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ArEUMETPHTOl MH~EIl EIlITU 

Let no person ignorant of geometry enter here 
  
This quotation is supposed to have been written over the 
entrance to Plato’s (Πλάτων, 428-348 BCE) academy, 
according to a later commentary.  If it actually was an 
inscription, it may have been in capital letters (but probably 
without spaces between the words), but in the commentary, it 
probably was in lower-case, and that is how it is usually given: 
  
ἀγεωμέτρητος μηδεὶς εἰσίτω 
  
We originally included quotations, such as this one, without 
translations, but here we will provide translations and notes.  
Todd Krause has been very helpful with these translations. 
 



To G. D. - Whosoever loveth me loveth my hound 

- THOMAS MORE 

and 

To Phyllis - Those were the days 

- G. RASKIN 

G. D. was Larry’s dog, named Gilbert’s Disease. 
Phyllis is Mike’s wife. 
Thomas More (1477 - 1535) 
Gene Raskin (1909 - 2004) 
 

Larry Shepley & Gilbert, August 1976



PREFACE 

In the past decade cosmology, both theoretical and observational, has 

had a dramatic renascence. This book not only reflects this renewed 

interest but attempts to spur further theoretical research in this most 

majestic of fields. Here we do not treat observational cosmology, so well 

covered by Peebles' Physical Cosmology. Instead we expand on one field 

within general relativity. 

This book is aimed at one who already knows a bit of relativity (say 

Track 1 of Misner, Thorne, and Wheeler's Gravitation - we use their sign 

conventions). The book, however, is self-contained, emphasizing a modern 

tensor analysis approach to relativistic cosmology. This modern approach 

should be attractive to the beginning graduate student as well as to the 

expert who wishes to extend his knowledge of cosmology. 

The most spectacular results of the highly mathematical approach have 

been the singularity theorems of 1965-68. The thrust of the first half of 

the book is toward an introduction of these theorems. The second half 

delves into specific cosmological problems, and includes an introduction 

to the insights gained by the application of Hamiltonian techniques. A 

book of this type should include several features, which we have incor­

porated. We have outlined the book by means of flow charts for specific 

chapters and for the entire book. The last chapter tries to point the 

direction future mathematical and observational cosmology research should 

take. We have given a graded set of exercises, from simple calculations 

to deep questions worthy a Ph.D. thesis. Our bibliography includes nearly 

500 important references in all aspects of mathematical cosmology. 

A quick paragraph of prejudices: We are general relativists; hence we 

have shied away from the Brans-Dicke and other alternative theories. The 
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viii PREFACE 

expansion of the universe showed Einstein that his cosmological constant 

was unnecessary, and we follow him in discarding it. Finally, we are 

prejudiced against the apotheosizing of any cosmological principle. We 

shall let the real universe behave as it will. 

Both of us want to thank John Wheeler and Charles Misner: 

If my slight Muse do please these curious days, 
The pain be mine, but thine shall be the praise. 

Both of us have received financial support at all stages from the National 

Science Foundation, for which we are greatly indebted. Both of us 

appreciate the atmosphere provided by the Center for Relativity Theory of 

the University of Texas at Austin. One of us (M.R.) thanks the Department 

of Applied Mathematics and Theoretical Physics, Cambridge, and Dennis 

Sciama at the Department of Astrophysics, Oxford, for their hospitality, 

and the Science Research Council of Great Britain for financial support. 

Our friends and colleagues are too numerous; we thank them all. We have 

especially entertained the comments and ideas of Richard Matzner, George 

Ellis, Barry Collins, and Ray Sachs. Princeton University Press has been 

more patient than we ever could have imagined. 

The Preface is the last part of a book to be written. As Prescott did 

we end '" "with feelings not unlike those of the traveller who, having 

long journeyed among the dreary forests and dangerous defiles of the 

mountains, at length emerges on some pleasant landscape smiling in tran­

quility and peace." 

West Lake Hills, Texas 

April, 1974 

MICHAEL P. RYAN, JR .. 

LAWRENCE C. SHEPLEY 

William Shakespeare (1564 - 1616) 
Sonnet 38

William Hickling Prescott (1796 - 1859) 
The History of The Conquest of Peru
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1. COSMOLOGY: THE STUDY OF UNIVERSES 

Who that well his warke beginneth, 
The rather a good ende he winneth 

- JOHN GOWER 

It is difficult to explain to a layman the fact that the universe expands. 

How, he asks, can the universe expand? Into what is it expanding? We 

tell him that he does not have the correct picture in mind. Indeed the 

universe can "expand" in spite of the fact that it is everything and does 

not in any sense develop into unoccupied space. Instead, we tell him that 

distances between astronomical objects are becoming larger and larger as 

time moves forward. 

Our layman will then turn to the title of this chapter and ask: If our 

universe is everything, what need is there to study other universes? And 

again the answer is very straightforward. We must simplify the study of 

cosmology; we must attempt to model the real universe in a mathematically 

tractable structure. In cosmology we study aspects of the real universe 

and possible aspects of the real universe. It is in fact often instructive 

to study features which we know not to be present in the real universe. No 

better example occurs than the study of anisotropic cosmological models, 

for so far as we can tell the physical universe is completely isotropic. 

However, an anisotropic model gives an extremely important example of 

the type of structure which may dominate the very early stages of cosmic 

expansion. 

Our concern is not with the full range of physical and astrophysical 

cosmology, but rather with the geometrical and mathematical principles of 

general relativity as applied to cosmology. We shall treat expansion; we 

shall treat singularities; in short we shall discuss the arena of astrophysics 

3 

When I was starting my dissertation, I 
asked a housemate for suggestions for an 
opening statement. He suggested 
"Cosmology is the study of universes," 
which I promptly typed.  A minute later my 
friend, to be difficult, asked how there 
could be universes, since there was only 
one Universe.  I replied that I liked the first 
version, and that is how it stayed.    LCS

John Gower (~1330 - 1408), 
Confession Amantis



4 1. COSMOLOGY: THE STUDY OF UNIVERSES 

and the boundary of that arena. Our study is limited to the simplest 

structure - homogeneous cosmologies - for the simplicity evoked by the 

homogeneity symmetry nonetheless allows very complex models. 

The Problem of Fall 

The most serious problem of modern theoretical cosmology is the 

existence of the initial singularity or "big bang." In all cosmological 

models this Singularity appears. It is a region of infinitely dense matter, 

of infinitely strong gravitational forces. It is the beginning of spacetime, 

the boundary where our theories of space and time must be false. In the 

early days of gravitational physics, a problem of similar moment was the 

problem of fall (Koyre, 1955). The close analogy between the problem of 

Singularity and the problem of fall is instructive. 

Galileo established laws of inertia and some properties of gravitation. 

The question then arose: What is the path of a body falling under the in­

fluence of gravity? This question was not trivial, for the detailed law of 

gravitation had not yet been formulated. Several complicating features 

arose to slow the solution to the problem of fall: The mathematics 

(geometry) was not up to the problem; physicists found the mathematical 

reasoning difficult to apply. The new laws of physics were not well 

understood; the best mathematicians often had wrong ideas of the con­

cepts involved. Finally, the center of attraction, the earth, is rotating; 

this rotation complicated the investigations of many researchers. 

In the early seventeenth century, before the mathematical and physi­

cal ideas of Newton had appeared, the problem of fall was not solved. To 

introduce this problem in modern terms, imagine that an observer is 

stationed in the gravitational field of a point particle and throws out a 

small projectile. The path this projectile will follow can be discovered 

through step by step calculation making use of the fact that the projectile 

is always accelerated toward the central attractive point. A compact 

formula for the path was not available in the seventeenth century, but one 

special case is easily solved. A requirement of symmetry greatly 
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simplifies the calculation. The initial velocity of the projectile is directly 

toward the central massive point, this being a naturally symmetric direction. 

The result is obvious: The projectile will hit the massive center in a 

finite time. (See Figure 1.1.) 

;::-ObS 
P 

OM 

i ObS 

,P 

\ , 
..... _-,; / 

(A) 

(C) 

\ 
\ 

\ 

(8) 

I 

OM I 
I 

\ I , / 

"- " --- ' (0) 

Fig. 1.1. The Problem of Fall in Pre-Newtonian Gravitation. (A) Numerical 
integration gives the orbit of a projectile P fired from a given Observer in a 
given direction. M is a central attractive point particle. (8) The path of P 
is found even more easily when the initial velocity is directly toward M. P 
hits M after a finite time. (C) In the more general case (non-radial), does the 
projectile P spiral in to hit M... (D) or does P "bounce" back, missing 
M and remaining in a stable orbit? 
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The problem that remained unsolved before Newton was the fate of anJ 

other projectile. Will it spiral in to hit the central point? Is there a built 

in end-point to the problem of orbit tracing? In this case no planet could 

have a stable orbit unless non-gravitational forces operated. 

The central problem of modern cosmology bears a striking resemblancE 

to the Renaissance problem of fall. Just as one particularly "symmetric" 

projectile path ends in disaster, so cosmological models chosen by the 

strongest symmetry requirements exhibit Singular beginning points. 

The cosmological models dealt with in this book, for example, are re­

quired to be symmetric under a three-dimensional group of isometries so 

that computation of their properties will be simple. Unlike the special 

projectile path that ended in disaster, however, these cosmological model! 

are very general. Many properties, such as matter rotation, can be arbi­

trarily chosen (up to seven adjustable parameters). In spite of this 

generality, every cosmological model evolves a singularity of some sort. 

The problem of fall was solved by recognizing that only very special 

initial conditions lead to destruction of the orbiting particle. This methoc 

of escaping trouble does not work in gravitational collapse of stars. Pen­

rose, Hawking, Geroch and others have shown that whatever shape or 

state of motion a star is in when it starts to collapse, it will unavoidably 

reach a singular state. In cosmology, also, the relaxation of symmetry 

does not prevent the singularity. In cosmology this singularity appears 

as the beginning of the universe, although in some models a second 

singularity appears as the universe recollapses on itself. It is the begin­

ning singularity that is disturbing, for it is an effect without a cause. 

The Beginnings of Modern Cosmology 

The problem of fall was an important chapter in the history of gravi­

tation. At that time, too, appeared the very first applications of gravita­

tion to cosmology. To understand the principles, techniques, and 

problems of modern cosmology it is worthwhile to look at selected inci­

dents over the past several hundred years which have culminated in the 

theory of general re lativistic cosmology. 
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Whether a static, matter-filled universe is reconcilable with Newton's 

theory of gravity was the subject of perhaps the earliest correspondence 

which could be termed modern cosmology. In four letters to Richard 

Bentley, Newton explored the possibility that matter might be spread 

evenly throughout an infinite space. It was Bentley's suggestion that 

this even distribution might be stable, but Newton felt the matter would 

tend to coagulate into large massive bodies. However, he apparently also 

thought that these massive bodies themselves could be stably spread 

throughout all space. Modern Newtonian cosmology, which is remarkably 

similar to relativistic cosmology, shows that Newton was wrong about 

this stability. The many other discussions of cosmology in the time of 

Newton were more of a theological or descriptive nature and do not have 

what modern researchers feel is the correct outlook: the explanation of 

cosmic features by use of terrestrial physical laws. 

This situation, that the laws of physics known on earth were not 

applied to cosmological problems, continued with one notable exception. 

This exception was the effect commonly known as Olbers' Paradox Oaki, 

1969). Olbers' Paradox is the problem of why the night sky is dark. 

About a century before Olbers both Halley and Cheseaux realized that al­

though the light from a star diminishes as the square of the distance to 

the star, the number of stars in a spherical shell increases as the square 

of the radius of the shell. The accumulated effect of the light intensity 

sould make the night sky as bright as the surface of the sun. In all fair­

ness to Olbers the general scientific community was not able to appreciate 

fully the work of Halley and Cheseaux because of an insufficient sense of 

cosmic infinity. The problem is an especially important one, however, in 

that it depends critically on whether the universe is finite in space, finite 

in time, or static. The modern resolution of the paradox is that the uni­

verse is expanding and that the matter in the universe has a finite age. 

In particular, it is not a good enough explanation merely to postulate 

finite space sections in the universe. 
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The history of contemporary cosmology really began with Einstein's 

application of the principles of general relativity. Curiously Newtonian 

gravitation was not employed in cosmological theory until some time after 

relativistic cosmology was founded. Seeliger (1895) and Neumann (1896) 

had prepared the way for a cosmological constant in the 1890's, however. 

Einstein's cosmology is an example of a slight lack of confidence in 

general relativity. So strong was his belief that the universe was static 

that he introduced a cosmological term to modify his original theory. Had 

he anticipated the work of Friedmann and shown that general relativity re­

quired an expanding universe, most researchers of the period would have 

found his theory unacceptable. Einstein himself at first refused to believe 

the results of Friedmann and only reluctantly accepted the idea that a 

non-static cosmological model is possible. 

When Hubble completed his redshift survey, the results were astound­

ing. They showed that there is a systematic redshift of light from distant 

galaxies, increasing as the distance to these galaxies. There have been 

many attempts to explain this redshift, some of which are quite ingenious. 

But the most widely accepted explanation, the explanation which now fits 

several other pieces of data, is that the universe is expanding. When most 

people accepted the notion of a non-static universe, an enormous number 

of cosmological models, both relativistic and non-relativistic, appeared. 

The best expression of the spherically symmetric relativistic cosmological 

models was presented by Robertson (1929), the mathematical niceties 

being a product both of Robertson (1935, 1936) and Walker (1936). We 

will call these models FRW universes to acknowledge the pioneering 

work of Friedmann. More general cosmologies, including models which 

result from the application of Newtonian gravitation, were presented by 

Milne (1934) and Milne and McCrea (1934). It is interesting to note that 

static cosmological models are not possible in Newtonian theory without 

the addition of a term much like the cosmological constant of Einstein. 

Relativistic cosmologies and Newtonian cosmologies share an impor­

tant feature. The expansion typically begins with a bang: There is a 
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finite time in the past of any given observer where the density is infinite. 

This infinite density epoch represents the most fundamental problem of con­

temporary cosmology. The description of a singularity, whether of infinite 

density or of another type, and the proof in general of its existence, has 

only been carried through in recent years. Penrose, Hawking, Geroch, 

Misner - these are the names of the people who, with many others, have 

shown that singularities are a common feature of cosmological models. At 

present the detailed physical interpretation of these singularities remains 

an unresolved problem. 

Although general relativity cosmology was the first cosmological 

theory, others have come and gone, sometimes without adequate reason 

for giving them up. Milne's theory, Hoyle's steady state theory, and others 

have at times been actively investigated but at present are no longer of 

interest. In the case of the steady state theory there is good, but by no 

means conclusive evidence that the theory does not meet observation. In 

particular, the discovery of the 3 K black body background radio emission 

is accepted by most people as evidence that the universe was significantly 

different in the past, in violation of the principle of the steady state uni-

verse. 

Nowhere in this volume do we mention the cosmological principle 

except here. This principle is a fancy name for a simplifying set of 

assumptions. Its application results in homogeneous cosmologies, and to 

some, the principle also implies either a steady state situation or a static 

model. We prefer to leave the terminology of "principle" to the past, 

where it was a guide and a solace to researchers. Where we make sym­

metry assumptions, we state them as mere assumptions to aid in the 

solution of equations. We do not accept a cosmological principle as a 

Procrustean law, but leave to the observer the question of whether the 

universe has chosen to obey any of these assumptions. 
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Outline 

We treat in this book a general consortium of cosmic problems. As a 

map to our treatment, we have drawn up a flow chart printed on the end 

papers of this volume. The flow starts with the general mathematical and 

physical foundations of general relativity and proceeds to relativistic 

hydrodynamics. The mathematics proceeds to the detailed theory of sym­

metry and singularity. Detailed applications to homogeneous cosmologies 

follow. We end with Hamiltonian techniques and with some remarks on 

astrophysical studies. Our conclusion is "A Call to Arms," for we feel 

that there are many interesting cosmological problems to be solved. 



2. GEOMETRY IN THE LANGUAGE OF FORMS 

So if a man's wit be wandering, 
let him study the mathematics 

- FRANCIS BACON 

2.1. Points, Manifolds, and Geometrical Objects 

Nothing is so vital to general relativity as the physical reality of an 

"event," or point, in spacetime, completely separate from coordinate sys­

tems used to describe it. On the surface of the earth Moscow is Moscow 

no matter what latitude or longitude we assign to it. Modern mathematics 

recognizes this separateness in the concept of a manifold, the set of 

points on which is placed the geometry of spacetime. 

In general relativity the manifold is spacetime. A point of the mani­

fold is identified with a physical event. A sample event is shown in 

Figure 2.1. As a point in a manifold it is independent of any coordinate 

system. 

CCDDOOOOOCOOOOOOOOOOOCOCCOCCOOOOOOOCCOCCOOOO 

~G4JQ]~~~~ 
/ 

~vent: Boll hits ground 

Fig. 2.1. Motion picture of a region in spacetime surrounding the event of a ball 
colliding with the ground. The event is that location in space and time when the 
ball just touches the ground. No matter the speed of film travel, the magnifica­
tion of the lens, or the orientation of the camera - these are coordinate effects 
and do not affect the nature of the event itself. 

11 

Francis Bacon (~1561 - 1626), 
Of Studies
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SUllIDlaIY 0 f 
Useful 
Fonnulas 

Fig. 2.2. Logical relations among some of the ideas of Chapter 2. Chapter 2 
includes examples and other minor ideas not shown here. 

This identification of an event with a mathematical point was a daring 

step due to Newton. Recently, the alternate concept has developed of a 

sponge-like construct which gives the appearance of smoothness only 
1 

down to the scale of quantum fluctuations (- (frG/c3 )2 1.6 x 1O-33cm). 

At that scale the smoothness vanishes (Weyl, 1949; Wheeler, 1962b; Pen­

rose, 1966). We shall not adopt this alternate viewpoint. Instead we will 

stay with the classical view of spacetime as a continuous and differenti­

able manifold. 

On this manifold we shall place "geometrical objects" (Veblen and 

Whitehead, 1932; Schouten, 1954), the simplest of which are function, 

vector field, metric, and differential form. We shall develop these con­

cepts in this chapter to the extent needed for the analysis of homogeneous 

cosmologies (see the flow diagram in Figure 2.2) in a form independent of 
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coordinate systems. Definitions will be short and many proofs will be 

omitted (see standard works on differential geometry, e.g., Helgason, 

1962, or Hicks, 1965). We shall end the chapter with a description of the 

three-sphere, a manifold we shall meet later on in the Friedmann­

Robertson-Walker (FRW) universes. We shall also give a short table of 

useful formulas which have been developed in the chapter. 

Definition of Manifold - Topology and Differentiability 

A manifold is a set of points, basic subsets of which are labeled open 

sets. The open sets obey the property that any union of open sets is 

open (the set 0 x < 1 is an open set in the real line). Some of the sub­

sets of the manifold will be closed (the complement of an open set; 

example 0 < x S; 1) and some neither open nor closed (0 < x_I). A set 

such as a manifold upon which open and closed subsets are defined is a 

topological space. An open set containing the point P is a neighborhood 

of P. 

The defining properties of a manifold Mare: (1) M is a topological 

space; (2) about every point P in M there is at least one neighborhood 

(open set) N in which a coordinate system (a local homeomorphism be­

tween points in N and the points in the n-dimensional space Rn of real 

numbers) may be set up. An open set N together with a coordinate sys­

tem in N is called a coordinate patch or coordinate neighborhood. The 

number of coordinate patches needed to cover a manifold may be greater 

than one. Figure 2.3 shows an ordinary sphere (S2), which needs two 

coordinate patches. 

In order for a manifold to be useful in physics it must have a structure 

which distinguishes between differentiable and non-differentiable func­

tions. An allowed coordinate system is one in which the coordinate func­

tions are all differentiable. A differentiable manifold is one covered by a 

collection of allowed coordinate patches with the property that wherever 

coordinate patches overlap, one system is given in terms of the other by 
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Fig. 2.3. A Spherical Surface S2. The left hand drawing represents the Earth 
as photographed from space. Two coordinate patches are drawn on the right as 
flat maps. The upper one especially is distorted near the edge - this distortion 
is a well-known coordinate effect. 

infinitely differentiable (COO) functions (weaker differentiability require­

ments are sometimes useful; Munkres, 1963). 

A function on M is differentiable when it is a differentiable function 

of these coordinates. Another coordinate system on an open set N is 

allowed if it consists of n (the dimension of M) differentiable functions 

xa which uniquely specify all points in N. Any covering of M by 

allowed coordinate patches defines its differentiable structure. It is inter­

esting to note that the differentiable structure need not be unique: Milnor 
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(1956) gives an example of a manifold which admits two, non-equivalent 

differentiable structures. 

2.2. Vector Field: A Derivation 

15 

In mathematics the concept of vector field is closely tied to the con­

cept of differentiability: A vector field is a differential operator. In order 

to connect this concept with the usual physical concept of a vector as an 

arrow connecting two points (P and Q), consider a function f on the 

manifold M. The change in f between the points P and Q depends on 
--> 

the vector PQ and the function itself. If P and Q are in the same 

coordinate patch (tlxo the difference of their coordinates), 

f(Q) - fCP) == M ~ tlxo(Jf/Jxo) vectorial derivative. (2.1) 

The dependence of tlf on displacement is contained in the linear differ­

ential operator 

---> 
to be thought of as the vector PQ. 

Modern differential geometry refines this idea of a vector as follows: 

(1) Take the limit as tlxo ~ 0 to define a local concept (tangent vector) 
---> 

which preserves the directional properties of PQ. (2) Insure that this 

concept is independent of coordinates. (3) Define the concept of vector 

field, consisting of a tangent vector at each point of the manifold. 

The resulting coordinate-independent concept of a vector field is that 

of a differential operator on M, an operator V which carries differenti­

able functions on M into other differentiable functions. V must be: 

(i) linear V[f(P)+ g(P)] = Vf(P) + Vg(P) 

(ii) a derivative operation V(fg) = gVf + fVg . 

Bases 

An important example of a vector field is the one obtained by differ­

entiation with respect to a coordinate. Consider a coordinate neighbor-
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hood N with n functions x Il(p. 1"", n) whose values x Il(p) are the 

coordinates of the point P. As an example, we define the operator by 

Of(Xl, x2 , "', xn) 

ax2 

This differential operator is the vector tangent to lines defined by x Il '" 

const, Il '" 2. In the approximation of (2.1) 02f gives the change in f 

between P '" (xl, x2 , "0) and Q (xl, x2 + 1, ... ). The operator 02 is 

considered to lie in spaces tangent to the manifold at each point P (see 

Hicks, 1%5; Helgason, 1%2). This a2 is portrayed as an arrow pointing 

along the x2 coordinate direction at P and at every other point of M 

(Figure 2.4). 

In a similar fashion al ,a3 , ... ,an are defined. The n operators all 
are base vectors. The base vectors are linearly independent; that is, 

every vector field in N may be expressed uniquely as a linear combina­

tion of the all with coefficients which are differentiable functions in N: 

The n functions va are components of the tangent vector field V, or 

the contravariant components of the vector field V. 

At the point P the vector field V has the value V(P) '" va(P)oa' 

The set of all vectors V at P is the tangent space Mp of M at P. 

Mp is clearly n-dimensional. 

V has existence independent of coordinate systems. Let us therefore 

consider new coordinate functions 'X1l defining the basis (ill. The com­

ponents of V may change, but not V itself: 

V = vila 
Il 

If we let V act on the function x Il, we find 

(2.2) 
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Fig. 2.4. A Two-Dimensional Manifold M. The coordinate patch N is an open 
set in which the coordinates xl and x2 uniquely describe points. The basis 
vectors al and a2 are parallel to the grid lines in N. X is a vector field,and 
two linearly independent vector fields, such as Xl' X2 form a basis for the set 
of vector fields in M. 

We shall call a set of base vectors derived from a set of coordinates a 

coordinated basis. 

Not every basis is a coordinated basis. Any n vector fields linearly 

independent in an open set of M may be used as a basis in that open set. 
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To determine if a given set Xl"'" Xn of vector fields is a basis, first 

write each vector in some convenient coordinated basis, 

Xn = x 1 d
1 

+ ... + x n d x ad n n n n a' 

The set I X i I is a basis if the matrix (xi a (P)) has non-zero determinant 

at every point P. Other terms for a set of basis vectors are repire mobile 

or ennuple in general, triad when n = 3, and tetrad or vierbein when n= 4. 

To arrive at an example of a non-coordinated basis consider ordinary 

spherical coordinates. In the coordinated basis Idr,dO,(1) the velocity 

of a particle is 

Usually, however, the velocity components are defined to be: 

~r dr 
v = CIt' 

This definition uses the formula 

where 

a 
dr' 

-y¢ = r sinO ~ . 

The vectors Xr' XO' X¢ form a non-coordinated basis. 

Commutators 

A coordinated basis has the property 
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for any function f. For a more general basis Xfl Xv - ~ Xfl is not neces­

sarily zero. We shall find non-commuting bases useful in describing the 

general homogeneous manifold. 

We make the notion of commutator precise by defining the commutator 

of two vector fields U, V to be the operator 

[U,V] UV - VU , 

[U, V] f = U(V£) - V(U£) 

The commutator has the derivative property 

[U, Vlfg nU, V]g + g[U, vlf 

and is therefore a vector field. The commutator satisfies the Jacobi 

identity 

(2.3) 

[U,[V,W]] + [V,[W,U]] + [W,[U,V]] = 0 for all vector fields U, V, W. (2.4) 

The commutator [U, V] is also called the Lie derivative (Chapter 6) 

of V with respect to U. That is, 

~u V '" [U, V] (2.5) 

In a coordinated basis (coordinates xfl), if U uUau ' V = vuau then 

(2.6) 

In a non-coordinated basis, U = u./1 Xfl' and V = v fl Xw so that 

(2.7) 

The functions C~v arise from the expansion of the vector field 

in the basis IXfll as 
(2.8) 

The functions C~v are the structure coefficients of the basis Xp: 

In a general basis the C~l/ do not vanish. In fact, it can be shown that 
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if C~v = 0 the basis is a coordinated basis (Hicks, 1965). If the mani­

fold admits a group of isometries (Chapter 6), the most convenient basis 

is one with the C~v determined by the group structure. 

2.3. The Metric 

In relativity a gravitational field is described as curvature in the 

spacetime manifold. The bending of particle paths is due jointly to: 

(1) non-gravitational forces, and (2) the curvature of the manifold itself. 

A path (geodesic; see Chapter 3) which is bent only because of the curva­

ture of the manifold is the world line of a test particle moving in a gravi­

tational field. In relativity the metric of the manifold determines its 

curvature. The relation between curvature and metric is reminescent of 

that between the electromagnetic four-potentials and the electromagnetic 

field (Wheeler, 1962b). 

A cosmological model is not only a manifold, but a manifold-with-metri 

a pseudo-Riemannian manifold. (Riemannian manifold is reserved by us 

for a manifold with a positive-definite metric.) Because the metric plays 

such an important role in relativity we shall discuss it before we consider 

other geometrical objects. 

Metric: Distance Measure and Operator 

To many physicists, a metric is a structure which determines the 

distance between two nearby points and the angle between two lines. 

More precisely, a metric is a bilinear, non-singular function on the set of 

pairs of vector fields. We shall use this second definition. In the next 

section we shall show that a metric is a second-rank covariant tensor 

field. 

Actually we may connect the two definitions of metric quite naturally. 

Consider two nearby points P and Q in a pseudo-Riemannian manifold 

M. We suppose P and Q to be in the same coordinate patch, the differ­

ences in their coordinates being t'lx 11, The square of the distance be­

tween them be written 
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The glLv are the components of the metric. The matrix glLv is symmetric 

and a function of position on M. We use ~s2 by convention, even though 

in relativity ~s2 may be negative. We now define an operator dx IL 

which acts on the differential operator 0 lox v to produce 8 ~ : 

On writing the vector PO as ~xa oloxa, we can identify ~s2 as the 
---> 

"dot product" of PQ with itself: 

(2.9) 

The operator glLv dx IL dx v is a bilinear, non-singular function on pairs of 

vector fields. 

Mathematically a metric is an operator which acts on two vector fields 

U and V to produce a function (written g(U, V) or U' V). Such a metric 

is required to be: 

(i) bilinear 

u . (V + W) = u· V + U . W , (U + W) . V = u· V + W . V , 

(ii) symmetric 

U·V=V·U, 
and 

(iii) non-singular 

If U· V = 0 for all U, then V = 0 . 

In a general basis we define n2 functions glLv by 

(2.10) 
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These functions are the components of the metric in the basis I X I. At a p. 
point P the function gp.v has the value gp.v(P). By (ii) and Gii), re-

spectively, the matrix gp.v(P) is symmetric and non-singular (det gp.v(P) 

f 0). In general relativity we also require that M be four-dimensional an 

gp.v(P) have signature (- + + everywhere. 

A Non-Singular Metric 

In Chapter 5 we will refer to "non-singular metrics," points of 

"singularity" and so forth, and will define these concepts more precisely 

there. Briefly, a metric is non-singular in an open set N if in N the 

metric obeys (0, (ii), and (iii) above. If in following a metric about a 

manifold M we come to a point P where either (i), (ii), or (iii) breaks 

down we shall call the operator at that pOint a metric which is singular. 

Strictly this is an abuse of language, since at P we have left the subset 

M' of M which has a metric on it. 

One cannot use a particular set of functions gp.v == Xp. . Xv to deter­

mine the truly singular points of the metric. At the edge of a coordinate 

patch, for example, det gp.v(P) may vanish. This zero may mean that the 

Xp. have become degenerate at P or that the Xp. are no longer differenti 

able vector fields (so that C ~{3 are not finite, differentiable functions 

near P). To recognize a true from an apparent singularity we must attemp 

to find another basis IXp.1 such that C~{3 and gp.v are finite, differenti 

able functions at P(gp.v(P) must also be non-singular). Such a basis 

always exists if the singularity is not a true one. 

2.4. Differential Forms 

The geometrical language of forms is especially useful in describing 

antisymmetric, covariant tensor fields. In modern differential geometry we 

define this concept without reference to coordinates, using the concepts 

of operation. We define a differential form (of first degree), also called a 

one-form, as a linear operator on vector fields. That is, if ()J is a one­

form and U a vector, ()J(U) is a function, so that ()J(U)(P) is a real 

number. 
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Dual Bases 

If IXfll is a basis we define a set of one-forms Iwfll by 

(2.11) 

The functions wfl(Xv) are the constant functions 5~. These wfl are 

called the duals of Xf-l or the basis dual to ! Xf-l L The most general one­

form w can be written as a linear combination of the dual basis forms wf-l: 

The duals of a coordinated basis I a f-ll are written dx f-l. The form 

dx fl is not a component of a vector but one of a set of n linear operators. 

These forms will be called a coordinated basis of forms. In this basis 

As with vectors we require w to be unchanged under change of coordi­

nates from x f-l to xf-l: 

- d-a d T W = aa x = aT x . 

It is not difficult to show that: 

(2.12) 

Note that the au transform like the "covariant components of a vector 

fie Id" of the older literature. 

If w = bawa and U = UU Xa then 

(2.13) 

This expression is called the contraction of w with U. 

Multiplication of Forms - Tensors - The Metric 

In older literature the complicated geometrical objects known as 

tensors were defined by the transformation properties of their components. 
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In even older literature these objects were defined by the tensor multipli­

cation of covariant and contravariant vectors which were combined to pro­

duce a general tensor. Modern differential geometry has returned to the 

earlier method. We shall define tensor multiplication ® on one-forms. 

Helgason (1962) shows how to extend this to vector fields, and so on to 

build up tensors. 

The tensor product w ® a of two one-forms is a bilinear operator act­

ing on pairs of vector fields (U, V): 

(w ® a) (U, V) == w(U) a(V) (2.14) 

(2.15) 

and w ® a may be written as 

The tensor product on forms and vectors is used to build up tensors of 

arbitrary rank. The product of r forms and s vectors is a tensor of co­

variant rank r and contravariant rank s. The general tensor is the sum 

of such elementary products. The typical tensor can be written as a linear 

combination of basis elements: 

(2.16) 

The functions T a ... f3 v are the components of the tensor. Contraction p." . 

is an operation which lowers the covariant and contravariant ranks each by 

one by the operation illustrated in (2.13). 

If !wp.! is a basis for one-forms, wp. ® WV is a basis for all covariant 

tensors of rank two, i.e., for all bilinear operators which act on pairs of 

vector fields. The bilinear operator . or g (the metric) can be expresse( 

as 

or 
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u· V = g(U, V) (gp.V0P.~ul/)(U, V) . 

Because of the non-singularity of g, g cannot be expressed as a simple 

product of one-forms w @ a, but g must be a linear combination of at 

least n such elementary products. It is easy to show 

It is customary to write 

(2.17) 

and, since gp.v ~p. , 

(2.18) 

We write the bilinear operator g as ds2 in remembrance of (2.9). 

In general covariant and contravariant vectors are distinct objects. 

Given a metric g, however, an equivalence relation is set up between 

contravariant vectors X and covariant vectors w. X is said to be the 

contravariant image of w if 

g(X, Y) = 0(Y) for all vectors Y . (2.19) 

Because g is non-singular, X is uniquely defined by this relation if w 

is given. Conversely, w is uniquely determined by X. In component 

form (in a basis), the relation between the components aJ.L of X, bJ.L of 0 

(where X = aJ.L Xp.' w = bJ.LwJ.L, and IXJ.LI and {0J.L1 are dual bases) is 

(2.20) 

Often bJ.L is written as aJ.L' 

The contravariant metric tensor g is the second-rank, symmetric, 

contravariant tensor whose components 'if V are the components of the 

matrix inverse of (gp.v)' The tensor g acts on a pair of covariant vector 

fields 0, a to yield a function. If w, a are the covariant images of the 
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contravariant vector fields X, Y, then g is uniquely given in a basis­

independent manner by the expression 

g(X, Y) (2.21) 

In a basis, we write 

g = gW Xfl Xv' g "" fl v 
gflvw w (2.22) 

(gflV) (gflvr1 

gflVa c 
fl v g afl CV 

flV 

The metric g and its contravariant form g may be used to contract a 

tensor T on two contravariant or two covariant indices. If the componentE 

of T in some basis are, for example, Ta f3Yfj, then the contraction with 

gaf3 on the first two indices is the tensor whose components are gaf3
Taf3 ) 

Just as we singled out the symmetric part of wfl @ WV we can write 

the antisymmetric part 
(2.23) 

the wedge product of wand a. The wedge products of basis forms 

w fl A WV are a basis for the space of two-forms on M. The generic two­

form is F = fflV wp. A wV. The components fp.v are an antisymmetric 

matrix of functions. The wedge product of a two-form and a one-form is a 

three-form. This process may be carried out to any rank, n products de­

fining n-forms (functions are zero-forms). 

Exterior Differentiation or Curl; Structure Coefficients 

Every physicist is familiar with quantity called the "differential" of 

a function, dC(O * dt. This concept is refined in modern differential 
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geometry by use of an operator d, called the curl, gradient or exterior 

derivative operator, operating on r-forms. We shall first define d on 

functions, then proceed to forms of higher rank. 

The operator d on a function f is defined by 
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df (Xp. f)wp. (2.24) 

in a basis !Xp.1 whose dual basis is IwP.1. A basis-free definition of d 

is that d is a linear operator carrying a function f into the unique one­

form df defined by df(D) = Uf, where U is any vector field. In a 

coordinated basis we have the familiar expression 

(2.25) 

We uniquely extend d to forms of higher rank by the requirements: 

i) d converts an r-form into an (r+ I)-form; ii) d(dw) 0 for any w; 

iii) dew A a) = dw A a + (-Ii w A da if w is an r-form (remember, func­

tions are zero-forms). 

It is from df in a coordinated basis that we get the notation dx p. for 

basis one-forms. If we operate on the n coordinate functions xp. with 

d we get dx p., n one-forms which can be easily shown to be identical 

to the duals dx p. of the vectors a p.' 

From ii) above we have d(dxiL) = O. We shall find that this expression 

is equivalent to the statement that the aiL all commute (their structure 

coefficients are zero). Let IwiLl be a basis of one-forms dual to a basis 

IX
iL

' which has non-zero commutators. The curl of any wiL is a two-form 

dwiL and hence a linear combination of the basis of two-forms IwP. Awvl: 

It can be shown that the D~{3 are related to the structure coefficients 

C~{3 of (2.8) by 
(2.26) 
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A Picture of a One-Form - Closed and Exact Forms 

We shall try to give an intuitive picture of a "form" which we have 

defined in an abstract way. We shall use the property of d that: If 

cku '" 0, then w '" da for some form a, at least in a limited region 

(Spivak, 1965). 

A closed form w is one which has dw O. An exact form Qj is one 

which can be written w da for some a. As we stated above each 

closed form w is exact, at least over limited regions. Whether dw = 0 

implies w da everywhere on M depends on the topology of M. 

We can obtain a picture of a general exact one-form by constructing a 

set of n - I-dimensional hypersurfaces in an n-dimens ional manifold M 

dt w 

Fig. 2.5. One-Forms in 3-d Space, Schematically Indicated. Because dt is 
closed. or curl-free, so that d(dt)=O, dt locally determines a set of 2-dimen­
sional surfaces (t=const). Here t, x, and yare coordinates in the space 
in which dt and w exist. The one-form w shown is w=cos t dx+sin t dy, 
and so dw A W ~ O. The structure determined by w is a spiral or screw ar­
rangement of 2-dimensional surface elements defined as the locus of end­
points of vectors X such that w(X) = O. 
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labeled by a parameter t. The parameter t is a function which is constant 

on these hypersurfaces. We may identify dt, the curl of i, with the 

hypersurfaces themselves (see Figure 2.5) and portray dt as an arrow 

perpendicular to the hypersurfaces. 

If we want to portray an arbitrary one-form UJ, consider UJ at a point 

P. At P UJ may be represented by a small "chip" of a hypersurface 

which contains all the vectors U such that UJ(U) O. If dUJ" UJ =: 0, 

the form is said to be hypersurface orthogonal and the chips can be sewn 

together to form a surface. If UJ is curl-free, clUJ 0, the chips can be 

sewn together without stretching. If dUJ A UJ -f 0, the chips cannot, even 

with distortion, be combined to form a surface. 

To portray an r-form we may extend the method just outlined. For an 

r-form a, (n-r)-dimensional chips at P are determined by the vectors U 

such that a(U) =: O. Again the condition that we may sew these chips 

together (possibly by distorting them) in a finite region to make an 

(n-r)-dimensional hypersurface is dO' A a=: O. This condition is obviously 

satisfied when dO' 0, in which case a is the curl of an (r-I)-form, and 

the sewing together involves no stretching. 

2.5. Covariant Differentiation 

In tensor analysis covariant differentiation V is an operation which 

is a type of differentiation which (a) reduces to partial differentiation on 

functions; (b) converts a tensor T to one of higher covariant rank; (c) 

applied to the metric gives zero; (d) contains Christoffel symbols which 

are symmetric in their lower two indices. We shall define an operator with 

these four properties expressed in a coordinate independent manner. There 

will be two important new directions, however. 

First, we shall concentrate on V u' covariant differentiation with 

respect to the vector field U rather than on V. The operation VT on a 

tensor T produces T, where T is a tensor of one higher covariant rank 

than T, but V u T for a vector field U is a tensor of the same rank as 

T. Second, our definition will be invariant under a change of basis. In 
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non-coordinated bases we shall find that the analogues of the Christoffel 

symbols need not be symmetric. 

Y u as a Differentiation Operator 

We shall list four defining properties of Y U' The first two are: 

(1) Y U is an operation which carries a tensor field into another 

tensor field Y U (T) of the same rank and which is linear in U: 

Y(fU + gV) fYu + g\!v, f, g functions; U, V vector fields. (2.27) 

This property is equivalent to property (b) above. 

(II) The operator Y u applied to a function gives 

(2.28) 

When applied to tensor products, Y U is a derivative operator: 

(2.29) 

These properties are the analogues of (a). Also, Y U commutes with con­

traction C in the sense that the result of applying Y U and C to a 

given tensor field is independent of the order of application. 

Using (I) and (II) we can show that (for any function f and vectors 

U, V): 

vaXa then Yu(fV) may be computed if we If we write U = ua Xa , V 

know Y X (Xv) for all jl, v. This derivative defines the connection 
p. 

coefficients r~y by 

We know that Y X (Xv) is a vector field; the 
p. 

nents in the basis ! Xjl L 

(2.30) 

r::
11 

are just its compo-

If we let U = ujl Xv' V vVXp.' then our definitions give rise to a 

useful formula: 
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'V u(V) (2.31) 

(V) VU;fL XU ' 

V
O we 

,/L 

The quantity 'V X (V) is a vector field, so we can write 'V X 
/L /L 

where the vo
;f.1 are its set of components. Writing Xf.1[V

O
] 

have 

(2.32) 

and 

(2.33) 

These expressions are common in relativity, but here v /L is not a v f.1 
,0 U 

and r ~f3 Ie r ~a in general. 

We may also compute 'Vu(w) where w is a one-form, with w aowu. 

The result is 

Vx (w) = Vx (aowo) = (Xllau-r~ ar)w
o 

/L /L r /L 
(2.34) 

= (aU,/L-r~/Lar)wO . 

With these formulas we can compute Vu(T) for any tensor T. For 

instance, the second rank tensor g/LV w/L @ WV has the covariant deriva­

tive 
(2.35) 

The Vanishing of Vu(g) and of Torsion - The First Cartan Equation 

In order to make the r ~f3 unique it is necessary to specify two 

additional properties of V u : 

(III) The covariant derivative of the metric tensor g vanishes: 

Because of (2.35) we can then write 

(2.36) 
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where g/lV,a Xa ~v' (Note that the curl of the function g/lV is d~v 

g/lv,a .) Let us define the connection forms 

(2.37) 

Property (Ill) then can be written 

W/lV (2.38) 

(IV) The final property we shall demand of V u is zero torsion (see 

Helgason, 1962). That is: 

Because of their limited usefulness in general relativity (although see 

Edelen, 1962, and Einstein, 1955) we shall not consider covariant deriva­

tives with non-zero torsion. 

It can be shown that in a basis !X/ll (C~{3 defined above) 

C/l{3 =: r p. - r /l{3 a {3a a (2.39) 

This relation implies 

or 

dwP. = - W~ A W (J • (2.40) 

This is, for zero torsion, the first Cartan equation. 

We may use (2.37) and (2.40) to compute r ~(3 for a general basis. If 

we define a basis I Xp.1 such that gp.v is a constant in that basis (2.38) 

reduces to w/lv + WV/l = O. This special case is often useful in relativity. 

In general, however, we have 

r ~{3 ~ gIlo(&ua ,{3 + &u (3 ,a - ga{3 ,0) 

+ ~(-C~{3 ga(JgIlrC~{3 &u{3g1lTc7a) (2.41) 
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where ffo i5a1l '= o~ and gfLlI,a Xu gfLlI ' A case of special interest is 

C~(3 0 (a coordinated basis). In this case (2.41) reduces to a well­

known form: the Christoffel symbols. 

2.6. Curvature - The Second Cartan Equation 

Let us define (without motivation for the moment) the curvature 

operation on two general vector fields U and V to be 

(2.42) 

Eventually we shall use this operation to define the gravitational field. 

The operation R(U, V) is a tensor of one covariant rank and one contra­

variant rank, since it operates on a vector field to produce another vector 

field, and since for any function f 

R(U, V) (fW) = fR(U, V) (W) 

The proof of this property is straightforward, but tedious. 

The Riemann Curvature Tensor 

Using R(U, V) we can define a tensor field of three covariant ranks 

and one contravariant rank which operates on three vector fields U, V, W 

and one differential form co to produce a function: 

R(U, V, W,co) f (2.43) 

This tensor is the Riemann curvature tensor. The definition of R is 

R(U, V, W,co) = co[R(U, V)W] . (2.44) 

(R(U, V) W is a vector field, so R(U, V, W, co) is a function.) 

To be a tensor, R must be linear in all its entries. It is obviously 

linear in co and we know that R(U, V) is a linear operator. We shall 

leave it to the reader to prove linearity in U and V. 

For a basis IXfLl. R(X
W 

XII)(Xa ) is the vector field 

R(XW XII)(Xa ) = R~fLlI Xo . 
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The R~p.1/ are a set of functions called the components of the Riemann 

curvature tensor. 

In a coordinated basis (U = uvav' [all' a)= 0) 

(2.45) 

which implies the familiar equation: 

v v RV a 
u ;1/11 - u ;p.1/ = aill/ u (2.46) 

In a general basis, a long computation shows 

(2.47) 

where r~1/ ,11 Xil r~1/ and C ~I/ = r ~/l - r ~I/' In a coordinated basis 

this reduces to the usual expression for R~/ll/' 

The Second Cartan Equation 

Using (2.47) we can show that the curvature forms 

have the useful property (the second Cartan equation) 

(2.48) 

(2.49) 

Equations (2.38), (2.40) and (2.49) are all we need to compute the 

connection coefficients and the Riemann curvature tensor for a metric iri 

any basis. Taken together, (2.38) and (2.40) may be solved for w~ (this 

is usually much simpler then computing r:1/ in a coordinated basis). A 

straightforward computation gives the ()~ and (2.48) allows us to read off 

the components R~VT directly. 

The Ricci tensor components R/ll/ and the scalar curvature Rare: 

R (2.50) 
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The Einstein field equations are 

(2.51) 

(T J-Lv are the components of the stress-energy tensor in terms of the wJ-L 

and in a system of units where 81TG/c4 = 1.) 

2.7. The Three-Sphere as an Example of a Differentiable Manifold: 
Metric, Vector Fields, and Structure Coefficients 

The three-sphere 53 is the set of all points in four-dimensional 

Euclidean space R4 with coordinates xl, x2 , x3 
t x4 such that 

4 

~ 
2 

(x fL) '" 1 . (2.52) 

Il'=l 

In R4 we also use the Euclidean metric gfLv ofLV (fL, v = 1,2,3,4). 

We should like to construct a set of basis vectors for the manifold 53. 

We need three linearly independent vectors Xl' X2 , X3 at every point of 

53. Because every point of 53 is also a point of R4 we can write any 

vector at a point of 53 as Xi = at a fL' where the at are functions of 

xl, x2 , x3 , x4. For any function f on 53, Xi(f) must be a function on 

53, so the at need be defined only for points in 53. Consider the 

three vectors in R4: 

Xl x2al - x1a2 + x4a3 - x3a4 

x 3a1 - x4a2 - x1a3 + x2a4 (2.53) 

Each of these three vectors is a v'ector in 53 when xl, x2 ,x3, x4 satisfy 

(2.52). The Xi are linearly independent and it can be shown that 

X· ·X. = 0 .. 
1 1 1) , 

i, j 1,2, 3 (2.54) 

Thus the Xi form an orthonormal basis for 53. 
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Computing the commutators of the vectors (2.53) we find 

so that the structure coefficients are given by 

(2.55) 

Thus the Xi are a non-degenerate basis everywhere on S3, and the 

metric whose components are defined by (2.54) is non-singular everywhere 

on S3. 

Coordinates Oll S3 

No coordinate system will cover all of S3, but consider the coordi­

nates xi", xi, i == 1,2,3 at every point where x4> O. The xi are good 

coordinates everywhere in this region. The three coordinated basis vectors 

di can be written in terms of the all of R4 as 

1 

where x4 [1_(x1 )2 _(x2)2 _Cx3)2{ 

The metric g has components in this basis: 

(2.56) 

We see that gij has a singularity at x4 = 0, but this singularity is 

spurious, as it is due to the breakdown of the coordinates xi at x4 = O. 

We know that the metric is actually non-singular because there exists a 

basis !Xil in which its components are regular everywhere: (2.53). In 

terms of the ai we may write 

X2 x3d1 - x4a2 - X1d3 

X 4"T' -3"T' -2"T' 
3 x 0 1 + x 02 - x 0 3 



2.7. METRIC, VECTOR FIELDS, AND STRUCTURE COEFFICIENTS 37 

Let us now consider the three·sphere of radius b, that is the points 
4 ~ . 2 2 

in R such that k (Xl) = b . We define Y i aXi where the Xi are 

given by (2.53) (with the new restriction 2(x i / = b2
). For the moment 

1 we choose a 2"' so that 

y .. y. = 1. b2 0 .. 
1 J 4 1J 

(2.57) 

Let us now change to a new basis I~\ I where 

the ais being a matrix of constants such that 2ais ait 
= 8st (ais is a 

i 

3x 3 orthogonal matrix). Equation (2.57) remains valid for the Y i' if the 

determinant of a i
j is one. The I Y i I and I Y il bases will be useful in 

the discussion of spatially homogeneous cosmologies based on the three­

dimensional orthogonal group. 

