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Abstract
Quantum mechanics is well known to accelerate statistical sampling processes over classical
techniques. In quantitative finance, statistical samplings arise broadly in many use cases. Here we
focus on a particular one of such use cases, credit valuation adjustment (CVA), and identify
opportunities and challenges towards quantum advantage for practical instances. To build a
NISQ-friendly quantum circuit able to solve such problem, we draw on various heuristics that
indicate the potential for significant improvement over well-known techniques such as reversible
logical circuit synthesis. In minimizing the resource requirements for amplitude amplification
while maximizing the speedup gained from the quantum coherence of a noisy device, we adopt a
recently developed Bayesian variant of quantum amplitude estimation using engineered likelihood
functions. We perform numerical analyses to characterize the prospect of quantum speedup in
concrete CVA instances over classical Monte Carlo simulations.

1. Introduction

Statistical simulation tasks are often the most computationally expensive exercises that banks perform. One
important class of such exercises is counterparty risk analysis, which has gained increasing importance in
the recent years since the Great Recession in the late 2000s. In the aforementioned financial crisis, banks lost
tremendous amount of capital in counterparty credit default during derivative transactions, which led to
specific regulations and capital requirements. Therefore, risk analyses need to be in place to calculate the
precise amounts by which the prices of the derivatives should be adjusted to hedge against the risk of
counterparty default, and fall under the general term of credit valuation adjustments (CVAs). In response to
the credit losses during the Great Recession, the Basel Committee for Banking Supervision has defined
regulatory requirements for CVA calculations [1, 50.31–50.36]. The regulation demands that CVA be
calculated by simulating the stochastic paths of the underlying exposures, which is frequently carried out by
Monte Carlo methods. The probabilistic nature of this process means there will be inherent statistical errors
in the resulting CVA estimation. In order to suppress such statistical errors, one must increase the number
of stochastic paths sampled. Therefore, a typical CVA calculation for a derivative product involves
calculating statistical averages over a large number of price trajectories of the underlying asset(s) of the
derivative as well as possible default scenarios of the counterparty. A rough estimation [2] shows that a large
number of Monte Carlo samples is needed for meeting the standards laid out in Basel Committee on
Banking Supervision’s July 2015 consultation document regarding CVA calculations.

The stochastic simulation of the prices of the underlying assets as they change over time is one of the key
ingredients of most CVA calculations, except for cases where the expected exposure can be computed
analytically. The price fluctuation is typically described as a stochastic process, which is defined for every
point in time. Simulating such a stochastic process on modern digital computers introduces a discretized
time grid, which introduces a discretization error εD. Each simulation generates a concrete path of how the
price(s) of the asset(s) change(s) over time, which supplies one sample in the Monte Carlo simulation for
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estimating the expected payoff of the financial instrument that is based on the asset(s). The general goal of
the Monte Carlo simulations in financial use cases such as CVA can be described as estimating the
expectation value E[f (S)] of some function f of a set of random variables S. Since one is only able to draw a
finite amount of samples or paths on a computer, there is a statistical error εS associated with each
simulation. To estimate the expectation within additive error εS, generally O(1/ε2

S) samples are required. On
a classical computer, discretization error introduces additional cost in the simulation. For a discrete
approximation scheme of order r on a grid of time interval Δt, the discretization error is εD = O(Δtr) [3].

This gives rise to an extra factor of O(1/ε1/r
D ) in the cost of classical simulation. However, such overhead

factor can in practice be either mitigated by adopting higher order approximation schemes or multi-level
schemes [4]. The cost scaling of O(1/ε2

S) with respect to statistical error εS is a more fundamental artifact of
statistics that is in general hard to overcome classically.

The advent of quantum computing presents an exciting opportunity to break the barrier of the classical
cost scaling with respect to statistical error. A typical strategy for addressing the problem of estimating
E[f (S)] is by casting it as a problem of estimating an operator expectation: E[f (S)] = c〈ψ|O|ψ〉 for some
constant c, state |ψ〉 and operator O. The problem of estimating 〈ψ|O|ψ〉 can be addressed by quantum
amplitude estimation, with which early proposals [5, 6] demonstrated that one could improve the
fundamental cost scaling of parameter estimation from O(1/ε2

S) to O(1/εS). This is a significant
improvement for applications requiring some control over the statistical error. However, the quantum
advantage is realized at a cost of running deep circuits of depth O(1/εS) on a quantum computer. This
renders the early algorithms infeasible for near-term quantum devices, which can execute circuits of only
finite depth. Recently, there have been various proposals [7–10] for realizing amplitude estimation with
reduced depth circuits, at a cost of less quantum speedup compared with the quadratic advantage given by
fault-tolerant quantum computers. A general goal of these proposals is to derive as much asymptotic
speedup as possible by using the quantum resource available on a given quantum device, even though the
speedup may be less than quadratic in many cases.

In this study, we adopt the framework of engineered likelihood function (ELF) proposed in [8, 11] for
carrying out the CVA calculation on a quantum computer. This is the first proposal of a quantum algorithm
able to tackle the CVA problem, with in-depth discussions about concrete implementations in terms of
elementary operations that can be carried out on quantum computers. The same approach can be extended
to other risk analysis use cases in quantitative finance. A particular advantage of the ELF framework is that
it does not impose a priori an amount of quantum resource required for carrying out a certain task, but
instead it adaptively takes advantage of however much quantum resource one can afford on a noisy
quantum device [12–14]. To illustrate the concreteness we are able to associate to our solution of the CVA
problem, our numerical results indicate that on a quantum computer that has all-to-all qubit connectivity,
physical gate error rate 10−3, and uses the surface code of distance 18 for error correction (with cycle time
1 μs), performing CVA calculation under the specification listed in table 1 within relative error (RE) of
0.001% takes around 4.9 × 105 s, while the same calculation takes around 3.7 × 106 s on a single-core
classical computer (4 GB RAM, up to 3.1 GHz). Such comparison is certainly subject to changes in the
details of both the classical and quantum implementations. However, the level of specificity at which we are
able to carry out the resource estimation makes it straightforward to account for such implementation
details if necessary. With the ELF technique developed previously [8, 11] we are able to produce concrete
estimates of quantum runtime as the noise and error parameters of the hardware improve.

Our overall approach for the quantum calculation of CVA can be divided into two steps (figure 1):
quantum circuit generation and amplitude estimation. The latter has been discussed in the preceding
paragraphs. The former can be further divided into state preparation and controlled rotation subroutines.
For both subroutines we have identified opportunities to drastically reduce the depths of quantum circuits
compared with those produced from reversible logic synthesis (RLS) [15–18].

Related works. There are many applications in quantitative finance such as derivative pricing and risk
analysis that amount to performing integration on domains of stochastic variables. During the early days of
quantum computing [6, 19, 20], it has been recognized that, for those integration tasks, one is able to glean
a quadratic speedup in cost scaling with respect to the statistical error εS by using insights on quantum
counting [21], which later on was developed into quantum amplitude estimation [5]. This line of inquiry
was later extended to concrete quantitative finance use cases such as option pricing [22, 23] and risk
analysis [24]. However, no use cases related to valuation adjustment have been considered so far, making
our proposal the first of such studies. As will be discussed in section 2, the CVA problem considered in this
work contains option pricing as a sub-component. There has been also a line of research [25, 26] focusing
on using quantum computers for accelerating Monte Carlo calculations; these studies are based on the
availability of quantum oracles that can implement certain functions, without considering how these oracles
are implemented. Here in our work, however, we will discuss the detailed implementation of the oracles
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Table 1. Specification of the CVA instance benchmarked in this study.

Initial asset price 5.0
Strike price 5.5
Volatility 0.25
Drift 0.02
Maturity Six months
Start date 05/03/2020
CVA recovery rate 0.415
Notional 1
Forward rate curve EONIA curve
Hazard rates Flat piecewise
CDS quote spreads [0.000 937 72, 0.001 844 51, 0.003 2286, 0.004 7065, 0.005 748 88, 0.005 748 88]
CDS tenors [1y, 3y, 5y, 7y, 10y, 15y]
CDS recovery rate 0.4125
CDS settlement days 0
Calendar Target
Day count Actual/360
Business day convention Following
Date generation IMM
Frequency Quarterly

Figure 1. Overview of the quantum approach to CVA proposed in this work. We start by inspecting the components that make
up the CVA quantity (section 2), which translate to the structure of the quantum circuit A in step 1. It consists of state
preparation and controlled rotations (section 3). We expand on the quantum circuit construction in section 4, where we
investigate two alternatives to the state preparation subroutine: QCBM in section 4.1.1 and MPS in section 4.1.2. For controlled
rotation, we propose CRCA in section 4.2. For both MPS and CRCA, training occurs only on the classical computer and the
resulting parameters are used for constructing the quantum circuit. For QCBM, one trains the quantum circuit iteratively
between the quantum and classical computer. At this point the problem of estimating CVA is reduced to estimating the
expectation of an observable Π with respect to the output state |ξ〉 = A|0n+m+3〉 of the quantum circuit A. We then move on to
step 2 to perform the amplitude estimation using ELFs (appendix E).

relevant for the CVA problem using elementary quantum operations. Our broader motivation is to make
the quantum algorithm as concrete as possible so that it will be amenable for comparison with existing
classical solutions as well as implementation on near-term quantum devices.

2. Credit valuation adjustment

Financial derivatives are essentially contracts between two parties. For example, an option contract is a
guarantee that one can buy or sell a set of underlying assets at a particular price before or on a specific date
(depending on the type of option contract). However, it is possible that when the option contract is
exercised, namely when one of the parties decides to go through with the transaction (buying or selling),
the counterparty is not able to honor the contract, e.g., the party responsible for buying the asset(s) does
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not have enough capital to make the purchase. This is a default event that leads to a loss on the selling party.
Since an option contract offers insurance against price fluctuation of the underlying asset(s), it has an
intrinsic value for which one must pay a premium in order to enter it. In the event of default, the premium
paid by the party entering the option contract is essentially lost. Therefore, if there is risk that such default
may happen, the premium to be paid for the option contract should be accounted for in its price. The fair
amount with which one should make the discount is the value of CVA.

