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Abstract 

 

In this thesis, a study of conformal symmetries of some space times in the f(R) theories of 

gravity have been presented. The study includes static spherically symmetric, static plane 

symmetric, static cylindrically symmetric, Bianchi type I, II, III, V, Kantowski Sachs, Spatially 

homogeneous rotating space-times, a class of pp waves and non-static plane symmetric space-

times. Initially, we have found some solutions of Einstein field equations (EFEs) using different 

fluid matters in the f(R) theories of gravity and then we have found conformal vector fields 

(CVFs) of the obtained solutions by means of direct integration technique. In the static 

spherically symmetric space-times, six cases have been discussed out of which there exists only 

one case for which CVFs become homothetic vector fields (HVFs) while in the rest of the cases 

CVFs become Killing vector fields (KVFs). In the static plane symmetric space-times, again 

there exist six cases. Out of these six cases, the space-times in five cases become conformally 

flat therefore admit fifteen independent CVFs while in the sixth case CVFs become KVFs. In the 

static cylindrically symmetric space-times, the dimension of CVFs turns out to be 4, 5, 6 and 15. 

In the Bianchi type I space-times, there exist fourteen cases. Out of these fourteen cases, the 

space-times in nine cases admit 4 and 5 HVFs while in five cases, space-times admit 6 and 15 

CVFs. In Bianchi type II space-times, there exist seven cases while studying each case we found 

that in four cases, space-times admit proper HVFs while in rest of the three cases, CVFs become 

KVFs. In the Bianchi type V space-times, again there exist seven cases. From these seven cases, 

the space-times in six cases admit three KVFs while in the seventh case, the space-times become 

conformally flat therefore admit fifteen independent CVFs. In the Kantowski Sachs and Bianchi 

type III space-times, there exist eight cases. Studying each case in detail, we found that in six 

cases, space-times admit four and six KVFs while in two cases, the space-times admit proper 

CVFs of dimension six. In spatially homogeneous rotating space-times, there exist six cases. 

Within these six cases, there exist three cases in which space-times admit three and four KVFs. 

In two cases, the space-times admit four HVFs while in the remaining case, the space-time 

admits fifteen independent CVFs. In the pp-wave space-times, there exist ten cases. Studying 

each case, we found that in eight cases, space-times admit proper HVFs while in two cases, 

space-times admit proper CVFs. In non-static plane symmetric space-times, there exist, seven 
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cases. From these seven cases, there exist two cases in which CVFs become KVFs. In three 

cases, space-times admit five HVFs while in the remaining two cases, the space-times admit six 

and fifteen independent CVFs.  
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Chapter 1 

Preliminaries and Literature Review in f(R) Theory of Gravity  

1.1  Introduction  

A comprehensive view of the universe first started with Sir Isaac Newton’s theory of gravitation, 

nearly three hundred years ago. This theory permitted scientists to describe the movement of 

universal bodies on earth with certain assumptions. Initially, Einstein theory was in two major 

forms namely special relativity (SR) and general relativity (GR). In SR, the space-time structure 

was assumed to be flat and there was no discussion related to the effect of gravity on the space-

time structure. Within its limits, the SR had proven itself a satisfactory theory but in the years 

following 1905, Einstein became convinced that gravitation should be expressed in terms of 

curvature. Consequently in 1915, Einstein offered the theory of GR whose structure was space, 

time and gravitation. This theory describes the gravitation due to the existence of matter and 

energy. As in comparison with the SR, the space-time is not necessarily flat in GR. Einstein 

theory of GR is based upon the well-known EFEs which will be defined in the upcoming 

sections.  

In this chapter, we will give some definitions and terminologies which will formulate a basis to 

understand the research work. A comprehensive review of literature on the theory of f(R) will be 

given. Rest of this chapter is planned as follows: In section (1.2) to (1.12), several basic 

definitions will be given. These definitions include manifold, tangent space, tensors, covariant 

derivative, Christofell symbols, Riemann curvature tensor, Ricci tensor, Ricci scalar, EFEs, 

energy momentum tensor (EMT), space-time, Lie derivative and space-time symmetries 

respectively. Review of some important literature related to the f(R) gravity will be given in 

section (1.13). Material related to the definitions mentioned above is taken from (Oneill, 1983, 

Wald, 1984 and Hall, 2004).  
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1.2  Manifold  

In common words, manifold is defined as a space of points that is locally flat and globally seems 

to be a curve. Mathematically, an n-dimensional manifold M  is defined as an extension of 

ordinary space. It fulfills the topological axioms (Qadir and Saifullah, 2006):  

(i) It is separable. 

(ii) It is connected. 

(iii) It is Hausdorff. 

(iv) There exists a homomorphism from its open cover to set of n tupples.  

1.3  Tangent Space  

Before defining a tangent space, first we have to define a tangent vector (TV). A tangent vector 

T  at point ,p M  where M  denotes the manifold is basically a map : ,T R     being 

family of real valued C
 functions from M  into R  which fulfills linearity and Leibnitz rule i.e  

(i) ( ) ( ) ( )T as bq aT s bT q    for all ,s q   and , .a b R   

(ii) ( ) ( ) ( ) ( ) ( )T sq T s q p s p T q   for all , .s q    

Assortment of all TVs at each point ,p M  is represented by ( )pT M  and is called tangent space 

(Nail, 1983 and Wald, 1984). A visible picture of such concepts is shown below:  

 

Figure 1.1 
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In figure 1.1, p M  is a point in the manifold M  and ( )t  is a curve in .M   

1.4  Tensors  

The quantities which remain unchanged when subjected to some transformation are called 

tensors. Mathematically, a tensor T  of type  ,k l  over ( )pV M  where ( )pV M  is representing 

finite dimensional vector space is a multilinear map which acts on vectors and yield a number. 

Mathematical expression of such a map is given below:  

: ( ) ( ) ... ( ) ...p p p p p p

k l

T V M V M V M V M V M V M          (1.4.1) 

where ,k  l  and pV M  symbolizes the ordinary vectors or tangent vectors, dual vectors and dual 

vector space respectively. Now, we introduce a simple but important operation on tensors which 

is called a contraction. A contraction is a map on a M which reduces the rank by two. 

Symbolically, it is represented as : ( , ) ( 1, 1).C k l k l     Moreover, components of a tensor 

satisfying  

, ,( ) ( ) ,ab ij a b

i jE x E x x x          (1.4.2) 

is called contravariant tensor with comma showing partial derivative. A covariant tensor is 

defined as:  

, ,( ) ( ) .i j

ab ij a aE x E x x x          (1.4.3) 

Similarly, a mixed tensor is defined as  

( ) ( ).
a j

a i

b ji b

x x
E x E x

x x

 
  

 
    (1.4.4) 
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A tensor abT  is called symmetric if ab baT T  and anti-symmetric if .ab baT T   Similarly, if abT  is 

a tensor of type  0,2 ,  then  

   
1 1

.
2 2

ab ab ba ab baT T T T T       (1.4.5) 

We have decomposed abT  into symmetric and skew-symmetric parts i.e. 
   

1

2
ab baab

T T T   and 

   
1

2
ab baab

T T T   respectively (Wald, 1984). One of the most significant form of tensors is 

metric tensor. To define a metric tensor, we start with the notion of metric which is considered 

as infinitely small squared distance associated with an “infinitely small displacement”. The basic 

idea of infinitely small displacement is precisely captured from the concept of tangent vector. A 

metric g  should fulfil the properties:  

(i) It is a linear map whose domain contains the product of tangent space with tangent space onto 

real number i.e. : ( ) ( ) .p pg T M T M R    

(ii) It is symmetric i.e.    1 2 2 1, ,g v v g v v    1 2, ( ).pv v T M  

(iii) It is non degenerate i.e. determinant of abg  is non zero.  

In the coordinate basis, we may write abg  as  

,

.a b

ab

a b

g g dx dx       (1.4.6) 

One may replace the notation of g  into 2ds so that, we have  

2

,

.a b

ab

a b

ds g dx dx      (1.4.7) 

One can define the inverse of g  as .abg  Thus, by definition g ,ab a

bc cg   where 
a

c  denotes the 

Kronecker delta and is defined as  
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1 if
.

0 if

a

c

a c

a c



 


    (1.4.8) 

It is well-known that the tensor under discussion is used for lowering or raising the indices.  

1.5  Covariant Derivative  

The Covariant derivative is basically a map say    : , , 1 ,H k l k l   where  ,k l  is 

representing the type of any smooth tensor field into another type  , 1 .k l   It is represented by 

the symbol   or the semicolon (;). It is considered as a map which fulfills the linearity property 

and obeys Leibnitz rule. It also fulfills the commutative property of contraction. In addition, this 

map is torsion free and when acts on some scalar field it represents partial derivative instead of 

covariant derivative. This sort of the derivative have a deep relationship with the differential 

geometry which is further have a link for the core study of fibre bundles. It is also used to 

elaborate several mathematical representations of theoretical physics including GR. The 

advantage of this form of derivative over the usual differentiation is that it helps to calculate 

those changes which happen to occur on the curved space-times. Other forms of the derivative 

include Lie and usual differentiation. These types of the derivative don’t have the property to 

map a tensor quantity into the tensor quantity whereas covariant derivative have this property 

which made this sort of dervitive significant in the field of tensor analysis.  

1.6  Christofell Symbol  

We know that the metric tensor is covariantly constant i.e. (Wald, 1984)  

0,c abg       (1.6.1) 

where c  denotes the covariant derivative of the metric tensor .abg  Expanding the above 

equation (1.6.1) give  

, 0.d d

ab c ac bd bc adg g g       (1.6.2) 

, .d d

ab c ac bd bc adg g g       (1.6.3) 
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Interchanging c  with b in equation (1.6.3), we have  

, .d d

cb a ca bd ba cdg g g       (1.6.4) 

Similarly, interchanging b  with a  in equation (1.6.4), we have  

, .d d

ca b cb ad ab cdg g g       (1.6.5) 

Adding equations (1.6.3) and (1.6.4), we get  

, ,a .d d d d

ab c cb ac bd bc ad ca bd ba cdg g g g g g        (1.6.6) 

Subtracting equation (1.6.5) from equation (1.6.6), we have  

, , , .d d d d d d

ab c cb a ca b ac bd bc ad ca bd ba cd cb ad ab cdg g g g g g g g g          (1.6.7) 

Using the fact that 
d d

ac ca    and 
d d

ba ab    in the above equation (1.6.7), we have  

   
, , ,

1
.

2

d bd

ac ab c cb a ca bg g g g          (1.6.8) 

It is important to note that Christofell symbols are not a tensor quantity. These symbols are 

important objects as they arise in describing the effects of parallel transport of vectors. These are 

also used in the calculations of covariant derivative, Riemann curvature tensor and in the 

geodesic equation. Further, Christofell symbols act as a dominant tool to investigate the 

geometry of manifold. For instance, a manifold with all the vanishing components is the 

indication that the assocated space-time geometry is flat. This property further shows that the 

components of the Ricci tensor also going to vanish and hence one seeks for the vaccum 

solutions of the EFEs. These symbols have a majour role to calculate the components of the 

curvature tensor.  
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1.7  Riemann Curvature Tensor and its Derived Forms  

The Riemann Curvature tensor in terms of Christofell symbols is defined by  

   ,c , .a a a a e a e

bcd bd bc d ce bd de bcR            (1.7.1) 

If we contract the above expression, we get the Ricci tensor 
e

fh fehR R  and the trace of Ricci 

tensor yields Ricci scalar 
ef

feR g R  (Wald, 1984). In the later terminology, Ricci scalar R  has a 

significant role as it acts as the key factor while introducing f(R) theory of gravity. On the other 

hand, dealing with the curvature tensor yields curvature of a manifold in the subject of 

differential geometry. Curvature tensor has a majour impact in the development of GR as the 

core of this theory seems to coincide with the well-known field equations. One of the bright 

ingradiant of such equations is the Ricci tensor which is obtained by taking the trace of curvature 

tensor. Furthermore by taking the trace of Ricci tensor one gets the scalar curvature. In the next 

section, mathematical form of the EFEs is given.  

1.8  Einstein Field Equations in General Relativity 

The EFEs in GR are defined by (Stephani et al., 2003)  

    
1

,
2

ab ab ab ab abG R Rg g kT        (1.8.1)  

where the quantities are defined below:  

Eienstien tensor,abG    

Ricci tensor,abR   

Ricciscalar,R    

Metric tensor,abg    

Cosmologicalconstant,    
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4

8
Couplingconstant,

G
k

c


    

G  being gravitational constant,  

c  is the speed of light,  

Energymomentumtensor.abT    

Actually, the EFEs provide a link between geometry and physics of the space-time as the left 

hand side of the above field equations denotes the geometry while the right hand side denotes the 

physics of the space-time. In the above equation (1.8.1), abT  is the source to provide the 

gravitational contribution. The case when abT  vanishes, one is confined to get the vacuum 

solutions to these equations as the door which provide physics of space-time structure closes. 

The coming slots of thesis define the EMT.  

1.9  Energy Momentum Tensor  

The right hand side of equations (1.8.1) is known to be the energy momentum tensor (EMT). 

EMT has a major role in GR as it provides the link to discuss the physics related to the 

considered space-time structure. In addition, when one needs to explain the gravitational field in 

EFEs, one must look to use EMT. Other well-known terminologies related to the physics such as 

mass which is defined as amount of matter in a certain object and energy which is capability of 

doing work are also directs to define EMT. There are different types of EMT but we are focusing 

only on two types which we have used in our research work. The first one is abT  for the perfect 

fluids which is:  

( ) ,ab a b abT p s s pg       (1.9.1) 

where   is the matter density, p  is the pressure and as
 
is the 4-velocity vector. A perfect fluid 

can be characterized as the following properties: 
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(i) It does not have shear stress. 

(ii) It does not have anisotropic pressure.  

(iii) It does not have heat conductivity. 

(iv) It does not have viscosity.  

It is completely characterized by its rest frame isotropic pressure and mass density.  The second 

form of EMT abT  for the dust matter is of the form 

.ab a bT s s      (1.9.2) 

Clearly, one can define energy momentum tensor for dust matter by putting the pressure term p  

equal to zero in equation (1.9.1).  

1.10  Space-time  

A space-time is defined as a combination  , ,M g  where M  represents the manifold defined 

earlier in section (1.2) and g  is the Lorentzian metric on M  (Wald, 1984). A space-time 

comprises of elements which are known as events. It is further classified as stationary, static and 

non-static. The term stationary space-time is referred to those having time-like KVF. A 

combination of stationary space-time along with the property that it holds a KVF orthogonal to 

the hypersurface are termed as static space-time. The space-time other than the stationary and 

static are said to be non-static. Therefore, we can define a non-static space-time as the space-time 

which do not admit time-like KVF (Stephani et al., 2003). There are also some other space-times 

like Minkowski or flat which have vanishing Riemann tensor. Following diagram shows the 

structure of space-time. It is usually referred to as light cone:  
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Light cone. Figure 1.2 

1.11  Lie Derivative  

The Lie derivative L  of the metric tensor abg  along the vector field X  is basically a 

directional derivative and is defined as: (Hall, 2004)  

,
c c

cab
X ab ac bcc b a

g X X
L g X g g

x x x

  
  
  

  (1.11.1) 

Another way to define Lie derivative is (Hall, 2004, Hawking, 1973) 

*

0
, lim t

X
t

T

t

T
L T





  
  

 
    (1.11.2) 

where t  is the one parameter local diffeomorphism and *

t T  denotes the pullback map. If iX  

and jX  are two vector fields, then the Lie bracket is defined as:  

, ( ) ( ).i j i j j iX X X X X X          (1.11.3) 

If we concentrate within mathematical physics and look into the structure of GR, we see that the 

Lie derivative is an important terminology. Especially in the field of symmetries of gravitational 
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fields. Moreover, it is proved to be helpful while one needs to calculate the changes that happen 

to occur in curved geometry.  

1.12  Space-time Symmetries  

In the theory of GR, the space-time symmetries act as the key probes in solving many 

mathematical problems. The EFEs defined in equation (1.8.1) have no general solution. One is 

not able to solve these equations unless one fixes the space-time geometry. In addition, if a 

space-time admits some sort of symmetry then there exists a possibility of finding the exact 

solutions to some extent. Space-time symmetries are not only used in finding the solutions, they 

are also helpful to classify the already existing solutions with respect to the symmetry which the 

space-time admits. The transformations that force the physical quantities to leave invariant are 

proved to be extremely important in modern theoretical physics. The existence of symmetries in 

space-time provide the conservation laws. In GR, different forms of symmetries include:  

(i) Killing symmetry. 

(ii) Homothetic symmetry. 

(iii) Conformal symmetry. 

(iv) Affine symmetry.  

(v) Projective symmetry. 

(vi) Curvature collineation. 

(vii) Ricci collineation. 

(viii) Matter collineation, etc.  

Precise definitions of above mentioned symmetries can be found in (Hall, 2004). Among these 

symmetries conformal symmetry is very important due to its important applications in the 

modern theoretical physics. From the geometrical point of view, Maxwell’s laws of 

electromagnetic theory and light cone structures remain invariant under conformal 

transformations. Moreover, for massless particles along the null geodesics, conformal symmetry 

produces a constant of the motion. A number of applications of conformal KVFs exist in the 

theory of irreversible processes and many more can be seen in (Khan et al., 2015) and the 
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references therein. Conformal symmetry is also used in quantum electrodynamics as the classical 

field equations for massless electrodynamics which are invariant under a much larger group of 

space-time transformations known as conformal group (Baker and Johnson, 1979). In 

astrophysics, conformal symmetry is used to study compact stars. Compact stars are used to 

study certain properties of gravitational fields. Conformal symmetry is also used to study 

wormhole solutions and Brane world gravstars. Moreover, the role which conformal KVFs play 

at the kinematic and dynamic level is documented in (Martin et al., 1986). In view of the 

important applications of CVFs, our focus in this thesis will be on searching the CVFs. A vector 

field X  is said to be conformal vector field, if (Hall, 2004) 

2 ,X ab abL g g     (1.12.1) 

where   is smooth real valued function on .M  There is a close relationship between the vector 

field X  and the conformal factor   as it is a well-known fact that  

HVF, if constant.

