammatic solution has been

used by Ryan (1971a) to show that the change in ¢ during a bounce goes
to zero as we approach the singularity. (Belinskii, Lifshitz and Khalatniko
1971a, have used the analytic approach to show the same thing.) More de-

tail about the symmetric case can be found in Ryan (1971a, 19724).

The General Case
The details of the derivation of the Hamiltonian form of the Einstein
equations in the general case are found in Ryan (1972d). We shall give
the final results and briefly discuss the diagrammatic solution for the case

of a pressureless fluid.
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It can be shown that the Euclidean sum

S uy = C? (12.22)

is a constant of the motion (see Chapter 13). Because of this constant we
can parametrize the u; by use of the parameters y, A in the form (kyo Ky
are the constant matrices of 11.15):

SO P e

i (12.23)

u; =
where

af = (siny sinA, siny cosA, cosy), (12.24)
with y and A functions of 2, and C a constant. The quantity
i = Noule 3R 3 (12.25)

is still a constant in the general case. We rescale RO,ZZ,E : 36:72R04 -1,

4872 I->p, and 3272 #iC » uC. We arrive at the following Hamiltonian
for By:

2, 3(uC) cos?y . 3(uC)?sinycos?A N 3(uC)sin’ysinA
~ sinh?2y3B_) sinh@3B + V3B_) sinh(38,—V3B_)
‘ 2B V3B_)

Hzxp+2+p

+ e"4Q(V_M1)+ e‘“3ﬂu<1+(2C)2 ezg[s inZys in%A (12.26)

2@, -3 ., 4'8*])%

sinzy cos?Ae +cos“ye

3

where y and A are to be treated as known functions of {1 in Hamilton’s
equations and where V(8 _,B_) is again the same function of B4 asin

the diagonal and symmetric cases. We also have the supplementary equa-

tiong
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Fig. 12.5. The Walls Associated with the Potentials in the General Type IX
Model. The solid line is the gravitation wall; the dotted lines the rotation walls;
and the dashed lines the centrifugal walls.

+V/3
By B")Sinh(3,8+~—\/r§3__)

> “»(2 7
A=dr/d-8Ce — Cosye
H V(1+D)

. gce“ﬂ cosy sin®A sinh(2v/38_) _ ?fig cosy
H V(1+D) H ginh? (V3B)

e 31%(2 cosy sinA c:as)dsinh'“2 {38%—“\,5318”_)“ sinh~2 (3@++3§_) b2

. L, =28, -
88(33"9 cosAsinie sinh(2v/38 ) N

y = dy/d} = siny
} V(1+D)
2 . 2 |
LWC coshr, WC sin’A (

H sinh?(B,+38_) H sinh’(38,—v3B_)|
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where

— -2
zu. e gd“

D=C7 u

i e I
Once Bi, v, and A have been found as functions of (), Hamilton's
equations for &, ¢, and & may be solved by simple integration.

The walls associated with the various potentials in 12.26 are shown
in Figure 12.5. The walls are gravitational, centrifugal and rotational,
coming from the potentials analogous to those of the same names in the
symmetric case. Because the corresponding potential terms contain y
and A, the centrifugal and rotation walls shown in Figure 12.5 appear
and disappear. We can think of the rotation walls as “‘flaps’’ which cover
the channels at the corners of the triangle and the centrifugal walls, which
pass through the center of the diagram, as becoming ‘‘transparent’’ or
““opaque,’’ It has been shown (see Belinskii, Khalatnikov, and Ryan, 1971)
that y and A approach constants near the singularity. This behavior
freezes the centrifugal and rotation walls and traps the universe point in

one of the regions similar to the triangle ABC in Figure 12.5.

Interpretation of the Qualitative Diagrams; The Existence of a
True Singularity

Diagrammatic solutions most directly show many of the most important
facets of the behavior of various universes. For Type IX models they
show that a true singularity exists and that the character of this singularity
is similar in the diagonal, symmetric, and general cases. In particular,
rotation has little effect on the singularity.

We use Hamiltonian techniques and the equation

a 1 3y=1, 30}
S = § - —(20R) T HeT, (12.28)

to prove the existence of a singularity. First, we show that the break-
down envisaged in Chapter 10, where Q1| became infinite is also accom-

panied by an {1 = = singularity in Type I and Type IX universes. In fact,
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H decreases as (1 becomes large. We take H positive and thus assume
the universe is expanding. Equation (10.6) indicates that H never goes
through zero before Q becomes infinite toward the past (that is, toward
increasing (1). With these restrictions, let us look at Type I fluid models
There, for a fluid model with p= kw(k < 1),

2, —3(1-k)Q

H? = pﬁ + p . P4 constants .

As we go back toward the singularity, (@ increases, and H becomes a
constant. Thus when ( is infinite, @ is infinite, and (10.14) shows
that n - co.

For Type IX universes, the problem becomes more complicated. In the

diagonal case with p = kw,

H? = p+2 +p 2, e‘4Q(V-1) + ue“3<1‘k)Q, V=V(B,.,B_)>0.

Consider H = dH/JdQ which yields
2HH - —49”‘49\; - 31— k},ue3<1 -k)Q N 48"49 ‘

H is thus a decreasing function of {1 once 1 is large enough (observa-
tion shows € is sufficiently large at present in the real universe). This
decrease of H implies that Q becomes infinite only when {1 does.
Again a mathematical singularity results because of (11.23).

Since we do not have a matter Lagrangian for more complicated forms
of matter, we can only treat dust models in the symmetric and general

cases. In the symmetric Type IX case H is given by (12.19) and we finc

1 1
. 4 = 4 -
2HH = — 4e*Fv_1) - pe3%3+ 802620 Pid 14 422 Piy 7

The same argument as in the diagonal case obtains: H always decrease:
The general case is even more complicated. However, at latge §}, y an
A in (12.26) become constant. We may use essentially the same argumen
4s in the symmetric case, and the result is the same: {1 becomes infinit:

at a finite value of t, namely at the value when {1 becomes infinite.
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In order to show that = = is a true singularity in the symmetric and
general, dust-filled, Type IX cases, let us look at (12.25). This equation

gives us the physically observable matter density:
1

p = “&RG“3939 [1+ ezge“?‘ﬁij uy u}:}ug . (12.29)
Diagrammatic arguments show that because of (12.22) the square root term
in (12.29) is dominated by the eZQ term. Hence p ~ ezQ, and the in-
finite value of p at {1 = ~ indicates a true singularity.

As the singularity nears, the universe point bounces within its well.
This oscillatory approach to the singularity must be studied in more detail
than can be obtained from the qualitative discussion we have given here.

In particular, the phenomenon of mixing, to be discussed in the next section

requires such a more thorough presentation.

12.3. Decay of Anisotropy in Type IX Models — Mixing

The behavior of anisotropy is much more interesting and complicated
in a Bianchi Type IX model than in Type I models. Not only does aniso-
tropy decay, but even if the matter is postulated to be non-rotating,
““mixing’’ may occur. Misner’s mixmaster model (Misner, 1969a) is the
result. V

Non-Rotating Type IX Models

As in the Type I case we discuss anisotropy within the Hamiltonian
formulation for non-rotating Type IX models. The most general Type IX
model may be handled similarly. From the previous subsection we find

that the Hamiltonian H which governs non-rotating, dust-filled, Type IX

universes is given by
H2=p,2+p 2+ e v, B)- 1)+ ue 3, (12.30)

where V(8,, B_) is displayed in Figure 12.2. The general behavior of
the universe point under this Hamiltonian was discussed qualitatively in

the previous subsection. As before anisotropy is measured by tr{az}

which is again
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tr(o?) = ;-1-5 Ry %(p, 2+ p_%e®? . (12.31)
24n

In this case (pfazn p_2} is not a constant. However, it is effectively
constant while the universe point moves across the center of the triangu-
lar potential. It changes suddenly when the universe point bounces off
the walls. Consequently (pﬁ + p_’z‘} changes very slowly in comparison
to the e69 term in tr(c?), and on the average anisotropy decays as (1
decreases.

Notice that as O decreases and t increases, anisotropy is lowered
even more strongly due to the shrinking of the triangular potential. This
shrinking forces the universe point into a smaller and smaller region near
B, = B_=0. The decay of anisotropy is further enhanced if the additions
postulate is accepted that energy is transported from one part of the uni-
verse to another along lightlike geodesics. Such transport of energy is
termed ‘‘neutrino viscosity,”’ for it involves a hypothetical lightlike parti-
cle which can pass through a large amount of matter before depositing its
energy.

The Phenomenon of Mixing

Insight is gained by considering certain special paths in the plane as
examples. The trivial path 8, =B_ =0 forall t corresponds to the
isotropic, FRW model. A path which follows the line B+ = { correspond
to the Taub-NUT-Misner universe discussed previously. In that model,
distance measured along one axis of the t = constant sections becomes
zero as (I » . Such a singularity is called a “‘pancake’’ singularity in
contrast to the complete collapse which occurs in the isotropic model.

We saw in Chapter 8 that some geodesics traverse the T-NUT-M space
sections an infinite number of times as the Misner interface is approached
Of course, the T-NUT-M model is a vacuum model, and we are here deal-
ing with a dust-filled model. In a dust-filled model, the Misner interface
disappears and is replaced by a singularity. However, if the anisotropy

of the model follows a path along the B, = 0 axis, it too has a pancake
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type of singularity. It too contains geodesics which wrap around space an
infinite number of times near the singularity.

When a null geodesic can wrap around the universe, there is the possi-
bility of communication over cosmic distances by photons or neutrinos or
even shock waves. This transfer of energy may be a way of ironing out in-
homogeneities and is called mixing. We used the term horizon to denote
the boundary of cosmic matter visible to a given observer, and therefore,
mixing corresponds to a sufficiently large horizon in all directions.

In the above case of a pancake singularity, not all directions are
directions of mixing. Consider now the most general Type IX model in
which the anisotropy path does not exactly follow the S, =0 line in the
A . B_-plane. The general behavior of the universe point in this case was
discussed above. If the universe point moves for a sufficient time approxi-
mately parallel to the . = 0 line there is still one direction of mixing.
Chitre (1972a) has shown that this direction will always change. In fact,
even if the universe point begins to leave the center by one of the corner
channels, it will eventually emerge much as a charged particle from a con-
verging magnetic field (**‘magnetic mirror,”” Misner, 1969a). Chitre further
showed that in approximately 2% of all diagonal Type IX models, the
change of mixing direction occurs often enough that complete mixing occurs
(but see MacCallum, 1971a). Misner called a model with mixing in all

directions the Mixmaster Universe.

Chaotic Cosmology
One of the most interesting new ideas in cosmology is the concept of

‘‘chaotic cosmology.”’ As given by Misner (1968) the idea is that it is no
accident that the universe is highly isotropic and homogeneous now. It is
postulated that all universes, no matter how anisotropic and inhomogeneous
at early times, eventually, through some process, become homogeneous and
isotropic as time goes by. The program for proving this idea was begun by
Misner (1967a, 1968, 1969a,b), who investigated the decay of anisotropy in
Type I and Type IX models. He proposed the mixmaster universe to
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illustrate processes by which isotropization and homogenization could
come about. The next step in such a program would be the study of in-
homogeneous cosmologies to see if they actually tend toward homogeneity.

The entire concept has received a number of hard blows, including
objections by Stewart (1968), Doroshkevich, Zel’dovich and Novikov (1967
and Collins and Stewart (1971), concerning the possible amount of decay
of anisotropy. The low probability of mixing in Type IX universes is
another problem. Despite these objections the original idea is so per-
suasive that it is very difficult to discard. Recently Collins and Hawking
(1973a) have proposed that in any universe in which galaxies can form
(and hence life develop) anisotropy and inhomogeneity will decay to

observed levels as the universe approaches the present.

12.4. Quantum Type IX Cosmologies

In Chapter 11 we discussed the basic concepts of quantum cosmology
and minisuperspace. It is when these ideas are applied to Type IX cos-
mologies that we see the full range of problems encountered in quantized
Bianchi-type universes,

If we apply the procedure of Chapter 11 to a diagonal Type IX universe

we find the vacuum Schrodinger-Klein-Gordon (SKG) equation is

P W Y —yg g-¥-0.  (12.32)
0% 9B 2 B2 T

This equation is only complicated by the fact that the “‘potential’’ term is
explicitly (-dependent. If we approximate V(B4) by a triangular poten-
tial with infinitely hard walls, these walls are expanding, and the expand-
ing well problem is difficult to solve exactly. Misner (1969b) has pointed
out that if the solution is similar to the solution for an expanding one-
dimensional square well (Zapolsky, 1970, in Ryan, 1972d), then the energy

levels of the triangular box should obey

E, ~ Q71 (12.33)
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where |n| is some combination of the two quantum numbers which deter-
mine the energy level. This value of the energy plus the classical adia-
batic invariant (Misner, 1969b) H() ~ const. can be used to imply that on
the average the quantum number of a wave packet remains fixed. Misner
(1969b) interprets this result to say that the universe, if it is classical
now (and if it is diagonal Type IX), does not become more quantum-
mechanical as we go back toward the singularity and that therefore quantum
mechanics cannot affect the singularity.

With the symmetric case we see, for the first time, the problem that

the space constraints become important. The quantized analogue of (12.19)

L L 75 -2 PV, 40
A + L2 4 3(sinh 238 )2 L X 4 e~ MHvoY
o0? 98,2 B2 a2 .
. - " (12.34)

45 =
+ =301 4 ac2e2e B*)ZW - 0.

where we assume p and C are c-numbers. The constraint Py = uC
becomes uC¥ = —i o in the Dirac method of handling constraint. Sub-
stituting the solution to this equation into (12.34) we find that we have
the same equation as we would if we had solved the constraint py = uC
before we had quantized the ADM method. A problem arises in the Dirac
method, however, when one requires that (Bi’ s + m/2) represent the
same universe as (B4,¥). Inthat case we find uC =4n, n an integer.
This result is disturbing because we assumed u and C were c-numbers.
We have not, however, quantized the matter field, but assumed it to be
classical. We can hope that if we were to quantize the matter field, thus
making p and C quantum numbers, the difficulties with the Dirac method
would disappear.