Table 2.1. Summary of Useful Formulas 

VECTOR FIELDS: 

V(r + g) V(n + V(g) 

V(fg) = gV(F) + fV(g) 

Coordinated basis: fl 
V =.)La where a = JL 

fl fl axfl 

General basis: 

Xfl=e;aa ' V=~Xa 
"(J 

V(f)=f aV , where f Xa(f) 

(in a c~ordinated basis Xfl(O=aflf) 

Changing coordinated bases: 

lJa -lJ"i -II axfl v V=v'" =vra vF'=_· - v 
fl fl' axv 

ONE FORMS: 

dxfl(a ) = 8fl where a '" JL v v fl axV 

A general form: 

w=a dxfl 
fl 

dxfl is a coordinated basis of forms 

A general basis: 
a ~ a 

wf1= I:fl dx ,w=a w S a a 
A basis Iwal is dual to a basis of 

vectors IXal if wa(Xr)=~ 

If w = a U U = uflX w(U) = a ufl 
fl (j)' , fl' fl 
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Table 2.1. Summary of Useful Formulas 

(Continued) 

VECTOR FIELDS; ONE FORMS: 

Changin~ general bases: 
fJ. - v 

V v XfJ.' and if XfJ.=A
Il 

Xv' 

(A -l)Jl
v 

vV and V'" v JlXJl 

Commutators: 

[U,V]=UV-vu 

~V=[U,v] 

In a basis XJl: U=uJlXp.' V=vfJ.xfJ. 

[U, V ]=!ufJ.(X
Jl 

vO) - vfJ.(XfJ.uO)+ 

ullvv cOJllllxo where 

[XfJ.'Xv ] JlllXO 

Tensor Product of Vectors: U <81 V 

Metric Tensor: 

Changin~ bases: 

Coordinated: w a dxfJ.=a dxfJ. 
Il fJ.' 

Il 

Non-coordinated: wJL=AfJ.vw
V

, 

(A -1) Va and w=a (;jfJ. 
fJ. V fJ. 

Tensor Product of Forms: 0 <81 w 

Exterior Deriva five; 

On functions: df=J/dXfJ. 

On general fc:rms; d2 0 

d(wAO)=dwAO+(-liwAda 

(r the order of w) 

11 1 /I 0 r 
On a basis: dUJ' '" -:2 C''''orw Aw . 

g= g~fJ.<8Iwv, g(U,V)=U' V, g(XfJ.'XV )= gJlll' 

The one form u=u~ is the image of the vector U=ufJ.XfJ. if Iwf.LI is dual to 

lxiIl and ufl=gJlllu . 

Covariant Deriva five: 

On functions; V Uf = U f. 

On the tensor product of two vectors S,T; VU (S<8IT)=VU(S)'®T+S<8I,VU(T) 

V~(fV)= fVU(V)+ [U(f)]V 

If U = ufJ.X V = vfJ.X V (V) = u 0 [vfl + ['fJ. vT]X = u o(vfl )X 
fl' fl' U ,0 or fl ;0 fl 

where VUXfl=uvr'VflXa and v~v=Xv(vfJ.). 

On one-forms: Vx (w)=(aV'fl-~flaO)wV' if w=afluP, where afl,V=XV(a
fl

)· 
fl 
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Table 2.1. Summary of Useful Formulas 

(Continued) 

Connection Forms: 

wP: =rfL uP 
v~~ m 

39 

The metric has zero covariant derivative: dgf,tV = CUf,tV +CUvf,t' CUf,tV= gpacua
v . 

The condition: [U,V]=~(V)=VUV -VVU is the condition for zero torsion. 

It implies c~fJ=r% -r~fJ 

and also dCtJfL= -wfLvl\CUv (The first Cartan equation). 

In general: r~fJ=} gPO(gaa,fJ+ gafJ,a - gafJ,a) 

1 (fL poC T fLaCr ) :2 -CafJ+grag afJ+grfJg aa' 

The Curvature Tensor: 

R(U, V)=VU Vv - Vv Vu - V [U,V], 

R(Xa,XfJ)(XfL)=R~afJXa 

R(U, V, W,cu)=cu[R(U, V)W] 

R is the Riemann curvature tensor 

In general: R~afJ=r~fJ,a -r~a,fJ+r~fJr7a -r~arrafJ-C~fJr:T' 
The components of the Ricci tensor are: RafJ=R~afJ' the Recci scalar is R =R~. 

Einstein's field equations are R -!:..Rg =T if 81TG /c4 =1 (TIIl~ stress-
f,tV 2 f,tV f,tV . .-

energy tens or). 

The Curvature Forms: Antisymmetric Second Derivative of 

Components of a Vector Field in a 
Coordinated Basis: 



3. SPACETIME AND FLUID FLOW 

I came like water and like wind I go 
- OMAR KHA YY AM 

3.1. Relativity and Hydrodynamics 

In this chapter we shall concentrate on the description of a fluid in 

general relativity and fluid-filled cosmological models. Emphasis in this 

chapter will be on the use of the coordinate free language of Chapter 2 for 

relativistic hydrodynamics. Figure 3.1 is an outline of the chapter. 

Hydrodynamics 

In the theory of relativity we study the behavior of a four-dimensional 

manifold M on which there is a metric of signature (- + + +). The path 

of any particle in this manifold is affected by the curvature of the mani­

fold. This matter in turn determines the geometry through Einstein's field 

equations 
1 

R/W - 2" Rg/LV = k T/lV ' (3.1) 

with R/Lv being the components of the Ricci tensor; R the Ricci scalar, 

R = ga f3 Ra f3; and T /LV the components of the stress-energy tensor. We 

shall choose units such that the Einstein gravitational constant k 81TG/C4 

equals one. 

We shall usually fill our model universes with a smooth, perfect 

(isotropic pressure) fluid, as is customary in cosmology. DeVaucouleurs 

(1970), Yu and Peebles (1969), and Misner (1967c, 1967d, 1968) have 

described cosmological models in which the matter cannot be described 

by such a perfect fluid. Birkhoff (1960) has pointed out that many well­

known non-smooth hydrodynamic phenomena such as shock waves, 

40 

Omar Khayyám (1048-1131), 
as transcribed by Edward 
Fitzgerald (1809-1883)
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3.4 Acceleration a~ 

Rotation 

Expansion e 

Fig. 3.1. Flow Chart of Chapter 3. 
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cavitation, and turbulence should not be ignored. For simpliclty, however, 

we shall follow the usual practice and discuss perfect-fluid models. 

Fluid Stress-Energy Tensor 

The stress-energy tensor T appears as the source term in Einstein's 

field equations. Although T may be defined in several different ways, 

we will use the definition most practical for perfect-fluid cosmologies. 

This method (Eisenhart, 1924) concentrates on the algebraic structure of 

T, a second-rank, symmetric tensor. We choose units so that G = (8")-1, 

C = 1 
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In coordinate free language, T has the form 

T (w + p) u ~ u + pg (3.2) 

where u is a timelike, unit-magnitude differential form (covariant vector 

field), g is the metric field, and wand p are scalars, the energy 

density and pressure respectively. The fluid velocity is most often 

written in the contravariant form U, that is, as a vector field. The field 

u is the covariant image of U (indices lowered by use of g). 

For most cosmological purposes p ~ 0, so we shall often use the 

approximation p 0 ("dust-filled" models). This approximation breaks 

down during highly condensed phases of the evolution of the universe 

where even the concept of a fluid breaks down and a kinetic theory 

(Bichteler, 1967) or quantum approach should be used. 

Let us now consider the components of T in some basis. In a vector 

field basis IXfL I (fL 0,1,2,3) g has components gfLv'" g(XW Xv), and u 

has components 
(3.3) 

The contravariant vector field U is U", ufL XfL' where ufL '" gfLo uO. We 

have defined U to be a unit vector field, g(U, U) ufL ufL = -1. In the 

basis IXfLl, (3.2)becomes 

(3.4) 

The energy density w is equal to p(l + e:), where e: is the internal 

energy, and p is the rest-mass density (see Taub, 1967). The function 

p is found by multiplying the number of particles per unit volume by the 

rest mass of each, and consequently obeys the "continuity law" 

(3.5) 

The entropy S of the fluid is related to e:, p and p by the thermo­

dynamic equation edS '" de: + pd(l/p) where e is the temperature. 
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The scalars wand p are the timelike and space like eigenvalues of 

T respectively, there being three space like eigenvalues, each p. This 

degeneracy of the spatial eigenvalues is due to the isotropy of the pressure 

- the defining characteristic of a perfect fluid (Eisenhart, 1924). 

3.2. Thermodynamics, The Bianchi Identity. and Conservation Laws 

We assume equilibrium thermodynamics for cosmological models (see 

Taub, 1959), that is, the constancy of entropy along the fluid flow lines: 

V S '= S ull O. The equilibrium thermodynamics hypothesis implies U til 

(3.6) 

From quite general, physical considerations it can be shown that T 

obeys the conservation law 
(3.7) 

In the case of a perfect fluid this law separates into two equations, (3.6) 

and 
(3.8) 

This latter equation is completely analogous to the conservation of 

momentum equation of Newtonian hydrodynamics (Euler's equations of 

motion, see Birkhoff, 1960). 

The Bianchi Identity 

Equations (3.7) and (3.1) imply 

o (3.9) 

if Einstein's field equations hold. This latter equation is actually a 

geometric identity. If we take the curl of the curvature forms ell v' we 

find dell = dcu ll A cua - cull A dcu a We insert ell" !. Ril Qcua 
A cu{3 

V a V a v' v 2 va/-, 
and dcu ll = - w ll A CU

V to find v 

r-o.G. par 
J:( {3pa; r cu A cu A cu O. (3.10) 
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This identity is called the Bianchi identity. Equation (3.8) is the twice­

contracted version of the Bianchi identity. 

The Equation of State 

In a basis (not necessarily a coordinated basis) the full Einstein field 

equations for a perfect fluid read 

We contract with g /lV to find R 

therefore rewrite (3.11) as 

w - 3p (since uIL u -1). We may 
IL 

1 :2 (w - p) gILv . (3.12) 

We now have ten partial differential equations for the g/lV' plus (3.3), 

(3.6) and (3.8) relating w, p and u/l. Notice that we lack one equation, 

as the above are fifteen equations for sixteen unknowns. 

This type of indeterminacy occurs in Newtonian hydrodynamics 

(Courant and Friedrichs, 1948) and as in that case, supplementary thermo­

dynamic conditions lead to a well-defined problem. In principle we shall 

give a set of equations 
S = f(p, S) ; p f(p, S) , (3.13) 

where s,p, S were defined above. These, with the equation S,IL u/l = 0, 

give seventeen equations for seventeen unknowns. In fact, in cosmology, 

we usually assume S to be a group invariant (constant in space) and 

therefore S = canst. A fluid with constant S is called isentropic, and 

its pressure obeys an equation of the form 

p = pew) , (3.14) 

which is called an equation of state. We shall always assume the exist­

ence of such an equation of state (for a more physical treatment of equa­

tions of state see Harrison, Thorne, Wakano, and Wheeler, 1965). 



3.3. GEODESICS AND CLOUDS OF PARTICLES 

The equations of state we shall generally use are 

1) vacuum: T fLl/ 0, or w '" p O. 

dust: p O. 
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This is closest to the present universe, and it serves as a very 

good model for the general case. 

3) gamma-law: p ~ yw where y is a constant. 

The radiation or photon gas is a special case of this for y 

This is a good model for a highly condensed cosmology. 

(1 9 
4) polytropic: p KW n. K = const.; n const. (the poly-

tropic index). 

3.3. Geodesics and Clouds of Particles 

In the dust case Equation (3.8) becomes 

o (3.15) 

which is the equation for a geodesic. A test particle, a small particle 

which reacts to gravitational forces only, also follows a geodesic path 

(Bergmann, 1942). Because of these two cases we will consider geodesics 

in general. 

Geodesic, a Parametrized, Self-Parallel Path 

A geodesic is, first of all, a parametrized path, a map from a segment 

of the real line R into a manifold M: 

p:R->M 

(for every t in R, pet) is a point in M). The numbers in R are the 

domain of parameters, while the set of points p in M is the image or 

range of p in M. The one-dimensional subset of M mapped out by p 

is a path or world-line. The vector U tangent to the path is the operator 

which acts on functions f restricted to the image of p, yielding 
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Uf = df(p(t» 
dt . (3.16) 

The vector U is a map from R to the tangent space of pet) for each t. 

The path p is said to be differentiable or "smooth" if in an allowed 

coordinate system I xlll, p is represented by n (= dimension of M) 

differentiable functions of t, xll(t). Similarly a vector field W on p is 

smooth if the components of Ware differentiable functions of t in any 

allowed coordinate system. The components of the tangent vector U are 

dxll(t) 
dt 

i.e. U 

Paths whose tangent U obeys U· U 0; U· U 0; U· U > 0 are 

called timelike, null, and space like, respectively. In relativity all massiVE 

particles travel along timelike paths, while photons travel along null paths 

Tachyons, hypothetical particles with spacelike world-lines, have not yet 

been found in nature. 

It is easy to see that V U W for any vector W defined on p is well­

defined, including VuU, A geodesic path p is a path whose tangent 

vector obeys 
(3.17) 

where a is some function. This equation says that the transport of U 

along U (by the symbolic use of V u) is parallel to U (see Figure 3.2), 

Reparametrization (a change of coordinates in the parameter segment 

R) changes the function a. There is always a parametrization of a 

geodesic path for which a = 0, that is 

o or, in terms of components ull'a u
a = O. , (3.18) 

A parameter i which makes (3.18) true is called an affine parameter. We 

may construct another affine parameter r out of r by r = a r + b, a " O. 

If we contract (3.18) with ull we find 

U . U = const. along p, if an affine parameter is used. 
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~) 
p 

(8) 

Fig. 3.2. Geodesics and Non-Geodesics. (A) X is a vector at the point P. 
(B) L is a geodesic through P whose tangent coincides with the vector X 
at P. L' is a path, but not a geodesic, which also has as tangent at P the 
vector X. (C) A geodesic is characterized by the following property: If its 
tangent is par!l;l1ely translated along the geodesic path to Q, then the paral­
lel translate Xo will coincide with th.! tangent at Q, i.e. XQ. With a non­
geodesic path, the par~llel translate X

Q
' will not coincide wlth the tangent 

X
Q

, of the path at Q. 
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Without loss of generality we may choose 7' such that U· U '" ± 1 or O. 

If U· U = 1 (U spacelike) 7' is called the proper distance along U. If 

U· U = -1 (U timelike) r is called proper time. We may still choose an 

affine parameter even if U is null, but U· U = const. is useless in this 

case as U· U = 0 for any parameter. 
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It is an interesting property of a geodesic segment that it is an extren 

path between its endpoints P and Q. That is, (3.18) is the Euler­

Lagrange equation for a variational principle of the form 

8Ig dx/l dxl! d r 0 
Ill! dT dT . 

While a geodesic is extremal it is not necessarily the "shortest" path 

between P and Q. Nor is it true that there must exist a geodesic be­

tween any two points, even if the manifold has no artificially set bound­

aries (Calabi and Markus, 1962). 

Motion of a Cloud of Particles 

Let us now consider a cloud of non-colliding particles, that is, a set 

of time like paths such that one and only one path passes through any 

point in the manifold M. Such a cloud is represented by a time like vector 

field everywhere on M. If the cloud consists of particles which interact 

only gravitationally, then U is a geodesic field. Whether U is geodesic 

or not, we shall choose parameters so that U· U = -1. 

If we join two nearby paths by an infinitesimal line segment, and 

remember from Chapter 2 that such a segment is equivalent to a contra­

variant vector, then we can speak of the vector W joining two paths (see 

Figure 3.3). We shall parametrize the paths so that W joins points with 

the same parameter. We can extend such a definition to a vector field ove 

an open region in M. 

We will now show that J:.uW = 0, where J:.uW = [U, W] is the Lie 

derivative of W along p. To do this, write J:.u W in some basis I X/l! a~ 

(3.19) 

In a coordinated system (f' ~l! symmetric on /l and l!) the covariant 

derivatives may be replaced by ordinary derivatives. Now choose a coordi 

nate system It, yi\ where yi is a three-parameter set labelling particles 
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TimeL 
Spa 

Fig. 3.3. Coherent Motion of a Cloud of Test Particles. Each particle is 
represented by a path with tangent vector field U, parametrized by proper 
time r. The vector field W connects the path P l with another typical 
particle path P 2 , the connection being between points at the same proper 
time. W has the property that ~W = O. 
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and r is the affine parameter along particle paths. In this coordinate 

system ul1 a'" 0 (since uf1 = ( 11
0 ), Since W joins points with the same , 

affine parameter, the contravariant components of Ware independent of r 
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along the path. Thus wfl a ua = JWfl;aT vanishes. Because we are usine , 
a coordinated basis, 

£ W U o . 

This is a basis independent statement, so it is true in all bases. 

Reaction of a Cloud of Test Particles to Curvature -
Equation of Geodesic Deviation 

(3.20) 

When U is a geodesic vector field and W any vector field such that 

£u W = 0, then the second derivative of W provides information on the 

effect of curvature on the cloud. This information takes the form of the 

equation of geodesic deviation. We shall not go into observational topics 

here, but the equation of geodesic deviation does have observational 

application (see Kristian and Sachs, 1966). 

To derive the equation of geodesic deviation, we first rewrite (3.19) 

as (this uses zero torsion, Section 2.5): 

On taking the covariant derivative of this equation with respect to U: 

v U V U W V U V W U - V W V U U = R(U, W) U , (3.21) 

we have the equation of geodesic deviation. In a coordinated basis (see, 

for example, Weber, 1961): 

fl a r 
w ;ar u u Rfl a r p 

arp u u w (3.22) 

3.4. Acceleration, Rotation, Shear, and Expansion 

Many properties of a cloud of particles do not depend on the Einstein 

field equations. A cloud is represented by a timelike vector field U, and 

we parametrize U by proper time (whether U is geodesic or not) so that 

U· U = -1. The cloud may be thought of as a continuous fluid. In a basis 

! Xfll, U has the form U ufl Xfl' The covariant components of U are 
a 

ufl = gfla u . 
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The first covariant derivative of U may be written in the form 

(3.23) 

where 

a/lV [~(Ua;r+ur;a) - t ua;aharJ h
a

/1h
T
v ' 

w/1V ~(ua;T-~;a)ha/1hTv' 

e a 
u ;a 1 (3.24) 

The tensor h whose components are h/lv is the projection operator onto 

the set of vectors perpendicular to U. The properties of hare h/10 UO == 0, 

hila hO v h/1V' hO 0== 3, and h/l ° WO = w/1 if wT ~ O. Ehlers (1 %1) has 

given the above quantities the following names (we label terms by their 

components) a/1 - acceleration, w/1V - rotation tensor (w = [wor Wor ]2 
1 

is the rotation), 0/lV - shear tensor (0 [0/1'0/1,]2 the shear), 

(J - (volume) expansion. ·Notice that w/lV is antisymmetric, 0/lV is 

symmetric and traceless, and all u/l == w/lOuo = 0/lOuo O. 

Fermi Transport and Fluid-Flow Parameters 

What is the physical signicance of acceleration, rotation, shear, 

expansion? The acceleration measures the response of a particle to non­

gravitational fields (its departure from geodesic motion), In a perfect 

fluid the acceleration is determined by the pressure gradient (see 3.8). 

The other quantities defined by (3.24), rotation, expansion, and shear, 

measure the rate at which the cloud deforms with respect to a Fermi­

transported basis (Synge, 1%0). This basis is a set of three vectors 

!Xil, each of which is orthogonal to U and each of which obeys 
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(3.25) 

If the three vectors are chosen orthonormal at a point P then (3.25) pre­

serves not only their orthonormality, but also the fact that Xi' U = 0 all 

along the path generated by U from P. Fermi-transport has the following 

properties: 1) If U is geodesic (3.25) reduces to the natural requirement 

that V uX = o. 2) A point gyroscopic (for example, an electron) which is 

accelerated will precess according to (3.25) (Synge, 1960). 

To measure the cloud's deformation, we consider the vector W con­

necting two nearby particles. We have shown that l"u W = [U, W) = 0, and 

by proper choice of the affine parameters for different particles we can 

set W· U = O. The components of W in the Fermi-transported basis 

Wi Xi' Ware physically measurable, and changes in Wi along a path 

are described by Wp.v' (Jp.v' and (j. We use (3.20) and (3.25) to show: 

In a comoving basis (ua = oao' Xi has components xt = at (i = 

1,2,3», wOp. = (Jop. = hop. = 0 and also, hij = gij' The equation for 

V u W i shows that in a time or in this basis the change in W, oW, is 

oW. = (w. + (J. + 1 (jh. ) WS or (3.27) 
1 IS 1s3 IS 

If W is allowed to trace out a surface S at r 0, (3.27) shows how 

S will deform in a time or: S will expand by a relative volume (jor, and 

S will rotate and shear by amounts given by wijor and (Jijor. Thus 

(3.26), or more precisely (3.27), justifies the names given the quantities 

defined in (3.24). 

Invariant Definition of Rotation 

Of the quantities defined in (3.24), rotation plays a special role in 

the collapse of a cosmological model (see next section). We shall there­

fore examine it in some detail. It is interesting to note that the rotation 

tensor has an especially simple definition in terms of differential forms 

and is equivalent to a vector n which is orthogonal to U. 
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Consider the covariant fluid velocity u. At a point Po in spacetime 

we take coordinates so that gf.1V T/f.1V' gf.1l/,I\ ~ 0, and uf.1 (1,0,0,0) 

(this can always be done at one point). As we move away from Po in the 

spacelike hypersurface t xo = const., the particle velocities acquire 

spacelike components unless u is orthogonal to the hypersurface. The 

existence of these spacelike components indicate rotation with respect to 

an inertial frame. 

The covariant vector u need not be the gradient of the function which 

defines the hypersurface in order to be normal to the hypersurface. How­

ever, u must be of the form u rdf, where rand f are functions. We 

shall take this form to be the defining characterization for vanishing rota­

tion. It can be shown that u = rdf can only be satisfied if (u a covariant 

vector field) 
du A U = 0 . (3.28) 

The differential three-form du A u is a completely antisymmetric co­

variant tensor of rank three. It has components Qa{3y in a coordinated 

basis, and there are at most four independent components. We now define 

a vector field, 0., the "dual" (in the sense of differential forms) of 0., 
1 

(*du A u) = I gi 2 c~{3y ft R 3T C a(-Jy' 

*du A u, where 

(3.29) 

(with I gi the absolute value of the determinant of gl1v ' and € ~(3y the 

completely antisymmetric array with e0123 = + 1). The vector field 0. is 

always orthogonal to u(QIl u
ll 

= 0) and is called the rotation vector (GOdel, 

1950; Taub, 1959). In a comoving basis (ul1 (1,0,0,0» 0.0 = 0, and the 

three spacelike components Q i are equivalent to the three independent 

components of UJ l1v ' 

3.5. The Raychaudhuri Equation and the Conservation of Rotation 

If U is geodesic (all vanishes) an interesting formula due to 

Raychaudhuri (195Sb) describes the rate of change of e, the expansion, 

Raychaudhuri's equation in the case of vanishing pressure (or, as in the 
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Friedmann-Robertson-Walker models, if the fluid velocity is geodesic in 

spite of p ~ 0) is equivalent to the (00) component of the field equations 

RIlV (w+P)ull~ ~ (w-p)gllv' In any spatially homogeneous model 

the space like homogeneous (t const.) hypersurfaces may be described 

by a time like geodesic field tangent to the t-axis. In this case () is the 

relative expansion rate of the 

equation governs (). 

const. hypersurface and Raychaudhuri's 

The general form of Raychaudhuri's equation is 

(
EXpansion) 
derivative 

_ (energy density) _ (Shear) _ (eXpanSion) + (rotation) 
term term term term 

Rotation enters with a sign opposite to the rest of the terms, so it is 

especially Significant. 

Raychaudhuri's equation follows from the definition of the Riemann 

tensor in terms of the commutator of covariant differentiation (see Section 

2.6). For a vector field u (components u
ll

) we have, in a coordinated 

basis, 

We raise the Il index, contract on Il and a, and contract again with uf3. 

We find: 
(3.30) 

This is the Raychaudhuri equation. 

For a fluid stress -energy tensor, RaT ua uT = ~ (w + 3p) which is 

greater than or equal to zero if p ~ - w /3. Even if the ua of (3.30) is 

not the local fluid velocity but the velocity of a cloud of test particles 

(all ~ 0) and u is the fluid velocity field then ull u
ll 

:s -1 since u and 

u are both timelike and unit. Consequently RaT ua uT ~ ~ (w+ 3p) > 0 if 

p ~ - w /3. If we only allow small negative pressures then all the terms 

in (3.30) contributing to () a ua are negative except for the term in (1:)2. , 
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Rotation and Gravitational Collapse - Conservation of Rotation 

If rotation is zero and U dxl1 /dr for some parameter r then 

ss 

dO 1 
Cit +- :3 o. (3.31) 

Hence if f) 0 at some time r, 

Jr (lIf) ? 1/3 , 

so f) -> 00 in a finite proper time along the particle path. This infinite 

value of the expansion is indicative of a singularity of sorts: It shows 

that particle paths cross. 

When U is the cosmic fluid velocity this singularity is a true singu­

larity as defined in Chapter 5. When U describes the motion of a non­

rotating cloud of test particles the singularity at f) = 00 mayor may not 

be physically real. (Even in Minkowski space, if we aim a cloud of parti­

cles at a point, f) will blow up.) Detailed examination is needed in this 

case. 

If w 2 t 0 then it is possible that f) will never become infinite. When 

the cloud of particles is the source of the gravitational field eU the fluid 

velocity) then the possibility of 0 remaining finite for all time suggests 

that a rotating, non-singular cosmological model may exist. Maitra (1966) 

has given an example of a rotating, non-singular, dust-filled model. His 

model is not a cosmological model, however, because of its axial sym­

metry, and only pecular non-singular models are known (see, for example, 

Collins, 1974). 

Because of the special position of rotation, we shall derive the law 

of conservation of rotation. This law governs the behavior of w 2 during 

epochs when f) and RaT ua uT become large. This conservation of rota­

tion law is of practical use only in limited circumstances (notably when 

the shear vanishes; see Ehlers, 1961; and Ellis, 1967). In these cases, 

and in an approximate manner in other cases, this law can tell if w 2 

can become large enough to dominate RaT ua uT
, (J2, and a 2 in (3.30). 
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Assuming u to be a geodesic field, so that 

of du, we find from d2 u "" 0: 

are the components 

1 
2" 

2 
+ 3 + o. (3.32) 

all A 
When W rWaA a /1 vanishes (3.32) may be integrated using the fact that 

(J is the relative rate of expansion of the volume V of a small region of 

fluid (Ehlers, 1961, has integrated (3.32) and has extended the result to 

"conformally geodesic" clouds, in which the acceleration is proportional 

to a gradient). We write 
o 1 dV 

V dT 
(3.33) 

where r is the proper time along the path of particle Pl' Equation (3.32) 

becomes 

1dw 
ill dT + 

2 dV 
3V dT 

0, or W AV 3 , 

where A is a constant on each world line of the cloud. 

If the cloud is a real fluid cloud, with rest density p, then p obeys 

the continuity law (3.5). This law can be integrated to show 

p = BV- I , (3.34) 

where B is constant on the path PI Near gravitational collapse, V is 

small, and one might think that w 2 dominates the effect of p in RaT uauT 

This domination by w 2 might cause one to think that collapse to a singu­

larity would not ensue. However, the detailed effects of R/1V ull UV and 

of a/1V must be studied before any definitive statement concerning a 

singularity can be made. 
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Who knows from whence this great creation sprang? 
... The Most High Seer that is in highest heaven, 
He knows it - or perchance even He knows not -

From the RIG-VEDA 

4.1. Field Equations of the Closed FRW Universe 

The closed Friedmann-Robertson-Walker (FRW) universe (Friedmann, 

1922; Robertson, 1929; Walker, 1935) is the most provocative and important 

cosmological model which has been devised since Bruno. It is also one 

of the simplest. It is isotropic, spatially homogeneous, and fluid-filled. 

Each spatial section is closed (compact, yet without boundary, finite in 

extent and volume). Compactness of the spatial sections was considered 

vital by Einstein (1917) in his earliest cosmological ideas and it is still 

an intriguing idea, if not necessary as once postulated. 

The most shocking feature of this model is its expansion: The volume 

of the spatial sections changes with time. This expansion leads to a 

singularity at a finite time in the past when the volume of a spatial section 

becomes zero and matter becomes infinitely dense and infinitely hot (the 

Big Bang at the beginning of the universe). This singularity and the fact 

that physically reasonable models have such a singularity lead to an 

interest in singularities and in homogeneous models as vehicles to study 

such Singularities. Whether such singularities are obligatory is an un­

answered question at the moment. 

The FRW models serve as an introduction to the study of homogeneous 

models. This chapter describes them mathematically. We will also briefly 

mention cosmography. (Figure 4.1 is a flow chart.) 
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The Rig-Veda was probably 
composed in northwestern India 
between 1700 & 1100 BCE.
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All FRW ~bdels 
have 
Hies 
Chapter 5) 

Necessarv to 
study more 
complicated 
models 

Fig. 4.1. Flow Chart of Chapter 4. 

PrilOOrdial 
Radio Noise 

The Metric of the Closed FRW Universe 

° 1 2 3) In a coordinated basis (coordinates x , x , x , x the metric of the 

closed FRW universe is (g/LV = a/L .av ) (Weber, 1961) 

with G G(xo)' 

t;oo -1, ~v 0, /L 1= v, 

r2 (xl)2 + (x2 l + (x3 )2 . 

(4.1) 

The manifold on which this metric is placed is the set of all points whose 

coordinates lie in the range -00 < xi < oo(i = 1,2,3) and -Tl < xo < T2 

(for some numbers T 1 ' T 2)' 

At first glance no xo = canst slice of this manifold seems compact, 

and the manifold even seems singular at r = 00; but let us consider the 

basis 
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1 13 2a 1(23 
Xl = - 2" (X X x) I - 2" X X 

X2 } (Xl X2 - X3 )a1 + !- (2(x2
/ 

1 1 2. 2 - - (2(x ) ,<-1 - r 
4 

r 
Time 

(4.2) 

1 1 2 2 -2 (x X -x 

• 

• 

Fig. 4.2. The Closed FRW Universe. Space like invariant hypersurfaces are 
topologically three-spheres and are metrically isotropic. Consequently the 
homogeneous hypersurfaces in the FRW universe may be represented as ex­
panding and contracting spheres. These spheres collapse to a point after a 
finite, amount of time. The matter density p becomes infinite at the time of 
collapse. 
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A simple computation shows that [Xi' Xj ] Cijk Xk (€ijk is the complete-

ly antisymmetric symbol with 23"" 1), and [Xo ' Xi] O. In this basis 

the metric is 

(4.3) 

This metric and the commutation relations among the,space vectors show 

that at xo const. the geometry of the space section is a three-sphere 

(see Section 2.7) of radius G(xO). 

At this point we mention a way of picturing the closed FRW universe. 

The equator of a three-sphere is a two-sphere. Since all equators are 

equivalent, we shall then picture each xO '" const. surface as a sphere 

which evolves in time (Figure 4.2). 

Connection Forms and Ricci Tensor 

In order to give a complete description of the metric (4.3) we need 

only give the functional form of G(xO). In order to compute G(xo) we 

° . shall use the basis (u ,u 1), where the u ll are the duals of the vectors 

Yo"" 00' Yi '" ~ Xi' In this basis (gllv) = (71IlV ) '" diag(-I, 1, I, 1), and 

(2.38) reads ullV + UVIl = 0 (u ll v being the connection forms). The com­

putation of dull yields 

From the first Cartan equation, dull '" - u ll v A ~, we find 

(4.5) 

The curvature forms, ell v '" dull v + u ll a " u a v' can be readily com­

puted. Two typical examples are 
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From 

.. 
ROiOi g; R i

jij (i,j 1,2,3,i~j; nosum) (4.6) 

with all the rest of the Riemann tensor components zero. 

By summation we find the Ricci tensor, which is diagonal, to be 

.. 
Q+2 
G 

Time-Evolution and Singularity 

We now want to insert (4.7) into the field equations 

(4.7) 

(4.8) 

The T flv giving the right-hand side is that of dust (fluid matter with 

p = 0), so that w p, the rest-mass density. We wil11ater include 

pressure. 

In our orthonormal frame, since ufl ufl "" -1", - U0
2 + u1

2 + Uz 2 + u3
2 

we have luol ~ 1. The fact that RflV is diagonal implies ui = 0, i == 

1,2,3, so we take ufl = (-1,0,0,0). The field equations (4.8) now re-

duce to 

(4.9) 

If we consider the equation T flV .v 0 we find that it reduces in the , 
dust case to ufl'a u(J 0 (compare equation 3.8) which here is a tautology, , 
and (Pufl);fl = O. This latter equation reads 

With the help of (4.5) this equation can be rewritten as 

. 3 
pip"" - 3G/G ~ pG M = const. , (4.10) 
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Fig. 4.3. A) R vs t for a k~. 0 FRW Universe. The solid line is the solution for 
pressureless matter, and the dashed line is for radiation with the constant r 
chosen so that the energy density of the radiation is equal to that of the dust at 
R 10. B} R vs t for a k +1 FRW Universe. Again the solid line is dust and 
the dashed line radiation. The constants f.l and I' were chosen so that the dis­
tance between the two zeros of R would be the same. C) R vs t for a k -1 

FRW Universe. The solid line is dust and the dashed line radiation. The con­
stants f.l and I' were chosen as in 4.3A. 
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The content of the field '{ti'HFJll:::' now reduces to the s equation 

(4.11) 

The solution to (4.11) is illustrated in Figure 4.3. The details of the form 

of G are not as important as the fact that G becomes zero at a finite 

value of the time coordinate xO: As G 0, p -> 00. Since is the 

proper time measured by an observer travelling with the fluid, such an 

observer will run into an epoch of infinite density with a finite time. In 

addition he or she has emerged from an infinitely dense region a finite 

time in his past. These two regions are barriers - barriers beyond which 

the equations cannot predict the form of G(xo) or p. These barriers or 

"singularities" represent a breakdown of some aspect of the postulates 

which lead to the closed FRW universe. 

4.2. The General FRW Model - Mathematics and Mystery 

The present universe is described quite well by an FRW model even 

though the general FRW model has the type of singularity discussed above. 

The general model which is isotropic everywhere is also homogeneous 

(Walker, 1935). Friedmann (1922, 1924) investigated the closed and open 

isotropic, homogeneous models and Robertson (1929, 1933, 1935-6) shows 

that these plus the flat model are the only isotropic, homogeneous cosmol­

ogies. 

Form of the Metric 

The metric of the general FRW model may be written as 

(4.12) 

where R is a function of t and dak 2 is the metric of a three-space of 

constant curvature k. The three-curvature k is independent of t, and 

without loss of generality we may always choose k '" ± 1, O. When k = + 1, 

dal
2 is the metric of a three-sphere, and the metric ds2 includes that 
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of the "closed" FRW model described above. If k = 0, dao 
2 (dx1)2 

(dx2
)2 + (dx3

)2, and the t const. three-surfaces are flat. If k -1, 

da:! is the metric of a hyperbolic space. 

We can write the metric of each of these types of three-spaces in an 
2 12 22 3 2 . 1 .. 

orthonormal frame as da k (w) (w) (w), with dw! 2'C1
jkW J AW 

for Some constants C i
jk. The C i

jk for k 1, 0, -1 are respectively 

the structure constants for homogeneous spaces of Bianchi types IX, I, 

and V (we shall consider Bianchi-type spaces in detail in Chapter 6). 
1 

Let us define a time coordinate r by [y(r)]2 dt" = dt, where proper 

time (t-time) is chosen by taking y 1. Another useful choice for y 

yields R(T) c< e- r (Misner, 1969, and Hughston, 1969, use n for this 

time variable). This second coordinate is valid only so long as R(t) is 

a monotonic function: If a turnaround (a point where dR/dt 0) occurs 

then a new time coordinate must be chosen. 

Affine Connection and Ricci Tensor 

We shall compute the connection coefficients and the Ricci tensor in 

an orthonormal basis !afll defined by 

! 

(4.13) 

for which ds2 
= "Iflvafla v . Table 4.1 gives the complete Einstein equa­

tions for a stress-energy-tensor TflV (w+p)u
fl 

Uv + pgflV" From this 

table we see that ROi ° for all FRW metrics, so that ufl = 1-1,0,0,01 

in our basis. 

We can solve the field equations under the assumption of an equation 

of state p = pew) by solving either for R or y while taking the other to 

have a fixed functional form. A help in the solution process is the con­

servation law T flV .v = 0 which in our case reduces in content to , 

R 
w,O 3(w p) -r1 o. (4.14) 
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Table 4.1. Computation of the Christoffel Symbols, Ricci Tensor, and 
Einstein Equations for the FRW Models 

See Chapter 6 for values of the 

General 

for Bianchi Types IX (k = +1), I (k = 0), V(k -1). 

; d 
R=R(r) and '" dr 

1 
Rpv={W+P)uf.L uv +2"(w -p)gPV 

uf.L =[-1,0,0,0] 

From (w+p)uf.Luv+pgpv 

FRW 

1 

dO'0=O; d~= ~y2"O'O,,~ + !.R-1d to's"d-
R 2 Ii 

1 ° R' 2' '1 l' J' S 
0'1' =R- Y ~; al

j
, - R- (C~ -C. _C .. )O's 2 JS 1S 1) 

eO, )[~"_(~;)2}+!. ~'Y'}O'O "O'i + 
llR R 2R, 

1 

+!. R' y2(d, _C i, _Cs .. )O'i"O's 
2 R2 1S JS )1 

RN 3 ,R' 
ROO =-3y - --y -

R 2 R 

R .. = Y - +2y - +-y' - +-k 0 .. [
R'" (R')2 1 R' 1 J 

1) R R 2 R 2R2 1J 

R'" 3 ,R' 1 
-3y- --y -=-(w+3p) 

R 2 R 2 

fill ,.. 2 , 
y~ +2Y(~ ) +!.y'~ 

R R 2 R 
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In the frame we are using, w,O '" Xo(w), where aO(Xo) = L Thus Xo 

dO' so the (0) symbol can be replaced by d/dr (denoted by'). , 
If we let R be a known function of r so that y(r) becomes the func­

tion to be solved for, we find: 

y 4wR2 -3k 

12(R'i 
(4.15) 

Thus, by giving p pew) we can solve (4.14) for w, then using our form 

for R to find y from (4.15) to complete the solutions. 

Multifluid Solutions 

If we choose as an example, pAw, A = const., we find from (4.14) 

that 
4BR-(1 +3A) -3k 

12(R'i 
(4.16) 

If we let R e-', we find that w Be3(1+A)', y = ~Be3(1+A)r _~ke2T 

(see Hughston, 1969). Equation (4.16) includes dust (A 0) and radiation 
1 gas (A = 3")' 

The linearity in w of (4.14) allows a solution where two or more non­

interacting fluids are present. Suppose Tllv = ~[(wa+Pa)ullauva+PagIlV] 
a 

where each ua has components (1,0,0,0), Then 

4(~Wa)R2-3k 
y 

12(R')2 
(4.17) 

and (4.14) goes to 

wa '+3(wa +Pa)(R'/R)=;a; ~;a O. (4.18) 
a 

(See Hughston and Shepley, 1970.) If;1 ;2 

is known for each fluid, y(T) and w a (r) may be found if R(T) is given. 
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We can extend this analysis to any member of non-interacting fluids as 

long as ull (1,0,0,0) for each of them. 

If we choose R(r) '" e- r for a specific solution, the proper time t 
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may be found by integrating dt/dr y The function y 2 is usually 

not integrable in terms of elementary functions when many fluids are 

present. 

Dust and Radiation 

Two very useful models of the physical universe are FRW models con­

taining dust (p(w)= 0) and radiation (p(w)= w 13). Dust is often used 

for the present universe, where pressure is effectively zero. Radiation is 

used to describe the early universe because extremely hot gases are often 

postulated to have this equation of state. 

In these two cases the conservation law (4.14) can be solved to yield 

w = MR-3, M = const (dust); w = rR-4 , r = const (radiation). (4.19) 

With these forms for w the field equations reduce to one. The others are 

redundant. For t-time (y = 1, . = d/dt) we find that R is given by 

3(B)2 + .1k = ..M (dust) 
R 4R2 R3 

1:. (radiation) 
R4 

(4.20a) 

(4.20b) 

Note that the dust equation becomes (4.11) if k = + 1 and we let G 4R. 

The general solution to (4.20) (see Figure 4.3) for all three values of 

k has R = 0 at one moment. For k = + 1 there is a turnaround time and 

R ... 0 at two different times. For k = 0 or -1, R is monotonic. 

4.3. The "Big Bang" and Cosmology 

Why is the idea of a singularity where R = 0 disturbing? To answer 

this question we must look at the real universe. 
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A Picture of the Universe 

At present the real universe is isotropic, expanding, and filled with a 

roughly uniform (however, see De Vaucouleurs, 1970) cloud of clusters of 

galaxies which do not interact with one another, The simplest model to 

fit this observation is one of the FRW models filled with a zero pressure 

fluid. That is, we assume we are in a "typical" position and that the 

universe would look roughly the same anywhere. 

We might expect that the universe may have been anisotropic and in­

homogeneous at earlier times and that it has settled down to the universe 

we see today. The FRW models do not take this possibility into account. 

It is usual, however, to ignore this objection and assume the FRW models 

are true back to R O. 

While in theory we could measure pew) now, this measurement is pre­

sently beyond our observational capacities. We generally take equations 

of state which are known from terrestrial phenomena, and as we mentioned 

above, p now may be taken to be zero, 

Observational Parameters 

If we assume pew) to be known we can solve (4.14) if we can find 

initial data from observation. To illustrate how this is done it is suffi­

cient to consider a dust-filled universe for which p O. In order to solve 

(4.20a) we need to know R(to), k, and M, where to is the present. 

The usual measurable quantities are: a) the present matter density 

w(to) (which gives us M/[R(to)]3); b) (R/R)i t ' the Hubble constant; _ 0 
and c) (R/R)i t (or some equivalent measure of the acceleration; e.g., 

o 
q "" (R R-2 R)!t ). The first two of the quantities allow us to solve (4.14) 

o 
for R(to) if k ± 1. Since we may always rescale R at anyone time 

by a change of coordinates if k 0, we may arbitrarily set R(to) in 

this case, 

Observation (c) is then redundant, since -6R/R M/R3 (differentiatE 

(4.20a». This relation provides a valuable check on our observations. If 
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the redundant observation does not agree with the other two it must be 

doubted whether general relativity is the proper theory to explain cosmology. 

In the three measurements do not agree, but there are 

few qualms about this disagreement. Although to is well known, 

w(to) and (R/R)i to are not. The uncertainty in w(to) arises because 

only luminous matter is measurable directly and there may be "dark" 

matter we do not see. The uncertainty in the acceleration is due to large 

experimental error at the high redshifts needed to measure it. At present 

the acceleration data imply k = + 1 (see Sandage, 1972-73, and Chapter 

while the luminous-matter density implies k - 1. Generally one chooses 

between these two values on the basis of theoretical prejudice. 

Cosmography 

While we do not know the exact form of the metric of our universe, we 

can use the FRW universes as a first guess. Moreover, the behaviors of 

the k = ± 1, 0 models are close enough for times before the present (which 

is why it is so hard to distinguish among them) that we may use anyone 

of them to discuss a variety of problems. These problems include galaxy 

formation, and element formation, under the influence of various equations 

of state, p = pew). 

For many purposes the universe is best approximated by an FRW model 

with two non-interacting fluids making up T p.v' The first of these is dust 

(p= 0) and the second radiation (p t w). From the conservation law for 

non-interacting fluids (4.14) radiation obeys w = r IR4
, r a constant. 

The number density of photons n is proportional to R-3
. The tempera­

ture T may be defined as the ratio win, so T", R-1
. The equation of 

evolution for such a universe would be 

(4.21) 

The constant r is determined by measurements of the black-body radia­

tion which appears to fill the universe (see Dicke et aI., 1965). It is 



Table 4.2. A Two-Fluid Model Contrasted with the Real Universe. The solution of equation (4.21 for k 0 provides the model: 
A universe filled with non-interacting radiation (energy density w) and dust density In this model the temperature 
T is defined by T", wlp (T is the temperature of the radiation gas). The proper horizon XH for an observer (defined more 
precisely in Chapter 12) is the radius within which all matter can in principle be seen by the observer. This matter is the 
only cosmic matter which can affect the observer. 
This model is fit to the following observations: a) the present Hubble cons tant R/R 1.7 I 8 sec ~1 (from equation 

15.1); this value sets the time now as t=3.8xI0
17 

sec; b) the present temperature of black body radiation K (cor­

responding to w 4.4x 10-34 gm' em -3). These numbers are underlined below. The function R(o< 1 IT) is not plotted. 

t (sec) T ("K) -3 p (gm' em ) 
time temperature dust 
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Concerning the Real Universe 

The "Big Bang," a feature of theory, 
not a feature of the real universe. 
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),". Quantized gravi­

ty and geometry, ignored by model, 
needed here. 

Horizon !'lIme Compton radius of 
electron. A quantum field theory de­
scription of cosmic matter needed 
here. 

Copious elementary particles present. 
In "composite particle model," the 
temperature has never been signifi­
cantly higher. 

Nuclei begin to form. Electron neutri­
nos are decoupled from other matter. 
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dus t and radiation are equal. Tempera-
lure falls to point where hydrogen com-
bines. MaHer and radiation henceforth 

decoupled (model assumes decoupled 
matter always). Start of present era; 
radiation has little dynamical effect. 
Galaxies start to form. 

Present. Underlined numbers used to 
fix parameters of model. Visible mass 
density much below computed value of 
p: universe may thus be more nearly a 
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found to be much smaller than M. Thus at present the M/R3 term is 

dominant and describes the universe. As R becomes smaller in the past 

T goes up (we may use T as a measure of the stage of evolution of the 

universe). Eventually the term in r /R4 dominates (the "radiation­

dominated" epoch), so that (4.20b) describes the universe. Table 4.2 

summarizes the behavior of such a two-fluid universe. It must be noted 

that interaction between the radiation and matter does take place, so that 

table is not strictly accurate. The table is for a k 0 model since the 

assumption that the terms in k are negligible before the present is an 

excellent approximation. It is against the background of the universe 

described above that the ideas of galaxy formation, element formation, 

separation of matter from antimatter, anisotropy, and inhomogeneity at 

early times, and singularities are usually discussed. 

The "Big Bang" 

One feature of the general FRW universe is a singularity, R = 0, at 

some finite time to' We can see this singularity in (4.14) and (4.15) 

(y = 1) which can be combined to give 

.. 1 
R/R = - 6" (w+3p) (4.22) 

Since a real fluid cannot support large negative pressures we can take 
1 p - 3w and write 

1 + 6;i (w+3p) > 0 (4.23) 

This inequality implies that R/R must become infinite at a finite time 

to' Therefore R must go to zero at to because of (4.15). As in Table 

4.2 we can always choose to O. 

Infinite Density 

We can say that p w, because we want the speed of sound, 
1 

(dp/dwi to be less than the speed of light (c 1). The two limits on p 
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we have assumed, - ~ w p w, may be used in (4.14) to show 

This infinite density arises in every FRW model. (Remember we will 

always set the cosmological constant A zero; there are singularity-free 

FRW-type universes if A " 0.) 