Proper HVF, if constant 0.

KVF, if 0.

Proper CVF, Otherwise.

X










 
 




 

For a space-time, the maximum dimension of CVFs is fifteen and it is obtained when the space-

time is conformally flat. If the space-time is non conformally flat, then maximum dimension of 

CVFs is seven (Hall, 2004).  

1.13  Literature Review in f(R) Theory of Gravity  

GR is a sophisticated theory of gravitation and was given by Albert Einstein in 1915. The 

mathematical form of this theory was described in the form of EFEs which are defined in 

equation (1.8.1). These equations were derived by a technique known as Einstein Hilbert action 

in linear function of scalar curvature R  (Stephani et al., 2003). After four years of its birth, 

people started thinking that what will be the form of field equations, if the scalar curvature R  in 

the action become some function of .R  The idea was first presented by Weyl in 1919 and then 

supplemented by Eddington in 1923. They argued that inclusion of higher order invariants in the 

action can produce interesting results (Weyl, 1919 and Eddington, 1923). In 1929, an American 

astronomer Edwin Hubble was performing experiment where he observed that the distance of 
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galaxies at the edges of the universe from the observer is increasing with the passage of time. 

From this he concluded that our universe is expanding with a fixed rate (Hubble, 1929). Due to 

this expansion, space-time geometry was needed to be updated. As the left hand side of 

equations (1.8.1) reflects the space-time geometry which is also called the curvature part, 

therefore the change in the curvature part of EFEs seems useful for the better explanation of 

phenology of expanding behavior of universe. This was possible only if one makes the 

modification in the action of GR. Later on, investigation of (Utiyama and De Witt, 1962), put 

forward the idea to modify the action of GR by adding the curvature invariants. Eventually, in 

1970, A. H. Buchdahl made the modification in action of GR and replaced Ricci scalar R  with a 

general function f(R) in the Einstein Hilbert action. The refined action  S g  is given below 

(Nojiri and Odintsov, 2003)  

    41
,

2
S g f R gd x

k
      (1.13.1) 

where k  is the coupling constant, g g  and f(R) is representing the function of the scalar 

curvature or Ricci scalar .R  The action defined in equation (1.13.1) serves as a basic tool to 

formulate equations of motions in the f(R) theory of gravity. In fact, the variation of action 

(1.13.1) yields following equations in f(R) gravity (Nojiri and Odintsov, 2003)  

       
1

,
2

ab ab a b ab abF R R f R g F R g F R kT       (1.13.2) 

where ( ) ( ),
d

F R f R
dR

  
a

a   in which a  is the covariant derivative, abT  is the standard 

matter energy-momentum tensor. In contrast with the GR, the equations defined in equation 

(1.13.2) have order four, therefore create a possibility of obtaining more solutions than GR 

whose equations of motion are of order two. The replacement ( )f R R  led towards the 

equations of motion in GR. There is a huge amount of works on the solutions of equations 

(1.13.2). A brief description is given here. In the early 2006 and 2007, some work on spherically 

symmetric space-times was carried by (Multamaki and Vilja, 2006). The same authors extended 

the work from vacuum to non-vacuum solutions and sought solutions using source of EMT as 

perfect fluid. More work related to solutions of EFEs in f(R) gravity have been done in 

(Multamaki and Vilja, 2007), (Capozziello et al., 2007), (Hollenstein and Lobo, 2008), 
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(Capozziello et al., 2008), (Azadi et al., 2008), (Carames and Bezarra de Mello, 2009), (Sharif 

and Shamir, 2009), (Sharif and Shamir, 2010), (Sharif and Shamir, 2010), (Reboucas and Santos, 

2010), (Shamir, 2010), (Hendi and Momeni, 2011), (Sharif and Kausar, 2011), (Sebasiani and 

Zerbini, 2011), (Sharif and Kausar, 2011), (Shojai and Shojai, 2012), (Capozziello et al., 2012), 

(Hindi et al., 2012), (Gutierrez-Pineres, 2012), (Yavari, 2013), (Sharif and Zahra, 2013), (Shamir 

and Raza, 2014), (Shamir and Raza, 2014), (Arbuzova et al., 2014), (Hendi, 2014,) (Ohta et al., 

2015), (Amirabi et al., 2016), (Shamir, 2016), (Elmardi et al., 2016), (Tripathy and Mishra, 

2016), (Gao and Shen, 2016), (Banik et al., 2017), (Mahraj et al., 2017) and (Nashed and 

Capozziello, 2019).  

Our purpose in this thesis is to discuss CVFs of distinguish class of space-times in the f(R) 

theory of gravity. In the second chapter, we will try to find CVFs of some static space-times in 

the f(R) theory of gravity. These include space-times, static spherically symmetric, static 

cylindrically symmetric and static plane symmetric. In the third chapter, we will find proper 

CVFs of spatially homogenous rotating space-times and well-known class of plane fronted 

gravitational waves (GWs) also called pp-waves space-times. In the fourth chapter, a 

comprehensive study of some Bianchi models will be presented. In particular, conformal 

symmetries of Bianchi type I, II, V, III and Kantowski Sachs space-times will be discussed in 

detail. In chapter five, conformal symmetries of proper non static plane symmetric space-times 

will be discussed. In chapter six, conclusion of overall analysis will be given. At the end of this 

thesis, bibliography of our work will be presented.  

 

 

 

 

 



15 

Chapter 2 

Conformal Symmetry of Some Static Space-Times in f(R) Theory of 

Gravity  

2.1  Introduction  

In this chapter, we will study CVFs of some static space-times in the f(R) theory of gravity. The 

methodology which is adopted here is twofold. In the initial step, we have tried to formulate the 

space-times in the theory of f(R). Further, we have used these space-times to construct CVFs. 

The procedure of finding the CVFs is direct integration. Three space-times have been considered 

in this chapter to find CVFs. These space-times are static spherically symmetric (SSS), static 

plane symmetric (SPS) and static cylindrically symmetric (SCS). The whole chapter is divided 

into five sections. In the section (2.2), we don’t explore the space-times. Instead of this, we have 

used the results of two papers (Capozziello et al., 2012 and Amirabi et al., 2016) to find CVFs. 

SS space-time is of incredible passion because of it having various significant physical and 

hypothetical aspects. This space-time is considered as one of the initial solution of the EFEs 

whose significant example include the Schwarzschild solution. Looking at the end of physical 

scenario, the Schwarzschild solution is utilized to clarify the gravitational field outside to static 

round stars. SS space-times are likewise used to talk about the nearby planetary group tests and 

can be considered as key fixings to figure related physical amounts like weight, thickness and 

gravitational fields. Spherical symmetric space-times are important to study from several point of 

view. Especially the theory of black holes entirely depends on the spherical geometry of space-

times. The SSS stars are used to compute pressure, density and gravitational fields and to treat 

the solar system tests. On the other hand exact spherical symmetric solutions yield a deeper 

approach to look into the Steller models and related red-shifts. Keeping the important 

applications of spherical symmetric space-times in mind, it seems interesting to study this space-

time from the symmetry perspective. The upcoming three sections are specified for detailed 

study of CVFs for spme well-known space-times whereas in the last section (2.5), a brief 

summary of the obtained results is given.  
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2.2  Conformal Vector Fields of Static Spherically Symmetric 

 Space-times in the f(R) Theory of Gravity  

Consider SSS space-times in the coordinates ( , , , )t r    (given by  0 1 2 3, , ,x x x x  respectively) 

with line element (Stephani et al., 2003)  

2
2 2 2 2( ) ,

( )

dr
ds A r dt r d

A r
         (2.2.1) 

where 2 2 2 2sin .d d d        The minimal number of isometries which the above space-

times (2.2.1) admit are (Stephani et al., 2003)  

,
t




 ,





 cot cos sin ,  

 

 


 
 cos cot sin .  

 

 


 
  (2.2.2) 

Expanding equation (1.12.1) and using equation (2.2.1), we have  

1 0

,02 2 ,A X AX A       (2.2.3) 

2 0 1

,1 ,0 0,A X X         (2.2.4) 

0 2 2

,2 ,0 0,AX r X       (2.2.5) 

0 2 2 3

,3 ,0sin 0,AX r X      (2.2.6) 

1 1

,12 2 ,A X AX A       (2.2.7) 

1 2 2

,2 ,1 0,X Ar X       (2.2.8) 

1 2 2 3

,3 ,1sin 0,X Ar X      (2.2.9) 

1 2

,2 ,X rX r       (2.2.10) 

2 2 3

,3 ,2sin 0,X X       (2.2.11) 

1 2 3

,3cot ,X r X rX r        (2.2.12) 
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where prime signifies .
d

dr
 Multiplying equation (2.2.7) with 

1

A
 and then integrating over ,r  

one has 1 1( , , ),X A dr AB t
A


    where 1( , , )B t    is a function of integration (FOI). 

Using the value of 1X  in equations (2.2.4), (2.2.8) and (2.2.9) after some algebraic calculations, 

we have  

3

0 1 22

2 1 3

2

3 2 1 4

2

( , , ) ( , , ),

( , , ) ( , , ) ,

cos ( , , ) ( , , )

tX B t A dr B t

dr
X B t B t

r A

dr
X ec B t B t

r A





   

   

    

 
 



   



   








  (2.2.13) 

where ( , , ),iB t    2,3,4i   are also FOIs. For the sake of obtaining CVF ,X  we search the 

functions ( , , ),iB t    1,2,3,4i   and the conformal factor .  As already mentioned that we are 

going to use the results of the two papers (Capozziello et al., 2012 and Amirabi. et al., 2016) to 

find CVFs. The procedure will be straight forward, we will use the values of metric component 

( )A A r  which are given in the papers (Capozziello et al., 2012 and Amirabi et al., 2016) in the 

above system of equations (2.2.3) to (2.2.12) and then we will find the components of CVFs. The 

process of integration is lengthy but straightforward. Omitting the details of calculations which 

are performed in this process we arrive at the following cases:  

Case (i)  

In this case, we have the space-time (Capozziello et al., 2012)  

 

1

2 2 2 2 2 2 21 11 1 ,
3 2 3 2

A A
ds r dt r dr r d

r r


    

           
   

  (2.2.14) 

where 1 \{0}A   and   is cosmological constant. Next, we substitute the value of ( )A r in the 

above ten equations from (2.2.3) to (2.2.12) and after some lengthy calculations, we found that 

0   which implies CVFs are KVFs and are given in equation (2.2.2). The above space-times 

are known as static Schwarzschild–de Sitter solutions.
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Case (ii)  

Here, we have Schwarzschild–de/anti-de Sitter black hole space-time (Amirabi et al., 2016)  

 

1

2 2 2 2 2 2 2

2 2

2 2
1 1 ,

M M
ds c r dt c r dr r d

r r



   
           

   
  (2.2.15) 

where M  represents the Arnowitt–Deser–Misner (ADM) mass and 2 .c R  In this case, again we 

are using the value of ( )A r in the above ten equations from (2.2.3) to (2.2.12) and after some 

lengthy calculations, we found that 0   which implies CVFs are KVFs and are shown by the 

equation (2.2.2).  

Case (iii)  

Here the space-time (Amirabi et al., 2016) is,  

1

2 2 2 2 2 2 21 1 1 1
,

3 2 3 3 2 3
ds r dt r dr r d

r r 


    

           
   

   (2.2.16) 

where \{0}R  and   is cosmological constant. The space-time (2.2.16) do not admit CVFs 

as 0,   here CVFs are KVFs which are given in equation (2.2.2).  

Case (iv)  

The space-time in this case is (Amirabi et al., 2016)  

1
2 2

2 2 2 2 21 2 1 1 2 1
,

2 3 2 3
ds dt dr r d

r r

 

 



    
         

   
  (2.2.17) 

where   is the global monopole charge. Here, using the same technique which we have used in 

the previous cases, we again found that 0,    CVFs become KVFs which are already 

mentioned in equation (2.2.2).  

Case (v)  

Here, we have the space-time (Amirabi et al., 2016)  
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1

2 2 2 2 21 1
,

2 2
ds dt dr r d



   
       

   
     (2.2.18) 

Substituting the value of ( )A r in the above ten equations from (2.2.3) to (2.2.12) and after some 

lengthy calculations, we found that 1c   which implies CVFs become HVFs. Here, the proper 

HVF after subtracting KVFs is  

 , ,0,0 .X t r      (2.2.19)  

Case (vi)  

Here, considering the space-time of the form (Capozziello et al., 2012)  

  

1

2 2 2 2 21 1 1 1
,

2 2
ds dt dr r d

r r



   
         

   
     (2.2.20) 

which is asymptotically flat and will be physically consistent for 0r   as value of Ricci scalar is 

negative. Again in this case, we found that 0,   which implies that CVFs are the KVFs which 

are given in equation (2.2.2).  

2.3  Conformal Vector Fields of Dust Static Plane Symmetric 

 Space-times in the f(R) Theory of Gravity  

The line element of SPS space-times in the usual coordinates ( , , , )t x y z  (given by 
0 1 2 3( , , , )x x x x  

respectively) is given by (Stephani et al., 2003)  

2 2 2 2 2[ ],ds Adt dx B dy dz         (2.3.1) 

where ( )A A x  and ( )B B x  are nowhere zero functions of x  only. The minimal set of 

isometries which the space-times (2.3.1) admit are (Stephani et al., 2003)  

,t  ,y  ,z  .z yy z       (2.3.2) 

The value of Ricci scalar R  for the above space-times (2.3.1) turn out to be  
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2 2

2 2

4 2 2
2 ,

B B A A B A
R

B B A AB A

      
     

 
    (2.3.3) 

where prime appearing in the above equation signifies .
d

dx
 Expanding equation (1.12.1) and 

using equation (2.3.1), we have  

1 0

,02 2 ,A X AX A       (2.3.4) 

0 1

,1 ,0 0,AX X        (2.3.5) 

0 2

,2 ,0 0,AX BX        (2.3.6) 

0 3

,3 ,0 0,AX BX        (2.3.7) 

1

,1 ,X        (2.3.8) 

1 2

,2 ,1 0,X BX        (2.3.9) 

1 3

,3 ,1 0,X BX        (2.3.10) 

1 2

,22 2 ,B X BX B       (2.3.11) 

2 3

,3 ,2 0,X X        (2.3.12) 

1 3

,32 2 .B X BX B        (2.3.13) 

From equations (2.3.9), (2.3.10) and (2.3.12), we have 1 1 2( , , ) ( , , ),X Q t x y dy Q t x z   where 

1( , , )Q t x y and 
2( , , )Q t x z  are FOI. Now, utilizing the value of 1X  in equations (2.3.5), (2.3.9) and 

(2.3.12), we have  

1 2
0 5( , , ) ( , , )

( , , ),t tQ t x y Q t x z
X dx dy dx Q t y z

A A
      
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1
2 3( , , )

( , , ),
Q t x y

X dx Q t y z
B

    

3 3 4( , , ) ( , , ),zX Q t y z dy Q t x z        (2.3.14) 

where 
3( , , ),Q t y z  

4( , , )Q t x z  and 
5( , , )Q t x z  are also FOI. As we are in search of CVFs in f(R) 

theory of gravity therefore, we need to deduce the solutions in this theory. The theory of f(R) is 

based on the set of field equations defined in equation (1.13.2). For finding the solutions of 

equations (1.13.2), we will use equation (2.3.1) in the set of equations (1.13.2) and will look for 

the metric coeffiecnts. Further, we are using dust matter as a source of EMT which is defined by  

,ab a bT u u        (2.3.15) 

where   denotes the matter density and au  is the four velocity vector. Using equations (2.3.1), 

(2.3.15) and (1.13.2), after some algebraic manipulations, we have  

2

2
.

2 4 4 2 2 2

A A A B B A F F B F k

A A AB B AF F BF FA

         
          (2.3.16) 

2

2
.

2 2 2

B B A B F A F k

B B AB F AF FA

      
          (2.3.17) 

A comparison of equations (2.3.16) and (2.3.17) provide the following equation:  

2 2

2 2

2
0.

2 2

A B A A B B B F F

AB A A B B BF F

        
           (2.3.18) 

Looking at equation (2.3.18), we see that it contain three unknowns viz. ,A  B  and .F  Choosing 

different ( )f R  models, a number of solutions have been obtained by (Shamir, 2016). In this 

study, we are interested in discovering analytic solutions of equation (2.3.18) by imposing some 

restrictions on derivative of ( ).f R  These restrictions are:  

(a) constant,A   ( ),B B x  0,F   0F   and 2 0.B F BB F BB F        

(b) constant,A  ( ),B B x  0,F   0F   and 2 0.B BB     
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(c) constant,B   ( ),A A x  0,F   0F   and 2 2 0.A AA     

(d) constant,B   ( ),A A x  0,F   0F   and 2 2 0.A AA     

(e) ( ),A A x  ( ),B B x  ,A B  0,F   0F   and 2 0.A AA     

(f) ( ),A A x  ( ),B B x  ,A B  0,F   0F   and 2 0.A F AA F AA F       Solutions of 

equation (2.3.18) using the above restrictions turns out to be  

(i) constant,A   
2

,x xB e    1 2 3( )f R c x c R c    and 2 2 23
2(3 2) 6 ,

2
R x x       

where 1 2 3, , , , \{0}.c c c     

(ii) constant,A   
4 5 ,

c x c
B e


  6 7( )f R c R c   and 2

4

3
,

2
R c  where 4 5 6 7, , , \{0}.c c c c   

(iii) constant,B   
2

1 2( ) ,A c x c   1 2 3( ) ( )f R d x d R d    and 0,R   where 

1 2 1 2 3, , , , \{0}.c c d d d    

(iv) constant,B   
2

1 2( ) ,A c x c   1 2( )f R d R d   and 0,R   where 1 2 1 2, , , \{0}.c c d d    

(v) 1 2 ,
d x d

A B e


   1 2( )f R a R a   and 
2

13 ,R d where 1 2 1 2, , , \{0}.a a d d    

(vi)  
3

2
1 2 ,

a x a
A B e


   1 2 3( ) ( )f R a x a R a    and 

2 1 2
1

1 2

3( ) 1
9 ,

4 4 ( )

a x a
R a

a x a

 
  

  

where 

1 2 3, , \{0}.a a a    

Next, we will make use of above information in the equations (2.3.4) to (2.3.13) to sorted out 

CVFs.  