In this study, we focus on CVA problems for European Call options. In general, the CVA quantity is built
from the following components:

(a) The probability distribution of asset prices P(s|t) at time t. Classically, for a given future time t = τ ,
sampling from P(s|t = τ ) is typically achieved by performing stochastic simulation of how the asset
price s fluctuates as a function of time up to τ , and the set of final price values is the set of samples
from P(s|t = τ ). One of the most common stochastic processes used for modeling price fluctuation is
geometric Brownian motion.

(b) The net amount v(s, t) gained by the purchaser of the option contract, or payoff , at asset price s and
time t. For a given future time t = τ , the expected exposure E(τ) = EP(s|τ)[v(s, τ)] characterizes the
average worth of the option at time τ . Classically, this is estimated by averaging over the values of v
computed for each of the samples generated in the previous step. In particular, for the case of European
options the payoff is the maximum value between zero and the difference between the price of the asset
at maturity and a fixed price K predetermined at the start of the contract, the strike price. For a given t,
estimating E(t) amounts to solving an option pricing problem at t. Hence the problem of CVA contains
option pricing as a sub-component.

(c) The probability of default (p.o.d.) q(t) at time t. One method for modeling q(t) is to consider it as a
Poisson process where the Poisson parameter is time dependent. Its exact time dependence can be
bootstrapped efficiently, and calibrated from market quantities such as Credit Default Swap(CDS)
spreads [27].

(d) The discount factor (d.f.) p(t). It expresses the time value of money, and it is used to determine the
present value of an asset in the future. The formula for the d.f. will depend on the number of periods
considered for interest rate payments, where a typical choice is as continuous compound interest,
which corresponds to d.f. p(t) = e−rt for an interest rate r. The interest rate can also be time dependent.

The CVA is then calculated as the expected value under the probability measure q(t) of the capital at
risk, i.e., how much can be lost if the counterparty does not honor its part in the contract, which in our case
of study corresponds to a positive payoff, discounted to the present and corrected by a loss given default
factor 1 − R:

CVA = (1 − R) · Eq(t)[p(t)E(t)]

= (1 − R) · Eq(t){p(t)EP(s|t)[v(s, t)]}

= (1 − R)

∫ T

0
q(t)p(t)

∫ ∞

0
P(s|t)v(s, t)ds dt. (1)

Here R is the recovery rate, defined as the fraction of the value of an asset retained after the borrower
defaults. The above CVA calculation can also be generalized to the case where the option contract has
multiple underlying assets. In both the single-asset and the multi-asset cases, estimating the value of CVA
within statistical error εS costs O(1/ε2

S).
From equation (1) one sees that the CVA value is an integral over time and price space. Hence, a starting

point for estimating the CVA is to approximate it by a sum over its value over discretized time steps {ti}M
i=0

where t0 = 0 and tM = T (note that the summation starts from i = 1 while the definitions of ti start from
i = 0):

(1 − R) ·
M∑

i=1

E(ti)p(ti)q(ti), (2)

where p(ti) = exp(−rti ti) is the risk-free d.f. with time-dependent interest rate rti at time ti, q(ti) is the p.o.d.
between time ti−1 and ti. Moreover, E(ti) = EP(s|ti) [v(s, ti)] is the expected exposure with

v(s, t) = max{s(t) − K exp (−rt(T − t)) , 0}, (3)

being the value of the contract at time t, which corresponds to the payoff of the option at that time
computed with the appropriate strike price, K exp (−rt(T − t)), i.e., the discounted value of the strike price
K from maturity T to time t. It is assumed a single underlying asset for the European option. Here,
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s(t) = s(0) exp
(
σξ +

(
μ− σ2

2

)
t
)

is the asset price at time t, modeled as a geometric Brownian motion

where ξ ∼ N(0, 1) is a unit normal random variable, σ is the volatility of the asset and μ the market drift,
accounting for the long-term price movement trend on average at the risk-free rate.

To enable representation of the asset price using quantum registers, we also discretize the value of the
price with N + 1 values {sj}N

j=0. We can then approximate the distribution of the asset price fluctuation by
considering the joint distribution P(s, t) = P(s|t)P(t) where the marginal distribution P(t) is the uniform
distribution over the time period from 0 to T. We then define a discrete probability distribution P defined
at each point (sj, ti) for approximating P(s, t):

P(sj, ti) =
1

MN

∫ sj

sj−1

P(s|ti)ds. (4)

where i = 1, . . . , N, j = 1, . . . , M and N =
∫ sN

s0
P(s, ti)ds is the normalization constant. Since the marginal

distribution P(t) is uniform, after discretization the marginal distribution of P should satisfy P(ti) = 1/M.
This produces an approximation of the expected exposure as

Ẽ(ti) =

N∑
j=1

P(sj, ti)

P(ti)
v(sj, ti)

= M
N∑

j=1

P(sj, ti)v(sj, ti).

(5)

Combining the discretizations for both asset price and time, we arrive at the quantity to be estimated as

M(1 − R) ·
M∑

i=1

N∑
j=1

P(sj, ti)v(sj, ti)p(ti)q(ti). (6)

Note that in equation (6) the quantities P , p and q are bounded between 0 and 1, while the payoff
function (p.f.) v may not be so. Since the discretization in asset price s means the value of s is bounded, the
value of v must also be bounded. We introduce a scaling factor Cv such that v = Cvṽ where ṽ is bounded
between 0 and 1. For quantities p and q, it is possible that their values vary only subtly over their entire
domains, making it hard to accurately approximate them. We therefore introduce scaling factors Cp and Cq

such that p = Cpp̃ and q = Cqq̃. By letting Cp > 1 and Cq > 1 we are able to amplify the fluctuations of the
functions p and q on their domains respectively. This leads to the final expression

C̃VA = M(1 − R)CvCpCq·

×
M∑

i=1

N∑
j=1

P(sj, ti)ṽ(sj, ti)p̃(ti)q̃(ti)︸ ︷︷ ︸
. (7)

The problem then becomes casting the bracketed term in equation (7), which is bounded between 0 and 1,
as an amplitude estimation problem.

CVA instance for benchmarking. We consider a specific instance of the CVA problem defined on a
single asset European call option: all the calculations were carried out under the specification listed in
table 1. The time points {ti}M

i=1 used for this instance are generated using the formula

ti = i · T

M
, i = 1, . . . , M, (8)

where M = 2m is chosen such that the time points can be represented by the computational basis state of an
m-qubit register. The maturity time of 6 months corresponds to T = 184

360 ≈ 0.511, namely the number of
business days (184) in the six months duration starting from March 5, 2020, divided by the total number of
days considered in a year under day count convention (360). Using the actual convention for day count
means that all days between two dates are considered for interest accrual. If a given date is not a business
day, it is adjusted according to the following convention, which considers the first business day after the
given holiday. The method used to determine the day at which payments are due is the International Money
Market convention (IMM month), namely the effective dates are taken to be the third wednesday of March,
June, September and December. The quarterly frequency indicates how often payments are due. In order to
compute default probabilities, we use a bootstrapping approach to recover hazard rates from market CDS
quote spreads [27], where the interest rate curve is variable over time, specifically, it is taken to be the Euro
Overnight Index Average (EONIA) curve.
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Figure 2. The convergence of C̃VA(n) as n grows. Here the total number of qubits is n + m, where the number of qubits m for
representing time (equation (8)) is fixed to be 2.

Benchmark value using Monte Carlo simulation. As a classical benchmark for numerically testing the
quantum algorithm, we ran Monte Carlo simulations that use 105 stochastic paths mimicking the asset
price fluctuation over time. The simulation results allow us to estimate the expected exposure E(t) and
approximate CVA by equation (2) directly, without applying the price discretization that produces P . The
Monte Carlo simulations show that the CVA value for this particular instance is

CVAMC = (5.599 ± 0.002) × 10−5. (9)

The calculation is implemented using the Orquestra® integration with the quantlib library [28]. For the
remainder of the paper, we will use the value of CVAMC as the benchmark value representing the ‘exact’
value of CVA, with which CVA calculations by other methods in this study are compared.

Benchmark value with price discretization. The value of CVA in equation (9) assumes discretization in
time according to equation (8) but the price can take any value from 0 to infinity. To prepare for quantum
algorithm treatment, we also discretize the price, leading to the discrete distribution P in equation (4). In
section 4.1 we provide more details on the construction of P .

Clearly, such CVA estimation based on discretized price values depends on the number N of discrete
price values. Let C̃VA(n) be the value obtained using N = 2n discrete price values evenly spaced between s1

and sN. Here we choose N values that are powers of two for its convenience in associating with the number
of qubits n = log2 N needed for encoding each price value sj. Numerical results (figure 2) indicate that as n

grows, C̃VA(n) converges towards a value

C̃VA(∞) = (5.48 ± 0.02) × 10−5. (10)

The difference between C̃VA(∞) and CVAMC is likely due to the probability weight lost when restricting the
asset price domain from [0,∞) to [s1, sN]. However, this difference accounts for only around 2% RE with
respect to CVAMC. As shown in figure 2, for small values of n, the error due to discretization (namely the
introduction of {(sj, ti)|j = 1, . . . , N; i = 1, . . . , M} for representing the domain of time and price) is
dominated by the number of discrete values sj that represent the price.

3. Quantum algorithm

In section 2, the CVA calculation is broken down into four components. To describe how the quantum
algorithm works, we group the four steps into two parts: step (a) being the state preparation, steps (b)–(d)
being the controlled rotation implementation. The final step is then assembling the operations from the
previous four steps into a quantum circuit whose output state allows for the measurement of the bracketed
term in equation (7).