Another possible method for ordering factors in the quantum-mechanical
equations for Bianchi-type universes was mentioned in Chapter 11, the
use of the superspace metric to write the derivative part of the equations
as a covariant Laplace-Beltrami operator applied to ¥. The DeWitt metric

in the diagonal Type IX case only trivially modifies the ?¥ /902 term,
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and the Misner metric gives (12.34). In the symmetric case, however, even

the Misner metric leads to an equation different from (12.34). This new

equation is

s S 1 3 [ PR _al)
- ! 3 h(2 + —
0% B2 " Sinh(2v3B_) 9B sinh( V38~}§Bj e Hivonv¥
(12.35)

B 5 2w
+ ;;e_3g(i+4czezge Yy _.:..:?._{E.EL_M.. .
sinh?(2v3B_)

As was mentioned in Chapter 11, not enough is known about quantum

gravitation to choose among the various alternative methods of quantiza-

tion.
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Except in the case of the FRW models and simple Bianchi Type I
cosmologies, we cannot expect to find exact solutions for homogeneous
cosmologies (even though qualitative solutions can be found by means of
the Hamiltonian techniques of Chapter 11). Inhomogeneous models are
even harder to handle. Numerical analysis of homogeneous cosmologies
is therefore a necessity — not only to give us exact solutions (to act as
checks of our qualitative solutions) but as a testing ground for general
numerical studies in cosmology. In this chapter we present solutions for
Bianchi Type IX universes as examples of numerical techniques in cos-

mology.

13.1. General Techniques — Initial Data

It is most convenient to compute in an orthonormal basis ldt,o ii
using equations for a 3x3 matrix B whose elements are functions of
time t only. Different Bianchi types are specified by the structure con-
straints of the spatial homogeneity group, Cijk. We presume that the
orthonormal-synchronous basis never breaks down (until a singularity is
reached), so that it may be used for computation.

The Einstein equation for Bianchi-type universes are a set of ten
coupled ordinary differential equations ideally suited for numerical solu-
tions. Behr (19652) and others have studied this problem. In order to
solve the equations we specify initial data on a t = t; hypersurface
H(ty). These data are limited by four constraint (C) equations which they

must satisfy. The remaining six propagation (P) equations allow one to
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‘Enixappog (=540 BCE — ~450 BCE)

A man'’s life critically needs
reasoning and computation.

Thanks to Todd Krause:

ho bios anthré:pois logismod
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Ancient Greek, like modern Chinese, is
atonal language. That is, the meaning
of a word can change completely
depending on the accent. It's therefore
important to insert the accents in a
written text. I've tried to do that in the
transcription above, to give you some
idea of how they'd be in this text.
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compute the metric at points off the initial surface. Because the P equa-
tions are second order, the initial data consist of the intrinsic metric of H
and the first time derivative of this 3-metric — or equivalents of these
quantities.
Initial Data
In the synchronous basis, the metric is of the form

ds? = —dt? + g (heSw!,  doi- %- ctio® awt. (13.1)

We define the four one-forms o/ by

o= bit“‘t' o® - dt, with bis bsj = & (13.2)
where B = (bij) is the square root of G = (gij)‘ The metric is now in
orthonormal form; ds? = qwa“a”.

As we saw in Chapter 2, what really counts in computing properties of
a manifold is not the metric components but both the metric components
and the structure coefficients. In the form of the metric given by (13.1),
the structure coefficients are constant, and the metric may be truly said
to be represented by the matrix function G(t). Since B(t) is determined
by G(t), B may be regarded as taking the place of the metric on the
spacelike sections H(t).

We derived the affine connection forms and the curvature tensor in

Chapter 9. There the matrix functions K(t) and L(t) were defined by

K=BB™'; L=J K+K")=({). (13.3)

Remember that L(t) is the second fundamental form of the invariant
hypersurface H(t) in the {o#| basis. In addition, if B and L are
given at a time t,, they determine K(t,). We may regard L(t,) as

equivalent to the first time-derivative of the metric at the hypersurface

H(ty)-
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The Einstein equations are second order, so the metric and its first
derivative at to seive as initial data. Equivalently, we may specify
B(ty) and L(tn) initially and use the field equations to find B(t) for
other times.

Constraint and Propagation Equations

From the expressions of Chapter 9 we may find the P and C equations,

The P equations involve the six (ij) components of the Ricci tensor:

Ry;l= éij-,funca_.a)] = (W p)uju; + %(w-p)aij. (,j=1,2,3). (13.9)

This form results from the fact that the matrix M in (9.14) can be ex-
pressed as a function of B and L. Thus, if B(t,), L(ty) are given and
1!’ %, P, and u; are known functions of B and L, the P equations give
L(to) B(to) is computed from B(t,) and L(to) by use of (9.15). Now,
B(ty +At) and L(t,+At) may be calculated. In this way we may watch
the universe evolve,

But we must first find w, p, and u, as functions of B and L. To
do so we use the C equations. Three of these involve the (0i) compo-

nents of the Ricci tensor, and the fourth involves the previously defined

quantity S: . .
Rojl=lg d'gi+ 8 d%g) = (w+plugy; .
(13.5)

2 2
S= %[R°i+ Ry, + Ry, + Ryl = wuy” + pluy” —1).

These equations do not involve L and hence act as constraints which
L(ty) and B(t,) must satisfy: A choice of w(ty), p(ty), and uu(to)
limits our choice of L(to) and B(to). If the model were a vacuum model,
w = p= 0, these equations explicitly restrict the permissible assignment
of values for B(t;) and L(t;).

Alternately, when B(to) and L(to) are specified, we can compute
w(ty), plty), and u"(to) using the C equations. These four equations
are sufficient for this computation since nnu*“ = —~1 and since we specify

p as a function of w by an equation of state p= p(w).
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As an example, we impose the “‘dust’’ equation of state p= 0, so
that w = p. Moreover, we shall consider the one particular group,
SO(3,R) (Bianchi Type 1X). The methods, of course, will apply to any
group and any equation of state,

Given B(tg), L{ty), we calculate the Ricci components Ryi(ty) and
S(ty). The values of p(to) and uu(to) are then determined by the
formulae

3
p=5S=-3 Ryls',

s=1
L

3 2
u; = Rm.(sz- S R(,;) : (13.6)
s=1
L

2
ug = (1+u]2+ u22+u32)

(The sign of u, is arbitrarily taken as +.) As we see, there are two
conditions which must be satisfied in a dust-filled universe (or for that

matter, in a fluid-filled model)

$>0, $2-3Ry2>0. 13.7)

In addition, of course, the matrix B(t,) should be positive definite (have
three positive eigenvalues). Provided these inequalities hold, B(t,) and
L(to) serve as appropriate initial data, and given B(t,) and L(t;),
p(ty) and ",u(to) may be calculated, and the P equations employed as

outlined above.

13.2. Numerical Bianchi Type IX Models

There are two possible procedures in the generation of a numerical
model. In both, the equation of state p(w) and the spatial homogeneity
group must be specified in advance of the selection of initial data. We
have made this specification by setting p= 0 and requiring the structure

constants Cijk to be those of the Type IX group, Cijlr. = Ejjk-
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The two procedures involve methods of selecting initial data. In the
first, p(to), “p{t(})' or other fluid parameters are chosen. A specification
of B(to) and L(to) which conforms to the C equations must then be
found. The second procedure is to choose B(to) and L(to). using (13.6)
to compute p(t,) and un(to). We follow this second methed.

Our computer program is schematically illustrated in Figure 13.1. The
input data consist of two 3x3 matrices, B(to), L(to). One of these
matrices, that used as B(t,), is positive definite. We compute K(ty)
from B(t,) and L(to}, and from this find ﬁ(to). From B(to), we calcu-

INPUT

B, a 3 x 3 symmetric positive-
definite matrix

L, a 3 x 3 symmetric matrix \ Calculate

to initial time K, I, Roi’ S
dt, integration step /
Are S > 0 and N Print out "inadeguate
2 2 o data' message

S-Roibﬂ? >

Yes o

Calculate ¢, u;, Print out o, Ui, det(B}, M,

+» A M= puodet(B} and other information

Mg

Calculate B from K,

L from Rij' IR

2
Integrate: Find Calculate

B[tcﬂit}- L(t +dt) > M(t_*+dt)
¥
Is M(to*dt) = Mlto}?

Repeat, starting —___*}"_u_e_g._______..
at t o+ dt

L_Decreasedtbyiii/m/

Start at t_ again

Fig. 13.1. Computer Flow Chart
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late D(ty) = (dijk(to)). From K(ty) and D(to), we then calculate
Roi(to) and S(t;). The inequalities (13.7) are checked, and if they are
satisfied, p(to) and “g(to) are calculated. Finally, the values of l:.(to)
are found from (13.4). A small step forward is taken by numerical integra-
tion and values of the fundamental quantities are found at the new time

to + At. Knowing B(t,+At) and L(t,+At), we repeat the process.

The program also can internally determine the size of the integration
step. This determination makes use of an important constant of the motion
derived from (10.9), the conservation law. In a Type IX universe,

M = pug det(B) = puje” 301‘\'03 = const. At each step, M(t+At) is com-
puted and compared with M(t). If there is a change, the program shortens
the integration step.

In certain rotating models, the size of the integration step may be
determined using @ second constant of the motion. If £ is a Killing
vector field (one of the three which are present because of the S0(3,R)
symmetry), u-{ is a constant along the matter paths since u is a geo-
desic. This fact was proved in Section 8.3. We label the three Killing
vector fields fi. i=1,2,3, sothat u "fi are three constants. These
constants are not themselves useful, for the Ei depend on position within
each given H(t). However, at one point in the spacetime manifold, the
&; may be chosen to be aligned with three fixed directions. At other

points, the £, are rotated by an orthogonal transformation. Consequently,

3
c?= 2 (u -Ei)z. which is constant, is a fairly simple function of B

i=1

and L. C? is given explicitly by
2
Ct = ui bisbsjuj ’ (13»8)

where u’ = u, are the spatial components of u in the orthonormal lo#|

basis.
In certain models, C? vanishes identically, and cannot be monitored

to see if the integration step need be changed. In practice the constancy
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of M is used to check the usefulness of a specified size of the integration
step and C? is monitored as a check. A further check consists of verify-
ing that all matter variables exhibit the same time development character-
istics when a given integration is reperformed using a smaller integration
step.

The details of the program are only interesting to the computer himself
so we will not give them here. The Runge-Kutta method of integration is

used, along with double-precision computation where needed.

Classification and Number of Type IX Homogeneous Universes

It is especially convenient to express the initial data in the parametri-
zation of the Hamiltonian formulation of Chapter 11. From that chapter we
find we use the quantities By, ps, &, ¢, 0, Pg Py Pgs Ry, Q, u, ug, 0y, u,.
(These quantities may readily be combined to give B and L.) These
quantities are redundant, however. We may diagonalize ﬂij at any one
time (t;), so ¢ and ¥ may be takentobe 0 and 6 tobe 7/2 with-
out loss of generality. H, and ug, uy, u; are defined in terms of the
other variables by the constraints. R, may be chosen as the specifica-
tion of length units, and u chosen as the specification of mass unit, so
the physical state of the universe does not depend on them. Consequently,
as initial conditions we must specify By, ps, Pt Py Pg and Q. How-
ever, this choice corresponds to an entire family of initial conditions,
because a universe with By, py, Pg Py Py at one value of {1 is the
same as one with py’, By, pé', pu;,', py’ at another value of (. There is
thus a seven-parameter family of initial conditions for general Type IX
universes,

Within the general class of Type IX universes there are several sub-
classes most easily defined in terms of initial data restrictions:

1) The FRW k= +1 model. The initial data have the form B(t;) =
(Baij), L(ty) = (LSij) or equivalently, fB(ty)=0, p(ty) =0, Q(to) =0 =

const. These forms are preserved as t varies.
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2) The diagonal case, B(ty) = diag (B,, B,, B,), L(ty) = diag(L,,L,,L,)
Equivalently, B, and p, are specified, as is 0. P = Py = Pg=0.
Again these forms are preserved as t varies.

3) The T-NUT-M-like case is the diagonal case in which B, = B,
and Ly =L, or B_=p_=0.

4) The symmetric case (also called the non-tumbling case) has diago-
nal B(t;) as without loss of generality do all cases. L(t,) has one off-
diagonal element. As t varies one off-diagonal element of B becomes
non-zero, but the other two off-diagonal elements of B and L remain
zero. Exactly one spatial component of the velocity u is non-zero in
this case. In terms of the Hamiltonian parameters, B, ps., Po and Q
are specified, and Py = Pg = 0.

5) The time-symmetric case: B(t) = B(—t). This case is defined by
L(ty) = 0.

6) The pseudo-time-symmetric case: The matter variables (g, u)
are time-symmetric, but B(t) need not be. This case is defined by B(ty)
diagonal and L(ty) with only one component (and that a non-diagonal
component) non-zero. The Hamiltonian momentum parameters P+r Py» Pg
are all zero at t = t,, but P is non-zero.

7) The general case: B(t,) is diagonal, but L(t;) is any matrix.
The Hamiltonian parameters B, ps, P+ Pyr Pgs ) are all arbitrary.
Models in the last four classes may ‘‘mix’’ in the sense of Chapter 12.

Numerical Examples

It would be impossible to give an exhaustive set of numerical solu-
tions for even the diagonal case, so great is the number of possible initial
conditions. Hamiltonian techniques and qualitative cosmology can be
used to sort out those initial conditions which are most interesting. One
problem in displaying results is that cosmic time t moves too quickly,
and a large amount of computer time is spent covering only a small part
of the life of the universe. This is another advantage of the Hamiltonian

formulation: ()-time moves much more slowly near the singularity. How-
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ever, t-time is very useful near a turn-around, det(B)= maximum, where
()-time breaks down.

The figures below give several examples of numerical solutions for
various initial conditions and special cases. The diagonal case has been
studied numerically by Okerson (1969) using the Lagrangian formulation
and {)-time, but we shall not give any figures showing its behavior.
Figures given in Matzner, Shepley, and Warren (1970) in which the general
case is studied in t-time near turnaround for various initial conditions
will not be given here. We include figures which show the behavior of the
symmettic case in the Hamiltonian formulation, studied in {}-time. This

is work of Moser, Matzner, and Ryan (1973).

0.5+

N

%35 [5) 0 ® 05 Bm !

