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Abstract

In this thesis, a study of conformal symmetries of some space times in the f(R) theories of
gravity have been presented. The study includes static spherically symmetric, static plane
symmetric, static cylindrically symmetric, Bianchi type I, Il, 111, VV, Kantowski Sachs, Spatially
homogeneous rotating space-times, a class of pp waves and non-static plane symmetric space-
times. Initially, we have found some solutions of Einstein field equations (EFEs) using different
fluid matters in the f(R) theories of gravity and then we have found conformal vector fields
(CVFs) of the obtained solutions by means of direct integration technique. In the static
spherically symmetric space-times, six cases have been discussed out of which there exists only
one case for which CVVFs become homothetic vector fields (HVFs) while in the rest of the cases
CVFs become Killing vector fields (KVFs). In the static plane symmetric space-times, again
there exist six cases. Out of these six cases, the space-times in five cases become conformally
flat therefore admit fifteen independent CVVFs while in the sixth case CVFs become KVFs. In the
static cylindrically symmetric space-times, the dimension of CVFs turns out to be 4, 5, 6 and 15.
In the Bianchi type | space-times, there exist fourteen cases. Out of these fourteen cases, the
space-times in nine cases admit 4 and 5 HVFs while in five cases, space-times admit 6 and 15
CVFs. In Bianchi type Il space-times, there exist seven cases while studying each case we found
that in four cases, space-times admit proper HVFs while in rest of the three cases, CVFs become
KVFs. In the Bianchi type V space-times, again there exist seven cases. From these seven cases,
the space-times in six cases admit three KVFs while in the seventh case, the space-times become
conformally flat therefore admit fifteen independent CVFs. In the Kantowski Sachs and Bianchi
type 11l space-times, there exist eight cases. Studying each case in detail, we found that in six
cases, space-times admit four and six KVFs while in two cases, the space-times admit proper
CVFs of dimension six. In spatially homogeneous rotating space-times, there exist six cases.
Within these six cases, there exist three cases in which space-times admit three and four KVFs.
In two cases, the space-times admit four HVFs while in the remaining case, the space-time
admits fifteen independent CVFs. In the pp-wave space-times, there exist ten cases. Studying
each case, we found that in eight cases, space-times admit proper HVFs while in two cases,

space-times admit proper CVFs. In non-static plane symmetric space-times, there exist, seven



cases. From these seven cases, there exist two cases in which CVFs become KVFs. In three
cases, space-times admit five HVFs while in the remaining two cases, the space-times admit six

and fifteen independent CVFs.

Vi
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Chapter 1

Preliminaries and Literature Review in f(R) Theory of Gravity

1.1 Introduction

A comprehensive view of the universe first started with Sir Isaac Newton’s theory of gravitation,
nearly three hundred years ago. This theory permitted scientists to describe the movement of
universal bodies on earth with certain assumptions. Initially, Einstein theory was in two major
forms namely special relativity (SR) and general relativity (GR). In SR, the space-time structure
was assumed to be flat and there was no discussion related to the effect of gravity on the space-
time structure. Within its limits, the SR had proven itself a satisfactory theory but in the years
following 1905, Einstein became convinced that gravitation should be expressed in terms of
curvature. Consequently in 1915, Einstein offered the theory of GR whose structure was space,
time and gravitation. This theory describes the gravitation due to the existence of matter and
energy. As in comparison with the SR, the space-time is not necessarily flat in GR. Einstein
theory of GR is based upon the well-known EFEs which will be defined in the upcoming

sections.

In this chapter, we will give some definitions and terminologies which will formulate a basis to
understand the research work. A comprehensive review of literature on the theory of f(R) will be
given. Rest of this chapter is planned as follows: In section (1.2) to (1.12), several basic
definitions will be given. These definitions include manifold, tangent space, tensors, covariant
derivative, Christofell symbols, Riemann curvature tensor, Ricci tensor, Ricci scalar, EFEs,
energy momentum tensor (EMT), space-time, Lie derivative and space-time symmetries
respectively. Review of some important literature related to the f(R) gravity will be given in
section (1.13). Material related to the definitions mentioned above is taken from (Oneill, 1983,
Wald, 1984 and Hall, 2004).



1.2 Manifold

In common words, manifold is defined as a space of points that is locally flat and globally seems
to be a curve. Mathematically, an n-dimensional manifold M is defined as an extension of

ordinary space. It fulfills the topological axioms (Qadir and Saifullah, 2006):
(1) It is separable.

(ii) It is connected.

(i) It is Hausdorff.

(iv) There exists a homomorphism from its open cover to set of n tupples.

1.3 Tangent Space

Before defining a tangent space, first we have to define a tangent vector (TV). A tangent vector

T at point peM, where M denotes the manifold is basically a map T:7—R, 7 being

family of real valued C* functions from M into R which fulfills linearity and Leibnitz rule i.e

(i) T(as+bqg)=aT(s)+bT(q) forall s,gen and a,beR.
(i) T(sa) =T(s)a(p)+s(p)T(q) forall s,qen.

Assortment of all TVs at each point p e M, is represented by T (M) and is called tangent space

(Nail, 1983 and Wald, 1984). A visible picture of such concepts is shown below:

7,M

Figure 1.1



In figure 1.1, pe M s a point in the manifold M and y(t) isacurve in M.

1.4 Tensors
The quantities which remain unchanged when subjected to some transformation are called
tensors. Mathematically, a tensor T of type (k,I) over V (M) where V (M) is representing

finite dimensional vector space is a multilinear map which acts on vectors and yield a number.

Mathematical expression of such a map is given below:

T:V,(M)xV (M)x..xV (M)xV M xV M..xV /M (1.4.1)

k |

where k, | and V; M symbolizes the ordinary vectors or tangent vectors, dual vectors and dual

vector space respectively. Now, we introduce a simple but important operation on tensors which
is called a contraction. A contraction is a map on a M which reduces the rank by two.

Symbolically, it is represented as C: 3(k,1) — 3(k —1,1—1). Moreover, components of a tensor

satisfying
E'™® (x') = E" (x)ox"ox' ", (1.4.2)

is called contravariant tensor with comma showing partial derivative. A covariant tensor is

defined as:
E., (X) = E; (x)ox] o). (1.4.3)
Similarly, a mixed tensor is defined as

ox* o

& 00= 5 a0

E}(x). (1.4.4)



A tensor T, is called symmetric if T, =T,, and anti-symmetric if T,, ==T. Similarly, if T, is

a tensor of type (0,2), then
1 1
Tab ZE(Tab +Tba)+E(Tab _Tba)' (145)

We have decomposed T, into symmetric and skew-symmetric parts i.e. Ty Z%(Tab +T,,) and

T 1

ab] =§(Tab —T,.) respectively (Wald, 1984). One of the most significant form of tensors is

metric tensor. To define a metric tensor, we start with the notion of metric which is considered
as infinitely small squared distance associated with an “infinitely small displacement”. The basic
idea of infinitely small displacement is precisely captured from the concept of tangent vector. A

metric g should fulfil the properties:

(i) It is a linear map whose domain contains the product of tangent space with tangent space onto

real numberi.e. g:T (M)xT (M) —>R.
(ii) It is symmetric i.e. g(Vl,V2)= g(vz,vl) v v,V €T (M).
(i) It is non degenerate i.e. determinant of J,, is non zero.

In the coordinate basis, we may write J,, as
9= 0,dx* ®@dx’. (1.4.6)
a,b

One may replace the notation of g into ds? so that, we have

ds® = > g,,dx*dx". (1.4.7)
a,b

One can define the inverse of g as §*. Thus, by definition 9% ., = &7, where 67 denotes the

Kronecker delta and is defined as



1 ifa=c
5% = ) , (1.4.8)
0 ifa=c

It is well-known that the tensor under discussion is used for lowering or raising the indices.

1.5 Covariant Derivative
The Covariant derivative is basically a map say H:(k,!)—(k,1+1), where (k1) is

representing the type of any smooth tensor field into another type (k,l +1). It is represented by

the symbol V or the semicolon (;). It is considered as a map which fulfills the linearity property
and obeys Leibnitz rule. It also fulfills the commutative property of contraction. In addition, this
map is torsion free and when acts on some scalar field it represents partial derivative instead of
covariant derivative. This sort of the derivative have a deep relationship with the differential
geometry which is further have a link for the core study of fibre bundles. It is also used to
elaborate several mathematical representations of theoretical physics including GR. The
advantage of this form of derivative over the usual differentiation is that it helps to calculate
those changes which happen to occur on the curved space-times. Other forms of the derivative
include Lie and usual differentiation. These types of the derivative don’t have the property to
map a tensor quantity into the tensor quantity whereas covariant derivative have this property

which made this sort of dervitive significant in the field of tensor analysis.

1.6 Christofell Symbol

We know that the metric tensor is covariantly constant i.e. (Wald, 1984)

V.0, =0, (1.6.1)

where V_ denotes the covariant derivative of the metric tensor g,. Expanding the above

equation (1.6.1) give

gab,c _rgcgbd _rgcgad =0. (162)

gab,c :Fgcgbd +Fgcgad' (163)



Interchanging C with bin equation (1.6.3), we have

gcb,a = I_ﬁcjagbd +Fgagcd' (1-6-4)

Similarly, interchanging b with d in equation (1.6.4), we have

Jeap = 60 + T 0eg- (1.6.5)

Adding equations (1.6.3) and (1.6.4), we get

gab,c + gcb,a :Fgcgbd +Fgcgad +rgagbd +Fgagcd' (1'6'6)

Subtracting equation (1.6.5) from equation (1.6.6), we have
gab,c + gcb,a - gca,b :Fgcgbd +rgcgad +rgagbd +rgagcd _nggad _rgbgcd' (1'6-7)

Using the fact that Fgc :Fga and Fga :ng in the above equation (1.6.7), we have

1
rgc = E gbd I:gab,c + gcb,a - gca,b]' (168)

It is important to note that Christofell symbols are not a tensor quantity. These symbols are
important objects as they arise in describing the effects of parallel transport of vectors. These are
also used in the calculations of covariant derivative, Riemann curvature tensor and in the
geodesic equation. Further, Christofell symbols act as a dominant tool to investigate the
geometry of manifold. For instance, a manifold with all the vanishing components is the
indication that the assocated space-time geometry is flat. This property further shows that the
components of the Ricci tensor also going to vanish and hence one seeks for the vaccum
solutions of the EFEs. These symbols have a majour role to calculate the components of the

curvature tensor.



1.7 Riemann Curvature Tensor and its Derived Forms

The Riemann Curvature tensor in terms of Christofell symbols is defined by

Rt?cd = FSd,c _FSC,d +F? rzd _Fgergc' (1.7.1)

€

If we contract the above expression, we get the Ricci tensor R, =R§,, and the trace of Ricci

tensor yields Ricci scalar R= g R (Wald, 1984). In the later terminology, Ricci scalar R has a

significant role as it acts as the key factor while introducing f(R) theory of gravity. On the other
hand, dealing with the curvature tensor yields curvature of a manifold in the subject of
differential geometry. Curvature tensor has a majour impact in the development of GR as the
core of this theory seems to coincide with the well-known field equations. One of the bright
ingradiant of such equations is the Ricci tensor which is obtained by taking the trace of curvature
tensor. Furthermore by taking the trace of Ricci tensor one gets the scalar curvature. In the next

section, mathematical form of the EFEs is given.

1.8 Einstein Field Equations in General Relativity
The EFEs in GR are defined by (Stephani et al., 2003)

G, =R, —% Ry, +Ag, = KT, (1.8.1)
where the quantities are defined below:
G,, = Eienstien tensor,
R,, = Ricci tensor,
R = Ricciscalar,
d,, = Metrictensor,

A = Cosmological constant,



872G

k= e Coupling constant,

G being gravitational constant,
c is the speed of light,

Tab = Energy momentum tensor.

Actually, the EFEs provide a link between geometry and physics of the space-time as the left
hand side of the above field equations denotes the geometry while the right hand side denotes the

physics of the space-time. In the above equation (1.8.1), T, is the source to provide the
gravitational contribution. The case when T, vanishes, one is confined to get the vacuum

solutions to these equations as the door which provide physics of space-time structure closes.

The coming slots of thesis define the EMT.

1.9 Energy Momentum Tensor

The right hand side of equations (1.8.1) is known to be the energy momentum tensor (EMT).
EMT has a major role in GR as it provides the link to discuss the physics related to the
considered space-time structure. In addition, when one needs to explain the gravitational field in
EFEs, one must look to use EMT. Other well-known terminologies related to the physics such as
mass which is defined as amount of matter in a certain object and energy which is capability of

doing work are also directs to define EMT. There are different types of EMT but we are focusing
only on two types which we have used in our research work. The first one is T, for the perfect

fluids which is:

T =(0+ P)S,S, + PGy (1.9.1)

where p is the matter density, p is the pressure and S, is the 4-velocity vector. A perfect fluid

can be characterized as the following properties:



(i) It does not have shear stress.

(ii) It does not have anisotropic pressure.
(iii) It does not have heat conductivity.
(iv) It does not have viscosity.

It is completely characterized by its rest frame isotropic pressure and mass density. The second

form of EMT T, for the dust matter is of the form
Too = PS:S,- (1.9.2)

Clearly, one can define energy momentum tensor for dust matter by putting the pressure term p

equal to zero in equation (1.9.1).
1.10 Space-time

A space-time is defined as a combination (M , g), where M represents the manifold defined

earlier in section (1.2) and g is the Lorentzian metric on M (Wald, 1984). A space-time

comprises of elements which are known as events. It is further classified as stationary, static and
non-static. The term stationary space-time is referred to those having time-like KVF. A
combination of stationary space-time along with the property that it holds a KVF orthogonal to
the hypersurface are termed as static space-time. The space-time other than the stationary and
static are said to be non-static. Therefore, we can define a non-static space-time as the space-time
which do not admit time-like KVF (Stephani et al., 2003). There are also some other space-times
like Minkowski or flat which have vanishing Riemann tensor. Following diagram shows the

structure of space-time. It is usually referred to as light cone:
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Light cone. Figure 1.2
1.11 Lie Derivative

The Lie derivative L of the metric tensor ., along the vector field X is basically a

directional derivative and is defined as: (Hall, 2004)

o c OX° X ©
Ly 9 :%X +0a W"‘ gbc%, (1111)

Another way to define Lie derivative is (Hall, 2004, Hawking, 1973)

L,T= |im{¢ﬁ+T}, (1.11.2)

t—0

where @, is the one parameter local diffeomorphism and #'T denotes the pullback map. If X,

and Xj are two vector fields, then the Lie bracket is defined as:
[ X0 X[ =X (X)) = X (X)) (1.11.3)

If we concentrate within mathematical physics and look into the structure of GR, we see that the
Lie derivative is an important terminology. Especially in the field of symmetries of gravitational

10



fields. Moreover, it is proved to be helpful while one needs to calculate the changes that happen

to occur in curved geometry.

1.12 Space-time Symmetries

In the theory of GR, the space-time symmetries act as the key probes in solving many
mathematical problems. The EFEs defined in equation (1.8.1) have no general solution. One is
not able to solve these equations unless one fixes the space-time geometry. In addition, if a
space-time admits some sort of symmetry then there exists a possibility of finding the exact
solutions to some extent. Space-time symmetries are not only used in finding the solutions, they
are also helpful to classify the already existing solutions with respect to the symmetry which the
space-time admits. The transformations that force the physical quantities to leave invariant are
proved to be extremely important in modern theoretical physics. The existence of symmetries in

space-time provide the conservation laws. In GR, different forms of symmetries include:
(1) Killing symmetry.

(if) Homothetic symmetry.

(iii) Conformal symmetry.

(iv) Affine symmetry.

(v) Projective symmetry.

(vi) Curvature collineation.

(vii) Ricci collineation.

(viii) Matter collineation, etc.

Precise definitions of above mentioned symmetries can be found in (Hall, 2004). Among these
symmetries conformal symmetry is very important due to its important applications in the
modern theoretical physics. From the geometrical point of view, Maxwell’s laws of
electromagnetic theory and light cone structures remain invariant under conformal
transformations. Moreover, for massless particles along the null geodesics, conformal symmetry
produces a constant of the motion. A number of applications of conformal KVFs exist in the

theory of irreversible processes and many more can be seen in (Khan et al., 2015) and the

11



references therein. Conformal symmetry is also used in quantum electrodynamics as the classical
field equations for massless electrodynamics which are invariant under a much larger group of
space-time transformations known as conformal group (Baker and Johnson, 1979). In
astrophysics, conformal symmetry is used to study compact stars. Compact stars are used to
study certain properties of gravitational fields. Conformal symmetry is also used to study
wormhole solutions and Brane world gravstars. Moreover, the role which conformal KVFs play
at the kinematic and dynamic level is documented in (Martin et al., 1986). In view of the
important applications of CVFs, our focus in this thesis will be on searching the CVFs. A vector
field X is said to be conformal vector field, if (Hall, 2004)

Ly G =20 9 (1.12.1)

where ¥ is smooth real valued function on M. There is a close relationship between the vector

field X and the conformal factor v as it is a well-known fact that

HVF, if w =constant.
_ | Proper HVF, if y =constant 0.
| KVF, if =0

Proper CVF, Otherwise.

For a space-time, the maximum dimension of CVFs is fifteen and it is obtained when the space-
time is conformally flat. If the space-time is non conformally flat, then maximum dimension of
CVFs is seven (Hall, 2004).

1.13 Literature Review in f(R) Theory of Gravity

GR is a sophisticated theory of gravitation and was given by Albert Einstein in 1915. The
mathematical form of this theory was described in the form of EFEs which are defined in
equation (1.8.1). These equations were derived by a technique known as Einstein Hilbert action
in linear function of scalar curvature R (Stephani et al., 2003). After four years of its birth,
people started thinking that what will be the form of field equations, if the scalar curvature R in
the action become some function of R. The idea was first presented by Weyl in 1919 and then
supplemented by Eddington in 1923. They argued that inclusion of higher order invariants in the
action can produce interesting results (Weyl, 1919 and Eddington, 1923). In 1929, an American
astronomer Edwin Hubble was performing experiment where he observed that the distance of
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galaxies at the edges of the universe from the observer is increasing with the passage of time.
From this he concluded that our universe is expanding with a fixed rate (Hubble, 1929). Due to
this expansion, space-time geometry was needed to be updated. As the left hand side of
equations (1.8.1) reflects the space-time geometry which is also called the curvature part,
therefore the change in the curvature part of EFEs seems useful for the better explanation of
phenology of expanding behavior of universe. This was possible only if one makes the
modification in the action of GR. Later on, investigation of (Utiyama and De Witt, 1962), put
forward the idea to modify the action of GR by adding the curvature invariants. Eventually, in

1970, A. H. Buchdahl made the modification in action of GR and replaced Ricci scalar R with a
general function f(R) in the Einstein Hilbert action. The refined action S[g] is given below

(Nojiri and Odintsov, 2003)
s[g]= 5 [ f(R)Vgd*, (1.13.1)

where Kk is the coupling constant, g :‘g

and f(R) is representing the function of the scalar

uv
curvature or Ricci scalar R. The action defined in equation (1.13.1) serves as a basic tool to
formulate equations of motions in the f(R) theory of gravity. In fact, the variation of action

(1.13.1) yields following equations in f(R) gravity (Nojiri and Odintsov, 2003)

F(R)R,, _% £ (R) Gy — V.V, F (R)+ 0u0F (R) = KTy, (1.13.2)

where F(R):dd_Rf(R), [=V®V, in which V, is the covariant derivative, T, is the standard

matter energy-momentum tensor. In contrast with the GR, the equations defined in equation
(2.13.2) have order four, therefore create a possibility of obtaining more solutions than GR

whose equations of motion are of order two. The replacement f(R)=R led towards the

equations of motion in GR. There is a huge amount of works on the solutions of equations
(1.13.2). A brief description is given here. In the early 2006 and 2007, some work on spherically
symmetric space-times was carried by (Multamaki and Vilja, 2006). The same authors extended
the work from vacuum to non-vacuum solutions and sought solutions using source of EMT as
perfect fluid. More work related to solutions of EFEs in f(R) gravity have been done in
(Multamaki and Vilja, 2007), (Capozziello et al., 2007), (Hollenstein and Lobo, 2008),
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(Capozziello et al., 2008), (Azadi et al., 2008), (Carames and Bezarra de Mello, 2009), (Sharif
and Shamir, 2009), (Sharif and Shamir, 2010), (Sharif and Shamir, 2010), (Reboucas and Santos,
2010), (Shamir, 2010), (Hendi and Momeni, 2011), (Sharif and Kausar, 2011), (Sebasiani and
Zerbini, 2011), (Sharif and Kausar, 2011), (Shojai and Shojai, 2012), (Capozziello et al., 2012),
(Hindi et al., 2012), (Gutierrez-Pineres, 2012), (Yavari, 2013), (Sharif and Zahra, 2013), (Shamir
and Raza, 2014), (Shamir and Raza, 2014), (Arbuzova et al., 2014), (Hendi, 2014,) (Ohta et al.,
2015), (Amirabi et al., 2016), (Shamir, 2016), (Elmardi et al., 2016), (Tripathy and Mishra,
2016), (Gao and Shen, 2016), (Banik et al., 2017), (Mahraj et al., 2017) and (Nashed and
Capozziello, 2019).

Our purpose in this thesis is to discuss CVFs of distinguish class of space-times in the f(R)
theory of gravity. In the second chapter, we will try to find CVFs of some static space-times in
the f(R) theory of gravity. These include space-times, static spherically symmetric, static
cylindrically symmetric and static plane symmetric. In the third chapter, we will find proper
CVFs of spatially homogenous rotating space-times and well-known class of plane fronted
gravitational waves (GWs) also called pp-waves space-times. In the fourth chapter, a
comprehensive study of some Bianchi models will be presented. In particular, conformal
symmetries of Bianchi type I, II, V, Ill and Kantowski Sachs space-times will be discussed in
detail. In chapter five, conformal symmetries of proper non static plane symmetric space-times
will be discussed. In chapter six, conclusion of overall analysis will be given. At the end of this

thesis, bibliography of our work will be presented.
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Chapter 2

Conformal Symmetry of Some Static Space-Times in f(R) Theory of
Gravity

2.1 Introduction

In this chapter, we will study CVFs of some static space-times in the f(R) theory of gravity. The
methodology which is adopted here is twofold. In the initial step, we have tried to formulate the
space-times in the theory of f(R). Further, we have used these space-times to construct CVFs.
The procedure of finding the CVFs is direct integration. Three space-times have been considered
in this chapter to find CVFs. These space-times are static spherically symmetric (SSS), static
plane symmetric (SPS) and static cylindrically symmetric (SCS). The whole chapter is divided
into five sections. In the section (2.2), we don’t explore the space-times. Instead of this, we have
used the results of two papers (Capozziello et al., 2012 and Amirabi et al., 2016) to find CVFs.
SS space-time is of incredible passion because of it having various significant physical and
hypothetical aspects. This space-time is considered as one of the initial solution of the EFEs
whose significant example include the Schwarzschild solution. Looking at the end of physical
scenario, the Schwarzschild solution is utilized to clarify the gravitational field outside to static
round stars. SS space-times are likewise used to talk about the nearby planetary group tests and
can be considered as key fixings to figure related physical amounts like weight, thickness and
gravitational fields. Spherical symmetric space-times are important to study from several point of
view. Especially the theory of black holes entirely depends on the spherical geometry of space-
times. The SSS stars are used to compute pressure, density and gravitational fields and to treat
the solar system tests. On the other hand exact spherical symmetric solutions yield a deeper
approach to look into the Steller models and related red-shifts. Keeping the important
applications of spherical symmetric space-times in mind, it seems interesting to study this space-
time from the symmetry perspective. The upcoming three sections are specified for detailed
study of CVFs for spme well-known space-times whereas in the last section (2.5), a brief

summary of the obtained results is given.
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2.2 Conformal Vector Fields of Static Spherically Symmetric
Space-times in the f(R) Theory of Gravity

0 1 2

Consider SSS space-times in the coordinates (t,r,,¢) (given by (x X, X ,x3) respectively)

with line element (Stephani et al., 2003)

2
ds® = —A(r)dt® + dr
A(r)

+ridQ?, (2.2.1)

where dQ” =[dé” +sin” @dg’ |. The minimal number of isometries which the above space-

times (2.2.1) admit are (Stephani et al., 2003)

9 i cotecos¢i+sin¢i, cos¢i—cot03in¢i. (2.2.2)
ot’ 0¢ 0¢ 00 00 ol

Expanding equation (1.12.1) and using equation (2.2.1), we have

AX'+2AX G =2Ay, (2.2.3)
A*X] =X} =0, (2.2.4)
AXS -r?X§ =0, (2.2.5)
AX§ —r?sin? X3 =0, (2.2.6)
—AX 4+ 2AX ] =2Ay, (2.2.7)
X5 +Ar’X: =0, (2.2.8)
X5+ Ar?sin? 0X; =0, (2.2.9)
X' +rX2 =1y, (2.2.10)
X5 +sin? 90X =0, (2.2.11)
X' +rcotdX?+rX5 =ry, (2.2.12)
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d 1
where prime signifies a Multiplying equation (2.2.7) with ﬁ and then integrating over I,

one has Xl:ﬁj%dr+ﬁ81(t,9,¢), where B'(t,8,¢) is a function of integration (FOI).