6
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State preparation. The goal here is to (approximately) realize an operation GP acting on n + m qubits,
where n = �log2 N	 and m = �log2 M	, such that

GP
∣∣0n+m

〉
=
∑

i,j

√
P(sj, ti) |i, j〉 . (11)

Here |i〉 (resp. |j〉) is the computational basis state marking the index i (resp. j) in its binary form. The
setting of the marginal distribution of P over the asset prices is a log-normal distribution, as a consequence
of choosing the geometric Brownian model as the statistical model for the underlying asset. A different
distribution may be chosen for other statistical models. For example, in cases where one would like to
contemplate distributions with heavy tails, Lévy distribution may be used for the marginal distribution over
the asset prices.

Controlled rotation. The goal here is to use a quantum state |x〉 encoding an input variable x as a
control register for enacting a rotation on an ancilla qubit that results in a state

√
1 − f (x)|0〉+

√
f (x)|1〉

for some function f. This construction is also commonly used in previous works [25, 29] on quantum
speedups for Monte Carlo procedures. For our purpose, we introduce a controlled rotation operator for
each of the steps (b)–(d) described in section 2.

For representing the payoff of the option contract, we define quantum operator Rv acting on n + m + 1
qubits such that

Rv |i〉 |j〉 |0〉 = |i〉 |j〉
(√

1 − ṽ(sj, ti) |0〉+
√
ṽ(sj, ti) |1〉

)
. (12)

For representing the p.o.d., we introduce operator Rq acting on n + 1 qubits such that

Rq |i〉 |0〉 = |i〉
(√

1 − q̃(ti) |0〉+
√

q̃(ti) |1〉
)
. (13)

For representing the d.f., we define quantum operator Rp acting on n + 1 qubits such that

Rp |i〉 |0〉 = |i〉
(√

1 − p̃(ti) |0〉+
√

p̃(ti) |1〉
)
. (14)

Quantum circuit assembly. We could then describe a procedure for estimating the bracketed quantity in
(7) as the following (figure 3):

(a) Start with two quantum registers, one of n qubits and the other of m qubits and generate the quantum
state

M∑
i=1

N∑
j=1

√
P(sj, ti) |i〉 |j〉 . (15)

using the operator GP .

(b) Add an ancilla qubit in |0〉 for storing the p.f . and apply the operator Rv to produce an entangled state

M∑
i=1

N∑
j=1

√
P(sj, ti) |i〉 |j〉 ⊗

(√
1 − ṽ (sj, ti ) |0〉p.f. +

√
ṽ(sj, ti)|1〉p.f.

)
. (16)

(c) Add another ancilla qubit in |0〉 for storing the p.o.d. and apply the operator Rq onto the first register
and the new ancilla qubit to produce the state

M∑
i=1

N∑
j=1

√
P(sj, ti) |i〉 |j〉 ⊗

(√
1 − ṽ (sj, ti ) |0〉p.f. +

√
ṽ(sj, ti)|1〉p.f.

)
⊗

×
(√

1 − q̃(ti)|0〉p.o.d. +
√

q̃(ti)|1〉p.o.d.

)
. (17)

(d) Add another ancilla qubit in |0〉 for storing the d.f . and apply the operator Rp onto the first register and
the new ancilla qubit to produce the final state

|ξ〉 =
M∑

i=1

N∑
j=1

√
P(sj, ti) |i〉 |j〉 ⊗

(√
1 − ṽ (sj, ti ) |0〉p.f. +

√
ṽ(sj, ti)|1〉p.f.

)
⊗

×
(√

1 − q̃(ti)|0〉p.o.d. +
√

q̃(ti)|1〉p.o.d.

)
⊗

×
(√

1 − p̃(ti)|0〉d.f. +
√

p̃(ti)|1〉d.f.

)
. (18)
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Figure 3. The proposed (ideal) quantum circuit to perform credit value adjustment as described in section 3.

(e) Let Π be projector onto the subspace where the d.f ., p.f . and p.o.d. ancilla qubits are all in the state |1〉.
More explicitly, we have

Π = |1〉 〈1|d.f. ⊗ |1〉 〈1|p.f. ⊗ |1〉 〈1|p.o.d.

=
1

8
(I − Zd.f. − Zp.f. − Zp.o.d.

+ Zd.f.Zp.f. + Zd.f.Zp.o.d. + Zp.f.Zp.o.d.

− Zd.f.Zp.f.Zp.o.d. ) , (19)

which is a linear combination of Pauli operators that can be measured directly and simultaneously on
the quantum processor.

We observe that the quantity desired in equation (7) can be obtained by

M∑
i=1

N∑
j=1

P(sj, ti)ṽ(sj, ti)p̃(ti)q̃(ti) = 〈ξ|Π |ξ〉 , (20)

which can be estimated within a sampling error of εS in time O(1/εS) using amplitude estimation.
The rest of the paper is organized as follows. In section 4 we describe in details the quantum circuit

construction used for preparing the state |ξ〉, using a particular circuit as an example. The quantum circuit
construction involves the following operations:

• Operator GP for state preparation (section 4.1);

• Controlled operations Rv, Rq, Rp (section 4.2).

The proposed quantum circuit for the algorithm can be found in figure 3. In appendix E we proceed to
describe how the quantum circuit design is used for amplitude estimation by ELF [8].

4. Quantum circuit

Existing state preparation techniques [15–18] rely on the ability to perform operations such as evaluating
arithmetic expressions [17], computing the integral of a probability density function over an interval [15],
and extracting elements of a sparse matrix [16]. These operations are either assumed to be supplied through
oracles, in which case their implementations in terms of elementary quantum operations on a quantum
computer are entirely not taken into account, or assumed to be realizable efficiently via well-known
techniques such as RLS [30–35]. However, although RLS is efficient in an asymptotic sense if the underlying
function can be realized by a polynomial-time classical procedure, concrete resource estimations show that
it is costly compared with other parts of quantum algorithms, motivating alternative approaches [36]. In
this paper we also perform numerical experiments to illustrate how costly RLS can be with even small
examples of CVA calculations (section 4.2).

Instead of RLS, which is capable of enabling both the controlled rotation and the state preparation [37],
in this work we identify opportunities for realizing both with circuits of much shorter depths. For state
preparation, we investigate two alternatives: quantum circuit Born machine (QCBM) [38] and quantum
circuit construction based on matrix product states (MPSs) [39]. We show that highly accurate
approximations are possible with circuits that are much shallower than those produced from RLS. We note
that there are also other state preparation schemes [40–42] inspired by generative adversarial networks that
can also yield more efficient state preparation protocols than RLS.

For the purpose of illustration, we consider a specific instance of CVA estimation using equation (7)
with parameters listed in table 2.

8
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Table 2. Parameters of the example quantum circuit considered
in section 4. The other parameters related to the CVA instance are
shown in table 1.

Number of qubits m for encoding time 2
Number of qubits n for encoding price 2
Scaling constant for payoff Cv 1.820 1814
Scaling constant for default probability Cq 0.000 2038
Scaling constant for discount factor Cp 1

The classical benchmark value (section 2) for this instance is

C̃VA(2) = 1.223 × 10−5. (21)

The large discrepancy between C̃VA(2) and CVAMC in equation (9) can be mostly attributed to
discretization error due to finite n (figure 2). In section 4.3 we will compute the value C̃VAQ produced by

the quantum circuit for this instance, compare it with C̃VA(2) and discuss the sources of error.

4.1. State preparation
In the context of the CVA problem (section 3), the role of state preparation is to implement the GP
operator, thus preparing a quantum state loading into it the target distribution ptg(x) = P(sj, ti) which is
the discretized joint distribution of time and asset price. The circuit acts on two registers of qubits encoding
time and asset price respectively, where the qubit states are represented as bitstrings whose first part refers to
the time register and the following to the price register. Given that we are considering asset fluctuations
modeled by geometric Brownian motion, at each point in time such distribution is the log-normal
distribution, namely:

P(s|t) =
1

sσ
√

2πt
exp

⎡⎢⎣−
(

ln s − ln s0 −
(
μ− σ2

2

)
t
)2

2σ2t

⎤⎥⎦ , (22)

where σ is the price volatility, μ represents the market drift which accounts for the long term price
movement trend, and s0 is the initial asset price.

The target distribution of P in equation (4) is obtained via classical Monte Carlo simulation of the asset
prices and then discretized to the available quantum states |x〉 = |i, j〉. Specifically, 105 trajectories of asset
prices dynamics from time 0 to maturity T are computed, simulating geometric Brownian motion on a fine
time grid. Then, the asset price distributions at the time steps ti defined by equation (8) are extracted from
the above simulation: for each time step ti we obtain a log-normal peak as in equation (22). We choose the
range of the discrete sj values such that the smallest value s1 = max{μ̂− 3σ̂, 0} and the largest value
sN = μ̂+ 3σ̂, where μ̂ and σ̂ are the sample mean and sample standard deviation of the price values
produced by the Monte Carlo simulations. We then calculate P by binning the price data from the Monte
Carlo simulation yielding CVAMC according to the different sj values, which enabled the estimation of CVA
according to equation (7).

4.1.1. Quantum circuit Born machine
QCBM [38] has been shown to learn and load a target probability distribution ptg into a quantum state. It
has been implemented experimentally in various settings [43–45]. The structure of this hybrid
quantum–classical algorithm is depicted in figure 4. The subroutine running on the quantum computer
consists of training a parametrized quantum circuit, depending on some parameters �θ and encoding a
probability distribution p�θ. Indeed, the output state of the circuit |ψ(�θ)〉 contains in its amplitudes the
probability distribution, according to Born’s rule:

p�θ(x) = |〈x|ψ(�θ)〉|2, (23)

where |x〉 = |i, j〉 represents a computational basis state that encodes a point on the discretized domain of
the target probability distribution ptg. The circuit parameters �θ are tuned in order to find the optimal set �θ∗

such that p�θ is as close as possible to ptg. The process of learning the parameters is carried out by a classical
optimizer: its goal is to minimize a cost function which quantifies the difference between the two
probability distribution into play. We choose to employ an evolutionary and derivative free strategy as the
classical optimizer, namely the covariance matrix adaptation evolution strategy ([46]). As for the cost

9
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Figure 4. QCBM for learning the state preparation circuit GP .