Fig. 13.2. The results of numerical solution of Hamilton's equations for a sym-
metric Type IX model, The triangle shown is that of Figure 12.4. The positions
of the walls and of the universe point have been divided by ) to keep the walls
static and to confine the motion of the universe point to the fixed triangle. This
transformation preserves straight-line motion of the universe point, but distorts
angles, so bounce laws cannot be checked directly against this figure, For u=2,
Ce= 10_4(#. C as in Chapter 12) this figure starts the universe point at a generic
point A moving in a randomly chosen direction at 1 =15 and follows it through

six bounces to end at point B at =10
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0877

083 0

Fig. 13.3. This figure is a continuation of Figure 13.2. The universe point be-
gins at point B (B of Figure 13.2) at {1 = 10% and makes six bounces ending at
point C.

% 5 ® 0 By, @ |

Fig. 13.4. A continuation of Figure 13.2. g’he universe point begins at C, makes
six bounces, ending at point D at (1= 10",
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Fig. 13.5. A continuation of Figure 13.4. The universe point begins at D, makes
three bounces, ending at D “ at {} = 2.10°. Note that the scale of the plot is ex-
panded to prevent logs of detail.
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Fig. 13.6. A continuation of Figure 13.5. The universe point begins at D, makes
four bounces, ending at E at () = 3,3.10".
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Fig. 13.7. A continuation of Figure _13.6. The universe point begins at E, makes
six bounces, ending at F at {} = 10",
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Fig. 13.8. A continuation of i’lgura 13.7é The universe point begins at F, makes
five bounces, ending at G at ] = 2.5.10%,
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Fig. 13.9. The motion of the universe point in the angle ¢. The motion is pro-
jected onto the plane B /()= —117 in B,,B_,¢-space. The f3 -axis is marked
by 0. The universe point begins &t A and follows the path A0-0B-B0-0C-C0- 0D
-DO-0E, ending at E at = 1.!.104. Bounces 3, 5, 9, 11 ‘of the previous figures
are shown. The varying lengths of the paths correspond to bounces against dif-
ferent parts of the gravitation potential triangle.

o_
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Fig. 13,10, Bounces 13, 15, and 31. The universe point begins at E (the E of
Figure 13.9) and follows the path E0-O0F-F0-0G-G0-0G". Note that the change in
¢ during the bounce GOG” is very nearly zero.
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Fig.13.11. A Mixing Bounce. The universe point is sent into the comer channel
nearly directly, The general motion is in the direction of the arrow.
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Fig. 13.12. A continuation of Figure 13.11. This figure shows the exit from the
mixing bounce. The motion is in the direction of the arrow.
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In taures Libyci ruunt Leones;
Non sunt papilionibus molesti \
— MARTIAL

14.1. Large Scale Magnetic Fields

Spatial homogeneity without isotropy represents a compromise between
simplicity and generality. The existence of anisotropy in the model allows
a theoretical discussion of many vital effects, and we shall discuss three
in this chapter. They are the effects of primordial magnetic fields,

neutrino viscosity and kinetic theory, and perturbation theory as it per-

tains to the formation of galaxies. Our discussion will be brief, principally

dealing with setting up equations and with basic properties, to serve as a
program for further research. We will deal with Type [ models in this
chapter: models with anisotropy, but at the same time simple enough to

allow explicit examples to be exhibited.

Electromagnetic Fields
The models we have previously described were mostly perfect fluid
models. When a substantial large-scale electromagnetic field exists, the
energy-momentum tensor must be augmented by the energy-momentum

tensor of the field:

M o 1 ar
T = Fung - ZFU’F B (14.1)
where the F;w ate the components of the electromagnetic field tensor.

, so the electromagnetic field F

This tensot is antisymmetric F’W = —FV#
is a two-form, and a very elegant treatment of Maxwell's theory can be

given in the language of forms. Half of the Maxwell equations can be

written

237

Marcus Valerius Martialis
(~41 - ~104)
Libyan lions attack bulls;
They do not bother with butterflies.
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d(é— F‘Wa”aoy) - 0 (14.2)

if 1o#| is a basis for the one-forms. The other Maxwell equations are

most conveniently written in component form:

FAO = JH (14.3)

where the J# are the components of the current density vector field
associated with cosmic matter.

In spatially-homogeneous models there is a cosmic time t which
measures proper time in the direction orthogonal to a given homogeneous
hypersurface. Further, the metric can be expressed in the orthonormal
synchronous basis ol of Chapter 9, ds® = qpya"ﬂp- With respect to
an observer moving along a t-line, the components of F are defined in
terms of the components of the electric field E; and of the magnetic field

B;(i=123) as F,, = E;; F,, = B, et cyc.

A Simple Primordial Magnetic Field

Suppose now that the model we deal with contains neutral matter (on
the average), with a velocity field u orthogonal to homogeneous hyper-
surfaces. We further suppose that of the electromagnetic field components,
only the component B, is non-zero. These are drastic simplifications
but the behavior of these simple models is nonetheless most provocative,

The primordial magnetic field is assumed to be pointing solely in the
‘‘three’” direction. The stress-energy tensor is found to be diagonal,
with components (in the o#} basis where ¢ = dt and B, is a function

of t only)
M _ 4 flu2la2lp2 12
T w = d;ag(z B, ,2133 ,2—53 . 283). (14.4)
The (00) component of the stress-energy tensor is positive and therefore
contributes to the collapse to a singularity as described in Chapter 10.
There is a negative stress, howaver, in the (33) component, and this term
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affects the detailed dynamics of the model near the singularity. In particu-

lar, a large scale magnetic field requires some anisotropy.

Time Development of the Field

The time development of the magnetic field is governed by Maxwell’s

equations. The first of these equations (14.2) says
d(-l—F#Va“AGU) = d(B3o*1 rno?)=0

2 14.5)

= é3dt:\a1 Aol B3(d01A62~01AdG’2}.

We have made use of the fact that B; = B,(t) and have written dt for
0% From (9.8) we see that dai = kisdt Ao ;fdistas Aot Conse-
quently (14.5) implies, first, that Bj + By(k,; +k,,) = 0, and second
that k, + ky, =d' 5 +d%, =0 if By /0. The first of these equations
is the time-development equation for B, and the second is a constraint
which must be satisfied by a spatially homogeneous model in order that it
admit a magnetic field of the type described. The remaining Maxwell

equation serves to define the current J.

A Type I Universe with a Magnetic Field
To see the effects of a magnetic field in a particularly simple case,
consider a Type 1 model with diagonalized metric. In this model the

matrix K is diagonal, and dijk = 0, The basis forms are

o0-dt, ol-eeB axi (Ns). (14.6)
The curls of the of are therefore
do® -0, doi- (B -Ddtaocl (NS). (14.7)

The Maxwell equation which determines the time-development of By
then is written with B = diag (8, +V3B_, B, ~V3B_,-2B,). In conse-
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quence, B, = Cezig“ﬁ‘*), C = const. As it happens, the current vector
field ] vanishes in this case, and the magnetic field is sourceless.
The full field equations include a fluid stress-energy tensor as well
M
as T M

tions is

o+ If the fluid is dust, the source term for the Einstein field equa-

. (14.8)

M
Tuvapu u +T‘w

(TR
As in the purely fluid case discussed earlier, the fluid velocity field is
wt = (1,0,0,0) or uucﬂ” = ~09 The field equations are not independent.
The conservation law, T‘““;g = (puf ua};a + TM‘“{’;U = 0, serves to make
one of them a consequence of the others. The conservation law is satis-
fied automatically for ™ u because of the Maxwell equations: TM““; o
=0; so (put ug);g = 0. ’I‘h;z2 dust part of the conservation law can be
®om

integrated to yield p = Me = const.

The immediate consequence of the difference of the R,, and R4,
equations is that [‘é_ = DeQ+2'8+, D = const. It is possible, and of course
simpler, to consider the case f8_ = 0, so that D= 0. We now make this
assumption, noting that it is not possible to have the case 8, =8_=0
(isotropy) unless C = By = 0 also. The general solution of the field

equations is given implicitly as a function of t by

-0 -Q
bt = 2 (EeB+ -cz) [Eeﬁ+ ..l.cz} ;
0 3E2 2

B3

1
e~(28++g) = keQm’3+ [Eeﬁ*”“\Q - %— C2]2 (14.9)

Q- 2(8, - -0
L M. B, [E2e B, )+288+ EC2—2C4} ;

3g?
E, k, t, constants, E>O0.

It is seen from the above solution that the singularity is a ‘‘pancake’’

~Q+B8, e ~-28,
singularity, for e B remains finite when e * .50, when

C £ 0, that is, in the presence of a magnetic field. In this model the
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presence of the magnetic field requires at least a minimal amount of aniso-
tropy and affects the nature of the singularity.

We have seen that the singularity ({1=) is not prevented, however.
That the time when 0 = = is a true singularity is shown by the fact that
the fluid energy density p is infinite at that time. The magnetic energy

density is not necessarily infinite then.

Change of the Type of Singularity Because of the Magnetic Field

The effect of a magnetic field ~ on cosmologies, on collapsing stars,
on ultra dense materials — is a subject of current study. The direction
this study is taking is shown by the Hamiltonian work of Hughston and
Jacobs (1970). Even at the primitive level of the simple solution given
above, the effects of negative and positive stresses in the magnetic field
can be seen.

The specialty and simplicity of the solution does not make it the less
interesting, for the effect of the magnetic field was to prevent a collapse
in two of the three spatial directions. In Chapter 10 we saw that Brill;s
model, an SO(3, R)-homogeneous model, contained a magnetic field — but
no fluid — and remained nonsingular in the same sense that the T-NUT-M
model is non-singular: mathematically non-singular.

What then is the role of magnetism in preventing or altering a singu-
larity? How does the magnetic effect change when the Bianchi type of the
spatial homogeneity group is changed? What other effects have yet to be

discovered? These and other questions are the beginnings of a potentially

very fruitful line of inquiry.

14.2. Kinetic Theory and Neutrino Viscosity

We have treated several types of stress-energy tensors in our cosmo-
logical models. In addition to the vacuum tensor, T w = 0, these types
included perfect fluids, electromagnetic fields, and combinations of fluids
and electromagnetic fields. These cases were treated in a phenomenologi-

cal manner; in the fluid cases, for example, it was assumed that an equa-

tion of state was given,
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The form of the stress-energy tensor may also be derived from
kinetic theory with cosmic matter assumed to be composed of particles
which interact by colliding (cross sections measured in laboratory experi-
ments) or which interact with electromagnetic fields. We shall briefly
describe the technique here and then indicate how neutrino viscosity —

the transfer of energy by a postulated cosmic sea of neutrinos — is

described by kinetic theory.

The Distribution Function

The particles in the cosmic gas are described by a function which
tells how the particles are distributed in phase space. The typical case
considered by a researcher in this area concerns a system of particles all
having the same mass m. We use a coordinate system to describe a point
in the spacetime manifold as x# (1=0,1,2,3). The momentum of a single
particle is described by its contravariant components k¥ = mv#, restricted
to lie on the ‘‘mass-shell” P _; Ky e P <> "' g = —m?. A point
in phase space is described by the octet (x¥,k*), and phase space is
seven-dimensional because of the restriction of k* to the mass-shell.

The distribution function f is defined by the requirement that the

integral
ff(x”, k) dp,, (14.10)

P

m

be the number density of particles at the point in M whose coordinates
are xf. The integration is over the mass shell P, in the space of con-
travariant vectors (the tangent space) at x*. The volume element dp,,
is the volume element in P_, to be described more fully below in the

case m = 0. The components of the stress-energy tensor are formed from

the distribution function:

@Bty = f f, 1)@ B dp (14.11)

P
m

This tensor field serves as the source term in Einstein’s field equations.
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Neutrinos in a Type I Universe

An important problem in relativistic kinetic theoty is the effect to be
expected from the existence of a copious number of neutrinos in the early
stages of the universe. We note that (1) a neutrino travels on a lightlike
geodesic between collisions (that is, it is a massless particle); (2) it
travels a long distance before interacting (very small cross-section).
Kinetic theory is then used to find a general form of the stress-energy
tensor which reflects the long-distance transport of energy by a “‘viscosity’’
term. The field equations are then solved to yield, among other results,
the effect on the anisotropy of the model.

Misner’s (1968) treatment of neutrino viscosity in a Type I model is

especially straightforward. His model has metric

ds? = —dt? + e"zg(ezﬁ)ij dxldyd

The fact that neutrinos are massless says that they travel on null geo-
desics between collisions. We write the momentum vector field as k* =
dx*/dA where x*(\) is the parametrized null geodesic path; therefore

B x

k“ku = k‘“;V kK’ = 0. In consequence, k; = const, and K- o202 isKe

1
so that k° = {ezge“zﬁstkskt}z .

Misner uses the smallness of the collision cross-section — indeed the
fact that neutrinos are collisionless to a good approximation — to say that
the conservation of energy law holds for each k. Because the distribu-
tion function f describes the number of particles having momentum kH,

this conservation law becomes

(fk“);# = 0. (14.12)

(This equation along with the geodesic equation for k¥, implies T“”:yw 0.)
In the case of a Type I model, f does not directly depend on xi(i =

1,2,3). Equation (14.12) implies &09”39 = const. The “constant;; in

this equation is, in fact, an arbitrary function N of the three constants

ki:
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1
(G, 1) = N e300 ™! = Nk e e 2Bk k] 2. (14.13)

We continue to follow Misner in using the parameters k; as coordi-

nates on the mass-shell, P_, momentum space. In all, the stress-energy

m
tensor components THY are given by
1

, 4 ) L
700 _ f f0) a3k - &4 f Nei) le™ 2Pk k% a3k
0% - f fkkia3k - 5 f N(k) e~ 2P,k d3k (14.14)
2B, 2B
ij gl - o580 -2 2,2 =2 3
il - f fikdd3k = e f N Lok k2 e 2Pk e Py dc

The integration is over the three-space with coordinates kl’ kQ, k3.