Case (i)  

Constraints of this case are constant,A   
2

,x xB e    1 2 3( )f R c x c R c    and 

2 2 23
2(3 2) 6 ,

2
R x x       where 1 2 3, , , , \{0}.c c c    The space-time (2.3.1) 

performing rescaling in the coordinate t  take the form  
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22 2 2 2 2[ ].x xds dt dx e dy dz          (2.3.19) 

Now, we are interested in finding CVFs of space-time (2.3.19) with the help of equations (2.3.4) 

to (2.3.13). Skipping the process of integration, we arrive at 0,   which shows that no proper 

CVFs exist. CVFs here are KVFs which are given in equation (2.3.2).  

Case (ii)  

The values of metric coeffiecnts and related function ( )f R  in the present case are constant,A   

4 5 ,
c x c

B e


  6 7( )f R c R c   and 2

4

3
,

2
R c  where 4 5 6 7, , , \{0}.c c c c   Note that for 5 1c   and 

6 0,c   solution corresponds to GR. The space-times (2.3.1) after an appropriate rescaling of t  

has the form:  

42 2 2 2 2[ ].
c x

ds dt dx e dy dz          (2.3.20) 

Again solving equations (2.3.4) to (2.3.13) with the help of space-time (2.3.20), we get fifteen 

linearly independent CVFs which are:  

4 1 4 2 4 1 4 24

4 1 4 2 4 1 4 2

2 2 2 2
0 4 4 2 2 2 2

5 6 7 82

4

2 2 2 2
9 10 1 2 3

4

2

,

c c c cc x

c c c c

c y c z e
X a e a e a e a e z

c

a e a e y a e a e a

   

   


 

 

     
         
     

 
     
 

 

4 1 4 2 4 1 4 24

4 1 4 2 4 1 4 2

2 2 2 2
1 4 4 2 2 2 2

5 6 7 82

4

2 2 2 2
9 10 1 2 11 12 13

4 4 4

4

2

2 2 2
,

c c c cc x

c c c c

c y c z e
X a e a e a e a e z

c

a e a e y a e a e a z a y a
c c c

   

   


 

 

      
        
     

 
       
 

 

4 2 4 14

4 2 4 1

2 2 2 2
2 4 4 2 2

12 9 10 11 4 132

4 4

2 2
5 6 14

4

4 2

2

2
,

c cc x

c c

c y c z e
X a a e a e a yz a z a y

c c

a e a e y a
c

 

 






    
        
   

 
   

 
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4 2 4 14

4 2 4 1

2 2 2 2
3 4 4 2 2

11 5 6 12 42

4 4

2 2
7 8 13 15

4

4 2
( )

2

2
,

c cc x

c c

c y c z e
X a a e a e z a z a y

c c

a e a e a z a
c

 

 






    
       
   

 
    

 

 (2.3.21) 

where  1 ,t x     2 t x    and ia   with 1,2,3,...,15.i   Conformal factor in this case is  

4 1 4 2 4 1 4 24

4 1 4 2 4 1 4 2

2 2 2 2

4 4 42 2 2 2
5 6 7 8

4

4 42 2 2 2
9 10 1 2

4

4 2

.
2 2

c c c cc x

c c c c

c y c z e c
a e a e a e a e z

c

c c
a e a e y a e a e

   

   




 

 

     
         
     

   
      

   

 

Case (iii)  

Here, we have constant,B   
2

1 2( ) ,A c x c   1 2 3( ) ( )f R d x d R d    and 0,R   where

1 2 1 2 3, , , , \{0}.c c d d d   The space-times (2.3.1) after a suitable rescaling of y  and z  turn to be  

2 2 2 2 2 2

1 2( ) .ds c x c dt dx dy dz          (2.3.22) 

Again the above space-times (2.3.22) is conformally flat, therefore admit fifteen independent 

CVFs which are:  

   

 

2 2 2

3 4 5 6
0

11

7 8 9 10

1 2 ,

t t t t

t t t t

x y z
c e c e z c e c e

X c
x

y c e c e c e c e

 

 

   
     

   
   
 

 

   

 

2 2 2

3 4 5 6
1

7 8 12 13

9 10 14

2

,

t t t t

t t

t t

y z x
c e c e z c e c e

X

y c e c e c xz c xy

c e c e c x

 





   
     

    
   
 

  

 

 

 

2 2 2
2

13 12 15 14 3 4

7 8 16

2

,

t t

t t

x y z
X c c yz c z c y xy c e c e

x c e c e c





  
      
 

  
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   

2 2 2
3

12 13 15 14

3 4 5 6 17

2

,t t t t

z x y
X c c yz c y c z

xz c e c e x c e c e c 

  
     
 

   

    (2.3.23) 

where ic   with 3,4,5,...,17.i   Note that for the sack of simplicity, the above components of 

CVFs have been found by assuming 1 1c   and 2 0.c   Conformal factor in this case is 

 3 4 12 13 14.
t tx c e c e c z c y c        

Case (iv)  

The values of space-time components along with the supplementary function ( )f R  in this case 

are constant,B   
2

1 2( ) ,A c x c   1 2( )f R d R d   and 0,R   where 1 2 1 2, , , \{0}.c c d d   It is to 

be noted that the space-time formulated in this case turn out to be same as we obtain in the 

previous case having equation (2.3.22). The only difference is found in the value of ( ).f R  CVFs 

for this case are given in equation (2.3.23). As the space-times in this case coincides with the 

space-times (2.3.22), therefore CVFs for this case are given by the equation (2.3.23).  

Case (v)  

In this case, we have 1 2 ,
d x d

A B e


   1 2( )f R a R a   and 
2

13 ,R d  where 1 2 1 2, , , \{0}.a a d d   

The space-times (2.3.1) after an appropriate frame has the form  

12 2 2 2 2[ ].
d x

ds dx e dt dy dz          (2.3.24) 

The above space-times (2.3.24) resembles with the space-like version of FLRW for 0k   and is 

conformally flat therefore, CVFs turn out to be:  



26 

   

 

112 2 2
0 2

1 2 3 4 52

1 1

6 7 8 9

( ) 2 2

2

,

d xd x
t y z e

X c c t c e c t c z
d d

c t c y c t c

  
       
 

   

 

 

1 1

1

2 2 2 2 2
1

2 6 4 1 82

1 1

2
10 11 3 12

( ) 2 2

2

,

d x d x

d x

t y z e e
X c c y c z c t c

d d

e c z c y c t c

 
        

 
 
 

  

   

 

112 2 2
2 2

6 2 11 4 132

1 1

1 8 7 14

( ) 2 2

2

,

d xd x
z y t e

X c c y c e c y c z
d d

c t c y c t c

  
       
 

  

   

 

112 2 2
3 2

4 2 10 1 82

1 1

6 13 5 15

( ) 2 2

2

,

d xd x
t y z e

X c c z c e c t c z
d d

c z c y c t c

  
       
 

  

  (2.3.25) 

Conformal factor in this case is  

 

11

12 2 2 22
1 1 2

2 10 11 3 12

1

( )
,

4 2

d xd x
d x

d t y z e de
c e c z c y c t c

d


 
       

 
 
 

  

where ic   with 1,2,3,...,15.i    

Case (vi)  

Here, we have the values  
3

2
1 2 ,

a x a
A B e


   1 2 3( ) ( )f R a x a R a    and 

2 1 2
1

1 2

3( ) 1
9 ,

4 4 ( )

a x a
R a

a x a

 
  

  

 where 1 2 3, , \{0}.a a a   The space-time (2.3.1) become  

 
3

2
1 22 2 2 2 2 .

a x a
ds dx e dt dy dz


          (2.3.26) 

Again the above space-time (2.3.26) is conformally flat therefore admits fifteen independent 

CVFs which are  
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 
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(2.3.27) 

where ic   with 1,2,3,...,15i   and  
3

2
1 2

1
.

2
D a x a  Conformal factor in this case is  
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
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



   
    

   
 
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    

   





 

2.4  Conformal Vector Fields of Static Cylindrically Symmetric 

 space-times in the f(R) Theory of Gravity  

A space-times with cylindrical symmetric static geometry is defined by (Stephani et al., 2003)  

2 ( ) 2 2 ( ) 2 ( ) 2 ,v r r rds e dt dr e d e dz         (2.4.1) 

where ( ),v v r  ( )r   and ( )r   are non-zero functions of r  only. Note that the space-

times given in the above equation (2.4.1) have a general form because a SPS space-times could 

be obtained by setting ( ) ( ).r r   The linearly independent KVFs which the space-times (2.4.1) 

admits are (Stephani et al., 2003)  
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,
t




 ,





 .

z




      (2.4.2)  

The Ricci tensors associated with the space-times (2.4.1) are of the form (Sharif, 2004)  
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2

33

1
2 ,

4
R e v                

    (2.4.3) 

where the notation prime is the derivative with respect to r . Expanding equation (1.12.1) and 

using equation (2.4.1), we obtain the conformal equations:  

1 0

,02 2 ,v X X         (2.4.4) 

0 1

,1 ,0 0,ve X X        (2.4.5) 

0 2

,2 ,0 0,ve X e X       (2.4.6) 

0 3

,3 ,0 0,ve X e X       (2.4.7) 

1

,1 ,X        (2.4.8) 

1 2

,2 ,1 0,X e X        (2.4.9) 

1 3

,3 ,1 0,X e X        (2.4.10) 

1 2

,22 2 ,X X         (2.4.11) 

2 3

,3 ,2 0,e X e X        (2.4.12) 

1 3

,32 2 .X X         (2.4.13) 
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Solving equations (2.4.6), (2.4.7) and (2.4.12) simultaneously, we have 

0 1 2( , , ) ( , , ),X E t r d E t r z    where 
1( , , )E t r   and 

2( , , )E t r z  are FOI. Now, using value of 

0X  in equations (2.4.5), (2.4.6) and (2.4.7), we have  

 1 1 2 5( , , ) ( , , ) ( , , ),v v

r rX e E t r d dt e E t r z dt E r z        

2 1 3( , , ) ( , , ),vX e E t r dt E r z      

3 2 4( , , ) ( , , ),v

zX e E t r z dt E r z       (2.4.14) 

where ( , , )iE r z  with 3,4,5i   are FOI. Up to now, we have found components of CVFs in 

terms of the unknown functions of integration and metric components. In order to find CVF X  

in the theory under consideration, first we look for the solutions of EFEs defined in equation 

(1.13.2). Here, these solutions have been obtained by taking the matter part as perfect fluid  

( ) ,ab a b abT p s s pg       (2.4.15) 

where the symbols ,  p and as  are specified for the quantities density, pressure and four 

velocity vector respectively. Here, we define our velocity vector as 

( )

02 .
v r

a as e    Surviving 

components of EMT defined for the space-times (2.4.1) are  

00 ,vT e  11 ,T p  22 ,T pe  33 .T pe     (2.4.16) 

Using equations (2.4.1), (2.4.3) and (2.4.16) in (1.13.2) after some algebraic manipulations, we 

have  

2 22 2 ( ) 0.
2 4

F F
F v v v k p      


                    

 (2.4.17) 

2 2( ) 2 2 ( ) 0.
2 4

F F
v v v v k p      


                    

 (2.4.18) 

2 2( ) 2 2 ( ) 0.
2 4

F F
v v v v k p      


                    

 (2.4.19) 
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The above equations (2.4.17) to (2.4.19) are non-linear, therefore to make the computational 

process easy, we are classifying the space-times (2.4.1) by imposing some restrictions on the 

metric coefficients along with the condition given in 0,F   (Shamir, 2016). The classification 

has following cases:  

(i) ( ),v v r  ( )r   and constant.   

(ii) ( ),v v r  ( )r   and constant.    

(iii) ( ),r   ( )r   and constant.v   

(iv) ( )v v r  and ( ) ( ).r r   

(v) ( )r   and ( ) ( ).v r r  

(vi) ( )r   and ( ) ( ).v r r  

(vii) ( )v v r  and constant.    

(viii) ( )r   and constant.v    

(ix) ( )r   and constant.v    

(x) ( ) ( )v r r  and constant.   

(xi) ( ) ( )v r r  and constant.   

(xii) ( ) ( )r r   and constant.v   

(xiii)  constant.v      

(xiv) constant.v       

Case (i)  

Constraints of this case are ( ),v v r  ( )r   and constant.   Under this assumption, 

equations (2.4.17) to (2.4.19) give  

2 22 2 0.v v v               (2.4.20) 
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Here, we assume solution of the form  

     ,v n       (2.4.21) 

where \{0,1}.n  Using equation (2.4.21) in equation (2.4.20), we have 

4

1 2

4
lnv

c r c

 
  

 
 and 

4

1 2ln .
4

c r c


 
  

 
 The space-times (2.4.1) with the suitable rescaling in the coordinate z  has the 

shape given below: 

4 4

2 2 2 2 21 2

1 2

4
,

4

c r c
ds dt dr d dz

c r c


   
       

   
  (2.4.22) 

where 1 2, .c c   Now, solving equations (2.4.4) to (2.4.13) with the help of space-time (2.4.22), 

we found that 3,c   which implies that no proper CVFs exist. Here, CVFs coincide with the 

HVFs shown below: 

0

3 43 ,X c t c   1 1 2
3

1

,
c r c

X c
c

 
  
 

2

3 5,X c c    
3

3 6 ,X c z c    (2.4.23) 

where , 3,4,5,6.ic i   The above space-times (2.4.22) admit four CVFs including minimal 

set of isometries listed in equation (2.4.2). The remaining is proper HVF given by  

0

33 ,X c t  1 1 2
3

1

,
c r c

X c
c

 
  
 

 
2

3 ,X c    
3

3 .X c z   (2.4.24) 

Generators of conformal algebra which are labelled by i  in this case are  

1 2
1

1

3 ,
c r c

t z
t c r z

 


    
    

    
  

2 ,
t







 
3 ,







 
4 .

z






  

These generators form a closed form conformal algebra whose non-zero commutation relations 

are: 
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1 2 2[ , ] 3 ,     2 1 2[ , ] 3 ,     

1 3 3[ , ] ,    3 1 3[ , ] ,      

1 4 4[ , ] ,    4 1 4[ , ] .     

Case (ii)  

Here, we have ( ),v v r  ( )r   and constant.   Using equation (2.4.17) to (2.4.19), we have 

2

1 2ln
2

c r c
v

 
  

 
and 

2

3 4ln .
2

c r c


 
  

 
 The space-times (2.4.1) after an appropriate rescaling of 

  take the form  

22

2 2 2 2 23 41 2 ,
2 2

c r cc r c
ds dt dr d dz

   
       

   
  (2.4.25) 

where ,ic   with 1,2,3,4.i   Now, solving equations (2.4.4) to (2.4.13) with the help of the 

space-time (2.4.25), we found that 0,   indicating that the CVFs are the KVFs which are 

given in equation (2.4.2). These KVFs form a closed Lie algebra whose non-zero brackets are:  

1 2 3[ , ] ,    2 3 1[ , ] ,    1 3 2[ , ] ,    

2 1 3[ , ] ,     3 2 1[ , ] ,     3 1 2[ , ] .      

Case (iii)  

Constraints for this case are ( ),r   ( )r   and constant.v   Using equations (2.4.17) to 

(2.4.19), we have 

2

1 2ln
2

c r c


 
  

 
and 

2

3 4ln .
2

c r c


 
  

 
 The space-times (2.4.1) by a suitable 

rescaling in the coordinate t  has the shape:  

2 2

2 2 2 2 23 4 1 2 ,
2 2

c r c c r c
ds dt dr d dz

    
       

  
  (2.4.26) 
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where , 1,2,3,4.ic i   Again, we found that 0,   leading to the KVFs of equation (2.4.2). 

These KVFs also form a closed Lie algebra with the following brackets:  

   1 2 3[ , ] ,    2 3 1[ , ] ,     

1 3 2[ , ] ,   2 1 3[ , ] ,      

3 2 1[ , ] ,     3 1 2[ , ] .      

Case (iv) 

Here, we have ( )v v r  and ( ) ( ).r r   Again, equations (2.4.17) to (2.4.19) yields  

22 2 0.v v v             (2.4.27)  

The solution of above equation (2.4.27) turns out to be 
6

1 2ln( )v c r c   and 
3

1 2ln( ) .c r c    

The space-times (2.3.1) take the form  

2 6 2 2 3 2 2

1 2 1 2( ) ( ) ,ds c r c dt dr c r c d dz           (2.4.28) 

where ,ic   with 1,2.i   Components of CVFs turn out to be  

0

3 44 ,X c t c   1 1 2
3

1

2 ,
c r c

X c
c

 
  

 
 

2

3 5 6 ,X c c z c     
3

3 5 7 ,X c z c c       (2.4.29)  

where , 3,4,5,6,7.ic i   Checking the consistency of equations (2.4.4) to (2.4.13), 

conformal factor turns out to be 32 .c   The five CVFs given in equation (2.4.29) are further 

classified as four KVFs and one proper HVF. The proper HVF after subtracting KVF from 

(2.4.29) is  

0

34 ,X c t  1 1 2
3

1

2 ,
c r c

X c
c

 
  

 

2

3 ,X c    
3

3 .X c z   (2.4.30) 
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The generators of conformal algebra in this case are  

1 2
1

1

4 2 ,
c r c

t z
t c r z

 


    
    

    
  

2 ,z
z

 


 
 

 
  

3 ,
t







 
4 ,







 
5 .

z






  

These generators constitute a closed form conformal algebra whose non-zero commutation 

relations satisfy: 

1 4 4

1
[ , ] ,

4
  


  

4 1 4

1
[ , ] ,

4
     

1 5 5

1
[ , ] ,

4
  


  

5 1 5

1
[ , ] ,

4
     

2 4 5[ , ] ,     4 2 5[ , ] ,X X X   

2 5 4[ , ] ,    5 2 4[ , ] ,      

1 3 3[ , ] ,    3 1 3[ , ] .     