Figure 5. The ansatz circuit for realizing the operator GP , with 14 variational parameters (one for each gate). It is composed of a
single qubit layer (l = 1) and an entangling layer (l = 2), so that overall it has nlayers = 2.

function, we use the clipped negative log-likelihood [38], defined as follows:

C(�θ) = −
∑

x

ptg(x) log(max(p�θ(x), ε)), (24)

where ε is a small parameter to avoid singularity. There are several options available for both the optimizer
and the cost function, whose efficiency is highly dependent on the specific problem instance.

The QCBM is able to learn the desired distribution P(sj, ti), by undergoing a training process that tunes
the parameters of the quantum circuit so that the desired target is loaded into a quantum state. The ansatz
we consider for the parametrized quantum circuit, defined on four qubits, is shown in figure 5.

It is composed of two layers, where the first layer (l = 1) is made of single qubit rotations and the
second one (l = 2) uses two qubit gates to introduce entanglement. The depth of the circuit can be varied as
needed, so that each layer of one(two)-qubit(s) gates is identified by an odd(even) index l, with
l = 1, . . . , nlayers. The types of one-qubit gates used in the QCBM circuit are chosen to be X and Z rotations,
whereas for the two-qubits gates we use the XX coupling gate, which is implemented natively in ion-trap
quantum computers. Specifically, the gates are defined as follows:

Rx,z(θ) = exp

(
−i

θ

2
σx,z

)
XX(θ) = exp (−iθσx ⊗ σx) .

(25)

Here σx =

(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
are the Pauli matrices.

The qubit connectivity is assumed to be all-to-all, so that each pair of qubits undergoes an XX
transformation. The depth of the circuit grows according to the circuit size: the larger the number of qubits,
the deeper the circuit needs to be in order to be trained successfully (see appendix A). For the four-qubit
instance in figure 5, one layer of tunable entangling gates is enough for the QCBM to be able to learn the
target distribution. Figure 6 shows a typical training curve of the cost function, as the iterations proceed.
Note that the cost function has been rescaled so that its expected value for a successful training is zero.

10
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Figure 6. The training process of the parametrized quantum circuit in the single asset case, where the ansatz is defined on four
qubits and has 14 gates. On the left, the plot shows the convergence of the (rescaled) cost function towards its ideal value. The
orange dots mark the cost function value at each optimization step, whereas the blue line connects only points with progressively
decreasing values, thus highlighting the minimization trend. On the right, histograms display the probability distributions
encoded in the quantum state before (top) and after (bottom) the training.

Figure 7. MPS and its usage for learning a target distribution. (a) Definition of an MPS ΨA(x) and process for contracting two
tensors in the MPS. (b) Process for training MPS to learn a target distribution. Note that in step 5 one could either ‘go left’ by
letting A(
) = Û · ¯̂D, A(
+1) = V̂ or ‘go right’ by letting A(
) = Û and A(
+1) = ¯̂D · V̂ . Details for evaluating the gradient of the
cost function L are shown in [39].

4.1.2. Matrix product state
An alternative method to using QCBM is to leverage MPS [39], which is a tensor network that has been
used for mimicking correlations between different variables. An MPS is represented by a sequence of tensors
A(1), A(2), . . . , A(n+m). Each tensor A(
) depends on the value of x
, which is the 
th element of x = |i, j〉.
When evaluated at a particular value of x
, A(
) becomes a matrix (except for when 
 = 1 or 
 = n + m,
where it becomes a vector), denoted as A(
)

x

. The MPS can then be defined as (figure 7(a))

ΨA(x) = Tr
(

A(1)
x1

A(2)
x2

. . .A(n+m)
xn+m

)
. (26)

The equation above assumes that the A(
)
x


objects have compatible dimensions so that they can be

multiplied together properly. If A(
)
x


is a matrix of dimension d
 × d
+1 and A(
+1)
x
+1

is a matrix of dimension

d
+1 × d
+2, then d
+1 is the bond dimension between A(
)
x


and A(
+1)
x
+1

.
An MPS can represent a quantum wavefunction ΨA(x) that approximates a target distribution ptg in the

same way as QCBM, namely pA(x) = |ΨA(x)|2 ≈ ptg(x). A concrete way to measure the closeness between
the MPS output pA and the target distribution ptg is by computing a negative log-likelihood function over a

11
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Figure 8. Runtime for training the MPS versus the number of qubits. The scales for both axes are logarithmic. The red dashed
line is a linear regression with correlation coefficient being 0.987 and the slope being roughly 5.827.

Table 3. Results for MPS training. Here nqubits = n + m is the
number of qubits encoding the joint time and price values, ttrain is
the total time for training the MPS (in seconds). The maximum
bond dimension of the MPS in all cases is limited to 2. The values
on this table have been obtained with a threshold for KL
divergence of 3 × 10−5.

nqubits ttrain KL niters

4 17.94 3.21 × 10−6 2
5 28.44 4.11 × 10−6 2
6 42.17 4.53 × 10−6 2
7 62.06 1.62 × 10−6 3
8 116.46 8.60 × 10−5 3
10 399.99 2.07 × 10−2 5
12 870.41 1.5 × 10−2 7
14 4967.78 7.04 × 10−2 19
16 6417.41 0.86 22
20 24 084.47 3.20 25

set S of samples x generated from ptg:

L(A) = − 1

|S|
∑
x∈S

log pA(x). (27)

The likelihood function is similar to the cost function in equation (24) in the sense that averaging over S
approximates the expectation over the target distribution −

∑
x ptg(x)log pA(x).

In order to minimize the negative log-likelihood function, we adopt an iterative scheme. A summary of
the scheme is provided in figure 7(b). This method builds on the connection between unsupervised
generative modeling and quantum physics, where MPS is employed as a model to learn the probability
distribution of a given data set with an algorithm which resembles density matrix renormalization group,
which is an efficient algorithm that attempts to find the MPS wavefunction corresponding to the ground
state for a given Hamiltonian. Relying on the ability to efficiently evaluate gradients of the objective
function [39], we can iteratively improve the MPS approximation of the target distribution (figure 9). The
iterations proceed until one of the three scenarios: (1) a threshold for the Kullback–Leibler (KL) divergence
between the model output and the training data is reached, (2) the difference in the objective function
between two adjacent training steps is below a threshold, or (3) a maximum number of iterations is
reached. In figure 8 we show results for training the MPS up to nqubits = n + m = 20 qubits. From the data,
the empirical scaling of the MPS training cost is roughly O(n6

qubits) (table 3).
In order to make the MPS construction useful for the CVA calculation, as well as to compare QCBM and

MPS in a fair way, we need an explicit recipe for generating quantum circuits that prepare the MPS. The
basic idea is to use a sequence of singular value decomposition (SVD) steps to transform the MPS into an
orthogonal form in which each tensor is an isometry and hence can be embedded into a unitary operator.
Then we decompose these unitary operators into CNOT and single-qubit gates by the method in [47].
When the MPS has n sites and bond dimension D, there are at most n − �log2(D)	 such unitary operators,
where each of them acts on at most �log2(D)	+ 1 qubits and can be implemented with O(D2) two-qubit
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Table 4. For MPS-equivalent circuit with nqubits = 4 (top) and nqubits = 6 (bottom), the table
displays the circuit details (bond dimension D, number of CNOT gates and number of single qubit
gates), the number of optimization steps (i.e. niters) and the KL divergence values. Since it remains
unknown how many CNOT and single qubit gates are needed exactly to implement a general
k-qubit unitary operator, we can only give lower and upper bounds (except for the case D = 2).
Lastly, for nqubits = 4, the upper bound for D is 8: for nqubits = 4 and D > 8 the formula for the
equivalent circuit breaks down. See appendix B for details about encoding MPS into quantum
circuits.

MPS D CNOT 1-qb niters KL

nqubits = 4 2 9 19 2 1.15 × 10−4

4 [28, 40] [42, 80] 2 3.21 × 10−6

6 [61, 100] [85, 184] 2 3.21 × 10−6

8 [61, 100] [85, 184] 2 3.21 × 10−6

10 — — — —

nqubits = 6 2 15 31 2 3.68 × 10−2

4 [56, 80] [84, 160] 2 2.31 × 10−4

6 [183, 300] [255, 552] 2 2.93 × 10−5

8 [183, 300] [255, 552] 2 4.53 × 10−5

10 [504, 888] [682, 1568] 2 4.53 × 10−5

Figure 9. The training process of the MPS model in the single asset case, where the ansatz is defined on four qubits and has 14
gates. On the left, the plot shows the convergence of the cost function towards its ideal value with y-axis rescaled logarithmically.
The dots mark the cost function value at each optimization step, whereas the line connects only points with progressively
decreasing values, thus highlighting the minimization trend. On the right, histograms display the probability distributions
encoded in the quantum state after the first training step (top) and the one after the final step of training (bottom).

gates. As a consequence, the quantum circuit for preparing the MPS contains O(nD2) two-qubit gates. Note
that it remains unknown how many CNOT and single-qubit gates are needed exactly to implement a
general k-qubit unitary operator for k � 3, and the best known results are lower and upper bounds on
them. So we can only give lower and upper bounds on the numbers of elementary gates in the circuit for
preparing the MPS (except for the case D = 2) in table 4. See appendix B for more details about encoding
MPS into quantum circuits (figure 9).

We are now able to compare the two methods proposed so far for the state preparation task. Specifically,
we focus on the aforementioned four-qubits instance of the QCBM with different depths, i.e. nlayers = [2, 4,
6, 8, 10], which corresponds to a four-site MPS with the same values of bond dimension D. We also
consider a six-qubits QCBM instance and its analogous MPS, varying nlayers and D as in the former setting.
The target distribution corresponds to equation (4) with P(s|t) as in equation (22). Tables 4 and 5 show the
results of the comparison between QCBM and MPS-based circuits, where we report the number of one-
and two-qubit gates (in terms of CNOTs for a fair comparison), the number of iterations until convergence
of the cost function minimization and the corresponding values of KL divergence, i.e. training accuracy.
From this data, we can draw the following conclusions, that hold for both cases under examination:
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Table 5. For QCBM with nqubits = 4 (top) and nqubits = 6 (bottom), the table displays
the circuit details (number of layers, number of CNOT gates and number of single qubit
gates), the number of optimization steps (i.e. niters) and the KL divergence values.