The Distribution Function
At this point a choice of N(k;) (equivalent to a choice of the form of
the distribution function f), must be made. If the anisotropy matrix does
not vanish, a realistic choice for N(k;) will in general yield an integral
which can only be evaluated approximately. One property of N(k;) is
needed to avoid a conflict with the field equations, however. This property
is that N(ki) is an even function, and the potential conflict is due to the

fact that R,; always vanishes in a T3~homogeneous model. We have

Misner used a form of N(k;) that can be justified by physical argu-
ments. He assumed that during the initial stages of the cosmos the
neutrinos were in thermal equilibrium with other cosmic matter. The stress-
energy tensor is then of the formofa p= %w perfect fluid. When cosmic
expansion caused the temperature to drop below a certain critical value

T,, the neutrinos became almost free. E’i{ki} is then fized at
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N(k;) = ale 941171, @ = const,
{14.15)

K12 = ()% + (P + (kg )P

Here o is a normalization constant. The sign is plus for fermions (such
as neutrinos) and minus for bosons (such as photons or gravitons — the
theory holds for these particles, too).

At the time of decoupling, when the temperature drops below Ty, the
m=an free path for neutrinos increases greatly. When the mean free path
is neither very small nor very large, energy dissipation (transfer of energy
from one part of the universe to another — neutrino viscosity) can take
place with some degree of efficiency. Here the Boltzmann equation, which
includes collisions, must be used to predict the detailed behavior of the
distribution function.

Neutrino Viscosity

Misner, in lieu of sclving the Boltzmann equation, approximates the
effect of neutrino viscosity on the anisotropy of the universe. The trace-
less part of the stress-energy tensor (in the orthonormal tetrad {o#}) is

1
Ti; = 3 TssByy = —ABy; - (14.16)

where A is some slowly varying function. The matrix 5 depends on t
only and is determined by approximating the effect of collisions.

The matrix 6 is determined by a differential equation which includes
the effect of the metric anisotropy matrix B as well as the effect of

collisions. This equation is

B — _tl B . (14.17)
<

S

™
i

o (29

where t_. measures the mean collision time, At the time when the tempera-
ture drops to T, the time scale for change of P is short with respect

to t., but t_ itself is not infinite. Collisions soon cause B to reach

the value ﬁ =t. B
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Misner’s treatment of the effect of the neutrino viscosity term therefore
results in a negative term proportional to P in the (ij) field equations

(i,j=1,2,3). The traceless part of these equations becomes
5 a3 -3Q 4
ij e ) = - Tne Bi} (14.18)

for some slowly varying (positive) function 7 whose explicit calculation
requires a knowledge of te: The right side, proportional as it is to é,
which in turn is proportional to the mean shear of cosmic matter, is the
source of the nomenclature viscosity.

Detailed results depend on the explicit behavior of # as a function
of the temperature of cosmic matter. For example, if n is constant,

(14.18) implies .
Bij o e“meugﬂ .

No matter what the detailed form of 7 is, positive 7, resulting from
neutrino viscosity, causes more rapid decay of anisotropy than if no
neutrino transfer of energy is possible.

The drop of 'Sij to zero because of (14.18) measures the decay of
anisotropy, because constant ‘Bij is e?uivalent to zero Bij under a
transformation of spatial coordinates x'. Therefore we see, first, that
anisotropy falls even in a perfect-fluid, expanding universe, and second,
that the decay of anisotropy is enhanced at the time when neutrinos first
start to decouple from cosmic matter. Present observations show that the
real universe is isotropic: a summary of Misner;s results is that the
present isotropy does not necessarily mean that the universe was isotropic

near its beginning (however, see Stewart, 1968).

14.3. Perturbation Theory and the Formation of Galaxies
Large scale magnetic fields can affect the type of singularity from
which the universe expands, as we saw. Neutrino viscosity at an early

epoch can cause an initial anisotropy to decrease rapidly. At a later
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cosmic epoch (it is thought), after both neutrino and electromagnetic radia-
tion have become decoupled from cosmic matter, galaxies start to condense,

Perturbation theory is usually used to describe this condensation. The
theory has not been completely successful, however. In an expanding
model universe, a density perturbation typically grows too slowly for
galaxies to reach their present size, Large amplitude perturbations must
therefore be postulated to exist at a very early cosmic epoch if galaxies
are to evolve to presently observed density variations (106 factor in rela-
tive density). Random or statistical fluctuations in cosmic density are too
small to grow into galaxies in the 100 years since the time of matter-
radiation decoupling.

The Unperturbed Model

In anisotropic universes pertutbation theory begins with a simple,
spatially homogeneous model containing a smooth fluid. A concrete aniso-
tropic model is the general Bianchi Type I cosmology. The metric is

given in the coordinated basis {dt,dx!} by

[ez B ++\/r3.f3_v) 2(3+*\/§B ) o )2

ds? = —dt? 4 29 @x'y + e ~(dx

(14.19)
+ e‘4B+(dx3)2:} .

The stress-energy tensor is that of a perfect fluid:
T = (w+p)uhud” + pgh .

The pressure p is given in terms of the energy density w by the equa-
tion of state p(w), and the fluid velocity field has the form u*=(1,0,0,0).
The fluid has no rotation but does have shear, and the fluid velocity is
geodesic. A second model, the general Type IX cosmology, can allow
rotating matter. It is an especially interesting model in its own right, but
the complexity of the general Type IX model makes the study of perturba-

tions so difficult that only in special cases has such a study been per-

formed.
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The anisotropy functions B+ in (14.19) have the time dependence

B, = f bye’Pdt+ oy, (14.20)

where b, and c; are constants. The ¢y are arbitrary and can be set
zero through a coordinate transformation of the coordinates xi (i=1,2,3).

The expansion function { obeys the field equation (- = d/dt)
302 - _Le?ap?)esl . w (14.21)

where w is the energy density of the fluid. If the equation of state is

p=0W, 0= const, then w has the form

w = Me3(l ”7)9, M = const. , (14.22)

and (14.21) may then be integrated. The constant ¢ is less than or equal
1

to one because of the requirement that the speed of sound S [dp/dw]‘:;
be not greater than one. We then see the following fact: at {} = = (this
is the ‘‘Big Bang’’ singularity at t= tos where e“3Q = (), the anisotropy
“energy’’ (bi«z—bi ) dominates (or at least is of the same order of magni-
tude as) the energy density in affecting the expansion of the universe,
unless of course the anisotropy strictly vanishes.

This latter case, the “‘flat’”’ FRW model, will be discussed in detail,
and we will later describe briefly the effects of anisotropy on a density

perturbation. Its metric is a special case of (14.19):
ds? = —dt? + e 2 @x" ) + (@xH) + @31 . (14.23)

The interpretation of perturbation modes is especially straightforward in
the isotropic model, and this interpretation is the point of departure for

understanding perturbations in anisotropic models.
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Functions Describing the Perturbation of a Flat FRW Model
To write the perturbed metric we first choose a basis fdt,dxig. One
suitable basis uses a proper-time axis orthogonal to the three-space of
coordinates xi. In this basis 80 = — 1, 80; = 0, so that we have 3g80=
§g*3i = 0. The perturbed fluid velocity has components in spatial direc-
tions. (An alternate choice is a comoving basis, in which §g&a £ 0 but
su® = 0.)

We write the perturbed metric as

452 = —d? + =205 i h. ydxidxd (14.24)
1] 1}

The metric perturbation hij in turn can be Fourier analyzed in the usual

sense. This technique is applicable in the anisotropic Type I model also.
We therefore consider the single ““frequency’’ perturbation determined by
the wave vector k; (i=1,2,3)

s

ik x
hy; = ﬁij(t)e ,  k; = const. (14.25)

The perturbation in the fluid variables is likewise Fourier analyzed. We

write
ikgxS ik xS
Sw=Wte , Bp=Pt)e ,

s (14.26)

. iksx
8ua = iV (t)e , dug=0.

The last equation, 5‘u0 = 0, is a consequence of the conditions Sgﬁa:O.
The independent perturbation modes are now obtained by considering

components of the matrix Bij singled out by the k; vector. To project

out terms orthogonal to k; we define the projection operator kij = Sij -

k; kj/kz, k? = kg k. The matrix P is determined by the functions

- H’SS * )
= rstks /K

it ks Kig -

_ 1
mij = (kis kig — 5 kst kij)“st '

(14.27)

]

e e R
}

P
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We similarly break the three-vector V; into a “‘parallel’”” and a ‘“‘perpen-
dicular”’ part; A=V kg, By=Vik.
Independent Perturbations

At this point we can start enumerating the independent perturbations.,
There are six functions Bij The perturbed field equations fall into two
classes. In the first class are the constraint equations. These equations
allow us to express the five fluid variable perturbation functions W, P, A,
B, in terms of the metric perturbations and their first time derivatives.

To complete the specification of the five fluid perturbations it is usual
to carry over the equation of state p = p(w) into the perturbed model. The
ratio of P to W is taken to be the same as dp/dw. This function in
turn is taken to be the same function of time which is observed as the un-
perturbed model expands; (P/W = dp/dw = p/w). Such a perturbation is
called “‘adiabatic.”’

The second class of equations include the six propagation equations,
second order in time. When the fluid perturbation functions have been ex-
pressed in terms of Hij and ‘.‘ij’ these equations involve only the metric
perturbation.

Because the propagation equations are second order, the solution is
defined by two numbers for each of the six Kij- However, these twelve
numbers, the perturbation parameters, do not represent twelve meaning-

fully different types of perturbations. Instead, four of these numbers may

be set arbitrarily by means of gauge conditions.

Perturbation Equations in the Isotropic Case
The Fourier-transformed matter variables defined above are W, P, A,
and B, defined above. The Fourier-transformed metric perturbation

variables are u, &, {;, 7 i defined by (14.27). The perturbation equations

can be written in the form
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X2 u)k? - 20y - 2w (14.28a)
£ -~ = 2w+ p)A/K2 (14.28b)
= —2w+p)B; (14.28¢)
E-30f Qi 2 bk - Wop (14.284)
=20 = —W 3P (14.28¢)
£ -304, =0 (14.28f)
i m.m;,ij + ezgkznﬁ -0. (14.28¢)

Equations (14.28a) to (14.28¢) involve only the first time-derivative of
metric variables and are constraint equations. The remainder are propaga-
tion equations.

Equations (14.28¢, f, g) reveal the interesting fact that the propagation
equations of the individual components of the quantities ¢ ; and n;; are
independent of any other perturbation mode. The n;j are in turn indepgn‘
dent of any matter variable, and they obey a wave-like equation. The ':i
are proportional to Q2 because of (14.28f), and in turn are proportional
to the matter velocity variables B;. A precise interpretation of these
quantities is that the Ut represent gravitational waves and the ‘i:i repre-
sent rotations. There are two independent T (because 74 ki :.0 = Uss)
and four initial data values needed. There are two independent é’i
(because { iki = 0) and two initial data values needed. We shall return
to these quantities below and to the two extra initial data values needed
to specify not only ‘::i but also (.

The final perturbations, p and &, obey coupled propagation equa-
tions. The constraint equations relate them to W (and thus to P) and
to A, the ‘“‘paralle]’”’ component of the perturbed velocity. Four initial

data or perturbation parameters are needed to characterize p and £.
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Gauge Conditions

At this point we return to the full metric perturbation §gﬁwﬁ The
specification dg,, = 0 does not exhaust all freedom of setting coordinate
conditions, for there is still the freedom of positioning each t = const
hypersurface and of choosing coordinates within it. These freedoms are
represented by infinitesimal coordinate transformations which preserve
the conditions gyq =1, g4;=0.

We define the infinitesimal coordinate transformation by

oo P e FR (14.29

The change it produces in the metric is given by minus the Lie derivative
of g,, with respect to &F :Sg;w = »(535 g}w/ = —-(fﬂ;yﬂtfv;“?. The four

conditions 530:1 = 0 determine &* up to four functions of x' only:

£y = oy = —£°

(14.30)
rfi = —f i(e‘r“g‘fe2Q dt + e“‘ZQ fi(xk): e’“zgf‘ .
The fu are Fourier analyzed to yield four constants Fu:
ikgx® o ikgx®
f() = Fye . fi = 1Fie . (14.31)

Then the effect of the £ on Sgi j is determined and from that the effect

on the Fourier-analyzed metric perturbation variables.

The result is that a coordinate transformation is characterized by the

and F; of (14.31), and Hij is changed to

20}
Bij By +l:2kikj fe dt+ 2(181;}}“ + Fikj + iji . (14.32)

Fo

In consequence, the metric variables enumerated in (14.27) are changed to
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[T (Zkz fezgdt+ 69) Fy + EFSkS

£ & (2k2 f ezg§t+2§2)F0 + 2F (kg

2

(14.33)

We see that the ny; are gauge-invariant. So are the ‘ji' but not the
‘ii' All six of the initial data parameters involved in the éi and n;; are
therefore physically meaningful and determine the gravitational wave and
angular momentum content of the perturbation. The extra two pieces of
initial data needed to determine ¢ ; in addition to { ; are physically
meaningless, for they may be set arbitrarily by choice of the Fu (“‘setting
the gauge’”).

The two Fll not involved in the ¢; affect { and p and through
them the perturbation functions W, P, and A. Of the four initial data
parameters involved, therefore, only two are physically meaningful. It is
these perturbations which include sound waves (if p # 0). It is also these
which include protogalaxies. It is these whose slow growth in an expand-
ing universe does not permit a simpleminded, naive explanation of galaxy
formation solely on the basis of statistical fluctuations condensing

because of gravitational forces.

Density Perturbations in the Isotropic Dust Model
To obtain a feel for the growth rate of density perturbations, it is use-
ful to consider the case of dust. In this case both the unperturbed and
perturbed pressure vanish: (p = P = 0). The unperturbed metric function
Q(t) is given by integrating (14.21), using (14.22) with b+2 +b%-0, to
yield ) '
-3, C- const. (14.34)
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The gauge change effects shown in (14.33) for ;1 and & reduce to
L
wop - (Dt 34»4{“‘);?0 + G
(14.35)

1
E¢ - (Dtm§+§- t“‘) Fo+G,

F, and G = 2F_ k. are gauge constants, and D stands for %—C“zkz)
Examination of (14.35) shows that A may be made zero by choice of FO.
If B; happen to be zero because the perturbation has zero rotation, this
choice of F, is the same as choosing comoving coordinates. If the pres-
sure deesn;t vanish, the existence of sound waves prevents the elimina-
tion of A by this sort of infinitesimal coordinate transformation.