Using the value of X' in equations (2.2.4), (2.2.8) and (2.2.9) after some algebraic calculations,
we have

X°=B!(t.0.¢)] AZdry B(t, 6, ),

X? =—B§(t,¢9,¢)_[rz(i;z+83(t,0,¢) , (2.2.13)

3 2 ppl dr 4
X3 =—cosec GB¢(t,9,¢)J'm+B (t,6,9)

where B'(t,0,¢), i=2,34 are also FOls. For the sake of obtaining CVF X, we search the

functions B'(t,8,¢), i=12,3,4 and the conformal factor . As already mentioned that we are

going to use the results of the two papers (Capozziello et al., 2012 and Amirabi. et al., 2016) to
find CVFs. The procedure will be straight forward, we will use the values of metric component

A= A(r) which are given in the papers (Capozziello et al., 2012 and Amirabi et al., 2016) in the

above system of equations (2.2.3) to (2.2.12) and then we will find the components of CVFs. The
process of integration is lengthy but straightforward. Omitting the details of calculations which

are performed in this process we arrive at the following cases:
Case (i)

In this case, we have the space-time (Capozziello et al., 2012)

-1
d32=—{1—Ar2—ﬁ}dt2+[l—ér2—ﬁ} dr? +1°d Y, (22.14)
3 2r 3 2r

where A e R\{0} and A is cosmological constant. Next, we substitute the value of A(r) in the

above ten equations from (2.2.3) to (2.2.12) and after some lengthy calculations, we found that
w =0 which implies CVFs are KVFs and are given in equation (2.2.2). The above space-times

are known as static Schwarzschild—de Sitter solutions.
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Case (i)

Here, we have Schwarzschild—de/anti-de Sitter black hole space-time (Amirabi et al., 2016)
-1
ds® = —[1—2—M+c2r2}dt2 +[1—2—M+c2r2} dr? +r?dQ?, (2.2.15)
r r

where M represents the Arnowitt—Deser—Misner (ADM) mass and C, € R. In this case, again we
are using the value of A(r)in the above ten equations from (2.2.3) to (2.2.12) and after some
lengthy calculations, we found that y =0 which implies CVFs are KVFs and are shown by the

equation (2.2.2).
Case (iii)

Here the space-time (Amirabi et al., 2016) is,

-1
dsz:_[irului}dﬁ{%r%%%i} dr2+r’dQ?, (2.2.16)
al

where o e R\{0} and A is cosmological constant. The space-time (2.2.16) do not admit CVFs
as y =0, here CVFs are KVFs which are given in equation (2.2.2).
Case (iv)

The space-time in this case is (Amirabi et al., 2016)

1
1 2n7°+1 1 27°+1
ds? = —| S+ == |dt* +| 2+ =] dr? +r%dQ’, 2.
{2 3(xr} {2 3ar (22.17)

where 7 is the global monopole charge. Here, using the same technique which we have used in
the previous cases, we again found that y =0, = CVFs become KVFs which are already

mentioned in equation (2.2.2).
Case (V)

Here, we have the space-time (Amirabi et al., 2016)
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-1
ds? = —[ﬂ dt? 7{%} dr? +r3dQ?, (2.2.18)

Substituting the value of A(r) in the above ten equations from (2.2.3) to (2.2.12) and after some

lengthy calculations, we found that ¥ =C; which implies CVFs become HVFs. Here, the proper
HVF after subtracting KVFs is

X =(t,r,0,0). (2.2.19)

Case (vi)

Here, considering the space-time of the form (Capozziello et al., 2012)

-1
ds? :—[%—l}dtz {%_1} 4r + Aoy, (2.2.20)
r r

which is asymptotically flat and will be physically consistent for r >0 as value of Ricci scalar is

negative. Again in this case, we found that y = 0, which implies that CVFs are the KVVFs which

are given in equation (2.2.2).

2.3 Conformal Vector Fields of Dust Static Plane Symmetric

Space-times in the f(R) Theory of Gravity

The line element of SPS space-times in the usual coordinates (t, x, y,z) (given by (XO, XX Xa)

respectively) is given by (Stephani et al., 2003)
ds *=—Adt® +dx’+B[dy* +dz°], (2.3.1)

where A=A(x) and B=B(x) are nowhere zero functions of X only. The minimal set of

isometries which the space-times (2.3.1) admit are (Stephani et al., 2003)
0y 0,, 0,y Y0,-10,. (2.3.2)

The value of Ricci scalar R for the above space-times (2.3.1) turn out to be
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+ + —
B B? A AB A’

4 12 " n’ 12
R=2{4B B? 2A" 2AB A } (233)

where prime appearing in the above equation signifies di Expanding equation (1.12.1) and
X

using equation (2.3.1), we have

AX'+2AX§ =2Ay, (2.3.4)
AX§ - X3 =0, (2.3.5)
AX§—-BX§ =0, (2.3.6)
AX§—BX3 =0, (2.3.7)
Xi=vw, (2.3.8)
X5, +BXi =0, (2.3.9)
X3 +BX} =0, (2.3.10)
B'X'+2BX = 2By, (2.3.11)
X5+ X5 =0, (2.3.12)
B'X'+2BX? =2By. (2.3.13)

From equations (2.3.9), (2.3.10) and (2.3.12), we have Xlszl(t,x, y)dy +Q?(t, x,z), where

Q'(t, %, y)and Q*(t,X,) are FOI. Now, utilizing the value of X* in equations (2.3.5), (2.3.9) and
(2.3.12), we have

XO :J'J'Qtl(tjo\xi y) dXdy-l-J.QtZ(t;A‘X’ Z)dX-l-QS(t,y,Z),
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XZ:—deHQ?’(t,y,z),

X3 = —jqf(t, y,2)dy +Q*(t, X, 2), (2.3.14)

where Q%(t,Y,2), Q*(t,x,z) and Q°(t,X,z) are also FOI. As we are in search of CVFs in f(R)

theory of gravity therefore, we need to deduce the solutions in this theory. The theory of f(R) is
based on the set of field equations defined in equation (1.13.2). For finding the solutions of
equations (1.13.2), we will use equation (2.3.1) in the set of equations (1.13.2) and will look for

the metric coeffiecnts. Further, we are using dust matter as a source of EMT which is defined by
Tap = U Uy, (2.3.15)

where o denotes the matter density and U, is the four velocity vector. Using equations (2.3.1),

(2.3.15) and (1.13.2), after some algebraic manipulations, we have

A” Al2 A!Bl B” AIFI F" B!F/ _k_p

—_———t————t—————- = : 2.3.16
2A 4A> AAB 2B 2AF F 2BF FA ( )
B!Z _B_II+A!BI_F_!! A’F'_k_p (2317)
2B B 2AB F 2AF FA ~
A comparison of equations (2.3.16) and (2.3.17) provide the following equation:
AIB!+A/2 _ﬂ_i_B'Z_B_”_l_B’F!_ZF”_O 2318
2AB 2A> A B> B BF F ' (2:3.18)

Looking at equation (2.3.18), we see that it contain three unknowns viz. A, B and F. Choosing
different f(R) models, a number of solutions have been obtained by (Shamir, 2016). In this

study, we are interested in discovering analytic solutions of equation (2.3.18) by imposing some

restrictions on derivative of f (R). These restrictions are:
(@) A=constant, B=B(x), F'#0, F"=0 and B"’F -BB"F + BB'F’'=0.

(b) A=constant, B=B(x), F'=0, F"=0 and B> -BB" =0.
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(c) B=constant, A= A(x), F'#0, F"=0 and A? —2AA" =0.
(d) B=constant, A=A(x), F'=0, F"=0 and A? —2AA" =0.
(e) A=A(x), B=B(x), A=B, F'=0, F"=0 and A? - AA"=0.

() A=AX), B=B(x), A=B, F'#0, F"=0 and A?F—-AA’F + AA'F’'=0. Solutions of

equation (2.3.18) using the above restrictions turns out to be

(i) A=constant, B =e™ X, f(R):(QX"‘Cz)R"‘Cg and R=2(3x2+2)a2+6a,3x+§:32,

where «, ,¢,,C,,C, € R\{0}.

(ii) A=constant, B=€""%, f(R)=c,R+C, and Rzgcj, where ¢,,c,,C;,C, € R\{0}.

(i) B=constant, A=(cx+c,)’,  f(R)=(dx+d,)R+d, and R=0, where

¢,¢,,d,,d,,d, e R\{O}.
(iv) B =constant, A=(cx+¢,)’, T(R)=d,R+d, and R=0, where C,C,,d;,d, € R\{0}.

(v) A=B=e""% f(R)=aR+a, and R=3d? where a,3,,d,,d, e R\{0}.

(i) A=B=e@=”* f(R)=(ax+a,)R+a, and R=9a2 3ax+a,) 1

,Wh
4 41/(a1x+a2) Where

88,8 € R\{0},

Next, we will make use of above information in the equations (2.3.4) to (2.3.13) to sorted out
CVFs.

Case (i)

Constraints of this case are A=constant, B=e™ "% f(R)=(cx+¢,)R+¢;  and
R=2(3x2+2)a2+6aﬁx+gﬁ2, where  @,f,C,C,,C, € R\{0}. The space-time (2.3.1)

performing rescaling in the coordinate t take the form
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ds 2= —dt? + dx 2+ P [dy? + dz?]. (2.3.19)

Now, we are interested in finding CVFs of space-time (2.3.19) with the help of equations (2.3.4)

to (2.3.13). Skipping the process of integration, we arrive at y =0, which shows that no proper

CVFs exist. CVFs here are KVVFs which are given in equation (2.3.2).
Case (i)
The values of metric coeffiecnts and related function f(R) in the present case are A =constant,

B=e""% f(R)=c,R+cC, and RngZ where C,,C;,Cs,C, € R\{0}. Note that for C, =1 and

41

C, =0, solution corresponds to GR. The space-times (2.3.1) after an appropriate rescaling of t

has the form:
ds® = —dt* + dx® +e**[dy” + dz*]. (2.3.20)

Again solving equations (2.3.4) to (2.3.13) with the help of space-time (2.3.20), we get fifteen

linearly independent CVVFs which are:

2,,2 2,2 —CyX Cy C Cu00 C 0

Cy +C,z° +4e™ = —— = —

on[ +Y 422 j{—alae 2 +ae 2 }{aﬁ 2 +ae 2 }z
C

Cq ‘34(”2 Con _Ca0y
ae 2 +a,e y+ae? —ae ? +a,,

C —C Z +4e*°4x Can _Ca® Gy G4y
ae? +ae ? |+|ae? —ae ? |z

Can G40y

7“{ e 5 - 2 2 2
+| € ° —a,e ytag® +ae ° ——aZ+—a,y——a;,
C4 C4 C4

—C2y? +c¢lz +4e‘°4x 2 e -
a12+c_ age _aioe +aﬂyz+a4z+a13y

4

C4@ G

—C—[ae 2 +ae 2 }y+a14,

4
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—C2y? + ¢z —4e 2| u» ]
X3=( +Y 2“02 jan—c—[ase 2 +ae 2 }z—(a122+a4)y
* ) (2.3.21)

4

2 Cay Loy
+C— a,e ? —ae ? |+ayz+ag,

where @ =(t+X), w,=(t-x) and & € R with i=1,2,3,...,15. Conformal factor in this case is

2y,2 252 —CyX Cu0 C 0, Cha Cu
C,y +cC,z° +4e™ - =21 C o 2
C4

c LY G, c o G,
+EA ae 2 —q.e 2 y+54 ae? +ae 2 |

Case (iii)

Here, we have B =constant, A=(01X+C2)2, f(R)=(d,x+d,)R+d, and R=0, where

C,,C,,d;,d,,d, € R\{0}. The space-times (2.3.1) after a suitable rescaling of Y and : turn to be
ds® = —(c,x+c,) dt? +dx* +dy’ +dz°. (2.3.22)

Again the above space-times (2.3.22) is conformally flat, therefore admit fifteen independent
CVFs which are:

X0== 2

X

(Mj (cie'+cie)+z(ce +ce )+
+C,y,

y(ce' +cet)—coet +c e

. (#](%e‘ —cet)+z(cet —ce )+

y (c7et —ce™ ) —C,XZ + CipXy

t —t
+C48' +Ce Tt +CX,

2 2 2
X“—y +z _
2 t t
X =[—2 jcls+c12yz+c152+cl4y+xy(c3e —C,e )

+x(ce' — e )+ Gy,
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2 2 2
" =X =Y
3
X ZL—jclz_Clsyz_cmy"'sz"'

2 (2.3.23)

xz(c,e' —c,et)+x(ce' —ce )+,
where C, € R with i =3 4,5,...,17. Note that for the sack of simplicity, the above components of
CVFs have been found by assuming C, =1 and C,=0. Conformal factor in this case is
w=x(ce' —ce ) +Cpz—Cy +Cy
Case (iv)

The values of space-time components along with the supplementary function f(R) in this case

are B =constant, A:(ClX‘l'Cz)z, f(R):le+d2 and R=0, where C11C21d11d2 ESR\{O} It is to
be noted that the space-time formulated in this case turn out to be same as we obtain in the

previous case having equation (2.3.22). The only difference is found in the value of f(R). CVFs

for this case are given in equation (2.3.23). As the space-times in this case coincides with the
space-times (2.3.22), therefore CVFs for this case are given by the equation (2.3.23).

Case (V)

In this case, we have A=B=e"“%  f(R)=aR+a, and R=3d7, where &,a,,d,,d, e R\{0}.

The space-times (2.3.1) after an appropriate frame has the form
ds? = dx? +e™*[-dt? + dy? +dz*]. (2.3.24)

The above space-times (2.3.24) resembles with the space-like version of FLRW for k =0 and is

conformally flat therefore, CVFs turn out to be:
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—d;x

_[& +y +7) 222 Jcl—dg(czucs)e 2 +(ct+cy)z+
1

(—Ct+C, ) y+Cit+cy,
{ i

(t* —y? —z)e2 L2 2
e cz+d—(c6y—c4z—clt—c8)—
1 1

1

e? cloz+clly ct— 012),

z —t?) 2% 2 —dx
{( ) o jce—d—(czy+cll)e 2 +(cy+cy)z+
1

(ct+cy)y+ct+cy,,

2 d;x —thx
((t Yz ) 2 jc4—d£(czz+clo)e 2 +(ct+cy)z-
1

d2

(Coz +c13) Y +Cit +Cp,

(2.3.25)

Conformal factor in this case is
—d;x ax
—e 2 N d, (t* — y*—z%)e 2
d, 4

d 9
C, _Ele 2 (C102+C11y_C3t_012)’

[//:

where C, € R with i=1,2,3,...,15
Case (vi)

Here, we have the values A =B =@ f(R)=(ax+a,)R+a, and

3(ax+a,) . 1
4 4,/(a,x+a,)

R =94’ , where &;,8,,8, € R\{0}. The space-time (2.3.1) become

ds? = dx? + %) [ —dt® + dy* + dz ] (2.3.26)

Again the above space-time (2.3.26) is conformally flat therefore admits fifteen independent
CVFs which are
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2
—(c,t—cy)y+ct+c¢,

X1 @D (W-}-J‘(emje‘f’dx)dxjcﬁ +C, (Ie_DdX) 1—c, (J-e_DdX) y

—C, Y —CpoZ+(ct+ cg)Ie‘Ddx +Ct+cC,

2 2 2
X0 _ [M + J'(e—f’.[e‘Ddx)dx]c1 +(ct+ c7)fe‘Ddx +(c,t+¢,)z

X? = (M + J‘(e’DJ.efDdX) deC4 + (c6y + Cll) (J-efDdX) + (Czy + Cl3)z

+(ct+c)y+ct+cy,,

X3 = ((ZZL;“Z)_ [ (e-D | e‘Ddx)decz +(c,z +c10)(je‘Ddx)— (C,z+Cp)y

+(Ct+Cg)z+Ct+cCp,

(2.3.27)

where C, € R with i=1,2,3,...,15 and D = 1(alx +a, )% .Conformal factor in this case is

2

e (Lzz_zz)ﬂ'(e‘[’je"’dx)dx]ce+02(J'e‘Ddx)z—c4(Ie‘DdX)y
w=D'e

—C,Y—CZ+(Ct+ 08)je"°dx +ct+c,

+C,2 —c4y+c1t+c6je’Ddx+cg.

2.4 Conformal Vector Fields of Static Cylindrically Symmetric
space-times in the f(R) Theory of Gravity

A space-times with cylindrical symmetric static geometry is defined by (Stephani et al., 2003)
ds® =—""dt? +dr® +e*"d¢” +edz’, (2.4.1)

where v=v(r), A=A(r) and = u(r) are non-zero functions of r only. Note that the space-

times given in the above equation (2.4.1) have a general form because a SPS space-times could

be obtained by setting A(r) = «(r). The linearly independent KVVFs which the space-times (2.4.1)
admits are (Stephani et al., 2003)
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o 90 9o (2.4.2)
The Ricci tensors associated with the space-times (2.4.1) are of the form (Sharif, 2004)

Ry = %e” [2v"+V7? + VA v ],

R, = —%[Zv"+21"+2y”+v’2 + A%,

1
R, =—=e* 20"+ A?+ A +V' 1|,
2= el

R33 :_%eﬂ I:Z#!!+ﬂ12 +/1,/J'+V,,Ll':|, (243)

where the notation prime is the derivative with respect to r. Expanding equation (1.12.1) and

using equation (2.4.1), we obtain the conformal equations:

VX +2X§ =2y, (2.4.9)
e'X{-X5 =0, (2.4.5)
e'X5—e*X5 =0, (2.4.6)
e'X§—e“X} =0, (2.4.7)
Xi=vw, (2.4.8)
X, +e* X1 =0, (2.4.9)
X} +eX5 =0, (2.4.10)
A X +2X5 =2y, (2.4.11)
e* X3 +e"X5 =0, (2.4.12)
WX 42X5=2y. (2.4.13)
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Solving  equations (2.4.6), (24.7) and (2.4.12) simultaneously, we have
X :J'El(t,r,e)d0+ E2(t,r, z), where E'(t,r,60) and E’(t, r,2) are FOL. Now, using value of

X ° in equations (2.4.5), (2.4.6) and (2.4.7), we have

X1 =j(erE}(t,r,.9)d.9)dt+erEf(t,r,z)dt+ES(r,0, 2),
X2 =eHJ.E1(t,r,49)dt+ E3(r,0,2),
X3 :ev‘”J.Ef(t, r,z)dt+E*(r,6,2), (2.4.14)

where E'(r,6,z) with i=3,4,5 are FOl. Up to now, we have found components of CVFs in

terms of the unknown functions of integration and metric components. In order to find CVF X
in the theory under consideration, first we look for the solutions of EFEs defined in equation

(1.13.2). Here, these solutions have been obtained by taking the matter part as perfect fluid
T =(P+ P)S,S, + PYas. (2.4.15)
where the symbols p, p and S, are specified for the quantities density, pressure and four
v(n)
velocity vector respectively. Here, we define our velocity vector as S, =—¢ 2 5a°. Surviving
components of EMT defined for the space-times (2.4.1) are

Too =pe’, Ty =p, Ty= pel’ Ty = pe. (2.4.16)

Using equations (2.4.1), (2.4.3) and (2.4.16) in (1.13.2) after some algebraic manipulations, we
have

F”—7V,+E|:21”+2/J”+/U'2+/’U2—V'ﬂ/,—v,ﬂ,:|+ k(p_|_ p):O (2417)
F, ! ! F ” " 12 12 o o
?(/1 —v)+z[22, V' + A7 N+ A —Vu]+k(p+ p)=0. (2.4.18)

%(ur_vr)_'_g[zlun_zvn_’_ﬂd _VI2 +/IIIL1’—V’/1,:|+k(p+ p) :O (2419)
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The above equations (2.4.17) to (2.4.19) are non-linear, therefore to make the computational
process easy, we are classifying the space-times (2.4.1) by imposing some restrictions on the

metric coefficients along with the condition given in F’ =0, (Shamir, 2016). The classification

has following cases:

Q) v=v(r), A=A(r) and g =constant.
(i) v=v(r), u=u(r) and A =constant.
(i)  A=A(r), u=u(r) and v=constant.
(iv)  v=v(r) and A(r) = u(r).

(V) 2=2a(r) and v(r) = z(r).

(Vi) p=p(r) and v(r) = A(r).

(vil)  v=v(r) and = A =constant.
(viii) A= A(r) and v = g = constant.

(iX) = p(r) and v= A4 =constant.

(x) v(r) = A(r) and x=constant.

(Xi)  v(r) = u(r) and A = constant.

(xii)  A(r) = u(r) and v =constant.

(xiii) v =A== constant.

(Xiv)  v=A4= u=constant.

Case (i)

Constraints of this case are v=v(r), A=A(r) and g=constant. Under this assumption,

equations (2.4.17) to (2.4.19) give

QA" 2" VA~V + A% =0. (2.4.20)
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Here, we assume solution of the form

v=nAi, (2.4.21)

4
4
where ne 93\{0,1}. Using equation (2.4.21) in equation (2.4.20), we have V= In(c ric j and
1 2

4
A= In(%) . The space-times (2.4.1) with the suitable rescaling in the coordinate Z has the

shape given below:

4 4
ds? :_(Cric J dt%drh(%) d6? +dz%, (2.4.22)
1 2

where c,,c, € R. Now, solving equations (2.4.4) to (2.4.13) with the help of space-time (2.4.22),

we found that ¥ =C;, which implies that no proper CVFs exist. Here, CVFs coincide with the

HVFs shown below:

X°=3ct+c,, xlz(&}% X?=—c0+¢C, X’ =cz+c, (2.4.23)
Cl

where C €R,1=34,56. The above space-times (2.4.22) admit four CVFs including minimal

set of isometries listed in equation (2.4.2). The remaining is proper HVF given by

X®=3ct, xt :[ﬁj%’ X?=-c0, X*=c.z (2.4.24)
Cl

Generators of conformal algebra which are labelled by &; in this case are

& :3tg+(—clr+ch£—9i+ Zi,

ot C, or 060 oz
0 0 0
gz_al 53_51 54—5.