QCBM nlayers CNOT 1-qb niters KL

nqubits = 4

2 12 38

10 4.49 × 10−1

100 1.16 × 10−1

1500 1.10 × 10−3

4 24 80

10 6.78 × 10−1

100 1.28 × 10−1

4000 1.82 × 10−7

6 36 118

10 5.86 × 10−1

100 2.95 × 10−1

4000 3.02 × 10−10

8 48 156

10 6.50 × 10−1

100 1.64 × 10−1

4000 8.96 × 10−9

10 60 194

10 5.43 × 10−1

100 1.77 × 10−1

5000 1.08 × 10−7

nqubits = 6

2 30 87

10 1.088
1000 4.43 × 10−2

15 000 2.56 × 10−2

4 60 180

10 1.204
1000 5.81 × 10−2

30 000 1.43 × 10−3

6 90 267

10 9.82 × 10−1

1000 6.92 × 10−2

50 000 1.03 × 10−4

8 120 354

10 8.81 × 10−1

1000 2.08 × 10−1

15 000 2.93 × 10−6

10 150 441

10 8.69 × 10−1

1000 4.48 × 10−1

20 000 4.56 × 10−6

• Given a circuit depth and a target accuracy, MPS is able to reach the desired KL divergence value with
very few iterations, while the QCBM requires many more optimization steps.

• Given a circuit depth, we observe that in some cases the QCBM is able to reach a lower KL divergence
than MPS, provided we use a sufficiently high number of iterations. Additional numerics suggests that
the QCBM is able to beat the training accuracy of MPS, which instead reaches a plateau that prevents
the KL value to decrease further when the number of the optimization steps is increased.

• Given a fixed number of qubits, we compare MPS and QCBM depths in terms of CNOTs. With small
nlayers or D, we see that MPS is shallower than the QCBM, but as nlayers or D are increased there is an
inversion point—whose exact location depends on the circuit size—where QCBM becomes shallower
than MPS.

We note that some of the recent works on using MPS for describing continuous probability distributions
[48] can significantly improve the training cost of MPS or avoid training altogether. This will also affect the
comparison with QCBM.

4.2. Controlled rotations
In preparing the quantum state for the CVA problem we are faced with the problem of constructing
operators that are all of the following form:

Rf : |i〉 |0〉 
−→ |i〉
(√

1 − f (xi) |0〉+
√

f (xi ) |1〉
)

, (28)

where the function f : Ω 
−→ [0, 1] and xi ∈ Ω are discrete points chosen in its domain and lastly, the label
i ∈ N is an integer indexing discrete points whose binary expansion is

∑k=n+m−1
k=0 2kik, with ik ∈ [0, 1]. If f is

efficiently computable classically with O(poly(n, m)) resource, a common strategy for realizing f exactly is
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Figure 10. CRCA, the proposed near term circuit to implement operators of the form in equation (29).

by RLS ([34, 35]); the cost of doing so would also be O
(
poly(m, n)

)
. The polynomial scaling is efficient in

theory but in practice—and especially for near-term quantum computers—much more is to be desired in
terms of lowering the circuit cost. For example, for the CVA instance considered in this work (with a total of
seven qubits), RLS requires a total of 89 CNOT gates. For the purpose of a near term alternative to RLS, we
introduce an ansatz, controlled rotation circuit ansatz (CRCA) to try to approximate (28) in the following
ansatz (figure 10):

R̃f : |i〉 |0〉 
−→

|i〉
(√

1 − f̃(xi, �θ) |0〉+ eiφ(xi ,�θ)
√

f̃(xi, �θ) |1〉
)

(29)

where f̃ is some function with the same domain and co-domain as f, and φ is some relative phase that
depends on xi and �θ. This ansatz can be used to approximate the operators Rv , Rq, and Rp (see
equations (12)–(14) in section 3). Let R̃v , R̃q and R̃p denote approximations to each of the operators in the
form described in equation (29). In the computational basis span{|i〉} ⊗ span{|0〉, |1〉} the operators Rf and
R̃f can be arranged as block diagonal matrices with each block being an SU(2) rotation U(i) indexed by the
label i:

Rf =

⎛⎜⎜⎜⎝
U(1)

U(2)

. . .

U(2n+m)

⎞⎟⎟⎟⎠ , (30)

U(i) =

(√
1 − f (xi) −

√
f (xi)√

f (xi)
√

1 − f (xi)

)
. (31)

For R̃f we can similarly consider the block structure in (30) with each block realizing the single-qubit

rotation that leads to (29). However, the relative phase factor eiφ(xi,�θ) is immaterial for the purpose of the
CVA calculation, since ultimately the quantity desired 〈ξ|Π|ξ〉 (section 3) is independent of the phase
factors. We make a simplification and consider an operator R̃′

f which is equivalent to R̃f for the purpose of
CVA calculation but consists of only real elements:

R̃′
f =

⎛⎜⎜⎜⎝
V (1)

V (2)

. . .

V (2n+m)

⎞⎟⎟⎟⎠ , (32)

V (i) =

⎛⎝√1 − f̃(xi, �θ) −
√

f̃(xi, �θ)√
f̃(xi, �θ)

√
1 − f̃(xi, �θ)

⎞⎠ . (33)

The error in CRCA training can then be characterized as the norm difference between the unitary
operators Rf and R̃′

f . Based on the block structures in equations (30) and (32), the norm difference becomes

εCRCA,f =
∥∥∥Rf − R̃′

f

∥∥∥
2
= max

i
‖U(i) − V (i)‖2. (34)

Another common way to measure the approximation error of f̃ with respect to f is by the
one-norm difference:

1

2n+m

2n+m−1∑
i=0

|̃f(xi, �θ) − f (xi)|. (35)
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Figure 11. The CVA circuit requires that we learn functions for (a) the d.f. p̃(ti), (b) the p.o.d. q̃(ti) and (c) the p.f. ṽ(sj , ti). For
each subplot, on the right, the histograms display the functions encoded in the quantum state after the first training step and the
one after the final step of training. The plots to the left display the value of the cost function in the training procedure.
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Table 6. Cost of RLS. n is the number of qubits, while N2q is the number
of required two-qubit gates.

n N2q

4 212
6 640
8 1428
10 25 226
12 114 632
14 483 436

In appendix C we show that |̃f(xi, �θ) − f (xi)| � ‖U(i) − V (i)‖2, which implies that εCRCA,f is an upper bound
to the one-norm difference (figure 11).

Having proposed CRCA as an alternative to RLS, it is instructive to investigate the cost of RLS not only
to highlight the value of having CRCA, but also to look into what RLS produces in terms of the number of
entangling operations (CNOT gates) for a practical problem. We use the transformation based synthesis
method [49] for our implementation of RLS. We assume the existence of three qubit registers, namely:

(a) First register stores the domain values,

(b) Second register stores the function values,

(c) Third register contains the ancilla qubit for which the probability of measuring it in the |1〉 state gives
the value of the function.

More concretely, we have the following sequence of quantum operations:

Uf : |i〉 |0〉 |0〉 
−→ |i〉 |f (i)〉 |0〉 , (36)

Of : |i〉 |f (i)〉 |0〉 
−→ |i〉 |f (i)〉
(
ai |0〉+ bi |1〉

)
, (37)

U†
f : |i〉 |f (i)〉

(
ai |0〉+ bi |1〉

)

−→ |i〉 |0〉

(
ai |0〉+ bi |1〉

)
, (38)

where bi is such that |bi|2 = f(i). The quantum operation Uf is implemented by RLS while Of is a quantum
circuit that contains O(n) controlled rotations, where n is the number of qubits in the first register. Let C be
the number of CNOT gates from RLS, then we need a total of 2C CNOT gates to implement the evaluation
of the function i.e. (36) and its un-computation i.e. (38). The number we report for C will contain all the
CNOT gates needed to implement functions for the p.f., the d.f., and the p.o.d. For the step in (37) we
require n two qubit gates for both the d.f. and the p.o.d and 2n two qubit gates for the p.f.. Thus, the total
number of two qubit gates N2q needed to solve a CVA problem instance is

N2q = 2C + n + n + 2n = 2(C + 2n). (39)

In table 6 we present numerical results for calculating N2q for different numbers of qubits. In comparison,
to implement all the three desired functions for the CVA instance with CRCA, we need a total of 6 CNOTs
for both the d.f. and the default probabilities and 24 CNOTs (two layers) for the p.f., giving a grand total of
36 CNOTs for a qubit size register of four qubits. Of course, while we expect to continue to see savings in
the number of CNOT gates, the classical optimization problem for CRCA gets harder with the number of
qubits.

4.3. Noiseless quantum CVA value
We now have all the ingredients needed to build the quantum circuit shown in figure 3 so that we are able
to get a quantum estimate for the CVA value. Once all the components are trained we can simply run the

circuit and calculate the probability of three ancilla qubits being in the state |111〉. Let
∣∣∣ξ̃〉 be the actual

output state of the quantum circuit (versus the ideal state |ξ〉 in equation (18)). The quantum CVA value is
then:

C̃VAQ = 2m(1 − R)CpCqCv

〈
ξ̃
∣∣∣Π ∣∣∣ξ̃〉 (40)

= 1.987 × 10−5, (41)

where the values of Cp, Cv , m, Cq are reported in table 2 and R is reported in table 1. The above result is
calculated from an exact simulation of the quantum circuit. The error in the CVA calculation can be
decomposed as the following:

|CVAMC − C̃VAQ| � |CVAMC − C̃VA(2)|+ |C̃VA(2) − C̃VAQ| = εD + εQ, (42)
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Table 7. Error quantities of the quantum circuit for
the CVA instance described in table 2.