This choice of gauge is equivalent to setting £ = u+ E, E = const.
There is now only the one gauge freedom left p->pu+ G, £ -&+ G. The

perturbation equations (14.28a, b, d, ) now reduce to the one equation

4
e 2t %. C-2EK%t 3-0. (14.36)
and W is given by
4
W-C2Et 3+ g. =1 (14.37)

4
The solution of (14.36) shows that W= Kt 3, Kzt“s, (X,,K, con-
stants). The density contrast W/w is therefore:

2
w L1 3 4 L2 t"’l, L1 s L2 constants, (14.38)

wx

Thus the density contrast can grow, but at most as a power of time. If

the pressure does not vanish, no striking change in the growth rate of the

density contrast is seen.
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Perturbation Modes in the Anisotropic Model
In the anisotropic model the perturbation is again represented by a

3% 3 matrix hij' In the {dt,dx!] basis we have

Oggg = Ogp; = 0,
(14.39)
Sg.. - o282 20 (2
TR Py 5 G khig e Py,

Again the functions hij are Fourler analyzed, and a single frequency is
<5
selected for detailed examination: hy; = ny5(t)e S . Finally the i

matrix is separated into the fanctmns @, £, gl, Ut defined by

m=hgsr &= ngiksky gt/
(14.40)

th
&= #gt kg key, and N5 = (kska 2g ksp Bic c;)gsa"at

One additional function proves to be useful. We know that the anisotropy
matrix 8 obeys Bij = Bij e3Q(Bij = const, B, = 0) (see 14.20). From
the Bij comes the definition 6 = Bij Bijs where 6 is a linear combina-
tion of the functions already defined.

The analysis of the perturbations proceeds as in the isotropic case.
The perturbation equations are written down, and either a numerical or an
exact solution is sought. Again the separation into constraint and propa-
gation equations is made. The constraint equations relate the perturba-
tion functions to the fluid perturbation functions W, P, A, B, defined
earlier. The propagation equations are ordinary linear differential equa-
tions, second order in time, in Rij- The general solution involves 12

initial value parameters. As in the isotropic case, four of these parame-

ters are affected by gauge transformations.

Independent Modes. in the Anisotropic Case
It is discovered that the two { ; are changed by an additive constant

under a gauge (infinitesimal coordinate) transformation. As in the
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igotropic case the éi are guuge invariant. Again as in the isotropic case,
each ‘ii is found to obey an equation which contains no other perturbation
function. As in the isotropic case, g‘:i has the interpretation that it is
proportional to the rotation of the cosmic fluid. The simple, decoupled
behavior of rotation in these models is due to the absence of rotation in
the unperturbed model.

The U functions are not decoupled from p and & in the anisotropic
case, however. The gravitational waves, in other words, are affected by
the density perturbations. The analysis of these modes has recently been
carried out in detail by Perko, Matzner, and Shepley (1972), a preliminary
analysis having been carried out by Doroshkevich (1966) in an axially-
symmetric, anisotropic model.

The analysis of density perturbations is simplified if k; is an eigen-
vector of ‘Bij (that is, an eigenvector of Bij). Thus, for example, we
may choose coordinates so that S ij is diagonal and k; has a component
only in the ‘‘three’’ direction. In this case one of the two independent
components of i does obey an equation independent of all other pertur-
bation functions. This component is gauge invariant and does not affect
the fluid variables. It represents one mode of gravitational waves.

The other mode of gravitational waves is coupled to the pressure per-
turbation P, the density perturbation W, and the ‘‘parallel’”’ velocity
perturbation component A. This coupling is due to the presence of fluid
shear in the unperturbed model. It is here that the variable 8 is useful.
The second order differential equations for u, £, and 8 are all coupled.
The general solution involves six parameters (initial data) of which two

are affected by gauge transformations.

Effect of Gravitational Waves on a Density Perturbation
The effect of the coupling of gravitational radiation to density pertur-
bations can be spectacular. In certain cases the density perturbation
grows at a much faster rate as the model expands than in the isotropic

case. Even in these cases, however, the perturbation grows as a power
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of t. There is no exponential growth such as Jeans (1929) predicted in a
stationary cloud of gas.

There are two effects due to the anisotropy. The first is due to the
different growth rates of the background metric in different directions. If
the wave vector k; is oriented in a direction with rapidly growing metric
component, a slow growth rate of the density is observed. Alternatively,
a direction of slow background expansion corresponds to rapidly growing
density contrast.

The second effect is the coupling of the i “‘gravitational wave”’
mode, to the density perturbation because of the background anisotropy.
Energy may be fed from a gravitational wave into a density perturbation
or vice versa. This second effect could be of great importance in the
theoretical discussion of galaxy formation should some independent esti-
mate of initial cosmic gravitational wave density be obtainable.

The overall growth rate of a density perturbation — with all the effects
of gravitational waves and anisotropy included — may be much higher or

much lower than the corresponding growth rate in an isotropic universe.
8

The upper limit is a density contrast growth rate of W/w « t3 or less.

This is an upper limit, and is a power-law rate of growth.

The Making of a Galaxy

The observed structure of galaxies is consistent with a formation time
of about 108 years. In an isotropic universe, radiation and matter de-
couple when the temperature drops below about 3000 K, at perhaps 10°
years after the Big Bang. Even if the large limit of growth rate in (14.38)
obtains, galaxies cannot form in 108 years starting from a random pertur-
bation at t = 10° years. The proof of the above statement is a naive one:
a galaxy contains about 1079~ N particles {photons, etc.), and a random

perturbation of galaxy size at t = 10° years is of relative magnitude
1 8

10735 ~ N 2. In the limiting case of t3 growth rate we thus have

W/w=10"%7 at t= 108 years.
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In contrast to this small value of W/w, we expect that a value of
W/w of about 1 is needed before non-linear effects take over to initiate

rapid condensation. In fact, if W/w is about 1% at t= 10° years,
2

then by 108 years, even at the low growth of t3 in the isotropic case,
(14.38), we have W/w =1 at t=10® years. Rapid condensation to the
observed density contrast between galaxies and intergalactic space
W/ w ~ 106} then ensues.

The effect of anisotropy is more than an enhancement of the growth
rate, however. There is also an effect which may allow a random pertur-
bation to commence at a time earlier than t = 10° years. In any model,

a given observer can ‘‘see’’ all matter within a distance called the horizon
size. A quick calculation shows that the horizon included a total mass of
much more than one galaxy at t= 10°% years in the isotropic model. In
the anisotropic model, some directions have even larger horizons. If one
postulates that a random perturbation occurs and starts to condense sooner
when the horizon is larger, then even larger density contrasts are computed
-~ none of the magnitude needed for galaxy formation, however.

Alternatively, one can postulate an initial perturbation which includes
matter not seen by an observer at the center of the perturbation (not seen
because light has not had time since the Big Bang to reach the observer
from the edges of the perturbation). Peebles (1971a) makes such a
postulate — a postulate of white noise perturbations — at early cosmic
epochs. He concludes that it is quite reasonable that globular clusters
result — conglomerations of perhaps 10° stars — in a reasonable time.

Galaxies (1(}11 stars) then presumably form from these clusters.

Does Each Galaxy Contain the Imprint of the Big Bang?
Peebles’ result is especially provocative in that it draws attention to

the initial singularity. The initial perturbations he postulates do not have
1

the N 2 spectrum of random perturbations. Peebles suggests that the

existence of galaxies shows the imprint — the structure — of the Big Bang

itself.
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Is Peebles’ postulate of large initial perturbations necessary? We did
not calculate horizon sizes in our anisotropic models because the horizon
may be infinitely large in a more realistic model. Misner;s mixmaster
model has directions in which a given observer can send or receive signals
completely around the universe — and these directions are continually
changing. One can argue that in such a model the W/w = 10735 perturba-
tion associated with a galactic mass occurs at a time much earlier than
t=10° years. Although the power law rate of growth varies drastically
with direction in an anisotropic model (depending on local expansion rate)
the continual shifting of directions in the Mixmaster mode! should result
in an average power law W/w = t7, with o ~1 (certainly ¢ > 0) (the
beginnings of this calculation have been given by Hu and Regge, 1972).

An early enough perturbation then can result in W/w ~1 by t= 108 years.

This is the unsolved problem of galaxy formation theory: Can a random
perturbation result in a galaxy-sized condensation within about 108 years
after the initial singularity (the Big Bang)? Or does each galaxy contain
within itself a structure — the shape of the initial perturbation — left over
from the Big Bang? Mést arguments — those presented in this section —
indicate the latter possibility, that to understand galaxies one must under-
stand the initial singularity. And then one must again ask: Was the Big
Bang a truly singular region or was it merely an epoch of rather dense

meiter — or was it an epoch when the laws of classical physics themselves

were inoperable?



15. FINAL REMARKS:
WHAT IS, WHAT IS NOT, AND WHAT SHOULD BE

The great tragedy of science — the slaying
of a beautiful hypothesis by an ugly fact
~ THOMAS HENRY HUXLEY

15.1. A Potpourri of Cosmological Subjects

In a book of this kind one necessarily leaves out certain subjects.
Instead of covering such subjects in detail we will here present them in
outline form. Our personal preferences are clearly toward the mathemati-
cal end of this subject. What we have left out, therefore, are areas of
primarily astrophysical or physical content. The general categories we
will outline here include cosmogony and the physical universe as well as

cosmological aspects of theories which compete with general relativity.

The Physical Universe

Relating mathematical forms given for cosmological models to the
actual physical universe is one task of observation. The most distressing
thing about the observations is the paucity of results which can allow one
to distinguish first, among the various cosmological models in general
relativity, and second, among competing cosmological or gravitational
theories. An excellent review of observations up to the present time has
been given by Peebles (1971b). The observations of most importance to
cosmology include the existence and isotropy of the 3K black body radio
background, the density of matter and radiation in our immediate neighbor-
hood and at cosmological distances, and the red shift versus magnitude
relation.

One of the earliest and most striking observations — the one that

actually founded modern observational cosmology — was the detection of
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the red shift versus magnitude relation by Hubble (1936). Important recent
criticisms of this most fundamental of observations have been reviewed by
Burbidge (1971) and Segal (1972). In spite of the strength of many of
these criticisms, we have accepted the Hubble law at least to the extent
of discarding the model universes homogeneous both in space and in time.
These models, of course, should be reexamined should it turn out that the
red shift of distant galaxies does not indicate & universal expansion. Per-
haps it will only be when the mystery of the quasar red shifts is solved
that the validity of Hubble’s observations will be verified.

The best current numerical value for the Hubble parameter is found in
Sandage (1972, 73). Of course, it must be assumed that his value does

give a true indication of expansion. The numerical value is

£ _1. d...l...e.x ......_.,..._..km = ? 9 -1
H = B ot 55+7 Sec-Mpe [(18+2)x 107 years]™" . (15.1)

Sandage also gives a value for the deceleration parameter g:

q=--L @R _go6+04. (15.2)
RH? 4t

This value seems to indicate that the universe is closed, that is, a Type
IX model. The error in q, however, is so large that no one model can be
preferred over another.

1t is unfortunate that the state of the observation of the deceleration
parameter q is in such a primitive condition. If q really is the value
that Sandage gives, then the universe is a Type IX model and therefore
will recollapse eventually. If, on the other hand, the low observed value
for the density of luminous matter is accepted, then the universe is a
Type V model, and no recollapse will ever occur. Although apparently
only of academic interest — for such recollapse will not occur for many
dozens of billions of vears in any event — a proof that our universe will
turn around would be very provocative. If our universe is actually shown

to be a Type IX model the old theories of a bouncing or cyclic universe
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spring immediately to mind. Perhaps it is true that some mechanism exists
that will take the universe through the collapse phases predicted by the
cyclic nature of the closed FRW model.

The measure of the total density of matter and radiation, even in our
neighborhood of the cosmos, is in much cruder shape than the red shift —
magnitude relation. Matter which is luminous has density about equal to

(Peebles, 1971b).
pp = 2x 1073 gm/em?. (15.3)

This value for the density is much lower than that needed to be consistent
with a closed or Type IX model. The value of p;, if indeed luminous
matter represents a substantial portion of the total matter of the universe,
would indicate an open or Type V cosmology and would therefore be incon-
sistent with Sandage’s value of the deceleration parameter q. If there is
a substantial amount of invisible matter (by substantial we mean hundreds
of times more than p ) it is certainly possible that the total matter
density would be consistent with Sandage’s value of g. Of course, people
are continuing to look for such non-luminous matter (Peebles, 1971b).

Perhaps the most significant of all observations is the discovery of
the 3K black body radiation. This radiation is taken by most to be an in-
dication that the universe was once very hot and dense. The spectrum of
this radiation seems to be close to a black body spectrum, with a tempera-
ture of 2.7K (Penzias and Wilson, 1965; Dicke, Peebles, Roll, and
Wilkinson, 1965). Just as important as the spectrum and temperature of
this radiation is its isotropy. One of the most remarkably precise measure-
ments in cosmology shows this isotropy to be better than a part in 103
(Partridge and Wilkinson, 1967). Isotropy measurements directly from the
red shift magnitude relation are not at all significant and perhaps can
never be made as precise as the black body isotropy determination. The
black body isotropy measurement, however, shows us that models which
are presently isotropic are definitely to be preferred, for this radiation

passes freely through matter in our cosmic neighborhood. It is an indica-
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tion of the isotropy as far back as the cosmic epoch when the temperature
was 3000 K (but not a definitive indication, see Misner, 1968; Collins
and Hawking, 1973b). This temperature occurred only about 10° years
after the initial singularity. The universe could have been enormously
anisotropic before this epoch, and it is for this reason that we have
studied such model universes.

Other observations include those of greater importance to cosmogony.
The relative abundances of helium and other elements will be briefly dis-
cussed later. Still other observations have been proposed and indeed
would be useful could they be carried out with any precision. The most
striking of these is the suggestion that correlations among the orientation
of galaxies be determined. Such a correlation could show that the rotation

of the universe was significant during the formation of galaxies.

Cosmogony

Although the dictionary defines cosmogony as pertaining to the crea-
tion of the universe, most researchers mean by this term the theory of the
creation of the chemical elements and of galaxies. The greatest success
of this theory has been in the description of the relative abundances of
heavy elements. Unfortunately for cosmology, this theory indicates that
heavy elements are produced in stars and therefore pertain to stellar
physics and not to cosmic physics. The abundance of the very light ele-
ments, however, in particular helium and deuterium, is affected signifi-
cantly by the very early epochs of the cosmos. Observations of helium
abundance are still in a very primitive state. What is desired is a measure
of the primordal helium abundance, that is, the helium abundance at the
time when galaxies and stars were just beginning to form. A typical
result is that of Iben and Rood (1969) which gives a value of 25% for the
helium abundance. This value is consistent with the temperature history
of the simplest cosmologies, namely the FRW models (Peebles, 1966).