These generators form a closed form conformal algebra whose non-zero commutation relations

are:
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6161 =38, [6,,4]=3¢,,

[4&]=G [&.al=—G,

& 8]=-C [60 1= ¢,
Case (i)
Here, we have v =v(r), = u(r) and A=constant. Using equation (2.4.17) to (2.4.19), we have
v=1In [%jzand U= In(L;C“jz. The space-times (2.4.1) after an appropriate rescaling of
¢ take the form

2 2
d[clTj dtudmdm(%j dz? (2.4.25)

where ¢, € R, with i=1,2,3,4. Now, solving equations (2.4.4) to (2.4.13) with the help of the
space-time (2.4.25), we found that =0, indicating that the CVFs are the KVFs which are

given in equation (2.4.2). These KVFs form a closed Lie algebra whose non-zero brackets are:

[6:6]1=8 [5:6]=6, [6.6]1=8,

[66]==6 [5%&]=-6, & al==4
Case (iii)
Constraints for this case are 1=A(r), x=u(r) and v=constant. Using equations (2.4.17) to
(2.4.19), we have u= In(%)z and A= In[%j The space-times (2.4.1) by a suitable

rescaling in the coordinate t has the shape:

2 2
o =+ 210 | a0+ S2% | e (2:4.26)
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where C, € R, i1=1,2,34. Again, we found that =0, leading to the KVVFs of equation (2.4.2).

These KVFs also form a closed Lie algebra with the following brackets:

[951752] = 953' [52’53] = 651’
[51153] = ézv [52’51] :_653’
[53!52] = _451' [53'51] = _éz'

Case (iv)
Here, we have v =v(r) and A(r) = u(r). Again, equations (2.4.17) to (2.4.19) yields
21" —V' A +2v" +V'? =0. (2.4.27)

The solution of above equation (2.4.27) turns out to be V=In(c,r+c,)® and A=In(cr+c,)’.

The space-times (2.3.1) take the form
ds® =—(G,r +,)°dt* +dr? +(cr +¢,)°[ d6” +dz* |, (2.4.28)

where ¢, e R, with i =1,2. Components of CVFs turn out to be

X°=4ct+c,, X! =2c{c1rgc2j,

X?=—C0-Cz+C, X°=-Cz+CH+C, (2.4.29)

where C €R,1=3,4,56,7. Checking the consistency of equations (2.4.4) to (2.4.13),

conformal factor turns out to be ¥ = 203. The five CVFs given in equation (2.4.29) are further

classified as four KVFs and one proper HVF. The proper HVF after subtracting KVF from
(2.4.29) is

X =4dct, xt=2c, (Clrc_“:z] X*=-c0, X*=-Cz. (2.4.30)
1
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The generators of conformal algebra in this case are

51:4t§+2[@j£_9i_22,
ot c,

or o0 oz
0 0
:——Z—’
Z oz 00
0 0
53_51 54 %7 55_5

These generators constitute a closed form conformal algebra whose non-zero commutation

relations satisfy:
-1 1
AL 7541 & &1= me
-1 1
[51155]:7551 [55151]2255’

[52154]:_55’ [X41X2]:X5’
[52’55]:‘54’ [55’52]:_54’
[51153]:_%’ [fg,fl]=§3.

Case (v)
cr+c, Y
In this case, solution of equations (2.4.17) to (2.4.19) is y:v:In(%j and
Cr+c¢, ! ER .
A=In - , where C;,C, € 1. The space-times (2.4.1) take the form
r+c,\ r+c,) r+c, )
dszz—(%j dt%dr%(%) d92+(%j dz?, (2.4.31)

This is the space-time which admits proper CVFs. The components of CVFs are:

0
X" =C.Z+C;,
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X = 2c39(clr +C2j—1604 [Clr A J
Cl Cl

16—c26%(cr+c,)
Xz—{ 107 (Gr+6;) }c3+16c49+c

¢ (Cr+¢, )2 3 "

X®=ct+c,, (2.4.32)

16¢
where C. € R with i =3,4,5,6,7,8. Conformal factor in this case is ¥ = 2¢,0 — c44' This is the

1

case in which the space-times (2.4.31) admit proper CVFs. After eliminating HVFs from
equation (2.4.32), the proper CVF is

16—c26%(cr+c, )
X%=0, xt=p2c0| &% | x?= 10°(G +22) C,, X®=0. (2.4.33)
c c(cr+c,)

The above components of CVFs given in equation (2.4.32) has the generators:

16—c26%(cr+c,)
- §2=20(C1”‘32] 4 +[ 10" (Gr+6,) ] 0 o o

ot c, jor cZ(cr+c,)’ |00 SSa e
& =-16 Ltcz Q—@i, gﬁzg. These generators form a closed form conformal
C or ¢ 00 oz

algebra whose non-zero commutation relations satisfy:

O A R o

[983'§4] = 456’ [53’ 956] = 454'
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Case (vi)

Here, the values of metric components as a result of solution of equations (2.4.17) to (2.4.19)
turn out to be A=v=In(cr+c,) and u=In(cr+c,)’, where C,C, €R. The space-times
(2.4.1) become

ds? =—(cr+c,)dt? +dr? +(cr+c,)dé® +(cr+c,)’ dz?, (2.4.34)

Now, solving equations (2.3.4) to (2.3.13) with the help of the space-time (2.3.34), we found that

¥ =—2C,, which implies that no proper CVFs exist. Here, the CVFs are HVFs which are

X’ =—ct+c0+c, X* =—2c3(clr;:c2}

X?=-ch+ct+c, XP=cz+c, (2.4.35)

where C; € R, 1=3,4,5,6,7. The above space-times (2.4.34) admit five CVFs including four

isometries and one proper HVF. The proper HVF after subtracting KVFs from (2.4.35) is

X" ==, x*=—2c, (Clrc_“’zj X?=—0, X*=c,. (2.4.36)
1

The generators of conformal algebra are

: fszﬁ. These

0 0 0 cr+c, | o 0 0 0 0
oo oz

G=0grtin G=tg 2| MR D0l f=g 6=

ot o0 ot o 00 "oz
generators form a closed form conformal algebra whose non-zero commutation relations satisfy:

[%51’952]:_52’ [§1’§4]:§4’ [51155]:955’ [53’§4]:§5' [§3’§5]:§4-
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Case (vii)

Here, the assumptions are v =v(r) and the remaining two metric coeffiecnts & and A both are
equal to some constant. The solution of equations (2.4.17) to (2.4.19) turns out to be
V= In(clr+c2)2 , where C;,C, ESR(Cl #0). The space-times (2.4.1) with an appropriate rescaling

of 6 and L become

ds? =—(gr+c,) dt? +dr? + d6? +dz*. (2.4.37)

For simplicity, one can choose C; =1 and C,=0 so that the above space-times (2.4.37) being

conformally flat admits fifteen independent CVVFs which are
r’+6°+z°
2

t —t
—C,€' +Cy

t —t t —t t -t
o _ ](cge +c,e )+z(cse +Cye )+¢9(c7e +Cge )
r

+Cys

2
—C,IZ+C,I0

o (MJ(%et—qet)+z(c5et—cloe‘)+0(C7et—cget) vour

t -t
+ce' +e e,

(6% 4 22
2 t -t t —t
o= Cip +C, 07+ G52+, 0 +10(ce —c e ) +r(ce' —ce )

72 _r2_@2
X®=| ———|c,—C07—C0+C,Z+11Z (caet —c4e‘t)+

2 (2.4.38)

t

r(cee' —ce™)+cy,
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where C e®R  with i=34,5,..,17. Conformal factor in this case is

W= r(c3et —c,e™ ) +c¢,Z2—C,;0+c¢,. Generators of conformal algebra are in this case are

2+60°+7° 24221 (0 10
51Ze{ﬂjg—et[“Z—rj£+e‘6ri+e‘zrﬁ, ézzet(—+——j,

2r ot 2 or 00 0z or rot
r’+0°+z°)o 6> +z°-r*) o 0 0 t(a 18)
="' ——— | =+ | ——— | ——e'Or——-e'zr—, 5= | ————|,
& [ 2r jat ( 2 Jar 00 I e
2 _p2, 52 2 .2 2
55: Mi i_ezi_r9£1 §6: u £+rzg+ezi, X7=g,
2 00 oz or 2 Z r 00 ot
Z0 Z0 00 (o} 0 0
=e'|—=—+P |, =" |==+P, |, &, =¢€'|——=+PR, |, =" ——+0—-r—|,
58 (r 81: lj 59 (r at 2) 510 (r 8’[ 3} éll r 61: ar 60
o .8 0 0 _,0 8 0 o 0
20 49 Symt—-0—, £, =2 £ =" wherep=—724r 2,
AT M oy oz G450 T "
0 0 0 0 . . . .
P,=z——-r— and P, =—-6—+r—. One can find the Lie Algebra using the Lie bracket
or 0z or oo

given in equation (1.11.3).
Case (viii)
Here, we have 4= A(r) and x=v = constant. The solution of equations (2.4.17) to (2.4.19) turn

outtobe A= In(c1r+c2)2, where C, € R with i =1,2 and C, #0. The space-times (2.4.1) after

an appropriate rescaling of the coordinates t and I reduce to be

ds? =—dt® +dr® +(cr+c,) dg* +dz*. (2.4.39)

Again, for calculation purpose one can choose C, =1 and C, =0, the space-times (2.4.39) is

conformally flat, therefore admit fifteen independent CVVFs which are

t?+r%+2°
X°=c, (T +CtZ+rtw, —rw, +Ct+ ¢,z +Cp,
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L (=77 :
X = — @, — 2w, + C,IZ 4+ Citr — ¢, cos@+c¢,, sin @

—tw, +C,r,

t? —r®—z? z t
XZZ( ]a)4_ a)5+&+%+cl7,

2r r r
2 t?—r?+72?
X°®=c, — +1Zw, + @, +Ctz +Ct +C,2 4+, (2.4.40)
where ¢ e®R, with i=34,5,.17, @ =c,sinf+c,cosd, @,=c,Cos6—cC,sind,

@, =CySiN@+cC,Ccosd, w,=c,cos0—C;Sinf, w,=C,Cc0860—C,Sinb, @, =c,sind+c,Ccoso,
@, =C,sin@+¢,, cosd. Conformal factor in this case is ¥ =C,z+1(C,SiN+C, C0SH)+Cit +C,.

Generators of conformal algebra are

2 2 2 2 2 2
§1ztzg+rzg+ H# Q’ §zztr2+tzg+ t-f-Z—-i-r g, §3=Zﬁ+t£,
ot or 2 oz or oz 2 ot ot oz
0 0 0 sin@ 0 0 . 0 cosé o
=t—+r—+z—, =—c0sl —+——, & =—}, =singd—+ —,
Sty iy s ot Tr 0 < oa  r 00
2,2 2 2,2 L2
§B:trsin92+ vt-z+r sin¢9£+ Ll cosei+rzsin9£, cfgzg,
ot 2 or 2r 00 oz ot
2,2 2 2 2 42
§loztrcosé?ﬁ+ t-z+r cos@£+ re ot sin0i+rzcosei, gllzg,
ot 2 or 2r o0 oz 0z
512=—zsin9£+rsin6’£—£cos€i, 513=—zcos¢9£+rcos€£+£sin9i,
or oz r 06 or oz r oo
& =—rcos6’§—tcos¢9£+£sin0i, & =—rsin92+tsin9£+£cosai.
14 15
ot or r 06 ot or r oo

Adopting the same procedure one can find the Lie Algebra using the Lie bracket given in
equation (1.11.3).
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Case (ix)

Here, the constraints over metric coeffiecnts are = x(r) and v =4 =constant. The solution of

equations (2.4.17) to (2.4.19) turn out to be u= In(clr+cz)2, where C; € R with i =1,2 and

C, # 0. The space-times (2.4.1) with a suitable rescaling of t and ¢ takes the shape

ds? = —dt? +dr? +d6? +(cr+c,) dz. (2.4.41)

Again, for calculation purpose one can choose C, =1 and C, =0, the space-times (2.4.41) is

conformally flat, therefore admit fifteen independent CVVFs which are

t?+r?+2° :
X°=c, (Tj—csteﬂr[c6 cosz—c,sinz]+

r[c,sinz—c,, cosz]+cst+c,0+Cp,

2 2 2
X* :(#j[cs cosz—c,sinz]-6[c;cosz—cy,sinz]

—Cyr@+ctr+t[c,sinz—c, cosz]+cyr —c,cosz+c,,sin z,

) 2 —t2 -6 .
X*=c, — +C,t0+rd[c,cosz—c,sinz]+

r[c,cosz—c, sinz]+ct+c,0+cg,

s [rP—t*+6° . 0, .
X® =| ———— |[¢ssinz+c, cosz]+—[c,sinz+c,, cos z]+
r r

(2.4.42)
. 1 .

1[c10 cosz+¢,sinz]+=[c,sinz+c, cosz]+c,,

r r

where CiESR with i=34,5,..17. Conformal  factor in this case

Wy =—C,0+r(C,C0SZ+C,SiNZ)+C,t+C,. Generators of conformal algebra in this case are
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2 12 2 t2 2 2
f- 199 00, (uji £-0 eowlied (ﬁjﬁ

ot or 2 o0’ o0 or o0 2 ot

0 sinz o . 0 cosz o 0 o t. o

& =—C0SZ—+———, & =sSInNZ—+ —, &g =—-rcosz——tcosz—+—sinz—,
or r oz or r oz ot or r oz

§7=2, & = 6?smzﬁ—rsmzi+gcosz2 & _rsmz£+tsmzi+tcosz2
ot 0z ot or r 0z

. _ 0 o 6 . 0 0 0 0 0 0
=—-@sinzZ—+rcosz—+—sinz—, =tl—+r—+6—, =0—+t—,
Sio or 26 r oz w5 % w2=0%*5
.0 . 6°—t>—r*) o r’+6>—t>) o 0 0
&y=-trsinz—+sinz| —— | —+cosz| ——— | ——rfsinz—, Eu=—,
ot 2 or r oz 06 oz

2

—6? 2_12 2 )
cflsztrcosz£+cosz t-o+r i+r¢9coszi+sinz r-v-o ﬁ. Adopting the same
ot 2 o6 r oz

or
procedure one can find the Lie Algebra using the Lie bracket given in equation (1.11.3).
Case (x)
Here, we have v(r)=A(r) and g =constant. Equations (2.4.17) to (2.4.19) implies v? =0,

therefore V=0, where « e ®*. The space-times (2.4.1) with the rescaling of Z turn to be
ds® = dr? + dz* + o[ —dt* + d6?]. (2.4.43)

Solving equations (2.4.4) to (2.4.13) for the space-times (2.4.43), we obtain fifteen independent
CVFs which are

at® +r +a6?2+z 1
XO_( C, +CtO+Ctr —Ctz +Cit + —Cr +C,0+Cyz +Cy,
(04

1
c3+clt9+c2r¢9—c4¢92+c7t —C,r+c0+c z+cCy,
(24

r’—at® + 492—2
@« ra , +CtZ+C,rz+C,07 +act —c,r —ac,0+c,z+cy, (2.4.44)

at® +
C, +Ctr+c,réd—c,rz+ct+c.r+cy0+c,z+cp,,

xl=(
XZ_(atz—r +ab® —
x? - (
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where C; € R with i=12,3,...,15. Conformal factor in this case is ¥ =Ct+C,I +C,0-C,Z+C..

The generators of conformal algebra in this case are

2 2 2 2
X, = A +rrad +z g+rt£+t9i+tzg, X2=t2+r£+9£+zi,
2a ot or 00 574 ot or o6 oz
2 2 2,2
Xy = A+ —ab -z 2+rt2+r6’i+rz£, X4=L§+t£, stﬁ,
2 or ot o0 oz aot or ot
2 L2 2,2
X = A’ —r" +ab’—z i+r92+t6?g+6?zﬁ, X7=ti+0£, ngﬁ,
20 oo or ot 574 oo ot or
2 42 2 2
X, = r-at'+af’ -2z ﬁ—rzg—tzﬁ—tzg, Xm:Zngatg, Xuzi,
2 oz or oz ot ot oz 00
o r o 0 0 0 0 0
X, =0————, =7— 01—, X, =2——af—, X,.=—.
2Ty o0 Tt o a0 VTt &

Conformal algebra may be discussed by using the above generators.
Case (xi)
Here, we take v(r) = x(r) and A =constant. Again, solution of equations (2.4.17) to (2.4.19),

give v’ =0, therefore V=0, where « < 93*. The space-times (2.4.1) after suitable rescaling of ¢

take the form
ds® =dr?® + d&” + a[—dt® +dz?]. (2.4.45)

The above space-times (2.4.45) being conformally flat again admit fifteen independent CVFs

which are

4 141
2a°

2 2 2 2
at“+r°+60°+az t¢ ctr ctz ct c.r c@ c.z
X0 = T LA IR L O LIRS L L L
(04 o (04 (04 o (04 o

——+C,t—Cc0—C, Z+Cp,
(04

[24 (24 (24

2 2 2 2
Xl:(at +rP -0 a2’ ) ol orf crz cfr
2c ®
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, [at?—r*+0*—az® ctd c.ré c,0z c0
X = C + + + + 24 C,t+Cgf —CZ+Cy,

2a a a a a
2 2 2 2
XBZ(at +0¢; 2r QJCZ+C4tZ+Csz+Cﬂ92+Clo LGur c0 6z .. (2.4.46)
a a o o (04 o o

where C; € R with i=1,23,...,15. Conformal factor in this case is ¥ =C,t+C,I +¢60—C,Z+C;.

The generators of conformal algebra in this case are

at>’ +r*°+0*+aqz*\0 rto té o tz 0 to ro 600 70
X, = > —t——+——+— y=——F——F——+—
2c ot aor oo a@z a@t aor oof a&z
2_
X, = at® +r? 49 az? rta+r96+rza X4:L2+t£, stﬁ,
8r adt a ol aoz o ot or ot
3 at? —r? +6’2—a2 i rg o t0g+ﬂg X = i e _ 0
0 aor adt adz T 00 aodt’ T or’
at? + az* 02—r 0 rza tea tz 0 za tao 0
X9 5t XlO X11=_v
oz a@r a@@ a@t a@t a@ o0
0 0 r 8 0 98 0 0
X,=r——-0—, X,,= —z—, X —7—, X,.=—.
750 Tor BT g o M aa Tee Tt a

Conformal Algebra may also be discussed using the above generators.
Case (xii)
Here, we have A(r) = u(r) and v =constant. The solution of equations (2.4.17) to (2.4.19), give

Ar) = u(r)=e*"* where a, &, €R. The space-times (2.4.1) with an appropriate form

ds® = —dt® +dr? +e*'[d&° + dz°]. (2.4.47)

43



CVFs in this case are:

22 2,2 —ar QW W, A A

0% + a2z +4e™™ LI LI

on(ai a; - —C.e 2 +Ce 2 |+|Ce? +ce 2 |z
&

W :| W Wy

awm LU} an
{cge 2 +Cpe 2 |0+Ce? —Ce 2 +C,,

22 2,2 —ar W YW, W A

—a 60 —a’z"+4e™ . 2 s 2

e 312 Ce? +Ce 2 |+|ce? —ce 2 |z

&

[ am _aw, am a5 y) y)

+/ce? —Coe 2 |0+Cce? +Ce 2 ——Cu Z+—C,0——Cyp,
a a

22 2,2 —qr YW, W
-, 0" +a;7° +4e™ 2 - -
x2=| & aiz Cot—|Ce 2 —Cue 2 |+C 07—
28

W, aw

2 El LY
c,Z+Cc,0——|ce ? +ce 2 (6+cCy,,
&

_Aa2pn2 2,2 —ar YWy ALY
x3:( 3,9 +2122 4e Jcll—i{cse 2 +Ce 2 }z—cﬂeu
& &

(2.4.48)

o  am _aw
c46?+cl3z+a C,.e 2 —Ce ? |+Cp,

where W, =(t+Tr), W,=(t—r) and C, €R and i=12,3,...,15. Conformal factor in this case is

22 2,2 —ar \[ aw, aw, aw aw,

0" +a'z" +4e™™ 21 2 Al —L2

V,:(al az —Ce 2 —Ce 2 +% C,e > —Ce ? |z
%

a| | g am _aw
+E Coe 2 —Cpe ? 0+E ce? +ce 2 |

Tracking the lines discussed previously, one find the Lie Algebra of obtained vector fields.
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Case (xiii)
In this case v =14 = = constant. Again Equations (2.4.17) to (2.4.19) implies v” =0, therefore

=(d,r +d,) where d,,d, e R(d, #0). The space-times (2.4.1) in an appropriate frame take the

form
ds® =dr’® +e® [ —dt’ +do” +dz* |. (2.4.49)

The above space-time (2.3.49) is a space-like version of FLRW for k =0, therefore admits

fifteen independent CVVFs which are

2 d?
(—Cit+c,)O+cit+cy,

2, p2, 52 —dyr —dyr
on((t t0+z) 2 jcl—dg(czucs)e 2 +(ct+cg)z+
1

oyr —dyr

2 _p2 ;2 o 2
(-0 -7)e? 2 cz+£(c60—c4z—c1t—cg)—

X! =
2 d? d,

dr
e? (cyz+cy0-ct—cy,),

) —tr
(Z i ) 222 Jce_dg(cze"'cll)e ? +(C40+C13)Z+
1

(ct+c )6?+ct+c14,

(t2 6’2+z) 2e"
df

(c62+c13)0+ct+c15,

Conformal factor in this case is

—d;r dr
—e 2 N d,(t* — 6% —z%)e 2
d, 4

d &
c, —Ele 2 (cpz+c, 0—ct—cy,),
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where C; € R with i =1,2,3,...,15. The generators of conformal algebra in this case are

2 2, 2 —dyr 0 20 0 0
X, o E+6" 42 )+292 0 20 4199 g9  X,=t—-2Z49 % 472,
2 d> Jot dor o0 oz ot dor 00 oz
ar —thr e —tir —dyr
X (tZ—HZ—zz)eZJFZe2 0 2te? 0 20e? 0 2® 0 5
: 2 a2 [or d o d 00 d o Xo=o
(t?—0*+2%) 2% )0 2z0 0 0 0 ) 0
X = e |tz 02—, X =t—+60—, X, =—,
2 d> )Joz d,er T at o0 06 ot o0
(2°-60*—t) 2% )0 200 0 0 o .0 0
Xg = t— |t =20 ——t0—, Xy=z_—+t—, Xio=—)
2 d> Jeo d,or ez ot ot oz oz
dyr —d;r d;r —d;r
X,=-0e? —+—e 2 — X,=-22 —+—e 2 —, X.=72——0—,
H o d, 80 " o d, oz B0 ez
5 et g -
X,=te? —+ i o Xi=6€72 E Additionally, one can find the conformal algebra by
r 1

using the above generators.

2.5 Summary
In this chapter, we have studied CVFs of SSS, SPS and SCS space-times in the f(R) theory of
gravity. The method to find CVFs for the stated space-times is direct integration. The results of

this study are:

(@) In the SSS space-times, we have used the results of two papers (Capozziello et al., 2012 and
Amirabi et al., 2016) to find CVFs. Six cases were discussed. The findings of the study of static

spherically symmetric space-times are as under:

(a-1) The space-times in the cases (i), (ii), (iii), (iv) and (vi) do not admit proper CVFs. CVFs for

these cases become KVFs which are shown in equation (2.2.2).

(a-2) The space-time in the case (v) admits proper HVFs which are presented in equation
(2.2.19).
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(b) In the section (2.3), we have investigated CVFs of dust SPS space-times in the f(R) gravity
setup. Our drive was two folded: firstly, we found some solutions of EFFs in the f(R) theory of
gravity. Secondly, we obtained the CVFs of the resulting solutions. To explore the solutions, we
have used dust matter as a source of EMT. It is important to mention that these solutions are
deduced by imposing some restrictions on the derivative of f(R) i.e. F(R). In general, six cases (i)

to (vi) were discussed which produce the following results:

(b-1) In the case (i), CVFs become KVFs. The KVFs for this case are given in equation (2.3.2)

and the space-time in this case is takes the form given by the equation (2.3.19).

(b-2) The space-times in the cases (ii) to (vi) are conformally flat and clearly admit fifteen
independent CVFs, The space-times are given in equations (2.3.20), (2.3.22), (2.3.24) and
(2.3.26) and the expressions for CVFs are shown by the equations (2.3.21), (2.3.23), (2.3.25) and
(2.3.27). Note that in the cases (iii) and (iv), we obtain exactly the same space-times which is

given in equation (2.3.22) with the only difference in the value of f(R). In both the cases, CVFs

are given in equation (2.3.23).