The infinity in w means that the singularity at R 0 is not due to 

a poor choice of coordinates. A physically measurable quantity, w, be~ 

comes infinite for every observer at a finite time in his past. The FRW 

models fail at t to and no present theory can predict the behavior of 

the universe for t to' 

The FRW Model as Motivation for the Study of Singularities 

The astrophysicist can be content that an FRW model describes our 

universe for a long time into the past. The relativity theorist, however, 

is interested in large gravitational effects. These effects occur in the 

FRW universes near to - at the point where the model breaks down. He 

asks himself if there is any model which is non-singular at earlier times 

and approaches an FRW model at present. Evidence is mounting that there 

is no such model, but in studying this problem two basic avenues of re­

search, each of interest in contexts far wider than cosmology have been 

explored. These subjects are the theory of symmetries and the theory of 

singularities. Much of the rest of this book is devoted to these two topics. 
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... 1 tell you that I can trace my ancestry back 
to a protoplasmal primordial atomic globule 

- WILLIAM SCHWENCK GILBERT 

5. L The Riemannian Manifold Contrasted with the Pseudo-Riemannian 
Manifold 

Each FRW cosmological model is said to be singular. It has at least 

one region within which the density is unbounded. A freely falling observ' 

in this region, travelling toward increasing density, would see the matter 

around him become infinitely dense in a finite amount of proper time. How 

ever, in the presently accepted viewpoint the points of infinite density 

(singular points) are not within the model but are treated as an additional 

structure, the boundary of the manifold proper. 

At present there is no fully accepted method of defining the structure 

of the singular boundary points of a general manifold. What is accepted -

and it is important to keep this concept in mind - is that each cosmologi­

cal model is a well-defined manifold-with-metric, at each point of which 

the metric is non-singular, and that all singular points are on the boundary 

of this manifold. If no boundary points can be reached by any observer, 

the model itself is called non-singular, but if boundary points are not "at 

infinity," and the original model cannot be extended beyond these points 

to a non-singular ~odel, then the model is called singular. 

To define singularity it is first essential to have a well-formulated 

notion of non-singularity. The criteria for non-singularity are well-defined 

if the metric is positive definite (Riemannian) so we shall examine Rie­

mannian theory first. In spite of the fact that a cosmological model is a 

pseudo-Riemannian manifold (it has a non-positive-definite metric), severa 
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Pooh-Bah in The Mikado by 
W.S. Gilbert (1836 - 1911) & 
A.S. Sullivan (1842 - 1900)
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Fig. 5.1. Flow Chart of Chapter 5. 

find common expression and usefulness in both cases. In addition, one 

method of investigating a pseudo-Riemannian manifold is to define from it 

a higher dimensional Riemannian manifold which is then treated by means 

of the methods described below. As usual, we present a chart of the ideas 

in this chapter (Figure 5.1), In addition we shall number various facts 

(Fl,F2, ... ), criteria for completeness (Cl, ... ), and other statements for 

comparison between the Riemannian and pseudo-Riemannian cases. In 

order to keep the discussion as intuitive as possible, we shall state 

theorems and facts without detailing many of the assumptions (such as 

smoothness and connectivity) necessary for rigor. 

Metric and Topology in a Riemannian Manifold 

The special feature of a Riemannian manifold M which makes M far 

simpler than the general pseudo-Riemannian manifold is the fact: 
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F(I) A (connected) Riemannian manifold is a metric space, a metric space 

being a set with a well-defined distance between any two points. Here the 

distance d(P, Q) between two points P and Q is the minimum of the 

lengths of all lines from P to Q. 

This distance function defines a topology, that is, an enumeration of 

the open sets of M. This metric topology is defined as follows: The sets 

Ifor fixed P, all Q such that d(P,Q) E! are open. All open sets are 

unions of these "basic" sets. 

It is also true that: F(2) The metric topology is the same as the mani­

fold topology. That is, the metric topology enumerates the same sets as 

being open as does the topology used to distinguish continuous from non­

continuous functions (Section 2.1). The proof (Helgason, 1962) uses the 

fact that d{P, Q) is continuous in both variables. 

To see the consequences of F(I) and F(2) we must make a point about 

geodesics which we shall use later. This statement is true whether or not 

the metric is positive definite, and comes directly from the concepts of 

Section 3.2. A geodesic is a path whose tangent vector U obeys the 

geodesic equation, which if the path is parametrized by an affine parameter 

is: 
(5.1) 

The equation is solvable, at least locally, to obtain U from initial data. 

The affine parameter A (which in the Riemannian case measures path 

length) is itself determined by the vector U at our initial point P. In 

other words: F(3) Given any vector U at a chosen point P, there exists 

a unique affinely parametrized geodesic passing through P whose tangent 

vector coincides with U at P (Figure 3.2). 

Completeness and Non-5ingularity in a Riemannian Manifold 

A Riemannian manifold M is non-singular if it satisfies either of two 

"completeness" criteria below. The equivalence of these criteria is a 

consequence of F(l), F(2), and F(3). That a complete manifold M is as 
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extended as it can possibly be is also a consequence of these facts. This 

latter consequence, as well as others, show that a complete Riemannian 

manifold deserves the adjective non-singular. 

If the completeness criteria are not satisfied, however, it may be 

possible to identify the given manifold M as a subset of a larger mani­

fold M'. On M' we shall have a metric tensor, non-singular at all points, 

which on the subset M coincides with the original metric on M. In this 

case M is incomplete but not necessarily singular. Consider the oppo­

site instance where "not non-singular" does imply "singular." An in­

complete ("not non-singular") manifold is said to be singular when it 

cannot be imbedded as an open subset of any larger manifold M'. 

There are two distinct instances where a manifold M cannot be im­

bedded in a larger manifold M' of the same dimension: The case where 

M is already infinite in extent, and therefore non-singular, and the case 

where M is singular. If M cannot be extended, whether or not M is 

singular, M is said to be maximal. 

The criteria which a Riemannian manifold M must satisfy if it is to 

be complete or non-singular are (Figure 5.2): 

(C1) Complete metric topology: Every Cauchy sequence converges. 

A Cauchy sequence is a sequence of points Pi (i = 1, 2, ... ) 

such that for any e: > 0, there exists a number N (depending 

on e:) such that d(P n' Pm) < e: for all n, m greater than N. 

(C2) Complete affine connection: Every geodesic can be continued 

in both directions to infinite values of its affine parameter (the 

parameter measuring path length). A manifold satisfying (C2) 

may be called infinite in extent or geodesically complete. 

In a Riemannian manifold criteria (C1) and (C2) are equivalent! The 

proof of this equivalence will not be given here (see Helgason, 1962). 

The definition of a non-Singular Riemannian manifold, as one which 

satisfies (C1) and (C2), is reasonable, as is shown by exhibiting several 

properties which hold in a complete Riemannian manifold M. These 

properties are (Helgason, 1962): (PI) M is inextendible: M cannot be 
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Fig. 5.2. A Half-Infinite Cylinder Illustrating Completeness Criteria in a Rieman­
nian Manifold. C 1 and C2 are Cauchy sequences. G1 and G2 are geodesic seg­
ments. C 2 cannot be completed since it converges to a point on the boundary. Al­
though both G1 and G2 are either infinite or extendible or both, the equivalence 
of Cauchy completeness and geodesic completeness implies there are inextendible 
geodesic segments. This manifold can be imbedded in a larger connected manifold 
of the same dimension: a longer cylinder. 

identified with a proper open submanifold of any connected Riemannian 

manifold. Thus M is maximal. (P2) M is geodesically convex: Any 

two points in M may be connected by a geodesic. (P3) If M is complete 
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[satisfies (Cl) or (C2)J then the manifold consisting of M with one point 

deleted is incomplete. 

Furthermore, (P4) Any compact Riemannian manifold M is complete. 

A manifold M is com;>act if any given collection of open sets which 

covers M contains a finite subcollection of these open sets which is 

sufficient to cover M. A compact manifold is then a finite object in the 

topological sense, independent of any reference to the metric. This 

property of compact manifolds demonstrates that (Cl) and (C2) are reason­

able in a sense which is basically aesthetic. 

One accepted procedure for examining a manifold M for singularities 

is: On M certain coordinate patches are used to express the metric. On 

certain subsets of the coordinate patches the metric will appear to be 

singular in all coordinate systems ~iven. We must then study the manifold 

M obtained by eliminating from M those points of apparent singularity 

(if no point of apparent singularity exists, M"" M). If M satisfies (Cl) 

and (C2), then M is non-singular. If, however, M does not satisfy (Cl) 

or (C2), we extend it to obtain M', the largest non-singular manifold ex­

tension of M (M' may not, however, be unique). We must now focus on 

M' as the manifold of greatest interest. If M' does not satisfy (Cl) or 

(C2), and thus is still not infinite in extent, and if M' is inextendible, it 

is said to be singular. 

This process is far from simple, a major difficulty being the extension 

of an incomplete manifold. The basic procedure can be performed on both 

Riemannian and pseudo-Riemannian manifolds, however, if criteria for 

non-singularity are given. Unfortunately, no fully accepted criterion for 

non-singularity exists in the pseudo-Riemannian case. However, a modi­

fication of (C2) is more Widely used than alternative proposals. 

5.2. Pseudo-Riemannian Manifolds - Completeness and Definitions of 
Non-Singular 

In a pseudo-Riemannian manifold any two points may be joined by a 

(broken) line of zero length. Facts (Fl) and (F2) are therefore not true, 
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and criterion (Cl) is It is however, to of 

and Fact 

is stilI true. 

that a direction at a point defines a l!'e'UUI:;!Sl,C 

Criterion stating that a t:,<:cuu'",,,,,,,,, may be extended to 

values of its affine parameter therefore does make sense. For time-

like or "'IJ<X'-CH , the affine parameter is the proper time and 

For lightlike the element of length is 

zero' An affine parameter may still be defined, however, as was 

pointed out in Section 3.3. In any of these three cases, if T is an affine 

parameter, then r ar b (a 0) is also an affine parameter, and infinite 

extension in r is equivalent to infinite extension in r. Criterion (C2) 

requires every geodesic segment, in some affine parameter, to be infinitely 

extendible. If (C2) holds for a manifold M, the manifold is called com­

plete, and completeness is vulgarly used as the definition of non-singularit 

Other criteria for non-singularity have also been formulated. Some, 

like (C2), are conditions on all members of certain classes of geodesics 

(Kundt, 1963). These criteria make sense only in a pseudo-Riemannian 

manifold, where geodesics are classified as spacelike (U' U = 1), time­

like (U· U -1), or null (U . U = 0). An example is the criterion (C2t), 

t-completeness: Every time like geodesic may be extended to infinite 

values of its proper time. Related to (C2t) is the stronger (C2tb): com­

pleteness of paths of bounded acceleration: Every time like path of bounde, 

acceleration may be extended indefinitely. Such a path need not be a geode 

Its defining characteristic is that the quantity (Ua;bub)(ua;cuC) is a 

bounded function along the path if the path is parametrized by proper time 

(uaua 
= -1). 

Kundt (1963) and Geroch (1967, 1968b) have shown by specific exam­

ples that there are pseudo-Riemannian manifolds in which these various 

criteria break down. An important example is due to Geroch (1968b): a 

geodesically complete model containing a finite but inextendible path of 

bounded acceleration. The path corresponds to a rocket which leaves the 
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universe with a finite expenditure of fuel. It shows that (C2) is too weak 

a definition for non-singularity in a physical sense. 

Nevertheless criterion (C2) is useful and simple. It has been applied 

in several singularity theorems. We therefore give the status of 

the properties (P1) to (P4) of Section 5.1. (P1) is still a consequence of 

criterion If every geodesic in M may be indefinitely extended, 

then M may not be imbedded as an open submanifold in a larger M'. 

(P2), however, is not a consequence of The DeSitter (1917) universe 

is a counterexample (Calabi and Markus, 1962). On the other hand, (P3) 

is still true: If M is complete, M minus one point is incomplete. (P4) 

does not hold: A compact pseudo-Riemannian manifold is not necessarily 

complete (see Section 5.3 for an example). 

Mathematical Non-Singulatity 

Completeness (as embodied in C2 or C2tb) is not a completely 

satisfactory definition of non-singularity because of the failure of (P4): 

(P4) was shown to fail when Misner (1963) exhibited a compact, incom­

plete manifold (Misner's example will be presented in the next section). 

This example, because it is compact, can be covered by a finite number 

of well-behaved coordinate patches; in this sense the model is uniformly 

well-behaved. Yet (C2) would deny this model the name "non-singular." 

Misner (1963) proposed an alternate criterion for non-singularity. It is: 

(C3) Every finite segment of a given geodesic is contained in a compact 

subset of the manifold. A finite segment (which may be open or closed) 

of a geodesic is defined in terms of any affine parameter r: It is a geo­

desic segment whose points have affine parameters r taken from a finite 

segment of the real line. A closed segment is automatically compact and 

is itself a compact subset of M (Figure 5.3). 

Criterion (C3) is applicable to both Riemannian and pseudo-Riemannian 

manifolds. In the Riemannian case (C3) is equivalent to (C2). Fact (F2) 

allows us in this case to extend the geodesic segment through the unique 

limit point of the open and it is thus indefinitely extendible. 
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Fig. 5.3. A Cylindrical Segment Illustrating Misner's Criterion for Mathematical 
Non-Singularity. This cylinder has a pseudo-Riemannian metric of such a nature 
that G1 is a geodesic segment of finite length which wraps around the cylinder 
infinitely often. G1 has no single limiting point and therefore cannot be extend­
ed; the manifold is incomplete. The shaded patch surrounding G1 is compact 
(closed, bounded), so the criterion for mathematical non-singularity is satisfied 
as far as G1 is concerned. However, G2 cannot be completed since it leads to 
the boundary. Any set surrounding G2 cannot be closed, hence cannot be com­
pact. Although this manifold is not non-singy:lar, it can be extended to the math­
ematically non-singular example Misner's T2 of Figure 5.7. 

In an incomplete pseudo-Riemannian manifold M, an open geodesic 

segment may have many limit points. However, (C3) insures that any 

geodesic path which does go off to infinity (i.e., cannot be covered by a 

compact set) must involve an infinite affine parameter. Moreover, (C3) is 

a satisfactory definition in that (Pl), (P3), and (P4) are satisfied (the 

failure of P2, geodesic convexity, is not an especially disturbing feature). 

We shall leave as an exercise the proof that (C3) implies (Pl), (P3), and (P 
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There are two objections which we can raise to the use of (C3) as a 

definition of non-singular. First, (C3) deals with geodesic segments 

rather than segments of paths of bounded acceleration. If these paths do 

not obey the condition of criterion (C3) the manifold does not accurately 

describe all points which can be reached a physical observer. It is 

not difficult to strengthen (C3) to include such paths, but in the models 

we shall deal with such added complexity is not justified. We shall retain 

(C3) as written. 

A second objection to (C3) is more serious and throws doubt on apply­

ing any criterion but (C2) or (C2tb) as a definition of non-singular. Con­

sider any incomplete manifold M which still satisfies (C3). There is in 

M a finite geodesic segment which is contained in a compact set, but 

which does not have a unique limit point and cannot be extended. The 

segment represents the world line of a test particle p. This particle, in 

a finite amount of proper time, finds itself approaching many different 

spacetime points at once. Clearly the particle p cannot be thought of as 

a material particle which responds only to the gravitational field. 

Does this objection mean that incomplete manifolds are singular even 

if (C3) is satisfied? No, but it requires that incomplete manifolds be 

examined more closely than complete ones. As an example, the vacuum 

T-NUT-M space (Misner and Taub, 1968; see Chapter 8) is incomplete 

but satisfies (C3). It is also a vacuum model and when matter is added it 

becomes singular unambiguously (Section 10.2). The investigation of per­

turbations of this model (Misner and Taub, 1968) predicted that the model 

would be singular when matter was added. Criterion (C3) is thus more 

suited to the mathematician than to the physicist. We shall call (C3) 

mathematical non-singularity. 

What is a Singular Model? 

We have discussed two definitions of non-singularity, (C2) and (C3), 

each with strengths and weaknesses. A model which satisfies both and 

which also satisfies (C2tb) is unambiguously non-singular. A model which 
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satisfies none of them and which is inextendible is unambiguously singular. 

Often the inextendibility is the result of the existence of a finite geodesic 

segment along which the denSity of matter is unbounded. 

What, however, can we say of a model such as T-NUT-M? It satisfies 

(C3) but not (C2). We are calling such a model mathematically non-singular 

At the same time we shall recognize that in T -NUT -M a potential observer 

may follow an incomplete geodesic path. We shall call the model physicall: 

singular. These two titles indicate that the model is of special complexity 

and must be examined more closely (for example, by examining perturba­

tions in the model) to determine whether it is a viable cosmological model. 

(C2) and (C3) are not as useful as one might hope when trying to prove 

a given manifold is singular. Using them, we can recognize whether a 

manifold is non-singular. However, even if a manifold is not non-singular, 

then the possibility of extending it to a non-singular manifold must be in­

vestigated. Only if M is not non-singular and inextendible can M be 

called singular. The proof that a true singularity exists is often extremely 

difficult. 

In some cases, however, the proof of singularity is not difficult. If a 

manifold M is not non-singular (both (C2) and (C3) are not satisfied), 

then there is a geodesic segment p and a Cauchy (converging) sequence 

of points Pi on p which has no limit point in M. If there exists a 

scalar invariant R (one of the 14 given by Petrov, 1969) such that the 

values of Ri on the Pi do not approach a limit (for example the Ri 

may tend to infinity), it is clearly impossible to extend M, and M cer­

tainly is Singular. 

However, this method cannot be used without care. An arbitrary scalar 

invariant S cannot be employed. If, for example, S I/R, and R tends 

to zero at a point P, then clearly S tends to infinity. The infinity in S 

does not indicate a singularity, while an infinity in R does (if R is one 

of the Petrov invariants). Moreover, there may be a singularity at which 

no scalar invariant becomes infinite, even in a Riemannian manifold. Con­

sider an ordinary two...dimensional cone imbedded in three...dimens ional 
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Euclidean space. This cone, without the central point, is Singular in the 

terminology of this section, but it is flat (no scalar invariant is ever non­

zero)! Thus our only hope of showing in general that a manifold is Singular 

lies in showing it is non-singular and yet inextendible. 

5.3. The Structure of Singular Points 

It is sometimes not enough simply to say that a manifold is unambigu­

ously singular. In a Singular manifold a geodesic is prevented by a barrier 

from being extendible. This barrier is termed a singular point. The singu­

lar point is not part of the manifold but is an abstract point added to the 

manifold to give concrete realization to the notion of singularity. 

The set of singular points - one for each inextendible path - may be 

given a topology, even a metric. Not all such points are distinct, and it 

is possible for many geodesics to be halted at the same Singular point. It 

is the description of the structure of the singularity point set which forms 

a large part of the modern theory of Singularities. We shall describe two 

types of structures, one due to Geroch, the other to Schmidt and Sachs. 

Other methods of determining structures of the singular points have been 

proposed. Since it is not known which methods lead to the same results, 

we can only say that much work along these lines remains. 

Geroch's G-Structure 

Geroch (1968b) gave structure to the singularity of a manifold M by 

structuring the set of incomplete geodesics. We have seen (Fact F2) that 

to each pair (P, U), P a point in M, U a non-zero vector at P (this 

set of pairs is the reduced tangent bundle of M), corresponds a geodesic 

ray with a unique affine parameter. Some of these geodesics may be in­

complete and hence cannot be extended from P beyond a limiting value 

AO of the affine parameter. 

Suppose (P, U) gives rise to an incomplete geodesic, with AO the 

limiting value of the affine parameter. Note that if a is a constant then 

(P,aU) is an incomplete geodesic whose limiting affine parameter is Aola. 
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These two and many others define the same point in an abstract 

space S to be identified as the singularity points. Other geodesics 

eman,atlmg either from P or from other points in M may define other 

points in S. That is, if G1 is the set of incomplete geodesics, then S 

is a set of equivalence classes of these rays. 

Roughly speaking, (P, U) and (Q, V) are equivalent if the distance 

between them becomes zero near the limiting values AO and 110 of their 

respective affine parameters. To express the closeness of the endpoints 

of (P, U) and (Q, V) we cannot use distance as such, for Fact (F2) is 

not available in an incomplete manifold. Instead we must use special 

open sets of the manifold chosen to achieve the same equivalence relation 

that distance does in a Riemannian manifold. 

To define the special open sets of M, we use the "natural topology" 

(for details see Geroch, 1%8b) on the set of all pairs (P, U) given by the 

topology of M. We consider all geodesic rays (Q, V) near (P, U). If we 

try to travel along these rays to all affine parameters in some neighborhood 

of Ao, we either obtain points in M or we are stopped because one or 

another of the rays is incomplete. To every open set of geodesics sur­

rounding (P, U) and every open set of numbers containing AO we 

associate that point set N which actually does lie in M and which is 

obtained by traveling along the rays as described above. Any open sub­

set 0 of M containing such a set N is special. Any such special set 

o is said to be a thickening of the end point of (P, U). 

Two incomplete geodesic rays are equivalent if every thickening of 

the end point of one is a thickening of the end point of the other (Figure 

5.4). An equivalence class of geodesics defines a single point in the set 

of singularities of S. S may be given a topology, even a metric. If the 

procedure defining S is carried out in a Riemannian manifold, then S is 

found to have the same structure as that given by explicit use of the posi­

tive definite metric. There is reason to believe, therefore, that the struc­

ture assigned to S in a pseudo-Riemannian manifold is reasonable. 
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Fig. 5.4. Geroch's G-Boundary. The left figure illustrates a thickening N of 
the endpoint of the geodesic segment G. N consists of all points in the manifold 
which are endpoints of geodesics near G. The right figure shows two equivalent 
geodesics G1 and G2 - equivalent because every thickening Nt of the end of 
G1 overlaps every thickening N2 of G2 . The boundary point P, previously un­
defined, is realized by the equivalence class of geodesic segments. 

Schmidt-5achs Completion Method 

Geroch's G-boundary (the set S) is defined by the use of incomplete, 

geodesics and ignores non-geodesic paths. Schmidt (1971) and Sachs (see 

Eardley, Liang, and Sachs, 1972) have defined alternative methods of 

identifying singular points. The methods associate with a spacetime mani­

fold M a higher dimensional manifold B which is Riemannian. Since B 

has a positive definite metric its singular points T B are well-defined. 

T B is a set of equivalence classes of Cauchy sequences which do not 

converge in B. From T B is then defined a set T of equivalence class­

es of points in T B' T is the set of singular points to be associated with 

M. Investigations of the relationship between T and S are currently 

underway. 
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With every time like, unit contravariant vector field U(U·U can be 

associated a symmetric covariant positive-definite tensor field hu definec 

hU(X, Y) g(X, Y) 2g(U,X)G(U, Y) . (5.2) 

However, the tensor field hu while positive definite, depends on U for 

its definition and is therefore not canonically defined as a structure on M. 

The various hu. however. are used in the Schmidt and Sachs construc­

tions. 

A natural metric may be put on a manifold whose dimension is suffi­

ciently high that different points in it correspond to different vectors at 

the same point in M. The particular manifold of Schmidt has as points 

quintuples (P t Xo' Xl' X2 , X3 ), where P is a point in M and the XJ.L 

are a linearly independent quartet of vectors at P. 

Sachs has modified Schmidt's method by taking as his manifold the 

unit hyperboloid in the tangent bundle of M (Figure 5.5). A point in this 

manifold is a pair (P, U), where P is a point of M and U is a unit 

timelike vector at P. A coordinate patch on this manifold B may be de­

fined for every coordinate patch on M. If (xlll are coordinates in M in 

a neighborhood of P, then a vector V has components vIl. We first de­

fine the 8-dimensional manifold M x R4 '= A on which a coordinate patch 

is I xa ,vlll. The coordinate patch on B is in the hypersurface in A de-

fined by vll ull , where fffuf3 ua uf3 -1. 

A vector field in B is a linear differential operator W. In the coordi­

nate system I xa , ull \, 
W (5.3) 

W will be tangent to B if dF(W) 0, where F gllv ull U
V + 1. This 

condition implies 
o. (5.4) 

Sachs' metric H on B is defined by means of the dot product of W 

with another vector V with components (V 1 a, V 2 a); 
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H(W, V) (5.5) 

where (compare equation The r a 

are the components of the affine connection derived from the metric on M 

in the coordinate system Ixill. H is positive definite and uniquely deter­

mined by g on M. Its components transform like the components of a 

covariant tensor under changes of coordinates in B. 

An important property of H is that if B is complete (according to 

CI, C3), then M is complete. We shall not prove this statement 

here, but this theorem implies that completeness of B corresponds to 

geodesic completeness of M. 

B 
Tp 

, 
I 
I 
I 
• 

I 
I 
I 

P ·r I • 
M 

Fig. 5.5. The Unit Hyperboloid Tangent Bundle B of a Manifold M. Tp is the 
set of all unit-length vectors at a point P in M. B is the set of all unit-length 
vectors at all points of M. B is given a Riemannian (positive-definite) metric in 
the Sachs method of completion, and its boundary T B is defined by a limiting 
procedure. A second limiting procedure projects onto an abstract set of 
points, realizing the boundary T of the original 
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When B is incomplete, it is straightforward to give a structure to a 

set to be identified with the singular points of B, as we need not con-

sider ~"'UU''''''Jl'''''', but only Cauchy sequences in B. Some of these Cauchy 

sequences will have a limit point in B and some will not. Moreover, two 

distinct Cauchy sequences may approach the same in B. 

To distinguish endpoints of Cauchy sequences, we set up an equiva­

lence relation among these sequences. If a", (P, U) and f3 (Q, V) are 

two points in B, let D(a,f3) be the distance from a to The greatest 

lower bound of the lengths of all paths joining a to f3. Two Cauchy 

sequences Ll la 1 ,a2 ,. .. , and L2 1f31 1 f3 2 , .•• ! are equivalent if for 

every positive real number E there is an integer K such that DCai' f3 i ) 

E for every i K. Each equivalence class of Cauchy sequences is 

taken to be a point in a set B. 
It is easy to show that B is contained in B. The points in B which 

are not in B are called T B' the boundary of B. Not all distinct points 

in T B correspond to distinct points in T, the singularity set of M, how-

ever. 

To define points in T, we must form equivalence classes in T B' Two 

equivalence classes F and G are themselves equivalent if there are 

Cauchy sequences Ll in F and L2 in G of the form LI = I (P l' U 1)' 

(P2 U2 ), ···1; L2 = !(Pl VI)' (P2 , V2 ), ... 1. Thus, F and G are equiva­

lent if one representative of F and one representative of G are formed 

over the same sequence of points Pi in M. If this equivalence relation­

ship is applied to all points in B, we obtain a set M, some of whose 

points are equivalent to points in M. The ones which are not are the set 

of singular points T. 

Other Methods of Associating a Riemannian Space with M 

The method of Schmidt depends on the manifold whose points are 

(P,XO,X1 ,X2 ,X3 ). We can define a positive definite tensor field hx on 

M by defining 
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hX(U, V) lUll vI1, where U ui! Xi!' V vll Xi! . 

f1 

Schmidt uses hx in his definition of a metric analogous to that of Sachs. 

Schmidt's larger manifold is 20-dimensional where that of Sachs' is 

7-dimensional. Schmidt's Riemannian manifold is the bundle of frames, 

and the group structure associated with linear transformations among basis 

vectors allows equivalence classes of incomplete paths to be formed an 

especially clean way. 

A 10-dimensional manifold using only orthonormal frames for X
Il 

can 

also be defined. The equivalence of the methods of Schmidt and Sachs 

has yet to be demonstrated. It has been pointed out (by D. R. Brill) that 

we can place a pseudo-Riemannian metric on Sachs' manifold by replacing 

haf3 by ga{3 in our definition of H. Sachs' process may then be applied 

to this manifold (resulting in a 13-dimensional Riemannian manifold). A 

whole series of pseudo-Riemannian manifolds with a final Riemannian 

manifold may be built up this way. The Riemannian one is used to define 

sets of singular points in M. At present it is unknown what the relation­

ship between the sets of "singular" points defined by these various 

methods is, but we mention them all for completeness. 

5.4. Examples of Singularities in Pseudo-Riemannian Manifolds 

A) The simplest example is the Euclidean two-space R2. Endowed 

with either a positive-definite or a Minkowskian flat metric, it is non­

singular and complete. Minkowski two-space with a light-like line removed 

is an incomplete manifold which is of interest because it is completely 

homogeneous (has a simply transitive group of isometries; see Chapter 6, 

Section 7.1, and Wolf, 1967). 

B) The next simplest example is the Riemannian Cone C. This cone 

is a two-space of all points with coordinates r,O such that the metric is 

(5.6) 
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where r is restricted to be 0, and e 0 is identified with e 217. 

When a 1, C is the same as R2 with the usual metric, except that the 

o is excluded (as a metric component is singular there). When 

aI, C is but it is extendible. If a ~ 1, C is 

incomplete and inextendible. 

By rescaling e we can always make ds2 the metric of the plane in 

polar coordinates; thus C is flat. Thus geodesics are straight lines. 

Consider a straight line aimed at r O. Since the line must stop at r= 0, 

there are geodesics in C with finite length. Hence C is incomplete 

and therefore not non-singular. 

Can C be extended to a non-singular manifold? Consider a small 

geodesic triangle about r 0 (Figure 5.6). As this triangle is made 

smaller, the lengths of its sides go to zero; hence if C is to be com­

pleted r = 0 must correspond to a single point. Because C is flat and 

because scalar curvature invariants are continuous functions, all these 

invariants must be zero at r O. However, the sum of the angles of any 

geodesic triangle must be 17 if the triangle has a flat interior (Eisenhart, 

1926). That is not the case here: Every geodesic triangle with r 0 

inside it somewhere has 17(3 - 2a) as the sum of its angles. Thus it is 

impossible to complete C if a I- 1. Hence C is a space which is both 

flat and Singular. 

C) The next example has already been discussed in Chapter 4. It is 

the closed FRW universe. Along the timelike geodesic which is the path 

of a dust particle, the scalar curvature R eventually becomes larger and 

larger. Finally after a finite proper time, R becomes infinite. The 

largest non-singular part of the solution is the space obtained by eliminat­

ing these singular points. It is clearly incomplete, and just as clearly not 

completable. Hence the Friedmann universe is singular. 

D) The fourth example is the Schwarzschild metric (Tolman, 1934a). 

In coordinates t, r, e, ¢ the metric is 

)
-1 2 

dr (5.7) 
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t 
r 

R 

(A) (B) 

Fig. 5.6. The Cone. A) The cone C in polar coordinates, r, e. The r coordi­
nate is restricted to positive values: r> O. The () == 0 line is identified point­
wise with the () 217 line. The metric t; these coordinates is ds 2 =dr2 +a2 de2 
where a ~ 1. B) The cone in plane coordinates, x, y. The ~efin~g property of 
these coordinates is that the metric be of the form ds 2 = dx + dy . Lines Ll 
and L2 are identified pointwise. The r 0 point (x == y '" 0) is not part of the 
cone; neither is the dotted segment. A geodesic triangle PQR is drawn in. Note 
that lines 1 and 2 are two halves of the same geodesic segment PQ. The cone is 
singular: The r 0 point may be reached by a geodesic of finite length. How­
ever, the r= 0 point is not part of C, and C cannot be extended to include r== O. 

The manifold is topologically the product of S2, the two-dimensional 

sphere, and R2, the two-plane. Equation (5.7) holds only for r> 2m! 

As r -> 2m the metric components become singular. Moreover, the space 

of t, r, e, ¢> with r > 2m is incomplete. 

This segment of a manifold can be extended. It has been known for a 

long time that as r -> 2m no scalar invariants become infinite, and geo­

desics do not converge. Thus at r'" 2m there appears neither a conical 

singularity (as at r 0 in C) nor a collapse singularity (as when R -> 00 

in the Friedmann models). 

x 
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The definitive statement on the r 2m "singularity" was made in­

dependently by Szekeres (1960) and Kruskal (1960) who gave new coordi-

nates (u, to extend (t, r) from the original segment of the manifold to 

the maximal solution which can be formed. This maximal extension, how­

ever, is still not non-singular. Curvature invariants become infinite along 

segments of finite length, at pOints corresponding to r O. Thus 

the Kruskal-Szekeres extension cannot be further enlarged, and the 

Schwarzschild solution is singular. 

x 
2." 

." 