Case (v) 

In this case, solution of equations (2.4.17) to (2.4.19) is 

2

1 2ln
2

c r c
v

 
   

 
 and 

4

1 2ln ,
2

c r c


 
  

 
 where 1 2, .c c   The space-times (2.4.1) take the form  

2 4 2

2 2 2 2 21 2 1 2 1 2 ,
2 2 2

c r c c r c c r c
ds dt dr d dz

       
         

     
 (2.4.31) 

This is the space-time which admits proper CVFs. The components of CVFs are:  

0

5 6 ,  c zX c    
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1 1 2 1 2
3 4 5

1 1

2 16 ,
c r c c r c

c cX
c c


    

    
   

 

 

 

22 2

1 1 22 4
3 72 42

11 1 2

16 16
,

c c r c c
c c

cc c r c
X

   
   

  

  

3

5 8,c tX c          (2.4.32) 

where ic   with 3,4,5,6,7,8.i   Conformal factor in this case is 
4

3 4

1

16
2 .

c
c

c
    This is the 

case in which the space-times (2.4.31) admit proper CVFs. After eliminating HVFs from 

equation (2.4.32), the proper CVF is  

0 0,X   1 1 2
3

1

2 ,
c r c

cX
c


 

  
 

 
 

 

22 2

1 1 22

322

1 1 2

16
,

c c r c
c

c c r c
X

  
  

  

 3 0.X   (2.4.33) 

The above components of CVFs given in equation (2.4.32) has the generators:  

1 ,z t
t z


 

 
 

 
 

 

22 2

1 1 21 2
2 22

1 1 1 2

16
2 ,

c c r cc r c

c r c c r c


 



     
    

     

 
3 ,

t






 
4 ,







 

1 2
5 5 4

1 1

16
16 ,

c r c

c r c






   
   

  
 

6 .
z







 These generators form a closed form conformal 

algebra whose non-zero commutation relations satisfy:  

1 2 14

1

16
[ , ] ,

c
  


  1 5 2[ , ] 2 ,    2 5 54

1

16
[ , ] ,

c
  


   

3 4 6[ , ] 4 ,    3 6 4[ , ] 4 .     
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Case (vi)  

Here, the values of metric components as a result of solution of equations (2.4.17) to (2.4.19) 

turn out to be  1 2lnv c r c     and  
3

1 2ln ,c r c    where 1 2, .c c   The space-times 

(2.4.1) become  

     
32 2 2 2 2

1 2 1 2 1 2 ,ds c r c dt dr c r c d c r c dz          (2.4.34) 

Now, solving equations (2.3.4) to (2.3.13) with the help of the space-time (2.3.34), we found that 

32 ,c    which implies that no proper CVFs exist. Here, the CVFs are HVFs which are  

0

3 4 5,c tX c c     1 1 2
3

1

2 ,
c r c

c
X c

 
   

 
 

2

3 4 6 ,c t cX c     
3

3 7 ,c zX c      (2.4.35) 

where , 3,4,5,6,7.ic i   The above space-times (2.4.34) admit five CVFs including four 

isometries and one proper HVF. The proper HVF after subtracting KVFs from (2.4.35) is  

0

3 ,X c t   1 1 2
3

1

2 ,
c r c

c
X c

 
   

 

2

3 ,X c    
3

3 .X c z   (2.4.36) 

 

The generators of conformal algebra are  

1 ,t
t

 


 
 

 
 1 2

2

1

2 ,
c r c

t z
t c r z

 


    
     

    
 

3 ,
t







 
4 ,







 
5 .

z






 These 

generators form a closed form conformal algebra whose non-zero commutation relations satisfy: 

1 2 2[ , ] ,     1 4 4[ , ] ,    1 5 5[ , ] ,    3 4 5[ , ] ,    3 5 4[ , ] .     
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Case (vii)  

Here, the assumptions are ( )v v r  and the remaining two metric coeffiecnts   and   both are 

equal to some constant. The solution of equations (2.4.17) to (2.4.19) turns out to be 

 
2

1 2ln ,v c r c   where 1 2 1, ( 0).c c c   The space-times (2.4.1) with an appropriate rescaling 

of   and z  become  

 
22 2 2 2 2

1 2 .ds c r c dt dr d dz         (2.4.37) 

For simplicity, one can choose 1 1c   and 2 0c   so that the above space-times (2.4.37) being 

conformally flat admits fifteen independent CVFs which are  

     
2 2 2

3 4 5 10 7 80

11

9 10

1
2 ,

t t t t t t

t t

r z
c e c e z c e c e c e c e

c
r

c e c e

X


  



   
      

   
   

 

     
2 2 2

3 4 5 10 7 81

14

12 13

9 10

2

,

t t t t t t

t t

z r
c e c e z c e c e c e c e

c r

c rz c r

c e c e

X






  



   
      

    
   

 

 

   
2 2 2

2

13 12 15 14 3 4 7 8

16

2

,

t t t tr z
c c z c z c r c e c e r c e c e

c

X


      
        
 



 

 

 

2 2 2
3

12 13 15 14 3 4

5 6 17

2

,

t t

t t

z r
c c z c c z rz c e c e

r c e c e c

X


  



  
       
 

 

  (2.4.38) 
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where ic   with 3,4,5,...,17.i   Conformal factor in this case is 

 3 4 12 13 14.
t tr c e c e c z c c       Generators of conformal algebra are in this case are  

2 2 2 2 2 2

1 ,
2 2

t t t tr z z r
e e e r e zr

r t r z

 
 



          
      

      
 2

1
,te

r r t
    

  
  

2 2 2 2 2 2

3 ,
2 2

t t t tr z z r
e e e r e zr

r t r z

 
 



             
      

      
 4

1
,te

r r t


  
  

  
 

2 2 2

5 ,
2

r z
z r

z r


  



     
   

   
 

2 2 2

6 ,
2

z r
rz z

z r


 



     
   

   
 

7 ,X
t





8 1 ,t z
e P

r t


 
  

 
 9 2 ,t z

e P
r t

   
  

 
 10 3 ,te P

r t




 
  

 
 11 ,te r

r t r


 



    
   

   
 

12 ,r z
r z

 


  
  

  
 13 ,z

y z
 

 
 

 
 

14 ,






15 ,
z







 where 
1 ,P z r

r z

 
  

 
 

2P z r
r z

 
 

 
 and 

3 .P r
r




 
  

 
 One can find the Lie Algebra using the Lie bracket 

given in equation (1.11.3).  

Case (viii)  

Here, we have ( )r   and constant.v    The solution of equations (2.4.17) to (2.4.19) turn 

out to be  
2

1 2ln ,c r c    where ic   with 1,2i   and 1 0.c   The space-times (2.4.1) after 

an appropriate rescaling of the coordinates t  and z  reduce to be  

 
22 2 2 2 2

1 2 .ds dt dr c r c d dz         (2.4.39) 

Again, for calculation purpose one can choose 1 1c   and 2 0,c   the space-times (2.4.39) is 

conformally flat, therefore admit fifteen independent CVFs which are  

2 2 2
0

6 3 1 2 7 8 15 ,
2

t r z
X c c tz rt r c t c z c 

  
       

 
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2 2 2
1

1 3 3 6 13 14

2 7

cos sin
2

,

t r z
X z c rz c tr c c

t c r

   



  
      
 

 

 

2 2 2
2 5 6 7

4 17 ,
2

z tt r z
X c

r r r r

  


  
     
 

 

2 2 2
3

3 1 3 6 8 7 16 ,
2

t r z
X c rz r c tz c t c z c 

  
       

 
  (2.4.40) 

where ,ic   with 3,4,5,...,17,i   1 4 5sin cos ,c c     2 11 12cos sin ,c c     

3 9 10sin cos ,c c     4 4 5cos sin ,c c     5 9 10cos sin ,c c     6 11 12sin cos ,c c     

7 13 14sin cos .c c     Conformal factor in this case is  3 4 5 6 7sin cos .c z r c c c t c        

Generators of conformal algebra are  

2 2 2

1 ,
2

t z r
tz rz

t r z


     
    

   
 

2 2 2

2 ,
2

t z r
tr tz

r z t


     
    

   
 

3 ,z t
t z


 

 
 

 

4 ,t r z
t r z


  

  
  

 
5

sin
cos ,

r r


 



 
  

 
 

6 ,






 
7

cos
sin ,

r r


 



 
 

 
  

2 2 2 2 2 2

8 sin sin cos sin ,
2 2

t z r t z r
tr rz

t r r z
    



          
      

      
 

9 ,
t







2 2 2 2 2 2

10 cos cos sin cos ,
2 2

t z r r z t
tr rz

t r r z
    



          
      

      
  

11 ,
z







  

12 sin sin cos ,
z

z r
r z r

   


  
   

  
 

13 cos cos sin ,
z

z r
r z r

   


  
   

  
 

14 cos cos sin ,
t

r t
t r r

   


  
   

  
 

15 sin sin cos .
t

r t
t r r

   


  
   

  
  

Adopting the same procedure one can find the Lie Algebra using the Lie bracket given in 

equation (1.11.3).  
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Case (ix)  

Here, the constraints over metric coeffiecnts are ( )r   and constant.v    The solution of 

equations (2.4.17) to (2.4.19) turn out to be  
2

1 2ln ,c r c    where ic   with 1,2i   and

1 0.c   The space-times (2.4.1) with a suitable rescaling of t  and   takes the shape  

 
22 2 2 2 2

1 2 .ds dt dr d c r c dz         (2.4.41) 

Again, for calculation purpose one can choose 1 1c   and 2 0,c   the space-times (2.4.41) is 

conformally flat, therefore admit fifteen independent CVFs which are  

 

 

2 2 2
0

4 3 6 7

10 14 5 13 15

cos sin
2

sin cos ,

t r z
X c c t tr c z c z

r c z c z c t c c





  
     

 

   

 

   

 

2 2 2
1

6 7 8 11

3 4 10 14 5 9 12

cos sin cos sin
2

sin cos cos sin ,

t r
X c z c z c z c z

c r c tr t c z c z c r c z c z






  
    
 

      

 

 

 

2 2 2
2

3 4 6 7

8 11 13 5 16

cos sin
2

cos sin ,

r t
X c c t r c z c z

r c z c z c t c c


 



  
     

 

   

 

   

   

2 2 2
3

6 7 8 11

10 14 9 12 17

sin cos sin cos

1
cos sin sin cos ,

r t
X c z c z c z c z

r r

t
c z c z c z c z c

r r

   
     
 

   

 (2.4.42) 

where ic   with 3,4,5,...,17.i   Conformal factor in this case is 

 3 6 7 4 5cos sin .c r c z c z c t c        Generators of conformal algebra in this case are  
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2 2 2

1 ,
2

r t
t r

t r


  



     
     

   
 

2 ,






 
2 2 2

3 ,
2

t r
tr t

r t


 



     
    

   
 

4

sin
cos ,

z
z

r r z


 
  

 
 

5

cos
sin ,

z
z

r r z


 
 

 
 

6 cos cos sin ,
t

r z t z z
t r r z


  

   
  

 

7 ,
t







 
8 sin sin cos ,z r z z

r r z


 



  
  

  
 

9 sin sin cos ,
t

r z t z z
t r r z


  

  
  

 

10 sinz cos sin ,r z z
r r z


 



  
   

  
 

11 ,t r
t r

 


  
  

  
 

12 ,t
t

 


 
 

 
 

2 2 2 2 2 2

13 sin sin cos sin ,
2

t r r t
tr z z z r z

t r r z

 
 



          
       

      
 

14 ,
z







 

2 2 2 2 2 2

15 cos cos cos sin .
2

t r r t
tr z z r z z

t r r z

 
 



          
      

      
 Adopting the same 

procedure one can find the Lie Algebra using the Lie bracket given in equation (1.11.3).  

Case (x) 

Here, we have ( ) ( )v r r  and constant.   Equations (2.4.17) to (2.4.19) implies 
2 0,v 

therefore ,v   where .   The space-times (2.4.1) with the rescaling of z  turn to be  

2 2 2 2 2[ ].ds dr dz dt d         (2.4.43) 

Solving equations (2.4.4) to (2.4.13) for the space-times (2.4.43), we obtain fifteen independent 

CVFs which are  

2 2 2 2
0

1 3 2 4 5 6 7 8 9

1
,

2

t r z
X c c t c tr c tz c t c r c c z c

 
 

 

   
         
 

 

2 2 2 2
1

2 1 3 4 6 5 10 11 12 ,
2

t r z
X c c tr c r c rz c t c r c c z c

 
 

   
         
 

 

2 2 2 2
2

3 1 2 4 7 10 5 13 14

1
,

2

t r z
X c c t c r c z c t c r c c z c

 
   

 

   
         
 

 

2 2 2 2
3

4 1 2 3 8 11 13 5 15 ,
2

r t z
X c c tz c rz c z c t c r c c z c

 
   

   
         
 

(2.4.44) 
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where ic   with 1,2,3,...,15.i   Conformal factor in this case is 1 2 3 4 5.c t c r c c z c       

The generators of conformal algebra in this case are  

2 2 2 2

1 ,
2

t r z
X rt t tz

t r z

 


 

       
    

    
 

2 ,X t r z
t r z




   
   

   
 

2 2 2 2

3 ,
2

t r z
X rt r rz

r t z

 




       
    

    
 

4 ,
r

X t
t r

 
 

 
 

5 ,X
t





 

2 2 2 2

6 ,
2

t r z
X r t z

r t z

 
  

 

       
    

    
 

7 ,X t
t




 
 

 
 

8 ,X
r





 

2 2 2 2

9 ,
2

r t z
X rz tz tz

z r z t

        
    

    
 

10 ,X z t
t z


 

 
 

 
11 ,X







 

12 ,
r

X
r


 

 
 

 
 

13 ,X z r
r z

 
 

 
 

14 ,X z
z




 
 

 
 

15 .X
z





  

Conformal algebra may be discussed by using the above generators.  

Case (xi)  

Here, we take ( ) ( )v r r  and constant.   Again, solution of equations (2.4.17) to (2.4.19), 

give 
2 0,v  therefore ,v   where .   The space-times (2.4.1) after suitable rescaling of   

take the form  

2 2 2 2 2[ ].ds dr d dt dz         (2.4.45) 

The above space-times (2.4.45) being conformally flat again admit fifteen independent CVFs 

which are  

2 2 2 2
0 5 6 13 7 101 2

4 142
,

2

c tr c t c r c c zc t c tzt r z
X c c

  

       

   
         
 

  

2 2 2 2
1 64 1 2

5 13 8 11 15 ,
2

c rc tr c r c rzt r z
X c c t c c z c

  


    

   
         
 
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2 2 2 2
2 5 64 2

1 7 8 3 9 ,
2

c r cc t c zt r z
X c c t c r c z c

    

    

   
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 (2.4.46) 

where ic   with 1,2,3,...,15.i   Conformal factor in this case is 4 5 1 2 6.c t c r c c z c       

The generators of conformal algebra in this case are  
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 
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 
 

11 ,X



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

 

12 ,X r
r




 
 

 
 

13 ,
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X z
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 
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14 ,X z
z
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 

 
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15 .X
z
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Conformal Algebra may also be discussed using the above generators.  

Case (xii)  

Here, we have ( ) ( )r r   and constant.v   The solution of equations (2.4.17) to (2.4.19), give 

1 2( ) ( )
a r a

r r e  
   where 1,a  2 .a   The space-times (2.4.1) with an appropriate form  

12 2 2 2 2[ ].
a r

ds dt dr e d dz         (2.4.47) 
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CVFs in this case are:  
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  (2.4.48) 

where 1 ( ),w t r   2 ( )w t r   and ic   and 1,2,3,...,15.i   Conformal factor in this case is  

  

1 1 1 2 1 1 1 21

1 1 1 2 1 1 1 2

2 2 2 2
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1
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4 2

.
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
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 
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   
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Tracking the lines discussed previously, one find the Lie Algebra of obtained vector fields.  
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Case (xiii) 

In this case onstant.v c     Again Equations (2.4.17) to (2.4.19) implies 0,v  therefore 

1 2( )v d r d   where 1 2 1, ( 0).d d d   The space-times (2.4.1) in an appropriate frame take the 

form  

12 2 2 2 2 .d rds dr e dt d dz           (2.4.49)  

The above space-time (2.3.49) is a space-like version of FLRW for 0,k   therefore admits 

fifteen independent CVFs which are  
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 (2.4.50) 

Conformal factor in this case is  
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where ic   with 1,2,3,...,15.i   The generators of conformal algebra in this case are  
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 Additionally, one can find the conformal algebra by 

using the above generators.  

2.5  Summary  

In this chapter, we have studied CVFs of SSS, SPS and SCS space-times in the f(R) theory of 

gravity. The method to find CVFs for the stated space-times is direct integration. The results of 

this study are:  

(a) In the SSS space-times, we have used the results of two papers (Capozziello et al., 2012 and 

Amirabi et al., 2016) to find CVFs. Six cases were discussed. The findings of the study of static 

spherically symmetric space-times are as under:  

(a-1) The space-times in the cases (i), (ii), (iii), (iv) and (vi) do not admit proper CVFs. CVFs for 

these cases become KVFs which are shown in equation (2.2.2).  