Discretization error εD 4.376 × 10−5

Noiseless quantum circuit error εQ 7.638 × 10−6

Noiseless observable error εΠ 8.836 × 10−3

State preparation error KL(pG‖ptg) 4.150 × 10−4

Payoff function error εCRCA,v 3.218 × 10−3

Discount factor error εCRCA,q 1.545 × 10−4

Default probability error εCRCA,p 1.546 × 10−4

where εD = |CVAMC − C̃VA(2)| is the discretization error and εQ = |C̃VA(2) − C̃VAQ| is defined as the
error due to deviation of the trained quantum circuit from an ideal quantum circuit that prepares |ξ〉 in
equation (18). With a slight abuse of notation regarding the operators forming the quantum circuit

(figure 3), we consider |ξ〉 = RpRqRvGP|0n+m+3〉 and |ξ̃〉 = R̃pR̃qR̃vG̃P|0n+m+3〉 where R̃p, R̃q, R̃v , and G̃P
denote the operators produced from training. The core component of understanding εQ is to bound the
error in estimating Π, for which we have the following upper bound (derived in appendix D):

εΠ = |〈ξ|Π|ξ〉 − 〈ξ̃|Π|ξ̃〉| �
√

2 · KL(pG‖ptg) + 2(εCRCA,v + εCRCA,q + εCRCA,p), (43)

where εCRCA,f = ‖R̃f − Rf ‖2. Here we use pG to denote the output probability distribution (equation (23)
and pA = |ΨA|2 for ΨA in equation (26)) from the state preparation operator GP . Although slightly

different objective functions are used for QCBM and MPS training, in both cases (C(�θ) in equation (24)
and L in equation (27)) they are related to the KL divergence between the generated distribution pG and the
target distribution ptg.

In table 7 we list the error quantities that are useful for gaining insight on the main sources of error.
Clearly, since the CVA instance contains only n + m = 4 qubits, the dominant source of error is
discretization εD (computed from equations (9) and (21)), compared with error in building the quantum
circuit εQ (computed from equations (21) and (41)). However, as shown in figure 2, εD can be quickly
suppressed by increasing the number of qubits n for encoding the asset price. Through equation (40) we
can obtain the error εΠ = εQ/(M(1 − R)CvCpCq) in estimating the observable Π as listed in table 7. Based
on the upper bound of εΠ, apparently the contribution from state preparation, which is√

2 · KL(pG‖ptg) = 0.028 8, dominates over the contributions from CRCA training. The value of εΠ is well
within the upper bound in (43).

The analysis so far assumes perfect amplitude estimation, namely that we are able to obtain 〈ξ̃|Π|ξ̃〉
exactly. In reality, with both quantum amplitude estimation and classical Monte Carlo algorithms, there is
always a statistical error εS due to the finite amount of computational resources, be it quantum circuit runs
or Monte Carlo steps, being used for statistical estimation. In the next section, we discuss using a recently
developed Bayesian amplitude estimation technique [8] for performing the amplitude estimation. A central
object of this algorithm is the ELF which is used for carrying out Bayesian inference. See appendix E for a
detailed description of this algorithm.

5. Concrete resource estimation

In this section, we evaluate and compare the runtimes of the classical Monte Carlo algorithm and our
quantum algorithm for solving the CVA instance specified in table 1. The goal here is to validate our
approach to the CVA problem via a simple example [50]. In particular, we aim to show that combining the
ansatz circuit in section 4 and the amplitude estimation technique in appendix E yields an advantage over
the traditional method.

For the classical benchmark, we compute the CVA value based on equation (2) [51]. In particular, to
compute the expected exposure E(ti) at each time ti, we run a classical Monte Carlo simulation with 10, 100,
1000, 10 000 or 100 000 paths, respectively. This leads to different runtimes of the algorithm and different
errors in the outputs, which are illustrated in figure 12.

On the quantum side, we estimate C̃VAQ = M(1 − R)CvCpCq

〈
ξ̃
∣∣∣Π ∣∣∣ξ̃〉 by applying the ELF-based

amplitude estimation algorithm (appendix E) to the circuit A = R̃pR̃qR̃vG̃P and the projection operator Π
given by equation (19). The ELF-based estimation scheme requires implementing two types of reflection
operations:

(a) We implement the unitary operator R0(y) = exp(iy
∣∣0n+m+3

〉 〈
0n+m+3

∣∣) with the method in [52],
which requires n + m + 2 ancilla qubits and 8(n + m + 2) two-qubit gates [53].

(b) To implement the operator U(x) = exp(ixΠ), we decompose it into four two-qubit gates, as implied by
theorem 8 of [47].
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Figure 12. Classical and quantum runtimes needed to estimate CVA to various accuracies. Here ‘RE’ is short for relative error.
Each color represents a target accuracy, and the dashed line and solid curve of that color represent the classical and quantum
runtimes needed to reach that accuracy, respectively. The colored areas represent the region of uncertainty as specified by the RE.
We assume that the quantum device uses the surface code in [54] for quantum error correction and follow the method in [55] to
analyze the overhead of this scheme. The surface code cycle time is set to 1 μs.

As a consequence, the quantum circuit for drawing samples that correspond to an ELF acts on 13 logical
qubits and contains M = 136 logical two-qubit gates per layer.

We assume that the quantum device has gate error rate 10−3 and uses the surface code in [54] for
quantum error correction, and we follow the method in [55] to analyze the overhead of this scheme. When
the distance of the surface code is d, each logical qubit is mapped to 2d2 physical qubits, the fidelity of each
non-Clifford gate is fnc ≈ (1 − 10−(d+3)/2)100d, and the execution time of this gate is tnc ≈ 100d× the surface
code cycle time. Under a reasonable assumption about the layout of the circuit [55], we have f2Q ≈ fnc, and
t2Q ≈ tnc. We set the surface code cycle time to 1 μs (which is an optimistic estimate [54]), and vary the
code distance from 10 to 26. This leads to different fidelities and execution times of logical two-qubit gates.
We also assume the readout fidelity is p̄ = f 3

nc, as the projection operator Π acts on three logical qubits.
Under these assumptions about the hardware, we use the following equation to estimate the quantum
runtimes needed to achieve the same error tolerance ε as in the classical experiments.

Tε ∼ O

⎛⎜⎝t2QM · e−λ

p̄2

⎛⎜⎝ λ

ε2
+

1√
2ε

+

√√√√( λ

ε2

)2

+

(
2
√

2

ε

)2
⎞⎟⎠
⎞⎟⎠ , (44)

where t2Q is the two-qubit gate time, M is the number of two-qubit gates per layer4, λ = M ln(1/f2Q) in
which f2Q is the two-qubit gate fidelity, and p̄ is the read-out fidelity. In the low-noise limit, i.e. λ � ε,
equation (44) recovers the Heisenberg-limit scaling O(1/ε); while in the high-noise limit, i.e. λ � ε,
equation (44) recovers the shot-noise-limit scaling O(1/ε2). Thus, this model interpolates between the two
extreme cases as a function of λ. Such bounds allow us to make concrete statements about the extent of
quantum speedup as a function of hardware specifications (e.g. the number of qubits and the two-qubit
gate fidelity), and estimate runtimes using realistic parameters for current and future hardware.

The numerical results generated from the runtime model are demonstrated in figure 12. We observe that
for estimating CVA to a relatively large error (e.g. �0.35%), our quantum algorithm runs slower than the
classical algorithm. This is mainly because elementary quantum operations take much longer time to
execute than their classical counterparts, due to the overhead from quantum error correction. So even
though our algorithm contains fewer elementary operations than the classical algorithm, its runtime is still
larger than the latter’s. Nevertheless, as demonstrated by figure 13, the runtime of classical algorithm scales
almost quadratically in the inverse error in the result, while the runtime of our algorithm scales almost
linearly in the same quantity, assuming the gate fidelity is sufficiently high. Therefore, as the desired
accuracy of the result becomes higher, the gap between the quantum and classical runtimes will shrink, and
eventually the quantum algorithm will surpass the classical one in efficiency. For example, based on the
projection in figure 13, our algorithm will run faster than the classical one for estimating CVA within RE
�0.0067%. We emphasize that this threshold heavily depends on the hardware specifications, and could be
dramatically shifted once we have better technology for realizing high-fidelity quantum gates.

4 [8] has assumed that the two-qubit gates are arranged in a bricklayer fashion and hence M ≈ nD/2, where n is the number of qubits
and D is the two-qubit gate depth per layer. This assumption does not hold here, as our ansatz circuit is highly sequential.
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Figure 13. Trends of classical and quantum runtimes for estimating CVA to higher and higher accuracies. Here we make the
same assumption about the quantum device as in figure 12, setting the code distance to 18. The classical runtime scales almost
quadratically in the inverse error in the result, while the quantum runtime scales almost linearly in the same quantity.

Our results are consistent with the ones in [56] which show that it is unlikely to realize quantum
advantage on a modest fault-tolerant quantum computer with quantum algorithms giving quadratic
speedup over its classical alternatives, due to the large overheads associated with quantum error correction.
For such quantum algorithms to run faster than their classical competitors, the input instance must be
sufficiently large (as measured by the inverse accuracy of the result in this work), so that the small quantum
scaling advantage can compensate for the large overhead factor from error correction. These findings
suggest that we should either focus beyond quadratic speedups or dramatically improve the techniques for
quantum error correction (or do both) in order to achieve quantum advantage on early generations of
fault-tolerant quantum computers.

We emphasize that our resource estimation could have been more pessimistic if not for the innovations
in our circuit construction. Specifically, many quantum algorithms today leverage amplitude amplification
to achieve quadratic speedup over their classical counterparts. These algorithms need to make calls to
certain quantum primitive circuits which are the coherent version of the classical ones and are often
obtained via RLS. Due to the overhead from RLS and quantum error correction, such quantum primitive
circuits are much slower than its classical counterparts at least in the near future. However, this is not the
case in this work, as we have invented alternative, shallower quantum circuits for CVA evaluation that are
qualitatively different from the classical one based on Monte Carlo sampling, and consequently, our
primitive calls take much less time than the ones based on RLS, which reduces the gap between the
runtimes of classical and quantum algorithm at small scales.