~ 'lAC /' 
T ~s 

~~~;;;---------

." 

Fig. 5.7. The Misner Torus T2. The lines x = 0 and x 211 are identified, as 
are the lines y 0 and y 211. The metric we have placed on T2 is ds 2 

= -

cos x dx 2 +2 sin x dxdy+cos x dy2. L is a geodesic of finite total length which 
cannot be extended to infinite values of its affine path parameter. T2 is mathe-
matically but incomplete. The s~all light cone !}lustrated our con-
vention - is a time like direction while L is lightlike, S spacelike. 



5.4. SINGULARITIES IN PSEUDO-RIEMANNIAN MANIFOLDS 95 

The last is one given by Misner (1963). It is an 

of a n'" 'i'>lll1"_k' manifold which is compact and therefore mathemati­

non-singular in the sense of (C3), but which is incomplete, and there-

fore singular in violation of (C2). It is a torus with 

coordinates the lines x 0 and x ~ 217 are point wise identified 

as are the lines y 0, y 217 (Figure The metric is given by: 

ds2 - cos x dx2 + 2 sin x dxdy cos x dy2 . (5.8) 

The metric has determinant -1 everywhere, so is non-singular on T2. 

However, T2 with this metric is incomplete. 

The geodesic equations for T2 in terms of an affine parameter rare 

( . d/dr): 

x + ~ x2 sin x cos x - xy sin2x - ~ y2 sin x cos x 0, 

.. ·2 (1 1 . 2) .. . 1·2 . 2 0 Y x -rsm x -xysmxcosx+r Y sm x . 

(5.9) 

Since r is an affine parameter one first integral of (5.9) is 

(5.10) 

Another first integral is 

(xi + E cos x P, (5.11) 

where P is a constant. Note that (5.10) and (5.11) imply P = (x sin x + 

y cos xi so P is positive. Equations (5.10) and (5.11) are used in 

Figure 5.7 to give the qualitative behavior of the geodesics. The light 

cones at different points in T2 are also shown in Figure 5.7. It is clear 

from the behavior of the geodesics and from the light cones that the only 

geodesics infinitely extendible in both directions are the lines y == 0 and 

y 17. And so T2, although compact, is incomplete (see Miller and 

Kruskal, 1973). 



6. ISOMETRIES OF SPACE AND SPACETIME 

To seek the beauteous eye of heaven to garnish 
Is wasteful and ridiculous excess 

- WILLIAM SHAKESPEARE 

6.1 The Lie Derivative 

The field equations of general relativity are a complicated set of 

coupled, non-linear partial differential equations. In cosmology we simpli­

fy these equations by imposing symmetries on the solution. Moreover, a 

6. lSOMETRIES 

Killing vectors have "Lie Algebra" 
structure, but "Lie Group" termin­
ology used, as difference is not 
important for most of what we do 

Killing Vector r. 
L~g = 0 

Yields techniques 
for describing 
metrics invariant 
tmder a given group 

~ __________________ -J 

6.3 Invariant Basis 

defined by t. r;\ O. 

Implies r;g . = 0 

Extend to 
all tensors 

Selected properties 
of these groups listed 
In particular: Section 
6.5 on Type IX models 

6.4 List of all 
three-dimensional 

Fig. 6.1. Flow Chart of Chapter 6. 

96 

From King John, Act IV, Scene ii. 
A more complete quote is  
   
“...with taper-light/To seek the 
beauteous eye, etc.”  
   
Shakespeare (1564 - 1616)
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or homogeneous, model thus obtained will not merely be sym­

metrical in appearance (which might imply that a preferred coordinate 

frame is Rather the symmetry of the model will be expressed 

in a manner that is free of the encumbrance of special coordinates the 

use of differential forms and vector fields. Figure 6.1 is an outline of 

this 

A homogeneous cosmological model is a manifold M. The metric of M 

is invariant under a certain (specified) group of transformations. That is, 

each operation of the symmetry group corresponds to a map of M onto 

itself. This map carries a point P into another point Q at which the 

metric is the same when expressed in a coordinate-free manner. 

Infinitesimal Transformations 

The description of the invariance of a metric under a group (Lie group) 

of isometries is achieved by directing attention to the infinitesimal trans­

formations (Lie algebra) in the group. Other members of the group can be 

obtained from the infinitesimal members by exponentiation (repeated appli­

cation of the infinitesimal members, Helgason, 1962). Thus, a symmetric 

cosmological model is found by impOSing the structure of a Lie algebra, 

although Lie group terminology is used. 

To describe an infinitesimal transformation it is convenient temporarily 

to use a coordinate system (see Yano and Bochner, 1953; Misner, 1964). 

Consider a point Po in a neighborhood N in which coordinates 

xll(1l '" 1, ... , n) are used. A point P in N will have coordinates xpll. 

An infinitesimal transformation is of small effect and therefore carries 

points in N', a small neighborhood of Po which lies within N, into 

other points of N. Our transformation may be described in N' by n 

functions f 11 of the coordinates xll. The point P is carried to the point 

Q in N with the coordinates xQ
Il . 

(6.1) 
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An infinitesimal transformation has the form 

f iL(p) x iL 
P (6.2) 

The number s is meant to be so small that points in N' are carried only 

to points in N. The vector field X aiLa
iL 

describes the magnitude and 

the direction of the transformation. 

A transformation acting on a space induces a transformation which 

carries a tensor at a point P into a tensor at the image point Q. This 

transformation of tensors defines a new tensor T new whose value at Q 

is the "same" as the value of T at P. To find the description of T new' 

consider that the map (6.1), which bodily carries the point P to the point 

Q, also applies as a coordinate change at P. (See Figure 6.2.) In that 

case the change in the tensor components of T is. 

where Jail and KG' yare the Jacobian matrix and inverse Jacobian matrix 

of the transformation. Taf\;8.. is now identified as a component of T new 

at the point Q: 

(6.3) 

where 

(6.4) 

For the transformation (6.2), the Jacobian and its inverse are: 

(6.S) 

Hence a vector Y = ifa/J. will change by the formula 
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(A) (8) 

2.9 

I I 
I I 

I 

2.8 

2.7 

I 

2.6 

2.5 
.p 

1.1 1.2 1.3 14 1.5 I 1 1.2 1.3 1.4 1.5 

3. v 

2. 9 

2 .8 
.p 

2.7 

2. 6 

1.2 1.3 1.4 1.5 1.6 

(C) 

Fig. 6.2. Active and Passive Transformations. The same formulae describe the 
active transformation carrying P to Q and the passive transformation of renam· 
ing p by. a !=,hange of coordinates. Q is the new point, with coordinates given 
b~ xQ ri(xi:». The "passive" transformation changes the coordinates of P to 

xt>,new '" f(xi:>,Original)' 

The Lie Derivative 

The value Y new is what one would expect to see at Q if Y did not 

change in the direction given by X. Y - Y new is the observable change 

in the vector Y. The measure of this change is' 
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by 

respect to X: 

and letting 0, we have the Lie derivative of Y with 

,a (6.7) 

This expression is simply the commutator of X and Y, as dE-fined in 

Chapter 2: 
(6.8) 

We extend the Lie derivative to arbitrary tensors by requiring that fx 

act as a differentiation with respect to the tensor product, and that fxf = 

Xf, where f is a function. In the coordinated system used above, if T 

has components T a/3Yl:i' fx T is given by: 

( @ Tf/3 - T a/3 a _ T a/3 a _ T aa /3 
~x yl:i - yo,aa yo a ,a yo a ,a 

(6.9) 

T a/3 a Ta/3 a 
+ ao a ,y + yaa ,8 . 

All of the commas (partial derivatives) may be replaced by semi-colons 

(covariant derivatives) without affecting the truth of this relation. Thus 

the Lie derivative is independent of both metric and connection. 

6.2. Killing Vectors of a Gronp of Isometries 

A transformation which leaves the metric g invariant is called an 

isometry. An infinitesimal isometry is described by a vector t called a 

Killing vector (Killing, 1892), which is said to generate isometries. A 

Killing vector thus satisfies 
(6.10) 

In order to apply (6.10) to the components of g in a general basis, we 

make use of the fact that operating on the function g(X, Y) can be 
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written in terms of where X and Yare arbitrary vector 

fields. Since g 0, the derivative property of 

e(g(X,Y)] [g(X.Y)] '" (X,Y) + 
(6.11) 

g([e,X],Y) g(X, [e,y]) . 

Suppose Xfl is a member of a general vector field basis which is in­

variant under fe; feXfl o. In this basis' 

(6.12) 

In other words, the derivatives of the functions g flV in the direction ; 

are zero. 

Equation (6.10) also leads to the Killing equation for the components 

all of the contravariant form of e in an arbitrary basis: 

(6.13) 

We will not give the detailed calculations leading to (6.13) (see Yano and 

Bochner, 1953). 

It is important to notice that if eland e 2 are two Killing vectors, 

then the linear combination a1 e 1 + a2 '; 2 is a Killing vector if a1 , a2 

are two constants. However, if a l , a2 are functions of position, a l ';1 + 

a2 ';2 is a vector field, but not necessarily a Killing vector. [;1'';2] is 

also a Killing vector. 

Description of the Symmetry Group of a Manifold 

We now turn to a manifold M whose metric is invariant under several 

isometries. The set of isometries of M has the structure of a group: An 

associative product is defined (the product of isometries A and B is A 

followed by B), an inverse exists for each element, and a unit transforma­

tion (the identity) exists. The group of isometries is the symmetry group 

of M. 
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Isometries are obtained from the Killing vectors by exponentiation in 

the same way that group elements are obtained from the infinitesimal 

which form the Lie of the group. In the abstract group 

the commutators of the infinitesimal group elements define the structure 

constants of the group. Thus if 11i' i = 1, "', m, are the basis elements 

of the Lie algebra, then the structure constants of G are defined 

1962): 

The Jacobi equation (2.4) applied to 11i shows that the eS ij must 

satisfy 

si 
s ea e ki sj o. 

(6.14) 

(6.15) 

Further, any set of eS ij (antisymmetric in i, j) which satisfy (6.15) are 

the structure constants for some Lie group. 

The group of isometries of the manifold M is isomorphic to some ab­

stract group G. The Lie algebra commutator of (6.14) is replaced by the 

commutator [,] of the Killing vectors ';i of the symmetry group. The 

m independent Killing vectors ,; i (m mayor may not be equal to n, the 

dimension of M) obey 
[';.,c.J = eS .. '; • 

1 ~ J 1J S 
(6.16) 

The structure coefficients in (6.16) are constants (functions independent 

of position) and are equal to the structure constants of the Lie algebra of 

the abstract group of isometries. 

Suppose we are given a Lie group G, with structure constants eS ij . 

A manifold M is said to be invariant under the group G if there are m 

(the dimension of G) Killing vector fields ';i which obey the Lie algebra 

relation (6.16). 

A group G of dimension m is called simply transitive on subspaces 

if the's are linearly independent as vector fields (.l a/ i 0 =9 

ai 0, the ai being functions). The orbit of a given point Po is the 
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set of all Q such that A(P 0) Q for some A in the isometry 

group G. The orbit is a subset H of M. These subs paces fill M, and 

two different subs paces have no points in common. H is called a nOl'l101i?e­

neous or invariant subspace. If G is simply transitive, the dimension of 

H is m, the dimension of G. If the dimension of H is less than m, G 

is cal1ed multiply transitive on H. 

6.3. Generation of an Invariant Basis 

The description of a manifold M with symmetry group G is simplest 

when an invariant basis is used. The members of such a basis are vector 

fields X
fL

, each one of which is invariant under the group G. Therefore 

XfL has zero Lie derivative with respect to any of the Killing vectors. If 

~ i is a member of a basis for the Killing vectors, we have 

(6.17) 

An invariant basis is useful because: 1) Equation (6.12) shows that each 

metric component g I1v g(XI1' Xv) is group invariant. Thus gl1v is 

constant on each homogeneous subspace generated by the group. 2) It can 

easily be shown that the structure coefficients of the X
I1 

are constant on 

each homogeneous hypersurface. The structure coefficients D° I1
V 

are 

defined by [XI1' Xv] = D° I1V Xo ' 

Not every abstract group can be used as a symmetry group for an 

n-dimensional manifold. However, if G is the symmetry group of M, we 

must say when an invariant basis can be found. We must also exhibit the 

relation between the D° I1
V 

and the structure constants C i
jk of the group. 

In this book we are primarily interested in three cases: 

1) A manifold M of dimension 4 with the group G simply transi­

tive on all of M. The dimension of G is therefore 4, also. 

M is called homogeneous or, for emphasis, homogeneous in 

space and time (ST -homogeneous). 

The manifold M has dimension 4 but G has dimension 3 and 

is simply transitive. Thus G generates three-dimensional 
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invariant H. M is called 

or sometimes simply homogeneous. Some of the H's may not 

be spacelike, but they form a manifold-filling, one-parameter 

family. Therefore, the metric depends on only one variable, 

independent of position on each H. 

The third case is that of a manifold M on which G is multiply 

transitive, but traces out three-dimensional invariant hypersur-

faces (and thus has dimension greater than M is called 

spatially-homogeneous in this case, also (special techniques 

must be used; see Sections 6.4 and 11.4). 

Existence of an Invariant Basis in a Homogeneous Manifold 

In cases (1) and (2) an invariant basis IX/ll may be found. Consider 

a homogeneous manifold M of dimension n, invariant under a (simply 

transitive) group of the same dimension. The Killing vectors t/lCil 1,",n; 

form a vector field basis of M. To construct an invariant basis !x/ll we 

need only give the components of X/l with respect to the t /l' (The com­

ponents will not, in general, be constants.) 

An invariant basis I X/ll is constructed from n independent vectors 

X/lO at a fixed point Po (vectors at Po' not vector fields). We define 

vector fields on M by translating the X/lO USing the Lie derivative, in 

other words, requiring that 

The requirements are a set of first order differential equations. The inte­

grability conditions for these equations are automatically satisfied if the 

C/l ar are the structure constants of a group. 

To determine the Da 
/lV we must pick explicit values for the X/lO' An 

especially natural choice is X/l O t /./Po)' The invariant vector fields 

X
il 

are 

X
il 
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The condition that X
I1 

be invariant implies that at Po' 

We now use the equation 

to find the values of the Da
l1v 

at Po: 

Since Da
l1V is independent of position of M, we therefore have 

(6.18) 

We may now take duals wl1 of the X
I1

. The curl relations of the w lL 

are 

(6.19) 

The elL
ar are constants identical to the structure constants of the in­

variance group. Moreover, because the X/l are invariant vectars, the 

metric is expressed by ds2 gILVwl1wV, the g/lV being constants. We 

will use this basis later when discussing four-dimensianal homogeneous 

manifolds which satisfy Einstein's equations for various stress-energy 

tensors. 

An Invariant Basis in a Spatially Homogeneous Manifold 

The second case we will discuss in this section is that of a four­

dimensional manifold M invariant under a three-dimensional simply 

transitive Lie group. This group, whose structure constants are denoted 

e i jk (i, j, k = 1,2,3), generates three-dimensional homogeneous hyper-

surfaces. A one-parameter family of these fills M, which 

is then considered the 'V~'V"V"'jl'- product H R, where H is a copy of 
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the invariant three-dimensional subspaces, and R is a real line. For a 

parameter t f R, we will denote by H(t) the homogeneous hyper­

surface at t. The metric of M is independent of position in any invariant 

H(t), but may depend on the value of the parameter L 

To generate an invariant basis (invariant under the three-dimensional 

group and consisting of four vector fields on M) choose one curve in M 

corresponding to the real line R in the topological product. The tangent 

to that curve is translated throughout each three-dimensional subspace 

H(t) by means of Lie differentiation. Call this vector field Xo' Three 

other vector fields Xl' X2, X3, tangent to H(t) itself, are chosen at 

the curve. They are translated to yield the three remaining vector fields 

needed for a basis. 

By definition, we have 

1,2,3 . (6.20) 

Note that the three Xi have components independent of t, whereas Xo 

is simply a fat. Moreover, the Xl' X2, X3 may be chosen so that 

[X. X.] = _Cs .. X 
l' J I) S 

(6.21) 

by using the procedures outlined in our discussion of homogeneous mani­

folds above. 

Some Metrical Properties of the Invariant Basis 

We can modify the invariant basis I Xill by finding a second invariant 

basis I Y III with specified metrical properties. This additional specifica­

tion is allowed by the freedom to line up the various homogeneous hyper­

surfaces H(t), in other words, the freedom of choice of t-axis. 

The Y /1 are to be linear combinations of the X/1: 

Each ball is a function of t alone because Y /l must be invariant under ( 
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We wish to retain the properties that Y i is tangent to H(t) and commutes 

with Yo ("Y i unaffected by translation in the direction Yo 

[bao Xa , bS
i Xs] 0 

(b 00 bS
i - b Uo b vi CS

UV
) Xs (. dl dt) . 

(6.22) 

This ordinary differential equation has a solution bip) given 

any set of four functions bll
o (with bOo 0). Thus we can specify both 

the direction and the magnitude of Yo' 

Once Yo is chosen, the Y i are found by solving (6.22). However I 

the Y i must also satisfy 

[y., y.] 
1 J 

_CS .. y . 
1J S 

(6.23) 

This requirement is consistent with (6.22). The proof of consistency is 

that the t-derivative of (6.23) vanishes by virtue of (6.22) and the Jacobi 

identity applied to the Xi' 

6.4. Allowed Isometry Groups; List of Three-Dimensional Groups 

Not every group may serve as the isometry group of a four-dimensional 

manifold with metric signature (-+++). The groups which are allowed 

were classified by Petrov (1969). We will first make a few general remarks 

and then will list all of the three dimensional groups (each of which may 

be used as the isometry group of a spatially-homogeneous cosmological 

model). 

We will ignore such topological questions as whether a given four­

dimensional manifold can be given a metric with signature (-+++) at all. 

Moreover, the global structure of the group will not be treated and we will 

deal mainly with a Lie algebra structure, that is, with the Killing vectors. 

Largest Groups - Isotropy 

The isotropy group Ip of a point P is the set of all isometries 

which leave P fixed. It is a subgroup of the symmetry group G. If G 
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is transitive (simply or m:lltiply), all Ip are isomorphic. The isotropy 

group of a point, Ip ' must be a subgroup of the (homogeneous) Lorentz 

group L. The proof is straightforward if at P coordinates are chosen 

such that g/lv(P) Tf/lV diag (-1, 1, 1, The isotropy group Ip then 

leaves invariant and thus must be a subgroup of L. G is therefore 

restricted in that no isotropy I;!oup is allowed which is not a subgroup of L 

The dimension of Ip must be less than or equal to 6 dim L. The 

dimension m of G itself for an n-dimensional manifold must be 

m _ n(0+1)/2 (Eisenhart, 1926). If n 4, this maximum is 10; if n 3, 

this maximum is 6; and if n 2, this maximum is 3. 

Any 4-manifold with a 10 parameter group of isometries is a space of 

constant curvature, so that R/lV Ag/lV ' with A const. If the right side 

of this equation is interpreted as a stress-energy tensor, T ij' then T ij 

corresponds to a fluid-filled universe with the pressure p equal to the 

negative of the energy density w. Thus a space of constant curvature is 

physically unrealistic unless ,\ vanishes, in which case the space is flat. 

In a 4-manifold, for 10:::: m 6, G must act transitively. These 

groups have been classified by Petrov (1969) and mostly do not interest 

us. It is only when G has a simply transitive subgroup that the methods 

of this section apply. An example of a space with a lO-dimensional group 

but no 4-dimensional simply transitive subgroup is the DeSitter universe 

(Calabi and Markus, 1962). 

It is interesting to note that any four-dimensional group can serve as 

the isometry group for at least one manifold: itself. None of these mani­

folds are physically realistic, for none can exhibit the observed expansion 

of the universe (details in Chapter 7). 

Spatially Homogeneous Models 

If m 6, the group may act transitively or else act on lower­

dimensional subsets. If the group acts transitively on three-dimensional 

subsets, we call the manifold spatially homogeneous. An FRW model has 

a six-dimensional group of isometries containing a three-dimensional 
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isotropy and b) a transitive subgroup 

which acts on space like 

The spatially hOllllo,gelleCtUS cosmological model falls into one 

of the two (1) Those spaces in which G has a 

three-dimensional subgroup which acts transitively. (2) in 

which the spacelike hypersurfaces H have a transitive 

group of isometries but not a simply transitive group. 

The second category has been studies by Kantowski He found 

that category (2) consists only of spaces with an isometry group of order 

m 4. All Lie algebras of order 4 have subalgebras of order 3 (see 

Kantowski, 1966). It is only when this subalgebra generates two-surfaces 

S of constant positive curvature (two-spheres) does a model in class (2) 

arise rather than a model from class (1). Because the spacelike hyper­

surfaces H do not have a simply transitive group of isometries the method 

outlined for obtaining an invariant basis is not directly applicable. 

List of Three-Dimensional Groups 

To conclude this section we list all of the three-dimensional Lie alge­

bras. Each algebra uniquely determines the local properties of a three­

dimensional group. Therefore the list is a compendium of all of the three­

dimensional groups except for global topological considerations which do 

not concern us. 

The list is given in Table 6.1. We use the classification and the nota­

tion given by Taub (1951). One coordinated representation is listed for 

each differential form. The numbering system is due to Bianchi (1897); 

for example, the first group is called "Bianchi Type L" If a space is 

spatially homogeneous and has the group of Bianchi Type N (N"" I,'" ,IX) 

as a simply transitive isometry group then the model will be said to be 

Type N-homogeneous or Type N. Thus the closed FRW universe is Type 

IX-homogeneous. 
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Table 1. List of Three-Dimensional Groups. This list is taken from Taub (1951) 
and is basically a list of the three-dimensional Lie algebras in canonical form _ 
that is, global properties of the not listed. The are Killing 

! is an invariant basis, that O. to Ix.l is 
1 

The structure constants are defined by and we also have lX., X,] 
1 J 

- C
S

ij Xs and } 1\. The coordinate system is used to ex-

press these vectors with the coordinated basis la.! (where a. and dual 
. 1 1 

basis Idx 11 - of course, other coordinated bases are often used, too. 
Bianchi Types VI and VII are each a family of groups parametrized by h with-

in the limits lis ted. 

Type I: jk O. 

1 1 
Type II: C 23 = -C 32 

i 
rest of C jk 

Xl = d2 

X
2 

x l a2 d3 

X3 = a1 

~3 

1. 

o 

1 1 
Type III; C 13 = - C 31 = 1. 

i 
res t of C jk = 0 

1 
Xl eX d

2
. 

X 2 
a

3 

X3 a1 

al . Xl a1 . 
wI dxl. 

., 
dx2 

X2 
w~ o 

d3 X3 a3 
w 3 

= dx3 

a2 

~2 = a3 

~3 al + x2a2 

1 _xl 2 
dw 

1 wI" (v = e dx 

= dx
3 dw 

2 0 

(1) 
3 dx

1 &)3 0 
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X3 a1 

Type V: 
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Table 6.1. List of Three-Dimensional Groups 
(Continued) 

32 

23 

rest of i C jk 

1 
eX d

3 

i 
rest of C jk 

1. 

0 

(,)2 

w 3 

1. 

o 

al + 

e dx3. de} wI AW3 

_xl 3 
e dx dill2 w 2 

A 

dx 1 dw 3 0 

w l _xl 2 
e dx dilll w l 

AW
3 

1 
w 2 = e-x dx3 dill2 w2 

AW
3 

(li3 dx 1 dill 3 0 

1 1 
Type VI: C 13 -C 31 = 1. ~1 = a2 

~2 a3 
2 2 C 23 =-C 32 =h 

(h.j, 0,1) 

i 
rest of C jk o 

~3 a1 + x 2a2 + hx
3a3 

111 
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Table 6.1. List of Three-Dimensional Groups 
(Continued) 

Type VII: 

1 
C 23 32 

23 32 

(h2 4) 

rest of 

= 8<12 (A-kB) a3 

X3 "" al 

jk 

where: kx
i 

1 A == e cos ax ' 

I 

-1 

h 

0 

1 
w 

a1 

(C-kD)dx 2 

w 2 Ddx2 + (C+kD)dx 3 

w 3 
= dx

1 

B 1 kx 1 , 1 - a e 810 ax ; 

C 
_kx l 1 

e cos ax ; D 
1 _kx1 , 1 

- if e sm ax ' 

1 

h 22 
and where k = - and a = (I-k ) 

2 

dW
3 = 0 

1 1 
Type VIII: C 23 = - C 32 ",-1. 1 [' x

3 
2 2 _x

3
] a 2-x - e -(x) e -x e 

2 2 
2 2 C
31 

-C
I3

",1 

3 3 
C 12 == - C 21 = 1 

1 dx1dl"-(x l 
+[x

1 1 2 2] 3 dw 
1 _U)21\ W· U) -(x ) x dx . 

2x 1dx2 + (1- dw2 
1\ 

dx
1 [ 1 2] 2 -l+(x") dx dw3 

1\ 
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31 

12 
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Table 6.1. List of Three-Dimensional Groups 
(Continued) 

32 1. 

1 cos x 201 cot x 1 sin 

21 1 . 20 -sm x 1 cot x 1 cos + 

i 
rest of C jk 0 

dcu
1 

'" cu
2 

A cu
3 

d(U2 cu3 A cuI 
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°3 

Three of the groups listed deserve further comment: A) The group of 

Type I is isomorphic to the three-dimensional translation group T 3 (the 

group of translations of Euclidean three-space). A "flat" FRW model is 

Type I-homogeneous. The notation "T3-homogeneous" is also used, but 

should not be confused with a Russian usage for a different purpose. 

B) The group of Type V is a simply transitive subgroup of an "open" 

FRW model. In an open FRW model, as well as in each closed and each 

flat FRW model, there is also a three-dimensional isotropy group (which is 

isomorphic to the three-dimensional rotation group). 

C) The group of Type IX is isomorphic to SO(3, R), the group of 

special (unit determinant), orthogonal, 3x 3 matrices with real coefficients 

(isomorphic to the three-dimensional rotation group). A closed FRW model 
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is R)-homog,eneous" or Type IX-homogeneous. More general Type 

IX-homogeneous models are discussed in later chapters. The most genera 

such model is anisotropic and has rotating matter. 

The Subclassification Scheme of Ellis and MacCallum 

It will be useful later to break UP the groups we have discussed above 

into subclasses. Ellis and MacCallum (1969) have studied spatially 

homogeneous cosmologies based on the Bianchi groups and have c1assifie. 

them into subcategories for various uses. Actually these classifications 

are classifications of the underlying symmetry groups, so we list the 

various groups in Table 6.2 according to the Ellis-MacCallum scheme. 

Table 6.2. The Classification Scheme of Ellis and MacCallum (1969). The struc­
ture constants are written in the form: 

i si ~i 3i 
Cjk=E:jksm +uka j - jak 

to define the matrix m (m
ij

) and the triplet Cai)' 

where 

Class A(a i 0) 

Bianchi m 
I m 0 

II m = diag(l, 0, 0) 

VI_l 

VIlO 
VIII 

IX 

m -a 
m = diag(-1", -1, 0) 

m diag(-l, 1, 1) 

m = (Oi;) 

Class f, 0) 

Bianchi Type m ai 

III 

IV 

V 

------------------
1 

m=-2 a 

m = diag (1, 0, 0) 

m=O 

m l.(h-l)a 
2 

m diag(-l, -1, 0) + ia 
1 
o 
o ~J 
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6.5. The Three-Sphere in a Type IX Cosmology 

Manifolds to which we will later devote much attention are the spaces 

invariant under SO(3, R) or the group of Bianchi Type IX. This group has 

as its structure constants 

1 
Cijk or C 23 1 et eye. (6.24) 

The underlying space of SO(3. R) is actually a three-sphere S3 (Section 

2.7) with antipodal points identified. However, for simplicity we may take 

as the topological prototype H of the invariant subspaces the "simply 

connected covering space" of SO(3, R), namely the three-sphere S3 it­

self. Because of the importance of the FRW universe and other Type IX 

cosmologies, we here extend the discussion given in Section 2.7. 

The three basis vectors Y l' Y 2' Y 3 of (2.57) serve not as Killing 

vectors but as invariant vectors. Any metric placed on S3 of the form 

Y i . Y j gij = const is invariant under SO(3, R). We prove this invariance 

by finding three vectors ~l' ~2' ~3' on S3 such that (~i' Yj ] = O. The 

structure constants of these vectors will be the C~k of (6.24). The three 

Killing vectors are 

(6.25) 

where, as in (2.53), the vectors a /l of R4 have been used as the basis. 

It may be noted that the Y i 's are obtained from the ~ i 's in the manner 

of Section 6.3. That is, Yi(Po) '= ~i(PO) where Po is the point on S3 

. h R4 d' t 4 1 1 2 3 0 Wit coor ma es x ,x x x = . 

Cosmologies 

When a model universe M has the invariance group SO(3, R), the in­

variant hypersurfaces are taken to be three-spheres. If these spheres are 
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then any fourth invariant vector Yo wai be timelike. As 

shown in Section 6.3, this vector may be chosen very freely. One con­

venient choice is to take this vector perpendicular to the space like S3,s 

and of unit length. In terms of the dual the metric of M will 

then be of the form 

Each gij is a function of the proper time t alone. The 

duals of Yo' Y i and obey 

d(dt) O' dw 1 , et cyc or dw i 1 
2" 

(6.26) 

wi are 

(6.27) 

The equations immediately remind us of the closed FRW universe and 

the expression for its metric in terms of a basis dt, ai . In that example, 

the ai,s were combinations of the wi,s of (6.26), chosen to put the 

metric components in a simple form. Had we chosen to express the Fried­

mann metric in the wi basis, gij would have the form 

1~ G
2 0 ij with G G(t). (6.28) 

The fact that gij is diagonal and has three equal entries shows that 

the metric of the FRW universe is isotropic. In other words, the FRW 

universe has symmetries in addition to the homogeneity of spacelike 

sections which is granted by invariance under SO(3, R) and expressed 

by (6.26) and (6.27). This additional symmetry of the FRW universe - its 

isotropy - may be expressed by the statement that its metric is invariant 

under rotations about any axis in the homogeneous three-space H(t). 

A universe which is rotationally invariant about only one axis in each 

three space and which is invariant under SO(3, R) is the Taub universe 

Chapter 8). This (vacuum) model has the metric 
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The manifold R. As we see the form of this metric, 

where the b's are functions of t 

nOlrIloge!oe(:ms with invariance group 

the Taub universe is 

R). 

The time evolution of the metric of the Taub universe is such that the 

basis of is not globally valid. The basis breaks down the 

Misner interface between the Taub ,,-"·VlU<:OU and the NUT geometry. At 

this interface the homogeneous subspaces character. 

spacelike, they become timelike (that is, orthogonal to a spacelike direc­

in the region called "NUT space. In the NUT region it is impossi­

ble to take a time like unit vector perpendicular to the invariant hyper­

surfaces. Another basis must be used. (Details in Chapter 8.) 

A more general matter-filled SO(3, R)-homogeneous model may be 

imagined. In this model gij is not diagonal as a function of t nor may 

be made diagonal by changing the choice of UJ
i . This model exhibits rota­

tion and anisotropy. There is a seven parameter family of such models. 

Each one has a true singularity. 
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A ecnH qTO H OCTaeTCR 
qpe3 3ByKH nHpN H Tpy6N, 
To BeqHOCTH ~epnoM no~eTcR 
H 06meM He YMneT cynb6H. 

- GA VRIIL ROMANOVICH DERZHA VIN 

7.1. Exegesis and Exposition 

We shall call a cosmological model in which the metric is the same 

at all points of space and time homogeneous in space and time 

(ST-homogeneous) (see Figure 7.1), Such a model is a manifold M on 

li. ST-Homogeneous ~elsl 

7.1 Expression of metric in an invariant basis. Structure constants 
the sought-for unknowns. Useful for an arbitrary four-dimensional 

C" 

manifold invariant under a transitive group, with metric having the 
signature (-,+,+,+) 

.. 
(. Derivation of affine connection forms of 

this manifold in terms of structure constants C"UB 
Application t, 
vacuum models 

.Jt 
7.2 Application of conservation law 
to a fluid-filled universe to eliminate 
four C's. Use of four combinations of If matter does not include a 
the field equations fluid, other methods are needed. 

1 
This case not considered here -

Derivation of Ricci 
tensor in terms of 
structure constants CW

aS Derivation of fluid-filled models 
more general than Giidel' s, All must 

J. contain a non-zero pressure p, which 
7.3 Derivation of the GOdel may be positive or negative in dif-
model. Assumption that matter ferent cases. This derivation is not 
velocity u is a Killing vector done here, but results are given 
leads to a unique solution 

J, Derivation of models inCluding electromag-
Investigation of PIUVC; netic fields. Only an especially simple 
of COdel universe model with charged matter and a magnetic 
clues about behavior non- field is derived. In this model a large 
singular universes fluid pressure is replaced by a large 

magnetic field 

Fig. 7.1. Flow Chart for Chapter 7. 
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Гаврии́ л (Гаври́ ла) Рома́ нович 
Держа́ вин (1743 – 1816) 
   
This and the quote on page 182 are two 
stanzas of one poem. Derzhavin died in his 
sleep after working late, and this poem was 
found on a blackboard in his study. The 
original rhyme scheme is ABAB. This is the 
second stanza. 
   
    Literal translation: 
If anything remains 
Amid the sounds of lyre and trumpet 
It is devoured by the maw of eternity 
And does not escape the common fate. 
   
    A more poetic translation, keeping the  
    rhyme scheme but ignoring scansion: 
  
If aught avoids the river’s draw 
Mid lyre and trumpet’s debate 
It’s devoured by eternity’s great maw 
And doesn’t escape the common fate. 
   
Translation of Russian poems into rhymed 
verse is usually considered almost 
impossible. While in Russian it rolls 
magnificently off the tongue, in English it 
sounds like an advertising jingle (for 
example, “You’ll wonder where the yellow 
went when you brush your teeth with 
Pepsodent”).
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which a transitive (simply or multiply) group of isometries G acts. The 

metric of M is most expressed in an invariant basis where the 

g Il
V 

and the structure coefficients are all constant. Einstein's 

equations become purely algebraic. We shall show that all the solutions 

are physically meaningless in some sense. 

The of these universes are E, the Einstein universe 

(Einstein, 1917) and G, the Godel universe (Gooel, 1949). Cahen, 

Debever, and Defrise (1967) have listed all possible vacuum models which 

are ST -homogeneous. Ozsvath (1965a, see also Farnsworth and Kerr, 

1966) has found all models containing a perfect fluid for which G has a 

simply transitive subgroup. 

An ST-Homogeneous Manifold M Mayor May Not Be Complete; 
M is Certainly Unrealistic 

An ST-homogeneous model may be incomplete. A homogeneous 

Riemannian manifold cannot be incomplete, but a homogeneous pseudo­

Riemannian one may be (see manifold A of Section 5.4 and see Hermann, 

1964), 

The possibility of incompleteness is serious, but we are used to 

dealing with cosmologies represented by incomplete manifolds (the FRW 

universes). However, the existence of the nebular red shift (expansion) 

cannot be reconciled with a manifold which is ST -homogeneous. This in­

compatibility is to be expected, as a constant matter density cannot be 

"expanding." In fact, for all ST -homogeneous universes filled with a 

fluid, the expansion () = uV;v is zero. The proof that () '" 0 is instruc­

tive: The equation TIlV 0, in the case of a fluid, implies ;v 

w ull 
,11 

-(w+p)() , 
(7.1) 

If the universe is ST -homogeneous we must have w.
1l 

P ,11 = O. If we 

demand (w+p);i 0 then (7.1) reduces to 
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e Of 

;a o 

(7 implies the fluid matter moves lines. 

The fact that o that there is no Hubble in 

these universes 

M can be very 

Chapter M is therefore unphysical in all cases. 

in that it in form n~('f'\"',.1-j",<: of 

more expanding universes, It is for this reason that we 

these models. 

Two Methods of Simplification: 
Canonical Metric and Canonical Structure Constants 

We shall not consider spaces invariant under groups which afe multiply 

transitive with no simply transitive subgroup, except as illustrative exam­

ples in later chapters. In case G is simply transitive there exist four 

linearly independent one forms (jJfl for which 

const. (7..3) 

and for which the metric is 

(7.4) 

The Cll
ar and gllv are constants with respect to space and time. 

Since the metric components are constant for the case above, we can 

easily make gp.v the orthonormal metric 'TJllv diag(-I, 1, 1, 1). We shall 

call this the canonical metric. Because of the invariance of 'TJllv under 

Lorentz transformation we may take 

for any arbitrary Lorentz transformation Afla and still retain the metric 

We may use Lorentz transformations to expunge certain of the 
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The if treated as Ii set of unknowns must be chosen such that 

the vector basis dual to be basis I satisfies 

ax, Yl, z] [[Y, z],x] ([z, xl, y] o . 

That is, one must have 

ya a{3 o. (7.5) 

Of course, the ell
ar must satisfy the basic symmetry requirement: 

It is well-known that any set of ell
ar which satisfies (7.5) and (7.6) 

defines a Lie algebra of a Lie group (Helgason, 1962). Moreover, it is 

(7.5) which allows us to express a metric, given in an invariant basis, in 

a coordinated basis (Schouten, 1954). 

We could, if we wish, choose the ell
ar from a list of canonical struc­

ture constants for four-dimensional groups (see Petrov, 1969), and solve 

the field equations for gllv' This method is algebraically complicated, 

so we shall restrict ourselves to choosing a canonical gllv and solving 

for various possible sets of ell
ar . 

Once a set of g IlV and ell
ar is found which satisfies (7.5) and the 

Einstein equations we are through. A manifold invariant under a simply 

transitive Lie group is itself a Lie group (Helgason, 1962), so we may use 

standard group-theory techniques to construct a concrete example of the 

group. This example is equivalent to finding the metric of the spacetime 

in a coordinated basis. This final procedure is not always easy, but it is 

always possible. 

Affine Connection Forms and Riemann and Ricci Tensors 

Computing the affine connection forms, the curvature forms, Rllva{3 

and RIlV for universes homogeneous in space and time is an excellent 
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exercise in the calculus of differential forms. We shall present the results 

of these calculations and leave details to the reader. 

The first step is to solve 

(7.7) 

for the r ilva' The result is 

(7.8) 

Next we must compute the curvature forms () i1v d(Uilv (Ui1a " (Uav ' and 

read off the Riemann tensor components from eil
v ~ Rilvati(Ua ,,(Uti. The 

result is 

Ri1 - [' f1. cP r i1 [' a I" f1. rP 
vaT - vp aT + pa vr - pr va' (7.9) 

The final step is the calculation of R/-tv Ra/-tav using all the sym-

metries of the C/-tva' including the Jacobi relation (7.5). We find 

(7.10) 

7.2. Vacuum Models, Fluid Models, and a Charged Fluid Model 

We can now write Einstein's equations for various kinds of matter 

with this form for R/-tv' We shall present three types of solutions: 

A) All ST-homogeneous vacuum models in which the group of iso­

metries is simply or multiply transitive. 

B) All ST -homogeneous fluid models in which the group is simply 

transitive, and 

C) A one-parameter family of charged dust models. 
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ST-Homogeneous Vacuum Models 

The vacuum field equations are 

o. 

There are only two classes of solutions to these equations (Cahen, 

Debever, and Defrise, 1967; Cahen and McLenaghan, 1968): 

(A) The first is given by the metric (in variables u, v, x, y) 

(7.11) 

dxdv - [1. (x2 _ . 2 cos bu -'- xy sin bUJ du2 + (dx)2 + (dy)2 . 
(7.12) 

This model has a multiply transitive group of isometries but no simply 

transitive group. 

(B) The second class consists of the metric (in terms of x, y, x, t): 

(7.13) 

In the orthonormal frame the structure coefficients of this metric are con­

stant. This fact shows that this model is invariant under a simply transi­

tive isometry group. Each of these metrics may be multiplied by a con­

stant conformal factor to yield a new solution k2ds2 . 

Still other "vacuum" solutions are possible if a cosmological constant 

A is allowed. The field equations for such a model read 

(7.14) 

None of these models is of more than academic interest, however. They 

are most properly interpreted as fluid models, with unphysical densities 

and pressures. 

Fluid Models 

If we write the usual stress-energy tensor T IlV "" (w + p) u
ll 

Uv + pg IlV 

and insert it into the Einstein equations we can solve for all possible 

fluid models. While there is no comprehensive list of all fluid 

ST -homogeneous models, Ozsvath see Farnsworth and Kerr, 1966) 
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has given a list of all models invariant under a simply transitive group. 

The simplest expression of these models uses an orthonormal basis and 

uses the Lorentz-transformation freedom to make 

(-1,0,0,0) 15) 

Equations (7.2) now place restrictions on the CiJ.vu ' They read 

(J 
rO o 

o . (7.16) 

Table 7.1 is a list of these models classified by the vector KfL '" Ca
a iJ.' 

Table 7.1. List of ST-Homogeneous Fluid Models. These models each have a 
simply transitive isometry group. The classification is due to Ozsvath (1965a), 
and results of Farnsworth and Kerr (1966) are used. The Einstein model E and 
the Godel model G are singled out due to their historical importance. An over­
all arbitrary multiplicative factor in the metric is omitted; moreover, the metrics 
are put into a form to emphasize similarities between models. The metric and 
structure constants are listed for one invariant basis, but a coordinated basis is 
not given. The matter variables w (energy density), p (pressure), and u fL (fluid 
velocity) are given. The cosmological constant A used in the original papers 
is here set to zero; rather p is allowed here to be non-zero. 

= 0) 

Class G (The Godel model) 
2 02 -1 2 2 2 3 2 

metric: ds "" -2(w) + (w ) + (w) + (w ) 

structure: dWO =0 _wI A w 2 ; 

dW2 w O Awl ; 

dw1 = w2 
A wO; 

dw3 ", O. 

1 u fL matter variables: w p = 2'; 

Class E (The Einstein model) 

(V2, 0, 0, 0). 

metric: 
12 22 3 2 

+ (w ) + (w ) + (w ) 

structure: dWO 0 , 

dw2 = w3 A wI; 

matter variables: w = - 3p (1,0,0,0). 
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Table 7.1. List of ST-Homogeneous Fluid Models 
(Continued) 

Class I 

metric: (1 

where w p ° 
structure: 

where 

matter variables: w 

p so that p/w 
1 

fl[:!=P12 ° ° [-2p(1 + B
2)J). 

up. ~ w+pJ ' " w+p 

note: when B 1, the Einstein model results, but in a new basis 

Class II 

metric: ds 2 -(1 +A2 )(WO)2 + (uh
2 

+ A2(W2 )2 + ((3 )2 

structure: d(U0 = _wI A w 2; dw1 = w2 A wO; 

d(U2 WOAW1 ; dw3 =Dw2 AWl 

where D2=(2Cl+A2)2]-1(8A2_(1+A2)2] 

where D2::: ° and w+p>O -> 3<A2:::;3+2V2 while 

matter variables: w = C8A2)-1[SCl+A2)] _ 4(1+A2 )-1; 

2 -1 2 
P (8A) (I+A); so that P::: w. 

=([2P(1+A
2
}l ° ° p-w). up. w+p J' , 'w+P 

note: when A2 '" 3+2V2, the Godel universe results. 

Class III 

metric: ds 2 = (1 +A2 )(WO)2 + (W 1/ + A2(w2 )2 + (W3 )2 

structure: d(U0 _wi A w 2; d(U1 = w 2 A wO; 

d(U2 =wO Awl ; dw3 0. 

2 -1 
matter variables: w p (1 A) ; 

note: when A 1, the Gooel model results. 
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Category 

metric: 

where S 

A 

C 

with E 

Table 7.1. List of ST-Homogeneous Fluid Models 
(Continued) 

and T are independent parameters, and where 

4S2 -4)/E; B +2)/E; 

T2(4 D= 6ST/E; 

T4 4T2(S2_2) 4(1 

matter variables: ~ AT w. so that 
w 1 . uIL w p 5' 5' 2 P 

note: when S '" 0, T = 2, the Godel model results. 

(1,0,0,0). 

The Einstein universe (E) is of historical interest (Einstein, 1917). 

In this case the basis forms obey 

0, d,) j k 
~ CijkW AW , i,j,k 1,2,3. (7.17) 

These equations show that wO dt, where t is a "cosmic time," and 

that the t const. surfaces are Bianchi Type IX spaces. We know that 

wand p are constant, and we find 

w -3p 

so the pressure is large and negative. 

3 
4' 

(7.18) 

In fact in all of the models of Table 7.1 p is fairly large compared 

to w. In particular there is no pressureless (dust) model in the list. 

Models with Electromagnetic Fields 

Ozsvarth (1965b) has found all ST -homogeneous spacetimes filled with 

a null electromagnetic field plus a perfect fluid. A null electromagnetic 

field satisfies 
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F flv O. 

The read for a fie ld-plus-fluid 

(7.19) 

- J /1 ;0 ~ , 

Weber, 1961), where J /1 are the components of the current density 

vector. A fluid may be expected to support a current density of the form 

(Lichnerowicz, 1967): 
J/1 (7.20) 

where a is the conductivity. 

An especially simple model in the limit of zero conductivity (a 0) 

is the following: In the orthonormal basis (g /1V ." /lv) this model has 

the structure constants 

o r;=r 0 1 y2 2 1 2 2 
C 12 -V£. = -c 21' C 20 =2(I-B) -c 02 c 01 -c 10 (7.21) 

and all the rest are zero. The constant B is a free parameter, and we 

find for the electromagnetic field' 

All others zero. (7.22) 

The matter velocity U has the form U (j) 
0

, and the current density is 

J/l = Qup.' with Q = Ii B. The energy density and pressure are 

(7.23) 

Where B 0 this model becomes the GOdel universe (see below). 

When B ~ 0, the form of F /1V shows that B is the magnitude of a cos­

mic magnetic field. Thus this model replaces the large pressure in the 

Gooel universe with a magnetic field. In fact when B 1, the pressure 

p vanishes. 
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7.3. The Gorlel Universe 

The GOdel universe G is an HIU:;":;;"L example of an ST-

universe containing a 

like lines is and the matter 

fluid. It contains closed time­

u is a Killing vector. 

Both wand pare 

We G in the orthonormal basis and use the freedom of 

and Lorentz transformation to write ull 0,0,0) and (w 1 

The field are 

(7.24) 

Derivation of G 

Let us define a matrix mllv by mllv ~ Cll
ov ' If we require u to be a 

Killing vector (ull;v + uV;1l 

mij -mji(i,j 1,2,3) and 

0), we find mOil Tfov + mOv Tfoll 0, or 

° Il 0 mil m O = . 

The Jacobi equation (7.5) implies that either m2
1 or C2

12 must 

vanish. It can be shown that these two possibilities describe the same 

model in different bases. These two bases are: (a) The one with C2
12 fc. ( 

in which case the Caf3y are: 

° ° -C 12 -C 21 ..,j2, 221 C 12 =-C 21 ' rest zero. (7.25) 

(b) The one with m2
1 fc. 0; the caf3y are: 

-C1
02 C\o C012=-C021 Y2; C2

01 -C2
10 =_1!Y2; restzero 

(7.26) 

In both cases we find p w 

We next define the twist three-vector (related to the rotation of matter) 

by 

In either 

equation reads 

o 
C 23' 

or 26) we find 

o 
C 12 . (7.27) 

0, whereupon the Roo field 
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1 
2" 

1 2" pl. 
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We have chosen p so that o the Einstein universe we 

choose p 0 to get 0). 

G was presented (GOdel, 1949) in a coordinated basis in 

which the metric is 

a2[ _(dxo)2 + {dx1 )2 - t 
+ (dx3 )2 - 2e

x1 
dxodx2 J, a const. 

(7.28) 

We can identify this metric with ours by letting a 1 and 

(7.29) 

This leads to the same structure constants as (7.25). 

Because of the group symmetry, there are at least four Killing vectors 

on the manifold G, the generators of the group. In fact, there is a fifth 

Killing vector. In the coordinated basis of (7.28) the five Killing vectors 

are: ao' a2 , a3 , a1-x2a2 and one other: 

Acausality and Rotation 

The GOde! universe contains closed timelike lines. This violation of 

causality is one of the most interesting features of the model. In order to 

consider this acausality let us first look at the hypersurface x3 const. 

The structure of the forms wO, w l , w 2 , shows that this hypersurface is 

in many ways similar to the t", const. hypersurface in a closed FRW 

model. In the FRW case, however, the t const. set is spacelike, and 

in the GOde! case the x3 == const. set is timelike. There is a second, 

more important difference: In the k "" + I FRW case the surface is S3, 

and in the GOdel case it is L 3 , a space of Bianchi Type VIII, whose 

group of isometries is the three-dimensional Lorentz group. 
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The space is the unit hyperboloid 

1 , 

conveniently visualized as a subset of the abstract space (yl, l, 

(7.30) 

4 ,y ) 

or R4. In the hyperboloid, the vectors Xo, Xl' dual to a O, a 1, 

are invariant vectors. 

Unwrapping the Gruel Universe 

What of closed time like lines? The curve defined by the intersection 

of the plane y3 y 4 0 with the hyperboloid L 3 has Xo as its tangent 
1 2 2 2 

vector. Since (y) (y) 1, this curve is closed. This curve is a 

cheat however. Consider a cylinder imbedded in a Minkowski space. This 

manifold has closed time like lines, but a cy tinder locally has the metric 

of a plane. We may unwrap the cylinder and spread the resulting flat 

portion of a plane out until it fills the entire plane. Our closed curve 

(around the cylinder) becomes an open one, all without affecting the local 

metric a bit! We can do the same with the sample curve we proposed for a 

closed timelike line in G. 

There are, however, curves in G which are closed and timelike and 

which cannot be unwrapped (though none are geodesic, see Chandrasekhar 

and Wright, 1961). One such curve (in the coordinates xO, xl, x2
, x3 of 

7.28) is 

° A( . 1. ) 1 B 2 A' 3 0 x = SIn T - 2' sln r cos r ; x = - cos r; x = - SIn r; x , (7.31) 

where A and B are constants which need to be chosen properly and t 

is unbounded. The existence of this curve shows that the GOdel universe 

does not obey a global causality principle. 

The Role of Pressure in the Gruel Universe 

Positive pressure in the G6del universe accompanies rotation in G. 

We called the fact that o "the existence of rotation." What does 
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this fact have to do with rotation in the sense of Chapter 3? There we 

defined a rotation vector n in terms of the curl of the fluid velocity u. 

In the basis u w 0 and 

(7.32) 

From our definition of n we find 

(0,0,0, Y2/6). 

(g", -1 in this basis). Thus nIL is non-zero, the non-zero component 

being proportional to (;)0' 

Rotation is necessary in the Godel universe, as is shown by the Ray­

chaudhuri equation (3.30). Since (J vanishes (3.30) requires that w 2 be 

positive or else RaT ua uT be negative (or at least non-positive). In the 

Einstein universe RaT ua uT vanishes, but where p> 0, RaT ua uT is 

positive, and hence rotation cannot vanish in G. 

One final remark: The magnitude of p, p w, is large in G, but 

permissibly large. Zel'dovich (1961) showed that for a p w equation 

of state, sound waves propagate just at the speed of light c. For p any 

larger the sound velocity would be greater than c and the model unphysi­

cal. 

The GOdel model is a gold mine of interesting properties which are 

useful in examining homogeneous universes. By itself, however, it cannot, 

any more than any other ST -homogeneous universe, be a mode I for the real 

universe. The spatially homogeneous cosmologies discussed in the re­

mainder of the book have proved to be of immense importance and rele­

vance to the study of the real universe. 



8. T-NUT-M SPACE - OPEN TO CLOSED TO OPEN 

Hic coquus scite ac munditer condit cibos 
- PLAUTUS 

8.1. Taub Space and NUT Space 

The models of the preceding chapters have no expansion, and there­

fore other models must be used to describe the actual universe. We now 

consider spatially homogeneous universes, those homogeneous in space 

but not in time. 

~------------------------~ 

g function only of xo , 
\.IV 0 0 

with w = dx , and 
1 i t 

. = l' c 1\ w • 

cl

st 
known constants 

9. 2 2nd Fundamental Ponn 
and other initial data 

8. & 8.3 Incomplete 
but mathematically 

Studied 
tHus­

roperty 

.3 Einstein's Fle~ 
Equations derived in 
"Synchronous Basis". 
Other bases may be 
used, however, and we 
sometimes do so 

Applications future and 
current surveyed. and 

given in Chapters 
to 15 al,d Appendix 

10. Z Proof that the general 
spatially homogeneous model 
is incomplete. However, in­
completeness does not neCes· 
sarily imply mathematical 
singularity 

Fig. 8. L Flow Chart for Chapters 8, 9, 10. 
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Titus Maccius Plautus 
    (~254 – 184 BCE) 
   
This cook skillfully and 
elegantly seasons a meal. 
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We that a vacuum metric mocks the behavior of the actual 

universe, but this is not the case. Any amount of matter added to a 

vacuum model its character Nevertheless, we shall 

consider some vacuum models because the field ~'1 •. unLV''''' are 

their features can be studied in detail. 

and 

The most vacuum spatially-homogeneous model is T-NUT-M 

1951, a similar model of Tamburino and Unti, 1963; and 

their connection by Misner and Taub, 1968). In this model the spacelike 

sections evolve in a finite proper time from open to closed to open. Unlike 

the Friedmann models T-NUT-M has no singularity but expands and con­

tracts in a non-singular framework. Unfortunately, T -NUT -M space is in­

complete: Some time like geodesics cannot be extended indefinitely. More­

over, if any amount of matter is added to T-NUT-M it becomes singular 

(see Chapter 10). Figure 8.1 is a logical outline of Chapters 8, 9, and 10. 

raub's Vacuum Model 

In 1951 Taub published an example of a vacuum solution which is 

spatially homogeneous. That is, through each point passes a spacelike 

section on which the metric is independent of position. The group struc­

ture of these space sections is "Bianchi-Type IX." The structure con­

stants of this group are 

(8.1) 

The group is also called SO(3, R), the group of special (unit determinant) 

orthogonal 3 x 3 matrices with real coefficients (SO(3, R) is isomorphic 

to the group of rotations in three-dimensional Euclidean space). 

On the space like sections the metric is 

(8.2) 