(a-2) The space-time in the case (v) admits proper HVFs which are presented in equation 

(2.2.19).  
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(b) In the section (2.3), we have investigated CVFs of dust SPS space-times in the f(R) gravity 

setup. Our drive was two folded: firstly, we found some solutions of EFFs in the f(R) theory of 

gravity. Secondly, we obtained the CVFs of the resulting solutions. To explore the solutions, we 

have used dust matter as a source of EMT. It is important to mention that these solutions are 

deduced by imposing some restrictions on the derivative of f(R) i.e. F(R). In general, six cases (i) 

to (vi) were discussed which produce the following results:  

(b-1) In the case (i), CVFs become KVFs. The KVFs for this case are given in equation (2.3.2) 

and the space-time in this case is takes the form given by the equation (2.3.19).  

(b-2) The space-times in the cases (ii) to (vi) are conformally flat and clearly admit fifteen 

independent CVFs, The space-times are given in equations (2.3.20), (2.3.22), (2.3.24) and 

(2.3.26) and the expressions for CVFs are shown by the equations (2.3.21), (2.3.23), (2.3.25) and 

(2.3.27). Note that in the cases (iii) and (iv), we obtain exactly the same space-times which is 

given in equation (2.3.22) with the only difference in the value of ( ).f R  In both the cases, CVFs 

are given in equation (2.3.23).  

(c) In the third section, we have classified general form of SCS space-times in the view of f(R) 

theory of gravity by their CVFs. The SCS solutions of EFEs belongs to the general class of 

space-time in the sense that these are further linked to generate SPS solutions which happen to 

lie in the framework of SCS space-times under some particular circumstances. These space-times 

have a productive applications in the field of black holes thermodynamics, electric and magnetic 

strings. The models having cylindrical symmetry are also used to discuss the interface between 

matter and GWs. Due to having cylindrical symmetry the waves associated with them are termed 

as cylindrical GWs. Going through the vast amount of applications are information possessed by 

the SCS space-times, a step by step analysis have been made in the theory of f(R) gravity to 

classify the space-time under consideration. Additionally, the source for providing the 

gravitational contribution is assumed to be perfect fluid. In this classification, there exist thirteen 

cases which on further study provide the following results:  

(c-1) The space-times in the cases (i), (iv) and (vi), admit proper HVFs rather than proper CVFs. 

The space-times admitting such vector fields are shown in equations (2.4.22), (2.4.28) and 

(2.4.34). The proper HVFs for these cases are given in equations (2.4.24), (2.4.30) and (2.4.36).  
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(c-2) In the cases (ii) and (iii), the space-times admit three linearly independent KVFs. The 

space-times admitting such vector fields are (2.4.25) and (2.4.26) and the KVFs for these cases 

are given in equation (2.4.2). 

(c-3) The space-time given by the case (v) admits proper CVFs. This is the space-time (2.4.31) 

and the proper CVFs is given in equation (2.4.33).  

(c-4) The space-times studied in the cases (vii) to (xiii) become conformally flat, therefore admit 

fifteen independent CVFs. These are the space-times (2.4.37), (2.4.39), (2.4.41), (2.4.43), 

(2.4.45), (2.4.47) and (2.4.49). The CVFs for these cases are expressed by the equations (2.4.38), 

(2.4.40), (2.4.42), (2.4.44), (2.4.46), (2.4.48) and (2.4.50).  
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Chapter 3 

Conformal Vector Fields of Kantowski Sachs and Some Bianchi 

Type Models in f(R) Theory of Gravity 

3.1  Introduction  

In this chapter, a study of CVFs of some Bianchi type models in the f(R) theory of gravity has 

been presented. Bianchi models have been remained a topic of special interest by theoretical 

physists as these are spatially homogeneous and are often used in the study of anisotropic 

cosmological models. These models have the capability to seek in to the internal structure of our 

universe. They have appeared as a power full tool in the theory of GR and belongs to well-

known class of EFEs. One of the prominent examples of such solutions are the class of Bianchi 

models which are nine in number. In this chapter, we study Bianchi type I, II, V, Kantowski 

Sachs and Bianchi type III space-times. The following lines presents the layout of this chapter:  

In section (3.2), CVFs of Bianchi type I space-times have been presented. From this study, we 

found that the CVFs are of dimension four, five, six and fifteen. In section (3.3), we have studied 

CVFs of Bianchi type II space-times and reach at the conclusion that the Bianchi type II space-

times admit CVFs of dimension three, four and five only. In section (3.4), CVFs of Bianchi type 

V space-times have been presented. The study consists of seven cases. From these seven cases, 

we found that the CVFs in six cases reduce to isometries, while in the seventh case, the space-

times become conformally flat, therefore admit fifteen independent CVFs. In section (3.5), a 

study of CVFs of Kantowski Sachs and Bianchi type III space-times in the f(R) theory of gravity 

according to their proper CVFs has been presented. In this study, we found that the Kantowski 

Sachs and Bianchi type III space-times admit CVFs of dimension four and six respectively.  

3.2  Conformal Vector Fields of Bianchi type I Space-Times in f(R) 

 Gravity  

The line element of a Bianchi type I space-times in the usual coordinates ( , , , )t x y z  (given by 

0 1 2 3( , , , )x x x x  respectively) is (Stephani et al., 2003)  

2 2 2 2 2 2 2 2 ,ds dt A dx B dy C dz         (3.2.1) 
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where ( ),A A t  ( )B B t  and ( )C C t  are nowhere zero functions of .t  From the above space-

times (3.2.1), we see that in built KVFs are (Stephani et al., 2003)  

,x  ,y  .z      (3.2.2) 

The value of scalar curvature R for the space-times (3.2.1) is  

2 ,
A B C AB BC CA

R
A B C AB BC CA

 
      

 
    (3.2.3) 

where dot signifies the derivative with respect to .t  To obtain CVFs in the f(R) theory of gravity 

considering Bianchi type I space-times, we start with the standard EFEs in vacuum (Nojiri and 

Odintsov, 2003)  

1
( ) ( ) ( ) ( ) 0,

2
ab ab a b abF R R f R g F R g F R       (3.2.4) 

where ( )f R  is the function of Ricci scalar R, ( ) ( )
d

F R f R
dR

  and 
a

a   in which a  is the 

covariant derivative. Using equation (3.2.1) in equation (3.2.4) one has (Sharif and Shamir, 

2009)  

0.
A B C A B F A B

A B C A B F A B

   
        

   
   (3.2.5)

0.
B C A B C F B C

B C A B C F B C

   
        

   
   (3.2.6)

0.
A C B A C F A C

A C B A C F A C

   
        

   
   (3.2.7) 

The goal now is to look for the solutions of equations (3.2.5) to (3.2.7). Here, we are using the 

approach adopted by (Nojiri and Odintsov, 2003) and assume ( )F R  to be of the form  

0( ) ,mF R f R       (3.2.8) 

where 0 , .f m  Motivation behind considering ( )F R  given in equation (3.2.8) is that it has 

proven a viable f(R) model which is compatible with cosmological observations and has passed 
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through solar system tests. It can also mimic dark energy hypothesis when one deal with past and 

current expansion of the universe. In spite of these, it has been widely studied in finding well 

known exact solutions and is also used in the study of stability analysis of f(R) models 

(Ntahompagaze et al., 2018). Using equation (3.2.8) in equations (3.2.5) to (3.2.7), we have  

0.
A B C A B R A B

m
A B C A B R A B

   
        

   
   (3.2.9) 

0.
B C A B C R B C

m
B C A B C R B C

   
        

   
   (3.2.10) 

0.
A C B A C R A C

m
A C B A C R A C

   
        

   
   (3.2.11) 

Now, we find the solutions of equations (3.2.9) to (3.2.11) using the following approach:  

(i) ( ),A A t  ( )B B t  and constant.C   

(ii) ( ),A A t  ( )C C t  and constant.B   

(iii) ( ),B B t  ( )C C t  and constant.A   

(iv) ( )A A t  and ( ) ( ).B t C t  

(v) ( )B B t  and ( ) ( ).A t C t   

(vi) ( )C C t  and ( ) ( ).A t B t  

(vii) constantA  and ( ) ( ).B t C t  

(viii) constantB   and ( ) ( ).A t C t  

(ix) constantC   and ( ) ( ).A t B t  

(x) ( )A A t  and constant.B C   

(xi) ( )B B t  and constant.A C   
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(xii) ( )C C t  and constant.A B   

(xiii) constant.A B C    

(xiv) constant.A B C    

Here, we will explain the procedure to find the solution of equations (3.2.9) to (3.2.11) in only 

one case which is (i). Substituting constantC   in equation (3.2.9) to (3.2.11) results in three 

equations having four unknowns ,A  ,B  R  and m  therefore, we need some extra conditions to 

solve the above equation. Here, we assume that nA B  and 0,B   where \{0,1}.n R  After 

some lengthy calculations, we found that 1 2( ) ( ),B t c t c   
1

1 2( ) ( ) ,A t c t c    

2

1

1 2

2 ,
c

R
c t c

 
  

 
 

1
2

0 1( ) 2f R f R d   and 
1

,
2

m   where  1 2 0 1 1 0, , , , 0 .c c f d c f   Using the same procedure 

with different conditions, one can find the remaining cases. There exist the following solutions of 

equations (3.2.9) to (3.2.11):  

(i) 
1

1 2( ) ( ) ,A t c t c    1 2( ) ( ),B t c t c   
2

1

1 2

2 ,
c

R
c t c

 
  

 

 
1

2
m   and constant,C   where 

1 2, .c c    

(ii) 
1

1 2( ) ( ) ,A t c t c    1 2( ) ( ),C t c t c   
2

1

1 2

2 ,
c

R
c t c

 
  

 

 
1

2
m   and constant,B   where 

1 2, .c c    

(iii) 
1

1 2( ) ( ) ,B t c t c    1 2( ) ( ),C t c t c   

2

1

1 2

2 ,
c

R
c t c

 
  

 
 

1
.

2
m    and constant,A   where 

1 2, .c c    

(iv) 
2

1 2( ) ( )A t c t c   , 

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m    and 1 2( ) ( ) ( ),B t C t c t c    where 

1 2, .c c    
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(v) 
2

1 2( ) ( ) ,B t c t c    

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m   and 1 2( ) ( ) ( ),A t C t c t c    where 1 2, .c c    

(vi) 
2

1 2( ) ( ) ,C t c t c    

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m   and 1 2( ) ( ) ( ),B t A t c t c    where 1 2, .c c    

(vii) constant,A   
2

7
,

2
R

t
  1m   and 

1

2( ) ( ) .B t C t t


    

(viii) constant,B   
2

7
,

2
R

t
  1m   and 

1

2( ) ( ) .A t C t t


   

(ix) constant,C   
2

7
,

2
R

t
  1m   and 

1

2( ) ( ) .A t B t t


   

(x) 
1( ) ,A t t  

2

4
,R

t
  1m   and constant.B C    

(xi) 
1( ) ,B t t  

2

4
,R

t
  1m   and constant.A C    

(xii) 
1( ) ,C t t  

2

4
,R

t
  1m   and constant.A B    

(xiii) 1( ) ( ) ( )
k t

A t B t C t e    and 
2

2
6 ,

A A
R

A A

 
  

 
 where 1 \{0}.k    

(xiv) constant.A B C     

We will consider each case in turn:  
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Case (i)  

The information regarding over here is 
1

1 2( ) ( ) ,A t c t c    1 2( ) ( ),B t c t c   
2

1

1 2

2 ,
c

R
c t c

 
  

 

 

1

2
m   and constant,C   where 1 2, .c c  The space-times (3.2.1) after suitable rescaling of z  

take the form  

2 2 2 2 2 2 2

1 2 1 2( ) ( ) .ds dt c t c dx c t c dy dz         (3.2.12) 

Now, we are interested to find CVFs of the above space-time (3.2.12). The traditional expansion 

of equation (1.12.1) and using equation (3.2.12), yields the following ten equations:  

0

,0 ,X       (3.2.13)

1 2 0

,0 1 2 ,1( ) 0,X c t c X        (3.2.14) 

0 2 2

,2 1 2 ,0( ) 0,X c t c X       (3.2.15) 

0 3

,3 ,0 0,X X       (3.2.16) 

1 0 1

1 1 2 ,1( ) ,c c t c X X         (3.2.17) 

1 4 2

,2 1 2 ,1( ) 0,X c t c X        (3.2.18) 

1 2 3

,3 1 2 ,1( ) 0,X c t c X       (3.2.19) 

 
1 0 2

1 1 2 ,2( ) ,c c t c X X        (3.2.20) 

3 2 2

,2 1 2 ,3( ) 0,X c t c X       (3.2.21) 

3

,3 .X       (3.2.22) 

  



55 

Solving equations (3.2.13) to (3.2.16), we have the following information:  

0 1,X dt E   
3

1 1 21 2

1

( )
,

3
x

c t c
X E E

c


   

2 1 3

1 1 2

1
,

( )
yX E E

c c t c


 


 

3 1 4 ,zX tE E    (3.2.23) 

where ( , , )i iE E x y z  with 1,2,3,4i   are FOI. For approaching the required CVF X, we need 

to search the functions ( , , )iE x y z  and the function  . Whose final form will help to categorize 

the related vector fields. Ignoring the process of straightforward integration, we reach at the 

following components of CVFs 

0 1 2
2

1

,
c t c

X k
c

 
  
 

 
1

2 92 ,X k x k   
2

4 ,X k  
3

2 3,X k z k   (3.2.24) 

with conformal factor 2 ,k   where 2 3 4 9, , , .k k k k   It follows that the above space-time 

(3.2.12) do not admit proper CVFs. In this case CVFs are HVFs due to the constant conformal 

factor. If we look at the dimension of CVFs, we find that it is four, three of which are isometries 

and one is proper homothetic which becomes  

1 2

1

2 .
c t c

x z
c t x z

    
  

   
    (3.2.25) 

Case (ii)  

Here the ingredients of are 
1

1 2( ) ( ) ,A t c t c    1 2( ) ( ),C t c t c   
2

1

1 2

2 ,
c

R
c t c

 
  

 

 
1

2
m   and 

constant,B   where 1 2 1, ( 0)c c c  . The space-times (3.2.1) after appropriate rescaling of y  

turn to the following form  

2 2 2 2 2 2 2

1 2 1 2( ) ( ) .ds dt c t c dx dy c t c dz         (3.2.26) 
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Following the lines of previous case (i), we found that 1,k   which is the indication of non 

existence of proper CVFs. Here, the CVFs are HVFs again which are  

0 1 2
1

1

,
c t c

X k
c

 
  
 

 
1

1 22 ,X k x k   
2

1 3,X k y k   
3

4 ,X k  (3.2.27) 

where 1 2 3 4, , , .k k k k   Clearly, the above space-time (3.2.26) admit four CVFs consisting of 

three KVFs and one proper HVFs. The proper HVF except KVFs is  

1 2

1

2 .
c t c

x y
c t x y

    
  

   
    (3.2.28) 

Case (iii)  

The values of metric components along with the necessary information possessed over here are 

1

1 2( ) ( ) ,B t c t c    1 2( ) ( ),C t c t c   

2

1

1 2

2 ,
c

R
c t c

 
  

 
 

1
.

2
m    and constant,A   where 

1 2 1, ( 0)c c c  . The space-times (3.2.1) after suitable rescaling of x  provide the way to write 

the it in the form  

2 2 2 2 2 2 2

1 2 1 2( ) ( ) .ds dt dx c t c dy c t c dz         (3.2.29) 

Again, in this case CVFs become the HVFs, which are  

0 1 2
1

1

,
c t c

X k
c

 
  
 

 
1

1 2 ,X k x k   
2

1 32 ,X k y k   
3

4 ,X k   (3.2.30) 

where 1 2 3 4, , , .k k k k   It is clear that the space-time (3.2.29) admits four CVFs which are not 

proper. CVFs reduced to proper HVFs given by  

1 2

1

2 .
c t c

x y
c t x y

    
  

   
    (3.2.31) 
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Case (iv)  

Here, we have 
2

1 2( ) ( )A t c t c   , 

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m    and 1 2( ) ( ) ( ),B t C t c t c    

where 1 2 1, ( 0)c c c  . The space-times (3.2.1) take the form  

2 2 4 2 2 2 2

1 2 1 2( ) ( ) [ ].ds dt c t c dx c t c dy dz          (3.2.32) 

The function f(R) for the above space-time (3.2.32) is 
1

2
0 2( ) 2 ,f R f R d   where 0 2, .f d   

Adopting the similar procedure as we did in the previous cases, it can be shown that the CVFs in 

the form of components are:  

  0

8 9 1 2 ,X k x k c t c     

 
6 2

1 21 1
8 9 1 10

1

3
3 ,

6 2

c t c c x
X k k c x k

c

 
    
  

  

2

6 3,X k z k    
3

6 7 ,X k y k      (3.2.33) 

with conformal factor  1 8 9 ,c k x k    where 3 6 7 8 9 10, , , , , .k k k k k k   The above space-time 

(3.2.32) admit six CVFs in which four are KVFs. From these four KVFs three are given in 

equation (3.2.2) and fourth is .y z
z y

 


 
 One is proper HVF which is 3t x

t x

 


 
 and rest is 

proper CVF. The proper CVF has the following form  

 0

8 1 2 11,X k x c t c k    
 

6 2
1 21 1

8

1

3
,

6 2

c t c c x
X k

c

 
  
  

 
2 0,X   

3 0,X   (3.2.34) 

where 11 2 9.k c k   
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Case (v)  

Here the information is 
2

1 2( ) ( ) ,B t c t c    

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m   and 

1 2( ) ( ) ( ),A t C t c t c    where 1 2 1, ( 0)c c c  . The space-times (3.2.1) take the form  

2 2 4 2 2 2 2

1 2 1 2( ) ( ) [ ].ds dt c t c dy c t c dx dz          (3.2.35) 

The procedure to find the CVFs is direct integration technique, so the CVFs in this case are 

found to be  

  0

8 9 1 2 ,X k y k c t c    
1

6 10 ,X k z k    
3

6 7 ,X k x k   

 
 

6 2
1 22 1

8 9 1 3

1

3
3 ,

6 2

c t c c y
X k k c y k

c

 
    
  

    (3.2.36) 

with conformal factor  1 8 9 ,c k y k    where 3 6 7 8 9 10, , , , , .k k k k k k   The above space-time 

(3.2.35) admit six CVFs in which four are KVFs. From these four KVFs three are given in 

equation (3.2.2) and fourth is .x z
z x

 


 
 One is proper HVF which is 3t y

t y

 


 
 and one is 

proper CVF. The proper CVF excluding HVF from equation (3.2.36) is  

 0

8 1 2 11,X k y c t c k    
1 0,X   

 
6 2

1 22 1
8

1

3
,

6 2

c t c c y
X k

c

 
  
  

 
3 0,X   (3.2.37) 

where 11 2 9.k c k   

Case (vi)  

Here, we have the following information 
2

1 2( ) ( ) ,C t c t c    

2

1

1 2

6 ,
c

R
c t c

 
  

 
 

1

2
m   and 

1 2( ) ( ) ( ),B t A t c t c    where . The space-times (3.2.1) reduced to be  1 2 1, ( 0)c c c 
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2 2 4 2 2 2 2

1 2 1 2( ) ( ) [ ].ds dt c t c dz c t c dx dy         (3.2.38)  

The CVFs in this case are  

   

   (3.2.39) 

with conformal factor  where  The above space-time 

(3.2.35) admit six CVFs in which four are KVFs. From these four KVFs three are given in 

equation (3.2.2) and fourth is  One is proper HVF which is  and one is 

proper CVF. The proper CVF neglecting HVF from equation (3.2.39) is  

    (3.2.40) 

where   

Case (vii)  

The information possessed by this case are    and  

The space-times (3.2.1) after an appropriate frame takes the following mathematical shape  

    (3.2.41) 

The f(R) for the above space-time (3.2.41) is  where  The CVFs in 

this case are  

    (3.2.42) 

  0

8 9 1 2 ,X k z k c t c  
1

6 10 ,X k y k   2

6 3,X k x k 

 
6 2

1 23 1
8 9 1 7

1

3
3 ,

6 2

c t c c y
X k k c z k

c

 
    
  

 1 8 9 ,c k z k   3 6 7 8 9 10, , , , , .k k k k k k 

.x y
y x

 


 
3t z

t z

 


 

 0

8 1 2 11,X k z c t c k  
1 0,X  2 0,X 

 
6 2

1 23 1
8

1

3
.