The value, however, is recognized to be not definitive and other cosmolo-

gies are definitely not ruled out.
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Perhaps of more significance than the helium abundance is the abun-
dance of deuterium. Although its cosmic abundance is quite poorly known,
its galactic abundance is better known (for example Rogerson and York,
1973}). The cosmic abundance of deuterium would be a relatively sensi-
tive indicator of the early cosmic temperature history (Reeves, Audouze,
Fowler, and Schramm, 1973). The galactic deuterium figure, if it is
accepted as the cosmic abundance, implies present cosmic matter density
not different by more than an order of magnitude from the luminous matter
density of about 2 x 103! gm/cm?.

Most cosmogonic theories assume that the entire content of the uni-
verse is matter and not anti-matter. Whereas high energy processes can
produce both matter and anti-matter, the fact remains that locally there
seems to be no anti-matter. It is not known whether other stars, other
galaxies, or other clusters of stars are anti-matter. Several theoretical
models have been proposed in which matter and anti-matter coexist at an
early stage and separate into pockets at later stages (in particular, see
Omnes, 1969). These models do not seem to be consistent with observa-
tion, for it is known (see Steigman, 1973) that there are no gamma rays
which would occur from the interaction (‘‘leidenfrost’’) of matter and anti-
matter in the nearest intergalactic regions. Many people believe observa-
tion rules out the most naive of the matter and anti-matter cosmologies.

An especially fascinating idea in cosmogony concerns the origin of
the fundamental particles themselves from which the entire matter content
of the universe is built up. This idea suggests that quantum processes
produce particles from an initially empty universe. By an initially vacuum
universe is meant one which contains only gravitational radiation at its
start. By application of curved space quantum mechanics, Parker (1971,
1972a, b) has computed the particle production in various cosmological
models. His results show that there is indeed particle production, but
unfortunately as yet no precise numerical values for the total number of
particles has come out. The basic problem with this type of theory is

that particle production is not covariantly defined, and indeed it is
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possible to have particle production in a completely flat manifold. For

example, in a manifold with metric
ds? = —di? + f{t}dxz + dyg + dz?

there is particle production, although if f(t) = t? the model is flat. Other
earlier theories (e.g., Sexl and Urbantke, 1969) give some indication of
the total number of particles which would be expected from a theory of
this kind. This number is only very roughly the same as the observed
1080 value. Of course, any theory which predicts the complete produc-
tion of observed matter from gravitational waves would result in a uni-
verse with equal numbers of baryons and anti-baryons, assuming of course
that the fundamental laws of baryon production are indeed charge-reversal
invariant in a curved spacetime.

At the very first few moments of the existence of the cosmos the
matter is believed to be extremely hot and dense. A full detailed descrip-
tion of this epoch therefore requires knowledge of a realistic equation of
state and knowledge of the realitivistic thermodynamics or statistical
mechanics which govern the evolution of matter. Such a discussion, how-
ever, is more appropriate for stellar collapse problems than for cosmologi-
cal applications for two reasons. First, unless the real universe is
exactly isotropic or contains matter so stiff that the speed of sound is
equal to the speed of light, then the effects of anisotropy will dominate
any matter effects right at the initial stages of the universe. Second, the
universe very auickly expands to the point where the matter density is
sufficiently small that a highly relativistic equation of state is not neces-
sary. For example, at the epoch when the temperature has dropped to
about 3000 K the density of matter has fallen to about one gram/oms. It
is at this epoch that galaxies are thought to form. Indeed a full theory of
their formation would include the effects of a non-relativistic, realistic
equation of state and of magnetic fields and of radiation (Field, 1974).

It may, however, turn out that a hewristic treatment of the singularity is
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possible using a strongly relativistic equation of state of the type en-
visaged by Bahcall and Frautsche (1971), Hagedorn (1970), or Bowers and
Zimmerman (1973).

Other Cosmology

The use of quantum field theoretic processes to explain particle pro-
duction represents one extension of the ideas of the classical theory of
general relativity. In cosmology certainly other theories of space and
time have been and are being employed. Surprisingly, it is only recently
that Newtonian cosmologies have been looked at (Milne, 1934; Milne and
McCrea, 1934; Heckmann, 1942). It is especially interesting to note that
homogeneity may be described in Newtonian gravitational fields so that
examples of most if not all of the Bianchi types of cosmological models
are possible in this description (Hibler, 1971). Cosmologies employing
the Brans-Dicke theory of gravitation have also been described. Still
more esoteric theories of space and time which either incorporate quantum
field theory explicitly or which envisage a lattice or foam structure, or
indeed some more strange structure still, have not found much useful
application in cosmology.

From the opposite point of view observational cosmology has certainly
been used to suggest a search for theories of spacetime and gravitation.
There are three especially important examples of this interaction of cos-
mology and gravitational theory. The first is Einstein’s inclusion of a
cosmological constant to allow the construction of a static model. The
second is the theory of spacetime which gives rise to the steady state
cosmological model of Hoyle (1948, 1949), Bondi and Gold (1948), and
their group. The third example is the use of the numerology of Eddington
{1959) to suggest to Jordan (1952) a whole class of gravitational theories.
The most important members of this clags are the Brans-Dicke theories.

Brans and Dicke (1961) found the equivalent of the FRW models and
recently Matzner, Ryan and Toton (1973) and Nariai (1972) have computed

the anisotropic cosmologies. This competing theory of gravitation
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envisages a scalar field in addition to the metric tensor as being the
cause of the gravitational force governing cosmic expansion. The cosmo-
logical models differ in some details from the general relativity cosmolo-
gies and in particular predict a slightly different helium abundance from
that predicted by general relativity. The observed helium abundance is
consistent with general relativity, but is sufficiently inaccurate that a
Brans-Dicke model is not ruled out.

The other important example of a non-relativity cosmology is the
steady state universe. From a philosophical point of view this universe
is most attractive, for it avoids any singularity. It was proposed for this
reason and led to a modification in the law of conservation of mass and
energy. It basically uses the DeSitter line element (DeSitter, 1917), which
satisfies Einstein’s field equations only with a cosmological constant.

By including continuous creation of matter the cosmological constant is
eliminated. Although this model was quite popular in the 1950’s and

early 1960’s, only a few die-hards are left who now still try to fit this
model to observations. The death blow was the discovery of the 3K
black body radiation causing most researchers to believe that the universe
was hot and dense at one time.

In our discussion of cosmological models we concentrated our efforts
on those which are homogeneous. Our concentration was based on two
reasons: The first is that homogeneous models are much easier to handle
than inhomogeneous ones. The second reason, however, is that the real
universe apparently is homogeneous, in that matter appears to be smoothly
spread provided large enough volume averages are taken. Although matter
is concentrated in planets, stars, galaxies and clusters of galaxies, there
does not seem to be any strong clustering on a larger scale. There are,
however, weak indications that such large scale clustering may exist.
DeVaucouleurs (1970) has put forward some interesting observational in-
dications that clustering may exist at all orders, superclusters being

clustered themselves and so forth, Needless to say, a hierarchical model
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as envisaged by deVaucouleurs could not be handled by the techniques of
this book. Many of the techniques we discussed, however, could handle
the models which are only weakly inhomogeneous, for example, using a
high order perturbation theory. Strong large scale inhomogeneities of a
particular type may also be treated (Gowdy, 1971; Ryan, 1972b).
Unconventional cosmology can also mean a conventional metric in a
manifold with unusual topology. For example, the FRW models involve a
three-space of constant curvature, but the global topology of these t =
const. hypersurfaces is not specified. In fact, many different topologies
may be consistent with a given metric form (Wolf, 1967). There may be
interesting physical effects dependent on global structures as distinct

from localized fields (Wheeler, 1962b; Ellis, 1971a).

Relativistic Astrology and Religion

Most modern astrologers seem unaware of the advances that Einstein-
ian relativity has brought about. Indeed, most modern astrologers seem
unaware of modern astronomy. The Newtonian effects of the precession
of the equinoxes have not been incorporated into most astrological compu-
tations (but see Schmidt, 1970). The corrections due to relativity, and in
particular, effects due to the continual expansion of the horizon in FRW
models have not even been remotely envisaged by researchers in this
area.

Some fideists have taken a serious view of the relation between rela-
tivistic cosmology and religion (Milne, 1952). The necessity of the singu-
larity in general relativity can be taken as an indication of the creation
of the physical universe by theological agents. A modern point of view
has been expressed by Misner (1969¢) who, however, does not use theo-
logical terminology. A dedicated anti-religionist may even feel disposed
to deny those models in which there is a singularity (compare Bobin,
1960). We ourselves dislike singularities but rather from the point of

view that every effect must have had a cause which is physical in nature.
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15.2. A Call to Arms

Foremost among the problems of cosmology are observational studies,
but many theoretical questions also beckon. As orbiting observatories
become more common we should expect a flood of answers to observational
quastions, provided only that sufficient observing time is made available
to cosmologists. Theoretical advances will be in the direction of explain-

ing physical phenomena as well as development of the formal theory.

Desirable Observations

While many observations of importance to cosmology may be performed
from the surface of the earth, others of necessity should be performed
from an orbiting observatory. The atmosphere is not transparent to certain
portions of the electromagnetic spectrum, and these portions include wave
lengths where especially important information may be available. The
infrared, ultraviolet, and x-ray portions of the spectra of distant galaxies
and of background radiation could yield vital clues as to the nature of the
early cosmos. Because of the cosmic redshift, the infrared spectrum in
particular would be most informative.

The observations which are perhaps of greatest urgency and which
can be performed from the surface of the earth include the following: a
good determination of the deceleration parameter, whether there is signifi-
cant invisible intergalactic matter, the average cosmic abundance of
helium, deuterium and other significant isotopes, an estimate of any large
scale inhomogeneities, a limit on the anisotropy of the Hubble redshift
parameter, and whether galaxy orientations are correlated. The above
list is mainly optical research, and other types of observation give cosmic
information. In particular, the measurement of the black body radio back-
ground should be refined to see whether absorption or emission lines of
cosmic significance exist, and just how isotropic this background is.

Observations that are not concentrated in the electromagnetic spec-
trum include neutrino astronomy and its application to cosmology, finding

cut whether there is a gravitational radiation background and if there is,
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whether there is a black body spectrum of gravitons, and observations of
high energy particles and photons which would come from Leidenfrost
radiation at the boundaries of sections of the universe that are matter and
anti-matter.

A list of desirable observations in order of their priority is:

1) The determination of the deceleration parameter and the amount

of invisible intergalactic matter.

2y Observations in the infrared, x-ray, and non-visible radiation.

3) The amouat of large scale inhomogeneity in the universe.

4) The relative abundances of various isotopes in the universe.
Of course, the ease of doing certain of these experiments may mean that
the results will come in a different order. It is important to a number of
these observations to make the use of orbiting observatories practicable
as soon as possible.

Theoretical Studies

Although theoretical programs may seem to be of less urgency than
observational studies, we must be prepared for unanticipated experimental
results: Surprises continually occur in astronomy. For example, although
the discovery of pulsars was completely unexpected, rapid understanding
of these objects was facilitated by early work on gravitational collapse.
In observational cosmology programs can be described with some degree
of definiteness, but in talking about future theory only directions can be
pointed out.

The most vague but vital program which will hopefully be carried
through in coming years is the application of quantum principles to the
universe. The quantum field theory of gravitation is still in dispute.
Even the interpretation of basic quantum principles as applied to the
structure of space and time is in doubt. These controversies must be re-
solved before any significant application to cosmological studies can be
made. It is important to find quantum solutions which correspond to the

known cosmological models, but it is the details of what goes on at the
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epoch where a classical model has a singularity that are the most signifi-
cant and which are most effected by detailed interpretation of quantum
principles.

Such problems as particle production and the formation of galaxies
may need entirely new physical theories, while other advances will be
applications of well-known gravitational theories and electromagnetism.
Until a good quantum understanding of the early universe is achieved, it
may be necessary to postulate in an ad hoc way initial conditions to be
applied within these theories. Further, it is by no means impossible that
the understanding of galaxies and the cosmic number density of baryons
can be achieved within known theoretical constructs, and further study of
these problems within general relativity is certainly called for.

An example of new applications of general relativistic cosmology
would be the study of inhomogeneous solutions. Study of inhomogeneous
models is needed to confirm or confute chaotic cosmology. Chaotic cos-
mology is the idea that any initial conditions at the singularity lead to
the FRW univetse we see today. Especially if this idea is not true, we
need to study inhomogeneous and anisotropic exact solutions to outline
the range of initial conditions which lead to cur present universe. A pro-
gram such as chaotic cosmology is a call for new cosmological solutions
which do not necessarily match the present universe but which may be a
model for an earlier stage of evolution.

There are many computational problems which should be carried
through and which do not invelve any major changes in existing theory.
The most important of these problems is a study of the early stages of
the universe thought of as a plasma. Relativistic magneto-hydrodynamics
is a difficult theory to work with but has the potential of producing signifi-
cant results in a moderately short period of time. Within general relativity
itself further study of perturbations and especially perturbations of rotat-
ing cosmologies is called for.

Finally, in this list of theoretical problems we mention further study

of the nature and structure of singularities within general relativity.



272 15. FINAL REMARKS

Although much has been accomplished in this study, too many people are
forgetting that there is still much to accomplish. In particular, the rela-
tionship between mathematical and physical singularities as we have de-
fined them here is only very poorly understood. It cannot be overempha-
sized that this question remains as vital as it has always been.

In order of decreasing priority we suggest the following list of theo-
retical programs:

1) Inhomogeneous models.

2) Quantum general relativity applied to cosmology.

3) Singularities.

4) Magneto-hydrodynamics, particle and element production, and
galaxy formation.

5) Resolution of the mystery of quasars.