where is a matrix of constants in space. This matrix varies in time 

one to the next). If the time coordinate is chosen to be 
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proper time t measured perpendicular to these hypersurfaces, the full 

space-time metric is 
(8.3) 

Without loss of we may assume diagonal for all time. (The 

diagonal character is also true for such a model filled with a non-rotating 

perfect see The metric, which will be useful 

can therefore be written: 

i 
Time 

Fig. 8.2. Taub-NUT -Misner Space. T-NUT-M is representable as a disc, which 
becomes a flattened ellipsoid of revolution, thickens to a cigar-shaped ellipsoid 
as its volume reaches a maximum, and collapses again to a disc. This descrip­
tion is for the synchronous system, which is no longer a valid descriptive de­
vice after the collapse to zero volume has taken place. T-NUT-M space does 
not have a geometric singularity at the time of collapse. 
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Taub's mode! , or 

(8.5) 

Figure 8.2 illustrates Taub space in much the same way as we earlier por­

trayed the Friedmann universe. The function g g(t) becomes zero after 

a finite proper time, but y does not. The zero of g was originally 

thought to indicate a singular point. 

The NUT Space of Newman, Tamburino, and Unti 

In 1963 Newman, Tamburino, and Unti described a model which they 

called a "generalization" of the Schwarzschild metric. Misner (1963), 

however, showed that the topology of "NUT space" is different from the 

topology associated with the Schwarzschild model. He discovered that the 

topology of NUT space is S3 x R, the Cartesian product of a three-sphere 

with a line, the metric being independent of position on the three-sphere 

section. 

If we let cui be the same as before and use t to label the S3 sec-

Hons we find 

(8.6) 

where g is a positive function of the coordinate t. This metric differs 

from Taub space in that one of the directions in S3 is timelike and the 

direction of the t coordinate is spacelike. Both metrics share the property 

that g becomes zero at some bounded value of t while y remains finite. 

The M isnet Btid~e 

The similarity of (8.5) and (8.6) hints that these are actually the same 

metric. Misner and Taub (1968) have shown that we can label the homogen­

eous hypersurfaces in such a way that Taub space and NUT space are both 
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there are two 

T-NUT-M space. In T-NUT-M 

with the NUT metric and one with the Taub metric. 

The two boundaries between NUT and Taub are 

with the of S3. These under SO(3, 

"'Ul.ldtC,"" are called Misner 

In the evolution coordinate to be used in the next ",,,,,,,no" T-NUT-M 

consists of a one-parameter family of copies of ,We will call the evoh: 

tion parameter t and the H(t). As t varies "evolves' 

in that the metric of H(t) varies. At large negative values of t, H(t) is 

timelike (a NUT Near t 0, H(t) is spacelike (the Taub region) 

At positive values of t, H(t) is again timelike (the second NUT 

region). 

Through each point in the Taub region passes a compact (or 

spacelike hypersurface, namely H(t). In contrast, in each NUT region no 

spacelike hypersurface is closed (Misner, 1963). (In these regions, H(t), 

which is closed, is timelike.) Consequently, T-NUT-M represents a uni­

verse which evolves "from open to closed to open again." 

8.2. The Metric of T-NUT-M 

The point of view we will follow to obtain the metric of the T -NUT~M 

model is. Postulate the existence of a Type IX vacuum model which is 

mathematically non-singular. Some metric properties of this general model 

suggest certain simplifications. Once the simplifications (which cause 

the metric to be expressed in a form similar both to (8.5) and to (8.6)) are 

imposed, the T -NUT -M metric may be straightforwardly and explicitly de­

rived. We will then show (in the next section) that T -NUT -M is indeed 

mathematically non-singular and yet incomplete. We will defer many tech-

nica! details to later t'hont.""", where they will be discussed in terms of 

matter-filled models in order to present a concise discussion of T -NUT-M 

itself. 

We have l'VUHCU out that in the "'~u~"~x vacuum Type-IX model the 

metric of the can be written as 
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3 

da
2 ~ 

No ""1;"'1 .. 1 element ever appears as t varies if the ~i metric com-

ponents are all zero. We must allow the (1i to be negative, or 

zero, as one is less than zero in NUT space and greater than zero in 

Taub space. 

We shall show in another chapter that if H(t) is spacelike at some 

time, it must become lightlike and then timelike in a finite proper time. If 

the four geometry is to be mathematically non-singular at the time to of 

transition then the determinant of gllv must remain non-zero. At to 

therefore, no m')re than one of the can be zero, However, at to' since 

H(t) is lightlike, one of the does vanish. 

We have shown that there is great freedom in choosing the zeroth basis 

one-form. This freedom appears as a freedom in the forms of g OIL' Ryan 

(1970) discusses this pOint in the vacuum case; we will exploit it in the 

matter-filled case later. In the T-NUT-M model, the most convenient basis 

is one in which ~o '" g02 g03 O. Further, by calculation of Rl1 at 

t to. it can be shown that 112 (13 then. In both Taub space and NUT 

space, 112 '" 113 at all values of t. This property implies the existence 

of a fourth Killing vector in addition to the three of 80(3, R) symmetry. 

Can a 2 '" a 3 only at t"" to? The work of Misner (1969a) shows that 

this possibility does not occur. We therefore write the metric as 

Taub space corresponds to gu 0, and NUT space to gl1 O. Further, 

we may parametrize the t coordinate so that gOl L In the basis 

, a 

with g the metric nnn""nt", are 
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[~ 
1 0 

~l [-~ 
1 0 

n g 0 
and 

0 0 
(8.8) 0 1 0 1 

0 0 0 0 

Ricci Tensor and Field Equations 

We can now use the Cartan equations to compute the Riemann tensor 

in the usual fashion. First, notice that of the connection forms a ll
v only 

a \' aDA' alA' a 23 are independent (A 2, all the others are given 

by the equations relating the (dgp,v ap,v avp,)' The First Cartan 

Equation - aP,a A aa may be solved by inspection to yield 

1 . 1 - 2' ga (where 

a 0
2 

= g~a2 

a 0
3 

g~a3 
(8.9) 

a 1 _p.a 2 + 1. e-2f3a3 
2 I'-' 2 

1 1 -2Q 2 p. 3 
a 3 == - 2' e I'-' a - I'-'a 

2 1 -2 Q
d [1 1 -2 f3] 1 a 3 == - 2' e I'-' t + - 2' ge a. 

From the Second Cartan Equation eP,v 

Rp,v == Rap,av the next step is to compute 

Hons read: 

1. RJL aa A a f3 and from 2 vaf3 
Rp,v' The vacuum field equa-

.. . 2 1 4f3 
Roo = - 2f3 - 2(f3) + 2' e - = 0 , 

ROI = ~ g + g~ + ~ ge-4f3 = 0 , 

R22 = R33 g~ + g/3 + 2g~)2 e-2f3 _ 1. ge-4f3 - 0 2 -, 

(8.10) 
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All the field are identically satisfied except for the Roo, ROl 

and equations. Moreover, the ROl equation is easily shown to be 

a consequence of the Roo and equations, these being the two lnde-

pendent equations which g and 

The Solution 

The solution of Roo 0 is 
1 

1 )2 
4B f 

(8.11) 

where B is a positive constant chosen so t 0 is a minimum of fl. This 

result, that efl never becomes zero, shows the non-singularity of the 

metric. At g'" 0, efl is non-zero, so the structure coefficients and the 

determinant of g /11/ do not vanish. Hence g /11/ has no singularity at 

g O. 

Inserting (8.11) into the R22 equation we find 

g At+1-4B2t2 

B(4B2 t 2 + 1) 

As a reminder, the full metric is 

(A, B const.) . 

8.3. Complete and Incomplete Geodesics of T-NUT-M 

(8.12) 

T-NUT-M space is a vacuum space-time whose topology is S3 x R. It 

is a mathematically non-singular but incomplete model, and as such very 

interesting and important. It serves as a simple example of such a cos­

mological mode1. 

Since T -NUT -M is non-singular, every geodesic segment can be covered 

by a compact (closed) subset of the manifold. We shall show that this 

property holds. Since T-NUT-M is incomplete, some geodesic segments, 

although coverable by a compact set, cannot be extended. We shall demon­

strate this property also. 
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A 

Group Symmetry Applied to Geodesics 

has a tangent vector X for which 

O. 14) 

The along the geodesic are labelled by an affine parameter u, and 

the components of X in a given basis are functions of u. Given these 

functions we can reconstruct the geodesic. In T -NUT -M let us use the 

basis dual to (dt, (J i) and let the components of X in this basis be 

all (p. 0,1,2,3), Equation (8.14) is a set of four equations for the four 

unknowns all (it contains function of t, but t is to be considered a 

function of u given by a O 
"" dt/du). 

Symmetries in the metric Simplify (8.14), each symmetry implying a 

constant of motion. In T -NUT -M these constants are all that are needed 

to describe completely the behavior of geodesics. We choose u such that 

aaaa E=±I,O 

2aOa1 + g(a1 / + (a2 )2 + (a3 / . 

(8.15) 

This is one constant of motion for (8.14). 

If I; is a Killing vector of T -NUT -M space write 

Since I; is a Killing vector I;Il;v + I;v;1l 0, and since X is geodesic 

all ;v aV 
= O. Hence 

O· , (8.16) 

that is, the dot product 1;. X is constant along the geodesic, 

There are four Killing vectors of T-NUT-M, three expressing spatial 

homogeneity and one due to the fact that a 3 a 2 , This one is the vector 

dual to the one-form a 1 (notice that its contravariant components are 

= 8 t, a1 '" const. This implies 
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const. 

There are also three constants of motion 

p. 
1 

·X, (8.18) 

where the are the three generators of SO(3, R), We know that e i 
0ijYj' where Yi is dual to wi, and 0ij is an orthogonal transforma-

tion a rotation Because oj is a rotation, 
1 

const, 

Since 0'1 wI, 0'2 ef3w2 ,a 3 ef3w3 , we have the formulas Y I X 

a1 ,Y2 ,X ef3a2 ,Y3 ,X ef3a3 • Therefore, 

and since a1 is constant 

2 2 2 2{3 2)2 3 2) P 1 :; P - PH = e «a + (a) const, (8.19) 

The Geodesic "Potential" 

From our definitions of p 1 ' PII' and E we find 

Since the ali are functions of u and aO dt/du we find 

(8.20) 

Notice that this ~"'~~L'V" looks like the equation of a particle 

moving in Iii where u takes the of time, t takes the 



Fig. 8.3. The "potential" Vet) for the time com­
ponent of a geodesic. The time component acts 
like a classical particle moving in a one-dimen­
sional potential well Vet). This graph corresponds 
to a T-NUT-M universe characterized by A B '" 1 
(see text), The Vet) here illustrated is for a time­
like geodesic, E -I, with the value of the con-

stant of motion p 1 1. corresponds to the 

total "energy" of the time ("zero") component of 
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of 2 
takes the place of "total energy," and geE - PI 

function Vet). Inserting our values for g and (3 from 

(8.11) and (8.12) we find 

Vet) (8.21) 

8.3 shows Vet) for one set of constants.) 

In the constants play different roles. A and B are fixed for 

all discussion of any given manifold. E '" ± 1, 0 determines the character 

of the geodesic (spacelike, timelike, null). The constant PI 2 is a con­

tinuously adjustable constant roughly equivalent to a measure of the com­

ponents of the geodesic in the 2 and 3 directions. 

Incompleteness Without Singularity 

T -NUT -M is mathematically non-singular in the sense of Chapter 5. 

Any finite segment of a geodesic is coverable by a compact subset of the 

manifold. This is true because Vet) becomes constant for t -> "", so 

only geodesics of infinite parameter length lead to t + 00. (See Figure 

8.3 for the timelike case.) Any finite geodesic segment must remain with­

in finite bounds of the t coordinate and so is coverable by a compact 

subset of the manifold. 

While T -NUT -M is non-singular, it is still incomplete, (in Chapter 5 we 

indicated why incompleteness is thought of as "physically singular"). In 

the T -NUT -M case incompleteness unambiguously leads to Singularity 

once any amount of matter is added. What is the easiest way to see that 

T-NUT-M is incomplete? In Figure 8.3 we see that a timeHke geodesic 

with Pq 2 1 does not have enough energy to surmount the "potential 
II 

barrier." From the form of the potential, t should oscillate as a function 

of u, the affine parameter, but we shall show that in fact the geodesic 

terminates at a finite value of u. 

Consider for 
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(8.20) for t we have 

2 1 [ _ 
g Pli + 

I . 
I 

/: 

/ 
.'/ 

/1 
I I 

lit // 

gp 
~] . 

I 
I 

I 
I 

I 

/3 
I 

I 

/ 

NUT 

Taub 

Figure 8.4. T-NUT-M Space with Three Timelike Geodesics. Vertical directions 
are the t coordinate (always see text). Horizontal directions correspond 
to the "one" direction in (a closed direction). The "one" direction is 
periodic the solid vertical lines are identified pointwise. Geodesics 1 and 
terminate with total finite length. No.1 cannot cross the Misner boundary: It 
winds up too fast. No. crosses the boundary but bounces back. The light 
behavior shows it cannot return and must he terminated. Geodesic 
total length because it has enough "energy" to travel to t 

has infinite 



8.3. COMPLETE AND INCOMPLETE GEODESICS OF T-NUT·M 145 

If we take the 

This infinite value of corresponds to geodesic No.1 in Figure 8.4. 

This "wraps" around the "one" direction an infinite number of 

times and does not cross the boundary between Taub and NUT space. How-

ever 1 UU!LCIIUi11 considerations show that the approach to the Misner 

boundary takes place in a finite proper time. Hence this geodesic is of 

finite extent and inextendible. T -NUT -M space is incomplete! 

Not all geodesics are incomplete. Consider geodesics 2 and 3 in 

Figure 8.4. Both originate in Taub space, cross into NUT space. Geo­

desic No.2 bounces off the potential and tries to return to Taub space. It 

encounters the same type of problem as No.1 and is incomplete. Geodesic 

No.3, however, surmounts the barrier and travels to t + 00 

The Collapse of Taub Space 

In Taub's (1951) model the volume of the spacelike homogeneous 

hypersurface H(t) becomes zero at finite values of t. Rather than indi­

cating a singularity, however, this zero volume simply means that the Taub 

model is that portion of T -NUT -M space in which g(t) > O. T -NUT-M 

space itself is a mathematically non-Singular model, as we have seen. 

T -NUT -M at first glance appears to be a useful model of the real uni­

verse. The behavior of T -NUT -M, with regard to collapse - the opening 

of closed space like section - is exactly the behavior we might expect in 

a non-singular, matter-filled universe. In a universe filled with matter, it 

will be shown that the volume of space like hypersurfaces must become 

zero in some observer's finite proper time. In T -NUT -M this zero volume 

is not indicative of a mathematical singularity; the closed spacelike sec­

tions become open with only the difficulty that some (not all!) of the time­

like geodesics are incomplete. As shown by work of Hawking (1967), 

Geroch (1967), and others, non-Singular cosmological models in which all 

(in addition to the ones along which matter 

do not exist in j!.cuc,,,,u 

are complete 
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However. T -NUT -M is not adequate to describe the real universe near 

a time of maximum contraction. Since T -NUT -M space is a vacuum model, 

it can only be thought of as an approximation to the cosmos in which 

matter is treated as test Because some of the test particles 

may travel on incomplete geodesics in T-NUT-M, the model itself, as it 

stands, is not adequate to portray the cosmos. If some way could be 

found to introduce matter into T -NUT -M in an explicit way so that none of 

the matter travels on incomplete geodesics, then a non-singular cosmologi­

cal model would be the result. That it is impossible to introduce matter 

into T -NUT -M without causing a Singularity is a fact that will be shown 

later. 

One final remark should be made: Misner and Taub (1968) have shown 

that there are two inequivalent ways of joining Taub space onto NUT 

space through a lightlike boundary. In both ways the join is analytic. As 

we saw, half of the timelike geodesics with origin in Taub space cross 

the boundary to NUT space and half do not. In the second method of 

gluing T and NUT together, these two sets of geodesics are (roughly) 

interchanged. The half that made it before are brought to a halt, and those 

geodesics that originally ran out of steam suddenly find themselves given 

free passage. Non-analytic extensions may be considered also. A recent 

mathematical discussion of this ambiguity in joining solutions across a 

lightlike barrier has been carried through by Miller (1973) and Miller and 

Kruskal (1973). A physical interpretation of this recent work has yet to 

be given. 



9. THE GENERAL SPATIALLY HOMOGENEOUS MODEL 
IN THE SYNCHRONOUS SYSTEM 

They take a serpentine course, their arms flash in 
the sun - hark to the musical clank -

WALT WHITMAN 

9.1. The Metric and Connection Forms 

The T-NUT-M model shows that a spatially homogeneous model can 

have exciting characteristics. To extend our discussion to the general 

spatially homogeneous model we must first develop some useful equations. 

We shall compute the Ricci tensor of homogeneous models in a particularly 

simple basis - the synchronous system. These equations will be appli­

cable to both matter-filled and vacuum models. In succeeding chapters we 

shall use the synchronous system to discuss the existence of singularities 

in these models. Figure 8.1 included a logical outline of Chapters 9 and 10. 

The Proper Time Orthogonal to Homogeneous Hypersurfaces 

Through every point in a spatially homogeneous model M passes an 

invariant or homogeneous, three-dimensional hypersurface H. This hyper­

surface is generated by the three-dimensional isometry group G of the 

model. A one-parameter family of these hypersurfaces fill M. The direc­

tion of the axis of this parameter t may be chosen quite freely. Once 

this choice has been made, the one-forms wi, ii, 2,3, are found as in 

Chapter 6. The u) satisfy the curl relations appropriate to the group G. 

One very useful choice for the direction of t is the time like direction 

perpendicular to each hypersurface H. This choice defines the synchro­

nous system, so called because clocks are synchronized throughout the 

spacelike surfaces Lifshitz and Khalatnikov, 1963). The existence 

of such a time like normal vector assumes that the H(t) are spacelike. 
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Walt Whitman (1819 - 1892) 
From "Cavalry Crossing a Ford"
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We U .. IctlIllerf by proper time, so that the four-dimensional metric is 

1) 

The one-forms wi obey 

(9.2) 

where the Ci jk are the structure constants of G. The group structure of 

the manifold implies the existence of a vector field basis dual to !-dt,wil 

such that 

g .. (t) . 
1} 

We could have begun with the existence of this vector field basis and pro­

ceeded to (9.1) and (9.2) as in Chapter 6. 

The synchronous basis is essentially unique as long as the homogene­

ous hypersurfaces remain spacelike. That is, the hypersurfaces are picked 

out by the group action unambiguously. The vector Yo is the unique 

normal to these surfaces. 

If the H(t) change from spacelike to time like (as in T -NUT -M), the 

synchronous system breaks down and another basis must be used. If a 

singularity prevents this change of signature (as in any matter-filled model 

with the same symmetry as T-NUT-M, for example) the synchronous system 

is useful to describe the entire evolutionary history of the model. 

The Orthonormal Basis 

We shall now compute the Ricci tensor. Since this form of the Ricci 

tensor will be applicable to the FRW and T -NUT -M solutions as well as 

the generally spatially homogeneous model, we shall derive it in some 

detail. 
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We 

defined by 

bases to write (9.1) in the orthonormal .<1",,,,,1, .. ,,, ... £",,,,,, basis, 

dt, a 1 (9.3) 

where bis gij and bij bji · The matrix 8 (b ij) is the symmetric 

square root of G (gij)' This choice of 8 puts the metric in diagonal or 

Minkowski form. In the basis 

(9.4) 

1 1 

Following Misner we shall write the scalar (det 8)3 as (det 8)3 

e-O(t\ ° a scalar. Also, we write e08 (J3 (t)ij) , where (f3iP» is 

a 3 3 traceless matrix (J3 signifies matrix exponentiation; note that 

det J3 e trf3 = 1). Therefore 

(9.5) 

The curls of the aIL will be needed to compute affine connection 

forms. These curls are 

da i = (-Oe-OJ3
iS 

+ e-O(J3iS)')dt A w S + e-OJ3iS dws 

. R . -f3 -0 f3 s (-Miu + (eI"'it) e tu)e e us dt A w 

"- 1. e-OJ3. CS w t A wU 
, 2 IS tu . 

Using the expression of wi in terms of ai, 

we have 

where 

W i = eOe-f3 as 
is ' 

k·· = -OS .. "-1J 1) , 

eOJ3
iS 

(9.6) 

(9.7) 

(9.8) 

(9.9) 
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The expression for k·· if (3 
1J commutes with for then 

. Notice also that di jk has the same symmetry as jk 
and satisfies the Jacobi 

jk sk o. 10) 

Connection Forms in the Orthonormal Basis 

We shall now compute the connection forms using the 

first Cartan equation and the vanishing of the covariant derivatives of the 

metric. The latter equation reads, in our case, 

o 

lower or raise an index use Tf~l)' This equation implies 

The first Cartan equation reads 

Enforcing the symmetry (9.11), we have 

The solution of these equations is 

whence 

[ ' i 
jO 

0, 

r 0 .. = !. (k.. k .. ) ,d .. 
J1 2' 1J )1 11 ' 

1 2' (kji kij ) =: mji - mij , 

1 i t 2' (d st - d is d\t)' 

(9.11) 

(9.12) 
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o 

i 
j 

s 
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(9.13) 

9.2. Aside: The Second Fundamental Form of an Invariant Hypersurface 

We have defined the symmetric and antisymmetric parts of k·· as 
1) 

and mij respectively f that is f in matrix language: 

L (9.14) 

From K -fH (J\ one can show that 

(9.15) 

Initial Data 

Equation (9.15) is a matrix equation relating M, Land ef3; ef3 
being symmetric and positive-definite, L being symmetric and M being 

antisymmetric. Because the matrices are all 3x 3, we may solve (9.15) 

uniquely for M. Because of this fact it is necessary only to give L, f3 

and 0 at some time to to get a complete set of initial data. We shall 

find this enumeration useful later when we wish to give initial conditions 

for numerical solutions. 

It is not surprising that 0, f3, and L form a set of initial data for 

homogeneous cosmologies. The equations of relativity, being hyperbolic, 

require two items of initial data (Choquet, 1962): First, a "function" (the 

metric of an initial three-surface); and second, the "first derivative" of 

this function (the second fundamental form of the initial surface, its ex­

trinsic curvature; see Wheeler, 1962b). The matrix e -0 ef3 is directly 

related to the three-dimensional metric of the homogeneous hypersurface. 

From our definition of K we see that L is related to the time derivative 

of e-Oef3 (both Land e-Oef3 have six independent components). 

We can show directly that L is the second fundamental form of the 

invariant hun""'"'' H(t) imbedded in the four-dimensional spacetime. 
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The second fundamental form of a submanifold M' in a manifold M is an 

operation N(X, Y) acting on vectors X, Y of M'. If we covariantly differ­

entiate Y of M' in the direction X using the connection forms of M 

the result is a vector Z in M. We define N(X, Y) as the component of 

Z perpendicular to M' (Eisenhart, 1926). We write 

where V is covariant differentiation in M and the superscript 1 (super­

perp) extracts the component of the result which is perpendicular to M'. 

We can use the torsionless nature of V X Y to show that 

N(X, Y) '" N(Y,X). 

If M' is a hypersurface, the perpendicular vectors form a one-dimensional 

space, so N maps two vectors of M' into a feal number (the one compo­

nent of Z 1). Thus N is a tensor on M' (depending on the detailed man­

ner in which M' is imbedded in M). 

For a spatially homogeneous manifold in the synchronous system, per­

pendicular means along the a 0 direction (here M' is H(t». The com­

ponents of N in the basis Xi dual to the a i are 

(9.16) 

This equation shows that L is indeed the second fundamental form of H( 

9.3. The Ricci Tensor 

We now calculate the components of the Ricci tensor in the !aIL\ 

basis. 

The (00) component is (indices raised and lowered with I/ILv ; use 

the symmetries of RILva(3): 

o 
R 303 . 
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Since A , we compute and take 

its Oi component: 

o 
R iOi (no sum on i). (9.17) 

Therefore 

(9.18) 

we find 

(9.19) 

Note that 

ds _ n R Ca -{3 -{3 _ n -(3 CS 
ts - e et'"'sa be e bt e cs - e e bt bs' (9.20) 

This equation implies that the second term on the right in (9.19) vanishes 

for some groups. For example, it is zero for the groups T 3' L 3 , and 

SO(3, R) (Bianchi Types I, VIII, and IX). 

Example: ROi and Rotation in Bianchi Type I Models 

As an example, consider a space invariant under T3(C i
jk == 0), Since 

d\k 0, (9.19) implies ROi O. For a fluid-filled universe TOi = 

(w+p)uo ui in our basis. Hence ROi == 0 implies ui'" 0 (or, since 

uf.1u
v

Tff.1V == -1, uf.1 '" (-1,0,0,0». Consequently, du d(-dt) '" 0, so 

that rotation is impossible in Type I universes. 

The Spatial Components of the Ricci Tensor 

A tedious computation shows 

(9.21) 



154 9. THE GENERAL SPATIALLY HOMOGENEOUS MODEL 

We have used the fact that the three-dimensional Jacobi identity implies 

d\s d
S

ij O. 

This completes the calculation of the Ricci tensor in the orthonormal 

synchronous basis. For many purposes the synchronous system is very 

useful. For some purposes we shall use other bases, as we did with the 

T -NUT -M model. 

9.4. Vacuum Models - Existence and Examples 

In vacuum the Einstein field equations read 

Tauh (1951) showed that solutions exist for all nine Bianchi types. These 

models are generally of little physical interest, and investigations of their 

global properties, especially the existence of singularities have not been 

carried through. 

Taub's existence proof is outlined as follows: From Rij 0 we have 

1 dS (ds dt) 1 d i dj 
+:2 it jt + js - 4" st st· 

Our definition of e-OJ3 gives 

;.. -0 {3 -O( {3 )' -ue e·· + e e·· IJ IJ 

From (9.9) we have 

and (9.15) gives 

i 0J3 eS -{3 -{3 
d jk '" e is tu e tj e uk' 

m·· IJ mij (J3, L) . 

Thus the (ij) field equations may be put into the form 

(9.22) 

(9.23) 

(9.24) 
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L fen, (3, L) , 

0. g(O, (3, L) , 

h(n,{3, L) . 

Given 0, {3ij' and 

time to we can 

(one, five and six quantities respectively) at 

nt" .. n,~tt> this set of equations to find 0., {3, and L at . . 
any time t. Note that 0., ,0, and {3 ij are sufficient initial data 

for these differential equations since Lij may be determined from these 

quantities. 

Restrictions on the Initial Data 

In the discussion above we used only the (ij) Einstein equations, 

ignoring the four (Op.) equations. It is a general property of the Einstein 

equations that the ROil equations are consistent with the solution of the 

Rij equations, and only act as restriction on the initial data (see Wheeler, 

1962b). In our case they restrict the values of 0., {3, and L we may 

specify at to' 

In the spatially homogeneous case Taub shows the effect of the re­

striction by examining 

(9.26) 

and 

2S Roo + Rll + R22 + R33 

( 0 )2 n e d t dU 1 dS dS 1 dS dt 
LSS - Lst ts + ts su - 4' ut ut - 2" ut us 

(9.27) 
O. 

(S is defined with a factor of two to conform to a convention used in 

fluid-filled models.) These two equations must be satisfied if a set of 

0, {3, L that we pick as initial data is to be allowable. 

We can readily show that ROi 0 and Roo'" 0 are satisfied for all 

time if they are satisfied at t = to and if Rij 0 for all time. The proof 

uses the twice-contracted Bianchi identity: 
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which 

11,0 
i !J r ° - R l1;i - R 11 vO 

It is easy to see that RI1V 0 at t to implies RO
I1

,o 0 so ROil 0 

remains true as long as Rij O. The establishment of this fact completes 

the demonstration that the (ij) vacuum field equations are consistent with 

the conditions imposed by the (011) , and that solutions therefore 

exist for vacuum models for any of the Bianchi types. 

A Bianchi Type III Homogeneous Model 

Exact solutions of the vacuum field for various homogeneous cosmolo­

gies do not exist in any great number. The T -NUT -M and Kasner solutions 

are important examples. Taub (1951) has given a solution for Type II. As 

an example we shall give a Type III solution in which the metric is given 

except for one component function which is defined by an integration. It 

represents a simple illustration of the above formal treatment. 

Let us investigate the special case where J3ij is diagonal, with only 

one independent component: 

(9.29) 

L then has the form 

" • •• *. 

L = diag (i1 , i, f) = diag (2f3 - 0, -(0 + (3), -(0 + (3». (9.30) 

The structure constants of the Type III group are 

2 C 23 = - 32 == 1, all others zero. (9.31) 

The field equations reduce to three equations, the S equation and the 

Rij equations: 
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0) 

1 
2" 

o 

o. 

If we solve the S C<l,,,.Hlvn and one of the two lower "''I'U.ctlLVlI'''' the second 

is satisfied because of the consistency proof above. 

The solution we find yields f3 + 0 as an function of t: 

A 10~ e-(/3+ 

where to and A are constants. We can find 2f3 - 0 from the S equa­

tion by 
1 1 

tl =2~_n=_~[Ae3(/3+Q)+e2(/3+0~2 + ~[Ae-(/3+Q)+e2(/3+0~ -2. (9.34) 

We have f3 + Q as a function of t so we can integrate this equation to 

find 2f3 -Q (this is the integration referred to above). Adding and sub­

tracting these solutions, we find f3 and O. 

This model is of interest primarily as an example. Its derivation is 

typical of the method by which exact solutions for spatially homogeneous 

vacuum models may be found. Although we have used the orthonormal 

basis, a coordinated basis is readily found using Table 6.1. 

Diagonalization of the General Bianchi Type IX Vacuum Model 

The most important of the vacuum models is the Bianchi Type IX 

(SO(3, R)-homogeneous) model, a special case of which is T -NUT -M. We 

can show that the most general vacuum type IX model has a diagonal 

metric in the synchronous basis; that is 

ds2 d 2 -20( 2f3 1( 1)2 2f32r 2)2 2f33/ 3)2] 
- t + e e ° + e \0 + e \0 (9.35) 

If is a diagonal matrix, then so is f3, and this diagonal traceless 

matrix may be parametrized by 
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f3 

It is easy to show that f3 may be chosen diagonal at anyone time 

to a basis 0\, where 0\ is an orthogonal matrix of 

unit determinant. The the Type IX structure equations. There-

a suitable choice of 0\ we may diagonalize and hence f3 
at the instant 

The fact that ROi 0 proves that f3 remains diagonaL These equa­

tions read 
) 0, et eye. at t to' (9.37) 

Thus either f12 0 or f3 11 In general either by the choice of to 

we may be sure that f3 11 f f3 22 , so f12 0; or accomplish e12 0 by 

a further rotation of basis forms, so that L is diagonal at to' 

When ef3 and L are diagonal at t = to' M vanishes by (9.15), and 

(9.22) shows that L is diagonaL Therefore, L remains diagonal for all 

time, and hence ef3 does also. Thus in the general vacuum Type IX 

model we may assume f3 is diagonal. 

In Chapter 8 we found no singularity if we took f3 1 f3 2 . Let us look 

at this requirement from the standpoint of the general vacuum Type IX 

equations. The field equations reduce to 

" . 2 . 2 . 2 
Roo O=3n-3n -6/\ -6f3_ 

Rll 0= -0.+ ~++v'3~_ + 30.(0.-13+ -v'3P_) 
1 2nr 4(f3++0f3_) 4(f3+-0f3_) -sf3+ -2 (f3++0f3_)] 

+ 2' e Le - e - e + 2e 

= 0= -n ~+ -v'3~_ + 30.(0, - 13+ + v'3P _) (9.38) 
1 zn[ 4(f3+-0f3_) 4 (f3++0f3_) -sf3+ -2 (f3+-0f3_)] 

+ 2' e e' - e - e + 2e 

-e 4
f3 J 2e + . 
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From these equations it can be shown that becomes zero at a finite 

value of t, say t'. If no 

must have a metric of 

is to exist then, the hypersurface 

(+, 0), so that only one of the 

coefficients in (9.35) vanishes at e. If that coefficient is the term multi-

and 

, we can say that at ( we have {1 

must each be finite. We can write Rll 

oc, but {1 

- Roo as' 

(9.39) 

At t t' the condition that no singularity appears requires the left side 

of (9.39) to be finite. The right side will then be finite only if f3 _ = 0 at 

t e. This result is only a rough indication of why the T -NUT -M model 

requires f3 _ 0 for all t, for near ( the basis used in (9.39) strictly 

speaking becomes degenerate. 

9.5. The T 3-Homogeneous Model of Kasner 

The general Type I vacuum model is especially simple and important. 

It is also known as the T 3-homogeneous model because the Bianchi Type I 

group is isomorphic to the three-dimensional translation group T 3' This 

model has been treated by Kasner (1921); Taub (1951); Misner (1967d); 

and Lifshitz and Khalatnikov (1963). This metric is important in the dis­

cussion of matter-filled ~odels near the moment of maximum compactifica­

Hon (see Lifshitz and Khalatnikov, 1963, and Chapter 13), Each vacuum 

T 3-homogeneous model turns out to be either singular or flat: In the ab­

sence of a singularity the vanishing of the Ricci tensor implies the vanish­

ing of the full Riemann tensor (Taub, 1951), 
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The Vacuum Field for I Models 

The structure constants of the group are zero: d jk = 0 di 

Notice that this group structure 

vious section we see that the 

O. If we examine the prev­

form of the general 

vacuum metric may be carried out in the Type I case also. Thus we need 

consider the metric 

here 

with f3 
field 

For this metric the vacuum 

read 

o 
.. ..' . 

{3 - 3fl{3 == (3 - 3fl{3 == 0 + + - -

Equations (9.41) combine to imply fl 302 
== 0, or 

1 

3 -fn [R(t-to) 1. R == const, or fl = 0 . 

If we again look at (9.41) we find 

The solution for the full spatial metric is 

2a. 
(t - to) 1 Ai 0 ij (no sum) , 

(9.41) 

(9.42) 

(9.43) 

where the Ai and the a i are each constant. The a i obey (from 9.41) 

= 1 , (9.44) 

and 
2 + 

2 1 (9.45) 
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We can now see the final details of the !;""I1C'"'' T 3 -homogeneous 

vacuum model: First, if n is zero the result is a flat model, const. 

Second, if n is non-zero the models are given by (9.43) where the 

satisfy (9.44) and (9.45). Note that if only one of the is non-zero we 

would have (since '" 0 for Type I, the wi are a coordinated basis 

dx, 
+ dz2 , (9.46) 

but a coordinate transformation shows that this is just the metric of a flat 

manifold. 

Equations (9.44) and (9.45) do not allow exactly one of the to 

vanish; therefore, all other models have all three O'i non-zero, In this 

case the Riemann tensor is non-zero. Note that at t = to there is a 

singularity: The determinant of gij vanishes (n .... + 00). Moreover, at 

t", to two of the components of gij vanish (but one becomes infinite: 

one O'i must be negative). It is therefore impossible for the spacelike 

hypersurface H(t) to become a nonsingular null hypersurface at t = to' 

and then to become a time like hypersurface. The "metric" in a nonsingu­

lar null hypersurface would be reducible to the form 

(gij) = diag(O, 1, 1) (9.47) 

in a suitable coordinate system. The conclusion is that t '" to is a true 

singularity. (The conclusion that t '" to is a singular time in this model 

may be obtained in another way: Calculate the scalar ftL{3 yo RyO a{3 and 

show that it becomes infinite at t to!) 

In summary, the T 3 -homogeneous vacuum models either have a singu­

larity or are flat. It is interesting and important to contrast the behavior 

of a T 3 -homogeneous vacuum solution with the behavior of T -NUT-M 

space. In T-NUT-M space the matrix bi/t) does have vanishing determi­

nant at a value of t (actually the determinant vanishes at two different 

values of t). However, when the determinant vanishes, gij is of the 

form of (9.47). T -NUT -M actually has no metric singularity ~ the homoge-

neous nv'pel"SUrIl:llCe H(t) becomes at those values of t. 
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The models are in their own right, and 

not merely as models to contrast with T-NUT-M. An equation just like 

describes the behavior of an:tsc,trc>ov in a fluid-filled model near a 

point of maximum contraction. Kasner's model thus proves to be of im-

portance in any discussion of the of the real universe. 
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A l'horizon, par les brouillards 
Les tintamarres des hasards, 

, nous armons nos demons 
Dans l'entre-deux sournois des monts 

- ALFRED J ARRY 

10.1. Singularities in Selected Models 

A cosmological model containing a perfect fluid is a manifold on which 

the metric obeys the field equations 

(10.1) 

where w is the energy density and p the pressure of the fluid; the u/1 

are the components of the fluid velocity field. It is accepted by most cos­

mologists that a perfect-fluid model can represent the real universe very 

well (however, see de Vaucouleurs, 1970, and Ellis, 1973). 

Often the additional requirement of spatial homogeneity is imposed on 

a fluid model. If isotropy is also required the Friedmann-Robertson-Walker 

(FRW) models result (see Chapter 4). If homogeneity, but not isotropy, is 

required, the resulting model will still be fairly tractible from a computa­

tional point of view. Such a model may well provide the best deSCription 

of large scale features of the real universe. 

Any model which is used to describe the early stages of the universe 

must be investigated for singularities. In this chapter we shall treat the 

existence of singularities in spatially homogeneous, perfect-fluid models. 

Figure 8.1 includes an outline of this discussion. 

We shall take care to distinguish among: 1) coordinate singularities, 

incompleteness, and mathematical singularities which prevent the 
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Alfred Jarry (1873 - 1907), 
inventor of ’pataphysique 
   
On the horizon, through the fogs, 
The roars of the hazards, 
Vaguely, we arm our demons 
In the devious mountain passes
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extension of the manifold. Let us recall our definition of a 

It contains a gec)(leslc G of manifold M 

finite affine parameter and there is no manifold M' in which M 

can be imbedded and in which G can be covered by a compact seL 

Gravitational 

We shall write the Einstein equations in the orthonormal synchronous 

sv,,,..,m of the previous chapter. Of the Ricci tensor components, the Roo 

is of and we repeat it here: 

(10.2) 

where the dot means dldt, and elj is given by (9.12). The fluid velocity 

U is a timelike unit vector (the four components u
ll 

are functions of time 

only 1 as are wand p): 

(10.3) 

The Roo field equation is therefore 

n 11 11 1 2 2 2) -tss - Lsttts = 2(w+3p) + (w+p)(u1 +u2 +u3 . (IDA) 

The energy density w must be a positive definite function, and while p 

could be slightly negative it is unlikely that p will be less than - t w. 

We make the assumption that p - t w. This assumption implies that 

the right side of (IDA) is strictly positive unless the model is a vacuum 

model: o (or o if w 0) . 

Collapse of the Invariant Hypersurface H(t) 

The inequality (10.5) may be written 

1 

+ o o if w 

(10.5) 
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which 

If 0 we have 

if w 0 

model is 

shows that 

o o if w 

) 
cannot vanish for all t if w O. Even 

cannot vanish for all t, the 

From (10.6) we see that I ~ in a finite interval of (proper) time 

t, either toward the past or toward the future. If we look at (9.12) we see 

that 
-30 ; (10.7) 

thus ess becomes infinite when 0 becomes infinite. It is important to 

examine the sign of ess ' We know that ess is non-zero at some value of 

t, say t l · If ess is positive (expansion) then ess '" 00 at t2 t1 . If 

ess is negative (contraction) then ess '" - 00 at t3 tl Furthermore, 

suppose there existed a time t4 at which ess is zero. From the Roo 

equation for w ~ 0 we find fss 0 for t t4 and ess 0 for t t 4 ; 

in this case lessl -'> 00 at a finite time in the past and at a finite time in 

the future. It is not necessary, however, that ess ever be zero: In the 

flat and open FRW models one sign of ess prevails throughout and 

becomes infinite at one time only. These models are infinitely expandible 

to times greater than this time. of infinite I fgS I. 
Equation (10.7) requires 0 -> 00; the possibility that 0 does 

not occur, as can be seen from the sign of To show that 0"", "", 

that 4 does not simply lead to a cusp (0 finite but 0 infinite) 

requires other field equations. The ",,'hi"l,n<:: in fact are inconsis-

tent with unless becomes zero. This 

greater detail for models later. Thus 

is treated in 

may be either 

toward the or toward the but it is clear that some of 

breakdown occurs in a finite 
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What is or Mere Coordinate Effect? 

indicates that the matrix e -ne {3 becomes 

It may that there is no physical but 

that we have Come to a point at the 

basis forms are no 

nalf)Ol:~nS in T-NUT-M space. If the 

the Taub then this same' 

of a coordinate patch where the 

This latter occurrence 

nr<mc)Us system is used to describe 

, is found, but it means 

H(t) has become lightlike. In this case the limit of the unique 

unit time like vector normal to the space like surfaces is a lightlike vector. 

This vector lies within the invariant surface at the "Misner" boundary. 

As we have seen in Chapter 8, the use of a lightlike evolution parameter 

eliminates the apparent singularity of the metric of T -NUT -M space. 

Let us call to the time when n "". We will sometimes use the 

common terminology that the "volume" of H(t) becomes zero when 

e -n -> O. The terminology stems from the connection of e -3n with a 

three-dimensional volume element. The zero "volume" of H(to) may 

indicate a singularity or it may be that one direction in H(to) is lightlike. 

In fact, if e -n -> 0 does not correspond to a true singularity, then 

H(to) must be lightlike. If H(to) remained spacelike the unique timelike 

normal could be used to construct a new synchronous system in which n 

would be finite. H(to) is Hghtlike and non-singular in T -NUT -M space, 

but in a fluid-filled Type IX model, to is a time of singularity. In a 

fluid-filled, Bianchi Type V model e -0 0 does not necessarily corre­

spond to a singularity. (It should be pointed out that the example men­

tioned later does have both a mathematical and physical singularity at 

another time when e-n ~ 0.) 

The global question of whether a general cosmological model need be 

singular in the mathematical sense or whether there are non-singular theo­

retical models remains unanswered. Hawking and Ellis (1968) have shown 

that any model which 

observations are must have 

the real universe now (if our 

The time when 
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occurs is in our past and is aW~LV,,"V'A" to the time when 

in a spatially homogene.()Us model. 

The model is 

prove this fact below. 

Models with 

In the case where the fluid of a 

neous model is orthogonal to each invariant htnnp""'nrt 

to describe. Assume that the fluid 

gonal to the H(t), that is, in the synchronous system 

u
ll 

(-1,0,0,0) . 

We shall 

is 

u is ortho-

(10.8) 

This hypothesis implies that u = - dt, and du 0 (rotation vanishes). 

In Type I models u is necessarily of the above form (ROj = (w p) uOui =0) 

but in other spatially homogeneous models this need not be so. Note, how­

ever, that it is possible to have ui 0 and du 0, so u -dt is a 

sufficient but not a necessary condition for non-rotation. 

In Chapter 3 we showed that T IlV;v = 0 implies, for fluids, 

a 
-w,a u , (10.9) 

(10.10) 

Equation (10.10) says nothing new in our case: Inserting ull = 811
0 we 

find ull;IY uIY = 0, but this equation comes directly from the fact that 

u = -dt. 

Hypersurface Orthogonal Velocity 

If we write (10.9) out in full we find 

. 0 
-wu 

With (10.8) this 

(w a 
u ;a 

becomes 

Means Singularity 
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We aSSume an equation of state p p and w afe both 

functions of t the existence of such a relation is reason-

We can define the , n such that 

(10. 

This definition allows us to solve (10, 

M = const. (10, 

Thus when n at to' n 

This infinite value of n does indeed to a singularity as n 

is a matter variable defined solely in terms of the fluid's internal proper­

ties, We have assumed that p -~w, and for sound velocity in the fluid 

to be less than the speed of light we must have I pi w. By our definition 

of fl, these two conditions imply that if n is infinite then w, the rest 

energy is infinite. 

We now return to our definition of mathematical singularity. The modeh 

of this section do possess a finite geodesic segment, namely the path 

generated by u from some arbitrary time to to' The limit point to of 

the segment does not lie in the manifold. The manifold cannot be extended 

to cover a pOint at which n would be infinite and consequently the mani­

fold has a mathematical singularity. 

The Kantowski-Sachs Model 

Kantowski (1966) and Kantowski and Sachs (1966) have discussed the 

one class of spatiallN-l:lOrnOli!;erleCms models which cannot be described by 

the formalism we have heretofore. The above formalism is de-

Vt::I[l{H::nl on the existence of a three-dimensional group which is transitive 

each The Kantowski~Sachs model has which 

are invariant under group, but not a three-dimensional 
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From 6, if H(t) is to be a it must 

be invariant under a group of dimension than or equal to three, A 

five dimensional group the existence of a six-dimensional one 

A six-dimensional ""v,mm,,,t,·v group is the group of high-

est dimension and must contain a transitive, three-dimensional 

does there exist the VV"''''HaH 

could be inappropriate. 

if the invariance group is of four-dimensions 

that the formalism we have been using 

Because each four-dimensional Lie contains a three-dimensional 

subalgebra (Kantowski, 1966), there exists a three-dimensional isometry 

group if a four-dimensional one exists. If this three-dimensional group 

acts on three-dimensional surfaces, our usual formalism may be used, Only 

if the three-dimensional subgroup acts on two-dimensional surfaces need 

we adopt new methods. The Kantowski-Sachs model is the only spatially­

homogeneous cosmology in which this situation occurs. 

Ricci Tensor Components in a Synchronous Basis 

Since the three-dimensional subgroup acts on two-spaces, the two 

spaces must be surfaces of constant curvature. Kantowski showed that 

two-surfaces of zero and negative curvature give four-dimensional invari­

ance groups which have transitive, three-dimensional subgroups. 

The only spaces that are of interest are those where the two-surfaces 

are two-spheres. The commutation relations of the three Killing vectors 

on each two-sphere are 

et eye., (10.15) 

and therefore the three-dimensional group is of Bianchi Type IX, but it is 

not transitive on H(t). As Kantowski shows, the fourth vector 

must commute with these three. If we call this fourth vector we have 

0, 1,2,3 (10. 
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In order to describe these models we shall use a synchronous basis 

with the labelled a parameter t, as before. 

We shall label the two surfaces a parameter r, so 11 Because 

11 commutes with gl2 and gl are zero, and gIl is a 

t The metric can therefore be written 

+ + 

{1 
(10. 

The Ricci tensor components in the basis sinO I are readi-

to be 

Roo 3n 3 _ 3(0)2 , 
2 

Rll ~ - n - 3~0 + 2(0)2 , 

" 1" 3(0)2 
5 .. (10.18) 

R22 R33 = -f! - 2f3 2{3f!, 

ROt R02 R03 R12 = R13 R23 O. 

Consequently, when use is made of the field equations for a fluid, (10.1), 

we see that u has only a t-component, and it is for this reason we have 

included the model here: 

Singularities 

The Kantowski-Sachs model has a metric very similar to that of the 

other models we have treated in this chapter. As might be suspected the 

proof that the model has a true singularity is essentially the same as in 

the previous case. 

use Roo to show that must vanish within a finite prope 

time. We shall not give the details here. Next write (10.9) for this metric 

and find n 
n -30 or M const. 
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as in 14). The fact that n is a finite proper time leads to the 

immediate conclusion that a mathematical exists. 

10.2. Is the General Spatially Homogeneous Meldel Mathematically 
or Simply Incomplete, and Thus Physically Singular, 

Without Being Mathematically Singular? 

Hawking and Ellis (1965) showed that the fluid-filled 

nOlmogelrle()us model is Ul\.v'''LI.,e mayor may not be an 

indication of a mathematical singularity, as was shown in Chapter 5. We 

shall therefore proceed to examine the possibility that a non-Singular, 

fluid-filled, spatially homogeneous model exists. 

Although no such model is found we shall prove that all models in­

variant under certain groups (including Bianchi Types I and IX) do have a 

true singularity (this singularity mayor may not involve an infinity in 

some matter variable). Incompleteness is not always accompanied by a 

singularity. 

Collapse of the H(t) 

We shall prove later that a model has a singularity if the matter con­

tained in some three-dimensional volume is compressed into a two­

dimensional set, and we shall discuss the general method of proving in­

completeness. 

We saw above that for the spatially homogeneous metric there is a 

time to when lessl = "". At other times this metric is represented by the 

non-singular matrix e-20e2t5 (t). Since the volume element is proportional 
1 

to g2, g being the determinant of the metric, we see that at to' when 

0-+"", the "volume" of H(t) vanishes. At to either a singularity 

appears or it is discovered that certain geodesic segments cannot be com­

pleted (Hawking and Ellis, 1965). 

There are several possible explanations of the zero volume of H(t). 

First, H(t) may be compressed from a three-dimensional to a two­

dimensional hypersurface. Later in this section we shall show that this 

in cannot occur without there 
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whether it be 

or 

l\;lllLH<t:: without ~"''''''~'H 

since it occurs in the 

T -NUT·M modeL 

Between and 

of H(t) from a three-dimensional to a two-dimensional 

cannot occur in a model. 

That is, the lUU'Uil'", of H(t) cannot with t. This conservation 

of alternative to a at to is for 

to be has the "same' topology as H(t1 ) if 

and H(t1 ) can be put into a one-to-one correspondence in a continuous 

manner (open sets map onto open sets). H(to) is then homeomorphic to 

Hetl) and the correspondence or mapping is a homeomorphism. 

If we assume H(to) is non-singular we can construct a homeomorphism 

between H(to) and H(t1 ) by means of the fluid velocity u. First, con­

sider the point PI in H(t1). At PI we construct L, the path of a 

particle in the fluid. This path maps the real line R into a one­

dimensional set whose tangent at each point is the vector u. We continue 

L until it hits H(to) and let Po be the point at which L hits. Since 

u is time like and unit, and since to is the first value of t for which 

H(t) may be non-space like , L will certainly hit H(to)' In fact, H(to) 

cannot itself contain a timelike line, hence L must pass through H(to) 
(conservation of mass implies that L cannot spontaneously stop short of 

Thus h(Pl) Po defines a map h which maps H(t l ) to H(to)' 

It is necessary and sufficient condition for non-singulari-

ty that the world lines of fluid never cross. This criterion makes 

one can understand this re~ h continuous 

volume of fluid material in ). This 

may neither holes if 

hornOI2;en,eOUlS model all fluid 
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variables are of in thus the fluid does re~ 

main continuous. to as 

no if the 

character of the metric of 

The H 

nected with the reasonable continuous fluid. We 

do not allow fluid discontinuities, such as shock waves. In 

such an effect should be considered 

Taub, That the 

in a second sense. The invariance of 

sents in part the fact that we are 

cannot 

repre­

One of the 

features of a quantized theory would be that ~ .. '~".~~~ in the of 

hypersurfaces could perhaps be possible (Wheeler, 

The Necessity of Incompleteness 

If a singularity appears at time to the model is incomplete. Even if 

no singularity in the mathematical sense appears, we shall show that it is 

impossible for the model to be complete. The method (Hawking and Ellis, 

1965) assumes that the model is complete and draws a contradiction with 

the stipulation that all homogeneous hypersurfaces are three~dimensionaL 

The assumptions of completeness and non-singularity mean that H(to) 

exists and is lightlike. As we showed H(toJ must have the topology of 

each spacelike H(t), that is, be three-dimensional. H(to)' therefore, 

contains a basis in which the metric is 

Thus there is a vector field T in H(to) which is null and nP'rn,,'nti 

to all vector fields in the that is, T· X 0 if X is tal1-

gent to H(to)' The contravariant vector field T is in the normal 

direction to Because T is f'lp'rf'l~'nrl 

it, the one form to T written 

curl function 
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Tad! . 

Without loss of we may take "" 1. T is group curl-

and lies in so 

v 0, 

is T is by an affine parameter s, so 

Ids; ;0" TO" 0 

We know that 

and contracting on II- and 0" and contracting the result with T r we find 

(10.20) 

It is from this equation that we will draw the contradiction that proves in­

completeness. 

The general vector in H(to) is a linear combination of T and two 

other independent, spacelike vectors X and Y which may be assumed 

orthonormal and orthogonal to T. Because T II-;v is symmetric (T curl­

free) and orthogonal to T we may expand it as 

where Sllll Of 

of T. 

(10,20) becomes 

1 
2" 

to 

TV = 0. The function (j is the expansion 

sr 
0" 

and since 

definite: 

(10.21) 

and null vectors 

O. Since 
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is the Ricci tensor of a fluid-filled universe, 

~ and + p) ur 

T 

This that 

, or 

> 0 

T r > 1. 
2' 

Thus 7J must become infinite for some value of s, the affine path 

parameter. 

The Caustic Surface Ms and the Contradiction 

Implied by its Existence 

By our hypothesis of completeness, a set of points Ms (the caustic 

surface) must exist on which 7J is infinite. For each individual path 