6 2

c t c c y
X k

c

 
  
  

11 2 9.k c k

constant,A 
2

7
,

2
R

t
 1m 

1

2( ) ( ) .B t C t t


 

2 2 2 1 2 2[ ].ds dt dx t dy dz    

0 3( ) ln ,f R f R d  0 3, .f d 

0

2 ,X k t 1

2 4 ,X k x k  2

2 7 6

3
,

2
X k y k z k   3

2 7 8

3
,

2
X k z k y k  
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with conformal factor  where  In this case, the CVFs are HVFs. The 

dimension of CVFs is five in which four are KVFs, three are given in equation (3.2.1) and fourth 

is  One is proper HVF. The compact form of the proper HVF is given below  

        (3.2.43) 

Case (viii)  

Here, we have    and  The space-times (3.2.1) 

after an appropriate rescaling of  take the form  

    (3.2.44) 

Here,  which means that no proper CVFs exist. Here, the CVFs become HVFs which are  

    (3.2.45) 

where  It follows that the above space-time (3.2.44) admit five CVFs in 

which four are KVFs, three are given in equation (3.2.1) and fourth is  One is proper 

HVF. The proper HVF after subtracting KVFs is of the form  

        (3.2.46) 

Case (ix)  

Here, we are with the data    and  The space-

times (3.2.1) after an appropriate rescaling of  become  

    (3.2.47) 

2 ,k  2 4 6 7 8, , , , .k k k k k 

.y z
z y

 


 

0

2 ,X k t 1

2 ,X k x 2

2

3
,

2
X k y 3

2

3
.

2
X k z

constant,B 
2

7
,

2
R

t
 1m 

1

2( ) ( ) .A t C t t


 

y

2 2 2 1 2 2[ ].ds dt dy t dx dz    

1,k 

0

1 ,X k t 1
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Adopting similar procedure as we did in the previous cases, we come to know that 
 
which 

means that no proper CVFs exist. Here, the CVFs become HVFs which are  

    (3.2.48) 

where  It follows that the above space-time (3.2.47) admit five CVFs in 

which four are KVFs, three are given in equation (3.2.1) and fourth is  One is proper 

HVF. The proper HVF after subtracting KVFs from equation (3.2.48) is  

        (3.2.49) 

Case (x)  

Keeping the restrictions which are    and  The space-

times (3.2.1) now has the form after observing the rescaling  

   (3.2.50) 

f(R) for the above space-time (3.2.50) is  where  Again, in this 

case CVFs become HVFs which are  

     (3.2.51) 

where  and  From equation (3.2.51), we see that the above space-time 

(3.2.50) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth 

is  One is proper HVF. The proper HVF after eliminating KVFs from equation 

(3.2.51) is  

       (3.2.52) 
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Case (xi)  

This case has the information,    and  The space-

times (3.2.1) after appropriate rescaling of and  become  

   (3.2.53) 

Succeeding on the same lines, we found that the CVFs become HVFs which are  

     (3.2.54) 

where  and  From equation (3.2.54), we see that the above space-time 

(3.2.53) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth 

is  One is proper HVF. The proper HVF after eliminating KVFs from equation 

(3.2.54) is  

       (3.2.55) 

Case (xii)  

Here, we have    and  Under these constraints the 

space-times (3.2.1) after keeping in mind the process of rescaling become  

   (3.2.56) 

Again, in this case the CVFs become HVFs which are  

     (3.2.57) 

where  and  From equation (3.2.57), we see that the above space-time 

(3.2.56) admit five CVFs in which four are KVFs, three are given in equation (3.2.2) and fourth 
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is  One is proper HVF. The proper HVF after eliminating KVFs from equation 

(3.2.57) is  

       (3.2.58) 

Case (xiii)  

Here all the metric components are equal to the function 1k t
e  and  where 1k  is 

non zero real number. The space-time (3.2.1) becomes  

    (3.2.59) 

The above space-time (3.2.59) is conformally flat which is well known FRW model for 0k    

and CVFs in this case are:  
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with conformal factor  

  (3.2.61) 

where ic   with 1,2,3,4,6,7...,16.i    

Case (xiv)  

The restrictions of this case after utilizing in the original space-times lead to the following form  

     (3.2.62) 

which is Minkowski space-time. The above space-times (3.2.62) admit fifteen CVFs which are: 

  

  

 

 (3.2.63) 

with conformal factor 

   (3.2.64) 

where ic   with 1,2,3,...,15.i    

It is essential to mention here that in order to explore the solutions, we have used the form of 

f(R) i.e. 0( ) ,mF R f R  where 0 , .f m  Starting from this general form of the function f(R) and 

adopting the approach (a1) to (a14), we have analytically found two particular types of f(R) 

models corresponding to the values 
1

2
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 0 4( ) ln ,f R f R d   where 0 2 4, , .f d d   The model with  ln R  term has been found to be 

significantly feasible at cosmological scale as it has well qualified solar system tests and is free 

from the instability problem (Capozziello et al., 2016 and Paul, 2009). On the other hand, the 

form with 0 2( ) 2f R f R d   contain positive power of the scalar curvature and is treated as 

viable regarding the inflationary era.  

3.3  Conformal Vector Fields of Bianchi type II Space-Times in f(R) 

 Gravity 

Bianchi type II space-times belongs to the class of Bianchi models. This model has enormous 

applications in discussing phenomenon of  universe at the large scale structure. The aim over 

here is to consider this model for looking CVFs in the setup of f(R) gravity. Here, we take model 

of Bianchi type II space-times in coordinates consuming the line element (Hickman 

and Yazdan, 2017, Camci and Sahin, 2006 and Shabbir and Khan, 2010)  

 (3.3.1) 

where ( ),A A t  ( )B B t  and ( )C C t  are nowhere zero functions of . The in built isometries 

admitted by the space-times (3.3.1) are (Shabbir and Khan, 2010) 

       (3.3.2) 

The scalar curvature  associated with the space-times (3.3.1) has the value  

2 2 2

2 2 2

1 2 2 2
,

2

A B C A AB B BC C CA B
R

A B C A AB B BC C CA AC

 
          

 
 (3.3.3) 

where overhead dot symbolizes .
d

dt
 Using equation (3.3.1) in conformal motion equation 

(1.12.1), we obtain  

      (3.3.4) 
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    (3.3.6) 

   (3.3.7) 

    (3.3.8) 

    (3.3.9) 

   (3.3.10) 

   (3.3.11) 

 (3.3.12) 

 (3.3.13) 

From equations (3.3.4), (3.3.5), (3.3.6) and (3.3.7), we have  

0 1,X dt D   1 1 21
,x x

dt
X dt dt D D

A A


 
   

 
    

2 1 2 2 1

1 4

1 1

1
,

y y y y

z z

dt dt
X dt dt D x dt dt x D

B B C C

dt
x dt dt xD D

C C

 



   
      

   

 
   

 

     

  

 

3 1 1 31 1
,z z y y

dt dt
X dt dt D x dt dt xD D

C C C C
 

   
       

   
       (3.3.14) 

where  , ,i iD D x y z  with 1,2,3,4i   are FOIs. As the study is dedicated purely for seeking 

CVFs in the theory under discussion, hence, we are making use of equations (3.3.1) in equation 

(3.2.4) to get  

  (3.3.15) 
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 (3.3.16) 

  (3.3.17) 

2 2
2

2 2

2 2 2

2 2

2 2

2

3

2 2 4 4 4 4

( ) 2 2

2 2 4 4 4 4

2
0.

2 2 2 2( )

A C A C AC B
Bx

A C A C AC ACF f RF
F

Bx C A B A B AB B
C

A B A B AB AC

A B C Bx Bx C
F

A B C C Bx C

  
       

  
  

   
      
   

 
      

 

  (3.3.18) 

As the above equations (3.3.15) to (3.3.18) are highly nonlinear and are difficult to solve, 

therefore, we use the technique of (Ram and Singh, 1993) and assume the following adhoc 

relation:  

 (3.3.19) 

Using equation (3.3.19) in equation (3.3.18) and then subtracting the resulting equation from 
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  (3.3.21) 

  (3.3.22) 

Here, we solve equations (3.3.19) to (3.3.22). Forgoing the details, we found following seven 

cases in which the solutions of the above equations (3.3.19) to (3.3.22) have been investigated. 

These cases are  

(i)    and   

(ii)    and  where   

(iii)    and  where   

(iv)   and  

where   

(v)   and  where   

(vi)   and  where   

(vii)   and  where 

  

We will discuss each case one by one. Infect, we will substitute the values of metric components 
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1,2,3,4.i   When these FOI are determine then we reach at the required result. In the upcoming 

lines we will adopt the technique discussed above and find CVFs.  

Case (i)  

Here, we have the information    and  The space-time (3.3.1) 

takes the form  

  (3.3.23)  

Now, we find CVFs of the space-time (3.3.23) using equations (3.3.4) to (3.3.13). Excluding the 

calculations, one finds that  where 1c   which means that the CVFs become HVFs 

which are  
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   (3.3.24) 

The above space-time (3.3.23) admits four CVFs in which three are KVFs which are given in 

equation (3.3.2) and one is proper HVF. The proper HVF after subtracting KVFs from (3.3.24) is  
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Case (ii)  

Here, we have    and  where 

 The space-time (3.3.1) turn to be in the following form:  

 (3.3.26) 

Again solving equations (3.3.4) to (3.3.13) with the help of equation (3.3.26), one finds that 

 which means that the CVFs become HVFs which are  
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      (3.3.27) 

where  The above space-time (3.3.26) admits four CVFs in which three are 

KVFs which are given in equation (3.3.2) and one is proper HVF. The proper HVF after 

subtracting KVFs from (3.3.27) is  

  (3.3.28) 

Case (iii)  

The values of metric components along with the scalar curvature possessed by this case are 

   and  where  The 

space-time (3.3.1) takes the form  

 (3.3.29) 

Using the direct integration technique, we come to know that  implies CVFs become 

HVFs which are  

   (3.3.30) 

where , 1,2,3,4.ic i   Clearly the four CVFs shown in (3.3.30) are decomposed as three 

KVFs which are given in equation (3.3.2) and the remaining one is proper HVF. The proper 

HVF after subtracting KVFs from (3.3.30) is  
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Case (iv)  

The information possessed by this case is   and 

 where  The space-time (3.3.1) become  

 (3.3.32) 

Solving equations (3.3.4) to (3.3.13) with the help of space-time (3.3.32) implies  which 

directs that the space-time admit KVFs which could be seen in equaion (3.3.2).  

Case (v)  

The constraints here are   and  where 

. The space-time (2) takes the form  

 (3.3.33) 

Again solving equations (3.3.4) to (3.3.13) with the help of space-time (3.3.33) implies that 

 therefore CVFs become KVFs which are  
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From the above four KVFs, three are given in equation (3). Here, one thing which is necessary to 

note that the space-time (3.3.33) admit extra KVF  which is different 

from the minimal set of isometries admitted by the space-times (3.3.2) giving extra conservation 

law.  
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Case (vi)  

Here, we have   and  where  The space-time (3.3.1) 

in this case become  

  (3.3.35) 

Solving equations (3.3.4) to (3.3.13) using the space-time (3.3.35) and avoiding from the lengthy 

calculations, we find that  implies CVFs become HVFs which are  

  (3.3.36) 

where  The above space-time (3.3.35) admit five CVFs. From these five 

CVFs, four are KVFs and one is proper HVF. The proper HVF after subtracting KVFs from 

(3.3.36) is  

   (3.3.37) 

Case (vii)  

The ingredients possessed over here are   and 

 where  The space-time (3.3.1) in this case takes 
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Solving equations (3.3.4) to (3.3.13) using the space-time (3.3.38) and without inducting from 

the lengthy calculations one finds that   indicating that the CVFs become KVFs which are  

 (3.3.39) 

where  From the above four KVFs, three are given in equation (3.3.2) and 

the remaining one KVF is  

3.4  Conformal Vector Fields of Bianchi type V Space-Times in f(R) 

 Gravity 

The line element representing geometry of Bianchi type V space-time in coordinates ( , , , )t x y z  is 

(Stephani et al., 2003)  
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where   and  are no-where zero functions of  only and  The 

least number of isometries associated with the above space-times (3.4.1) are (Shabbir et al., 

2018)  
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where dot represents .
d

dt
 Using equation (3.4.1) in equation (1.12.1), one arrives at  
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     (3.4.6) 

     (3.4.7) 

     (3.4.8) 

    (3.4.9) 

    (3.4.10) 

    (3.4.11) 

     (3.4.12) 

    (3.4.13) 

From equation (3.4.4), we have 0 1,X dt S   where 1S  is a FOI depending on the 

coordinates  , , .x y z  Now, by utilizing the value of 0X  in equations (3.4.5), (3.4.6) and (3.4.7), 

we have  
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where ( , , ),i iS S x y z  with 2,3,4i   are FOI. To find the CVFs for the space-times under 

consideration in the f(R) theory of gravity, we must use equations (3.4.1) and (1.13.2). We are 

using the source of matter a perfect fluid to explore the solutions of equation (1.13.2). The 

formula for the perfect fluid source is  
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where  and  are defined in section (1.9). Here,  showing the four velocity vector defined 

as  Now, using equations (3.4.1), (1.13.2) and (3.4.15), one has (Sharif and Shamir, 

2010)  

  (3.4.16)

  (3.4.17)

  (3.4.18) 

    (3.4.19) 

The above equations, (3.4.16) to (3.4.18) after some algebraic manipulations leads to the 

following equation (3.4.20) 
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Now, our purpose is to obtain exact solutions of equations (3.4.19) and (3.4.20). Both these 

equations are difficult to solve as these having non-linearity. In addition to this, these equations 

contains four unknowns where as we have two equations, therefore one must impose extra 

conditions to solve them. Here, we are using the following approach to find the solutions of 

equations (3.4.19) and (3.4.20).  
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(f)       and   

(g)    and  

The above equations (3.4.19) and (3.4.20) admit following solutions by using the above 

approach:  
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(g)   and  where

  in which  and 
 

CVFs for each of the above cases are given below: 

Case (i) 

In this case,     and 

where  Under these constraints, the space-time 

(3.4.1) takes the form:  

  (3.4.21) 

Equations (3.4.4) to (3.4.13) along with the (3.4.21) lead to vanishing   which directs towards 

the KVFs expressed in equation (3.4.2).  

Case (ii)  

Here,     and 

 where  The space-time (3.4.1) after applying an 

appropriate rescaling of the coordinate z  has the form:  

  (3.4.22) 

Now, we are interested in finding CVFs of the above space-time (3.4.22). Performing direct 

integration techniques and skipping lengthy calculations, one has  which means that 

CVFs become KVFs which are given in equation (3.4.2).  
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Case (iii)  

In this case,     and 

 where  The space-time (3.4.1) takes the 

following shape after assuming the rescaling in the coordinate y  

  (3.4.23) 

Using the same technique, we come to know that  implies CVFs become KVFs which are 

given in equation (3.4.2).  

Case (iv)  

In this case,     

and  where  The space-time (3.4.1) comes into the form  

  (3.4.24) 

CVFs in this case are also become KVFs and are given in equation (3.4.2).  

Case (v)  

Now, we have     and 

 where  Now, in this case the space-times (3.4.1) 
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  (3.4.25) 
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Solving equations (3.4.4) to (3.4.13) using the space-time (3.4.25) and skipping lengthy and 

tedious calculations one finds that 0.   Obviously, CVFs become KVFs given by equation 

(3.4.2).  