6. Discussion

In this work we have described a general quantum algorithm for computing CVA and performed concrete
resource estimation using a specific instance of the CVA problem along with the recently developed ELF
technique for quantum amplitude estimation. The study has revealed both challenges towards quantum
advantage and opportunities for improving the quantum algorithm. Results from section 5 show that unless
very small statistical error εS is desired (roughly on the order of 10−10) in estimating C̃VAQ, the classical
Monte Carlo implementation is faster than the quantum algorithm. Here we assume that εS is the dominant
source of error, namely that all of the other error quantities in table 7 are significantly smaller than εS.
Fulfilling this assumption requires further innovation on the quantum circuit construction. For instance, in
order to suppress εD we need to increase the number of qubits encoding time and price parameters, which
implies that scalable circuit generation training methods for both state preparation and control rotation are
needed. The circuit generation methods are not only measured in terms of the scaling of their
computational time but also the accuracy of the resulting circuit constructions, since this directly influences
the εQ contribution. We have identified some of the recently developed tools [48, 57, 58] that may help
improving circuit generation, and active work is in progress to deploy and test those tools.

From a quantitative finance perspective, it is well-known that an European option pricing problem
involving a single asset is analytically solvable, without the need for a Monte Carlo simulation. Nonetheless,
our method can be generalized to other settings that do require stochastic simulation, such as multi-asset
options, fat-tail distributions for P(s, t), and stochastic intensity models [59]. The main challenges that need
to be overcome when considering such generalization include more effective methods for training the
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Table 8. Relation between number of qubits n and number of layers f(n)
needed in the quantum circuit to yield advantage over the classical
algorithm.

n 2 3 4 5 6
f(n) <2 <2 �4 �5 �7

models (QCBM and CRCA). As the landscape of risk analysis use cases in quantitative finance unfolds, we
expect more innovations to be made in the future that push the Frontier of quantum computing closer to
practical advantage.
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Appendix A. QCBM efficiency of learning discrete distributions

In section 4.1.1, we showed that a QCBM defined on four qubits is able to learn the desired target
distribution associated to the chosen problem instance. In order to perform the QCBM training, it is
essential to collect a certain amount M of measurements outcomes that build up the measured distribution
to be compared to the target one. The QCBM training performance changes as the number of shots taken
from the quantum computer varies. We performed an initial study to assess the efficiency of the algorithm
in dependence on the number of quantum samples M for different circuit sizes and depths. In order to
quantify the QCBM efficiency, let us define the following measures:

εμ = |μm − μt|

εσ2 = |σ2
m − σ2

t |,
(A1)

where μ and σ2 are the mean and the variance of the measured (m) and the target (t) distribution. For
simplicity, we limited the target distribution to one single log-normal peak. We computed the median of
this quantity over ten equivalent simulations for different value of M and compared the scaling behaviour
against the one obtained for a classical Monte Carlo simulation (i.e. rejection sampling).

The relation between QCBM and Monte Carlo scaling depends on the circuit details. Specifically, if one
increases the problem size while keeping the depth fixed, the QCBM efficiency decreases, whereas if one
increases the depth keeping the number of qubits fixed, the QCBM efficiency increases and eventually
outperforms its classical Monte Carlo counterpart. This initial analysis shows that the ‘aspect ratio’ of the
quantum circuit matters when it comes to the efficiency of learning a discrete distribution. That is to say:
given a n qubits QCBM, it needs to have f(n) layers in order to yield an advantage over Monte Carlo (see
table 8).

Appendix B. Quantum circuits for preparing matrix product states

Our method for encoding MPSs into quantum circuits is based on the one in [60]. Suppose |ψ〉 is an MPS
given by

|ψ〉 = 〈ψF|A[1]A[2] . . .A[n] |ψI〉 (B1)

=
∑

i1,i2,...,in∈{0,1}
〈ψF|A[1]

i1
A[2]

i2
. . .A[n]

in
|ψI〉 |i1i2 . . . in〉 , (B2)

where A[j] : CD → CD ⊗ C2 satisfies A[j] = A[j]
0 ⊗ |0〉+ A[j]

1 ⊗ |1〉, for j = 1, 2, . . . , n, and |ψI〉, |ψF〉 ∈ CD

are arbitrary. Without loss of generality, we assume that D = 2d for some d ∈ Z+ (if D is not a power of

5 Zapata Computing, Inc. 2020 Orquestra Documentation https://orquestra.io/
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Figure 14. Quantum circuit for preparing a six-qubit MPS with bond dimension 2. The two-qubit operators W[2], U[3], U[4] ,
U[5] and W[6] are computed by the procedure in appendix B.

two, we can embed this MPS into a larger MPS whose bond dimension is 2�log2(D)	). We will find isometries
V[1], V[2], . . . , V[n] such that

|ψ〉 = V [1]V [2] . . .V [n] |φ〉 (B3)

for some state |φ〉 ∈ CD by a sequence of SVDs. Specifically, we start by writing

〈ψF|A[1] = V [1]M[1], (B4)

where V[1] is the left unitary matrix in the SVD of the left-hand side, and M[1] is the remaining part of the
SVD. Then we construct the other isometries by the following induction:

(M[k] ⊗ I)A[k+1] = V [k+1]M[k+1], (B5)

where V[k+1] comes from the left unitary matrix in the SVD of the left-hand side, and M[k+1] is the
associated remaining part of the SVD. After n applications of SVDs from left to right, we set

|φ〉 = M[n] |ψI〉 , (B6)

obtaining equation (B3) as desired. It is easy to show that V[k] has dimension min(2D, 2k) × min(D, 2k).
This implies that we can embed V[k] into a 2D-dimensional or 2k-dimensional unitary U[k], depending on
whether k > d or not. (Precisely, we define U[k] as follows. If k � d, then U[k] = V[k]; otherwise, U[k] can be
any 2D-dimensional unitary operator such that U[k] |0〉 |η〉 = V [k] |η〉 for all |η〉 ∈ CD.)

Now we treat |φ〉 as a d-qubit state (i.e. we use d qubits to simulate the D-dimensional system). It
follows that

|ψ〉 = U[1]U[2] . . .U[n]
∣∣0n−d

〉
|φ〉 , (B7)

where U[k] acts on the first k qubits if k � d, and the (k − d)th to the kth qubits otherwise. Let Q be a
d-qubit unitary operator such that Q

∣∣0d
〉
= |φ〉. Then we get

|ψ〉 = W [d+1]U[d+2] . . .U[n−1]W [n] |0n〉 , (B8)

where W[d+1] :=U[1]U[2] . . . U[d+1] acts on the first d + 1 qubits, and W[n] :=U[n](I ⊗ Q) acts on the
(n − d)th to the nth qubits. Equation (B8) leads to a quantum circuit for preparing the state |ψ〉. Figure 14
demonstrates this circuit for the case n = 6 and D = 2.

The unitary operators W[d+1], U[d+2], . . . , U[n−1] and W[n] can be decomposed into one- and two-qubit
gates by using the method in [47]. Since each of these operators acts on d + 1 qubits, it can be implemented
by a circuit containing cd+1 CNOT gates, where [4d+1 − 3(d + 1) − 1]/4 � cd+1 � (23/48) × 4d+1

− (3/2) × 2d+1 + 4/3. This implies that the number of CNOT gates in the final circuit is
Θ(n4d) = Θ(nD2). Table 9 gives estimated CNOT counts for various n’s and D’s6.

6 Here we also give estimated numbers of single-qubit gates in the circuit for preparing a n-qubit MPS with bond dimension
D = 2d . If arbitrary single-qubit gates can be used, then the number of single-qubit gates is 6n − 5 if d = 1, or between
(n − d)(4d+1 − 1)/3 and (n − d)(13 × 4d−1 − 3 × 2d) if d � 2. If only Rx(θ), Ry(θ) and Rz(θ) gates can be used, where θ∈R is arbi-
trary, then the number of single-qubit gates is 12n − 9 if d = 1, or between (n − d)(4d+1 − 1) and (n − d)(21 × 4d−1 − 3 × 2d))
if d � 2.
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Table 9. Estimated numbers of CNOT gates in the quantum circuits for
MPS of various sizes and bond dimensions. Here n is the number of
qubits, and D is the bond dimension. For each pair (n, D), we give an
upper bound and a lower bound on the corresponding CNOT count.
Without loss of generality, we assume that D � 2�n/2� , since any n-qubit
MPS can be transformed into an equivalent form with bond dimension at
most 2�n/2� . So there are no entries for (n = 4, D = 8) or (n = 4, D = 16).