defined by T there is one value of s point) where (J is infinite, 

so Ms is of lower dimension than H(to)' Because T is a group invari­

ant vector and 7J is a scalar, the set Ms must be transformed into itself 

by the action of the group G. 

However, the existence of Ms of lower dimension than H(to) is a 

contradiction, because all homogeneous hypersurfaces are topologically 

the same. As we saw above, the existence of Ms of lower dimension 

than three would imply that all of the matter in a three-dimensional volume 

would be compressed infinitely. But the existence of Ms is implied by 

the hypothesis that each geodesic segment in H(to) has unique endpoints. 

Thus this hypothesis is impossible in a non-singular cosmological model. 

Consequently all fluid-filled, spatially-homogeneous models are in­

complete. They mayor may not be singular, vide T -NUT -M where T is 

incomplete and does not necessarily have a unique endpoint. In fact, in 

T -NUT -M the points where e are the entire hypersurface H(to)' 

Hawking (1967) and others have shown a similar technique which 

avoids that a wide of cosmological models 

are 
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The Bianchi IX Model: 
as Well as Inr'nn.nl,c>tp 

We shall show that the Bianchi Type IX model is not in-

but is in the sense of Chapter 5, that is, it cannot be 

extended to' We shall show for a Bianchi IX or 

indeed for any Bianchi model in which is 0, that the fluid fielC 

cannot be satisfied at t to' 

We construct a basis which would be valid if were non-

Let H(t) be invariant under a group and sup-

pose H(to) has a lightlike geometry, i.e.: one lightlike and two space­

like eigendirections. Then in a neighborhood of a point in H(to) there 

exists a basis lalll of one-forms such that: 1) a O is a gradient, a O dl 

where t is the parameter labeling the H's and 2) a 1 e-nefJ .. 
. 1) . 

where the w J are the three one-forms invariant under the group (dw 1 

~ Cistws "w t ). In this basis the metric will have the form 

1 
g 
o 
o 

o 
o 
1 
o ~J 

where get) is a function which is zero at t to' Thus 

The lalll system is not unique since t is not unique. 

(l0.22) 

(10.23) 

In this system the "zero" direction is lightlike. In Chapter 5 we 

proved the existence of such a basis, and in Chapter 6 we showed how we 

could choose the metric properties in the "zero" direction so that (10.23) 

is valid. When get) is positive, we may make a transformation of coordi­

nates and recover the synchronous system, but when get) becomes nega­

tive H(t) has a time like direction. 
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The Einstein Equations 

It is a if process to compute the Einstein 

!.lOCH.!£J'''' in this basis. It turns out that the Rl1 field which 

is a constraint equation, is sufficient for our purpose. It is a relation be-

tween f3, and their derivatives, and w, p, and (at least at to 

when g If si 0, this equation implies (w p) 0 at 

to' which is impossible. 

Consequently to show that a singularity exists it is sufficient to cal­

culate R11 at the moment when g O. In our basis 

° 2 3 R 101 R 121 R 131 

o 0 101 
gR 001 R 212 + gR 21 2 + R 31 3 + gR 31 3 

and at g 0 

° 0 Rll=R212 R 313 

= (dao2 )12 + (da03\3 

where ( )12 indicates that the coefficient of a 1 " a 2 is to be taken. 

The explicit form of aJ1v is found by solVing the equations da J1= -aJ1v Aav 

and dg g aa + g aa (remember that dg II ~ 0 because of the 
J1V J1a v va J1 ,.v 

function get»~. 

The result for R11 is 

12 3 2 22 3 2 1. s -led 13+ d 12) - (d 12) - Cd 13) - 19(d IS) (10.24) 

(at g = 0) . 

If the group G is such that CS
is '" 0, then dS

is = 0 and R11 < O. The 

property '" 0 is shown by the groups of Types I, VIII, and IX, but not 

the group of Bianchi Type V below), 
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The subsection showed that if is 0 then Rll 0 at 

the time when g vanishes and H is 

Einstein's equations 

- w is excluded on This inequality 

from 

either 
2 o because at g Il

Y 
1 Uo u l 

? 
- 1 - Uz - 0 In a vacuum Type IX model 

with f5 diagonal, we find that the Rl1 equation reads 

-e 0
40 0 "" , 

or f3 1 f5 2 (T-NUT-M!). 

In the general non-vacuum model (w p) 0 strictly so (10.24) and 

(10.25) are contradictory. This contradiction means a non-singular model 

cannot contain a perfect fluid. Therefore a fluid-filled, spatially homoge­

neous cosmological model with an isometry group whose structure con­

stants obey CS is 0 must be singular. 

This singularity appears precisely at the time when the volume of H(tJ 

vanishes, that is, when the synchronous system breaks down. We shall 

later give an alternate proof of singularity for p = 0 in Type IX models 

where we show that the matter density becomes infinite at t to' Further 

insight concerning the existence of the singularity and its structure re­

sults from the Hamiltonian discussion of the next chapter. 

A Type V Model in Which Incompleteness is not Accompanied 
by a Matter Singularity 

We have seen that all spatially homogeneous, fluid-filled models are 

incomplete. Some are also singular, but by no means all (witness 

T-NUT-M). Can a fluid-filled model be non-singular even 

if If 0, our of breaks down and 
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some llu'"llugelH;:(}US models may not have a at t", to 

has described a V 

model in which there exists no barrier to evolution of the H(t) at t 

He did this into two groups, propaga-

tion and constraint, and that the constraint can all be satisfied 

may evolve to without trouble. The matter is non­

and thus the model is but it is useful to 

the difference between ' 'and' 

Brill's Model 

T -NUT -M is a vacuum Type IX model which is incomplete yet non­

singular. A fluid-filled Type IX model is singular. Brill (1964) has given 

a non-singular IX model containing an electromagnetic field but no 

fluid. Brill's model is incomplete, as is T -NUT -M. 

The field equations for a model containing only an electromagnetic 

field are (Weber, 1961) 

R/LV "" ~ (F /LaF va - ~ Far FaT g/LV) , (10.26) 

where F /LV is the electromagnetic field tensor. Because Roo 0 in 

(10.2) the volume of a spacelike Het) will collapse, that is n ... "" in a 

finite interval of proper time. Thus H(t) must approach a lightlike hyper­

surface at some time to if no singularity appears. In the all basis of 

(10.23) Rll 'S 0 (10.24). Although no fluid-filled model is compatible 

with the inequality. in Brill's model we have 

(10.27) 

This form of Rll is consistent with Rll 0 if F 12 F 13 0 at to' 

and we may continue H(t) through to' 
Brill's universe is a manifold similar to T -NUT -M but filled with an 

field. Though we have shown why it is mathematically 

If it contained any amount of fluid it 

be 
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The Barrier to Classical Evolution 

As shown Some nOlmogel:1e()US models are 

some not. AU non-static models are at least 

models known are ::>UlKUli:U 

and aU fluid 

vents evolution of the model "b,,,~~,rl 

of barrier. It pre­

invariant 

if no 

classical calculation of the time evolution of the geometry 

to a halt as it comes up to this stage of evolution. In this sense an 

"obstacle" may be said to block further of the geometry 

certain H~IlL11"'C This use of the word "obstacle" should 

not be taken to mean that the stops that classical 

here. This is the for the quantum form of k!:C.LU'''''''' 
There is no obstacle - except lack of wisdom - to calculating 

the time evolution of the quantum state of the geometry. The" obstacle" 

is an obstacle only in this sense, that the classical predicting machinery 

of relativity cannot penetrate it. 

What if we drop the spatial homogeneity postulate, while retaining the 

classical form of the theory? The works of Hawking, Geroch, and Penrose 

show that incompleteness, at least, is a property of any model reasonably 

close to a spatially homogeneous one, even though symmetry is dropped 

as a postulate. Whether it is also necessary to have a mathematical singu­

larity as in a Type IX model is an open question. 

Non-homogeneous, complete models containing matter do exist. The 

cylindrically symmetric universe of Maitra (1966) is stationary and 

"p,'" .. h""" because it is complete. In addition, the GOdel universe 

has matter density and (if unduly large) pressure. Here 

there is a three-dimensional invariance group (a subgroup of the full five-

dimensional invariance group of js()ml~triE>s but the three-dimensional in-

variant are timelike. 

Maitra's model and GOdel's model are as 

Neither contains a be identified with our 

hr".hr,nr! in the model which serve Ii 
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jJI<tt;\lCi:t1 and rea lis tic mv.v!',""'" model does have at least the " .. r,,,,,,¥h, 

of All known 

models which can serve as 

vmjJJ.<~C<; \<uun,ul',u some ace less than 

The existence of a singularity, its 

Hl'<:""""'I!'., and the effect of quantum mechanics on it, all are of 

current thinking. 



11. HAMILTONIAN COSMOLOGY 

PeKa BpeWeH B CBoew CTpeMneHbH 
YHOCHT Bce nena nroneH 
M TonHT B npOnaCTH aa6BeHbR 
HapO,Il,bI, uapCTBa H uapeH. 

- GA VRIIL ROMANOVICH DERZHAVIN 

11 1 Realistic and Approximate Cosmography 

The previous chapters dealt with mathematical notions. Here 

a series of four chapters on more physical questions appropriate 

Geometrization 
Differential 

Einstein's 
Field 
Equations 

13. Numerical 
Solutions for 
Cosmological 
I-bdels 

Quantum 
General 
Relativity 

Гаврии́ л (Гаври́ ла) Рома́ нович 
       Держа́ вин (1743  – 1816) 
This is the first stanza of the 
Derzhavin poem; the meaning of the 
stanza on page 118 follows from this 
one. Again the rhyme scheme is 
ABAB.  Originally this was meant for 
Chapter 4 (FRW). 
   
     Literal translation: 
The river of time in its flowing 
Carries away all affairs of men 
And drowns in the abyss of oblivion 
Peoples, tsardoms, and tsars 
   
    A poetic translation: 
The river of time as it’s flowing 
Carries away all worldly things 
And drowns in the abyss of unknowing 
Peoples, kingdoms, and their kings.
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to the homogeneous model. The D()l'tT~IV::l 

of the real universe a model allows very 

to be 

these 

and 13. 

at the same time, the 

tractable. 111 

symmetry 

a flow chart for 

For the portraits we will of the universe portraits to 

different t"<.t" .. ,,,,, we accept the theory of general 

without a mv~v~ •• ,- •• ,. constant. In our discussion of the FRW universe 

in Chapter 4. and in a discussion of the existence of we 

find that a dust-filled model (pressure assumed to be zero) is adequate 

for the description of certain interesting features. These features, in 

particular the qualitative behavior of the universe near a singularity, arise 

in a model where the curvature satisfies Einstein's equations for dust: 

(lLl) 

Here p is the matter density and u
ll 

the components of the covariant 

velocity field in some convenient basis. 

Cosmological Studies with Spatially Homogeneous Models 

In a spatially homogeneous model, space-time is filled with a one­

parameter set of invariant hypersurfaces H(t). Spatial homogeneity means 

that the metric on each H(t) is described in terms of constants. As t 

changes, the H(t) are said to "evolve," and the metric becomes a set of 

functions of t only. We are able to exhibit this fact by using a set of 

differential forms (ill (i =0 1,2,3, and labels three one-forms) to express 

the three-dimensional metric of H(t). The (ili obey 

d i 1 Ci s (il = 2" st (il A (11 

The C i st are the structure constants of the group of isometries. The 

full four-metric is obtained the curl of t, dt, to be the fourth 

differential form dL The metric is 
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(11 

The is eXOfE!SS the statement that the 

are functions of t 

I, V, and IX 

It is desirable to look at models because of the 

enormous simplification in the which they involve: Instead of 

differential ordinary differential equations appear (the 

of course, is that any simplification of this kind is too much; des~ 

troying the essential randomness of nature may produce singularities which 

would not occur in less special situations). 

However, of the nine types of three~imensional groups, three stand 

out. The first is the simplest, T 3' (Bianchi Type 1). AU directions in 

an invariant hypersurface are infinite, and all Type I models possess singu 

larities. is the spatial-homogeneity group of the "flat" FRW models. 

The second especially interesting group is 50(3, R) (Bianchi Type 

IX). The Type IX cosmologies are very general (seven adjustible parame­

ters even if the pressure p is taken to be zero) and therefore have been 

studied extensively. The structure constants are 

or 1 
C 23 1 et eye. 

The Type IX cosmologies, which include the closed FRW models, all have 

true singularities. The invariant hypersurfaces are closed and may be 

taken as copies of the three-sphere S3. 

The third group, Bianchi Type V, is the spatial-homogeneity group of 

the open FRW metrics. This group generates spacelike sections with con-

stant curvature. Type V models have been moderately well 

but we shall not treat them here Matzner, 1969). 
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We shall discuss IX ol{}llies here more 'H~"V''''UH than other 

since these models have been and are studied abundantly. These 

models allow not but also rotation and and in general 

All of these models do have points, as we have 

shown and shall show 

11.2. Hamiltonian Cosmology - The Homogeneons Cosmology As a 
Bouncing Particle 

The application of Hamiltonian methods to cosmology grew out of the 

study of homogeneous models. It was noted by Misner (1968) 

that the Roo field equation gives a first integral for the Rij field equa­

tions. In consequence, Roo can be used to construct a Lagrangian whose 

variation gives the Rij equations. This construction is especially use­

ful in the case of spatially homogeneous models, in which the invariant 

hypersurfaces H(t) can be parametrized by some set of parameters 

PaCt) (a 1, "', n). The field equations resemble Lagrange's equations 

for a particle moving in an n-dimensional space. In this case, the problem 

of determining the metric becomes similar to a particle problem, which has 

long been studied, namely that of a particle bouncing around in a potential 

well. 

Once one has a Lagrangian formulation, it is useful to reformulate the 

problem using a Hamiltonian. This reformulation was done by Misner 

(1969b) who used the Hamiltonian method for general relativity due to 

Arnowitt, Oeser, and Misner (ADM) (1962). Misner's approach has since 

been used successfully by many authors to study homogeneous cosmolo­

gies (for a review, see Ryan 1972d). This approach has also lead to the 

idea of quantum cosmology and minisuperspace which we shall discuss 

briefly. We shall also discuss objections to the use of Misner's 

Hamiltonian formulation for certain Bianchi types (those whose group 

structure constants obey is 0). 
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The ADM Formulation 

The ADM formulation is a " .. ,.,"0'" for the Einstein 

I f to canonical form. One begins by writing the action in 

the first-order Palatini (1919) form in which the r /L and the va 
varied 

N 

where the 

and the 

dimensional 

This action is then 

(11 

4 denotes a four-dimensional object, 

3 will be used for objects on selected three-

The 1,2,3) are the ij components 

of the metric '" 4 g .. ) and the are defined in terms of the 1J 
and the /Lv' while CO and C i are algebraic combinations of the 

7T
ij , the gij and their derivatives. ADM show that the Einstein action 

(from which the field equations can be derived) reduces to 

(l1.S) 

(we have discarded a total divergence). The 7T
Ij , gij' Nand Ni are to 

be varied separately. Varying Nand Ni gives CO 0 and C i = 0, a 

set of constraints on gij and 7T
ij (in fact they are the Roo and ROi 

Einstein equations). While we single out x O as t in (l1.S), the action 

is still invariant under changes of all four coordinates and is completely 

general up to this point. 

The novelty of the procedure of ADM is that they reduce (11.5) to 

"basic" variables, essentially two of the gij and their conjugate 7T
ii . 

They do this reduction by choosing four of the twelve gij and 7T
Ij as 

coordinates (intrinsic coordinates) and by solving the four equations 

CO = 0, C i 0 to eliminate four more. This prescription is rather vague 

because each case needs careful study to see which variables should be 

chosen as coordinates and which should be eliminated by solving the 

constraints. 
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We write the final version of the action as 

to the constraints CO '" 0, C i = O. The C's are 

1 

J 
I 

where g det(gij)' 3 R is the scalar curvature of t const. 

(11.6) 

(11 

(11.7b) 

indices are raised and lowered by means of and I means covariant 

differentiation on t '" const. surfaces. 

Equations (lL7a) and (11.7b) are vacuum equations. For some cosmo­

logical questions it will be necessary to consider models with matter. To 
1 

include matter we need an action of the form J[( _ 4 g)2 R + f M] d4x, 

where the Lagrangian density fM satisfies 

(11.8) 

Once we have such an action we must break up fM into terms such as 

pdq, NfOM and NifiM1 the first of these introducing new independent 

variables connected with matter and the second two modifying the con­

straints CO = 0, ci = 0 to read CO' CO + fOM 0, ci' = ci + fiM = O. 

Such a Lagrangian density exists for electromagnetic fields (see 

Hughston and Jacobs, 1970) and for fluids (Schutz, 1971). In certain fluid 

cases in spatially homogeneous models it is also possible to construct a 

Lagrangian density fM = NfM + NifiMI where fO M and fiM are 

functions of metric variables and constants of motion (see Ryan, 1972d). 

This Lagrangian density introduces no independent matter variables and 

serves to modify the constraint equations. 
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11.3. Application to Homogeneous Cosmologies 

The ADM formulation is very useful when applied to Class A Bianchi-

type and to the Kantowski-Sachs universe. In these cases 

we write the metric as 

+ R 2 o 

where f3 is a 3 3 symmetric matrix and n a 

(11.9) 

both being func-

tions of time only. Ro is a constant included for convenience in choosing 

units. For Bianchi-type universes the are invariant forms which obey 

dw i == ~ ci A w k, with the cijk the structure coefficients of the par­

ticular group under consideration. For the Kantowski-Sachs model ",dr, 

d9, = sin 9d4> for coordinates r,9, 

Whenever n is a monotonic function of t, we can choose n as our 

time coordinate. This choice represents the first step of the ADM proce­

dure, that is, choosing a function of the gij and IT ij as a coordinate; in 

this case n = - ~ Cn [det(gij)]' The metric now becomes 

(11.10) 

where N = N(Q), Ni Ni(Q). 

Inserting this metric into (11.6) we find 

I", (l6rrr1j 2[ef1iS ITs t e-f3
t j ltf3ij - (ITkk)dQ] d3 x . (11.11) 

where 1tf3 ~ [def1e-f3 + e-f3 def1]. 

Because we are considering homogeneous universes we can integrate 

over the space variables in (11.11) and eliminate them. Following Misner 

(1969b) we rescale the differential forms which appear in the metric or 

choose a subset of the manifold to make J d3x (4ni. This integration 

leads to 

I (11.12) 
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We now define the matrix as 

(11.13) 

and nrn..-", •• ti to parametrize and in order to reduce the first term 

in the ;"t'''rt~",,,,rl of (11.12) to the form PA dqA' We write 

f3 '" e e f3d e 
OK1 

where 

"H 
1 n [~ 

0 

~] 0 K1 0 
0 -1 

and 

f3d = diag(f3+ +J3f3_. -J3f3_. -213+) . 

The conjugate variables are defined by 

-4/fK3 -OK1 -</>K3{/ 3prp 
6PiJ' "" e e e a1P+ +a2 P_ +a 3 . . T5 

smh(2v3f3_) 

3(p</>sinrp - Pt/lcos 0 sint/l + POcos t/I sin 0) 
+a 

4 sinO sinh (313+ +J3f3_) 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

3(POsin
2t/1 sinO - p</>sint/J cost/l + Pt/lcost/l sint/J cosO)t rpK3 OK1 t/lK3 +a (e e e , 

S sint/JsinOsinh(3f3+-J3f3_) ) 

with al=diag(l'1'-2),a2=diag(v'3,-J3,O),a3=[~ g gJa4 = 

[8 8 51, as = [8 8 ~1. This parametrization makes our action take 
1 0 oj 0 1 oj 

the form 

1= J [p+ df3+ + P_ df3 _ + POdO+ p</>drp + Prpdt/l- HdO] (lL18) 

where H 
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We can obtain H as a function of Pe' ,pq;,e,t/J,q;, and n 

by 0 is the second step of the ADM We 

find 
(11, 

is a quadratic form in the variables 

their 

At this 

to solve 

momenta, and 

we have not 

C 

is a function of these variables and n, 
the ADM reduction. We still have 

(11 

and eliminate three of the variables. In practice it is sometimes more use­

ful to leave these three equations unsolved, and think of (11.18) as an 

action subject to the three constraints (11,20), 

To give the metric completely we need only specify Nand Ni , We 

cannot specify these functions in the general case arbitrarily because the 

specifications of Nand Ni and of coordinate choices are the same. In 

the cases we will consider we may choose N i arbitrarily but must compute 

N with the coordinate choices we have made above. The simplest choice 

for Hamiltonian cosmology is 
o. 

Our choice of n as time implies that 

(11.21) 

where all the variables in H must be solved for as functions of n. The 

choice Ni 0 is not the only possible one. Ryan (1972d) discusses 

other choices and their meanings; we shall not consider them here. 

The only other idea we need to consider to apply Hamiltonian methods 

to homogeneous cosmologies is that of matter - we need a matter Lagran­

gian. We shall consider fluid models as examples, and as was mentioned, 

(1972d) a matter for a fluid in Bianchi-type uni-

verses which is valid for universes of Ellis-MacCallum Class A (including 
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I, II, VI_l' VIIO' VIII, 

for dust 

see Table A 

For a fluid with p kw and ui 0, 
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case 

(11 

In these equations ui are space components of the fluid velocity (chosen 

so that the geodesic equations are solved as extra equations) and J1 is a 

constant of motion derived from the fluid equations defined by (p density): 

(11.23) 

With this Lagrangian we can complete the Hamiltonian formulation 

for dust-filled models. Notice that it is of the form fM NfOM + Ni fiM 
discussed above, so the addition of matter leaves (11.18) unchanged but 

with the Hamiltonian (11.19) rewritten as 

1 

H2 = H2 _ 24 2 2 fO vac. 17 g M (11.24) 

and the constraints C i '" 0 modified to imply 

(11.25) 

The variables f3±,O,¢,t/I, and their conjugates P±,PO,P¢'Pt/l remain 

the only independent variables. They are solved for as functions of n 
provided the ui are also solved for as functions of !l by use of the 

auxiliary geodesic equations. The matter density p is determined from 

the constant of motion /1. 
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of the Hamiltonian Formulation 

The Hamiltonian formulation has never been fully for all 

Bianchi but and Hughston (1970) have applied the 

method to vacuum models in which the matrix f3 is In this case 

the action reduces to 

- HdO, (11 

with 

2 (11 

where g3 R is a function of 0, and This Hamiltonian is the 

same as that of a particle (the universe point) moving in two dimensions 

on the f3 +f3 _-plane, with g3 R acting as a potential (a time-dependent 

potential because it is a function of 0). In fact, we can let g3 R = 

- Ro
4e-40(V -1), where V"" V({3+, f3 _). It turns out that the potentials 

V({3 +' f3 _) for all Bianchi types have exponentially steep walls in f3 +fJ _­
space. Table 11.1 gives V for all of the Bianchi types with f3 diagonal. 

It also gives the constraints Ci 0 reduced to statements about p+ and 

p_. Figure 11.2 shows the walls associated with V({3+,fJ_) for all nine 

Bianchi types. 

MacCallum and Taub (1972) have raised questions about the validity 

of this Hamiltonian approach for certain Bianchi types. They object to 

variations with homogeneity imposed from the start. By not making such 

an assumption they obtain results for models of Ellis-MacCallum Class B 

(Cs is ~ 0) which are different from the Jacobs-Hughston picture as out­

lined above. Table 11.1 and Figure 11.2 describe the potentials even for 

the Class B cases correctly. Unfortunately the Einstein equatioos in 

some of the Class B cases are not completely described by equations de­

rived in the Hamiltonian method using the listed potentials. These cases 

are still being studied, but see Ryan (1974). 
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Table 1 L L The Potentials in Hamiltonian Cosmology for all Diagonal Bianchi 
Type Models. 

In general the potential is V 1 _ ~ 3R, and for diagonal ~, 3R is; 
3 

,. 
-2m Ij 

,. 
are defined in Table 6.2, and m " is the classical adjoint of 

of the Class B cases, Types fiI, IV, ,VI~/o' are 
not correctly <1e:!;e,'th,·<1 by the Hamiltonian method, although potentials are 
nonetheless useful (Ryan,1974).For Class A as well as diagonal Type V models, 
the Hamiltonian method is correct. 

Bianchi 

II 

III 

IV 

V 

Potential 

None 

1 4fJ +[ 2 4V3fJ _] 
-e 8+-e 

3 

Constraint 

None 

None 

o 

VI p =V3rh+1]p 
- Lh-l + 

VII 

VIII 

IX 

None (h=O) 

p_ =V3p+(h~O) 

None 

None 
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Type I Type II Type III 
13- /L 

AI 
! 
2 

I 

X 

13-t­
No Potential 

x 13+ 

Type IV Type V 
13-

Type VI 
13-

I 
~ 

I 
x --~ 

Type VII 
13- 1 

Al2 
I 

I 
i' 

I 
I 
(---

x 

! 

"2 

I 
"2 
~--

J. 
-11 2 

I 

I 
2 

Fig. 11.2. The Potentials for Bianchi-Type Models. An equipotential is shown 
for each Bianchi type, and the dashed arrows give the velocity of the wall asso­
ciated with the potential. The symbol x marks the position of a generic universe 
point. See Table ILL 
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Qualitative 

The Hamiltonian for Bianchi-type and Kantowski-Sachs models resem-

bles a Hamiltonian with exponential potentials. This form leads 

to an interesting method of approximate solution for these universes. Be-

cause of the steepness of the potentials we may them 

hard walls to a good approximation. These walls lie along the equipoten-

tials shown in Figure 11.2 for each of the different "'>C.!'."il ... Bianchi types. 

Far from the walls the universe point will move in a straight line. It will 

bounce off the walls from time to time. With straight-line motion between 

wall encounters and a derived set of "bounce laws" one can build up a 

solution in the form of a diagram which matches the behavior of a homogen-

eous universe quite well. We shall examples of this procedure in the 

next chapter. Of course, there are some special situations in some models 

in which no bounces occur. In these cases the detailed shapes of the 

walls must be accounted for, and special care must be taken. Collins and 

Stewart (1971) and Collins (1971) have studied many properties of Bianchi­

type universes by means of a similar qualitative method. 

As a final note, the pictorial qualitative solution is, of course, equiva­

lent to a series of analytic solutions: The straight-line portions of the 

pictorial solution correspond to an analytic solution characterized by a 

set of parameters. The bounce laws predict changes in these parameters 

which occur suddenly from time to time. This approach has been taken by 

Belinskii, Khalatnikov t and Lifshitz (1970). 

11.4. Quantum Cosmology and Minisuperspace 

Quantum cosmology should be the application of the quantum theory of 

gravity to the cosmological problem. That is, one should examine the 

equations of quantized general relativity to find solutions that become the 

Friedmann-Robertson-Walker (or some more complicated cosmological 

solution) metrics as e.....n..., "". The obstacle to this scheme is that quantum 

gravity is not well understood to make it possible to find such 

solutions. DeWitt and Misner (l969b) have studied cOltnJ)roIrlise 
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models in which no:mo,genenv is Iml:>oE;ed before the field is 

can be 

more 

set of 

In this is what is known as quantum cosmology. It 

that the models which result will at least have some of the 

features of a real quantum solution. 

deals with wave functions whose domain is the 

Hl've'"Uellllllle metrics geometries) on three-dimensional hyper-

surfaces (Wheeler, 1968). This domain set is called supers pace. The 

subset of all homogeneous as it is applied to 

and the problem of quantum cosmology, is called minisuperspace (Misner, 

We will briefly discuss this concept below. 

Application of the Quantum Principle 

The action (11.18) with the Hamiltonian of (11.24) has the form of a 

particle action. We can quantize this action in the usual way by replacing 

various quantities by operators 

These operators are used to find a wave function lJ!(f!,{3±,c/>,r/I,(J) as a 

solution of a differential equation. There are three difficulties with this 

program: (1) The Hamilto:lian is explicitly time-dependent (f!-dependent); 

(2) H is a square-root Hamiltonian; and (3) We must find some way of 

handling the constraints C i = O. The first of these difficulties is merely 

computational - one usually does not encounter a time-dependent Hamil­

tonian in elementary quantum mechanics. The second difficulty is more 

fundamental, but methods for handling square-root Hamiltonians exist. 

The third difficulty is basic, and we should discuss it briefly before 

studying Type I and diagonal and symmetric Type IX universes as exam­

ples. 

There are two different ways of handling the constraints Ci ", 0, and 

the arguments apply also to the important constraint CO 0 which we 

have solved above. In the ADM method obtains (11.24) by solving 
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o for H. This nN1""p,rI'If'P is the 

of the ADM method - we must solve the constraints ""''',.''''''-",'''}' to 

our eXDr€~SS 

arrive at the "true" action for the field before ,,_, ..... _ 

The other method Dirac method) for ,,""UH,'''' 
to retain both CO 0 and ci 0 as operator 

the action (11.18) is 

. This method 

was used by DeWitt the quantum behavior of FRW 

universes. These two methods lead to different "''''''" •• " ... for quantum uni-

verses, and we shall use a 

this difference. 

Type IX model later to illustrate 

Consider now a I vacuum universe, in which 

H (11.28) 

There are three methods of quantizing a square-root Hamiltonian such as 

this one: (i) the square-root method of Schweber, Bethe, and DeHoffmann 

(1955); (ii) the Dirac (1947) method of linearization; and (iii) the SchrOd­

inger (1926)-Klein (1927)-Gordon (1926) (SKG) method. We shall not dis­

cuss the first method, which involves spectral techniques. We will only 

mention that the Dirac method leads to a linear two-component spinor 

equation, and at present we lack an experimental quantity to associate 

with the spinor components (see Ryan, 1972d). The SKG method seems to 

be best, even though we have the usual problem of possibly non-positive­

definite probability densities. 

The SKG method works with H2 and leads to 

o (11.29) 

for the wave function lPeO, This equation has solutions 

II' Ae 
p a _ EO) 

_1"'_ (A, E constants with 
1 

E 
(11 
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The and for E correspond to eXOfl:ndl.ng and con-

A feature of this solution is 

that there is no evidence of quantum mechanics the universe to 

avoid a If we make up a wave from the functions \If, 

we find that this wave out to!l 00 without any 

to avoid the 

(Wheeler, 1968) is the set of all General 

relativity can be thought of as the of a three-geometry in 

"time," the meaning of time depending on how one breaks four-dimensional 

spacetime into time and space. General relativity can be thought of, then, 

as the study of tracks in superspace, different tracks corresponding to 

different evolutions of metrics and to different choices of "time." Super­

space is a very valuable concept for homogeneous cosmologies because 

it reduces from an infinite dimensional space to a finite dimensional mini­

superspace, when homogeneity is imposed. In fact, for the Bianchi-type 

universes discussed in this chapter, supers pace is f3 +' f3 _, ¢, t/J, (), !l­

space. 

It can be shown (Misner, 1972) that the constraint CO"" 0 is equiva­

lent to an equation of motion in minisuperspace for gij, the three-metric 

for a homogeneneous cosmology. In supers pace Cij) represents one tensorial 

index, and the equation of motion is 

(11.31) 

for some affine path parameter A. :R is the scalar curvature computed 

from . The covariant derivative is taken with respect to the metric of 

supers pace ~ (ij)(kl)' 

) . 
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Table 11.2. The Misner Metrics of Minisuperspace. 

A) For any Bianchi·type model: 

24 

B) For diagonal Bianchi-types: 

24 

C) For Bianchi-types with one off-diagonal term (~e ~ de 

= 24 

D) For Bianchi-types with {3 
Bianchi-types: 

"" 24 

1 
+-

3 

where: a l sin (J de:/:> and 

a2 = dO 

~ cos fJ de:/:> 

and for general 

3 

at sin t/! dO - cos t/! sin e de:/:> 

a2 = cost/! de - sint/! sine de:/:> 

a3 - (dt/!+cos (J de:/:» 

respectively. The matrices 1(3 and 1(1 are: 

1 
o 
o 

o 
o 

-1 

Note that (11.31) is very nearly a geodesic equation, and DeWitt (1967a,b,c) 

and Gowdy (1970) have proposed new metrics for supers pace to replace 

(11.32) for which (11.31) becomes a geodesic equation. In Table 11.2 we 

list the Misner metrics of minisuperspace corresponding to (11.32) for 

Bianchi-type metrics. 

Superspace us an idea of how to proceed to parametrize homogen-

eous cosmologies. Notice that the quantum-mechanical equations we have 

obtained above contain terms in, say, which have been changed 

directly to . We ignored the problem of factor ordering in H. 

The ADM method, in which all of the constraints are solved before., _, ..... _ 

an unambiguous factor at least for the models 
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considered above. Another method of a factor 

is to write the 

in superspace 

for lP as a covariant 

to the wave function lP 

terms. The operator in superspace on the 

superspace metric. In the next we will see that factor 

becomes more 

Misner's 

in 1I0l:l-U:l<1I<'UII<11 IX models. If we use 

metric (11.32) we find quantum mechanical 

I which are the same as If we use DeWitt's metric 

for 

we find that 

wise the 

is replaced 

remain the same. 

but other-
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12. TYPE I MODELS AND TYPE IX MODELS -
THE SIMPLEST AND THE MOST INTERESTING 

We must use time as a tool, not as a couch 
- JOHN KENNEDY 

Type r models are the simplest of anisotropic models, but already 

illustrate some of the intriquing features of all Bianchi-type models, par­

ticularly in their Hamiltonian formulation. Type IX models illustrate the 

full range of problems encountered in classical and quantum cosmology . 

12.1. Type I Models 

In Chapter 11 we defined the quantities fJ +' fJ _, and n, the general 

Type I metric being 

d 2 d2 _ 2rJ2Cf3++ J3fJ_)Cd1 )2 2Cf3+-J3fJ_)(d 2)2 
s = - t + e 11-e x + e x 

From (11.19) and (11.22b), with appropriate resealing of fJ. and Ro' we 

find 
(12 .1) 

where n plays the role of time in H, and p+ and p_ are momenta 

conjugate to fJ+ and fJ_ respectively. As a technical aside we mention 

that this form of H assumes that the matrix fJ is diagonal. The diagonal 

assumption , however, does not restrict the generality of the fluid Type I 

model. The constant k comes from the solution of 

T fJ.1/ = 0£ T 1( ) kw ;V or IlV = 2' w + P u/l ul/ + pg/ll/' P '" (12 .2) 

which implies 

w (12.3) 

201 
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From the form of H, we see that 

consL, p_ const. 

Therefore the universe point moves in a 

plane with velocity 

line across the f3 + f3 _-

Notice that H ... (p+ 2 p_ const. as 0 -+ (near the Singularity). 

To complete the description of the fluid-filled model we need only 

O(t). From (11.21), we have 

dO/dt 

Near the singularity where H becomes a constant this equation is par­

ticularly easy to integrate. The asymptotic form of OCt) shows that a 

true singularity exists in every Type I model since the physical observable 

w blows up in a finite amount of proper time t. 

The Decay of Anisotropy 

The Hamiltonian description of the evolution of Type I models allows 

us to show directly that the observed anisotropy of the universe decreases 

as one moves from the Singularity toward the present. By "observed 

anisotropy" we mean anisotropy in the Hubble constant, which is not the 

same in all directions. In an anisotropic model the redshifts of galaxies 

and the temperature of the 3K black-body radiation are anisotropic. 

Misner (1968) has shown that this anisotropy is described by niaijnj' 

where ni is the direction vector of an observation and where 

(12.6) 

An especially convenient measure of the root-me an-square anisotropy is 

)~ For I universes we find 
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(dfi/dt)2 

'" e
6fi 

. 

203 

Thus as fi decreases from "" (remember fi decreases UllJl'-'ollY as 

in be the reason for the nrf'Sf'nt 

radiation. 

of of some sort may, 

observed IS()U()\)V of the 3K black~ 

Horizons 

Because of the finite age of the universe 1 can reach an observer 

only from a limited amount of matter. The farthest distance an 

observer can see in a given direction is called the horizon distance. The 

existence of a horizon thus depends on the existence of a singularity, and 

this concept gives important insight concerning the singularity and astro~ 

physical processes. For example, the spacelike sections of a Type IX 

model are each finite in diameter, and it is possible for certain horizons 

to be larger than this diameter. A model with such large horizons is 

called "mixing" for each material object can influence every other piece 

of matter. These models will be discussed later in this chapter. 

Horizons are most easily defined and computed in a Type I model, but 

in these mixing does not occur. Let nl be a given spatial direction (that 

. "1 f b h h 2 2 2 1 . d' t" IS, a tnp et 0 num ers suc t at nl + n2 + n3 "" ; nl IS a uec Ion 

in an orthonormal frame of the t const hypersurface). We will denote 

by t1 the time coordinate of the observer and by to the time of the 

initial singularity (the horizon, of course, depends only on t1 - to and 

not on the spatial position xi of the observer, due to the spatial homoge~ 

neity). We draw a lightlike line in direction ni from the observer, back­

ward in time until it meets the singularity. 

Let the for convenience, be at O. The lightlike line 

the differential law 

dxJ 0, where 
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We now aSSume f3 to be diagonal and nj to be an eigendirection: That 

nj 1 for some given i, the other components being zero. The light­

like line equation is 

+ o sum on i) (12.9) 

and the coordinate of the horizon is 

I
tl 

xiH(t1) '" eOe-f3
ii dt . 

to 

(12.10) 

This result gives the coordinate of the farthest point that can be seen. At 

time t 1 , this point is at proper distance XiH(t1) from the observer, where 

T 

B 

Xl =Xl 
H 

Fig. 12.1. Horizons. The horizon length for an observer A at time r is the 
maximum spatial distance he can see in a given direction. The time corre-
sponds to the initial singolarity (the "Big Bang"). Because the model spati-
ally homogeneous, the horizon lengths in i~ direction for observers A and B 
are equal if the values of r are the same. xlH is a function of r, however. 
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fiBJ dt . 11) 

to 
The horizon size may be infinite. In certain models there is one and 

one direction with an infinite value of H These models are highly 

in the model all horizon sizes are finite. 

If the horizon size at time tl is then XiH(tt) 0 as tl ~ to' 

This important result shows that near the singularity, in the general Type I 

model, a piece of matter can be influenced only by its nearest neighbors. 

At the present time, because of the expansion of the horizon, an observer 

is continually being influenced by new stars. This effect could be impor­

tant in modern astrology (Figure 12.1). 

12.2. Bianchi Type IX Universes in the Hamiltonian Approach 

Aside from the general Bianchi Type I models, which for the fluid-filled 

case exhibits unbroken straight-line motion, the most thoroughly studied 

Bianchi-type model is of Type IX. Type IX models may be broken down 

into subclasses of varying degrees of complexity. The simplest are those 

in which the {3ij of (11.9) is diagonal (the diagonal case) studied by 

Misner (1969a,b). Slightly more complicated is the symmetric or non­

tumbling case in which {3 has exactly one off-diagonal element. The 

Hamiltonian form for its Einstein equations was considered by Ryan 

(1971a). The most complex case is the general case in which is a general 

3x 3 matrix. The Hamiltonian formulation for this case was also given by 

Ryan (1971b). 

The Diagonal Case 

We can make {3 diagonal by choosing ¢ 0, (j = '!T/2, if! '" 0 in 

(11.18). This choice reduces the action (11.18) to 

(12.12) 

with 

-1) (12.13) 
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in vacuum. In this case we can matter for 

Q is, near the singularity): The matter terms in the Hamiltonian do 

not on because M const. Because 

o the constraints ci' 0 are satisfied. V as a func-

tion of and is in Table ILL The of V 

are shown in 12.2. 

The complicated form of V 

to find an analytic solution for 

Fig. 1 The Potential 

that it will be almost 

f3_(fI,) which is valid everywhere. 

for Type IX Models 
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the teLlIllllju:e of 

approximate solution in the form of a 

allows us to 

The hard-wall 

an 

tion that the universe well with unit 

+ """ 1 far from the This 

we 11 is shown in 11.2. Because V(j3+- 1 is multiplied 

the size of this well with time and Misner has shown that 

the walls with dt3wall/dfl """ }. Thus the 

universe paint will catch up with the wall if its of incidence is not 

too Generically the motion will be that of a bouncing 

around in a triangular box. 

We now need a set of "bounce laws" for the reflection of the universe 

point from the walls. Because the walls are moving in n-time, reflection 

is not specular. Instead the angle of incidence lJ in is related to the 

angle of reflection IJ out by 

3 sin (IJ in) 

5- 4 cos (Oin) . 
(12.14) 

When the universe point moves through the body of the triangle H is a 

constant, but this constant changes suddenly during a bounce. The inci­

dent H, Hin is related to H after reflection, Hout' by 

(12.15) 

It is now possible to draw a qualitative picture of t3 +' as a func-

tion of the time n. The picture makes use of the straight-Hne-constant­

speed property of the motion of the universe point between bounces. It 

also makes use of the bounce laws. An example is shown in Figure 12.3. 

A situation where the qualitative solution is not sufficient to give us 

all the important information is during a "mixing bounce." ("Mixing" 

will be discussed below.) This of bounce occurs when the universe 

point moves almost directly into one of the corner channels. In this case 

the universe to oscillate rapidly between the two walls of the 

direction and out of the channeL The 

bounce will be studied in more detail in below. 
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Fig. 12.3. A Series of Bounces of the Universe Point in a Type IX Potential. The 
dashed lines show the expanding potential wall at various times, and the solid 
line is the track of the universe point. 

The Symmetric or Non-Tumbling Case 

In the simplest case with rotating matter {3 has precisely one off­

diagonal entry. The terms "symmetric" (Godel, 1950) and "non-tumbling" 

(Matzner, Shepley, Warren, 1970) are both used for this case. In terms of 

the parameters of (11.18), we have c/> = 0, () and if! is allowed to 

vary. In this model we must allow matter, and here we let this matter be 

a pressureless fluid (T JlV pUll uv )· The equation TILV;I/ 0 can be 

shown to be satisfied if 

and 

canst. 
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in the invariant frame the metric of the 

and the constants iI and C we find 

N-

If we let R04 1 and define /1 C 32112 C then the 

action .18) reduces to 
/1 

I jp+ + Hdn, 18) 

with 

1) 

(12.19) 

where V (/3+ , 

diagonal case. 

is the same as that given in Figure (12 for the 

When we compute "ij I· for our metric we find that the constraint 
J 

o implies 
P", {lC. (12.20) 

This constant value of P", is consistent with the field equations since 

H is cyclic in We replace P", by /1C and arrive at a Hamiltonian 

for f3±. The equation for '" is then given by 

(12.21) 

and so '" may be found as a function of nonce f3 + and f3 _ are given 

as functions of n. 

We can now construct a """·<amim,,,ti,... solution by means of the wall 

The additional terms in H add additional walls. 

is called the CelJtrl'fm18 

the it generates the wall. is 
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I 
i 

~I 

------------~ . 

Fig. 12.4. The Walls Associated with the Potentials in a Symmetric or Non­
Tumbling Type IX Model. The solid line is the gravitation wall; the dotted line 
is the rotation wall; and the dashed line is the centrifugal wall. The arrows 
attached to the walls show their respective velocities. 

the rotation potential, and the wall it generates is the rotation wall. The 

positions and velocities of these wall!' are shown in Figure 12.4. It is 

interesting to note that f3 _ is most naturally interpreted as a radial 

coordinate in the parametrization and therefore is strictly positive. When 

we find r/J by integrating (12.21), we see that r/J will only change during 

bounces off the centrifugal wall. The diagrammatic solution has been 

used by Ryan (1971a) to show that the change in r/J during a bounce goes 

to zero as we approach the singularity. (Belinskii, Lifshitz and Khalatniko 

1971a. have used the analytic approach to show the same thing.) More de­

tail about the symmetric case can be found in Ryan (1971a, 1972d). 

The General Case 

The details of the derivation of the Hamiltonian form of the Einstein 

<O'I'Ui:tllUU:S in the general case are found in Ryan (1972d). We shall give 

the final results and discuss the ar~lm!nA·tj~ solution for the case 

fluid. 
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It can be shown that the Euclidean sum 

(12.22) 

is a constant of the motion Chapter 13). Because of this constant we 

can parametrize the ui by use of the parameters 

are the constant matrices of 11. 

e 

where 

nj (siny sin'\, siny cos cos 

with y and ,\ functions of n, and C a constant. The quantity 

(12.23) 

(12.24) 

(12.25) 

is still a constant in the general case. We rescale Ro' ii, C: 36172
Ro4 ~ 1, 

48172 iI -> p., and 32172 "jiC -> p.C. We arrive at the following Hamiltonian 

for f3±: 

H2 = p 2 + P 2 + 3(PC)2cos2y + 3(pC)2sin2ycos
2

,\ + 3(pCisin
2
ysin

2
,\ 

+ - sinh2(2V3f3_) sinh(3f3++V3f3_) sinh (3f3+-V3f3_) 
o 0 I Or -2(/3 +v'3{3 ) 

+ e-4 (V-l)+ e-3 p.V+(2C)2 e 2 Lsin2ysin2,\e + - (12.26) 
1 

-2(/3 -V3f3 ) 4{3 J)2 
sin2ycos2'\e + - +cos2ye + , 

where y and ,\ are to be treated as known functions of 0 in Hamilton's 

equations and where V (/3+, f3 _) is again the same function of f3± as in 

the diagonal and symmetric cases. We also have the supplementary equa~ 

Hons 
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Fig. 12.5. The Walls Associated with the Potentials in the General Type IX 
Model. The solid line is the gravitation wall; the dotted lines the rotation walls; 
and the dashed lines the centrifugal walls. 

(f3 +V3(3 ) 
,\ = dA/d{l= 8Ce--U cosye + - sinh(3(3+ -V3(3 ) 

H V(l+D) 

8Ce --U cosy sin2 A sinh(2V3tL) 311C 
+ --- - - ---::--'----

H v(l+D) H 

3p.C ._\ -'I' h-2 - "If cosy SinA COlSA sm 

Y dy/dO 

H H 



where 

Once 

equations for 

and 
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D C e 

have been found as functions of Hamilton's 

, and may be solved 

The walls associated with the various in 12,26 are shown 

12.5. The walls are 

cOlllirtg from the PVlC"U'''U> 

in and rotational, 

,,"\>1<'-',.=> to those of the same names in the 

symmetric case. Because the potential terms contain y 

and the and rotation walls shown in Figure 12.5 appear 

and We can think of the rotation walls as "flaps" which cover 

the channels at the corners of the triangle and the centrifugal walls, which 

pass through the center of the diagram, as becoming "transparent" or 

" It has been shown Belinskii, Khalatnikov, and Ryan, 1971) 

that y and A approach constants near the singularity. This behavior 

freezes the centrifugal and rotation walls and traps the universe point in 

one of the regions similar to the triangle ABC in Figure 12.5. 

Interpretation of the Qualitative Diagrams; The Existence of a 
True Singularity 

Diagrammatic solutions most directly show many of the most important 

facets of the behavior of various universes. For Type IX models they 

show that a true singularity exists and that the character of this singularity 

is similar in the diagonal, symmetric, and general cases. In particular, 

rotation has little effect on the singularity. 

We use Hamiltonian techniques and the equation 

dO 
dt 

to prove the existence of a 

down in 

an n 

1 
N (12.28) 

we show that the break-

became infinite is also accom-

in Type I and IX universes. In 
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H decreases as n becomes We take H and thus assumE 

the universe is expanding. (10.6) indicates that H never goes 

through zero before n becomes infinite toward the past (that is t toward 

n). With these restrictions, let us look at I fluid models 

for a fluid model with p kw (k 1), 

constants. 

As we go back toward the singularity, n and H becomes a 

constant. Thus when n is infinite, n is infinite, and (10.14) shows 

that n 00. 

For Type IX universes, the problem becomes more complicated. In thE 

diagonal case with p ~ kw, 

Consider If = aH/an which yields 

H is thus a decreasing function of nonce n is large enough (observa­

tion shows n is sufficiently large at present in the real universe). This 

decrease of H implies that n becomes infinite only when n does. 

Again a mathematical singularity results because of (11.23). 

Since we do not have a matter Lagrangian for more complicated forms 

of matter, we can only treat dust models in the symmetric and general 

cases. In the symmetric Type IX case H is given by (12.19) and we fin< 

1 

2HH _ 4e-4n(V_l) _ lle - 3G(3+ 8C2e2ne 4f3+i: (1 + 4C2e20e 4f3+) 

The same argument as in the diagonal case obtains. H always decrease! 

The general case is even more complicated. However, at large 0, y an 

A in become constant. We may use the same argumen 

as in the case, and the result is the same: n becomes infinitl 

at a finite value of t, at the value when n becomes infinite. 
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In order to show that a is a true in the "'"mrr ... tri" and 

us the 

IX cases, let us look at 

observable matter 

[1 u· 
1 

This equation 

arguments show that because of the square root term 

in is dominated by the term. Hence p - , and the in-

finite value of p at a 00 indicates a true 

As the singularity nears, the universe bounces within its well. 

This oscillatory approach to the singularity must be studied in more detail 

than can be obtained from the qualitative discussion we have given here. 

In particular, the phenomenon of mixing, to be discussed in the next section 

requires such a more thorough presentation. 

12.3. Decay of Anisotropy in Type IX Models - Mixing 

The behavior of anisotropy is much more interesting and complicated 

in a Bianchi Type IX model than in Type I models. Not only does aniso­

tropy decay, but even if the matter is postulated to be non-rotating, 

"mixing" may occur. Misner's mixmaster model (Misner, 1969a) is the 

result. 

Non-Rotating Type IX Models 

As in the Type I case we discuss anisotropy within the Hamiltonian 

formulation for non-rotating Type IX models. The most general Type IX 

model may be handled similarly. From the previous subsection we find 

that the Hamiltonian H which governs non-rotating, dust-filled, Type IX 

universes is given by 

(12.30) 

where V(j3+, fJ _) is displayed in Figure 12.2. The general behavior of 

the universe point under this Hamiltonian was discussed qualitatively in 

the subsection. As before is measured by 2 

which 
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In this case is not a constant. it is <>tt'Ar<ti"", 

constant while the universe point moves across the center of the 

lar potentiaL It 

the walls. 

to the e60 term in 

decreases. 

when the universe bounces off 
2 ,), 1 1 ' +p_-) very s ow y m 

2), and on the average U""CHV,", as Q 

Notice that as Q decreases and increases, anisotropy is lowered 

of the triangular potential. This even more strongly due to the 

shrinking forces the universe point into a smaller and smaller region near 

(3+ "" (3_ '" O. The decay of anisotropy is further enhanced if the additiona 

postulate is accepted that energy is transported from one part of the uni­

verse to another along light like geodesics. Such transport of energy is 

termed "neutrino viscosity," for it involves a hypothetical lightlike parti­

cle which can pass through a large amount of matter before depositing its 

energy. 

The Phenomenon of Mixing 

Insight is gained by conSidering certain special paths in the plane as 

examples. The trivial path (3+ f3 _ 0 for all t corresponds to the 

isotropic, FRW model. A path which follows the line (3+ 0 correspond 

to the Taub-NUT-Misner universe discussed previously. In that model, 

distance measured along one axis of the t constant sections becomes 

zero as 0 -> "". Such a singularity is called a "pancake" singularity in 

contrast to the complete collapse which occurs in the isotropic model. 

We saw in Chapter 8 that some geodesics traverse the T-NUT-M space 

sections an infinite number of times as the Misner interface is approached 

Of course, the T-NUT-M model is a vacuum model, and we are here deal­

ing with a dust-filled mode1. In a dust-filled model, the Misner interface 

disappears and is replaced by a Singularity. However, if the anisotropy 

of the model follows a path the ~ 0 axis, it too has a v-.,~ ... ~-
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of It too contains which wrap around space an 

infinite number of times near the 

When a null can wrap around the there is the 

of communication over cosmic distances photons or neutrinos or 

even shock waves. This transfer of energy may be a way of ironing out in-

and is called We used the term horizon to denote 

the UUUIllLli:!I:V of cosmic matter visible to a given and therefore, 

to a sufficiently large horizon in all directions. 