(c) In the third section, we have classified general form of SCS space-times in the view of f(R)
theory of gravity by their CVFs. The SCS solutions of EFEs belongs to the general class of
space-time in the sense that these are further linked to generate SPS solutions which happen to
lie in the framework of SCS space-times under some particular circumstances. These space-times
have a productive applications in the field of black holes thermodynamics, electric and magnetic
strings. The models having cylindrical symmetry are also used to discuss the interface between
matter and GWSs. Due to having cylindrical symmetry the waves associated with them are termed
as cylindrical GWSs. Going through the vast amount of applications are information possessed by
the SCS space-times, a step by step analysis have been made in the theory of f(R) gravity to
classify the space-time under consideration. Additionally, the source for providing the
gravitational contribution is assumed to be perfect fluid. In this classification, there exist thirteen

cases which on further study provide the following results:

(c-1) The space-times in the cases (i), (iv) and (vi), admit proper HVFs rather than proper CVFs.
The space-times admitting such vector fields are shown in equations (2.4.22), (2.4.28) and
(2.4.34). The proper HVFs for these cases are given in equations (2.4.24), (2.4.30) and (2.4.36).
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(c-2) In the cases (ii) and (iii), the space-times admit three linearly independent KVFs. The
space-times admitting such vector fields are (2.4.25) and (2.4.26) and the KVFs for these cases
are given in equation (2.4.2).

(c-3) The space-time given by the case (v) admits proper CVFs. This is the space-time (2.4.31)
and the proper CVFs is given in equation (2.4.33).

(c-4) The space-times studied in the cases (vii) to (xiii) become conformally flat, therefore admit
fifteen independent CVFs. These are the space-times (2.4.37), (2.4.39), (2.4.41), (2.4.43),
(2.4.45), (2.4.47) and (2.4.49). The CVFs for these cases are expressed by the equations (2.4.38),
(2.4.40), (2.4.42), (2.4.44), (2.4.46), (2.4.48) and (2.4.50).
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Chapter 3

Conformal Vector Fields of Kantowski Sachs and Some Bianchi
Type Models in f(R) Theory of Gravity

3.1 Introduction

In this chapter, a study of CVFs of some Bianchi type models in the f(R) theory of gravity has
been presented. Bianchi models have been remained a topic of special interest by theoretical
physists as these are spatially homogeneous and are often used in the study of anisotropic
cosmological models. These models have the capability to seek in to the internal structure of our
universe. They have appeared as a power full tool in the theory of GR and belongs to well-
known class of EFEs. One of the prominent examples of such solutions are the class of Bianchi
models which are nine in number. In this chapter, we study Bianchi type I, Il, V, Kantowski

Sachs and Bianchi type 11 space-times. The following lines presents the layout of this chapter:

In section (3.2), CVFs of Bianchi type | space-times have been presented. From this study, we
found that the CVFs are of dimension four, five, six and fifteen. In section (3.3), we have studied
CVFs of Bianchi type Il space-times and reach at the conclusion that the Bianchi type Il space-
times admit CVFs of dimension three, four and five only. In section (3.4), CVFs of Bianchi type
V space-times have been presented. The study consists of seven cases. From these seven cases,
we found that the CVFs in six cases reduce to isometries, while in the seventh case, the space-
times become conformally flat, therefore admit fifteen independent CVFs. In section (3.5), a
study of CVFs of Kantowski Sachs and Bianchi type 1l space-times in the f(R) theory of gravity
according to their proper CVFs has been presented. In this study, we found that the Kantowski

Sachs and Bianchi type 111 space-times admit CVFs of dimension four and six respectively.

3.2 Conformal Vector Fields of Bianchi type | Space-Times in f(R)
Gravity

The line element of a Bianchi type | space-times in the usual coordinates (t,x,y,z) (given by

(XO, XX, X3) respectively) is (Stephani et al., 2003)

ds® = —dt® + A’dx® + B%dy” + C?dz?, (3.2.1)
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where A= A(t), B=B(t) and C =C(t) are nowhere zero functions of . From the above space-

times (3.2.1), we see that in built KVFs are (Stephani et al., 2003)

0., 8y, d,. (3.2.2)
The value of scalar curvature R for the space-times (3.2.1) is
R=2 A+E+E+E+£+% , (323)
A B C AB BC CA

where dot signifies the derivative with respect to {. To obtain CVFs in the f(R) theory of gravity
considering Bianchi type | space-times, we start with the standard EFEs in vacuum (Nojiri and

Odintsov, 2003)

FUﬂRw—%fU@gw—v;aFGD+ngFan=o, (3.2.4)

where f(R) is the function of Ricci scalar R, F(R) :;_R f(R) and U=V*V, in which V, is the

covariant derivative. Using equation (3.2.1) in equation (3.2.4) one has (Sharif and Shamir,

2009)

A_B CIA B} FIA B|_, (3.2.5)
A clA B A B
B C. AB C)FB_C) 4 (3.2.6)
B AlB C) FIlB C
A_C. BIAC) FIA_C) o (3.2.7)
A C A C) Fla C

The goal now is to look for the solutions of equations (3.2.5) to (3.2.7). Here, we are using the

approach adopted by (Nojiri and Odintsov, 2003) and assume F(R) to be of the form
F(R)= f,R", (3.2.8)

where f,,meR. Motivation behind considering F(R) given in equation (3.2.8) is that it has

proven a viable f(R) model which is compatible with cosmological observations and has passed

50



through solar system tests. It can also mimic dark energy hypothesis when one deal with past and

current expansion of the universe. In spite of these, it has been widely studied in finding well

known exact solutions and is also used in the study of stability analysis of f(R) models

(Ntahompagaze et al., 2018). Using equation (3.2.8) in equations (3.2.5) to (3.2.7), we have

A B C(A B'j
———=4+=|—=—=|+m

A B

_ (3.2.9)
0. (3.2.10)
0. (3.2.11)

Now, we find the solutions of equations (3.2.9) to (3.2.11) using the following approach:

() A=A(), B=B(t) and C =constant.

(i) A= A(t), C=C(t) and B =constant.
(iii) B=B(t), C=C(t) and A=constant.
(iv) A= A(t) and B(t) =C(t).

(V) B=B(t) and A(t) =C(t).

(vi) C=C(t) and A(t) = B(t).

(vii) A=constant and B(t) = C(t).

(viii) B=constant and A(t) = C(t).

(ix) C =constant and A(t) = B(t).

(X) A= A(t) and B =C =constant.

(xi) B=B(t) and A=C =constant.

51



(xii) c =c(t) and A= B =constant.

(xiii) A=B =C = constant.
(xiv) A=B=C =constant.

Here, we will explain the procedure to find the solution of equations (3.2.9) to (3.2.11) in only
one case which is (i). Substituting C = constant in equation (3.2.9) to (3.2.11) results in three

equations having four unknowns A, B, R and M therefore, we need some extra conditions to

solve the above equation. Here, we assume that A=B" and B=0, where necR\{0,1}. After

2
c
some lengthy calculations, we found that B(t) =(ct+c,), Att)=(ct+c,)™, R :Z(Ctic J ,

f(R)zzfoR% +d, and m:_%, where ¢,,C,, f,,d, eR(c, f, #0). Using the same procedure

with different conditions, one can find the remaining cases. There exist the following solutions of
equations (3.2.9) to (3.2.11):

0 AD=(t+c,)  BE)=(ct+c,), R=4

2
, Mm=— and C =constant, where
ct+c,

C.C, eR.

00A®=@H%F,C®=@H%%R=4

2
., m __1 and B =constant, Where
ct+c, 2

C.C, eR.

2
) mz—l. and A=constant, Where
Ct+C 2

(i) B(t)=(ct+c,)”, C(t)=(ct+c,), R= 2(

C.C, eR.

(iv) Alt)=(ct+c,)”, RZG[ j mz—% and B(t)=C(t)=(ct+c,), where

ct+c,

C.C, R

52



v) Bt)=(ct+c,)?, R:G(Clt?—c j , mz_% and A(t) =C(t)=(ct+c,), where C,C, €R.

Cl
ct+c,

(vi) C(t)=(C1t+CZ)_2, R=6[ j : m:—% and B(t)=A(t) =(ct+c,), where C,C, €R.

-1
(vii) A=constant, R:Z—zz, m=-1and B(t) =C(t) =t2.

-1
(viii) B =constant, R:zltz, m=-1and A(t)=C(t)=t>.

-1
(iX) C =constant, R =i, m=-1and A(t)=B(t)=t?.

2t?

x) At)=t", r= tiz’ m=—1 and B=C = constant.

(xi) B(t)=t™, thiz, m=—1 and A=C = constant.

(xii) C(t)=t_l, R =i, m=-1 and A= B =constant.

2

~+

xiii) Alt) = B(t) =C{t) =€ and R - 6£%+%j where k, €% \{0}.

(xiv) A= B =C =constant.

We will consider each case in turn:
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Case (i)

The information regarding over here is A(t)=(ct+c,)™, B(t)=(ct+c,), R=2£ G j ,
ct+c,

m :_% and C =constant, where C;,C, € R. The space-times (3.2.1) after suitable rescaling of ;

take the form
ds? =—dt’ +(ct+c,) *dx* +(ct+c,) dy’ +dz’. (3.2.12)

Now, we are interested to find CVFs of the above space-time (3.2.12). The traditional expansion
of equation (1.12.1) and using equation (3.2.12), yields the following ten equations:

X5 =v, (3.2.13)
X5 —(ct+¢,)* X! =0, (3.2.14)
X5 —(ct+c,)’ X5 =0, (3.2.15)

X5-X; =0, (3.2.16)
—¢,(ct+¢,) X+ X =y, (3.2.17)
X5 +(ct+c,) X2 =0, (3.2.18)
X5 +(ct+¢,)* X =0, (3.2.19)
c(ct+c,) X+ X35 =y, (3.2.20)
X5 +(ct+c,) X5 =0, (3.2.21)

X:=y. (3.2.22)
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Solving equations (3.2.13) to (3.2.16), we have the following information:

_(ct+e)’

X°=[wdt+E", X*
IW 3c,

E.+E?,

2

1
=—~  E'+E°% X®=tE'+E" 2.2
oGt : (3:2.23)

where E'= Ei(X, Y,Z) with i=12,3 4 are FOI. For approaching the required CVF X, we need

to search the functions Ei(X, Y,Z) and the function 1 . Whose final form will help to categorize

the related vector fields. Ignoring the process of straightforward integration, we reach at the
following components of CVFs

Xo:[cltsczjkz, XE=2kx+ky, XZ=k, XP=kz+k,  (3.2.24)
1
with conformal factor y/=k2, where kz,k3,k4,k9 e€R. It follows that the above space-time

(3.2.12) do not admit proper CVFs. In this case CVFs are HVFs due to the constant conformal
factor. If we look at the dimension of CVVFs, we find that it is four, three of which are isometries

and one is proper homothetic which becomes

Gt+¢, 19 ,,9 . ,9 (3.2.25)
c, Jot ox o

Case (ii)

Here the ingredients of are A(t)=(ct+c,)™, C(t)=(ct+c,), Rzz( C J , m:_% and
ct+c,

B —constant, where C;,C, € R(C, #0). The space-times (3.2.1) after appropriate rescaling of Yy

turn to the following form

ds® =—dt® +(ct +c,) 2dx’ +dy” +(ct+c,) dz’. (3.2.26)
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Following the lines of previous case (i), we found that ¥ = kl, which is the indication of non

existence of proper CVFs. Here, the CVFs are HVFs again which are

on(clt;czjkl, Xt =2k x+k,, X?=ky+k, X°=k, (3.2.27)

G

where kl,kz,k3,k4 €R. Clearly, the above space-time (3.2.26) admit four CVFs consisting of

three KVFs and one proper HVFs. The proper HVF except KVFs is

G+ 10 o9, yﬁ. (3.2.28)
C, ot ox "oy

Case (iii)

The values of metric components along with the necessary information possessed over here are

2
C
B(t)=(ct+c,)”, C(t)=(ct+c,), RZZ( - J m=_% and A=constant, Where
ct+c, 2

C,C, e 9?(C1 #0). The space-times (3.2.1) after suitable rescaling of X provide the way to write

the it in the form
ds® =—dt® +dx* +(ct+¢,) 2dy* + (ct +c,)*dz’. (3.2.29)

Again, in this case CVFs become the HVFs, which are

Xo{clHCzjkl, X' =kx+k, X2=2ky+k;, XP=k, (3.2.30)
¢

where k;,Kk,,k;,k, € R. It is clear that the space-time (3.2.29) admits four CVFs which are not

proper. CVFs reduced to proper HVFs given by

Cl—t+C2 g+x£+2y£_ (3231)
C, ot ox oy
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Case (iv)

2
Here, we have A(t)=(ct+c,)?, R:G( ! j m=—2 and B(t)=C(t)=(ct+c,),
ct+c, 2

where C;,C, € R(C, #0). The space-times (3.2.1) take the form
ds? = —dt® +(ct+c,) *dx* +(ct+c,)[dy” +dz?]. (3.2.32)

The function f(R) for the above space-time (3.2.32) is f(R)=2fOR% +d,, where fo,d2 eR.

Adopting the similar procedure as we did in the previous cases, it can be shown that the CVFs in

the form of components are:

X% =(kx+ko)(ct+c,),

6

t 2

X* _[(Cl gCZ) +3ch ]k8+3k9clx+k10,
Cl

X% =-k,z+k,, X°®=ky+k,, (3.2.33)

with conformal factor i =¢, (kx+k, ), where Kg, kg, K;,Kg,Kg, kg €R. The above space-time
(3.2.32) admit six CVFs in which four are KVFs. From these four KVVFs three are given in

0 0
equation (3.2.2) and fourth is ya—za. One is proper HVF which is t§+3x£ and rest is

OoX

proper CVF. The proper CVF has the following form

t+c,) 2
X% =kx(ct+c,)+k,, xl_[(cl 6+CC2) +3C12X }kg, X?=0, X*=0, (3.2.34)
1

where K; =CKj.
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Case (V)

2
B C
Here the information is  B(t)=(ct+c,)?, R:G[ L J m——2X  and
ct+c, 2

A(t) =C(t) =(ct+c,), where C;,C, € R(C, #0). The space-times (3.2.1) take the form
ds® =—dt® + (.t +c,) *dy® + (et +¢,)*[dx* +dz*]. (3.2.35)

The procedure to find the CVFs is direct integration technique, so the CVFs in this case are
found to be

X =(ky+k, )(ct+¢,), X' =—ksz+ky, X*=kx+k;,

6

ct+c 2

x2 | (Gtre) 3oy k, +3k,C,y +k,, (3.2.36)
6c, 2

with conformal factor ¥ =c,(k;y+k,), where ky, kg, k;,ky, ko, ko €. The above space-time

(3.2.35) admit six CVFs in which four are KVFs. From these four KVFs three are given in

0 0
equation (3.2.2) and fourth is xi—zi, One is proper HVF which is ta+3y§ and one is

oz OoX

proper CVF. The proper CVF excluding HVF from equation (3.2.36) is

6 2
X =koy(Gt+6,) iy X=0, XZ_[(Clt;:CZ) 5 }ks’ X°=0, (3237)
1

where K; =CK,.

Case (vi)

2
§ C
Here, we have the following information C(t)=(ct+c,)?, R:6[ L j S m=—2X and
ct+c, 2

B(t) = A(t) = (ct+¢,), where c,,c, e R(c, #0) . The space-times (3.2.1) reduced to be
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ds? =—dt* +(ct+c,) *dz? + (ct+c,)’[dx* +dy?]. (3.2.38)
The CVFs in this case are

XO = (kgz+k, )(ct+c,), X'=—Kgy+ky, X*=Kkx+kj,

6 2
st{(clt+cz) +301y }k8+3k9012+k7v (3.2.39)
6c, 2

with conformal factor y =c, (ksz+k,), where kg, Kg k; kg, Ky, ks € R The above space-time

(3.2.35) admit six CVFs in which four are KVFs. From these four KVVFs three are given in

. . 0 0 ) .. .0 0 .

equation (3.2.2) and fourth is X——Y—. One is proper HVF which is t—+3z— and one is
oy OX ot 0z

proper CVF. The proper CVF neglecting HVF from equation (3.2.39) is

6
t 2
X0 =kyz(Gt+6,)+k,, X*=0, X2=0, x3{(°16“2) +3C12y }kg. (3.2.40)
G

where K;; =CXK,.

Case (vii)

-1
The information possessed by this case are A=constant, R = % m=-1 and B(t)=C(t)=t2.

The space-times (3.2.1) after an appropriate frame takes the following mathematical shape

ds” = —dt® + dx” +t[dy* + dz°]. (3.2.41)

The f(R) for the above space-time (3.2.41) is f(R)= fo In R+d3, where foadg €R. The CVFs in

this case are

X0 =kt, X'=kX+k,, Xzzgkzy—k7z+k6, X3=gkzz+k7y+kg, (3.2.42)
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with conformal factor ¥ = kg, where kzak41k61k7akg €R. In this case, the CVFs are HVFs. The

dimension of CVFs is five in which four are KVFs, three are given in equation (3.2.1) and fourth

0 0
§ ya— Z&. One is proper HVF. The compact form of the proper HVF is given below

X0 =kt, X'=kx, xz:gkzy, xszgkzz, (3.2.43)
Case (viii)
I
Here, we have B =constant, R:%, m=-1 and A(t)=C(t)=t2. The space-times (3.2.1)

after an appropriate rescaling of y take the form
ds” = —dt® + dy” +t[ax* + dz°]. (3.2.44)
Here, ¥V = kl, which means that no proper CVFs exist. Here, the CVFs become HVFs which are

X’ =k, Xlzgklx—k22+k3, X% =ky+k,, X3=gklz+k2x+k5, (3.2.45)

where k11k21k31k4ak5 €R. 1t follows that the above space-time (3.2.44) admit five CVFs in

which four are KVFs, three are given in equation (3.2.1) and fourth is xi_zﬁ, One is proper

oz OX
HVF. The proper HVF after subtracting KVFs is of the form

X° =k, xlzgklx, X2 =ky, X3=gklz. (3.2.46)

Case (ix)

, 7 >
Here, we are with the data C =constant, R :E’ m=-1 and A(t)=B(t)=t2. The space-

times (3.2.1) after an appropriate rescaling of z become

ds® = —dt” + dx® +t'[dx* + dy”]. (3.2.47)

60



Adopting similar procedure as we did in the previous cases, we come to know that ¥ =k;, which

means that no proper CVFs exist. Here, the CVFs become HVFs which are

X°®=kt, Xl:gklx—k2y+k3, Xzzg Y +HKx+k,, XP=kz+Kk, (3.2.48)

where kK, Kk;,K,,k; € R. It follows that the above space-time (3.2.47) admit five CVFs in
. L . . .0 0 :
which four are KVFs, three are given in equation (3.2.1) and fourth is XE— y&. One is proper

HVF. The proper HVF after subtracting KVVFs from equation (3.2.48) is

3

X0 =kt, X'=Zkx X2=gk1y, X3 =kz. (3.2.49)

Case (x)

. . . _ 4
Keeping the restrictions which are A(t) =t L R= z m=-1 and B =C =constant. The space-

times (3.2.1) now has the form after observing the rescaling

ds* = —dt® +tdx’* + dy* +dz°. (3.2.50)

f(R) for the above space-time (3.2.50) is f(R)= f;InR+d,, where f;,d, =%R. Again, in this
case CVFs become HVFs which are
X% =kgt, X'=2kx+k, X*=ky-kKz+k,, X°®=kz+ky+Kk,, (3.2.51)
where ¥ =k, and k;,K,,k;,K,, ks € R. From equation (3.2.51), we see that the above space-time
(3.2.50) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth
0 0

IS ya—za. One is proper HVF. The proper HVF after eliminating KVFs from equation
(3.251)is

X% =kgt, X'=2kx, X*=ky, X°®=Kkgz (3.2.52)
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Case (xi)

. . . _ 4
This case has the information, B(t)=t", R=t—2, m=-1 and A=C =constant. The space-

times (3.2.1) after appropriate rescaling of xand z become
ds® = —dt® + dx® +t°dy® + dz°. (3.2.53)
Succeeding on the same lines, we found that the CVFs become HVFs which are
=kt, X'=ky-k,z+k;,, X?=2kx+k,, X°®=kz+KX+Ks (3.2.54)

where ¥ =k, and K, K,,K;,K,, ks € R. From equation (3.2.54), we see that the above space-time

(3.2.53) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth

is x%—z% One is proper HVF. The proper HVF after eliminating KVFs from equation

(3.2.54) is
X%=kt, X*=2kx, X'=ky, X®=kz (3.2.55)
Case (xii)
Here, we have C(t) :t_l, R :tiz’ m=—1 and A=B=constant. Under these constraints the

space-times (3.2.1) after keeping in mind the process of rescaling become
ds? = —dt® +dx® + dy’ +tdz’. (3.2.56)
Again, in this case the CVFs become HVFs which are

X% =kt, X'=kx-ky+k, X?=ky+kx+k, X°>=2kz+k, (3.2.57)

where ¥ =K, and k;,K,,Kk;,K,, K € R. From equation (3.2.57), we see that the above space-time

(3.2.56) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth
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0 0
is x——y—X. One is proper HVF. The proper HVF after eliminating KVFs from equation

y o
(3.2.57) is
Case (xiii)

Here all the metric components are equal to the function e** and R = 6(

X%=kt, X*=kx, X?=ky, X*=2kz.

non zero real number. The space-time (3.2.1) becomes

ds? = —dt? +e*'[dx? + dy? + dz?].

KA
_+_
A A’

(3.2.58)

j, where k; is

(3.2.59)

The above space-time (3.2.59) is conformally flat which is well known FRW model for k =0

and CVFs in this case are:

XO . e—klt N (XZ + y2 + ZZ)eklt .
2k’ 2k, )

+eMt (CaX+Cgy +CpyZ+Cy),

1

x]_ ~ e—Zklt . (XZ _ y2 _ 22) e_klt e_klt
2k’ 2
—C,XZ+C,X—CyY —C,Z+Cy,

kZ

1 1

—2kit 2 2 2 —kyt —kyt
e (y"—x"-29) e e
2
X :( + C+—CYy-— . Cg +CeXy

k

1 1

2k? 2

—C,YZ+CyX+C,Y —C,Z+Cy,

C6 +—C4X—k—Cl4 +Clxy

a2kt 2,252 kgt kgt
X3 = e2 +(X ty -7) c2+ezc42—e
2k 2 % K,

+CYZ+CpX+CY +C,Z+Cp,
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with conformal factor

e ™ (xX*+y?+2%)e

2k2 2

Kt
vt XY, z)=( jc4+klek1t (CuX+Cgy+Cyz+Cy), (3.2.61)

where C, € R with i =1,2,3,4,6,7...,16.

Case (xiv)

The restrictions of this case after utilizing in the original space-times lead to the following form
ds? = —dt? + dx* +dy® +dz°, (3.2.62)

which is Minkowski space-time. The above space-times (3.2.62) admit fifteen CVVFs which are:

XO_(t2+x2+y2+zz

2 ch +Cty +CtX—C,IZ +Ct +C ;X +C, Y +CyZ +Cpy,

(X —y —~
X Cs + C,tX+ €, XY — C,XZ 4+ C 5t + CX —Cgy —C,Z +Cy,

t?+y’—x"—z
X? = ( Y’ jcl+04ty+05xy C,YZ +Ct+CeX+Cy —CZ +Cy,

X —t? — 72
X3 = ( +y v C, +C,1Z + CXZ +C,YZ + Cigt +C, X+ G,y +CoZ +Cp,,  (3.2.63)

with conformal factor
w(t, Xy, z)=ct+CcX+CYy—C,Z+C, (3.2.64)
where C, € R with i=1,2,3,...,15

It is essential to mention here that in order to explore the solutions, we have used the form of

f(R)i.e. F(R)=f,R", where f;,meMR. Starting from this general form of the function f(R) and

adopting the approach (al) to (al4), we have analytically found two particular types of f(R)

models corresponding to the values m =—% and m=—1. These are f(R) :2f0\/§+d2 and
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f(R) = f,In(R)+d,, where f;,d,,d, €R. The model with In(R) term has been found to be

significantly feasible at cosmological scale as it has well qualified solar system tests and is free
from the instability problem (Capozziello et al., 2016 and Paul, 2009). On the other hand, the

form with f(R) :2f0\/§ +d, contain positive power of the scalar curvature and is treated as

viable regarding the inflationary era.