Interest in cosmology has fluctuated over recent years, and of course,
there is no guarantee that the coming decade will find the cosmos fashion-
able. During the next ten years, however, the world of astrophysics will
be flooded by new astronomical data, many of which will contain surprises
on a cosmic scale. Let us hope that response to this flood of information
will be a flood of answers not only to the questions we now consider im-

portant but to those questions that will come into prominence.
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Now [ tell what I knew in Texas in my early youth
~ WALT WHITMAN

For each chapter we have given problems of varying difficulty:

(no asterisk) = exercige
* = difficult problem
*k = difficult research problem requiring
new insights

At the end of the list are several briefly stated guestions, again graded

according to the above chart. The * and ** problems are meant to be
suitable for Masters’ and Doctors’ theses respectively, and so far as we

can tell, none have yet been satisfactorily discussed.

Chapter 1
1.1. The Einstein Universe (Einstein, 1917) is a static cosmological
model with compact (finite volume) t = const. hypersurfaces. Be-
cause it has finite total matter content, one might expect a resolu-
tion of Olbers’ paradox — that is, that the sky as seen by an
observer would be expected to be dark. Show, however, that if the

cosmos really was an Einstein universe of infinite age, the sky

seen by any observer would have the brightness of a stellar surface.

1.2. Compute the time of fall T for a radially travelling projectile
dropped at rest at distance R from a central point mass M assum-
ing Newtonian gravity and mechanics. Determine the numerical
values of T for three situations: a) R= 10'lem, M = 1033gm.

T is roughly the time scale involved in stellar gravitational col-
lapse. b) R= 10%%em, M = 1044gm. T is characteristic of the
formation time of a galaxy. ¢} R= 10%8cm, M = Iﬁssgm. T is the

f the universe.
age o iver 73

Walter Whitman

(1819 - 1892)

From "Song of Myself."
Whitman was born and
brought up on Long Island;
he never visited Texas.
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1.3. Consider a sphere of uniform density p rotating with angular

*1.4.

velocity w. What is the minimum radius to which it can collapse
if it always remains a sphere? Assume conservation of mass and

angular momentum, and use Newtonian mechanics and gravitation.

Study the evolution of a mass of fluid whose initial state of motion
is that of the sphere of Problem 3. Can this study be done ana-

lytically or must it be carried through numerically?

Chapter 2

2.1.

2.2.

2.3.

Give a coordinate system on the 2-sphere $? which entirely
covers it except for a single point. Find explicitly a vector field
{everywhere differentiable) on S? which vanishes only at one
point. Show that any vector field on S? must vanish at least one

point and therefore S? cannot have a globally defined basis of

vector fields.

For physical reasons it is sometimes desirable to consider a
metric which is “‘piecewise CZ,” that is, the metric g is c2
except on a set of hypersurfaces, and ct everywhere. To illus-
trate, let f:M > R, and assume df £ 0 at a point p where

f(p) = 0. Prove that in a neighborhood of p the locus H of
points such that f= 0 has the structure of a manifold. Let H
be so small that it is coverable by a single coordinate patch and
extend this patch on H to a coordinate patch in M by using the
coordinates in H plus the function f. Find the general form of a
metric g which is piecewise c?, being c? except possibly on
H, by finding the general functional form of its components in the

frame {df, dxi§ where xi are coordinates on H.

A C!'7 manifold allows the existence of functions and coordi-
nates which may be c!7 but not of higher differentiability. Let

V be an operation on these functions which is linear
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2.5.

2.6.

2.7.

2.8.
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V(E(p) + g(p)) = VE(p) + Va(p)

and a differentiation operator:
V(fg) = gVf+ fVg .

Find sucha V which is not expressible in terms of any basis of
the form d;. For simplicity, assume the manifold is one dimen-

sional.

Let u;,---,u, be linearly independent vector fields (r < n= dimM)
which commute: [ai,uj} =0 forall i,j. Let p be any point in M,

Prove there is some coordinate patch about p in which u; = 8i‘

Prove that the commutator satisfies the Jacobi identity in a general

basis of vector fields (coordinated or non-coordinated).

Let T= tijk 8i®dxj ®dxK in a coordinate neighborhood N, coordi-
nates {x'l. Consider a second coordinate neighborhood N, coordi-
nates %'} and let T = “t-ijkg@fi?j@d_xk in NN N. Since the

x! are functions of ¥' in NN N, the matrix of functions
(8xi;’c?i’j) is invertible there. Find ?ijk i‘n terms of tijk,
(9x'/9%1), and the inverse matrix (I%'/dx)).

Suppose iXii is a basis of vector fields and Cijk is defined by
the equation [X;,X; } = CS S' Let {w!] be the one-form basis
dual to {Xi}. Prove that dcu = -%C’ £’ S Aw!. Suppose A=

kX 8wi®wX and U= uSX_. Define a! ki | by the equation
V’ A = a Jkgugx ®m3®wk®w , and compute al ikt in terms of
E ]k and the connectlon coeff;cxents ri ik defined in the text.
Also show that C ik = F " ri ik’ provided torsion vanishes,
and complete the proof leading to the First Cartan equation.
Prove that R(U,V,W,») is linear in each term. By linear we mean
linear over the set of functions, so that R(flU1 + f2U2 N W)=

f,R(U,,V.W,0) + [,R(U, V. W,0) where f,,f, are C™ functions.
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If the Riemann curvature tensor field R has components Rijkg
defined in a general basis by R = Rijkg Xi®@i®wk@w€, find an

expression for leii and thereby prove the Second Cartan Equation.

Chapter 3

**3.1.

3.2

3.3.

3.4

Relativistic kinetic theory (Taub, 1967) has been used to show that
0<p< %;w where p = pressure, w = energy density. Which of the
assumptions may be modified in a physically reasonable way to
produce in certain circumstances a strongly negative pressure or a

pressure greater than %w?

Show that the conservation law for a perfect fluid [(w+ pyuHu® +
pe] = 0, the continuity law (pug); o= 0, and the entropy law
#dS = de + pd(1/p) are not independent of S uu“ = 0. Note that
w=p(l+e).

. - . V1 iL n -
The full Bianchi identity R vaBiy * R vBya t R vya;B 0 holds
in any manifold. Its first contracted form is Rvﬂ;y - RV}’;B +
Rauﬁy- o= 0. Its second contracted form is intimately connected
to the conservation law TH”_ =0 as described in the text. Show

that if the dimension of M is 4, the full Bianchi identity and its

first contracted form are in general the same.

We derived equations for Q,Mu“ and w,uu‘i in the text in terms of
rotation, shear, expansion, and R‘W‘ To derive equations for
w“ﬁyﬂu“ and aaB’ uu“ {that is, for the evolution of rotation and
shear as seen by an observer with velocity u#) requires use of

the full Bianchi equation, in first contracted form as described in
the previous problem. Derive these equations. Part of the Riemann
curvature tensor is determined by matter variables through Einstein’
field equations, but the remaining curvature tensor components
represent in some sense gravitational wave energy, which interacts

with rotation and shear through these equations.
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3.5. What is the analog of Raychaudhuri’s equation in Newtonian cos-

mology? What does it say about the effect of rotation in a collaps-

ing Newtonian cosmological model? (See Ellis, 1971b.)

Chapter 4

4.1.

4.2.

4.3.

Consider a spherically symmetric star with radius R(t), using
Newtonian mechanics and gravitation. With the assumption that
the density p is a function only of t, and that the velocity has
the form vl(t)v2(r)? (r'= unit radial vector), show that the outer
radius R does not affect the dynamics. This fact is the basis
for Newtonian cosmology, and therefore find the general solution
for p(t) if the pressure p is assumed identically zero. (Also

see Problem 3.5.)

Solve the geodesic equation for the general path of a freely falling
test particle in the closed, open, and flat FRW models. Null geo-
desics are particularly important, and you should decide whether
any observers can ever see completely around a closed FRW model.
See the section on horizons in Type I models, and especially see
Schrodinger (1956). We chose particularly simple spaces of con-
stant curvature for the t = const. hypersurfaces in these models,
but Wolf (1967) shows that others should be considered, too. What
physical effects could be seen if an unusual global topology

actually existed in the t = const. hypersurface which best fits the

real universe?

Although we illustrated the solution to (4.20) in Figure 4.3, we did
not exhibit the exact solution. Find it. The functional form of
R(t) in the dust case is that of a cycloid if k=1, also known as
the solution to the brachistochrone problem. Discuss the signifi-

cance of this coincidence in terms of a variational principle.
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*4.4. Find a general cosmological model filled with n fluids, but having
the overall symmetry of an FRW model. The velocity of any one
fluid should not be taken as hypersurface orthogonal, and the fluids
may or may not be postulated to interact. Notice that care must be
taken to avoid anisotropic terms in the total stress-energy tensor,
for although the perfect fluid criteria deny anisotropic stresses in

THY for a single fluid, the sum of two such fluids may produce an

anisotropic total.

*4.5. Ni (1972) has produced a rather general scheme for generating
theories to compete with general relativity. Which allow cosmo-
logical models of the FRW type, and can cosmological observations

rule out any of Ni's theories?

**4.6. What modifications of an FRW model are inescapable when R(t)
becomes smaller than the Compton radius of a spinning elementary
particle? Are modifications necessary at larger R? Is it really

true that the gravitational field itself need not be quantized if R
1

is greater than (‘f!'iG/c?’)2 = 2:10733cm? (See Parker, 1972b.)

Chapter 5
5.1. In a Riemannian (positive definite) metric space the metric topology

has certain open sets defined as follows: 0 is open if 0 consists
of all points Q such that d(P,Q)< ¢ for £ a fixed number, p a
fixed point, if 0 is entirely contained in a coordinate patch. Any
open set M is a union of these open sets in the metric topology.
The manifold topology consists of all unions of neighborhoods of
the form e; < x! < f; where e, f; are numbers and the x! are
coordinates in a patch in which allowed coordinates include all

the e; and f.. Prove that all open sets in the manifold topology
are open in the metric topology and all open sets in the metric

topology are open in the manifold topology.
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Miller (1973) and Miller and Kruskal (1973) have considered ex-
tensions of manifolds in which the Hausdorff property is dropped.
What other weakening of topological axioms can lead to interesting
extensions either of incomplete but mathematically non-singular
manifolds, of physically singular manifolds, or of complete mani-

folds with incomplete timelike paths of bounded acceleration?

Show that flat Minkowski space M* s complete and all timelike
paths of bounded acceleration may be extended to infinite values

of proper time.

The Sachs method of assigning boundary points to a manifold is
reminiscent of techniques used in relativistic kinetic theory
(Ehlers, Geren, and Sachs, 1968). Suppose a collapsing stellar
model is built up by use of relativistic kinetic theory. Use the
Sachs’ method to find the structure of the singularity ~ for example,

can it be shown, that ‘‘black holes have no hair?’’

Computation of a boundary using the Schmidt or Geroch techniques
is difficult, and in most cases hardly worth the effort. In cosmolo-
gy, the diagonal Type V models (Chapter 9) are the simplest of the
models which are poorly understood. Therefore compute the G-

and B-boundaries of these models and interpret the results

physically.

Chapter 6

6.1.

6.2.

**6.3.

Prove that a Killing vector with covariant components a, satis-
fies the equation Byt A,y = 0.
Use the Jacobi equation (2.4) on &, X, X, to show that fiDﬁv:O

as assumed in the discussion leading to (6.18).

A Killing tensor K is a completely symmetric tensor field whose

components ka{:?my satisfy the equation k(aB'--y;a):‘ 0 where
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() signifies symmetrizing the indices (Walker and Penrose, 1970).
A Killing tensor is irreducible if it cannot be expressed as the sum
of symmetrized tensor products of lower rank Killing tensors. Note
that the metric tensor is a Killing tensor. A Killing tensor pro-
vides constants of the motion for geodesics, just as a Killing vec-
tor does. However, no geometrical interpretation exists for a
Killing tensor in the sense that a Killing vector is a generator of
an infinitesimal isometry. Find such an interpretation, and also
use the algebraic structure of the set of Killing tensors (Geroch,

1970b) to classify solutions of Einstein’s field equations.

6.4. Find all the Killing vectors and Killing tensors (Problem 6.3) of

Minkowski space. Are any of the Killing tensors reducible?

**6.5. MacCallum and Ellis (1970) have listed the spatially homogeneous
cosmologies which also allow a discrete isotropy group. Find or
classify all inhomogeneous cosmological models which allow a

discrete symmetry group.

6.6. Explicitly find all 2 and 4 dimensional Lie algebras. To do so,
find structure constants Cijk which are antisymmetric in the
lower indices and which satisfy the Jacobi identities. Since the
structure constants appear in the commutator equations [Xj, Xk} =
Cljk Xi’ two sets of structure constants are equivalent if the Xi’s
of one may be transformed into the X,’s of the other by a real
linear transformation. Thus Cijk and Eijk are equivalent if
Cijk Lis = C*® th Lk“ where (Lis) is a non-singular matrix of

real numbers.

tu

Chapter 7
**7 1. Find all geodesics in the various $T-homogeneous models. Which,

if any, of the complete models have incomplete timelike paths of

bounded acceleration?



7.2,

7.3.
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What are all the global topologies compatible with the various

ST-homogeneous models listed?

Find coordinate patches to cover the charged dust model given.

What is the minimum number of patches needed?

Does the Godel model have irreducible Killing tensors of rank 2

or higher (other than the metric — see Problem 6.3)?

Chapter 8

8.1.

8.2.

8.3.

*8.4.

**§.5.

Explicitly give the transformation of Taub space into itself which
leads to the other analytic extension through a Misner bridge into

a NUT region. The transformation can be given as a coordinate
transformation which involves an infinite winding of coordinates
near the boundaries of Taub space. Geodesics which are inextendi-
ble in one version of T-NUT-M space become extendible in the
other version — except for certain geodesics which are inextendi-

ble in both versions.

From perturbations of Taub space, show that the Misner bridge
cannot work in a matter-filled model with the symmetry of Taub

space — that instead a singularity occurs.

Is Taub space at all an accurate description of the real universe?
What observations bear on this question, and do existing observa-

tions definitely rule out Taub space as a model of the cosmos?

Apply the Schmidt-Sachs ideas to Taub space and find all possible

analytic extensions.

Using the ideas of twistor theory (Penrose, 1968b), find solutions
for the spin s massless field equations in T-NUT-M space. Which

are regular across the Misner bridge?
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Chapter 9

9.1.

9.2.

9.3.

**9.4,

9.5.