In the above case of a pancake singularity, not all directions are 

directions of mixing. Consider now the most general Type IX model in 

which the anisotropy path does not follow the f3+ = 0 line in the 

-plane. The behavior of the universe point in this case was 

discussed above. If the universe point mOves for a sufficient time approxi­

mately parallel to the f3 + = 0 line there is still one direction of mixing. 

Chitre (1972a) has shown that this direction will always change. In fact, 

even if the universe point begins to leave the center by one of the corner 

channels, it will eventually emerge much as a charged particle from a con­

verging magnetic field ("magnetic mirror," Misner, 1969a). ChUre further 

showed that in approximately 2% of all diagonal Type IX models, the 

change of mixing direction occurs often enough that complete mixing occurs 

(but see MacCallum, 1971a). Misner called a model with mixing in all 

directions the Mixmaster Universe. 

Chaotic Cosmology 

One of the most interesting new ideas in cosmology is the concept of 

"chaotic cosmology." As given by Misner (1968) the idea is that it is no 

accident that the universe is highly isotropic and homogeneous now. It is 

postulated that all universes, no matter how anisotropic and inhomogeneous 

at ear ly times, eventually, through Some process, become homogeneous and 

isotropic as time goes by. The program for proving this idea was begun by 

Misner (1967a, 1968, 1969a,b), who the decay of anisotropy in 

Type I and Type IX models, He the mixmaster universe to 
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illustrate processes by which '''C'H!.H.'''''' and homogenization could 

come about. The next step in such a program would be the study of in­

nOlmogel~e(mS cosmologies to see if they actually tend toward 

The entire concept has received a number of hard blows, including 

objections by Stewart (1968), Zel'dovich and Novikov (1967 

and Collins and Stewart (1971), concerning the possible amount of 

of anisotropy. The low probability of mixing in Type IX universes is 

another problem. Despite these objections the original idea is so per­

suasive that it is very difficult to discard. Recently Collins and Hawking 

(1973a) have proposed that in any universe in which galaxies can form 

(and hence life develop) anisotropy and inhomogeneity will decay to 

observed levels as the universe approaches the present. 

12.4. Quantum Type IX Cosmologies 

In Chapter 11 we discussed the basic concepts of quantum cosmology 

and minisuperspace. It is when these ideas are applied to Type IX cos­

mologies that we see the full range of problems encountered in quantized 

Bianchi-type universes. 

If we apply the procedure of Chapter 11 to a diagonal Type IX universe 

we find the vacuum Schrodinger-Klein-Gordon (SKG) equation is 

(12.32) 

This equation is only complicated by the fact that the "potential" term is 

explicitly a-dependent. If we approximate V(j3±) by a triangular poten­

tial with infinitely hard walls, these walls are expanding, and the expand­

ing well problem is difficult to solve exactly. Misner (1969b) has pointed 

out that if the solution is similar to the solution for an expanding one­

dimensional square well (Zapolsky, 1970, in Ryan, 1972d), then the energy 

levels of the triangular box should obey 

(12.33) 
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where is Some combination of the two quantum numbers which detet~ 

mine the energy leveL This value of the energy the classical adia-

batic invariant (Misner, 1969b) HO "" const. can be used to that on 
the average the num1::ler of a wave 

intprr,r ... lf", this result to say that the 

remains fixed. Misner 

if it is classical 
now IX), does not become more quantum-

mechanical as we go back toward the and that therefore quantum 

mechanics cannot affect the 

With the case we see, for the first time, the problem that 

the space constraints become important. The quantized analogue of (12.19) 

is 
+ 3(sinh 

(12.34) 

lJI O. 

where we assume {L and Care c-numbers. The constraint Pt/J = {LC 

becomes {LClJI - i ~ in the Dirac method of handling constraint. Sub-

stituting the solution to this equation into (12.34) we find that we have 

the same equation as we would if we had solved the constraint Pt/J = {LC 

before we had quantized the ADM method. A problem arises in the Dirac 

method, however, when one requires that (/3±, t/J + 17/2) represent the 

same universe as (/3±,t/J). In that case we find {LC = 4n, n an integer. 

This result is disturbing because we assumed {L and C were c-numbers. 

We have not, however, quantized the matter field, but assumed it to be 

classical. We can hope that if we were to quantize the matter field, thus 

making {L and C quantum numbers, the difficulties with the Dirac method 

would disappear. 

Another possible method for ordering factors in the quantum-mechanical 

equations for Bianchi-type universes was mentioned in Chapter 11, the 

use of the supers pace metric to write the derivative part of the equations 

as a covariant Laplace-Beltrami operator applied to lJI. The DeWitt metric 

in the diagonal Type IX case only trivially modifies the J2lJ1 /ao2 term, 
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and the Misner metric In the case, even 

the Misner metric leads to an different from This new 

is 

-1)" 

As was mentioned in Chapter 11, not is known about quantum 

gravitation to choose among the various alternative methods of quantiza­

tion. 
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o (3m~ UIIOPWrTOlt hoy w /' ou ":ttl apl O/lO I) OEm~1 rTa ll t) 

- EPICHARMUS 

Except in the case of the FRW models and simple Bianchi Type I 

cosmologies, we can not expect to find exact solutions for homogeneous 

cosmologies (even though qualitative solut ions can be found by means of 

the Hamiltonian techniques of Chapter 11). Inhomogeneous models are 

even harder to handle. Numerical analysis of homogeneous cosmolog ies 

is therefore a necessity _ not on ly to give us exact solutions (to act as 

checks of our qualita tive solutions) but as a testing ground for general 

numerical studies in cosmology. In this chapter we present solutions for 

Bianchi Type IX universes as examples of numerical techniques in cos· 

mo logy. 

13.1. Gen era l Techniques - Initial Data 

It is most convenient to compute in a n orthonormal basis Idt,o il 

using equations for a 3 x 3 matrix B whose elements are functions of 

time t only. Different Bianchi types a re specified by the structure con­

straints of the s patial homogeneity group, Ci
jk . We presume t hat the 

orthonormal.synchronous bas is never breaks down (u ntil a si ngularity is 

reached), so that it may be used for computation. 

The Einstein equation for Bianchi-type universes a re a set of te n 

coupled ordinary differential equations idea lly suited for numerica l solu­

tions. Behr (l96Sa) and ot hers have studied this problem. In order to 

so lve the equations we specify inili al data on a I ... to hypersurface 

H(to)' These data are limited by fou r constraint (e) equations which they 

must satisfy. The remaining six propBAation (P) equations allow one to 
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Ἐπίχαρμος (~540 BCE – ~450 BCE) 
   
A man’s life critically needs 
reasoning and computation. 
   
Thanks to Todd Krause: 
   
ho bíos anthró:pois logismoû 
kaì arithmoû deîtai pánu 
   
Ancient Greek, like modern Chinese, is 
a tonal language.  That is, the meaning 
of a word can change completely 
depending on the accent. It's therefore 
important to insert the accents in a 
written text. I've tried to do that in the 
transcription above, to give you some 
idea of how they'd be in this text.
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com pute the metric al pointS off the initial surface. Because the P equa­

t ions are second order, the init ia l data consis t of the intrins ic metric of H 

and the first time derivative of th is 3-metric - or equivalents of these 

quantities. 

Init ial Data 

In the synchronous basis, the metric is of the form 

We define the four one-forms oj.t by 

. 1 . 
d •.. ' _ c l ".5 A t '"' - 2 sl .... .. w. (13.1 ) 

(13.2) 

where B .. (b ij) is the squa re root of G .. (&i/ The metric is now in 

orthonormal form ; ds2 ,. 11jJ.volloV , 

As we saw in Chapler 2, what rea lly counts in computing properties of 

a manifold is not the metr ic components but both the metric components 

and the s tructure coeffic ients. In the form of the metric given by (13 .1), 

the s tructure coefficients are constant , a nd the metric may be truly said 

to be represented by the ma trix function G(t). Since B(t) is determined 

by G(t ), B may be regarde d as taking the place of the metric on the 

s pace like sections H(t). 

We derived the a ffine conne c tion fo rms and the curvature tensor in 

Cha pter 9. There the matrix functions K(t) and L(t ) were defined by 

(13.3) 

Remembe r that L(t) is the second funda mental form of the invariant 

hypersurface H(t ) in the Iq~t basis. In addit ion, if B a nd L are 

given a t a time to' they determine K(to). We may rega rd L(tO) as 

equivalent to the first time-<leriv ative of the metric at the hypersurface 
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The Einstein equations are second order , so the metric and its (irst 

derivative al to serve as initial data . Equivalently, we may specify 

B(to) and L(tO) initially and use the field equations to find B(t ) for 

other times . 

Cons traint 8nd Propafa t;on Equations 

From the expressions of Chapte r 9 we may find the P and C equations . 

The P equations involve the si.x (ij) components of the Ricci tenSOr : 

Rijl. ;ij + funC(L,B)l - (w+ p) UjUj -+ t (w-p)8 ij . (i,; .. 1,2 ,3) . (13.4) 

This form results from the fact that the matrix M in (9.14) ca n be ex­

pressed as a fu nction of B a nd L. Thus, if B(to)' L(to) are given and 

i.f w, p'. and Uj are known fu nctions of B and L, the P equations give 

L(to)' 8 (tO) is com puted £rom B(to) and L(to) by use of (9.15). Now, 

B(to +.6.t) and L(to +dt) may be calcula ted. In this way we may watch 

the universe e volve . 

But we mus t first find w, p, a nd ul! as functions of B and L. To 

do so we use the C equations . Three of these involve the (Oi) compo­

nents of the Ricci tensor , and the fourth involves the preV ious ly defined 

quantity $ : 

(1 3 .5) 

These equations do not involve L and hence acl as cons traints which 

L(tO) and B(to) must sa tisfy : A choice of w(tO)' p(to)' and u$l(to) 

limits our choice of L(to) and B(to). If the model were a vacuum model, 

w .. p .. 0, these equations explicitly restrict the permiSSible ass ignment 

of values for 8 (tO) and L(to)' 

Alte rnately, when B(to) and L(to) ate s pecified , we can com pute 

w(IO)' P(lo)' and u,.(IO) using the C equations . These four equations 

are s uffic ie nt for this computation since u~ uP .. - 1 and since we specify 

p as a function of 'oil' by an equation of s tate p .. pew). 
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As an example, we impose the "dust" equalion of state p '" 0, so 

that w - p. Moreover, we shall consider the one particular group, 

50(3, R) (Bianchi Type IX). The me thods, of course, will apply to any 

group and any equation of state. 

Given 8(10 ), L(t o)' we calculate the Ricci components ROi(IO) and 

5(10 ), The values of p(tO) and u/to) are then determined by the 

formulae 

,-, 

(13.6) 

(The sign of Uo is arbitrarily taken as + .) As we see, there 8re two 

conditions which must be satis£ied in a dust·filled universe (or for that 

matter, in 8 fluid-filled model) 

(13.7) 

In addition, of course, the matrix B(t o) should be positive definite (have 

three positive eigenvalues). Provided these inequalities hold , B(to) and 

L(to) serve as appropriate initial data , and given B(to) and L(to)' 

p(to ) and Up.(to) may be calculated, a nd the P equations employed as 

outli ned above. 

13.2. Nome rica l Bianchi Type IX Mode ls 

There ate two possible pfocedwes in the generation of a numerical 

model. In both, the equation of state p(w) and the spatial homogeneity 

group must be specified in advance of the selection of Initial data. We 

have made this speci fi cation by sett ing p ., 0 and requiring the structure 

constants cijk to be those of the Type IX group. cijk - e:ijk' 
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The two procedures involve methods of se lec ting initial data. In the 

first , p(tO)' u~(to)' or other fluid parameters are chosen. A specification 

of 8(to) and L(IO) whic h conforms 10 the C equations must then be 

found . The second procedure is to c hoose B(to) and L(to )' using (1 3.6) 

to compute p(to) and u~(to)' We follow this second method . 

Our computer program is schematically illustrated in Figure 13.1. The 

input dats cons ist of two 3>< 3 matrices, 8(to), L(to)' One of these 

matdces, that used as B(to)' is positive d~finite. We com pute K(to) 

(rom B(to) and L(to)' and from this find B(to)' From B(to)' we calcu-

INPtJr 

B, a 3 x 3 synmetric positive· 
definite matrix 

L, a 3 x 3 synmet r ic ma t rix ~ Calculate 

'0 ' initial time K, 0 , Roi ' S 

", integration s tep 
~ 

Are 5 > 0 ~ r--: 
S2 _ R.2 > O? 

0, 

Print out "inadequate I 
da t a" message 

Yo< 

Cal culate p , u j ' J Print out P , u j , det (R), M, [ 
M· Duodet(B) I and other informat ion 

Calculate ; frolJl K, 

L from Rij , D, u i 

Integrate : Find Calculate 

B( t o +d t ) , L(to+dt) M( t
o 

..:It) 

I Repeat, s tarting I Yo, J I , M(t o+dt ) * M(t a)? 

atto + dt r 
No 

y~rease dt by \r 
Start at t again 

Fill:_ 13. 1. Computer Flo ... C har i 
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late D{tO) " (dijk(tO»' From K(to> and D(to)' we then calculate 

ROj(to) and S(to)' The inequalit ies (13.7) aTe chec ked , and if they a re 

satisfied. p(to> and u,..(to) a re calcu lated. F inally. the values of 410> 

are found from (13.4). A small ste p forward is taken by numerica l integra. 

lion and values or the fundamental quantities are found at the new lime 

to + 6 t. Knowing B(to " at) and L(to + O-t), we repeat the process. 

The program a lso can interna lly determine the size of the integration 

step. This determination makes use of an important conStant of the motion 

derived fr om (10.9), the conservation law. In a Type IX universe, 

M .. p uo det(B) . puoe-lOReJ .. cons t. At each step. M(t + t) is com­

puted and compa red with M(t). I£ there is a chang~. the program s hort~ns 

the integration s tep. 

'n certain rotating mode ls, the size of the integration s t~p may be 

de termined using a second constant of the motion. (£ ~ is a Kill ing 

vector field (on~ of the three wh ich are present because of the 50(3 , R) 

symmetry), u · ~ is 8 constant along the matter paths since u is a geo­

desic. This fact was proved in Section 8.3. We label the three Killing 

vector fields ~i' 1 _ 1,2, 3, so that u ·ej s re three constants. These 

constants are not themse lves useful, for the ~i depend on position within 

each giv~n H(t). However. at one point in the spacetim~ manifold , t he 

~i may be c hosen to be aligned with t hree fixed directions . At other 

points, the ~i are rotated by an orthogonal transformation . Consequently, 
3 

C2 
• L (u . ~i', which is constant, is a fairly simple function of B 

I - I 

and L. C2 is given explicitly by 

(13.8) 

where 

bas is. 

are the s pat ial components of u in the orthonorma l loPI 

In certain models, C2 vanishes identically, and ca nnot be monitored 

to see if the integration s tep need be changed . In practice the constancy 
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of M is used to check the usefulness of a specified size of the integration 

step and C2 is monitored as a c heck. A further check consists of verify­

ing that all matter variab les exhibit the same time development character­

istics when a given integration is reperformed using B smaller integrat ion 

step. 

The details of the program are only interesting to the computer himself 

so we will not give them here. The Runge-Kutta method of integration is 

used. along with double-precision computation where needed. 

Classification and Number of Type I X Homogeneous Universes 

It is especially convenient to express the initial data in the parametri­

zation of the Hamiltonian formulation of Chapter 11 . From that chapte r we 

find we use the quantities /3-z. p±.. r/>. !/J , (J, Pr/>' P!/J ' PO' Ro ' n, lA, ul , u2 ' u3 · 

(These quantities may readily be combined to give Band L.) These 

quantities are redundant, however. We may diagonalize t3 ij at anyone 

time (to). so r/> and !/J may be taken to be 0 and 0 to be "/2 with­

out loss of generality . HI and u1 • u2• u3 are defined in terms of the 

other variables by the constraints. RO may be chosen as the specifica-

tion of length units, and IA chosen as the specification of mass unit , so 

the phySical state of the universe does nol depend on them. Consequently. 

as initial conditions we must specify f3±. P±, Pr/>' P!/J' Po and n. How­

ever. this choice correspond s to an entire fami ly of initial conditions, 

because a universe with f3±. P±, Pcp' PI/J' PO at one value of n is the 

same as one wit h p±', 13±', p¢:, P..p', PO' at another va lue of n. There is 

thus a seven-pa rameter family of initial conditions for general T ype IX 

universes . 

Within the ge neral class of T ype IX universes there a re several sub­

classes most easily defined in terms of initial data restrictions : 

1) The FRW k '" + 1 model. The initial data have the fo rm B(to) "'" 

(BSij)' L(to ) = (L8 ij ) or equivalently. fj(to) " 0 , p(to) " 0, OCtO) en ", 
canst. These forms are preserved as t varies. 
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2) The diagonal case , B(I O) " diag (BI ' 8 2 , B3) , L(to) " dieg (LI ,L2 
.L

J
) 

Equivalently, f3! and p± are specified , as is n. P4J =: PI/J .. P8 " O. 

Again these forms are preserved as t varies. 

3) The T·NUT -M- like case is the diagonal case in which Bl - 8 2 
and L1 .. L2 or 13_ - p_ - O. 

4) The symmet ric case (also ca lled the non-tumbling case) has diago­

nal B(to) as without loss of generality do all cases. L(ta } has one off· 

diagonal e lement. As t varies one off-diagonal element of B becomes 

non-zero, but the other two orr-d iagonal elements of Band L remain 

zero. Exactly one spatial component of the velocity u is non-zero in 

this case. In terms of the Hamiltonian parameters , fl±:. P±: , Ptf;I and n 
are specified, and PI/I " PO • O. 

5) The time-symmetric case: B(t) ,. B(-t), This case is defined by 

L(to) • O. 

6) The pseudo-lime-symmetric case : The matter variables (p, ull) 

are time-symmetric, but 8 (t) need not be. This case is defined by B(IO> 

diagonal and L(to> with only one component (and that a non-diagonal 

component) non-zero. The Hamiltonian momentum parameters P±, Pr/J' Pe 
a re all zero at I .. to ' but Pr,6 is non-zero. 

7) The general case : 8(10) is diagonal, but L(to) is any matrix. 

The Hamiltonian parameters fJ± , P±' P¢' ~t/I , PO' n a re all arbitrary. 

Models in the last fOUl classes may " mix" in the sense of Chapter 12. 

Numerical Examples 

It would be impossib le to give a n exhaustive set of numerical solu­

tions for even the diagonal case, so great is the number of possible initial 

conditions. Hamiltonian techniques and qualitative cosmology c an be 

used to sort out those init ial conditions which are most interesting. One 

problem in display ing results is that cosmic time t moves too quickly, 

and a large amount of computer time is s pent coveri ng only a small part 

of the life of the universe. This is another advantage of the Hamiltonian 

formulation: n·time moves much more slowly near the s ingularity. How-
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ever, t-time is very useful near a turn-around, det(S) '" maximum, where 

O-time breaks down. 

The figures below give several examples of numerical solutions for 

various initial conditions and special cases. The diagonal case has been 

studied numerically by Okerson (1969) using the Lagrangian fo rmulation 

and O-time, but we shall not give any figures showing its behavior. 

Figures given in Matzner, Shepley, and Warren (1970) in which the general 

case is studied in t-time near turnaround for various initial conditions 

will not be given here. We include figures which s how the behavior of the 

symmetric case in the Hamiltonian formulation, studied in O-time. This 

is work of Moser, Matzner, and Ryan (1973). 

0 .87 

0.' 
.B;1) 

Fig. 13 .2. The results of numeric.laolution of HBmilton'$ eq1,l.tions for B sym­
metric Type IX model. The triangle s hown i8 that of FigUre 12.4. The positions 
of the waUs and of the universe point bav e been divided by n to keep the wailS 
static .nd to confine the motion of the universe point to the fixed ttl.n lille. This 
t ..... nsrorm.tion preserve!! str.ight-lille motion of tbe universe point, but distort' 
angles, so bounce laws cllnnot be cbec ked directly sgalnst this rigu re. For 1J. = 2, 
C .. to- 4(s(, C liS in Chapter 12) th is figure starts the universe point at a generic 
point A moving in • randomly cho,en dirsction al 0 .. 15 Bnd follows it through 
six bounces to end at point B at 0: = 10 . 
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0 . 7 

0 .' 

13ifl 

o , o 0.' /3tn ® 
Fig. 1 3 . 3. Th is figure III a conlinutllion of F igure 13.2 . The Un iVe ' lI1! poin t be­
g ins at point 8 (B or FlllUte 13 .2 ) at 0 .. 10 3 and ma kes s iJ. bounces e n d ing at 
point C . 

Fig. 13.4. A continuUlon of Figure 13. 2. ~e un iverse point begins at C, make s 
!l ix bounces, e nding al point D at n .. 10 . 
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6 ... 

I>-/n " 
0.84 

~ 
0.8 2±-:---"''----::''=----:':' :-;:--

-0.5 -0.48 - 0. 46 .em 
Fig. 13.5. A continufllion of F igure 13.4. The universe point ~gins at D, makes 
three bounces, ending at D ' fit 0 _ 2.106 . Note that the scale of the plo t is elf· 
panded to pre vent loss of de tfli1. 

0 .86 

O.82±-:-----77.,-----..,...~-
-0.5 -0 .48 -0.46 .em 

Fig. 13.6. A continuation of F icure 13.5. The universe point begins at 0 ', makes 
four bounces, endl.nlit at E at n ", 3.3.106 • 
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0 .87 

@-@ 

o. 
a"n 

O ~~~---------r----------~~--------~ 
.O~® 0 0.' {3./h 

F IC· 13 .7. A c~tlnu.Uon or F leur. 13.6. 'Ill. unlve ..... point belin. I t E , miU' 
, ll! bounce', en4lnClt F d 0 . 10', 

@ 
0 .87 I~~ @ 
@ 

0.' 

a"n 
~ 

~O.5 o 

Fir_ 13 .8. A c:ontln"ltlon or Fleur. 13" 8 The unlve ..... point beCins It Y , m":" 
fl v. bounces, Inell"CI' G un .. 2. 5. 10 • 
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90 

B 

C------~~~~----A o E 

o 

270 

• • o 0.5 

13~ 

233 

\ 
o 

• 
0 .S7 

Fig. 13.9. The motion of the universe point in the angle ch. The Illation i.s pro­

jeo;ted onto the plane 13+;0 .. -~ in f3+,{3_,¢-spac'e. The f3+.ax1a;$ marked 

by 0. The universe point begIns .t A a nd foHows the path Ao-OB-Bo-OC-CO- GO 

-Oo-OE, ending at E at n .. 1.1.104. Bounces 3, S, 9, 11 at the previous figure s 

a~ shown. The varying lengths of the paths cOrTespond to bounces against dif­

ferent p8rts of the gnovitatiOll potential triangle. 
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90 

G G' 

F 

180 o 
E 

270 

, , , 
o 0.5 0.87 

P-;n 

Fig. 13. 10. Bounces 13, 15, and 31. The universe point begins at E ( the E of 
Figure 13.9) and follows Ule path EO-OF·FO-OG-GO-OG'. Note that the ch .. nge in 
¢ during the bounce GOG'ill very nearly zero. 
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0 .860 

Fig. 13.11 , A MixU\& Bounce, The univers e point is sent into the comet c hanne l 
neatly d ... e c lly, The eene,a' lIIotion is in the direction oC Ih • ..-.. 0""_ 
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0 .866 

0 .860+-------------.­
-0.5 -0.496 

F I,_ U . I2. A conlinuBtion of Figure 13. 11 . This fi", ' e .. how. the edt (rom the 
mi.'n. bounce. The motion i. in the direction or the arrow. 
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In tauros Libyci ruunt Leones; 
Non sunt papilionibus molesti 

- MARTIAL 

14.1. Large Scale Magnet ic F ie ltls 

Spatial homogeneity without isotropy represents a compromise between 

simplicity and generality. The existence of anisotropy in the model allows 

a theoretical discussion of many vital effects, and we shall discuss three 

in this chapter. They are the effects of primordia l magnetic fields, 

neutrino v iscosity and kinetic theory, and perturbation theory as it per­

tains to the formation of galaxies. Our dis-:;ussion will be brief, principally 

dealing with setti ng up equations and with basic properties, to serve as a 

program for furthe r research. We will deal with Type I models in this 

chapte r: models with a nisotropy, but at the same time simple enough to 

allow exp licit examples to be exhibited. 

E lectromagnetic Fields 

The mode ls we have previous ly described were mostly perfect fluid 

models. When a substantiallarge-scaie electromagnetic field exists, the 

energy-momentum tensor must be augmented by the energy-momentum 

tensor of the fie ld: 

Fa 1 F Fur 
F~o v - 4 ar Rf-tv 

(14.1) 

where the F~v a re the components of the electromagnetic field tensor. 

This tensor is antisymmetric F~v " - FvW so the electromagnetic field F 

is a two-form, and a very elegant treatment of Maxwell's theory can be 

given in the language of forms. Half of the Maxwell equations can be 

written 
237 

, 

Marcus Valerius Martialis  
     (~41 - ~104) 
Libyan lions attack bulls; 
They do not bother with butterflies.
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(14.2) 

if la~1 is a bas is for the one·forms. The ot her Maxwell equations are 

most convenie ntly written in com ponent form : 

FJ.lO .. jlt 
;0 (14 .3) 

where the jlt are the components of the current density vector field 

assOCiated with cosmic matter . 

In spatially-homogeneous models there is a cosmic time t wh ich 

measures proper lime in the direction orthogonal to a given homogeneous 

hypersu rfa';e. Further, the metric can be expressed in the o rthonorma l 

synchronous basis to~1 of Chapter 9, ds2 .. 71J.1vt7~Ov. With res pect to 

a n observer moving along a t· line, the components of F are defined in 

terms of the components of the electric field Ei a nd of the magnetic field 

Bj O .. l ,2,3) as Foi ., E j ; F 12 .. 8 3 et cyc. 

A Simple Pr im<Xdial Magnetic Field 

Suppose now that the model we deal with contains neutral matte r (on 

the average), with a velocity fie ld u ort hogonal to homogeneous hyper. 

surfaces. We further su ppose that of the e lectromagnetic field components, 

only the component B3 is non-zero. These are drastic simplifications 

but the behavior o f these s imple models is nonetheless most provocative. 

The prim ord ial magnetic field is assumed to be pointing solely in the 

"three" direction. The st ress-energy ten'sor is found to be diagonal, 

with components (i n the luJ.lI basis where 00 ... dt and B3 is a function 

of t only) 

(14.4) 

The (00) component of the stress-energy tensor is pas itive a nd therefore 

contributes to the collapse to a singularity as described in Chapter 10. 

There is a negative stress , how~ver, in the (33) component, and this term 
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affects the detailed of the model near the In 

1ar, a scale magnetic field requires some anisotropy. 

Time eV!~LOVmenr of the Field 

The time of the magnetic field is governed by Maxwell's 

The first of these equations (14.2) says 

Aa
V

) d(B3 a 1 Aa 0 

B3 dt A a 1 A a Z B3 (da 1 A a Z a 1 Ada 
(14.5) 

We have made use of the fact that B3 '" B3(t) and have written dt for 
o . 1 . t 

a . From (9.8) we see that da l .kisdt A as + 2dlstaS A a . Conse-

quently (14.5) implies, first, that B3 + B3(k11 kzz ) 0, and second 

o if B3 '= O. The first of these equations 

is the time-development equation for B3, and the second is a constraint 

which must be satisfied by a spatially homogeneous model in order that it 

admit a magnetic field of the type described. The remaining Maxwell 

equation serves to define the current J. 

A Type 1 Universe with a Magnetic Field 

To see the effects of a magnetic field in a particularly simple case, 

consider a Type I model with diagonalized metric. In this model the 

matrix K is diagonal, and d\k'" O. The basis forms are 

(14.6) 

The curls of the all are therefore 

(14.7) 

The Maxwell equation which determines the time-development of 

then written with f3 + In conse-
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quence, 8 3 ,C const. As it h"""".,"<:: the current 

field J vanishes in this case, and the field is sourceless. 

include a fluid snes:s-€'ne'rgv tensor as well The full field 

as TM py If the fluid is dust, the source term for the Einstein field equa-

Hons is 

As in the fluid case discussed 

ull (1,0,0,0) or u/La/L 

The conservation law, 

a o. The field 

(14.8) 

the fluid velocity field is 

,!U(>L"JU'" are not independent. 

0, serves to make 

one of them a consequence of the others. The conservation law is satis­

fied automatically for TM /LV because of the Maxwell equations. TM~W;a 

0; so (pull ua);a "" O. The dust part of the conservation law can be 

integrated to yield p "" Me30 , M const. 

The immediate consequence of the difference of the R22 and R33 

equations is that ~ _ = D/!+2 f3+, D const. It is possible, and of course 

simpler, to consider the case f3 _ "" 0, so that D O. We now make this 

assumption, noting that it is not possible to have the case f3 + f3 _ 0 

(isotropy) unless C = 8 3 '" 0 also. The general solution of the field 

equations is given implicitly as a function of t by 

1 

-(2f3++0 ) n-f3+[ f3+-fl 1 2J2 
e =ke Ee -2"C 

.-M... e n-f3+ [E2e 2(/3+ -0) + 2ef3+ -flEC2 _ 2C4] ; 

3E2 

E, k, to constants, EO. 

(14.9) 

It is seen from the above solution that the singularity is a "pancake" 

singularity, for e remains finite when 0, when 

C 0, that is, in the presence of a field. In this model the 
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presence of the lal!tletllC field at least a minimal amount of aniso-

and affects the nature of the 

We have seen that the is not however. 

That the time when n "" is a true is shown the fact that 

the fluid energy 

is not ne'c:el,Sc!f11 

P is infinite at that time. The magnetic energy 

infinite then. 

of the of Singularity Because of the Magnetic Field 

The effect of a magnetic field - on cosmologies, on collapsing stars, 

on ultra dense materials - is a subject of current study. The direction 

this study is taking is shown by the Hamiltonian work of Hughston and 

Jacobs (1970). Even at the primitive level of the simple solution given 

above, the effects of negative and positive stresses in the magnetic field 

can be seen. 

The specialty and simplicity of the solution does not make it the less 

interesting, for the effect of the magnetic field was to prevent a collapse 

in two of the three spatial directions. In Chapter 10 we saw that Brill's 

model, an SO(3, R)-homogeneous model, contained a magnetic field - but 

no fluid - and remained nonsingular in the same sense that the T -NUT-M 

model is non-singular: mathematically non-singular. 

What then is the role of magnetism in preventing or altering a singu­

larity? How does the magnetic effect change when the Bianchi type of the 

spatial homogeneity group is changed? What other effects have yet to be 

discovered? These and other questions are the beginnings of a potentially 

very fruitful line of inquiry. 

14.2. Kinetic Theory and Neutrino Viscosity 

We have treated several types of stress-energy tensors in our cosmo­

logical models. In addition to the vacuum tensor, Till? 0, these types 

included perfect fluids, electromagnetic fields, and combinations of fluids 

and el!t!C!,rUml;ll!;I1"'LJl<'; fields. These cases were treated in a phenomenologi-

cal manner; in the fluid cases, for "''',''''''''''' 

tion of state was 

it was assumed that an equa-
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The form of the tensor may also be derived from 

kinetic theory with cosmic matter assumed to be composed of particles 

which interact by colliding (cross sections measured in laboratory experi­

ments) or which interact with electromagnetic fields. We shall briefly 

describe the technique here and then indicate how neutrino viscosity -

the transfer of energy by a postulated cosmic sea of neutrinos - is 

described by kinetic theory. 

The Distribution Function 

The particles in the cosmic gas are described by a function which 

tells how the particles are distributed in phase space. The typical case 

considered by a researcher in this area concerns a system of particles all 

having the same mass m. We use a coordinate system to describe a point 

in the spacetime manifold as xll (p '" 0,1,2,3). The momentum of a single 

particle is described by its contravariant components kIl == mvll , restricted 

to lie on the "mass-shell" Pm; (kIl) (Pm +-+ kIl kV gllv _m2
. A point 

in phase space is described by the octet (xl1 , ka), and phase space is 

seven-dimensional because of the restriction of kIl to the mass-shell. 

The distribution function f is defined by the requirement that the 

integral 
(14.10) 

be the number density of particles at the point in M whose coordinates 

are xl1. The integration is over the mass shell Pm in the space of con­

travariant vectors (the tangent space) at xl1. The volume element dPm 

is the volume element in Pm' to be described more fully below in the 

case m '" O. The components of the stress-energy tensor are formed from 

the distribution function: 

raf3 (xl1) f f(xll, kV) J(Z ~ dpm . (14.11) 

This tensor field serves as the source term in Einstein's field equations. 
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Neutrinos in a 1 Universe 

An problem in relativistic kinetic theory is the effect to be 

ex'ne.~f"'1'1 from the existence of a copious number of neutrinos in the 

stages of the universe. We note that (1) a neutrino travels on a lightlike 

between collisions is, it is a massless it 

small travels a long distance before ,nt"'r"rt 

Kinetic theory is then used to find a form of the stress~nergy 

tensor which reflects the long~istance transport of energy 

term. The field equations are then solved to among other 

the effect on the anisotropy of the modeL 

Misner's (1968) treatment of neutrino in a Type I model is 

straightforward. His model has metric 

The fact that neutrinos are massless says that they travel on null geo­

desics between collisions. We write the momentum vector field as I<I1 '" 
dxflldA where xfl(A) is the parametrized null geodesic path; therefore 

I<I1kfl '" kfl;v kV O. In consequence, ki '" const, and ki e20e-2~iSks' 
1 

so that kO = [e20e-2~ k k ]2 st st· 
Misner uses the smallness of the collision cross-section - indeed the 

fact that neutrinos are collisionless to a good approximation - to say that 

the conservation of energy law holds for each I<I1. Because the distribu­

tion function f describes the number of particles having momentum kfl, 

this conservation law becomes 

O. (14.12) 

(This equation along with the geodesic equation for I<I1, implies TflV 0.) iV 

In the case of a Type I model, f does not directly depend on (i 

1 Equation (14. implies fkOe- 30 const. The "constant" in 

is, in an function N of the three constants 
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We continue to follow Misner in the parameters ki as coordi-

nates on the Pm' momentum space. In all, the 

tensor compon'enl:s TIlV are 

Jfk
O

kid3 k e
SO 

IN(k) (14.14) 

Tij Jfk
i
kid3 k e

60 J N(K i ) 
-2{3 -2{3 3 

kaejb kbd k . 

The integration is over the three-space with coordinates k1 , ~, k3 

The Distribution Function 

At this point a choice of N(ki ) (equivalent to a choice of the form of 

the distribution function f), must be made. If the anisotropy matrix does 

not vanish, a realistic choice for N(ki ) will in general yield an integral 

which can only be evaluated approximatel:i/. One property of N(k i ) is 

needed to avoid a conflict with the field equations, however. This property 

is that N(k i ) is an even function, and the potential conflict is due to the 

fact that ROi always vanishes in a T 3-homogeneous modeL We have 

Misner used a form of that can be justified by physical argu-

ments. He assumed that during the initial stages of the cosmos the 

neutrinos were in thermal equilibrium with other cosmic matter. The stress-

energy tensor is then of the form of a p ~ w fluid. When cosmic 

ex'palllSl,on caused the temperature to below a certain critical value 

neutrinos became almost free. is then fixed 
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, a const, 

Here is a normalization constant. The is for fermions 

as and minus for bosans as photC)!1S or - the 

holds for these 

At the time of ueLUUUHlll< when the temperature the 

m,=an free path for neutrinos increases When the mean free path 

is neither very small nor very energy dissipation 

from one part of the universe to another - neutrino 

r><,,'s ••• r of energy 

can take 

with some of efficiency. Here the Boltzmann equation, which 

includes collisions, must be used to 

distribution function. 

the detailed behavior of the 

Neutrino Viscosity 

Misner, in lieu of sclving the Boltzmann equation, approximates the 

effect of neutrino viscosity on the anisotropy of the universe. The trace-

less part of the stress-energy tensor the orthonormal tetrad lap-I) is 

T·. - !. 
1J 3 (14.16) 

where A is some slowly varying function. The matrix ~ depends on 

only and is determined by approximating the effect of collisions. 

The matrix ~ is determined by a differential equation which includes 

the effect of the metric anisotropy matrix ~ as well as the effect of 

collisions. This equation is 

d -
dt~ 

where tc measures the mean collision time. At the time when the tempera­

ture drops to the time scale for of ~ is short with re~'Pt~ct 

to but tc itself is not infinite. Collisions soon cause ~ to reach 

the value ~ ~. 
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Misner's treatment of the effect of the neutrino 

results in a negative term proportional to ~ in the field 

j = 1 The trace less part of these equations becomes 

eftij 

term therefore 

(14.18) 

for some varying function T/ whose explicit calculation 

a knowledge of tc' The right proportional as it is to ~, 

which in turn is proportional to the mean shear of cosmic matter, is the 

source of the nomenclature viscosity. 

Detailed results depend on the explicit behavior of TI as a function 

of the temperature of cosmic matter. For example, if T/ is constant, 

(14.18) implies 

No matter what the detailed form of TI is, positive TI, resulting from 

neutrino viscosity, causes more rapid decay of anisotropy than if no 

neutrino transfer of energy is possible. 

The drop of f3 ij to zero because of (14.18) measures the decay of 

anisotropy, because constant f3 ij is equivalent to zero f3 ij under a 

transformation of spatial coordinates xi Therefore we see, first, that 

anisotropy falls even in a perfect-fluid, expanding universe, and second, 

that the decay of anisotropy is enhanced at the time when neutrinos first 

start to decouple from cosmic matter. Present observations show that the 

real universe is isotropic: a summary of Misner's results is that the 

present isotropy does not necessarily mean that the universe was isotropic 

near its beginning (however, see Stewart, 1968). 

14.3. Perturbation Theory and the Formation of Galaxies 

Large scale magnetic fields can affect the type of singularity from 

which the universe as we saw. Neutrino viscosity at an early 

can cause an initial to decrease rapidly. At a later 
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cosmic (it is thought), after both neutrino and 

Hon have become <"'\"'<'0,,,,,1,,,<1 from cosmic matter, 

247 

radia­

start to condense. 

Perturbation 

has not been 

model universe, a 

used to describe this condensation. The 

however. In an eXpaltlOl.ng 

perturbation typically grows too slowly for 

to reach their orE~se~nt size. amplitude perturbations must 

therefore be postulated to exist at a very cosmic epoch if 

are to evolve to presently observed density variations (106 factor in rela­

tive density). Random or statistical fluctuations in cosmic density are too 

small to grow into galaxies in the 1010 years since the time of matter­

radiation decoupling. 

The Unperturbed Model 

In anisotropic universes perturbation theory begins with a simple, 

spatially homogeneous model containing a smooth fluid. A concrete aniso­

tropic model is the general Bianchi Type I cosmology. The metric is 

given in the coordinated basis Idt,dxil by 

(14.19) 

The stress-energy tensor is that of a perfect fluid: 

The pressure p is given in terms of the energy density w by the equa­

tion of state p(w), and the fluid velocity field has the form ull=(l,O,O,O). 

The fluid has no rotation but does have shear, and the fluid velocity is 

geodesic. A second model, the general Type IX cosmology, can allow 

rotating matter. It is an especiaUy interesting model in its own right, but 

the complexity of the general Type IX model makes the study of perturba-

tions so difficult that 

formed. 

in cases has such been per-
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The "r.f."r,u functions in (14, have the time ae!pellGEmc:e 

where h± and are constants, The aU;'lLI'"rv and can he set 

zero a coordinate transformation of the coordinates (i 

The expansion function 0 

1 
2" w (14.21) 

where w is the energy density of the fluid. If the equation of state is 

paw, a const, then w has the form 

w Me3 (1 a)O, M t cons. , (14.22) 

and (14.21) may then he integrated, The constant a is less than or equal 
1 

to one because of the requirement that the speed of sound Cs [dp/dw]2 

be not greater than one. We then see the following fact: at {} "" (this 

is the "Big Bang" singularity at t = to' where e -30 = 0), the anisotropy 

"energy" (b! + b:) dominates (or at least is of the same order of magni­

tude as) the energy density in affecting the expansion of the universe, 

unless of course the anisotropy strictly vanishes. 

This latter case, the "flat" FRW model, will be discussed in detail, 

and we will later describe briefly the effects of anisotropy on a density 

perturbation. Its metric is a special case of (14.19): 

(14.23) 

The interpretation of perturbation modes is especially straightforward in 

the isotropic model, and this interpretation is the point of departure for 

understanding perturbations in anisotropic models. 
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Functions ue"'CiflUlllY the Perturbation of a Flat F RW Model 

To write the u"""ur""~ metric we first choose a basis Idt,dxil. One 

suitable basis uses a OfC,ner-Tlme axis LtHJ'I<.Ul,l<tl to the of 

coordinates xi. In this basis goo 0, so that we have 

O. The fluid has cOimpon,enl:s in 

tions. (An alternate choice is a in which o but 

O. 

We write the perturbed metric as 

(14.24) 

The metric perturbation h ij in turn can be Fourier analyzed in the usual 

sense. This technique is applicable in the anisotropic Type I model also. 

We therefore consider the single "frequency" perturbation determined by 

the wave vector ki (i 1,2,3): 

ik xS 

h·· "" iJ.' .(t) e s kl' const. IJ IJ ' 
(14.25) 

The perturbation in the fluid variables is likewise Fourier analyzed. We 

write 
ik xS 

ow W(t)e s , 
ik X

S 

op = P(t)e s • 

(14.26) 

The last equation, ouo 0, is a consequence of the conditions 0150a = O. 

The independent perturbation modes are now obtained by considering 

components of the matrix iJ.ij singled out by the ki vector. To project 

out terms orthogonal to ki we define the projection operator kij = 8 ij -

ki k/k2, k2 ks ks ' The matrix iJ.ij is determined by the functions 
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We break the three-vector Vi into a ' vu"" ... ",. and a 

dicular" part; A V s V s 

Independent Perturbations 

At this point we can start enumerating the independent 

There are six functions flij' The perturbed field equations fall into two 

classes. In the first class are the constraint equations. These equations 

allow us to express the five fluid variable perturbation functions W, P, A, 

Bi in terms of the metric perturbations and their first time derivatives. 

To complete the specification of the five fluid perturbations it is usual 

to carry over the equation of state p p(w) into the perturbed model. The 

ratio of P to W is taken to be the same as dp/dw. This function in 

turn is taken to be the same function of time which is observed as the un­

perturbed model expands; (P /W = dp/dw p/w). Such a perturbation is 

called "adiabatic." 

The second class of equations include the six propagation equations, 

second order in time. When the fluid perturbation functions have been ex­

pressed in terms of Ilij and P:ij' these equations involve only the metric 

perturbation. 

Because the propagation equations are second order, the solution is 

defined by two numbers for each of the six Ilif However, these twelve 

numbers, the perturbation parameters, do not represent twelve meaning­

fully different types of perturbations. Instead, four of these numbers may 

be set arbitrarily by means of gauge conditions. 

Perturbation Equations in the Isotropic Case 

The Fourier-transformed matter variables defined above are W, P, A, 

and Bi' defined above. The Fourier-transformed metric perturbation 

variables are 11. g, 77ij' defined by (14.27). The perturbation equations 

can be written in the form 
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2W 

,;-it p) (14.28b) 

B. 
1 (14.28c) 

,;- W-P (14.28d) 

Il - 20ft W-3P (14.28e) 

-30 0 (14.28f) 

71 ij - 301] ij 0 (14.28g) 

Equations (14.28a) to (14.28c) involve only the first time-derivative of 

metric variables and are constraint equations. The remainder are propaga­

tion equations, 

Equations (14.28c, f, g) reveal the interesting fact that the propagation 

equations of the individual components of the quantities 'i and TJij are 

independent of any other perturbation mode. The 71ij are in turn inde~n­

dent of any matter variable, and they obey a wave-like equation. The 'i 

are proportional to 0-3 because of (14.28f), and in turn are proportional 

to the matter velocity variables Bi . A precise interpretation of th,ese 

quantities is that the TJij represent gravitational waves and the 'i repre­

sent rotations. There are two independent TJij (because TJij ki = ,0 = 1]ss) 

and four in~tial data values needed. There are two independent 'i 

(because 'iki = 0) and two initial data values needed. We shall return 

to these quantities below and to the two extra initial data values needed 

to specify not only 'i but also 'i' 
The final perturbations, Il and ,;, obey coupled propagation equa-

tions. The constraint equations relate them to W (and thus to P) and 

to A, the "parallel" component of the perturbed velocity. Four initial 

data or perturbation parameters are needed to characterize Il and ,;. 
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Conditions 

At this we return to the full metric perturbation The 

'" 0 does not exhaust all freedom of "'" ..... u.F, coordinate 

for there is still the freedom of each t const 

I1YlJersux·tac:e and of choosing coordinates within it. These freedoms are 

ret)rese.nre!l:1 by infinitesimal coordinate transformations which preserve 

the conditions goo -1, gOi = O. 

We define the infinitesimal coordinate transformation by 

(14.29) 

The change it produces in the metric is by minus the Lie derivative 

of gllv with respect to ,; Il : 8gllv = - g)llv = - (,; Il;V +';1/ ;Il)' The four 

conditions 8g
Oa 

0 determine ,;Il up to four functions of xi only: 

(14.30) 

The fll afe Fourier analyzed to yield four constants F Il: 

(14.31) 

Then the effect of the ,;Il on 8gij is determined and from that the effect 

on the Fourier-analyzed metric perturbation variables. 

The result is that a coordinate transformation is characterized by the 

Fo and Fi of (14.31), and Ilij is changed to 

Il" -+ Il" + r2k.k. Je20dt+ 208JF + F.k· + F.k1· . 
1) 1) L 1 1 I jJ 1 J 1 

(14.32) 

In consequence, the metric variables enumerated in (14.27) are changed to 
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Ii ~/1 (2k2 Je20
dt 60) 

-+~ (2k2J e20
dt 20) 

(14.33) 

We see that the 11ij are So are the but not the 

All six of the initial data parameters involved in the '1' and 11" are 
1] 

therefore physically meaningful and determine the gravitational wave and 

angular momentum content of the perturbation. The extra two pieces of 

initial data needed to determine 'i in addition to 'i are physically 

meaningless, for they may be set arbitrarily by choice of the F /1 ("setting 

the gauge' '). 

The two F/1 not involved in the 'i affect ~ and /1 and through 

them the perturbation functions W, P, and A. Of the four initial data 

parameters involved, therefore, only two are physically meaningful. It is 

these perturbations which include sound waves (if p -!. 0). It is also these 

which include protogalaxies. It is these whose slow growth in an expand­

ing universe does not permit a simpleminded, naive explanation of galaxy 

formation solely on the basis of statistical fluctuations condensing 

because of gravitational forces. 

Density Perturbations in the Isotropic Dust Model 

To obtain a feel for the growth rate of density perturbations, it is use­

ful to consider the case of dust. In this case both the unperturbed and 

perturbed pressure vanish: '" P '" 0). The unperturbed metric function 

OCt) is given by integrating (14.21), using (14.22) with b} + b_2 
= 0, to 

yield 

C = const. (14.34) 
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The gauge effects shown in (14.33) for fL and I; reduce to 

(Dt 3 4C 1)Fo G 

(14.35) 

G, 

FO and G are gauge constants, and D stands for ~ 
Examination of (14.35) shows that A may be made zero by choice of Fo' 

If Bi happen to be zero because the perturbation has zero rotation, this 

choice of Fo is the same as choosing comoving coordinates. If the pres­

sure doesn't vanish, the existence of sound waves prevents the elimina­

tion of A by this sort of infinitesimal coordinate transformation. 

This choice of gauge is equivalent to setting I; = fL + E, E const. 

There is now only the one gauge freedom left fL -> 11 + G, I; -> I; + G. The 

perturbation equations (14.28a, b, d, e) now reduce to the one equation 

and W is given by 

1 
2" 

4 

(14.36) 

W = C-2 Ek2 t-3 + t C 1 ~ . (14.37) 

4 

The solution of (14.36) shows that W = Kl t 3 K2 C 3
, (K1 , K2 con­

stants). The density contrast W /w is therefore: 

W 
W 

2 

Ll t3 + L2 t- 1 L 1 , L2 constants. (14.38) 

Thus the density contrast can grow, but at most as a power of time. If 

the pressure does not vanish, no striking change in the growth rate of the 

density contrast is seen. 
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Modes in the Model 

In the anilsotrooic model the "p,·t",.h",.;"," is 

matrix: hij' In the 

the functions 

basis we have 

1 
2' 

are Fourier 

0, 

(14.39) 

is 

selected for detailed examination: 

matrix is separated into the functions 

. Finally the iJ. .. 
1) 

defined by 

(14.40) 

iJ.st ks kU' and 71ij (kSi kj -} gtbksb gic kCj) ~aiJ.at· 

One additional function proves to be useful. We know that the anisotropy 
. 3!1 

matrix fJ obeys fJ ij Bij e (Bij = const, Bss = 0) (see 14.20). From 

the Bij comes the definition e = Bij iJ.ij' where () is a linear combina­

tion of the functions already defined. 

The analysis of the perturbations proceeds as in the isotropic case. 

The perturbation equations are written down, and either a numerical or an 

exact solution is sought. Again the separation into constraint and propa­

gation equations is made. The constraint equations relate the perturba­

tion functions to the fluid perturbation functions W, P, A, Bi defined 

ear lier. The propagation equations are ordinary linear differential equa­

tions, second order in time, in iJ.W The general solution involves 12 

initial value parameters. As in the isotropic case, four of these parame­

ters are affected by gauge transformations. 

Independent Modes in the Anisotropic Case 

It is discovered that the two 

under a gauge 

an additive constant 

transformation. As in the 
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are gCiuge invarianL as in the case, 

each is found to obey an which contains no other 

function. A'S in the has the that it is 

to the rotation of the cosmic fluid. The 

behavior of rotation in these models is due to the absence of rotation in 

the 

The functions are not from tL and e in the ~"".~vu 

case, however. The gravitational waves, in other words, are affected by 

the perturbations. The of these modes has recently been 

carried out in detail by Perko, Matzner, and Shepley a preliminary 

been carried out by Doroshkevich (1966) in an axially­

anisotropic model. 

The analysis of density perturbations is simplified if ki is an eigen­

vector of {3ij (that is, an eigenvector of Bij ). Thus, for example, we 

may choose coordinates so that {3ij is diagonal and ki has a component 

only in the "three" direction. In this case one of the two independent 

components of l1ij does obey an equation independent of all other pertur­

bation functions. This component is gauge invariant and does not affect 

the fluid variables. It represents one mode of gravitational waves. 

The other mode of gravitational waves is coupled to the pressure per­

turbation P, the density perturbation W, and the "parallel" velocity 

perturbation component A. This coupling is due to the presence of fluid 

shear in the unperturbed model. It is here that the variable () is useful. 

The second order differential equations for /1, 1;, and () are all coupled. 

The general solution involves six parameters (initial data) of which two 

are affected by gauge transformations. 

Effect of Gravitational Waves on a Density Perturbation 

The effect of the coupling of gravitational radiation to density pertur­

bations can be spectacular. In certain cases the density perturbation 

grows at a much faster rate as the model 

case. Even in these cases, h"'''''''tc>r 

than in the isotropic 

grows as a power 
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of t. There is no ex:oOlll~rlti~il such as 

cloud of gas. 

There are two effects due to the an:lscltr()ov The first is due to the 

metric in different directions. If different rates of the ha,rk,arfUl 

the wave vector ki is oriented in a direction with rapidly metric 

a slow growth rate of the is observed. Alternatively, 

a direction of slow kglrotJmd expansion to rapidly growing 

--"-"J' contrast. 

The second effect is the coupling of the Tlij' "gravitational wave" 

to the density perturbation because of the background anisotropy. 

Energy may be fed from a gravitational wave into a density perturbation 

or vice versa. This second effect could be of great importance in the 

theoretical discussion of galaxy formation should some independent esti­