3.3 Conformal Vector Fields of Bianchi type Il Space-Times in f(R)
Gravity

Bianchi type Il space-times belongs to the class of Bianchi models. This model has enormous
applications in discussing phenomenon of universe at the large scale structure. The aim over
here is to consider this model for looking CVFs in the setup of f(R) gravity. Here, we take model

of Bianchi type Il space-times in coordinates (t,X,Y,z) consuming the line element (Hickman

and Yazdan, 2017, Camci and Sahin, 2006 and Shabbir and Khan, 2010)
ds® = —dt* + At)dx’ + B(t)dy’ +| B(t)x* +C(t) |dz* —2xB(t) dy dz, (3.3.1)

where A= A(t), B=B(t) and C =C(t) are nowhere zero functions of t. The in built isometries

admitted by the space-times (3.3.1) are (Shabbir and Khan, 2010)

0 0,,9 0 (3:3.2)
8ya aX 8y’ E .
The scalar curvature R associated with the space-times (3.3.1) has the value
CiTok ol of A2 AR B? BA A7 A4
rR-_1|2A 2B € A AB B BC C ,CA_ Bl (333

2/ A B C A AB B BC C° CA AC

where overhead dot symbolizes % Using equation (3.3.1) in conformal motion equation

(1.12.1), we obtain

X5=vw, (3.3.4)

AXE - X0 =0, (3.3.5)
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BX?2 —xBX$ - X5 =0, (3.3.6)

XBX 5 —(BX* +C) X+ X3 =0, (33.7)
AX® +2AX] =2Ay, (3.3.8)
BX? —xBX:+ AX?, =0, (3.3.9)
XBX} —(Bx* +C) X — AX}; =0, (3.3.10)
BX®+2BX % —2xBX?$ = 2By, (3.3.11)
XBX® + BX" + xBX % —(Bx* + C) X3 — BX3 + xBX 3 = 2xBy, (33.12)

(BX*+C)X°+2xB(X" —X3)+2(BX’ +C) X3 =2(BX’ +C)y.  (3.3.13)
From equations (3.3.4), (3.3.5), (3.3.6) and (3.3.7), we have

X° =[ydt+D', X* :j(%j%dtjdu Dijd—At+ D?,

X = J( 5 vt Jor 0y 5[ 2 vt Jar o[
+xj(éjwzdtjdt+xD§I%+ D*,
X3 =J’(éjz//zdtjdt+ D§j%+ xj(éjwydtjdt+xD§j%+ D°,  (3.3.14)

where D' =D'(x,y,z) with i=1,2,3,4 are FOIs. As the study is dedicated purely for seeking

CVFs in the theory under discussion, hence, we are making use of equations (3.3.1) in equation
(3.2.4) to get

{A B C}-{AC AB  BC B} f RF
F+ + F =

—t—+— + — +————=0. (3.3.15)
2A 2B 2C 4AC 4AB 4BC A4AC 2 2
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C o1 r e, -
B, C g Bl C2+ BC _ Bz+ B lp L RE kg o (3.3.16)
2B 2C | 2B 2C 4C° 4BC 4B° 4AC 2 2

C o e aia -
ALC g AL A2_ CZ+ AC 3B 1p T RFE ko (3.3.17)
2A 2C | 2A 2C 4A° 4C° 4AC 4AC | 2 2

(A ¢ A ¢ AC 3B |
BX| —+t <5+ — +

F 2A 2C 4A° 4C AAC A4AC
T 5 .o .o . . . . +
(Bx*+C) A B A2 B AB B 2 2
Cl—t—=-"—"5——-+ +

2A 2B 4A° 4B 4AB 4AC

[ A B C 2Bx* Bx*+C } :
+ F

(3.3.18)

—t—+—++ — =
2A 2B 2C C 2(Bx*+C)

As the above equations (3.3.15) to (3.3.18) are highly nonlinear and are difficult to solve,
therefore, we use the technique of (Ram and Singh, 1993) and assume the following adhoc
relation:

A ¢ A ¢ AC 3B K B A B AB
—t ot - =t =t + :
2A 2C 4A° 4C° 4AC 4AC 2A 2B 4A° 4B° 4AB 4AC

(3.3.19)

Using equation (3.3.19) in equation (3.3.18) and then subtracting the resulting equation from
(3.3.17), we have (BC —BC)F =0 which implies:

(@) F=0 and BC-BC =0.

(b) F=0 and BC-BC =0.

(c) F=0 and BC-BC =0.

When, F#0 and BC-BC=0= B=qaC, Where o e R\{0}. Using B =aC in the previous
equation (22), we get a =0, which give contradiction. Similarly, possibility (b) also give

contradiction. Now, when F =0 and BC —BC =0, then the equations (18) to (21) takes the form

[AC AB  BC B} f RF
+ F =

N _ LI_RE o (3.3.20)
4AC  4AB 4BC 4AC 2 2
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- .. .. 5 .. ‘0
E_Fi_ C2_|_ BC — BZ+ B F+1_E:O_ (3321)
| 2B 2C 4C° 4BC 4B° 4AC

A C A AC C? 35}: f RF _

SATTES SN T AL - =0 (3.3.22)
|2A 2C 4A’ 4AC 4C° 4AC 2 2

Here, we solve equations (3.3.19) to (3.3.22). Forgoing the details, we found following seven
cases in which the solutions of the above equations (3.3.19) to (3.3.22) have been investigated.
These cases are

() A=t®, B=t? c_t*and R=;_28.

.. -2 —11k?
A=(kt+k) B=(kt+k), C=— S S
(ii) (kit+k,) (kl 2) nd R 4(k1t+k2)2

2 a where K, k, € R(k, #0).
1

-1 - —k/?
(iii) A=k—12, B=(kt+k,)™", C=(kt+k,) and R:W, where k,k, e R(k #0).

54t +k,)° —60(2t° + Kt +k, )k
8(2‘[2 +kt+k, )2

(iv) A:B=(2t2+klt+k2)%, C=(2t"+kt+k,) and R=

where k,k, e R(k #0).

4-11K?

Btk =2l R
1 2

(V) A=C =(kt+k,)2, B=(kt+k,) and R=
(viy A=C=k;, B=-2kt" and R:;_ZS, where k € R\{0}.

2 . 2 . .o
(viii A=B= (kz cos\/k:t +k,sin \/k:tj C=k and R= %{klAz + If;; 4klAA}, where
1 1 1

Kk, k, e R (k #0).

We will discuss each case one by one. Infect, we will substitute the values of metric components

in the above equation (3.3.14) and try to find the unknown FOIs i.e. Di(x, y,z) with
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i =1, 2,3,4. When these FOI are determine then we reach at the required result. In the upcoming

lines we will adopt the technique discussed above and find CVFs.

Case (i)
Here, we have the information A=t’, B=t?, c—t=® and R :;_28, The space-time (3.3.1)
takes the form

ds® = —dt + t%dx® +t 2dy” +[ t*x* +t° dz” — 2xt *dy dz. (3.3.23)

Now, we find CVFs of the space-time (3.3.23) using equations (3.3.4) to (3.3.13). Excluding the

calculations, one finds that W:%, where ¢, e R which means that the CVFs become HVFs

which are

to_xo 0. 50 o 0 3 o (3:3.2)

y—+——, —+Z—, —,
20t 4o0x "oy 40z ox oy oy oz

The above space-time (3.3.23) admits four CVFs in which three are KVVFs which are given in
equation (3.3.2) and one is proper HVF. The proper HVF after subtracting KVVFs from (3.3.24) is

RRCANE VIR 3.3.25
20t 40 y8y+482 ( )
Case (ii)
Here, we have A=(kt+k,)’, B=(kt+k,), C=_—2 and :lelz, where
% Akt +k,)’

k, K, € R(k, #0). The space-time (3.3.1) turn to be in the following form:

ds® = —dt* + (kit + k,)°dx’ + (Kt + k,) | dy’ + x*dz? —2xdydz]—k—22dz2. (3.3.26)

1

Again solving equations (3.3.4) to (3.3.13) with the help of equation (3.3.26), one finds that

¥ = 2C,, which means that the CVFs become HVFs which are
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X© :201(¥], X'=-cX+c,,
1

2 3
X“=c¢y+c,z+¢C,, X*=2cz+C,

, (3.3.27)

where C,C,,C;,C, € R\{0}. The above space-time (3.3.26) admits four C\/Fs in which three are

KVFs which are given in equation (3.3.2) and one is proper HVF. The proper HVF after
subtracting KVVFs from (3.3.27) is

X0 =2¢, (@J X=—cx X2=qy, X®=2cz. (3.3.28)

1
Case (iii)
The values of metric components along with the scalar curvature possessed by this case are

-1 B _k2
A=—, B=(kt+k,)", C=(kt+k T
(k1 + 2) ( 1 2) and R (k1t+k2)2 )

= @

where Kk, k, eR(k, #0). The

space-time (3.3.1) takes the form

ds? = —dt? —k—12de + (kt+k,) [ dy? +x°dz® - 2xdydz |+ (kt+k,)dz’.  (3.3.29)

1

Using the direct integration technique, we come to know that W=§% implies CVFs become

HVFs which are

XO =g(k1t+k2jc:“ Xlzgch'i‘Cz,

3L Kk | (3.3.30)

1
2 3 _
X =¢y+cC,z+¢;, X _gclz+c4

where C €R,1=1234. Clearly the four CVFs shown in (3.3.30) are decomposed as three

KVFs which are given in equation (3.3.2) and the remaining one is proper HVF. The proper
HVF after subtracting KVVFs from (3.3.30) is

x°=2
3

[klt;@jcl, xl=§c1x,x2 =cy, X° =%012- (3.3.31)
1
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Case (iv)

The information possessed by this case is A=B= (2t2 +kt+Kk, )}/2 , C=(2t*+kt+k,) and

o 5(4t+k,)* —60(2t" + Kt +k, )k

. , where k;,k, e R(k #0). The space-time (3.3.1) become
8(2t2 +kt+ kz)

ds? = —dt? +(2t2 +kt+k, )}/2 [dx2 +dy? +x%dz® - 2xdydz] +(2t2 +kt+ kz)dzz. (3.3.32)

Solving equations (3.3.4) to (3.3.13) with the help of space-time (3.3.32) implies y =0, which

directs that the space-time admit KVVFs which could be seen in equaion (3.3.2).
Case (v)

4-11K?

—————=— Wwhere
8(kt+k,)?

The constraints here are A=C=(kt+k,)?, B=(kt+k,) and R=
k, =12, k, € R.. The space-time (2) takes the form

ds? =t + (i, ) 2 [ + 02+ (Kt +k, )[ oy + Xz - 2xdydz ], (3:3.3)

Again solving equations (3.3.4) to (3.3.13) with the help of space-time (3.3.33) implies that
w =0, therefore CVFs become KVFs which are

> 2, (3.3.34)

0, (¥-2)0 0 0 08 0 2
oy o ox oy oy oz

From the above four KVFs, three are given in equation (3). Here, one thing which is necessary to

2 2
note that the space-time (3.3.33) admit extra KVF z£+ X 2 Q—XQ which is different
OX 2 oy oz

from the minimal set of isometries admitted by the space-times (3.3.2) giving extra conservation

law.
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Case (vi)

Here, we have A=C =k, B=-2k’t? and R = ;_25 where K, € R\{0}. The space-time (3.3.1)
in this case become
ds® =—dt’ +k, [ dx® +dz” |- 2kt [ dy” + x°dz” + 2xk,dy dz |. (3.3.35)

Solving equations (3.3.4) to (3.3.13) using the space-time (3.3.35) and avoiding from the lengthy

calculations, we find that y = %Cl’ implies CVFs become HVFs which are

X?° :%clt, X! :%clx—czz +C;,
, (3.3.36)

2 2
XZZ% ly_(x 22 ]cz+csz+c4, XS:%clz+c2x+c5

where C,,C,,C,,C,,C; € R\{0}. The above space-time (3.3.35) admit five CVVFs. From these five

CVFs, four are KVFs and one is proper HVF. The proper HVF after subtracting KVFs from
(3.3.36) is

X° =%clt, X* =%clx, X2 =%cly, x® =%ch. (3.3.37)

Case (vii)

2 . |2
The ingredients possessed over here are A:B:[kzcos ,k—t+k3SIn ,k—tJ C=k and
1 1

{klA2 + A2 — 4k AA

2ol :
k,A

2

] where K;,K,, K, € R(k, #0). The space-time (3.3.1) in this case takes

the form

ds® =—dt2+(k2 cos\/kzukasin\/kztj[dxz+dy2+x2dzz—2xdydz]+kldzz. (3.3.38)
1 1
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Solving equations (3.3.4) to (3.3.13) using the space-time (3.3.38) and without inducting from
the lengthy calculations one finds that = 0, indicating that the C\VVFs become KVFs which are

2 2
kX" —z

X°=0, Xlzclz+cz,X2:( jcl+czz+c3,X3:—klclx+c4, (3.3.39)

where C,,C,,C,,C, € R\{0}. From the above four KVFs, three are given in equation (3.3.2) and

2 2
the remaining one KVF is 294 kX' =2 2—klxg.
OX 2 oy oz

3.4 Conformal Vector Fields of Bianchi type V Space-Times in f(R)
Gravity

The line element representing geometry of Bianchi type V space-time in coordinates (t, x,y,z) is

(Stephani et al., 2003)
ds® =—dt” + A%dx’ +e*™ [ B’dy” + C?dz* |, (3.4.1)

where A= A(t), B=B(t) and c =C(t) are no-where zero functions of t only and p e %. The

least number of isometries associated with the above space-times (3.4.1) are (Shabbir et al.,
2018)

90 9 5y 0 4,0 (3.4.2)
oy oz’ ox o o o

Ricci scalar R for the space-time (3.4.1) is

R=-2 éJFEWLE+§+9+%—?’L2 , (3.4.3)
A AB B BC C CA A
where dot represents % Using equation (3.4.1) in equation (1.12.1), one arrives at

X5 =y, (3.4.4)

X§ - A*X5 =0, (3.4.5)
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X5 —B%*™X% =0, (3.4.6)

X5 -C%*X?3 =0, (3.4.7)
AX® + AX] = Ay, (3.4.8)
APX’, +B%*™ X2 =0, (3.4.9)
A’X +C%* X3 =0, (3.4.10)
BX+ pBX'+BX? =By, (3.4.11)
B*X%+C*X35 =0, (3.4.12)
CX°+ pCX*+CX$ =Cy. (3.4.13)

From equation (3.4.4), we have onfy/dt+sl, where S' is a FOI depending on the

coordinates (x,y,z). Now, by utilizing the value of X° in equations (3.4.5), (3.4.6) and (3.4.7),

we have
0 d 1 1 1 d d 1 dt 2
X° =[ydt+s!, X'=] ?jyxxt t+SXJ.?+S,
X? :e‘ZpXJ'(éjyxydt)dt+e‘2"XS§I%+S3,
x3 =2 ([ L [y dt |dt+ersi [ g8 3.4.14
=€ J‘ FJ-WZ t t+e ZJ.?-'- , ( A )
where S'=S'(x,y,z), with i=2,3,4 are FOI. To find the CVFs for the space-times under
consideration in the f(R) theory of gravity, we must use equations (3.4.1) and (1.13.2). We are

using the source of matter a perfect fluid to explore the solutions of equation (1.13.2). The

formula for the perfect fluid source is

T =(o+ P)UU, + PGy, (3.4.15)
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where p and p are defined in section (1.9). Here, U, showing the four velocity vector defined

as u, :—5:. Now, using equations (3.4.1), (1.13.2) and (3.4.15), one has (Sharif and Shamir,
2010)

F_AF CA AB B C 2p°_ k 3.4.16
F"AaF oA AB BYC A —EPTP) ( )
E_%_ﬁ_ﬁ é+9+2_l')2_£( _|_p) (3417)
F BE BC AB A C A2 FVTF) &
E_C_F_E_B'_C é E 2_p2—£( _|_p) (3418)
F CF AC BC A B AL EVTP) &

A B C

28 2~ =0, 3.4.19

A B C (34.19)

The above equations, (3.4.16) to (3.4.18) after some algebraic manipulations leads to the
following equation (3.4.20)

;[E_AJ+E(E__A]+E_§:0, (3.4.20)

Now, our purpose is to obtain exact solutions of equations (3.4.19) and (3.4.20). Both these
equations are difficult to solve as these having non-linearity. In addition to this, these equations
contains four unknowns where as we have two equations, therefore one must impose extra
conditions to solve them. Here, we are using the following approach to find the solutions of
equations (3.4.19) and (3.4.20).

(a) A= A(t), B=B(t), C=constant, A=0, B=A?, F=0 and AF +2AF =0.
(b) A=A(t), B=B(t), C=constant, B=A%, F=0 and AA+2A?=0.
(c) A=A(t), C=C(t), B=constant, A=0, C=A? F =0 and CF+CF =0.
(d) A= A(t), C=C(t), B=constant, C=A’, F=0 and AC+CA=0.

(e) C=C(t), B=B(t), A=constant, B=0, C=B™, F=0 and CF+CF =0.
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(f) C=C(t), B=B(t), A=constant, F=0, C=B™" and BE—B?=0.
(9) A=A(t), B=B(t), C=C(t) and A=B=C.

The above equations (3.4.19) and (3.4.20) admit following solutions by using the above

approach:
A= - 2 3q% —4c]
@) =(ct+c,), B=(ct+c,)", C =constant, R=2|——L and
(ct+c,)
C
f(R) =mRZ +¢,, where C,,C,,C;,C, € R\{0}.
2¢? 39°
b A= % B= % — R — 2 1 d
(b) (ct+c,)®, (ct+c,)”®, C =constant, {9(Clt+cz)2 + (Clt—}—Cz)%} an
f(R) =c,R+c,, where C,,C,,C,,C, € R\{0}.
2 2
(c) A=(ct+c,), C=(ct +Cg)21 B =constant, R=2 Lzlclz and
(ct+c,)
c
f(R) ZWRZ +c,, where C,,C,,C;,C, € R\{0}.
2¢; 3¢*
(d) A=(clt+c)%, C=(ct+c )%, B =constant, R=2 + and
2 Cl 2 9(Clt+C2)2 (Clt+c2)%

f(R) :C3R+C4, where C1!021C31C4 EER\{O}

2 2 2
(e) B=(ct+c,), C=(ct+ Cz)_l, A =constant, R= Z{Bq (Gt+c,) —¢ } and

(ct+c,)?
f(R)=c, ’GqZL—RRﬂ%' where C,,C,,C, € R\{0}.

() B=e""%, c_e@ =, A—constant, R= 2[3q2 —cf} and f(R)=c,R+c,, where

C,,C,,C,,C, € R\{0}.
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()] A= B =C =constant, R=6q’ and f(R) :[F1+ FZ]R+cl, where

czcos\rt+035|n\rt F,= k(p—|— p), inwhich D—a and C,,C,,C; € R\{0}.

CVFs for each of the above cases are given below:
Case (i)

: _ _ 2 39° —4c?
In this case, A=(Ct+C,), B=(ct+C,)’, cC=constant, R=2|2 "7 | and

(Gt+c,)°
C

f(R)=———-R*+c,,where C,C,,C;,C, € R\{0}. Under these constraints, the space-time

2(30° +4c )
(3.4.1) takes the form:

ds® = —dt” + (gt +¢,) dx* +€° | (gt +c,)"dy” +dz” |. (3.4.21)

Equations (3.4.4) to (3.4.13) along with the (3.4.21) lead to vanishing y which directs towards
the KVVFs expressed in equation (3.4.2).

Case (ii)

2 2
Here, A=(ct+ cz)%, B=(ct+ cz)%, C =constant, R=2 26 >+ 3 5 and
9(ct+c,) (ct+ CZ)A

f(R)=c,R+c,, where C,C,,C;,C, € R\{0}. The space-time (3.4.1) after applying an

appropriate rescaling of the coordinate z has the form:
ds? = —dt? + (Ct+c,) S dx? + €2 [(clt +c,) % dy? +d22}. (3.4.22)

Now, we are interested in finding CVFs of the above space-time (3.4.22). Performing direct

integration techniques and skipping lengthy calculations, one has y =0, which means that

CVFs become KVFs which are given in equation (3.4.2).
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Case (iii)
: 2 39° —4c?
In this case, A=(Ct+C,), C=(ct+c,)’, B=constant, R=2| 2 and
(ct+c,)’

G

f(R)=——=2 _R?
(R) 2(39° +4c?)

+c,, where C,C,,C;,C, e R\{0}. The space-time (3.4.1) takes the
following shape after assuming the rescaling in the coordinate y

ds? = —dt? + (ct+c,)?dx? +e*™ [dy2 +(ct +c2)4d22]. (3.4.23)

Using the same technique, we come to know that y =0, implies CVFs become KVFs which are

given in equation (3.4.2).

Case (iv)

In this case, A=(ct %, C=(ct %, B= tant, R=2 +
(ct+c,) (ct+c,) constan 9(Clt+C2)2 (c1t+c2)%

2¢? 39’ ]
and f(R)=c,R+c,, where C,,C,,C;,C, € R\{0}. The space-time (3.4.1) comes into the form

ds? = —dt? + (ct+¢,) S dx® + 2% [dyz +(ct+c,)bdz? } (3.4.24)

CVFs in this case are also become KVFs and are given in equation (3.4.2).

Case (v)

2 2 2
Now, we have B:(C1t+cz)1 C:(C1t+Cz)_l, A =constant, R=2{3q (Clt+C2)2_Cl} and
(ct+c,)

f(R)=c, ’GqZLRRH%' where C,C,,C; € R\{0}. Now, in this case the space-times (3.4.1)

after suitable rescaling of X has the form:

ds® = —dt” +dx* +&*™ [ (gt +¢,)°dy” + (gt +c,) *dz” |. (3.4.25)
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Solving equations (3.4.4) to (3.4.13) using the space-time (3.4.25) and skipping lengthy and

tedious calculations one finds that  =0. Obviously, CVFs become KVFs given by equation

(3.4.2).

Case (vi)

Here, we have B=€%"? ¢ _e@te)  A_constant, R=2[3q2—cf] and f(R)=cR+c,

where C;,C,,C,,C, € R\{0}. The space-time (3.4.1) after suitable rescaling of X has the form:
ds® = —dt® + dx® +e°* [ e*dy” +e**'dz” |. (3.4.26)

Again solving equations (3.4.4) to (3.4.13) with the help of the space-time (3.4.26) and avoiding

lengthy and tedious calculations one finds that y =0, which means that CVFs become KVFs

which are given in equation (3.4.2).
Case (vii)

2

Here, we have A=B=C=constantt R=6Q° and f(R)=[F+F,|R+c, where

R . |R 3 . . d
F, =c,cos,[—t+c,sin,[—t, - in which p== and C,C,,C, e R\{0}.
Lo \E ? \E ~ =3 R (PP P =Gt Gy, & €N
The space-time (3.4.1) after an appropriate rescaling takes the form:
ds? = —dt® +dx® +e°*[dy” + dz*]. (3.4.27)

The above space-time (3.4.26) is conformally flat, therefore admits fifteen independent CVFs

which are:

0 ) y2 + 22 eiqu qt —qt qt —qt qt —qt
X0=e¥|| S+ 77 (ce™ +ce ™)+ y(ce® +ce™)+z(ce” +c,e )

X qt —qt
+e%(c e —cee ™)+,
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—2qx
[ J(czleqt —ce ™ ) +y (c7eqt —cge ™ ) +1 (cmeqt —c,e™™ )}

—=(qy—c,z+¢;)+e™ (c e +ce ™),

QI—‘

X?= [ Yy ; z ez_;qx jc + e:X |:(C4eqt —ce™ ) y +(C7eqt —ce ™ )} —CyZ—-Cyz

+C Y +Cy,

y2 _ Z2 e—qx e—qx
3 _ qt —qt qt —qt
XP=| S 2q2]CZ + [(c4e —ce ") z+(cee" —cye )}+c1yz +C,y

+C;Z+Cpy,

(3.4.28)

with conformal factor

y2 + ZZ e—2qx
— ax qt -qt qt —-qt qt -qt
v =0e (TJF 27 j(c4e —ce ™)+ y(ce® e ™) +z(ce" —c e )

ax qt —qt
+qe” (cue® +cee ™),

where C, € R with i =1,2,3,...,15.