Case (vi)  

Here, we have  ,   and  

where  The space-time (3.4.1) after suitable rescaling of  has the form: 

   (3.4.26) 

Again solving equations (3.4.4) to (3.4.13) with the help of the space-time (3.4.26) and avoiding 

lengthy and tedious calculations one finds that  which means that CVFs become KVFs 

which are given in equation (3.4.2). 

Case (vii)  

Here, we have   and  where 

  in which  and  

The space-time (3.4.1) after an appropriate rescaling takes the form: 

     (3.4.27) 

The above space-time (3.4.26) is conformally flat, therefore admits fifteen independent CVFs 

which are: 
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 (3.4.28) 

with conformal factor 

 

where ic   with 1,2,3,...,15.i    

3.5  Conformal Vector Fields of Kantowski Sachs and Bianchi type 

 III Space-Times in f(R) Gravity  

The line element representing Kantowski-Sachs and Bianchi type III space-times has the form 

(Stephani et al., 2003)  

   (3.5.1) 

where  and  are nowhere zero functions of  only. For  the above 

space-times (3.5.1) become Kantowski-Sachs space-times and for  the above 

space-times become Bianchi type III space-times. The above space-time (3.5.1) admit four 

linearly independent KVFs which are (Stephani et al., 2003)  
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     (3.5.2) 

where prime over  shows the derivative with respect to  Ricci scalar for the space-time 

(3.5.1) is  

    (3.5.3) 

where  and dot denotes .
d

dt
 Using equation (3.5.1) in equation (1.12.1), one arrives at  

      (3.5.4) 

      (3.5.5) 

      (3.5.6) 

     (3.5.7) 

     (3.5.8) 

      (3.5.9) 

    (3.5.10) 

     (3.5.11) 

     (3.5.12) 

   (3.5.13) 

Solving equation (3.5.4), we have  where  is a FOI. Now, by 

utilizing the value of   in equations (3.5.5), (3.5.6) and (3.5.7), we get  
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(3.5.14) 

where ( , , )iS r    with 2,3,4i   are functions of integration. As, we are in search of CVF  for 

the space-times under consideration in f(R) theory of gravity therefore, first we need to explore 

solutions in the said theory. The EMT for the perfect fluid is defined by  

    (3.5.15) 

where  and  already defined in section (1.9) with  being the four velocity vector defined 

as  By utilizing equation (3.5.1) and (3.5.15) in equation (1.13.2) after some algebraic 

manipulations, one has  
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Subtracting equation (3.5.16) from equation (3.5.17), gives 
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(ii)    and  

where  

(iii)    and 

 where  
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Case (i)  

The information associated over here is   

 and  where  

The space-time (3.5.1) takes the form: 

  (3.5.19) 

Now, we find CVFs of the space-time (3.5.19) using equations (3.5.4) to (3.5.13). Omitting the 

process of calculations, we reach at 0,   representing the KVFs of equation (3.5.2).  
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       (3.5.22) 

Case (iii)  

In this case,    and 

 where  The space-time (3.5.1) takes the 

form: 

  (3.5.23) 

By the same procedure of solving the system of conformal equations from (3.5.4) to (3.5.13) as 

examined previous case, we come to know that   CVFs become KVFs which are given 

in equation (3.5.2).  

Case (iv)  

Now, if    and 

 where  the space-time (3.5.1) becomes: 

  (3.5.24) 

Solving equations (3.5.4) to (3.5.13) with the help of space-time (3.5.24) implies that CVFs in 

this case also become KVFs which are expressed by the equation (3.5.2).  
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Case (v)  

If    and  where 

 Now, in this case the space-times (3.5.1) after suitable rescaling of  has 

the form  

  (3.5.25) 

Solving equations (3.5.4) to (3.5.13) using the space-times (3.5.25) one finds  which 

means that no proper CVFs exist. CVFs in this case are also KVFs which are linearly 

independent shown by equation (3.5.2).  

Case (vi)  

Here, we have    and  where 

 The space-time (3.5.1) after suitable rescaling of  and   takes the form: 

   (3.5.26) 

Solving equations (3.5.4) to (3.5.13) with the help of the space-times (3.5.26) and avoiding from 

the lengthy and tedious calculations one finds that  giving KVFs which are  

  (3.5.27) 

where . Here, clearly there are six KVFs admitted by the space-time 

(3.5.26) out of which four are trivial while other two KVFs are  and 
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Case (vii)  

Here, we have    and  where 

 The space-time (3.5.1) takes the form: 

    (3.5.28) 

Solving equations (3.5.4) to (3.5.13) using the space-times (3.5.28), again we obtain  

which means that no proper CVFs exist. CVFs in this case are basic KVFs.  

Case (viii)  

In this case,    and  where 

hence, space-time (3.5.1) after an appropriate rescaling of  takes the form: 

    (3.5.29) 

The above space-times (3.5.29) admit six linearly independent CVFs which are  

  (3.5.30) 

with conformal factor  where ic   with 3,4,5,6,7,8.i   It is clear from 

equation (3.5.30) that the above space-time (3.5.29) admits four KVFs which are given in 

equation (3.5.2), one is HVF which is  and one is proper CVF which is  
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Hence, the space-time in this case admits proper CVF.  
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3.6  Summary  

The clear picture of obtained results by the above study is given in the following four tables. The 

first column of the tables is representing case number, second column is showing the equation 

number of space-time in the respective case while the third and fourth columns are showing 

equations number of CVFs and dimension of CVFs respectively.  

Table 3.1                                                                                                                                                

Results of Bianchi type I space-times 

 

Case No. Space-time Equations showing 

CVFs 

Dimension of 

CVFs 

(i) Eq. (3.2.12) Eq. (3.2.24) 4 

(ii) Eq. (3.2.26) Eq. (3.2.27) 4 

(iii) Eq. (3.2.29) Eq. (3.2.30) 4 

(iv) Eq. (3.2.32) Eq. (3.2.33) 6 

(v) Eq. (3.2.35) Eq. (3.2.36) 6 

(vi) Eq. (3.2.38) Eq. (3.2.39) 6 

(vii) Eq. (3.2.41) Eq. (3.2.42) 5 

(viii) Eq. (3.2.44) Eq. (3.2.45) 5 

(ix) Eq. (3.2.47) Eq. (3.2.48) 5 

(x) Eq. (3.2.50) Eq. (3.2.51) 5 

(xi) Eq. (3.2.53) Eq. (3.2.54) 5 

(xii) Eq. (3.2.56) Eq. (3.2.57) 5 

(xiii) Eq. (3.2.59) Eq. (3.2.60) 15 

(xiv) Eq. (3.2.62) Eq. (3.2.63) 15 
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Table 3.2                                                                                                                                               

Results of Bianchi type II space-times 

 

Case No. Space-time Equations showing 

CVFs 

Dimension of 

CVFs 

(i) Eq. (3.3.23) Eq. (3.3.24) 4 

(ii) Eq. (3.3.26) Eq. (3.3.27) 4 

(iii) Eq. (3.3.29) Eq. (3.3.30) 4 

(iv) Eq. (3.3.32) Eq. (3.3.2) 3 

(v) Eq. (3.3.33) Eq. (3.3.34) 4 

(vi) Eq. (3.3.35) Eq. (3.3.36) 5 

(vii) Eq. (3.3.38) Eq. (3.3.39) 4 

 

 

Table 3. 03                                                                                                                                              

Results of Bianchi type V space-times 

 

 

Case No. Space-time Equations showing 

CVFs 

Dimension of 

CVFs 

(i) Eq. (3.4.21) Eq. (3.4.2) 3 

(ii) Eq. (3.4.22) Eq. (3.4.2) 3 

(iii) Eq. (3.4.23) Eq. (3.4.2) 3 

(iv) Eq. (3.4.24) Eq. (3.4.2) 3 

(v) Eq. (3.4.25) Eq. (3.4.2) 3 

(vi) Eq. (3.4.26) Eq. (3.4.2) 3 

(vii) Eq. (3.4.27) Eq. (3.4.28) 15 
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Table 3. 04                                                                                                                                               

Results of Kantowski Sachs and Bianchi type III space-times 

 

Case No. Space-time Equations showing 

CVFs 

Dimension of 

CVFs 

(i) Eq. (3.5.19) Eq. (3.5.2) 4 

(ii) Eq. (3.5.20) Eq. (3.5.21) 6 

(iii) Eq. (3.5.23) Eq. (3.5.2) 4 

(iv) Eq. (3.5.24) Eq. (3.5.2) 4 

(v) Eq. (3.5.25) Eq. (3.5.2) 4 

(vi) Eq. (3.5.26) Eq. (3.5.27) 6 

(vii) Eq. (3.5.28) Eq. (3.5.2) 4 

(viii) Eq. (3.5.29) Eq. (3.5.30) 6 

It is important to see over here that in the section (3.4) and (3.5), the techniques generates 

possible forms of the function of scalar curvature. These forms contain both linear as well as 

nonlinear functions of the function f(R). We do not fixes these forms rather we have analytically 

calculated them. As a result we also obtain various shapes of the metric potentials which one can 

further used to calculate the physical quantities pressure and density for each of the space-time. 

In particular, forms of the functions having linearity in the scalar curvature provide a way to 

switch off to the background geometry. For instance, functions like 1 2( ) ,f R c R c   where 1c  

and 2c  are constants. Clearly, for the vanishing 2c  with value of 1c  to be unity one can recover 

the results of GR. On the other aspect, assuming nonlinear modes of the function f(R) have 

several advantages over the linear ones. Going at the level of aspects related to cosmology, 

nonlinear modes of functions help to discuss the glitches of interior space maintenance, 

flourishing aspects termed as expanding universe with dark matter etc.  



91 

Chapter 4 

Conformal Vector Fields of Spatially Homogeneous Rotating Space-

Times and PP-Waves Space-Times in f(R) Theory of Gravity  

4.1  Introduction  

In this chapter, we have found CVFs of spatially homogeneous rotating space-times and pp-

waves space-times in the f(R) theory of gravity. Both the space-times retain their own 

importance in the theory of GR. Rotating solutions of EFEs provide a way for a better 

understanding of real physical universe. There is a long route of solutions with rotating 

geometry. Initially, such solutions to the EFEs was sorted out by Gamow. In the subsequent 

work followed by the Gamow some solutions with rotating geometry was found by Gödel. Later 

on this idea was further extended the Reboucus who found exact rotating solution of EFEs by 

making the assumption of perfect fluid and electromagnetic field as a source of curvature 

(Shabbir, 2019). Similarly, pp-waves space-times admit a very special class of solutions which is 

known as plane fronted GWs with parallel propagations in the f(R) theory of gravity. PP-waves 

are GWs introduced by Ehlers and Kund in 1962. In the study of high-energy phenomena and 

neutron stars, GWs has put a great contribution. PP waves are infect falls in the category of GWs 

and have a marginal literature. In particular, the concept of kinetic energy of freely falling bodies 

and the phenomenon of memory effect are well addressed by such waves. A complete work 

connected with the center of mass density of the GWs exists in a literature. On the other aspect, 

GWs have a capability to judge any gravitational theory. Therefore, it is quite necessary to study 

such waves. To make the study more fruitful and easy, we have solved the problem by making 

classification. For searching proper CVFs, plane waves are further classified in ten cases. The 

breakup of this chapter is, first to explore some solutions in the theory of f(R) for both the 

considered space-times and then pursue for the CVFs. This procedure is given in sections (4.2) 

and (4.3). In the last section of this chapter, a brief summary of obtained results will be 

presented.  
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4.2  Conformal Vector Fields of Spatially Homogeneous Rotating 

 Space-Times in the f(R) Theory of Gravity  

Consider the spatially homogenous rotating space-times in the usual coordinates ( , , , )t r z  with 

the line element (Stephani et al., 2003)  

2 2 2 2 2( ) 2 ( ) ,ds dt dr A r d dz B r dtd         (4.2.1) 

where ( )A A r  and ( )B B r  are nowhere zero functions of r  only. The minimal isometries for 

the above space-times (4.2.1) are (Hall, 2004)  

,
t




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




 .

z




    (4.2.2) 

Scalar curvature  associated with the space-times (4.2.1) has the value  
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         
   (4.2.3) 

where prime is equivalent to .
d

dr
 Using equation (4.2.1) in equation (1.12.1), we have ten non-

linear conformal equations  

0 2

,0 ,0 ,X BX        (4.2.4) 

0 2 1

,1 ,1 ,0 0,X BX X        (4.2.5) 

1 0 2 2 0

,2 ,2 ,0 ,0 2 ,B X X BX AX BX B        (4.2.6) 

0 2 3

,3 ,3 ,0 0,X BX X        (4.2.7) 

1

,1 ,X        (4.2.8) 

1 2 0

,2 ,1 ,1 0,X AX BX       (4.2.9) 

1 3

,3 ,1 0,X X        (4.2.10) 

R
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1 2 0

,2 ,22 2 2 ,A X AX BX A       (4.2.11) 

2 0 3

,3 ,3 ,2 0,AX BX X       (4.2.12) 

3

,3 .X         (4.2.13) 

From equations (4.2.7), (4.2.8), (4.2.12) and (4.2.13), we have  
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where 1( , , ),E t z  ( , , )iE t r   with 2,3,4i   are functions of integration. The next procedure is to 

find these values of integration constants via considering the metrics in the theory under 

consideration which is f(R) theory. For this, we use equation (4.2.1) in equation (1.13.2) 

assuming  we have  
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Using equation (4.2.17) in equations (4.2.15), (4.2.16), (4.2.18) and (4.2.19), after some 

simplifications, we have  

  (4.2.20)  

The above equation (4.2.20) is obviously hard to solve due to nonlinear terms in the unknowns 

,A  B  and  In such a situation, different stretages may be used to tackle this problem. For 
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(i)    and  where  

(ii)    and  where  

2 4 3
2 3

2 2 2 2 2 2 2 2

2 2
3 3

1 2 2
0.

4( ) 3
4

2 2 2

BB A A B A B A B
B A AA B B

A F A A

AF A B AA B B B A B B A AB
ABB

B B A

      
         

  
       

       

.F

8
9 ,A r

4
9 ,B r

2

44

81
R

r
  1 2( ) ,f R c R c  1 2 1, ( 0).c c c 

21
,

2

arA e  ,arB e 22R a

3

8 2
1 2( ) ,

r R

f R c Re c



  1 2, , ( 0).a c c a 



95 

(iii)    and  where 

 

(iv)    and  where 

 

(v)   and 

 where   

(vi)   and  where   

We will discuss each case one by one. 

Case (i)  

This case has the constraints along with the function ( ),f R     and 

 where  The space-time (4.2.1) takes the form:  

   (4.2.21) 

Now, we find CVFs of the space-time (4.2.21) using equations (4.2.4) to (4.2.13). After some 

lengthy calculations, we find that  which means that no proper CVFs exist. Here, CVFs 

become HVFs which are  

   (4.2.22) 

where  The above system of CVFs contain three KVFs which are given in 

equation (4.2.2) and one is proper HVF. Proper HVF without considering KVFs is  
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   (4.2.23) 

Case (ii)  

Here, we have    and  where 

 Under the above restrictions, we obtain  

  (4.2.24) 

Again solving equations (4.1.4) to (4.1.13) with the help of equation (4.1.24), one finds that  

 which means that the CVFs are isometries which are given below:  

  (4.2.25) 

where  Form the information (4.2.25), we see that there are five KVFs 

admitted by the above space-time (4.2.24) in which three are given in equation (4.2.2) and the 

remaining two KVFs are  and  Equation 

(4.2.24) usually known as stationary Gödel space-time (Shabbir et al., 2011).  

Case (iii)  

In this case, 
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 It is worth mentioning here that for 2 4A r r   and 
2 ,B r  the space-time 

(4.2.1) become Som-Raychaudhuri space-time (Shabbir et al., 2011)  
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Using the previously described method, we come to the information that  implies CVFs 

become KVFs which are:  

 

 

0 1

3 4 5 3 4

2 3
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sin cos , cos sin ,

1
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  (4.2.27) 

where ic   with 3,4,5,6,7.i   The above system given in equation (4.2.27) consists of five 

KVFs. From these five KVFs three are given in equation (4.2.2) and the remaining two KVFs are 

 and   

Case (iv)  

Here, we have    and  

where ic   with 1,2,3,4,5.i   In an appropriate frame, we have  

  (4.2.28) 

Solving equations (4.2.4) to (4.2.13) with the help of space-time (4.2.28) implies that 

therefore CVFs in this case become HVFs which are  

  (4.2.29) 

where ic   with 6,7,8,9,10.i   Information given in the system (4.2.29) is a combination of 

four isometries and one proper HVF. The following equation represents proper HVF which is 

obtained by exclusion of isometries from (4.2.29) 
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From the remaining four KVFs one is  and other three are given in equation 

(4.2.2).  

Case (v)  

Here, we have   and 

 where ic   with 1,2,3,4.i   The new shape of space-time (4.2.1) 

in this case becomes  

  (4.2.31) 

Solving equations (4.2.4) to (4.2.13) using the space-time (4.2.31) and avoiding from the lengthy 

calculations one finds that  which means that no proper CVFs exist. CVFs in this case are 

basic KVFs as represented by equation (4.2.2).  