D = 2 D = 4 D = 8 D = 16

n = 4 9 [28, 40] — —
n = 8 21 [84, 120] [305, 500] [1008, 1776]
n = 16 45 [196, 280] [793, 1300] [3024, 5328]
n = 32 93 [420, 600] [1769, 2900] [7056, 12 432]

Appendix C. Comparing two SU(2) rotations for CRCA

We are concerned with relating the cost function of the form in equation (35) to the norm difference
‖U − V‖2 between SU(2) rotations U and V such that

U =

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
, V =

(
cos η − sin η

sin η cos η

)
. (C1)

It is clear that

‖U − V‖2 = ‖I − VU†‖2

= ‖I − exp
(
−i(ϕ− η)σy

)
‖2

= 2

∣∣∣∣sin

(
ϕ− η

2

)∣∣∣∣ . (C2)

A quantity that is relevant to the training error of CRCA, as described in equation (35), is the difference
|sinϕ− sin η|. This quantity is equal to |̃f(xj, �θ) − f (xj)| when U is the SU(2) rotation in the block of the
CRCA unitary indexed by j and V is the ideal rotation in the same block with all of its matrix elements
being real numbers. We show that

| sin ϕ− sin η| � 2

∣∣∣∣sin

(
ϕ− η

2

)∣∣∣∣ , 0 � η < ϕ � π/2 (C3)

using a geometric illustration (figure 15). Assume 0 < η < ϕ < π/2. From point O we make three rays
−→
OA,

−→
OD and

−→
OE such that ∠AOD = η and ∠DOE = ϕ− η. Points A, D, and E form an arc ÂDE on a unit

circle. Therefore |−→DE| = 2| sin
(
ϕ−η

2

)
|. From A we make two lines

−→
AC and

−→
AB that are perpendicular to

−→
OD

and
−→
OE respectively. Therefore |−→AC| = sin η and |−→AB| = sin ϕ. Using A as the center and

−→
AC as the radius,

we make an arc ĈG which intercepts
−→
AB at G. Hence

|−→BG| = | sin ϕ− sin η|. (C4)

From points C and D we make perpendicular lines to |−→AB| that intercepts
−→
AB at C

′
and D′ respectively. Since

η > 0, C is between D and F. Since
−−→
CC′ is in parallel to

−−→
DD′, C′ is between D′ and F. Since

∠C′CF = ∠DOE = ϕ− η and
−→
CF is a tangent of ĈG, G is between F and C′, which is itself between F and

D′. Therefore we have that G is between F and D′, namely

|−→BG| < |
−→
BD′|. (C5)

From D′ we make a parallel line to DE which intersects
−→
AE at E′. Then

|
−→
BD′| < |

−−→
E′D′| = |−→ED| = 2

∣∣∣∣sin

(
ϕ− η

2

)∣∣∣∣ . (C6)

Combining (C4)–(C6) yields the conclusion in (C3).
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Figure 15. Geometric proof of inequality (C3).

Appendix D. Derivation of the CVA observable error bound

Here we derive the upper bound in (43). We start from state preparation, where we generate
pG(xi) = |〈xi|GP|0n+m〉|2 to approximate a target distribution ptg(xi) for xi ∈ Ω = {0, 1}n+m,
i = 1, . . . , 2n+m. We can then rewrite the error term as

∣∣∣〈ξ|Π|ξ〉 − 〈ξ̃|Π|ξ̃〉
∣∣∣ = ∣∣∣∣∣∑

i

ptg(xi)〈xi|R†
vR†

qR†
pΠRpRqRv|xi〉 −

∑
i

pG(xi)〈xi|R̃†
vR̃†

qR̃†
pΠR̃pR̃qR̃v|xi〉

∣∣∣∣∣ (D1)

=

∣∣∣∣∣∑
i

ptg(xi)〈xi|R†
vR†

qR†
pΠRpRqRv|xi〉 −

∑
i

pG(xi)〈xi|R†
vR†

qR†
pΠRpRqRv |xi〉

+
∑

i

pG(xi)〈xi|R†
vR†

qR†
pΠRpRqRv |xi〉 −

∑
i

pG(xi)〈xi|R̃†
vR̃†

qR̃†
pΠR̃pR̃qR̃v|xi〉

∣∣∣∣∣ (D2)

�
∑

i

∣∣pG(xi) − ptg(xi)
∣∣+∑

i

pG(xi)
∣∣〈xi|R†

vR†
qR†

pΠRpRqRv |xi〉

− 〈xi|R̃†
vR̃†

qR̃†
pΠR̃pR̃qR̃v|xi〉|. (D3)

The first term in (D3) can be bounded from above by
√

2 · KL(pG‖ptg) due to Pinsker’s inequality. The
second term can be bounded from above by

∑
i

pG(xi)
∣∣〈xi|R†

vR†
qR†

pΠRpRqRv|xi〉− 〈xi|R̃†
vR̃†

qR̃†
pΠRpRqRv |xi〉

+ 〈xi|R̃†
vR̃†

qR̃†
pΠRpRqRv|xi〉 − 〈xi|R̃†

vR̃†
qR̃†

pΠR̃pR̃qR̃v|xi〉| (D4)

�
∑

i

pG(xi)
(∣∣∣〈xi|

(
R†
vR†

qR†
p − R̃†

vR̃†
qR̃†

p

)
ΠRpRqRv|xi〉

∣∣∣
+
∣∣∣〈xi|R̃†

vR̃†
qR̃†

pΠ
(

RpRqRv − R̃pR̃qR̃v

)
|xi〉
∣∣∣) (D5)

� 2
∥∥∥R̃pR̃qR̃v − RpRqRv

∥∥∥
2

(D6)

where going from (D5) to (D6) we apply the following argument:
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∣∣∣∣∣∣〈0|V†|111〉〈111|︸ ︷︷ ︸
Π

(V − U)|0〉

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣〈0|V†σ⊗3

x |0〉︸ ︷︷ ︸
=|111〉

∣∣∣∣∣∣∣ ·
∣∣〈0|σ⊗3

x (V − U)|0〉
∣∣

� ‖V†σ⊗3
x ‖2 · ‖σ⊗3

x (V − U)‖2 = ‖V − U‖2. (D7)

When applying the argument for each term in the sum of (D5) we let U and V be unitary operators such
that U|0〉 = R̃pR̃qR̃v|xi〉 and V|0〉 = RpRqRv|xi〉. The operator σ⊗3

x acts on the three ancilla qubits that the
projector Π acts non-trivially on (equation (19)).

The term in (D6) can be further bounded from above by∥∥∥R̃pR̃qR̃v − RpRqRv

∥∥∥
2
=
∥∥∥R̃pR̃qR̃v − R̃pR̃qRv + R̃pR̃qRv − RpRqRv

∥∥∥
2

=
∥∥∥R̃pR̃q

(
R̃v − Rv

)
+
(

R̃pR̃q − RpRq

)
Rv

∥∥∥
2

�
∥∥∥R̃v − Rv

∥∥∥
2
+
∥∥∥R̃pR̃q − RpRq

∥∥∥
2

(D8)

� . . .

�
∥∥∥R̃v − Rv

∥∥∥
2
+
∥∥∥R̃p − Rp

∥∥∥
2
+
∥∥∥R̃q − Rq

∥∥∥
2

(D9)

where in going from (D8) to (D9) we essentially repeat the same argument that leads to (D8). Combining
(D3) and (D9) yields (43).

Appendix E. Quantum amplitude estimation using engineered likelihood function
(ELF)

Here we describe the quantum algorithm in [8] for robust amplitude estimation. Suppose we want to
estimate the expectation value

η = cos (θ) = 〈A|O |A〉 , (E1)

where |A〉 = A
∣∣0k
〉

in which A is a k-qubit unitary operator, O = 2Π− I in which Π is a projection
operator, and θ = arccos (η) is introduced to facilitate Bayesian inference later on. For the CVA problem,

A = R̃pR̃qR̃vG̃P is the quantum circuit for preparing the state |A〉 =
∣∣∣ξ̃〉, and Π is given by equation (19).

Then 〈A|O |A〉 = 2C̃VAQ/C − 1, where C = M(1 − R)CvCpCq by equation (7). So one can infer C̃VAQ

from the estimate of 〈A|O |A〉.
We use the quantum circuit in figure 16 to generate the ELF, which is the probability distribution of a

binary outcome d ∈ {0, 1} given the unknown quantity θ to be estimated. The circuit consists of a sequence
of unitary operations of forms U(x) = exp(ixΠ) and V(y) = A exp(iy

∣∣0k
〉 〈

0k
∣∣)A† in which x, y ∈ R are

tunable parameters. Specifically, after preparing the ansatz state |A〉 = A
∣∣0k
〉

, we apply 2L unitary
operations U(x1), V(x2), . . . , U(x2L−1), V(x2L) to it, varying the rotation angle xj in each operation. For
convenience, we call V(x2j)U(x2j−1) the jth layer of the circuit, for j = 1, 2, . . . , L. The output state of this
circuit is

Q(�x) |A〉 = V(x2L)U(x2L−1) . . .V(x2)U(x1) |A〉 , (E2)

where �x = (x1, x2, . . . , x2L−1, x2L) ∈ R
2L contains the tunable parameters. Finally, we perform the projective

measurement {Π, I −Π} on this state, receiving outcome d ∈ {0, 1} with probability

P(d|�x) =
1 + (−1)d 〈A|Q†(�x)OQ(�x) |A〉

2
. (E3)

This Bernoulli distribution depends on θ implicitly.
In practice, the quantum circuit for generating the ELF is inevitably noisy, and the bias of the Bernoulli

distribution in equation (E3) will be re-scaled by a factor of the fidelity of the circuit. Namely, if the fidelity
of the circuit is f ∈ [0, 1], then the probability of obtaining outcome d ∈ {0, 1} becomes

P(d|f ,�x) =
1 + (−1)df 〈A|Q†(�x)OQ(�x) |A〉

2
, (E4)

which still depends on θ implicitly.
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Figure 16. Quantum circuit for generating samples that correspond to an ELF. Here R0(y) = exp(iy
∣∣0k

〉 〈
0k

∣∣) in which y ∈ R is
arbitrary.

We use a Gaussian distribution to represent our knowledge of θ and keep updating this distribution
until it is sufficiently concentrated around a single value. Specifically, we begin with an initial distribution of
η and convert it to the initial distribution of θ = arccos (η). Then we repeat the following procedure until
convergence is reached. At each round, we first compute the circuit parameters �x ∈ R2L that maximize the
information gain from the measurement outcome d (in certain sense). Then we run the quantum circuit in
figure 16 with the optimized parameters�x and receive a measurement outcome d ∈ {0, 1}. After that, we
update the distribution of θ by using Bayes’ rule. Once this loop is finished, we convert the final distribution
of θ to the final distribution of η = cos (θ), and set the mean of this distribution as the estimate of η.

We have discovered that the efficiency of this algorithm is determined by the Fisher information of the
ELF at each round, and proposed efficient heuristic algorithms for finding the parameters �x ∈ R2L that
maximize this quantity. We have also found that the ELF resembles a sinusoidal function in the critical
region, and this fact allows us to perform Bayesian update efficiently without resorting to numerical
integration. See [8] for more details.
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