3.5 Conformal Vector Fields of Kantowski Sachs and Bianchi type

11 Space-Times in f(R) Gravity

The line element representing Kantowski-Sachs and Bianchi type Il space-times has the form

(Stephani et al., 2003)

ds? =—dt2+Adr2+B[d62+ f(9)2d¢2], (3.5.1)

where A= A(t) and B =B(t) are nowhere zero functions of t only. For f(0)=sing, the above

space-times (3.5.1) become Kantowski-Sachs space-times and for f(9)=Sinheg, the above

space-times become Bianchi type Il space-times. The above space-time (3.5.1) admit four

linearly independent KVVFs which are (Stephani et al., 2003)

80



0 o t. o . o0 f 0

0

2 —, cos ——sin , sin +—COS : 5.
or’ 0¢ ¢8¢9 f ¢8¢ ¢89 f ¢a¢ (35.2)

where prime over £ shows the derivative with respect to @. Ricci scalar R for the space-time

(3.5.1) is

L,
Rzz{g_ZABﬁ_z_z_A_ﬁf_a} (35.3)
2|A> AB B2 A B B
f"(6) d . _ . . .
where o = f0) and dot denotes i Using equation (3.5.1) in equation (1.12.1), one arrives at
X5 =y, (3.5.4)
X7 -AX, =0, (3.5.5)
X5 -BX3 =0, (3.5.6)
X5 -Bf*(9)X3 =0, (3.5.7)
AX°+2AX} =2Ay, (3.5.8)
AX}, +BX =0, (35.9)
AX7 +Bf2(0) X3 =0, (3.5.10)
BX®+2BX} = 2By, (3.5.11)
X5+ f2(0)X5 =0, (35.12)
BX°+ZB£—X2+ZBX§:ZBW. (3.5.13)

Solving equation (3.5.4), we have X° :J'z//dt+sl(r,0,¢), where S'(r,0,4) is a FOL. Now, by

utilizing the value of X ° in equations (3.5.5), (3.5.6) and (3.5.7), we get
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:jwdt+31(r,9,¢),x1=j( jwrdtJdHS (r,6, ¢)I—+S (r.0,9)

X2 - J(é j%dtjdus;(r,e, P S+5°(r.0.9) (3.5.14)

3 1 4
X ‘I[sz(a)j dt]dt+8 (r@qﬁ)jBf (9)+S (r.0,9),

where S'(r,6,8) with i = 23,4 are functions of integration. As, we are in search of CVF X for

the space-times under consideration in f(R) theory of gravity therefore, first we need to explore
solutions in the said theory. The EMT for the perfect fluid is defined by

T = (0+ P)UU, + PGy, (3.5.15)

where p and p already defined in section (1.9) with U, being the four velocity vector defined

as u, = —5;’. By utilizing equation (3.5.1) and (3.5.15) in equation (1.13.2) after some algebraic

manipulations, one has

|5+[2—AA+2EB]F'+[£+E—2—“—RJF+f=k(p—p). (3.5.16)

gl AL 3B e 348 BAB B A—LZ—E—R F+f=k(p-p). (3517)
A 2B 4AB ZB 2A 4A° B

Subtracting equation (3.5.16) from equation (3.5.17), gives

A Bl (A B AB A 2ol (3.5.18)
A B A B 2AB 2A7 B

Here, we solution equation (3.5.18). Skipping the detail, solution of equation (3.5.18) is found in

the form of eight cases which are:

2
Q) A=(ct+c,), B=(clt+cz)%, Rzll: 5¢;

da
+ and
2 ﬂ/(clt+cz) 4(ct+c,)
84 (ee,) 24,

f(R)= e[ * ]R+C4, where C,,C,,C;,C, € R\{0}.
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(i) A=4(ct+c)?, B=1(C1t+cz)2, Rzz{ 40‘_(:122} and f(R):{cs(clt+cz)2%f}R+c4,
4 (ct+c,)

where C;,C,,C;,C, € R\{0}.

(i)  A=(2ct+2c,)?,  B=(2ct+2c,)”, R

1]16(2 % 2
_1 ct+2c,)*a+21c; and

32 (ct+c,)’
[58%(2%4&02)%%3]
f(R)y=e" R+c,, where C,,C,,C;,C, € R\{0}.
3 —
. t % 2
(iv) A= (Mj , B= (Mj , R=—1|16/3ct+3c, ——0 . and
3 3 24 (ct+c,)

-8a

%
5 (Ct+Cy) 2+
f(R)=e{3s‘ﬁCl ]R+C4, where €,,C,,C;,C, € R\{0}.

2
0 Aceomsan, B=(af +6tre), Roj) A ] a (R)=GReG, et

2| (at® +ct+c,)?

C,,C,,C,,C, € R\{0}.

- clﬁ+czt +C3
(vi) A:(ClH‘Cz)z, B=constantt, R=2a and f(R) ZEL[ ? ] }R+C4, where

C,,C,,C,,C, € R\{0}.

1[ 4at* -7 ot
(viiy A=t*, B=t™, R:E{ o }and f(R)=ce ® R+c,, where C,C, e R\{0}.

a-1
tz

(viii) A=constant, B=t’, R=2{ } and f(R)=ct*'R+c,, where ¢, € R\{0}.
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Case (i)

The information  associated  over here is  A=(Ct+C,),  B=(ct+c,)?,
8a I
1 4o 5¢] [*37“1”%) *CBJ
R== n 1 and f(R)=e¢e' @ R+c,, where C,C,,C,,C, € R\{0}.
2| Jct+c,) 4(c1t+cz)2} R ) ot

The space-time (3.5.1) takes the form:
ds? = —dt? + (.t +¢,)dr? + (ct +¢,) 2 [d6? + £ (6)*d g . (3.5.19)

Now, we find CVFs of the space-time (3.5.19) using equations (3.5.4) to (3.5.13). Omitting the

process of calculations, we reach at y =0, representing the KVVFs of equation (3.5.2).
Case (i)
2 2a )
Here, A=4(Gt+C,)?% B=L(ct+c,)? R=2|22=% | and f(R)= cs(c1t+c2)A R+C,,
4 (ct+c,)?
where C;,C,,C;,C, € R\{0}. The space-time (3.5.1) in this case has the form:

ds? = —dt® + 4(ct +¢,) 2dr? +%(clt +,)?[d6? + £ (0)2dg ], (3.5.20)

Again solving equations (3.5.4) to (3.5.13) taking space-times (3.5.20) into account, one has

following components of CVFs:

2,2 4
Xo:(C1t+cz)(csr+ce)’X1:2C1H16Clr ;Z(EQHCZ) jcs +Cer}+C71
. . (35.21)

!

X? =c,cosp+cysing, X° :fT(—Cssinch9 COS @) +C,

with conformal factor ¥ =C(Cil +C;), where C, € R with i=5,6,7,8,9,10. The above space-

times (3.5.21) admit six CVFs out of which four are KVFs which are given in equation (3.5.2),

one is HVF which is (ct +02)§+ 2cr ag’ and one is proper conformal vector field which is
r
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0 16¢2r’ +(ct+c,)* ) o
(clt+cz)ra+201[ G ;2(03 *C,) j&' (3.5.22)
1

Case (iii)

% 2
In this case, A=(201t+2c2)%, B=(2c1t+2c2)%, Ré{16(201t+202) a+21¢ and

(Gt+c,)’

[ (cht+202)/ +c3]

f(R)=¢e R+c,, where C,C,,C;,C, € R\{0}. The space-time (3.5.1) takes the
form:
ds? = —dt? + (2c,t + 2,) Zdr? + (2¢t +2¢,) 4 [ d6” +  (6)*dg |- (3.5.23)

By the same procedure of solving the system of conformal equations from (3.5.4) to (3.5.13) as

examined previous case, we come to know that y =0, = CVFs become KVFs which are given

in equation (3.5.2).

Case (iv)

3 *% 2
Now, if A:(&j , B :(&j ' R :i 16 3C1t+302 _ﬂlz and
3 3 24 (ct+c,)

[35\/=01 clt+cz)/+c3] )
f(R)=¢e R+c,, where C;,C,,C;,C, € R\{0}, the space-time (3.5.1) becomes:

ds’ =—dt2+(%] dr? + (Cl”c j [d6? + £ (0)°d¢? | (3.5.24)

Solving equations (3.5.4) to (3.5.13) with the help of space-time (3.5.24) implies that CVFs in
this case also become KVFs which are expressed by the equation (3.5.2).
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Case (V)

2
If A=constant, B=(0!t2+Clt+C2), Rzi[ ¢ —4ac, } and f(R):CgR+C41 where

2| (at? +ct+c,)?

C.,C,,C5,C, € R\{0}. Now, in this case the space-times (3.5.1) after suitable rescaling of r has

the form
ds” =—dt* +dr® + (at® + Gt +,)[ d6” + () dg” |. (3.5.25)

Solving equations (3.5.4) to (3.5.13) using the space-times (3.5.25) one finds y =0, which

means that no proper CVFs exist. CVFs in this case are also KVFs which are linearly
independent shown by equation (3.5.2).

Case (vi)

—af t?
? 015%21 +C3

C,,C,,C;,C, € R\{0}. The space-time (3.5.1) after suitable rescaling of 6 and ¢ takes the form:

Here, we have A=(ct+ Cz)z, B =constant, R=2a and f(R)= e[ R+c,, where

ds® =—dt” + (¢t +¢,)°dr? +[ d6” + f ()°dg” . (3.5.26)

Solving equations (3.5.4) to (3.5.13) with the help of the space-times (3.5.26) and avoiding from

the lengthy and tedious calculations one finds that = 0, giving K\VVFs which are

X% =ce™ +ce ™™, X' =

c.e” —c.e ™™ |[+c,,
(Clt+Cz)[ ’ ° J !
: (3.5.27)

X? =c,cosg+c,sing, X* =fT(—cas.in¢+C9 COS @) +Cyg

where G;,C,,C;,C5,Cy,Co €R.. Here, clearly there are six KVFs admitted by the space-time

cr
(3.5.26) out of which four are trivial while other two KVFs are eWﬁ—( € jﬁ and

ot \ct+c, jor
e_clr 2 + eiClr E
at \ct+c, Jor
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Case (vii)

o o R—l 4ot® -7 2ot
Here, we have A=t", B=t", =5 i and f(R)=ce ™ R+c,, where

C,,C, € R\{0}. The space-time (3.5.1) takes the form:
ds® =—dt? +t'dr’ +t[ d6” + £ (0)*dg’ |. (3.5.28)

Solving equations (3.5.4) to (3.5.13) using the space-times (3.5.28), again we obtain =0,

which means that no proper CVFs exist. CVFs in this case are basic KVFs.
case (viii)

a-1
tz

In this case, A=constant, B th, RZZ[ } and f(R) :Qta_lR"‘Cg, where ¢;,C, € R\{0}.
hence, space-time (3.5.1) after an appropriate rescaling of r takes the form:
ds® =—dt? +dr? +t*[ d6” + f (9)°dg |. (3.5.29)

The above space-times (3.5.29) admit six linearly independent CVFs which are

t>+r?

X°:(c3r+c4)t,xl=( JC3+C4V+C5’

(3.5.30)

X?=c,cosp+c,sing, X° :fT(—cesin(/ﬂc7 COS @) +C,

with conformal factor ¥ =(C,F +C,), where C €R with i=3,4,5,6,7,8. It is clear from

equation (3.5.30) that the above space-time (3.5.29) admits four KVFs which are given in

equation (3.5.2), one is HVF which is t§+ rﬁ and one is proper CVF which is

or

2 2
R Rkl o (3.5.31)
ot 2 or

Hence, the space-time in this case admits proper CVF.
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3.6 Summary

The clear picture of obtained results by the above study is given in the following four tables. The
first column of the tables is representing case number, second column is showing the equation
number of space-time in the respective case while the third and fourth columns are showing
equations number of CVFs and dimension of CVVFs respectively.

Table 3.1
Results of Bianchi type | space-times

Case No. Space-time Equations showing | Dimension of
CVFs CVFs
(i) Eqg. (3.2.12) Eq. (3.2.24) 4
(ii) Eq. (3.2.26) Eq. (3.2.27) 4
(iii) Eqg. (3.2.29) Eq. (3.2.30) 4
(iv) Eqg. (3.2.32) Eqg. (3.2.33) 6
(v) Eq. (3.2.35) Eq. (3.2.36) 6
(vi) Eq. (3.2.38) Eq. (3.2.39) 6
(vii) Eqg. (3.2.41) Eq. (3.2.42) 5
(viii) Eqg. (3.2.44) Eq. (3.2.45) 5
(ix) Eq. (3.2.47) Eq. (3.2.48) 5
(x) Eg. (3.2.50) Eq. (3.2.51) 5
(xi) Eqg. (3.2.53) Eq. (3.2.54) 5
(xii) Eq. (3.2.56) Eq. (3.2.57) 5
(xiii) Eg. (3.2.59) Eq. (3.2.60) 15
(xiv) Eq. (3.2.62) Eq. (3.2.63) 15
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Results of Bianchi type Il space-times

Table 3.2

Case No. Space-time Equations showing | Dimension of
CVFs CVFs
(i) Eqg. (3.3.23) Eq. (3.3.24) 4
(i) Eqg. (3.3.26) Eqg. (3.3.27) 4
(iii) Eq. (3.3.29) Eq. (3.3.30) 4
(iv) Eqg. (3.3.32) Eqg. (3.3.2) 3
(v) Eq. (3.3.33) Eq. (3.3.34) 4
(vi) Eqg. (3.3.35) Eq. (3.3.36) 5
(vii) Eqg. (3.3.38) Eqg. (3.3.39) 4
Table 3.03
Results of Bianchi type V space-times
Case No. Space-time Equations showing | Dimension of
CVFs CVFs
(i) Eq. (3.4.21) Eqg. (3.4.2) 3
(ii) Eqg. (3.4.22) Eq. (3.4.2) 3
(iii) Eq. (3.4.23) Eqg. (3.4.2) 3
(iv) Eq. (3.4.24) Eq. (3.4.2) 3
(V) Eq. (3.4.25) Eq. (3.4.2) 3
(vi) Eq. (3.4.26) Eqg. (3.4.2) 3
(vii) Eq. (3.4.27) Eq. (3.4.28) 15

89




Table 3.04

Results of Kantowski Sachs and Bianchi type 111 space-times

Case No. Space-time Equations showing | Dimension of
CVFs CVFs
(i) Eqg. (3.5.19) Eqg. (3.5.2) 4
(i) Eq. (3.5.20) Eq. (3.5.21) 6
(iii) Eqg. (3.5.23) Eqg. (3.5.2) 4
(iv) Eq. (3.5.24) Eqg. (3.5.2) 4
(v) Eq. (3.5.25) Eq. (3.5.2) 4
(vi) Eq. (3.5.26) Eqg. (3.5.27) 6
(vii) Eqg. (3.5.28) Eqg. (3.5.2) 4
(viii) Eq. (3.5.29) Eq. (3.5.30) 6

It is important to see over here that in the section (3.4) and (3.5), the techniques generates
possible forms of the function of scalar curvature. These forms contain both linear as well as
nonlinear functions of the function f(R). We do not fixes these forms rather we have analytically
calculated them. As a result we also obtain various shapes of the metric potentials which one can
further used to calculate the physical quantities pressure and density for each of the space-time.
In particular, forms of the functions having linearity in the scalar curvature provide a way to

switch off to the background geometry. For instance, functions like f(R)=cR+c,, where c,
and c, are constants. Clearly, for the vanishing c, with value of c, to be unity one can recover

the results of GR. On the other aspect, assuming nonlinear modes of the function f(R) have
several advantages over the linear ones. Going at the level of aspects related to cosmology,
nonlinear modes of functions help to discuss the glitches of interior space maintenance,

flourishing aspects termed as expanding universe with dark matter etc.
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Chapter 4

Conformal Vector Fields of Spatially Homogeneous Rotating Space-
Times and PP-Waves Space-Times in f(R) Theory of Gravity

4.1 Introduction

In this chapter, we have found CVFs of spatially homogeneous rotating space-times and pp-
waves space-times in the f(R) theory of gravity. Both the space-times retain their own
importance in the theory of GR. Rotating solutions of EFEs provide a way for a better
understanding of real physical universe. There is a long route of solutions with rotating
geometry. Initially, such solutions to the EFEs was sorted out by Gamow. In the subsequent
work followed by the Gamow some solutions with rotating geometry was found by Godel. Later
on this idea was further extended the Reboucus who found exact rotating solution of EFEs by
making the assumption of perfect fluid and electromagnetic field as a source of curvature
(Shabbir, 2019). Similarly, pp-waves space-times admit a very special class of solutions which is
known as plane fronted GWs with parallel propagations in the f(R) theory of gravity. PP-waves
are GWs introduced by Ehlers and Kund in 1962. In the study of high-energy phenomena and
neutron stars, GWs has put a great contribution. PP waves are infect falls in the category of GWs
and have a marginal literature. In particular, the concept of kinetic energy of freely falling bodies
and the phenomenon of memory effect are well addressed by such waves. A complete work
connected with the center of mass density of the GWs exists in a literature. On the other aspect,
GWs have a capability to judge any gravitational theory. Therefore, it is quite necessary to study
such waves. To make the study more fruitful and easy, we have solved the problem by making
classification. For searching proper CVFs, plane waves are further classified in ten cases. The
breakup of this chapter is, first to explore some solutions in the theory of f(R) for both the
considered space-times and then pursue for the CVFs. This procedure is given in sections (4.2)
and (4.3). In the last section of this chapter, a brief summary of obtained results will be

presented.
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4.2 Conformal Vector Fields of Spatially Homogeneous Rotating

Space-Times in the f(R) Theory of Gravity

Consider the spatially homogenous rotating space-times in the usual coordinates (t,r,¢,z) with

the line element (Stephani et al., 2003)
ds® =—dt® +dr? + A(r)d¢” + dz® — 2B(r)dtd ¢, (4.2.1)

where A= A(r) and B=B(r) are nowhere zero functions of r only. The minimal isometries for

the above space-times (4.2.1) are (Hall, 2004)

0 9 o (4.2.2)
ot 0¢ oz
Scalar curvature R associated with the space-times (4.2.1) has the value
1 4B°B"-B*B'* +4ABB" +3AB"”
Rerrer—% ) , (4.2.3)
2(B°+A)" | +2B°A"—4BB'A'+ 2AA" - A

where prime is equivalent to di Using equation (4.2.1) in equation (1.12.1), we have ten non-
r

linear conformal equations

X5 +BX3 =y, (4.2.4)
X{+BX;—X}, =0, (4.2.5)
B'X'+ X5 +BXj - AX} +BX§ = 2By, (4.2.6)
X5+BX5-X} =0, (4.2.7)
Xi=vw, (4.2.8)
X% +AX:-BX} =0 2

L+ AX] ;=0 (4.2.9)
X5+ X3 =0, (4.2.10)
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AX'+2AX5 -2BX Y =2Ay, (4.2.11)
AX3-BX5+X3 =0, (4.2.12)
X5 =y. (4.2.13)

From equations (4.2.7), (4.2.8), (4.2.12) and (4.2.13), we have

X0 = (A+182) [A(Hy/tdzz +2E(r.9))+ B([[y, 0 + B2, r,¢))}+ E°tr.¢),

X! =jy/dr+ EY(t, ¢, 2),

= _(A+—1I32){A(” vdz” + 262t ,9))+ B([w,d2° + 2EL (.7, 9) )}

B +_U‘//td22 +ZEZ (t, 1, 9)
+E‘(t,r,9),

X? =

X® = [pdz+E(t1,9), (4.2.14)

where E'(t,¢,2), E'(t,r,¢) with i =23 4 are functions of integration. The next procedure is to
find these values of integration constants via considering the metrics in the theory under
consideration which is f(R) theory. For this, we use equation (4.2.1) in equation (1.13.2)

assuming T,, =0, we have

F 4B°B"-3B’B'* +4ABB" + AB" AB'+2BA’
F"+ 4| —=— " |F'

2\2 2 AN N\ ” 12
_i E:O.
2 2
2pr2 2pn 12
B3BVI_B B _AB +3AB —r
TR 2| 4B 2 2
i AT o’ '
Lgar SBBA i AABT AT (4.2.16)
2B 2
_[AB +2BA}F,:0_
4AB
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' ' 12
(LA LR w21
4AB 4A+B?) 2 2
N 3ADY
4°B" 327 2B A" 2B'AB"  , \BB .
- F A A AR f
4(A+B?)? 2 pA72 2A 2
(A+BY) A _opear_oppars BA (4.2.18)
+E—[MJF':0.
2 4AB
, F 4B°B"—-B°B? +4ABB"+3AB?| f RF
+— ——t+—
4(A+B?)? | £2B*A" —4BB'A + 2AA" — A 2 2
, , (4.2.19)
[AB+2BATTL,
4AB

Using equation (4.2.17) in equations (4.2.15), (4.2.16), (4.2.18) and (4.2.19), after some

simplifications, we have

A 2 N 3AID!
A'F’ 1 3BZA”+ BB'A + AA" — A -|-ZB A _ZB A'B _3BSB”
AF +4(A 32)2 : 2pr2 2 2 2 A; A 5 =0. (4.2.20)
+ 'B’ 4 " ' ,
N AZABB . 3828 B ABB B B°A _AABB - AB

The above equation (4.2.20) is obviously hard to solve due to nonlinear terms in the unknowns
A, B and F. In such a situation, different stretages may be used to tackle this problem. For
example, one can specify the function f(R) and then look for the metric components. It would

be better to classify above equation by imposing certain restrictions on the unknowns involved in

the above equation (4.2.20). Here are some solutions of above equation (4.2.20):
() A=r, B=r", R :_81_42 and f(R)=cR+c,, where ¢,,C, e R(c #0).
r

-3r |R

(i) A=—Ze*, B=6€", R=2a%and f(R)=cRe?'? +c,, where a,C,C, e R(a=0).
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r 1512
16R

iy A=r’-r, g_,> R=-2 and f(R):clRe[ j(1+r2R)_1%4+cz, where

C,,C, €R(c #0).

—C22

(v) A=(cr+c) B=g, T 2eric )

_C2 % R[&]Z
and f(R):c4R(2—R§j e \**/ +c,, where

C,,C,,C5,C,,C €R(C, #0).

W) A=B=(cr+C,), R 1 (C2r? +2c,C,r +c,r +¢2 +¢2 +c¢,)c’ and
2| (cir?+2cgc,r+cr+c’+c,)?

1p(2+AA

f(R) = C3e8 (1+A)? R+c,, where C,C,,C,,C, efR(Cl * 0)

(vi) A=B =constant, R=0 and f(R)=(c,r+c,)R+c,, where C,C,,C, e R(c, #0).

We will discuss each case one by one.