mate of initial cosmic gravitational wave density be obtainable. 

The overall growth rate of a density perturbation - with all the effects 

of gravitational waves and anisotropy included - may be much higher or 

much lower than the corresponding growth rate in an isotropic universe. 
8 

The upper limit is a density contrast growth rate of W Iw "" t 3 or less. 

This is an upper limit, and is a power-law rate of growth. 

The Making of a Galaxy 

The observed structure of galaxies is consistent with a formation time 

of about 108 years. In an isotropic universe, radiation and matter de­

couple when the temperature drops below about 3000 K, at perhaps 105 

years after the Big Bang. Even if the large limit of growth rate in (14.38) 

obtains, galaxies cannot form in 108 years starting from a random pertur­

bation at t = 105 years. The proof of the above statement is a naive one: 

a galaxy contains about 1070 - N particles (photons, etc.), and a random 

perturbation of galaxy size at t 105 years is of relative magnitude 

In the limiting case of growth rate we thus have 

W/w at t years. 
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In contrast to this small value of W /w, we expect that a value of 

of about 1 is needed before non-linear effects take over to initiate 

condensation. In if W/w is about 1% at t 105 years, 
2 

then by 108 years, even at the low growth of t 3 in the isotropic case, 

(1438), we have 1 at t 108 years. Rapid condensation to the 

observed density contrast between ",aLe1;"""'" and 

- 106
) then ensues. 

The effect of anisotropy is more than an enhancement of the growth 

rate, however. There is also an effect which may allow a random pertur­

bation to commence at a time earlier than t 105 years. In any model, 

a given observer can "see" all matter within a distance called the horizon 

size. A quick calculation shows that the horizon included a total mass of 

much more than one galaxy at t 105 years in the isotropic modeL In 

the anisotropic model, some directions have even larger horizons. If one 

postulates that a random perturbation occurs and starts to condense sooner 

when the horizon is larger, then even larger density contrasts are computed 

- none of the magnitude needed for galaxy formation, however. 

Alternatively, one can postulate an initial perturbation which includes 

matter not seen by an observer at the center of the perturbation (not seen 

because light has not had time since the Big Bang to reach the observer 

from the edges of the perturbation). Peebles (1971a) makes such a 

postulate - a postulate of white noise perturbations - at early cosmic 

epochs. He concludes that it is quite reasonable that globular clusters 

result - conglomerations of perhaps 105 stars - in a reasonable time. 

Galaxies (lOll stars) then presumably form from these clusters. 

Does Each Galaxy Contain the Imprint of the Big Bang? 

Peebles' result is especially provocative in that it draws attention to 

the initial singularity. The initial perturbations he postulates do not have 

the N spectrum of random perturbations. Peebles suggests that the 

existence of shows the imprint the structure - of the Big Bang 

itself. 
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Is Peebles' postulate of large initial perturbations Ht::''-'t::'SlSiotr We did 

not calculate horizon sizes in our Is()tn:)Oilc models because the horizon 

may be in a more realistic model. Misner's mixmaster 

model has directions in which a observer can send or receive signals 

completely around the universe - and these directions ate continually 

One can argue that in such a model the W /w perturba-

tion associated with a mass occurs at a time much earlier than 

105 years Although the power law rate of growth varies drastically 

with direction in an anisotropic model (depending on local expansion rate) 

the continual shifting of directions in the Mixmaster model should result 

in an average power law W /w '" ,with a -- 1 (certainly a 0) (the 

beginnings of this calculation have been given by Hu and Regge, 1972). 

An early enough perturbation then can result in W /w '" 1 by t = 108 years. 

This is the unsolved problem of galaxy formation theory: Can a random 

perturbation result in a galaxy-sized condensation within about 108 years 

after the initial singularity (the Big Bang)? Or does each galaxy contain 

within itself a structure - the shape of the initial perturbation - left over 

from the Big Bang? Most arguments - those presented in this section -

indicate the latter possibility, that to understand galaxies one must under­

stand the initial singularity. And then one must again ask: Was the Big 

Bang a truly singular region or was it merely an epoch of rather dense 

mp:ter - or was it an epoch when the laws of classical physics themselves 

were inoperable? 



15. FINAL REMARKS: 
WHAT IS, WHAT IS NOT, AND WHAT SHOULD BE 

The great tragedy of science - the slaying 
of a beautiful hypothesis by an ugly fact 

- THOMAS HENRY HUXLEY 

15.1. A Potpourri of Cosmological Subjects 

In a book of this kind one necessarily leaves out certain subjects. 

Instead of covering such subjects in detail we will here present them in 

outline form. OUf personal preferences are clearly toward the mathemati­

cal end of this subject. What we have left out, therefore, are areas of 

primarily astrophysical or physical content. The general categories we 

will outline here include cosmogony and the physical universe as well as 

cosmological aspects of theories which compete with general relativity. 

The Physical Universe 

Relating mathematical forms given for cosmological models to the 

actual physical universe is one task of observation. The most distressing 

thing about the observations is the paucity of results which can allow one 

to distinguish first, among the various cosmological models in general 

relativity, and second, among competing cosmological or gravitational 

theories. An excellent review of observations up to the present time has 

been given by Peebles (1971b). The observations of most importance to 

cosmology include the existence and isotropy of the 3K black body radio 

background, the density of matter and radiation in our immediate neighbor­

hood and at cosmological distances, and the red shift versus magnitude 

relation. 

One of the earliest and most striking observations - the one that 

~~'L .. g,uy founded modern observational cosmology - was the detection of 
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the red shift versus ",""Hunn::: relation by Hubble (1936). 

criticisms of this most fundamental of observations have been reviewed 

Burbidge and In of the of many of 

these we have the Hubble law at least to the extent 

of al~;c~!rd!np the model universes both in space and in time. 

These of course, should be reexamined should it turn out that the 

red shift of distant does not indicate a universal Per-

it will only be when the .... ,,"'t.,,"' of the quasar red shifts is solved 

that the validity of Hubble's observations will be verified. 

The best current numerical value for the Hubble parameter is found in 

Sandage (1972, Of course, it must be assumed that his value does 

give a true indication of expansion. The numerical value is 

H 1 dR 
Rdt 55 ± 7 km 

sec-Mpc 
[(1St 

Sandage also gives a value for the deceleration parameter q: 

q 

(15.1) 

(15.2) 

This value seems to indicate that the universe is closed, that is, a Type 

IX model. The error in q, however, is so large that no one model can be 

preferred over another. 

It is unfortunate that the state of the observation of the deceleration 

parameter q is in such a primitive condition. If q really is the value 

that Sandage gives, then the universe is a Type IX model and therefore 

will recollapse eventually. If, on the other hand, the low observed value 

for the density of luminous matter is accepted, then the universe is a 

Type V model, and no recollapse will ever occur. Although apparently 

only of academic interest - for such recol1apse will not occur for many 

dozens of billions of years in any event - a proof that our universe will 

turn around would be very nr'c)VI")Cflti'lfl'!. If our universe is tlL;<U~UH shown 

to be a Type IX model the old theories of a om,"";,, or universe 
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spring to mind. Perhaps it is true that some mechanism exists 

that will take the universe through the collapse predicted by the 

nature of the closed FRW model. 

The measure of the total of matter and radiation, even in our 

neighborhood of the cosmos, is in much cruder shape than the red shift -

relation. Matter which is luminous has density about to 

2 10-31 

This value for the density is much lower than that needed to be consistent 

with a closed or Type IX modeL The value of PL' if indeed luminous 

matter represents a substantial portion of the total matter of the universe, 

would indicate an open or Type V cosmology and would therefore be incon­

sistent with Sandage's value of the deceleration parameter q. If there is 

a substantial amount of invisible matter (by substantial we mean hundreds 

of times more than PL) it is certainly possible that the total matter 

density would be consistent with Sandage's value of q. Of course, people 

are continuing to look for such non-luminous matter (Peebles, 1971b). 

Perhaps the most Significant of all observations is the discovery of 

the 3K black body radiation. This radiation is taken by most to be an in­

dication that the universe was once very hot and dense. The spectrum of 

this radiation seems to be close to a black body spectrum, with a tempera­

ture of 2.7K (Penzias and Wilson, 1965; Dicke, Peebles, Roll, and 

Wilkinson, 1965). Just as important as the spectrum and temperature of 

this radiation is its isotropy. One of the most remarkably precise measure­

ments in cosmology shows this isotropy to be better than a part in 103 

(Partridge and Wilkinson, 1967). Isotropy measurements directly from the 

red shift magnitude relation are not at all significant and perhaps can 

never be made as precise as the black body isotropy determination. The 

black body isotropy measurement, however, shows us that models which 

are presently 

passes 

are definitely to be preferred, for this radiation 

LU1V"'!'." matter in our cosmic neighborhood. It is an indica-
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tion of the ",,,,.hem,, as far back as the cosmic epoch when the 

was 3000 K (but not a definitive indication, see Misner, 1968; Collins 

and 1973b). This occurred about 105 years 

after the initial The universe could have been pm"lTrr,,,,n 

<!nl'H\l"i" before this epoch, and it is for this reason that we have 

studied such model universes. 

Other observations include those of greater importance to cosmogony. 

The relative abundances of helium and other elements will be briefly dis­

cussed later. Still other observations have been proposed and indeed 

would be useful could they be carried out with any preCision. The most 

striking of these is the suggestion that correlations among the orientation 

of galaxies be determined. Such a correlation could show that the rotation 

of the universe was significant during the formation of galaxies. 

Cosmogony 

Although the dictionary defines cosmogony as pertaining to the crea­

tion of the universe, most researchers mean by this term the theory of the 

creation of the chemical elements and of galaXies. The greatest success 

of this theory has been in the description of the relative abundances of 

heavy elements. Unfortunately for cosmology, this theory indicates that 

heavy elements are produced in stars and therefore pertain to stellar 

physics and not to cosmic physics. The abundance of the very light ele­

ments, however, in particular helium and deuterium, is affected signifi­

cantly by the very early epochs of the cosmos. Observations of helium 

abundance are still in a very primitive state. What is desired is a measure 

of the primordal helium abundance, that is, the helium abundance at the 

time when galaxies and stars were just beginning to form. A typical 

result is that of Iben and Rood (1969) which gives a value of 25% for the 

helium abundance. This value is consistent with the temperature history 

of the Simplest cosmologies, namely the FRW models (Peebles, 1966). 

The value, however, is to be not definitive and other cosmolo-

are not ruled out. 
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"""'Y"<>n", of more than the helium abundance is the abun-

dance of deuterium. Although its cosmic abundance is poorly 

its abundance is better known (for CA=U'I""..o and 

The cosmic abundance of deuterium would be a 

tive indicator of the cosmic temperature history 

sensi­

Audouze, 

and Schramm, The deuterium figure, if it is 

as the cosmic abundance, present cosmic matter density 

not different more than an order of magnitude from the luminous matter 

of about 2 1 

Most theories assume that the entire content of the uni-

verse is matter and not anti-matter. Whereas high energy processes can 

produce both matter and anti-matter, the fact remains that locally there 

seems to be no anti-matter. It is not known whether other stars, other 

galaxies, or other clusters of stars are anti-matter. Several theoretical 

models have been proposed in which matter and anti-matter coexist at an 

early stage and separate into pockets at later stages (in particular, see 

Omnes, 1969). These models do not seem to be consistent with observa­

tion, for it is known (see Steigman, 1973) that there are no gamma rays 

which would occur from the interaction ("leidenfrost") of matter and anti­

matter in the nearest intergalactic regions. Many people believe observa­

tion rules out the most naive of the matter and anti-matter cosmologies. 

A.1 especially fascinating idea in cosmogony concerns the origin of 

the fundamental particles themselves from which the entire matter content 

of the universe is built up. This idea suggests that quantum processes 

produce particles from an initially empty universe. By an initially vacuum 

universe is meant one which contains only gravitational radiation at its 

start. By application of curved space quantum mechanics, Parker (1971, 

1972a, b) has computed the particle production in various cosmological 

models. His results show that there is indeed particle production, but 

unfortunately as no precise numerical values for the total number of 

has corne out. The basic problem with this type of is 

that is not covariantly and indeed it is 
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to have UHlrt.UC'" production in a flat manifold. For 

in a manifold with metric 

f(t) + 

there is particle production, although if £(t) t 2 the model is flat. Other 

earlier theories , Sed and 1969) give some indication of 

the total number of particles which would be expected from a theory of 

this kind. This number is only very roughly the same as the observed 

1080 value. Of course, any theory which predicts the complete produc­

tion of observed matter from gravitational waves would result in a uni­

verse with equal numbers of baryons and anti-baryons, assuming of course 

that the fundamental laws of baryon production are indeed charge-reversal 

invariant in a curved spacetime. 

At the very first few moments of the existence of the cosmos the 

matter is believed to be extremely hot and dense. A full detailed descrip­

tion of this epoch therefore requires knowledge of a realistic equation of 

state and knowledge of the realitivistic thermodynamics or statistical 

mechanics which govern the evolution of matter. Such a discussion, how­

ever, is more appropriate for stellar collapse problems than for cosmologi­

cal applications for two reasons. First, unless the real universe is 

exactly isotropic or contains matter so stiff that the speed of sound is 

equal to the speed of light, then the effects of anisotropy will dominate 

any matter effects right at the initial stages of the universe. Second, the 

universe very Quickly expands to the point where the matter density is 

sufficiently small that a highly relativistic equation of state is not neces· 

sary. For example, at the epoch when the temperature has dropped to 

about 3000 K the density of matter has fallen to about one gram/cm3
. It 

is at this epoch that galaxies are thought to form. Indeed a full theory of 

their formation would include the effects of a nOlll-r'el~lti'risti realistic 

equation of state and of fields and of radiation 1974). 

It may, turn out that heuristic treatment of the "'H''''''''''''' is 
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possible a strongly relativistic equation of state of the type en-

visaged by BahcaU and Frautsche (1971), Hagedorn (1970), or Bowers and 

Zimmerman (1973). 

Other Cosmology 

The use of quantum field theoretic processes to explain particle pro­

duction represents one extension of the ideas of the classical theory of 

general relativity. In cosmology certainly other theories of space and 

time have been and are being Surprisingly, it is only recently 

that Newtonian cosmologies have been looked at (Milne, 1934; Milne and 

McCrea, 1934; Heckmann, 1942). It is especially interesting to note that 

homogeneity may be described in Newtonian gravitational fields so that 

examples of most if not all of the Bianchi types of cosmological models 

are possible in this description (Hibler, 1971). Cosmologies employing 

the Brans-Dicke theory of gravitation have also been described. Still 

more esoteric theories of space and time which either incorporate quantum 

field theory explicitly or which envisage a lattice or foam structure, or 

indeed some more strange structure still, have not found much useful 

application in cosmology. 

From the opposite point of view observational cosmology has certainly 

been used to suggest a search for theories of spacetime and gravitation. 

There are three especially important examples of this interaction of cos­

mology and gravitational theory. The first is Einstein's inclusion of a 

cosmological constant to allow the construction of a static model. The 

second is the theory of spacetime which gives rise to the steady state 

cosmological model of Hoyle (1948,1949), Bondi and Gold (1948), and 

their group. The third example is the use of the numerology of Eddington 

(1959) to suggest to Jordan (1952) a whole class of gravitational theories. 

The most important members of this class are the Brans-Dicke theories. 

Brans and Dicke (1961) found the equivalent of the FRW models and 

recently Matzner, Ryan and Toton (1973) and Nariai (1972) have computed 

the cosmologies. This competing theory of gravitation 
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a scalar field in addition to the metric tensor as being the 

cause of the force cosmic expansion, The cosmo-

models differ in some details from the relativity cosmolo-

and in predict a slightly different helium abundance from 

that predicted by The observed helium abundance is 

consistent with general but is sufficiently inaccurate that a 

Brans-Dicke model is not ruled out. 

The other important is the 

state universe. From a philosophical point of view this universe 

is most attractive, for it avoids any It was proposed for this 

reason and led to a modification in the law of conservation of mass and 

energy. It baSically uses the DeSitter line element (DeSittet, 1917), which 

satisfies Einstein's field equations only with a cosmological constant. 

By including continuous creation of matter the cosmological constant is 

eliminated. Although this model was quite popular in the 1950's and 

early 1960's, only a few die-hards are left who now still try to fit this 

model to observations. The death blow was the discovery of the 3K 

black body radiation causing most researchers to believe that the universe 

was hot and dense at one time. 

In our discussion of cosmological models we concentrated our efforts 

on those which are homogeneous. Our concentration was based on two 

reasons: The first is that homogeneous models are much easier to handle 

than inhomogeneous ones. The second reason, however, is that the real 

universe apparently is homogeneous, in that matter appears to be smoothly 

spread provided large enough volume averages are taken. Although matter 

is concentrated in planets, stars, galaxies and clusters of galaxies, there 

does not seem to be any strong clustering on a larger scale. There are, 

however, weak indications that such large scale clustering may exist. 

DeVaucouleurs (1970) has put forward some interesting observational in­

dications that clustering may exist at all orders, superclusters being 

clustered themselves and so forth. Needless to say, a hierarchical model 
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as "VIS>IV>'", by deVaucouleurs could not be handled by the l",,-,nU:Lq of 
this book. Many of the techniques we however, could handle 

the models which are only weakly inhomogeneous, for example, using a 

order perturbation theory. Strong large scale inhomogeneities of a 

particular type may also be treated (Gowdy, 1971; Ryan, 1972b). 

Unconventional cosmology can also mean a conventional metric in a 

manifold with unusual topology. For example, the FRW models involve a 

lflI'ee-SlJflc:e of constant curvature, but the global topology of these t 

const. hypersurfaces is not specified. In fact, many different topologies 

may be consistent with a given metric form (Wolf, 1967). There may be 

interesting physical effects dependent on global structures as distinct 

from localized fields (Wheeler, 1962b; Ellis, 1971a). 

Relativistic Astrology and Religion 

Most modern astrologers seem unaware of the advances that Einstein­

ian relativity has brought about. Indeed, most modern astrologers seem 

unaware of modern astronomy. The Newtonian effects of the precession 

of the equinoxes have not been incorporated into most astrological compu­

tations (but see Schmidt, 1970). The corrections due to relativity, and in 

particular, effects due to the continual expansion of the horizon in FRW 

models have not even been remotely envisaged by researchers in this 

area. 

Some fideists have taken a serious view of the relation between rela­

tivistic cosmology and religion (Milne, 1952). The necessity of the singu­

larity in general relativity can be taken as an indication of the creation 

of the physical universe by theological agents. A modern point of view 

has been expressed by Misner (1969c) who, however, does not use theo­

logical terminology. A dedicated anti-religionist may even feel disposed 

to deny those models in which there is a singularity (compare Bobin, 

1960). We ourselves dislike singularities but rather from the point of 

view that every effect must have had a cause which is nn'"""C',", in nature. 
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15.2. A Call to 

Foremost among the of are observational 

but many theoretical also beckon. As observatories 

become more common we should expect a flood of answers to observational 

provided that sufficient time is made available 

to l,;USmUII)l?llSI:S. Theoretical advances will be in the direction of 

ing phenomena as well as of the formal theory. 

Desirable Observations 

While many observations of importance to cosmology may be performed 

from the surface of the earth, others of should be performed 

from an orbiting observatory. The atmosphere is not transparent to certain 

portions of the electromagnetic spectrum, and these portions include wave 

lengths where especially important information may be available. The 

infrared, ultraviolet, and x-ray portions of the spectra of distant galaxies 

and of background radiation could yield vital clues as to the nature of the 

early cosmos. Because of the cosmic redshift, the infrared spectrum in 

particular would be most informative. 

The observations which are perhaps of greatest urgency and which 

can be performed from the surface of the earth include the following: a 

good determination of the deceleration parameter, whether there is signifi­

cant invisible intergalactic matter, the average cosmic abundance of 

helium, deuterium and other Significant isotopes, an estimate of any large 

scale inhomogeneities, a limit on the anisotropy of the Hubble redshift 

parameter, and whether galaxy orientations are correlated. The above 

list is mainly optical research, and other types of observation give cosmic 

information. In particular, the measurement of the black body radio back­

ground should be refined to see whether absorption or emission lines of 

cosmic significance exist, and how this background is. 

Observations that are not concentrated in the electromagnetic spec-

trum include neutrino CI'"'trnnnnm 

out whether there is a N¥£."iif",',i","a 

tlIJIHl<.;ttU,"'U to 

radiatio:1 background and if there is, 
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whether there is a black body spectrum of gravitons, and observations of 

high energy particles and photons which would come from Leidenfrost 

radiation at the boundaries of sections of the universe that are matter and 

anti-matter. 

A list of desirable observations in order of their priority is' 

1) The determination of the deceleration parameter and the amount 

of invisible intergalactic matter. 

2) Observations in the x-ray, and non-visible radiation. 

The amount of large scale inhomogeneity in the universe. 

4) The relative abundances of vario:.!s isotopes in the universe. 

Of course, the ease of doing certain of these experiments may mean that 

the results will come in a different order. It is important to a number of 

these observations to make the use of orbiting observatories practicable 

as soon as possible. 

Theoretical Studies 

Although theoretical programs may seem to be of less urgency than 

observational studies, we must be prepared for unanticipated experimental 

results: Surprises continually occur in astronomy. For example, although 

the discovery of pulsars was completely unexpected, rapid understanding 

of these objects was facilitated by early work on gravitational collapse. 

In observational cosmology programs can be described with some degree 

of definiteness, but in talking about future theory only directions can be 

pointed out. 

The most vague but vital program which will hopefully be carried 

through in coming years is the application of quantum principles to the 

universe. The quantum field theory of gravitation is still in dispute. 

Even the interpretation of basic quantum principles as applied to the 

structure of space and time is in doubt. These controversies must be re­

solved before any application to cosmological studies can be 

made. It is important to find quantum solutions which correspond to the 

known but it is the details of what goes on at the 



15.2. A CALL TO ARMS 

where a classical model has a singularity that are the most 

cant and which are most effected detailed interpretation of quantum 

Such 

may need 

as particle n~'viJ'f't 

new physical 

''-C''''IU'' of well-known 

and the formation of 

while other advances will be 

theories and 

271 

Until a quantum understanding of the universe is achieved, it 

may be necessary to postulate in an ad hoc way initial conditions to be 

applied within these theories. it is by no means impossible that 

the understanding of galaxies and the cosmic number density of baryons 

can be achieved within known theoretical constructs, and further study of 

these problems within general relatiVity is certainly called for. 

An example of new applications of general relativistic cosmology 

would be the study of inhomogeneous solutions. Study of inhomogeneous 

models is needed to confirm or confute chaotic cosmology. Chaotic cos­

mology is the idea that any initial conditions at the singularity lead to 

the FRW universe we see today. Especially if this idea is not true, we 

need to study inhomogeneous and anisotropic exact solutions to outline 

the range of initial conditions which lead to our present universe. A pro­

gram such as chaotic cosmology is a call for new cosmological solutions 

which do not necessarily match the present universe but which may be a 

model for an earlier stage of evolution. 

There are many computational problems which should be carried 

through and which do not involve any major changes in existing theory. 

The most important of these problems is a study of the early stages of 

the universe thought of as a Relativistic magneto-hydrodynamics 

is a difficult theory to work with but has the potential of producing signifi-

cant results in a of time. Within general 

itself further of rotat-

ing is called for. 

of theoretical we mention further 

of the nature and of ">"'!4,UL<U within 
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Although much has been accomplished in this study, too many people are 

forgetting that there is still much to accomplish. In particular, the rela­

tionship between mathematical and physical singularities as we have de­

fined them here is only very poorly understood. It cannot be overempha­

sized that this question remains as vital as it has always been. 

In order of decreasing priority we suggest the following list of theo-

retical programs: 

1) Inhomogeneous models. 

2) Quantum general relativity applied to cosmology. 

3) Singularities. 

4) Magneto-hydrodynamics, particle and element production, and 

galaxy formation. 

S) Resolution of the mystery of quasars. 

Interest in cosmology has fluctuated over recent years, and of course, 

there is no guarantee that the coming decade will find the cosmos fashion­

able. During the next ten years, however, the world of astrophysics will 

be flooded by new astronomical data, many of which will contain surprises 

on a cosmic scale. Let us hope that response to this flood of information 

will be a flood of answers not only to the questions we now consider im­

portant but to those questions that will come into prominence. 



EXERCISES AND PROBLEMS 

Now I tell what I knew in Texas in my early youth 
- WALT WHITMAN 

For each chapter we have given problems of varying difficulty: 

(no asterisk) '" exercise 
* difficult problem 
** = difficult research problem requiring 

new insights 

At the end of the list are several briefly stated questions, again graded 

according to the above chart. The * and ** problems are meant to be 

suitable for Masters' and Doctors' theses respectively, and so far as we 

can tell, none have yet been satisfactorily discussed. 

Chapter 1 

1.1. The Einstein Universe (Einstein, 1917) is a static cosmological 

model with compact (finite volume) t", const. hypersurfaces. Be­

cause it has finite total matter content, one might expect a resolu­

tion of Olbers' paradox - that is, that the sky as seen by an 

observer would be expected to be dark. Show, however, that if the 

cosmos really was an Einstein universe of infinite age, the sky 

seen by any observer would have the brightness of a stellar surface. 

1.2. Compute the time of fall T for a radially travelling projectile 

dropped at rest at distance R from a central point mass M assum­

ing Newtonian gravity and mechanics. Determine the numerical 

values of T for three situations: a) R 1011 cm, M "" 1033gm. 

T is roughly the time scale involved in stellar gravitational col­

lapse. b) R 1022 cm, M 1044 gm. T is characteristic of the 

formation time of a R 1028cm, M 1055 gm. T is the 

age of the universe. 
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Walter Whitman 
(1819 - 1892) 
From "Song of Myself."  
Whitman was born and 
brought up on Long Island; 
he never visited Texas.
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1.3. Consider a sphere of uniform p rotating with 

velocity w. What is the minimum radius to which it can .... vue'!""' .. 

if it always remains a sphere? Assume conservation of mass and 

angular momentum, and use Newtonian mechanics and 

*lA. Study the evolution of a mass of fluid whose initial state of motion 

is that of the sphere of Problem 3. Can this be done ana-

Iytically or must it be carried numerically? 

Chapter 2 

2. L Give a coordinate system on the 2-sphere S2 which entirely 

covers it except for a single point. Find explicitly a vector field 

(everywhere differentiable) on S2 which vanishes only at one 

point. Show that any vector field on S2 must vanish at least one 

point and therefore S2 cannot have a globally defined basis of 

vector fields. 

2.2. For physical reasons it is sometimes desirable to consider a 

metric which is "piecewise C2 ," that is, the metric g is C2 

except on a set of hypersurfaces, and C1 everywhere. To illus­

trate, let f: M ... R, and assume df ~ 0 at a point p where 

f(p) O. Prove that in a neighborhood of p the locus H of 

pOints such that f", 0 has the structure of a manifold. Let H 

be so small that it is coverable by a single coordinate patch and 

extend this patch on H to a coordinate patch in M by using the 

coordinates in H plus the function f. Find the general form of a 

metric g which is piecewise C2 , being C2 except possibly on 

H, by finding the general functional form of its components in the 

frame {df, dxil where xi are coordinates on H. 

2.3. A C17 manifold allows the existence of functions and coordi­

nates which may be c1 7 but not of higher differentiability. Let 

V be an operation on these functions which is linear 
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Vf(p) Vg(p) 

and a differentiation operator: 

gVf 

Find such a V which is not in terms of any basis of 

the form For simplicity, assume the manifold is one dimen-

siona1. 

2.4. Let u1 ,", ur be linearly independent vector fields (r n dim M) 

which commute: lUi' Uj] = 0 for all i, j. Let p be any point in M. 

Prove there is some coordinate patch about p in which ui 

2.5. Prove that the commutator satisfies the Jacobi identity in a general 

basis of vector fields (coordinated or non-coordinated). 

2.6. Let T tijk di@dxj@dxk in a coordinate neighborhood N, coordi­

nates ! xiI. Consider a second coordinate neighborhood N, coordi-

nates Ixil and let T tijk dxj@dx k in N n N. Since the 

xi are functions of X-i in N n N. the matrix of functions 

(dX~/dX-~) is invertible there. Find t i
jk i.n terms of tijk' 

(dx1/dX-J), and the inverse matrix (dX-IldXJ). 

2.7. Suppose IXil is a basis of vector fields and Ci
jk is defined by 

the equation [Xi,X j ] CSijX
S

. Let Iw i ! be the one-form basis 

dual to IXil. Prove that dw i ", - ~ dstw S 
A wt. Suppose A 

ai'kXi@wj@wk and U = usX . Define aijk;f by the equation 

V~A aijk;eufxi@wj@wk@wf, and compute aijk;e in terms of 

Xo a \ and the connection coefficients r i
jk defined in the text. 

( J •.• 
Also show that C1

jk r lkj - r ljkl provided torsion vanishes, 

and complete the proof leading to the First Cartan equation. 

2.8. Prove that R(U,V,W is linear in each term. By linear we mean 

linear over the set of functions, so that R(f1 U1 f2U2 ,V,W,w) 

functions. 
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If the Riemann curvature tensor field R has components R i
j

kf1 

defined in a basis by R Ri
j kf1 ' find an 

for Ri
j kf1 and prove the Second Cartan 

3 

**3. L Relativistic kinetic (Taub, 1967) has been used to show that 

o p ~ t w where p pressure, w energy Which of the 

assumptions may be modified in a physically reasonable way to 

produce in certain circumstances a strongly 

pressure greater than t w? 

pressure or a 

3.2. Show that the conservation law for a perfect fluid [(w+ p)uJLul/ + 

pgJLV];JL 0, the continuity law (pua>;a 0, and the entropy law 

edS dE: + pd(1/p) are not independent of S ttL O. Note that 
,JL 

w p(l+ 

3.3. The full Bianchi identity RIL va{3;y RIL l/{3y;a + RJL rya;{3 0 holds 

in any manifold. Its first contracted form is R CJ'y - R .CJ + 
l/ f-' ' ry 'f-' 

RG l/f3y;a O. Its second contracted form is intimately connected 

to the conservation law T 1Ll/'l/ = 0 as described in the text. Show , 
that if the dimension of M is 4, the full Bianchi identity and its 

first contracted form are in general the same. 

3.4. We derived equations for e'lLulL and w'lLull in the text in terms of 

rotation, shear, expansion, and Rllv' To derive equations for 

waf3,1l ull and aa{3,1l ull (that is, for the evolution of rotation and 

shear as seen by an observer with velocity ulL) requires use of 

the full Bianchi equation, in first contracted form as described in 

the previous problem. Derive these equations. Part of the Riemann 

curvature tensor is determined by matter variables through Einstein' 

field equations, but the curvature tensor components 

yer)rf.'!~erlt in some sense gr~lvitatio!lal wave energy, which interacts 

with rotation and shear .lu,,,,,,,,k these 
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3.5. What is the of 's in Newtonian cos-

What does it say about the effect of rotation in a ,",v"u .. ,::> 

Newtonian ,-v"uwcn"'IU';i:U model? 

vnBDrer 4 

4.1. Consider a spherically "'tlfnm, .. h-ii' star with radius R(t), 

Newtonian mechanics and With the 

the density p is a function only of t, and that the velocity has 

the form VI unit radial show that the outer 

radius R does not affect the dynamics. This fact is the basis 

for Newtonian cosmology, and therefore find the general solution 

for pet) if the pressure p is assumed identically zero. (Also 

see Problem 3.5.) 

4.2. Solve the geodesic equation for the general path of a freely falling 

test particle in the closed, open, and flat FRW models. Null geo­

desics are particularly important, and you should decide whether 

any observers can ever see completely around a closed FRW model. 

See the section on horizons in Type I models, and especially see 

Schrodinger (1956). We chose particularly simple spaces of con­

stant curvature for the t const. hypersurfaces in these models, 

but Wolf (1967) shows that others should be considered, too. What 

physical effects could be seen if an unusual global topology 

actually existed in the t = const. hypersurface which best fits the 

real universe? 

4.3. Although we illustrated the solution to (4.20) in Figure 4.3, we did 

not exhibit the exact solution. Find it. The functional form of 

R(t) in the dust case is that of a cycloid if k", 1, also known as 

the solution to the brachistochrone problem Discuss the signifi­

cance of this coincidence in terms of a variational principle. 
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*4.4. Find a general cosmological model filled with n fluids, but having 

the overall symmetry of an FRW model. The velocity of anyone 

fluid should not be taken as hypersurface orthogonal, and the fluids 

mayor may not be postulated to interact. Notice that care must be 

taken to avoid anisotropic terms in the total stress-energy tensor, 

for although the perfect fluid criteria deny anisotropic stresses in 

TlLv for a single fluid, the sum of two such fluids may produce an 

anisotropic total. 

*4.5. Ni (1972) has produced a rather general scheme for generating 

theories to compete with general relativity. Which allow cosmo­

logical models of the FRW type, and can cosmological observations 

rule out any of Ni's theories? 

**4.6. What modifications of an FRW model are inescapable when R(t) 

becomes smaller than the Compton radius of a spinning elementary 

particle? Are modifications necessary at larger R? Is it really 

true that the gravitational field itself need not be quantized if R 
1 

is greater than {hG/c3 )2 2·10-33cm? (See Parker, 1972b.) 

Chapter 5 

5.1. In a Riemannian (positive definite) metric space the metric topology 

has certain open sets defined as follows: 0 is open if 0 consists 

of all points Q such that d(P,Q) < s for s a fixed number, p a 

fixed point, if 0 is entirely contained in a coordinate patch. Any 

open set M is a union of these open sets in the metric topology. 

The manifold topology consists of all unions of neighborhoods of 
. i 

the form e· < Xl £. where e·, f. are numbers and the x are 
1 1 1 1 

coordinates in a patch in which allowed coordinates include all 

the e· and f.. Prove that all open sets in the manifold topology 
1 1 

are open in the metric topology and all open sets in the metric 

topology are open in the manifold topology. 
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Miller and Miller and Kruskal (1973) have considered ex-

tensions of manifolds in which the Hausdorff property is dropped. 

What other of axioms can lead to HIle!""",,,,,,!!; 

extensions either of incomplete but mathematically non-singular 

of physically Singular manifolds, or of complete mani-

folds with timelike paths of bounded acceleration? 

5.3. Show that flat Minkowski space M4 is complete and all timelike 

paths of bounded acceleration may be extended to infinite values 

of proper time. 

**5.4. The Sachs method of assigning boundary points to a manifold is 

reminiscent of techniques used in relativistic kinetic theory 

(Ehlers, Geren, and Sachs, 1968). Suppose a collapsing stellar 

model is built up by use of relativistic kinetic theory. Use the 

Sachs' method to find the structure of the singularity - for example, 

can it be shown, that "black holes have no hair?" 

*5.5. Computation of a boundary using the Schmidt or Geroch techniques 

is difficult, and in most cases hardly worth the effort. In cosmolo­

gy, the diagonal Type V models (Chapter 9) are the simplest of the 

models which are poorly understood. Therefore compute the G­

and B-boundaries of these models and interpret the results 

physically. 

Chapter 6 

6.1. Prove that a Killing vector with covariant components a/1 satis­

fies the equation a
l1

;1/ + al/;/1 O. 

6.2. Use the Jacobi equation (2.4) on !i' Xw Xv to show that !P~I/ 0 

as assumed in the discussion leading to (6.18). 

**6.3. A Killing tensor K is a completely symmetric tensor field whose 

components ka{3. . the equation k(a{3 . 0 where 
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() Sli~nII1e~s symmetrizing the indices (Walker and Penrose, 

A Killing tensor is irreducible if it cannot be expressed as the sum 

of symmetrized tensor products of lower rank Killing tensors, Note 

that the metric tensor is a Killing tensor, A Killing tensor pro-

vides constants of the motion for geodesics, as a Killing vec-

tor does, However, no geometrical interpretation exists for a 

Killing tensor in the sense that a Killing vector is a generator of 

an infinitesimal isometry. Find such an interpretation, and also 

use the algebraic structure of the set of Killing tensors (Geroch, 

1970b) to classify solutions of Einstein's field equations. 

6.4. Find all the Killing vectors and Killing tensors (Problem 6.3) of 

Minkowski space. Are any of the Killing tensors reducible? 

**6.5. MacCallum and Ellis (1970) have listed the spatially homogeneous 

cosmologies which also allow a discrete isotropy group. Find or 

classify all inhomogeneous cosmological models which allow a 

discrete symmetry group. 

6.6. Explicitly find all 2 and 4 dimensional Lie algebras. To do so, 

find structure constants cijk which are antisymmetric in the 

lower indices and which satisfy the Jacobi identities. Since the 

structure constants appear in the commutator equations (X j , Xk] = 

cijkX i , two sets of structure constants are equivalent if the Xi's 

of one may be transformed into the Xi'S of the other by a real 

linear transformation. Thus cijk and Ci
jk are equivalent if 

C\kLiS", CStuL/Lku where (LiS) is a non-singular matrix of 

real numbers. 

Chapter 7 

**7.1. Find all geodesics in the various ST -homogeneous models. Which, 

if any, of the complete models have incomplete time like paths of 

bounded ecce leration? 
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**7.2. What are all the global topologies 

ST -homogeneous models listed? 
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with the various 

7.3. Find coordinate patches to cover the charged dust model given. 

What is the minimum number of patches needed? 

7.4. Does the GOdel model have irreducible Killing tensors of rank 2 

or higher (other than the metric - see Problem 6.3)? 

Chapter 8 

8. L Explicitly give the transformation of Taub space into itself which 

leads to the other analytic extension through a Misner bridge into 

a NUT region. The transformation can be given as a coordinate 

transformation which involves an infinite winding of coordinates 

near the boundaries of Taub space. Geodesics which are inextendi­

ble in one version of T -NUT -M space become extendible in the 

other version - except for certain geodesics which are inextendi­

hIe in both versions. 

8.2. From perturbations of Taub space, show that the Misner bridge 

cannot work in a matter-filled model with the symmetry of Taub 

space - that instead a singularity occurs. 

8.3. Is Taub space at all an accurate description of the real universe? 

What observations bear on this question, and do existing observa­

tions definitely rule out Taub space as a model of the cosmos? 

*8.4. Apply the Schmidt-Sachs ideas to Taub space and find all possible 

analytic extensions. 

**8.5. Using the ideas of twistor theory (Penrose, 1968b), find solutions 

for the spin s massless field equations in T -NUT -M space. Which 

are regular across the Misner bridge? 
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9 

9. L What would an observer see in a spatially-homogeneous cosmology 

with hypersurface orthogonal Assume the observer to 

be stationary with respect to the cosmic matter, and compute the 

relative and redshift of light from stars at proper 

distance from the observer as a function of angle. 

9.2. Show that (9.15) can be solved uniquely for M, given ~ and L 

9.3. Find general forms which guarantee zero rotation in spatially 

homogeneous dust models. For example, all Type I models are 

rotationless, but only those Type IX models with diagonal metric 

are. Zero rotation in a Type IX model requires the velocity field 

to be orthogonal to the t const. hypersurfaces, but this require­

ment may not be necessary in other types. 

**9.4. In a dust-filled FRW model, a spherical ball of matter may be ex­

tracted at each time t and the metric therein replaced by a 

Schwarzschild solution. The radius of the ball, R(t), is chosen 

so that the metric is C1 across the boundary - the mass of the 

Schwarz schild metric then agrees with the mass of extracted 

matter. Further, an arbitrary number of such holes may be created 

(if they don't overlap), the result being the "Swiss cheese" model 

for stars in an expanding universe. Find a Swiss cheese model 

for a rotating or anisotropic dust-filled cosmology. What vacuum 

solutions can be used to replace extracted sections? 

9.5. In a perfect-fluid, spatially homogeneous cosmology, find explicit 

expressions by which acceleration, rotation, shear, and expansion 

may be calculated from the- various matter and metric variables. 

Chapter 10 

**10.1. Are there any incomplete but mathematically non-singular fluid 

models? What is the physical interpretation of incompleteness in 

such a model? 
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10.2. What do the field equations for a rotating spatially homogeneous 

model look like if it is required that the velocity u be Xo' so 

that the time like direction is no required to be curl-free? 

*10.3. What is the effect of including an electromagnetic field in a 

collapsing fluid model? The nature of the singularity is known to 

be drastically changed if a vacuum model is changed to a model 

with magnetic field. Is a similar change apparent when such a 

field is added to a fluid model? 

*10.4. Near the singularity in a collapsing cosmological model, the 

temperature presumably is well above the point where matter 

reaches the plasma state. What are the equations which govern 

the dynamics of a plasma in a rapidly changing universe? How are 

various plasma instabilities affected? 

Chapter 11 

11.1. Consider the model one-dimensional Hamiltonian given by H2 "" 

Px 2 + e-at cosh x. Using the wall approximation discuss the 

behavior of the particle. For what value of a does the wall 

velOcity w equal the free particle velocity v? Discuss the full 

theory in all three situations w ( v, w v, w > v. 

**11.2. The normal Hamiltonian techniques will not work for the general 

Type V model. Find a variational principle for such a model, and 

use it to discuss its properties. In fact, it may be that the best 

approach to finding a Hamiltonian for Type V models starts with 

detailed knowledge about the solutions themselves. (Also see 

Problem 13.1.) 

11.3. As mentioned in the text, a Dirac-type equation may be found in 

the quantization of the Kasner model. Find the equation, which 

involves a 2-spinor, and solve it. The best interpretation of the 

spinor components remains an open question. 
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11.4, The metric of a Type I fluid model may always be put into \,uCll'!,lJ'UU 

form, Show this fact within the Hamiltonian formalism. 

Chapter 12 

12.1. What effect does anisotropy in a Type I model have on element 

production in the early stages of the cosmos (Thorne, 1967)? 

*12.2. Calculate the detailed behavior of the general symmetric Type IX 

model near the turnaround (time of maximum expansion). Note 

that the turnaround time is poorly represented with some of the 

techniques we developed, for a-time breaks down then. 

12,3. A Type I FRW model is just marginally not going to recollapse. 

It represents both a limiting case of Type IX models which do 

reach a maximum point followed by recoIl apse and a limiting case 

of Type V models which have more than enough expansion to be 

far from eventual recollapse. However, does the inclusion of 

anisotropy in a Type I model make this model more or less likely 

to recollapse? 

**12.4. Although a superposition principle is possible to a limited extent 

in FRW models, more generally it is unknown how to obtain new 

cosmologies from old. Find such a procedure in general Type IX 

models whereby a solution may be obtained from two already 

known models or whereby a new solution may be generated from 

one know none. 

**12,5. Develop a good quantized theory of the general Type IX cosmology 

Chapter 13 

**13. L Find all the geodesics in a general Type V model. This problem 

is of more than routine importance due to the lack of a Hamilton-

ian technique for these models Problem 11.2). 
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*13.2. Derive numerical techniques for '~""'H'" at the effects of ........ auc.h-

ing matter in an model of I. 

Periodic boundary conditions of identifications made in 

const. hypersurfaces) are appropriate here. 

*13.3. Study the detailed behavior of a model with fluctuating 

pressure. If the pressure is allowed to become sufficiently nega· 

a singularity may be avoided. Although the basis 

for the fluctuating pressure hypothesis comes from quantum field 

theory, a wide range of types of fluctuations should be studied. 

13.4. Devise a program which will numerically find and display graphi­

cally the geodesics of a dust-filled FRW model (see Problem 4.2). 

Chapter 14 

*14.1. The magnetohydrodynamics of a plasma show that in general a 

magnetic field is "frozen in" to the matter. What affect does this 

association have on the structure of the singularity in a Type I 

model? 

**14.2. How do galaxies form in a symmetric Type IX model? When would 

protogalactic perturbations be expected to start to form, and how 

would gravitational field energy enhance or retard their growth? 

Would rotational or shape parameters of galaxies be affected by 

those of the model so that we might observationally expect corre­

lations in angular momentum or orientation among galaxies now? 

**14.3. Develop a Hamiltonian technique along the lines of Taub (1969) 

for studying perturbations in a spatially homogeneous model which 

itself has a well-defined Hamiltonian. 

**14.4. Because of the slowness of growth of perturbations in an FRW 

it is likely that observed 

fluctuations clusters of ",,"1>.O"L""" are due to 
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large-size perturbations existing at the very beginning of the 

present epoch of isotropic expansion. Rather than postulating 

these perturbations in an arbitrary manner, develop a reasonable 

theory which would explain their existence. 

14.5. Suppose the universe as a whole were not electrically neutraL 

What would be the effects of a preponderance of one sign of charge 

near the singularity in a cosmological model? 

Chapter 15 

15.1. How could a Texas Congressman be convinced that scarce re­

search funds should be appropriated for cosmology? 

**15.2. With the insights provided by the current state of cosmology, astro­

physics, and relativity, develop a good, strong metaphysics for 

cosmology. Apply this philosophy in a practical sense by examin­

ing and possibly changing the priorities we have listed. 

*15.3. Catalog thoroughly all schemes of cosmology which have been 

devised. A classification scheme should be thought up and 

applied to this problem. 

*15.4. In many cases a symmetry of the material content of a model does 

not imply a symmetry in the metric. For example, a perfect fluid, 

with isotropic pressure, may exist in an anisotropic model. This 

discrepancy leads to the questions: What is the best physical 

definition of homogeneity to be applied to a relativistic cosmologi­

cal model? Are the models we've studied here all the ones appro­

priate to this definition? 

15.5. In the next several decades interstellar probes may be launched. 

What cosmological questions could be answered better with such 

a probe than with observations made within the solar system? 
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Extra 

1. Is it necessary or even desirable that the manifold used in a rela-

tivistic tl!ULU~;l"l:H model be orientable? 

**2. What situations could be best described by a geometrical 

model using both a metric and a non-vanishing torsion tensor? 

Hint: Is there a pictorial representation of torsion similar 

to the arrows and screws with which we illustrated vectors and differ­

ential forms?] 

3. What is the detailed singularity structure of the "Swiss cheese" 

model (Problem 9.4) taking into account both the cosmological singu­

larity and the Schwarzschild singularity? 

*4. Why should a cosmological model involve a differentiable manifold 

rather than a) a continuous manifold, b) a topological set or c) 

merely some abstract point set? 

S. Find the magnitude in cgs units of the components of the Riemann 

curvature tensor on the surface of the earth in an appropriate coordi­

nate system due to a) the mass of the earth and b) the expanding 

universe. 

6. Determine the algebraic classification (Penrose, 1960) of the con­

formal tensor in various Bianchi-type cosmological models, and dis­

cuss the physical significance of the results. 

**7. Does the minisuperspace quantum cosmology method provide reliable 

approximations to results which would be obtained from a full quan­

tum theory of general relativity? 
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