What would an observer see in a spatially-homogeneous cosmology
with hypersurface orthogonal velocity? Assume the observer to
be stationary with respect to the cosmic matter, and compute the
relative intensity and redshift of light from stars at given proper

distance from the observer as a function of angle,
Show that (9.15) can be solved uniquely for M, given p and L.

Find general forms which guarantee zero rotation in spatially
homogeneous dust models. For example, all Type I models are
rotationless, but only those Type IX models with diagonal metric
are. Zero rotation in a Type IX model requires the velocity field
to be orthogonal to the t = const. hypersurfaces, but this require-

ment may not be necessary in other types.

In a dust-filled FRW model, a spherical ball of matter may be ex-
tracted at each time t and the metric therein replaced by a
Schwarzschild solution. The radius of the ball, R(t), is chosen
so that the metric is C! across the boundary — the mass of the
Schwarzschild metric then agrees with the mass of extracted
matter. Further, an arbitrary number of such holes may be created
(if they don’t overlap), the result being the ‘‘Swiss cheese’’ model
for stars in an expanding universe. Find a Swiss cheese model
for a rotating or anisotropic dust-filled cosmology. What vacuum

solutions can be used to replace extracted sections?

In a perfect-fluid, spatially homogeneous cosmology, find explicit
expressions by which acceleration, rotation, shear, and expansion

may be calculated from the various matter and metric variables.

Chapter 10

**10.1.

Are there any incomplete but mathematically non-singular fluid

models? What is the physical interpretation of incompleteness in

such a model?
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What do the field equations for a rotating spatially homogeneous
model look like if it is required that the velocity u be Xy, so

that the timelike direction is no longer required to be curl-free?

What is the effect of including an electromagnetic field in a
collapsing fluid model? The nature of the singularity is known to
be drastically changed if a vacuum model is changed to a model
with magnetic field. Is a similar change apparent when such a

field is added to a fluid model?

Near the singularity in a collapsing cosmological model, the
temperature presumably is well above the point where matter
reaches the plasma state. What are the equations which govern
the dynamics of a plasma in a rapidly changing universe? How are

various plasma instabilities affected?

Chapter 11

11.1.

**11.2.

11.3.

Consider the model one-dimensional Hamiltonian given by H? -
sz + e~ cosh x. Using the wall approximation discuss the
behavior of the particle. For what value of a does the wall
velocity w equal the free particle velocity v? Discuss the full

theory in all three situations w<v, w=v, w> v.

The normal Hamiltonian techniques will not work for the general
Type V model. Find a variational principle for such a model, and
use it to discuss its properties. In fact, it may be that the best
approach to finding a Hamiltonian for Type V models starts with
detailed knowledge about the solutions themselves., (Also see

Problem 13.1.)

As mentioned in the text, a Dirac-type equation may be found in
the quantization of the Kasner model. Find the equation, which
involves a 2-spinor, and solve it. The best interpretation of the

spinor components remains an open question.
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The metric of a Type I fluid model may always be put into diagona

form. Show this fact within the Hamiltonian formalism.

Chapter 12

12.1.

*12.2.

12.3.

**12.4.

**12.5.

What effect does anisotropy in a Type I model have on element

production in the early stages of the cosmos (Thorne, 1967)?

Calculate the detailed behavior of the general symmetric Type IX
model near the turnaround (time of maximum expansion). Note
that the turnaround time is poorly represented with some of the

techniques we developed, for {l-time breaks down then.

A Type I FRW model is just marginally not going to recollapse.
It represents both a limiting case of Type IX models which do
reach a maximum point followed by recollapse and a limiting case
of Type V models which have more than enough expansion to be
far from eventual recollapse. However, does the inclusion of

anisotropy in a Type I model make this model more or less likely

to recollapse?

Although a superposition principle is possible to a limited extent
in FRW models, more generally it is unknown how to obtain new
cosmologies from old. Find such a procedute in general Type IX
models whereby a solution may be obtained from two already

known models or whereby a new solution may be generated from

one known one.

Develop a good quantized theory of the general Type IX cosmology

Chapter 13

**13.1.

Find all the geodesics in a general Type V model. This problem
is of more than routine importance due to the lack of a Hamilton-

ian technique for these models (see Problem 11.2).
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Derive numerical techniques for looking at the effects of quantiz-
ing matter in an anisotropic cosmological model of Type 1.
Periodic boundary conditions (because of identifications made in

t = const. hypersurfaces) are especially appropriate here.

Study the detailed behavior of a model with randomly fluctuating
pressure. If the pressure is allowed to become sufficiently nega-
tive, a singularity may be avoided. Although the physical basis
for the fluctuating pressure hypothesis comes from quantum field

theory, a wide range of types of fluctuations should be studied.

Devise a program which will numerically find and display graphi-

cally the geodesics of a dust-filled FRW model (see Problem 4.2).

Chapter 14

*14.1.

**14.2.

*%14.3.

**14.4.

The magnetohydrodynamics of a plasma show that in general a
magnetic field is ““frozen in’’ to the matter. What affect does this
association have on the structure of the singularity in a Type 1

model?

How do galaxies form in a symmetric Type IX model? When would
protogalactic perturbations be expected to start to form, and how
would gravitational field energy enhance or retard their growth?
Would rotational or shape parameters of galaxies be affected by
those of the model so that we might observationally expect corre-

lations in angular momentum or orientation among galaxies now?

Develop a Hamiltonian technique along the lines of Taub (1969)
for studying perturbations in a spatially homogeneous model which

itself has a well-defined Hamiltonian.

Because of the slowness of growth of perturbations in an FRW
model, it is certainly likely that presently observed density

fluctuations (galaxies, clusters of galaxies, etc.) are due to
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large-size perturbations existing at the very beginning of the
present epoch of isotropic expansion. Rather than postulating
these perturbations in an arbitrary manner, develop a reasonable

theory which would explain their existence.

Suppose the universe as a whole were not electrically neutral.
What would be the effects of a preponderance of one sign of charge

near the singularity in a cosmological model?

Chapter 15

15.1.

**15.2.

*15.3.

*15.4.

15.5.

How could a Texas Congressman be convinced that scarce re-

search funds should be appropriated for cosmology?

With the insights provided by the current state of cosmology, astro-
physics, and relativity, develop a good, strong metaphysics for
cosmology. Apply this philosophy in a practical sense by examin-

ing and possibly changing the priorities we have listed.

Catalog thoroughly all schemes of cosmology which have been

devised. A classification scheme should be thought up and

applied to this problem.

In many cases a symmetry of the material content of a model does
not imply a symmetry in the metric. For example, a perfect fluid,
with isotropic pressure, may exist in an anisotropic model. This
discrepancy leads to the questions: What is the best physical
definition of homogeneity to be applied to a relativistic cosmologi-

cal model? Are the models we’ve studied here all the ones appro-

priate to this definition?

In the next several decades interstellar probes may be launched.
What cosmological questions could be answered better with such

a probe than with observations made within the solar system?
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Extra Questions

1.

**2.

*4.

47

Is it necessary or even desirable that the manifold used in a rela-
tivistic cosmological mode! be orientable?

What physical situations could be best described by a geometrical
model using both a metric and a non-vanishing torsion tensor?
[Possible Hint: Is there a pictorial representation of torsion similar
to the arrows and screws with which we illustrated vectors and differ-
ential forms?]

What is the detailed singularity structure of the ‘“Swiss cheese”’
model (Problem 9.4) taking into account both the cosmological singu-
larity and the Schwarzschild singularity?

Why should a cosmological mode! involve a differentiable manifold
rather than a) a continuous manifold, b) a topological set or ¢)
merely some abstract point set?

Find the magnitude in cgs units of the components of the Riemann
curvature tensor on the surface of the earth in an appropriate coordi-
nate system due to a) the mass of the earth and b) the expanding
universe.

Determine the algebraic classification (Penrose, 1960) of the con-
formal tensor in various Bianchi-type cosmological models, and dis-
cuss the physical significance of the results.

Does the minisuperspace quantum cosmology method provide reliable

approximations to results which would be obtained from a full quan-

tum theory of general relativity?
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This bibliography is as complete as possible, with some limitations.

We have concentrated on papers on theoretical cosmology. Many observa-

We don't know why we didn't include a
quotation for the Bibliography, but here is one:

Another damned thick book! Always scribble,
scribble, scribble! Eh, Mr. Gibbon?

Attributed to Prince William Henry Duke of
Gloucester and Edinburgh, or possibly to the
Duke of Cumberland. Edward Gibbon (1737 -
1794) was the author of The Decline and Fall
of the Roman Empire.

tional aspects are not included. We have not included many papers we
consider unimportant, our decisions being especially harsh if the paper
appeared before about 1960. Decisions about the importance of a paper
are necessarily idiosyncratic, so we must apologize in advance for omis-
sions that will seem inexcusable to some readers. We did try to make the
bibliography all-inclusive, but when the number of references exceeded
1,000, we realized that some discretion had to be exercised. Finally, we
have not included references on alternative cosmological theories to
general relativity.

With these limitations the bibliography is good through the first part of
1973. Since it concentrates on cosmology, rather than general relativity,
and since it concentrates on recent references, earlier bibliographies
should also be consulted. An especially useful bibliography on general
relativity is given in Misner, Thorne, and Wheeler (1973), where other
general relativity bibliographies are also listed. Heckmann (1942) is an
important reference source for early cosmology. Two resource letters of
the American Association of Physics Teachers should also be cited:
‘“‘Resource Letter GR-1 on General Relativity’’ by Brill and Perisho (1968)
and ‘‘Resource Letter C-1 on Cosmology’’ by Ryan and Shepley (1974).
These letters list selected books and articles in their respective areas,
with comments on content and usefulness.

As shown in the figure, interest in cosmology has unsteadily increased
to its present high. The number of cosmology artticles is presently holding

rather steady at 0.3% of the total number of physics articles, having been
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about 0.7% of this total during the 1930’s. Ryan and Shepley (1974) in-
clude a list of the most important journals and ongoing conferences which
should be watched by researchers in cosmology. Whether interest in cos-
mology may be represented by a Type V or a Type IX model (that is,
whether interest will continually expand or slow down and contract) is an
important question for sociologists and funding agencies. Observation
tends to favor continual expansion, but the evidence is not conclusive.

In this bibliography, all titles are given in English, and the vast
majority of the papers are in English. Journal abbreviations conform to
Physics Abstracts usage. Listing is by the first author’s name, even when
the first author is not in alphabetical sequence. The numbers in square
brackets are the sections in which the entry is cited; a repeated number
indicates two explicit references; but off-hand references to an entry are

not included. In brackets, E indicates the exercise set, and B indicates

the introduction to this bibliography.
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cosmological constant, viii, 8, 266,
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quantum: cosmology, 185, 195, 196,
207, 218, 287; gravitation (general
relativity), 12, 180, 195, 196, 270,
272, 283-85; matter, 285

quasar, 261, 272

radiation, 45, 62, 66, 69, 257, 260,
262, 265, 270: dominated, 72

rank (covariant and contravariant), 24

Raychaudhuri equation, 53, 54, 131,
277

redshift, 8, 119, 260-62, 269, 282:
criticisms of, 261. See also Hubble
constant

religion, 268

Ricci scalar, see scalar curvature

Ricci tensor, 34, 39, 40, 121, 138,
152, 153, 164, 169, 170, 175

Riemann curvature tensor, 33, 34,
39, 54, 121, 138, 161, 276, 287

Riemannian manifold, 20, 74-76, 78,
86-91, 119, 278

rotation, 50-55, 129-31, 213, 226,
276, 277, 282: perturbations in,
251-56

Sachs’ bundle metric, 88. See also
Schmidt-Sachs method

scalar curvature, 34, 39, 187

Schmidt-Sachs method, 87, 281

Schrédinger-Klein-Gordon (SKG)
quantization, 197, 218

Schwarzschild solution, 92, 94, 282,
287

second fundamental form, 151, 152,
222

shear, 50, 51, 54, 246, 247, 256,
276, 282

shock wave, 173

sign conventions, vii
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singularity, vii, 72-95, 161, 166-73,
180, 203-206, 219, 268, 271,
285-87:

apparent, 22, 36, 135

examples of, 91.95

infinite density, 57, 61-63. See
also big bank

mathematical, 81-83, 136-39,
163, 173, 176-78, 213-15,
272

magnetic field and, 239, 41

pancake, 216, 240

physical, 84, 143-46, 171,272

structure, 85, 258, 279

sound: speed of, 72, 248, 265

spacetime as manifold, 11

spatially homogeneous, 104-108,
133, 147-62, 163-81, 183, 188,
224

spinor, 197, 283

steady-state cosmology, 9, 266,
267

stress-energy tensor, 35, 39-41,
238, 241-47, 278

structure: coefficients, 19, 26, con-
stants, 102, 121, 129, 148, 178

superspace, 196, 198, 200: metric
of, 198, 199. See also DeWitt
metric, minisuperspace, Misner
metric

Swiss cheese model, 282, 287

symmetry, 10, 102, 129, 140, 168,
286. See also isometry group

synchronous system, 134, 147-49,
152, 157, 164, 166-70, 178

tachyons, 46

tangent bundle, 88: reduced, 85

tangent space, 16 tangent bundle,
see Schmidt-Sachs method

Taub space, 116, 117, 132, 135,
137, 142, 145, 146. See also
Taub-NUT-Misner model

Taub-NUT-Misner model (T-NUT-M},
132-46, 161, 175, 178, 216, 228,
281. See alsoc Misner bridge, NUT
space, Taub space

INDEX

temperature, 42, 69, 244-46, 257,
262-64, 283

tensors, 23, 24: product of, 38

three-sphere, 35-37, 59, 60, 63, 115

topology, 13, 28, 86, 171-73, 268,
277-81, 287: conservation of, 172

torsion, 31, 32, 152, 275, 287

transitivity: simple, 102, 105, 120-
23; multiple, 103, 123

twist three-vector, 128

twistor theory, 281

two-sphere, 169, 274

units, 41, 227
universe point, 192, 194

vacuum, 45, 122-24, 133, 136-39,
156-61, 165, 187

variational principle, 48, 277, 283.
See also action

vector field, 15-17, 37, 38: covari-
ant; covariant image; contra-
variant; contravariant image, 23,
25. See also form

velocity, see fluid velocity

wall approximation: for potentials,
195, 207-209, 212, 213, 218, 283

wedge product, 26
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