Case (i)
This case has the constraints along with the function f(R), A= r%, B= r%, R = _SA;:Z and
f(R)=c,R+c,, where C,,C, e R(C, #0). The space-time (4.2.1) takes the form:

ds? = —dt? + dr? + r/0d¢” + dz? — 2r *ditd g, (4.2.21)

Now, we find CVFs of the space-time (4.2.21) using equations (4.2.4) to (4.2.13). After some
lengthy calculations, we find that ¥ =C;, which means that no proper CVFs exist. Here, CVFs

become HVFs which are

X°®=ct+c,, X' =c,r,

, 4.2.22
Xzz%c3+c5, X®=c,z+¢, ( )

where C;,C,,C.,C, € R\{0}. The above system of CVFs contain three K\/Fs which are given in

equation (4.2.2) and one is proper HVF. Proper HVF without considering KVFs is
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X% =cgt, X*=c,r, X2 :%c3, X® =c,z. (4.2.23)

Case (i)
1 ar ﬂ\F
Here, we have A= —Eezar, B=e¢", R=2a> and f(R)=cRe?®'?+c, where
a,C,,C, e R(a=0). Under the above restrictions, we obtain
ds? = —dt® +dr? —%ez"“dqf T dz? — 26 dtd b (4.2.24)

Again solving equations (4.1.4) to (4.1.13) with the help of equation (4.1.24), one finds that

w = 0, which means that the CVFs are isometries which are given below:

2 —ar
ongcse +c,, X' =cp+c,, X°=c,
(4.2.25)

X?=—c, [%gﬁz + 2 sinh ar}—cﬁ.)a(ﬁ+c6
a

where C;,C,,Cs,Cs,C, € R\{0}. Form the information (4.2.25), we see that there are five KVFs

admitted by the above space-time (4.2.24) in which three are given in equation (4.2.2) and the

remaining two KVFs are Zef“g+¢g—(é¢2+gea‘rsinh ar}i and g—a(/ﬁi Equation
g a o ‘o 2 73 op " ar Vo o

(4.2.24) usually known as stationary Godel space-time (Shabbir et al., 2011).

Case (iii)

r+15r?
16R

2

In this case, A=r’-r*, B=r’, R=-2 and f(R):clRe{ ](1+TZR)_1%4+C2, where

C,,C, €R(c, #0). It is worth mentioning here that for A=r?—r* and B=r’, the space-time

(4.2.1) become Som-Raychaudhuri space-time (Shabbir et al., 2011)

ds® =—dt® +dr® + r’(1-r?)d¢’ + dz” — 2r’dtd 6. (4.2.26)
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Using the previously described method, we come to the information that =0, implies CVFs

become KVFs which are:

X?=r[c,sing—c,cosg]+c,, X' =c,cos¢+c,sing,

X? :—%[cgsin¢—c4cos¢]+06, X®=c,

(4.2.27)

where C; € R with i=34,5,6,7. The above system given in equation (4.2.27) consists of five

KVFs. From these five KVFs three are given in equation (4.2.2) and the remaining two KVFs are

.0 o 1. 0 o . ,0 1 0
rsing—+cos¢———sing— and —rcosg—+sing—+—CcoSgp—.
Do OOy S, Do N TS,
Case (iv)
—C2 —C2 % R(zijz
Here, we have A=(c,r+c;), B=¢, R=——=2—— and f(R)=c,R| =2 | e "%/ +c,,
2(c,r+c,+¢p) 2R
where C, € R with i =1,2,3,4,5. In an appropriate frame, we have
ds? =—dt? +dr? +(c,r +¢,)d¢’ +dz* — 2dtd¢. (4.2.28)

Solving equations (4.2.4) to (4.2.13) with the help of space-time (4.2.28) implies that ¥ =C,
therefore CVFs in this case become HVFs which are

X° :(g+tjc6+c7z+c8, X* :(CZH—W}CG,

C. (4.2.29)

X? cha +Cy, X =Coz+ (t+4)C; +Cy,

where C; € R with i =6,7,8,9,10. Information given in the system (4.2.29) is a combination of

four isometries and one proper HVF. The following equation represents proper HVF which is

obtained by exclusion of isometries from (4.2.29)

50 Z(gﬂjce, Xlz(cz”_cs”jcs, X2 cha, X° =,z (4.2.30)
C2
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From the remaining four KVFs one is z§+(t+¢)§ and other three are given in equation
z
4.2.2).

Case (V)

2

2,2 2 2 2
Here, we have A=B=(cr+c,) r--_1|G' 2+220102r TartG+ G +sz)01 and
(cr°+2cc,r+cr+c,+c,)

1p+AA
f(R)=c,e® & Ruc,, where G, € R with i =1,2,3,4. The new shape of space-time (4.2.1)

in this case becomes
ds® =—dt® +dr? +(cr +c,)d¢’ +dz’ - 2(c,r +c,)dtd . (4.2.31)

Solving equations (4.2.4) to (4.2.13) using the space-time (4.2.31) and avoiding from the lengthy

calculations one finds that ¢ =0, which means that no proper CVFs exist. CVFs in this case are

basic KVFs as represented by equation (4.2.2).

Case (vi)

The information A—B=constant, R=0 and f(R)=(cr+c,)R+c,,  where

C,,C,,C; € R(c, #0).led towards the following equation in an appropriate frame

ds? =—dt® +dr? + d¢’ + dz* — 2dtd . (4.2.32)

CVFs in this case are

2,2, 42, 52 42,02 g2, o2
XOZ[Bt +r2+ g4z 2¢tjca+[ 2412+ g2 +2 +2¢t]c7+(¢+tjcg
4 4 2

p—t z z r r
+ = Cy,+ 2 Cy + 2 Cy— 2 Cp+ 2 Ce +CZ+C rt+cp,

> _£t2+r2—¢2—22+2¢t
2

jcs +C,IZ+CyIt +C,Pr +Cyr —C,,Z —C,p+Ct +Cp5,
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2 2 2 2 2 2 2 2
Xzz(t —r’*+3¢° —z +2¢t]c7+(_t +ri4+¢° +1 +2¢75t](:6Jr(3¢5+tjc8
4 4 2

g+t z z r
N TSI N N AN

X3_(t2—r2—¢2+22+2¢t

5 ch +CFZ+Ctz +C, 4z +CoZ +Cyf +C P+ Cot +C,y, (4.2.33)

where C, €R for i=4,5,6,..,18. Conformal factor in this case is W =C,Z+CI +Ct+C,P+C,.

One can find proper CVFs by ignoring HVFs from equation (4.2.33) to get

2,22 42 2 42 L2 42 2
0 _ (3t +r +¢ +1 2¢t]ce+( to+r +¢1+z + 24t

]07 +Ctz +C.rt

[t il i S ¢t]cs+c4rz+c6rt+c7¢r
(4.2.34)
2 _ 42 2 2, 52
(t —r? +3¢ z +2¢tJ 7{ t2 41 +¢4+z +2¢t]cs+c4¢z+cs¢r
2_ f—
[t r ¢ *z +2¢tjc4+csrz+cetz+c7¢z
From the remaining eleven CVFs one is proper HVF  which s
t)o 3p+t 0 0
[tj—ﬂ— (—¢+ j—+z— and other ten KVFs are Q, ﬁ, 5 ﬁ, rﬁ—zﬁ,
2 Jot or op 0z ot or' 0p oz oz or
Z ﬁ__ ¢_ E g+i ,____¢_ Li £g+tg+r 0
2\ at 0¢ 2\ ot 0¢ or 204 20t or 204

a7 )
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4.3 Conformal Vector Fields of PP-Wave Space-Times in the f(R)
Theory of Gravity
Consider a pp-wave space-times in the harmonic coordinates (u,x,y,v) = (x°, X', X2, x3) with the

line element (Ehlers and Kundt, 1962)
ds® = 2Hdu? + dx* +dy” + 2du dv, (4.3.1)

where H is depending on U, X, and Y. The space-times (4.3.1) is unique in the sense as it

contain only one KVF %_ Expanding the conformal equation (1.12.1) and using equation

(4.3.1) yield
H, X +H, X" +H X?+2HX{+ X} =2Hy, (4.3.2)
2HX ] + X3+ X} =0, (4.33)
2HX S + X5+ X5 =0, (4.3.4)
2HX S+ X3+ X0 =2y, (4.3.5)
X3 =y, (4.3.6)
X5+ X1 =0, (4.3.7)
X%+ X} =0, (4.38)
X2 =y, (4.3.9)
X5+X5 =0, (4.3.10)
X§=0. (4.3.11)
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Initial system obtained by solving the equations (4.3.5), (4.3.8), (4.3.10) and (4.3.11), has the

form:

XO :Zl

Xt =—vz!+Z7%,

X2 =—vzZ!+Z?,
X?=2[Qdv-vz;+2*,

(4.3.12)

where Z' with i=1,2,3,4 are functions of U, X and Y. It is worth mentioning that at the first

step of this study, we would like to construct some pp-wave solutions of EFEs in the f(R) theory

of gravity and then we will find the proper CVFs of the obtained solutions. For doing this, we

use equation (4.3.1) in equation (1.13.2) assuming T, = 0, we have
[H,+H, JF-2[F +F, |H+F,+H,F +H F +Hf =0. (43.13)

oF =f, 2F_=f, F_=0, F, =0, F,_=0. (4.3.14)

)Yy | XX ,Ux ,uy
The above equations (4.3.13) and (4.3.14) contain two unknowns namely F and H which need

to be determined. Indeed, upon integration of F,, =0, with respect to X and U give

F= I Al(u, y)du + A%(x, y), (4.3.19)

where A'(U,Y) and A%(X,Y) are functions of integration. Now, making use of equation (4.3.15)
in F,, =0 and F,, =0 leads to A'(U,y)=Q(u) and A*(x, y)=IA4(x)dx+ AS(y), where Q(u),
A%(x) and a(y) are functions of integration. Hence, equation (4.3.15) becomes

F = [Qu)du+ [ A*(x)dx+ A°(y). (4.3.16)

Now, using equation (4.3.16) in 2F,, =f and 2F, = f implies A}, (y) = A{(X), which on

differentiating with respect to x, give Aj(X)=0 and hence A*(X)=CX+C,, where

2

C,,C, €R(c, #0). Similarly, the value of A°(Y) turns out to be A%(Y) = Cly?+03y+04, where
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C,,C, €R. Substituting the values of A'(X) and A°(Y). in equation (4.3.16), give

2 2
F =c1(x ;y j+c2x+c3y+_|'Q(u)du+c4. Using the value of F in equation (4.3.13), we get

[H,+H, [F-2cH+¢[xH,+yH  ]+cH +cH, +Q,(u) =0, (4.3.17)

Now, our purpose is to obtain the solution of equation (4.3.17), which by substituting

¢, =C; =Q,(u) =0, admits a plane wave solution of the form (Aichelburg, 1970)

2 2

H =J(u)[X ;y ]+ K (u)xy, (4.3.18)

where J(u) and K(u) are known as the two polarization states of the plane wave depending on

U. From the physical point of view, plane waves have a role in the advancement of
electrodynamics starting from the time of earliest radio transmissions via modern communication
system. Moreover, the solution (4.3.18) is the mathematical form of generalized plane wave and
require further insight. For better understanding the space-time structure of the plane wave, it
would be interesting to find the nature of plane waves. The plane wave solution given in

equation (4.3.18) becomes linearly polarized if we take J(u)=constant and K(u)=0.
Similarly, it becomes screw symmetric if H is only a function of X and y. It is important to
mention here that there are numerous special possible choices of the polarization states J(u)
and K(u) whose Killing vector fields have already been discussed in (Sipple and Goenner,

1986). Further, a special choice of taking J(U)=U~ and k) =o0, or K(U)=U and ) =0

or JU)=K(U)=u? in equation (4.3.18) vyields an extra Killing vector field, so extra

conservation law (Jamal and Shabbir, 2016). In this study, we will look for proper CVFs of the

space-times (4.3.1) by taking equation (4.3.18) into account. Further, it is necessary to mention

here that if the function H in equation (4.3.18) satisfy the condition UH,+2H =0, then
‘](u) = K(U) = u—2. Slmllarly, UHu +XHX + yHy +2H =0 |mp||es that \](U) — K(u) — u‘4

(Kuhnel and Rademacher, 2004). For better understanding the geometry of pp waves, we will
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classify the above equation (4.3.18) by putting some other restrictions on J(u) and K(u). This

classification involves the following cases:

. XZ _ y2
(i) H :uz( 5 j+axy, where a e R \{0}.

2 2

(i) H =a(x ;y j+u2xy, where a < R \{0}.

2 X% —y?
(iif) H=u ( 5 ]
(iv) H =U_2XY- V) H=u"? {¥+ xy}.

2

2
(vi) H =a{x ;y +xy}, where a e R \{0}.

2 2
(vii) H =a(X ;y j where a e R \{0}.
(viil) H = axy, where a e R \{0}.

. X2 _ y2
(iX) H=au™ [Tj where a e R\{0}.

x) H :au*“xy, where a e R’ \{0}.

In the following lines, we will use the values of H from the above cases into equation (4.3.1) to

formulate the space-times and then try to investigate the CVFs for each of the above case.
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Case (i)

2 2
In this case, we have H =u™ [%}Laxy, where a e ®\{0}. The space-times (4.3.1) take

the form
ds? = [u-z (x2 _ y2)+ 2axy} du® +dx* +dy® + 2du dv. (4.3.19)

Now, we find proper CVFs of the space-times (4.3.19) using equations (4.3.2) to (4.3.11). If one

proceeds further after some calculations one finds that ¥ =C;, which means that no proper CVFs

exist. The CVFs become HVFs which are
X%=0, X'=cxx, X*=cy, X*=2cv+c, (4.3.20)

where C,,C, € R. The components of CVFs given in equation (4.3.20) are combination of one
isometry and other is proper HVF. The proper HVF after subtracting KVF from (4.3.20) is

X =(0, X, y, 2v). (4.3.21)
Case (ii)

2 2
Here, we have H =a(X ;y

}Lu‘zxy, where a e 9%\{0}. The space-times (4.3.1) take the
form
ds? = [a(x2 - y2)+ 2u‘2xy} du+dx® +dy’* +2dudv.  (4.3.22)

Again solving equations (4.3.2) to (4.3.11) with the help of space-time (4.3.22), one finds that
¥ =Cq, which implies that no proper CVFs exist. Here, the CVFs become HVFs which are given

in equation (4.3.20). The Proper HVF for this case is exactly the same as given in equation
(4.3.21).
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Case (iii)
2 2
With H =u™ (%} the space-times (4.3.1) has the form

ds® =u?(x* —y* )du® +dx* +dy* +2dudv. (4.3.23)

The space-time (4.3.23) and equations (4.3.2) to (4.3.11) implies that ¥ =C,, which means that

no proper CVFs exist. The CVFs again become HVFs which are

a

a i}
X% =cl, X'=cx+cu?+cu?, X?=c,y+Ju[c,sind+c,cos],

X? =2cv—cy+ -2 [x@sinﬂ—cosﬂ— “uY [sin/1+«/§cos/1}—7—zx+cm, (4.3.24)

24u 2\u
VA —a
where ¢, e R with i=7,8,9,10,11,12,13, a:(1+\/§), ﬁ:(_1+J§), y=C,au? +C,pu? and
J3inu _ . o .
A= 5 . The space-time (4.3.23) admits seven CVFs in which six are KVFs which are
a s
o ul o \Esin/lg—i[sin/ﬂﬁcos/l]i, pl oXp o
ov au o ov oy 2lu ov X 2 oV
oy . o Lo px 2o
JucosA—+—=|3sinA1-cosA|—, u? ——L22u? = and one is proper HVF. The
oy 2\/6[ }av X 2 v Prop

proper HVF after subtracting KVFs from (4.3.24) is given in equation (4.3.21).
Case (iv)
Here, we have H = u’zxy and the space-times (4.3.1) take the form
ds® = 2u*xy du® + dx* +dy’ + 2du dv. (4.3.25)

In this case, we also have ¥ =C; which means that no proper CVFs exist, the CVFs become

HVFs which are:
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a =$
X =cou, X' =¢,x—u[cysin A+, cOSA]+C U2 +C,u 2,

a B
X2 =c¢,y+u[cgsinA+¢,cos A]+cu2 +c,u 2, (4.3.26)

X®=2¢c,v—cv+ % [xsin/l—ysin/’t+«/§(xcosl—ycos/l)]+clz,

2\u

s —a
—i[«@(xsin;t—ysin/l)—xcos/1+ycos/q—cma(xﬂ/)u2 +C“ﬂ(x+y)u 2

2Ju 2 2

and C. €R with i =6,7,8,9,10,11,12. The set

where a:(1+J§), ﬁ:(_lﬂﬁ), Azﬁzlnu

of isometries over hare are

. 0 0 1 . . 0 0 o 0
usinA| ——— |[+——=| xsinA—ysinA++/3(xcosA—-ycosl)|l—, u—-v—, —,
Ju (ay ax] 2JJ[ y W3 y )]av R TRV
0 0 1 . . 0
UcosA| ——— |———=| J3(xsinA—ysinA)—XcosA+YycosA |[—,
Ju (8y axj 2JJ[\/_( ysinZ) y ]8v
a B =B —a
u2 2_{_2 _MUZ 2, u 2 g_}_g +MU 2 E The remaining one is proper
ox oy 2 ov oX oy 2 ov

HVF. The proper HVF after subtracting KVVFs from (4.3.26) is given in equation (4.3.21).
Case (v)

2 2

In this case, we have H =u™ [ X ; y . xy} and the space-times (4.3.1) take the form

ds® =u*[ x* —y* +2xy |du’ +dx* +dy’ +2dudv. (4.3.27)

Solving equations (4.3.2) to (4.3.11) with the help of the space-time (4.3.27) yields ¥ =C,
which indicates that the CVFs become HVFs which are

1+ 1-a
X =cgu, X1=06X+771[C7U 2 +Cgu 2 }nzxfa{cgsin(—mznujwmcos(ﬂlznuﬂ,
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ba  la
X2 =Cy+CU 2 +Cl 2 +«/J{cgsin[’Blznujmmcos[@ﬂ, (4.3.28)

1 712+a 4% 9/2 I
X®=2cv-cV— 7;{7(1+a)u —Cy(—1+a)u } ;ja{ﬂco (ﬂz j+s (ﬂzn ﬂ
Co¥a | pein[ BINUY Flnu
+2ﬁ{ﬁ5|n( > j cos( > HJFC“’
where a=\/1+4ﬁ, ,Bz«/—1+4\/? 71=X+y+x/§X, ;/2:X+y—\/§X, 771:l+x/§,

1, :1—\/5 and C, € R with i =5,6,7,8,9,10,11. Again the the set of isometries are

l-a ~l-a I+a —1+a
mu 2 9,2 +7/1( ~l+a)u 2 2 u 2 0.9 —ﬁ(1+a)u 2 ﬁ
x oyl 2 o' x oy| 2 ov
ﬁlnu) ,Bnu . (,Blnuj_ 0 o b
sin +sin Zoulv9
mlu ( 2 2 )|ov RETRRPY

nzfcos(’mnu) 2,9 ﬂsm(ﬁlnuj S(MJ o &

2 )l ox oy 2% 2 2 )]ov’ ov

The remaining one is proper HVF. The proper HVF after subtracting KVFs from (4.3.28) is same
as given in equation (4.3.21).

Case (vi)

Here, we have a sub class of screw symmetric pp-waves and H is of the form

2
H =a[x —Y
2

2

+ xy} where a < % \{0}. The space-times (4.3.1) after an appropriate rescaling

of U take the form

ds® =[ x* —y” +2xy |du’ +dx’ +dy” + 2du dv. (4.3.29)
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Again in this case ¥ =C;, = that the CVFs become HVFs which are

X%=c,, X'= c7x+,8[cgsin(2%‘u)—c9 COS(Z%U)}+0!|:0106(_2%]U +clle(2%w,

BYAan an
X2=c7y—[c85in(2%‘u)—cgcos(z%‘u)}cﬂ,e(2 ) +c11e(2 ) :

X% =2cv+ 2 [ﬁ(3x+ y)+4x+ Zy}{cme(_%ju —Clle(Z%)u}
y “ (4.3.30)
+ 2(; [\E(x— y)—ZyJ[—c8 cos(z%u)—cgsin(Z%U)}rclz,

where a=(1+ﬁ), ﬁ:(_1+ﬁ) and C €N with i=6,7,8910,11,12. The space-time

(4.3.29) admits seven CVFs in which six are KVVFs which are

X o

asin(z_%u)aﬁ—sin(z%u)%— 2_% [ﬁ(X—y)—Zy]cos(z%‘u)%,

—ﬂcos(Z%u)§+cos(z%u)%— Zj

[\E(x— y)—Zy]sin(Z%u)%,

Y/ )u

e(_z%Ju |:ag+i}+ za% [\/E(Sx+ y)+4x+ 2y]e(

e(z%)u |:a£ +3} - Za% [ﬁ(Bx +Yy)+4x+ 2y]e(2%ju

The remaining one is proper HVF. The proper HVF is given in equation (4.3.21).
Case (vii)

2

2
The plane wave linearly polarized is represented by H :a[x ;y j where a < R\{0}. The

space-times (4.3.1) after an appropriate rescaling of U take the form
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ds® =(x* - y*)du® +dx* +dy’ +2du dv. (4.3.31)
Here, again we get ¥ =C,, showing that the CVFs become HVFs which are
X°=c,, X'=cx+ce+c 8", X*=c,y+csinu+c,cosu,
X* =2c,v—y[c;cosu—cysinu]+ x[cme‘u —clle”]+clz, (4.3.32)

where C, € R with i =6,7,8,9,10,11,12. The space-time (4.3.31) admits seven CVFs in which

. . P .0 0 0 .0 {8 6}
six are KVFs which are — SINU—_—-YyCOSU-——, COSU—+YSINU-—, € | —+X— |,
ou oy ov oy ov oX oV

u| O 0 . . .
e {&— Xa} ai and the remaining one is proper HVF represented by the equation (4.3.21).
V

Case (viii)

Here, we have another form of screw symmetric pp-wave and H =axy, where a < ®\{0}. The

space-times (4.3.1) after an appropriate rescaling of U take the form

ds? = 2xy du® +dx* +dy’ + 2du dv. (4.3.33)

For this case, we have the conformal factor ¥ =C; which is the indication that the CVFs are infect

HVFs:
X®=c5, X' =c,x—[c,Sinu-+c, cosu]+ce’ +ce™,
X% =C,y+C,SinU+C, COSU+Ce" +C,e™,
X?®=2¢c,v+(x—y)[c, cosu—c, sinu]—(x+ y)[cseu —ce™ } +Cyy, (4.3.34)
where G € R with i=6,7,89,10,11,12. From equation (4.3.34), we see that there are six

. . . o o 0 Jo o 0
isometries  which  are  sinu| —-— |+cosu(x—-y)—, e —+——(x+y)=—|,
oy ox ov ox oy ov
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cosu o_9o —sinu(x—y)ﬁ, e 2+£+(x+y)2 , i, 9 and one proper HVF.
oy oX oV oX oy ov| ou ov
The proper HVF is given in equation (4.3.21).

Case (ix)
2 2
Here, we have H =au‘4[%} where ae9\{0}. The space-times (4.3.1) after an

appropriate rescaling of U take the form:

ds*=u™ (x2 - yz)du2 +dx? +dy* +2dudv. (4.3.35)
The CVFs in this case are:

X® =c,u?,

X' =(cu+¢,)x+ufc,P+c,QJ,

X% =(cu+c,)y+u[cd+c,0],

2 2

x3=_cﬁ(x ;y ]+Zc7v—cz—y[u¢—a)]—cfj—y[Ua)+¢]

(4.3.36)

~So¥ryp_Ql+ 2 [uQ+ P+ ey,
u u

where P=sinhu™, Q=coshu™, g=sinu™, w=cosu™, y=(cu+c,) and C €R with
i =6,7,8,9,10,11,12. Components of CVFs represented by the system (4.3.36) are composed of

six KVFs, one proper HVF and one proper which is

2 2
X% =cu?, X'=cuux, X?=cyy, X3=—c6(X +y J (4.3.37)
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Case (x)

In this case, we have H :au“‘xy, where a e R\{0}. The space-times (4.3.1) after suitable

rescaling of U take the form:

ds® = 2u™*xy du® + dx* + dy’ + 2du dv. (4.3.38)

Here, the CVVFs are:
X® =c,u?,
X' =(cu+c, ) x—u[c,o+Cyp]+u[c,Q+c,P],

X? =(cu+c,)y+u[cm+cypl+ufc,Q+c,P],

e =—C6[X2 + y2j+2C7V+M[ua}+¢]
2 u
+w[u¢_w]_w[qu] (4.3.39)

—W[UP—Q]-&C@

where P=sinhu™, Q=coshu™, ¢=sinu™, w=cosu™, y=(cu+c,) and ¢ €R with

i =6,7,8,9,10,11,12. The proper CVF here turn out to be

2 2
X% =cu?, X'=cux, X?=cyy, X3=—cﬁ[x ery j (4.3.40)

4.4 Summary

The plan of the present chapter was: firstly, we have found some rotating and pp-wave solutions
of EFEs in the f(R) theory of gravity, secondly, we have found CVFs of obtained solutions. From
this study, the following results are obtained:

(a) For the section (4.2), we have the following results:
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(a-1) The space-times in the cases (i) and (iv) admit proper HVFs of dimension four and five.
These are the space-times (4.2.21) and (4.2.28). The proper HVFs for these cases are given in
equations (4.2.23) and (4.2.30).

(a-2) For the cases (ii), (iii) and (v), the CVFs become KVFs of dimension three and five. The
space-times for these cases are given in equations (4.2.24), (4.2.26) and (4.2.31). KVFs are given
in equations (4.2.2), (4.2.25) and (4.2.27).

(a-3) The space-time in the case (vi) is conformally flat, therefore admit fifteen independent

CVFs. This is the space-time (4.2.32) and the proper CVFs are given in equation (4.2.34).

(b) In the second section, a classification of pp-waves space-times according to their proper
CVFs is presented. Parallel propagating waves (pp-waves) also known as plane fronted GWs has
remained a topic of special interest in the last couple of years and in the modern theoretical
physics because of the new theoretical ideas like kinetic energy of the free particle, center of
mass density of gravitational wave and the memory effect (Maluf et al., 2019). Study of
conservation laws in the background of well-known class of plane GWs is important. In this
regard, most basic symmetry is Killing symmetry which give rise to certain conservation laws.
(Sipple and Goenner, 1986) classified pp-waves according to KVFs and thus developed a variety
of conservation laws. Here, we have studied a more general class of symmetries than Killing and
homothetic symmetry which is conformal symmetry of pp-wave space-times in theory of f(R).
The pp-wave space-times admit a very special class of solutions known as plane fronted GWSs
which is given in equation (4.3.16). Further, we have found proper CVFs of this special type of

solution by classifying it into ten cases. The results of this classification are:

(b-1) The space-times in the cases (i) to (viii) admit proper HVFs of dimension two and seven.
These are the space-times (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27), (4.3.29), (4.3.31) and
(4.3.33). Proper HVFs for these cases is same which is given in equation (4.3.21). Note that our

result is the verification of the corollary of (Kuhnel and Rademacher, 2004) which states that for

any pp-waves, if xH, +yH , =2H, then it admits proper HVF. Moreover, the space-times in the
cases (iii), (iv) and (v) admit an additional KVF ud, —vo, which is also known as boost vector
field or boost rotation in the literature. This boost vector field appears due to uH , +2H =0,

which verify the corollary of the same paper (Kuhnel and Rademacher, 2004).

112



(b-2) The space-times in the cases (ix) and (x) admit proper CVFs. These are the spacetimes
(4.3.35) and (4.3.38). The proper CVFs for these cases are given in equations (4.3.37) and
(4.3.40). Our results are the verification of corollary of (Kuhnel and Rademacher, 2004) which

states that on any pp-wave space-time if uH , +xH, +yH +2H =0, then the space-time admit

proper CVF.
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Chapter 5

Conformal Vector Fields of Proper Non-Static Plane Symmetric
Space-Times in f(R) Theory of Gravity

5.1 Introduction

In this chapter, firstly we will look for the proper non static plane symmetric space-times in the
theory of f(R). The term proper non static is referred to those which do not admit time like KVF.
The methodology which we will adopt to find such space-times is purely algebraic. These space-
times have been further investigated to get CVFs in the theory under consideration. This chapter
is composed of three sections. The second section is specified for investigation of solutions in the
theory of f(R) along with the CVFs which the space-time admits. The third section contains a

summary of overall analysis.

5.2 Conformal Vector Fields of Proper Non-Static Plane

Symmetric Space-Times

The line element of proper non-static plane symmetric space-times is represented as (Stephani et
al., 2003)

ds *=—P?(t, x)dt* + dx*+Q*(t, x)[dy” +dz”], (5.2.1)

where P =P(t,x) and Q=Q(t,x) are nowhere zero functions of ¢ and x. From equation

(5.2.1), we see that there do not exists time like KVF. The minimal set of isometries for the
space-times (5.2.1) are (Stephani et al., 2003)

0, 0, Y0,~10, (5.2.2)

y' Yz

For the above space-times scalar curvature R read as

R:2{£”+P—”+Q,§+2P,Q,— 2(32_ ?22+2p?}, (5.2.3)
P Q° PQ QP" PQ° QP
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where the prime is representing di whereas dot is specified as % A vector field E is said to
r

be CVF, if

LESab = Sab,cEc +S,.E; +SacE,f) = 2¢Sab1 (5.2.4)

bc™—,a

where ¢, L, S,, and comma (,) represents the conformal function, the Lie derivative, metric

tensor and partial derivative respectively. Writing equation (5.2.4) explicitly and using equation
(5.2.1), we get

PE® + P'E' + PEY = Py, (5.2.5)
E, —P’E] =0, (5.2.6)
Q’E; - PE; =0, (5.2.7)
Q°E; -P’E} =0, (5.2.8)
Ei =4, (5.2.9)
E}, +Q%E; =0, (5.2.10)
E,+Q°E: =0, (5.2.11)
QE® +QE'+QE} =Qg, (5.2.12)
ES+E5 =0, (5.2.13)
QE° +QE' +QE: =Q¢. (5.2.14)

Performing simple algebraic manipulations on equations (5.2.6), (5.2.10), (5.2.11) and (5.2.13),

we obtain

0 1 1 Ntz 5
E :J{EI Ntdy}dx+_"§dx+ N>,
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Elszldy+N2,
\E

E? :—jgdx+ N3,

E? =—jN§dy+ N*. (5.2.15)
In the above system (5.2.15), N*, N?, N°, N and N® are defined below:
@ N'=N'(t,x,y).
(b) N?=N?(t,x,2).
©) N°=N°(t,y,2).
@) N*=N(t,x,2).

€ N°=N°(t,y,2).

The final form of CVFs would be obtained if one find the values of above unknown functions.
Here, we are interested to find CVFs in the f(R) gravity, whose field equations are (Nojiri and
Odintsov, 2003)

F(R)R,, —% f(R)S,, —V.V,F(R)+S,0F(R)=KT,, (5.2.16)

where F(R) E;_Rf(R), T,, is the EMT, k denotes the coupling constant and L= V°V, is the de-

Alembert’s operator in which V denotes the covariant derivative. The above equation (5.2.16)

after rearranging the terms and by taking Tab =0, takes the form (Andra et al., 2019)

1 [(f(R)-RF(R) e o
ab_F(R)K > jsabwava(R) SabVVeF(R)}, (5.2.17)

where Gab denotes the Einstein tensor. Equation (5.2.17) is important as it clearly shows the

relation between geometry and the gravitational field given by the curvature and this is one of the
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main reasons that led to interpret the dark side of the gravitational contribution (Katsuragawa et

al., 2019). Using equation (5.2.1) in equation (5.2.17), we have

" e \ [ N2 " 12
FLF 20F @ 200 " T R_, (5.2.18)

F QF QFF° PQ° Q Q 2F 2

.. .. .. -t = 32 AR 12 IaYl
PF_F _20F 2QF" 20 Q@ _20P Q" 2PQ" f R_, (5.2.19)

FP® FP? QFP’ QF QP? PXQ° QPP Q* PQ 2F 2

F'__F _PF_QF PF QF_ G QP P Q PQ

F FP’ FP° QFF’ PF ' QF QP’ QP° P Q PQ (5.2.20)
f_R_
2F 2

F_PF, 2Q_2QF_, (5.2.21)

F PF Q QP

It should be noted that the above equations (5.2.18) to (5.2.21) involve the metric coefficients
and the function f(R) along with their derivatives, which makes these equations difficult to solve.
To overcome this problem, one must look for the numerical solutions or impose some sorts of
restrictions on the metric coefficients to obtain analytic solutions. Another approach which may
be applied is perturbation approach is to find the solutions of above equations. But it requires
complicated calculations. Further, finding solutions become easier if first we perform some
algebraic manipulations on equations (5.2.18) to (5.2.20). As a first step in this direction, we are
subtracting equations (5.2.19) and (5.2.20) from equation (5.2.18) results in two equations which
on subtraction yields

" " 2 ~ O oY e \[ N2 e "
P, QF POQF, QF O PP o0 G222

_+_ [

F Q Q QP QF° PQ QF QFP? QP PF P

As already mentioned that we are in search of those solutions for which the space-times (5.2.2)
become proper non static. Here, we are omitting the details and only giving solutions of

equations (5.2.21) and (5.2.22) in the form of following cases:
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2

2
i 7 and f(R)=(ax+a,)R+a,, where

(i) P=constant, Q=(2at+2a, )% R=——21
(2at+2a,)

8 €R with i=1,2,3,4,5(a, #0).

% , 2
(i) P—{Hl(t)w+Hz(t)l, Q=(2a,x+2a,)’?, R=%, f(R)=a,R+a,, where
u= 32H()(ax+a,) —3aH"(t)y2ax +2a, , H(t), H(t) are functions of

(ax+a,) J2ax+2a, {Hl(t)(2a1x+ 2a, )% +3a,H 2(t)}

integration and a, € R with 1=1,2,3,4(a, #0).

(i) P=H'(t)x+H?(t), Q=constant, R=0, f(R)=aR+a, where H'(t), H?*(t) are

functions of integration and a,;,a, € R(a, #0).

(iv) P=t"*, Q=t", R=2n%"and f(R)=(ax+a,)R+a,, where n,a,a, a, eR(n=0,1).

2

28,

(v) P=Q=(at+a,), R=m and f(R)=(a,x+a,)R+a;,  where
a,8,,8,,8,,8; € R(a #0).
(vi) P=Q=(ax+a,x+at+a,), a1t+a a1x+a3)} and f(R)=aR+a,,
Whereagesa|_123456and(a1 azaga;tOJ

y _ a,R
(vi) P=constant, Q=(at+a,), R_(a1t+a2)2 and f(R):(a1t+a2)+a‘“ where

a,,8,,8;,3, € R(a #0).

Now, we will find proper CVFs for each of the above cases by putting the values of metric
components in equation (5.2.1) and then solving the system of equations (5.2.5) to (5.2.14)
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applying direct integration approach. The procedure is somewhat lengthy and laborious therefore

we are omitting the details and discussing each case briefly in the sequel.
Case (i)

The constraints with function f(R) in this case are P =constant, Q=(2a1t+2a2)}/2,

RZZ—af d f(R)—( x+a)R+ h aeR with i=12,34,5 0). Th
(2at+2a,] =(ax+a,)R+a;, where & €N with i=12,34,5(a, #0). The

space-times (5.2.1) after an appropriate rescaling of t take the form

ds ?=—dt* + dx’+(2at + ZaQ)[dy2 +d22]. (5.2.23)

Adopting the procedure discussed above, we found that ¢=2C, which indicates that CVFs are

HVFs which are

Eozzcl[alt—i_aZj’ E'=2cx+¢c,, E*=cy-cz+¢c, E =cz+Cy+c, (5.2.24)
&

where C,C,,C;,C,,C; € R\{0}. The above space-time (5.2.24) admit five CVFs in which four are

KVFs. From these four KVFs, three are given in equation (5.2.2) while fourth KVF is 5X.
Remaining fifth is proper HVF. The proper HVF after eliminating KVFs from (5.2.24) is

E0:2C1[M], E'=2cx E’=cy, E’=cz. (5.2.25)
3

Case (ii)

% 2

f(R)=a,R+8a,, where u= 32H () (ax+a,) —3a,H’(t){2a,x +2a,
(ax+a,) \/m{Hl(t)(ZaiH 2a, )% +3a,H Z(t)}
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H'(t), H’(t) are FOI and @,8,,8,,a, € R(a, #0). The space-times (5.2.1) in this case become

2

+H2(t) dt2+dx2+(2a1x+2a2)3[dy2 +d22]. (5.2.26)

%
ds 2= | Hi(t) (2a,x+2a,)
3a,

It is important to mention here that there exist the following two possibilities:
(c) H'(t) = H?(t).
(@) H'(®)=H"()

(c) When H'(t) = H?(t), then we found that 4 — 0 which implies that the CV/Fs are K\VFs which

are given in equation (5.2.2). (d) When H'(t) = H?(t) then the above space-time (5.2.26) after

appropriate rescaling become static, therefore we do not consider this case further as we are

interested in only those cases where the above space-times (5.2.1) become proper non static.
Case (iii)
Here is P= Hl(t)X‘l' H Z(t), Q =constant, R=0, f (R) = 31R+az, where Hl(t), HZ(T) being

functions depending on t and 8,8, €R(a #0). The space-times (5.2.1) after appropriate

rescaling of y and ; become
ds 2:_[Hl(t)x+ Hz(t)]2 dt? + dx >+dy” +dz°. (5.2.27)

The above space-time (5.2.27) is conformally flat, therefore admits fifteen CVFs which are:

£ (t+x)2+y2+22—2(t+x) o (t+x)2+y2+22+2(t+x) -
7 2(t+x) ? 2(t+X) 13
R [(cﬁet —ce )2+ (e —Ce )y —ce —cet gz —c4y—cs],
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£l =CZ((HX)Z —y? —222+2(t+x+1)jet +C{(t+x)2—y2 —222—2(t+x—1)Jet

+(t+x)[ez+C,y+C]—z(cee +Ce ) - y(Coe' +Cpe ) —Cye +Cpe' + ¢y,

2 o [(t+x)2—y2+z2
) 2

]+(t+x+1)[czy+cm]et +(t+x-D[c,y+c,]e +c yz

+CY —CZ+Cyy,

t+x) +y? - 2?
E3=— ( +(t+x+D[c.z+c Jet+(t+x-D[c.z+c.|e' +c
01[ ; ( )[c,z+¢,]e +( )[c,z+cq e + V7 6 26

+CZ+Cy+Cps,

where C €R with i=1,2,3..15 Here, H'(t)=constant and H*(t)=t. Conformal factor

turns out to be @=C,z+C,(t+x+1e™ +c,(t+x-1)e' +c,y+c..

Case (iv)

Values of metric components are P=t"" Q=t", rR=2n%* and f(R)z(a1x+a2)R+a3,
where N,8,,8,,8, € R(N#0,1). The space-times (5.2.1) take the form

ds ?=—t""2dt + dx*+t*" [ dy” +dz” |. (5.2.29)

Here, system of equations (5.2.5) to (5.2.14) for the space-time (5.2.29) yields ¢=2C, which
indicates that the CVFs become HVFs which are

o - &t E'=2cx+c, E*=cy-cz+c,, E'=cz+Cy+C, (5.2.30)
n

where C,C,,C;,C,,C; € R\{0}. Again, we obtain five CVFs including four KVFs and one proper
HVF which is

Eoz%lt, E'=2cx, E*=cy, E’=cz (5.2.31)
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Case (V)

Here, we have P=Q=(at+a,), Rz% and f(R)=(a,x+a,)R+a;, where
at+a,

a,8,,8,,8,,8 €R(a, #0). The space-times (5.2.1) become
ds *=dx’+(at+a,) [ —dt* +dy’ +dz” |. (5.2.32)

Ignoring the details, we come to know that ¢ =2C, which shows that the CVFs become HVFs

which are

Eoqua1t+azj, E'=2cx+c, E*=cy-c,z+¢c, EP=cz+cCy+c,, (5.2.33)
&

where C,C,,C;,C,,C; e R\{0}. one can find proper HVF by excluding KVFs from (5.2.33) to

get
0 ZC{M} E'=2cx, E*=cy, E’=cz (5.2.34)
a
Case (vi)
. B —2a? _ &R
The constraints here are P —constant, Q=(at+a,), R=——=% _ and f(R)= +a,,
(at+a,) (at+a,)

where 8,,8,,8;,8, € R(a, #0). The space-times (5.2.1) after suitable rescaling of t become
ds °=—dt” +dx’+(at+a,) [ dy’ +dz” |. (5.2.35)

CVFs here are:

E° =(2c1x+cz)(a1t;a2j, E?=-cz+c,,

2
E! [(_alt;azj +x2]cl+czx+c4, E’=c,y+c,, (5.2.36)
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where C;,C,,C,,C,,Cs,Cs € R\{0}. The proper CVF after eliminating HVF from equation (5.2.36)

is

2
E°= 2cl(aita_1F azjx, E'= [[%) + lecl, E2=0, E*=0. (5.2.37)

Conformal factor in this case is ¢ =(2¢,X+C, ).

Case (vii)

Here, P=Q=(a1tx+azx+a3t+a4), R= 2[ (a1t+a2()24+(a1x+a3) } and f(R)=a,R+a,,

where a e, i=1,2,3,4,56 and (ai _ 2 a,,a, =0, j The space-times (5.2.1) become

ds 2= dx*+(atx+a,x+at+a,)’ [—dt2 +dy® +dzz]. (5.2.38)

Calculations show that the conformal factor turn out to be zero and we obtain the KVFs as

shown in equation (5.2.2).

5.3 Summary

In the first section of this chapter, we have found some proper non static solutions of EFESs in the
f(R) theory of gravity while in the second section, we have found CVFs of the obtained space-
times. During the process of finding solutions of EFESs, seven cases arose. It turns out that the
dimension of CVFs for the proper non static plane symmetric space-times is three, five, six and
fifteen. The clear picture of results is given in the following table:
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Table 5.1

Case Metric components Equations Conformal Description

No showing CVFs Factor and

dimension

(i) P = constant, Equation (5.2.24). $=c. HVFs and

Q=(2at+2a,)2. S
i i =0.
(i) 1 (2a1x+ 2a, )% Equation (5.2.2). @ KVFs and 3
HY(t)————
P= 33 :
+H2(t)
Q= (2a1x+2a2)% :

(iii) P =Q:(X+t). Equation (5.2.28). p=c,(t+x+1e" CVFs and
+C,(t+x-1)e' 15
+C,Y+CZ++C,.

(iv) p =t Q=t". Equation (5.2.30). ¢=c. HVFsand 5

(v) P=Q= (ait + az)_ Equation (5.2.33). ¢=c. HVFs and 5

(Vi) | p = constant, Q= (a1t +a, ) Equation (5.2.36). | 4= (2clx + Cz)- CVFs and 6

(vii) atx+a,x+ Equation (5.2.2). ¢=0. KVFs and 3

P=Q= S
at+a,

From the above table, we see that

(a) The space-times in the cases (i), (iv) and (v) admits five CVFs. Out of these five CVFs, four
are KVFs and one is proper HVF. The space-times for these cases are given in equation (5.2.23),

(5.2.29) and (5.2.32).

(b) In the cases (ii) and (vii), CVFs are the KVVFs. The space-times for these cases are given in

equations (5.2.26) and (5.2.38). KVFs provide laws of conservation for example 5, corresponds

to energy conservation, Gy, o, represents spatial translational giving well defined conservation
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of linear momentum and Y0, —26y is the rotation in the pair y and : giving conservation of

angular momentum (Jamal and Shabbir, 2018).

(c) The space-time in the cases (iii) and (vi) admits proper CVFs. In the case (iii), the space-time
is conformally flat, therefore admits fifteen independent CVFs. The space-time for this case is
given in equation (5.2.28). In the case (vi), the space-time admits six CVFs out of which four are
KVFs, one is proper HVF and one is proper CVF. CVFs for this case are given in equation
(5.2.36) and the space-time is given in equation (5.2.35).
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Chapter 6

6.1 Conclusion

In this thesis, we have discussed conformal symmetries of some space-times in the f(R) theories
of gravity. The study includes static spherically symmetric, static plane symmetric, static
cylindrically symmetric, Bianchi type I, II, I, V, Kantowski Sachs, Spatially homogeneous
rotating space-times, pp-waves and non-static plane symmetric space-times. Initially, we have
found some solutions of EFEs using different fluid matters in the f(R) theories of gravity by
means of some algebraic techniques. After finding these solutions, we have found CVFs using
direct integration technique. Studying all the considered space-times in details, we determined
that there exist sixteen conformally flat cases and admit fifteen independent CVFs. The space-
times for these cases are given in equations (2.3.20), (2.3.22), (2.3.24), (2.3.26), (2.4.37),
(2.4.39), (2.4.41), (2.4.43), (2.4.45), (2.4.47), (2.4.49), (3.2.59), (3.2.62), (3.4.27), (4.2.32),
(5.2.27) and the equations showing the expressions of CVFs are (2.3.21), (2.3.23), (2.3.25),
(2.3.27), (2.4.38), (2.4.40), (2.4.42), (2.4.44), (2.4.46), (2.4.48), (2.4.50), (3.2.60), (3.2.63),
(3.4.28), (4.2.33) and (5.2.28). In nine cases, the space-times admit proper CVVFs. The space-
times admitting proper CVFs are shown by the equations (2.4.31), (3.2.32), (3.2.35), (3.2.38),
(3.5.20), (3.5.29), (4.3.35), (4.3.38) and (5.2.35). The forms of proper CVFs for the above ten
space-times are given by the equations (2.4.33), (3.2.34), (3.2.37), (3.2.40), (3.5.22), (3.5.31),
(4.3.37), (4.3.40) and (5.2.37). In thirty cases, space-times admit proper HVFs. The space-times
admitting proper HVFs are represented by the equations (2.2.18), (2.4.22), (2.4.28), (2.4.34),
(3.2.12), (3.2.26), (3.2.29), (3.2.41), (3.2.44), (3.2.47), (3.2.50), (3.2.53), (3.2.56), (3.3.23),
(3.3.26), (3.3.29), (3.3.35), (4.2.21), (4.2.28), (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27),
(4.3.29), (4.3.31), (4.3.33), (5.2.23), (5.2.29) and (5.2.32). The forms of proper HVFs are shown
by the equations (2.2.19), (2.4.24), (2.4.30), (2.4.36), (3.2.25), (3.2.28), (3.2.31), (3.2.43),
(3.2.46), (3.2.49), (3.2.52), (3.2.55), (3.2.58), (3.3.25), (3.3.28), (3.3.31), (3.3.37), (4.2.23),
(4.2.30), (4.3.21), (5.2.25), (5.2.31) and (5.2.34). Note that the proper HVFs corresponding to the
space-times (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27), (4.3.29), (4.3.31) and (4.3.33) are the
same and are shown in the equation (4.3.21). In rest of the cases, CVFs become KVFs. As a
result of the above study, we have obtained three types of vector fields namely proper CVFs,
proper HVFs and KVFs. From the physical point of view, HVFs form homothetic algebra which
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coincides with the Lie and Noether point symmetries of wave and Klein-Gordon equations.
Analysis of such equations is important in the problem of stability. Further, HVFs play a
significant role in the dynamics of cosmological models and have capability to model the
universe which enables one to find new facts related to singularities in general relativity. On the

other hand, the KVFs give laws of conservation. For example 0, -0, represents rotational

invariance in the coordinates r, Z and the conservation law is angular momentum. Similarly,

0, shows that the total energy of a system is conserved. Other Killing vector fields like 8¢ and

0, denote the translational invariance in ¢ and z respectively and the conservation law is linear

momentum. The existence of conformal symmetries predicate something about the inner
structure of a space-time. As discussed earlier that the wave and Klein-Gordon equations are also
related to the conformal algebra of pseudo-Riemannian spaces. The generators of the conformal
algebra are used to classify the potentials of wave and Klein-Gordon equations. CVFs are
important objects for studying the geometry of several kinds of manifolds as well as acts as a key
probes in the characterization of several kinds of important spaces, like Euclidean space,

Euclidean sphere and the complex projective space. There is a close relationship between the

potential functions of CVFs and Obata’s differential equation. One can obtain energy e(X)of a

smooth CVF X on a Riemannian manifold M using the relation given by (Deshmukh, 2017).
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