Case (vi)  

The information   and  where 

led towards the following equation in an appropriate frame  

   (4.2.32) 

CVFs in this case are  
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 (4.2.33) 

where ic   for 4,5,6,...,18.i   Conformal factor in this case is 

One can find proper CVFs by ignoring HVFs from equation (4.2.33) to get  

 (4.2.34) 

From the remaining eleven CVFs one is proper HVF which is 

 and other ten KVFs are      
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4.3  Conformal Vector Fields of PP-Wave Space-Times in the f(R) 

 Theory of Gravity  

Consider a pp-wave space-times in the harmonic coordinates    0 1 2 3, , , , , ,u x y v x x x x  with the 

line element (Ehlers and Kundt, 1962)  

2 2 2 22 2 ,ds Hdu dx dy du dv        (4.3.1) 

where  is depending on ,u  ,x  and .y  The space-times (4.3.1) is unique in the sense as it 

contain only one KVF  Expanding the conformal equation (1.12.1) and using equation 

(4.3.1) yield  
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     (4.3.3) 

     (4.3.4) 

     (4.3.5) 
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       (4.3.9) 

        (4.3.10) 

       (4.3.11) 
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Initial system obtained by solving the equations (4.3.5), (4.3.8), (4.3.10) and (4.3.11), has the 

form:  
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    (4.3.12) 

where iZ  with 1,2,3,4i   are functions of ,u  x  and .y  It is worth mentioning that at the first 

step of this study, we would like to construct some pp-wave solutions of EFEs in the f(R) theory 

of gravity and then we will find the proper CVFs of the obtained solutions. For doing this, we 

use equation (4.3.1) in equation (1.13.2) assuming 0,abT   we have  

 (4.3.13) 

       (4.3.14)  

The above equations (4.3.13) and (4.3.14) contain two unknowns namely  and  which need 

to be determined. Indeed, upon integration of  with respect to  and  give  

        (4.3.15) 

where  and  are functions of integration. Now, making use of equation (4.3.15) 

in  and  leads to  and  where 

 and  are functions of integration. Hence, equation (4.3.15) becomes  

    (4.3.16) 

Now, using equation (4.3.16) in  and  implies  which on 

differentiating with respect to  give  and hence  where 
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3 4, .c c R  Substituting the values of 
4 ( )A x  and 

5( ).A y  in equation (4.3.16), give 

 Using the value of  in equation (4.3.13), we get  

 (4.3.17) 

Now, our purpose is to obtain the solution of equation (4.3.17), which by substituting 

 admits a plane wave solution of the form (Aichelburg, 1970) 

   (4.3.18) 

where  and  are known as the two polarization states of the plane wave depending on 

 From the physical point of view, plane waves have a role in the advancement of 

electrodynamics starting from the time of earliest radio transmissions via modern communication 

system. Moreover, the solution (4.3.18) is the mathematical form of generalized plane wave and 

require further insight. For better understanding the space-time structure of the plane wave, it 

would be interesting to find the nature of plane waves. The plane wave solution given in 

equation (4.3.18) becomes linearly polarized if we take  and  

Similarly, it becomes screw symmetric if  is only a function of  and  It is important to 

mention here that there are numerous special possible choices of the polarization states  

and  whose Killing vector fields have already been discussed in (Sipple and Goenner, 

1986). Further, a special choice of taking  and  or  and  

or  in equation (4.3.18) yields an extra Killing vector field, so extra 

conservation law (Jamal and Shabbir, 2016). In this study, we will look for proper CVFs of the 

space-times (4.3.1) by taking equation (4.3.18) into account. Further, it is necessary to mention 

here that if the function  in equation (4.3.18) satisfy the condition  then 

 Similarly,  implies that 
4( ) ( )J u K u u    

(Kuhnel and Rademacher, 2004). For better understanding the geometry of pp waves, we will 
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classify the above equation (4.3.18) by putting some other restrictions on  and . This 

classification involves the following cases:  

(i)  where   

(ii)  where   

(iii)   

(iv)  (v)   

(vi)  where   

(vii)  where   

(viii)  where   

(ix)  where   

(x)  where   

In the following lines, we will use the values of H  from the above cases into equation (4.3.1) to 

formulate the space-times and then try to investigate the CVFs for each of the above case.  
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Case (i)  

In this case, we have  where  The space-times (4.3.1) take 

the form  

 (4.3.19) 

Now, we find proper CVFs of the space-times (4.3.19) using equations (4.3.2) to (4.3.11). If one 

proceeds further after some calculations one finds that  which means that no proper CVFs 

exist. The CVFs become HVFs which are  

     (4.3.20) 

where  The components of CVFs given in equation (4.3.20) are combination of one 

isometry and other is proper HVF. The proper HVF after subtracting KVF from (4.3.20) is  

     (4.3.21) 

Case (ii)  

Here, we have  where  The space-times (4.3.1) take the 

form  

 (4.3.22) 

Again solving equations (4.3.2) to (4.3.11) with the help of space-time (4.3.22), one finds that 

 which implies that no proper CVFs exist. Here, the CVFs become HVFs which are given 

in equation (4.3.20). The Proper HVF for this case is exactly the same as given in equation 

(4.3.21).  
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Case (iii)  

With 
2 2
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 the space-times (4.3.1) has the form  
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The space-time (4.3.23) and equations (4.3.2) to (4.3.11) implies that  which means that 

no proper CVFs exist. The CVFs again become HVFs which are  

   

 (4.3.24) 

where ic   with 7,8,9,10,11,12,13,i      and

 The space-time (4.3.23) admits seven CVFs in which six are KVFs which are  

   

  and one is proper HVF. The 

proper HVF after subtracting KVFs from (4.3.24) is given in equation (4.3.21).  

Case (iv)  

Here, we have  and the space-times (4.3.1) take the form  
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      (4.3.26) 

 

where    and ic   with 6,7,8,9,10,11,12.i   The set 

of isometries over hare are  

    

 

  The remaining one is proper 

HVF. The proper HVF after subtracting KVFs from (4.3.26) is given in equation (4.3.21).  

Case (v)  

In this case, we have  and the space-times (4.3.1) take the form  

  (4.3.27) 

Solving equations (4.3.2) to (4.3.11) with the help of the space-time (4.3.27) yields  

which indicates that the CVFs become HVFs which are  
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   (4.3.28) 

 

where      

 and ic   with 5,6,7,8,9,10,11.i   Again the the set of isometries are  

   

   

   

The remaining one is proper HVF. The proper HVF after subtracting KVFs from (4.3.28) is same 

as given in equation (4.3.21).  

Case (vi)  

Here, we have a sub class of screw symmetric pp-waves and  is of the form 

 where  The space-times (4.3.1) after an appropriate rescaling 

of  take the form  

  (4.3.29) 
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Again in this case   that the CVFs become HVFs which are  

  

  

  (4.3.30)  

where   and ic   with 6,7,8,9,10,11,12.i   The space-time 

(4.3.29) admits seven CVFs in which six are KVFs which are  

  

  

   

   

The remaining one is proper HVF. The proper HVF is given in equation (4.3.21).  

Case (vii)  

The plane wave linearly polarized is represented by  where  The 
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   (4.3.31) 

Here, again we get  showing that the CVFs become HVFs which are  

   

  (4.3.32) 

where ic   with 6,7,8,9,10,11,12.i   The space-time (4.3.31) admits seven CVFs in which 

six are KVFs which are     

  and the remaining one is proper HVF represented by the equation (4.3.21).  

Case (viii)  

Here, we have another form of screw symmetric pp-wave and  where  The 

space-times (4.3.1) after an appropriate rescaling of  take the form  
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For this case, we have the conformal factor 7c   which is the indication that the CVFs are infect 
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 0 1

6 7 10 11 8 9, sin cos ,u uX c X c x c u c u c e c e     

2

7 10 11 8 9sin cos ,u uX c y c u c u c e c e    

    3

7 10 11 8 9 122 cos sin ,u uX c v x y c u c u x y c e c e c         

 sin cos ,u u x y
y x v

   
   

   
  ,ue x y

x y v

   
   

   
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    and one proper HVF. 

The proper HVF is given in equation (4.3.21).  

Case (ix)  

Here, we have  where  The space-times (4.3.1) after an 

appropriate rescaling of  take the form:  

   (4.3.35) 

The CVFs in this case are:  

0 2

6 ,X c u   

   1

6 7 10 11 ,X c u c x u c P c Q     

   2

6 7 8 9 ,X c u c y u c c      

   

   

2 2
3 8 9

6 7

10 11
12

2
2

,

c y c yx y
X c c v u u

u u

c x c x
uP Q uQ P c

u u

   
 

       
 

     

 (4.3.36) 

where 
1,P sinhu  

1cos ,Q hu  
1sin ,u   

1cos ,u    6 7c u c    and ic   with 

6,7,8,9,10,11,12.i   Components of CVFs represented by the system (4.3.36) are composed of 

six KVFs, one proper HVF and one proper which is 

   (4.3.37) 

  

 cos sin ,u u x y
y x v

   
   

   
  ,ue x y

x y v

    
   

   
,

u



 v





2 2
4 ,

2

x y
H au  
  

 
\{0}.a

u

 2 4 2 2 2 2 2 2 .ds u x y du dx dy du dv    

2 2
0 2 1 2 3

6 6 6 6, , , .
2

x y
X c u X c ux X c uy X c

 
      

 
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Case (x)  

In this case, we have  where  The space-times (4.3.1) after suitable 

rescaling of  take the form:  

   (4.3.38) 

Here, the CVFs are:  

0 2

6 ,X c u  

     1

6 7 8 9 10 11 ,X c u c x u c c u c Q c P         

     2

6 7 8 9 10 11 ,X c u c y u c c u c Q c P        

 
 

 
 

 
 

 
 

2 2
83

6 7

9 10

11

12

2
2

,

c x yx y
X c c v u

u

c x y c x y
u uQ P

u u

c x y
uP Q c

u

 

 

 
     

 

 
   


  

  (4.3.39) 

where 
1,P sinhu  

1cos ,Q hu  
1sin ,u   

1cos ,u    6 7c u c    and ic   with 

6,7,8,9,10,11,12.i   The proper CVF here turn out to be  

2 2
0 2 1 2 3

6 6 6 6, , , .
2

x y
X c u X c ux X c uy X c

 
      

 
  (4.3.40) 

4.4  Summary  

The plan of the present chapter was: firstly, we have found some rotating and pp-wave solutions 

of EFEs in the f(R) theory of gravity, secondly, we have found CVFs of obtained solutions. From 

this study, the following results are obtained:  

(a) For the section (4.2), we have the following results:  

4 ,H au xy \{0}.a

u

2 4 2 2 22 2 .ds u xy du dx dy du dv   
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(a-1) The space-times in the cases (i) and (iv) admit proper HVFs of dimension four and five. 

These are the space-times (4.2.21) and (4.2.28). The proper HVFs for these cases are given in 

equations (4.2.23) and (4.2.30).  

(a-2) For the cases (ii), (iii) and (v), the CVFs become KVFs of dimension three and five. The 

space-times for these cases are given in equations (4.2.24), (4.2.26) and (4.2.31). KVFs are given 

in equations (4.2.2), (4.2.25) and (4.2.27).  

(a-3) The space-time in the case (vi) is conformally flat, therefore admit fifteen independent 

CVFs. This is the space-time (4.2.32) and the proper CVFs are given in equation (4.2.34).  

(b) In the second section, a classification of pp-waves space-times according to their proper 

CVFs is presented. Parallel propagating waves (pp-waves) also known as plane fronted GWs has 

remained a topic of special interest in the last couple of years and in the modern theoretical 

physics because of the new theoretical ideas like kinetic energy of the free particle, center of 

mass density of gravitational wave and the memory effect (Maluf et al., 2019). Study of 

conservation laws in the background of well-known class of plane GWs is important. In this 

regard, most basic symmetry is Killing symmetry which give rise to certain conservation laws. 

(Sipple and Goenner, 1986) classified pp-waves according to KVFs and thus developed a variety 

of conservation laws. Here, we have studied a more general class of symmetries than Killing and 

homothetic symmetry which is conformal symmetry of pp-wave space-times in theory of f(R). 

The pp-wave space-times admit a very special class of solutions known as plane fronted GWs 

which is given in equation (4.3.16). Further, we have found proper CVFs of this special type of 

solution by classifying it into ten cases. The results of this classification are:  

(b-1) The space-times in the cases (i) to (viii) admit proper HVFs of dimension two and seven. 

These are the space-times (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27), (4.3.29), (4.3.31) and 

(4.3.33). Proper HVFs for these cases is same which is given in equation (4.3.21). Note that our 

result is the verification of the corollary of (Kuhnel and Rademacher, 2004) which states that for 

any pp-waves, if  then it admits proper HVF. Moreover, the space-times in the 

cases (iii), (iv) and (v) admit an additional KVF  which is also known as boost vector 

field or boost rotation in the literature. This boost vector field appears due to  

which verify the corollary of the same paper (Kuhnel and Rademacher, 2004).  

, , 2 ,x yxH yH H 

u vu v  

, 2 0,uuH H 
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(b-2) The space-times in the cases (ix) and (x) admit proper CVFs. These are the spacetimes 

(4.3.35) and (4.3.38). The proper CVFs for these cases are given in equations (4.3.37) and 

(4.3.40). Our results are the verification of corollary of (Kuhnel and Rademacher, 2004) which 

states that on any pp-wave space-time if  then the space-time admit 

proper CVF.  

 

 

 

 

 

 

 

 

 

 

 

 

, , , 2 0,u x yuH xH yH H   
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Chapter 5 

Conformal Vector Fields of Proper Non-Static Plane Symmetric 

Space-Times in f(R) Theory of Gravity  

5.1  Introduction  

In this chapter, firstly we will look for the proper non static plane symmetric space-times in the 

theory of f(R). The term proper non static is referred to those which do not admit time like KVF. 

The methodology which we will adopt to find such space-times is purely algebraic. These space-

times have been further investigated to get CVFs in the theory under consideration. This chapter 

is composed of three sections. The second section is specified for investigation of solutions in the 

theory of f(R) along with the CVFs which the space-time admits. The third section contains a 

summary of overall analysis.  

5.2  Conformal Vector Fields of Proper Non-Static Plane 

 Symmetric Space-Times  

The line element of proper non-static plane symmetric space-times is represented as (Stephani et 

al., 2003)  

2 2 2 2 2 2 2( , ) ( , )[ ],ds P t x dt dx Q t x dy dz        (5.2.1) 

where ( , )P P t x  and ( , )Q Q t x  are nowhere zero functions of t  and .x  From equation 

(5.2.1), we see that there do not exists time like KVF. The minimal set of isometries for the 

space-times (5.2.1) are (Stephani et al., 2003)  

,y  ,z  .z yy z        (5.2.2) 

For the above space-times scalar curvature R  read as 

2 2

2 2 2 2 3

2 2 2 2
2 ,

Q P Q P Q Q Q PQ
R

Q P Q PQ QP P Q QP

     
       

 
  (5.2.3) 
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where the prime is representing 
d

dr
 whereas dot is specified as .

d

dt
 A vector field E  is said to 

be CVF, if  

, , , 2 ,c c c

E ab ab c bc a ac b abL S S E S E S E S        (5.2.4) 

where ,  ,L  abS  and comma (,) represents the conformal function, the Lie derivative, metric 

tensor and partial derivative respectively. Writing equation (5.2.4) explicitly and using equation 

(5.2.1), we get  

0 1 0

,0 ,PE P E PE P        (5.2.5) 

1 2 0

,0 ,1 0,E P E        (5.2.6) 

2 2 2 0

,0 ,2 0,Q E P E        (5.2.7) 

2 3 2 0

,0 ,3 0,Q E P E        (5.2.8) 

1

,1 ,E         (5.2.9)

1 2 2

,2 ,1 0,E Q E        (5.2.10) 

1 2 3

,3 ,1 0,E Q E         (5.2.11) 

0 1 2

,2 ,QE Q E QE Q  
     (5.2.12) 

2 3

,3 ,2 0,E E         (5.2.13) 

0 1 3

,3 .QE Q E QE Q  
     (5.2.14) 

Performing simple algebraic manipulations on equations (5.2.6), (5.2.10), (5.2.11) and (5.2.13), 

we obtain  

2
0 1 5

2 2

1
,t

t

N
E N dy dx dx N

P P

 
   

 
     
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1 1 2 ,E N dy N   

1
2 3

2
,

N
E dx N

Q
     

3 3 4.zE N dy N         (5.2.15) 

In the above system (5.2.15), 
1,N  

2 ,N  
3 ,N  4N  and 5N  are defined below:  

(a) 
1 1( , , ).N N t x y  

(b) 
2 2( , , ).N N t x z   

(c) 
3 3( , , ).N N t y z   

(d) 
4 4( , , ).N N t x z   

(e) 
5 5( , , ).N N t y z  

The final form of CVFs would be obtained if one find the values of above unknown functions. 

Here, we are interested to find CVFs in the f(R) gravity, whose field equations are (Nojiri and 

Odintsov, 2003)  

1
( ) ( ) ( ) ( ) ,

2
ab ab a b ab abF R R f R S F R S F R kT       (5.2.16) 

where ( ) ( ),
d

F R f R
dR

  abT  is the EMT, k  denotes the coupling constant and 
e

e   is the de-

Alembert’s operator in which   denotes the covariant derivative. The above equation (5.2.16) 

after rearranging the terms and by taking 0,abT   takes the form (Andra et al., 2019)  

1 ( ) ( )
( ) ( ) ,

( ) 2

e

ab ab a b ab e

f R RF R
G S F R S F R

F R

   
       

  
 (5.2.17) 

where abG  denotes the Einstein tensor. Equation (5.2.17) is important as it clearly shows the 

relation between geometry and the gravitational field given by the curvature and this is one of the 
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main reasons that led to interpret the dark side of the gravitational contribution (Katsuragawa et 

al., 2019). Using equation (5.2.1) in equation (5.2.17), we have  

2 2

2 2 2 2

2 2 2
0.

2 2

F Q F QF Q Q Q f R

F QF QFP P Q Q Q F

    
            (5.2.18) 

2 2

3 2 2 2 2 2 3 2

2 2 2 2 2
0.

2 2

PF F QF Q F Q Q QP Q P Q f R

FP FP QFP QF QP P Q QP Q PQ F

    
            (5.2.19) 

2 3 2 2 3

0.
2 2

F F PF QF P F Q F Q QP P Q P Q

F FP FP QFP PF QF QP QP P Q PQ

f R

F

        
         

  

  (5.2.20) 

2 2
0.

F P F Q QP

F PF Q QP

   
            (5.2.21) 

It should be noted that the above equations (5.2.18) to (5.2.21) involve the metric coefficients 

and the function f(R) along with their derivatives, which makes these equations difficult to solve. 

To overcome this problem, one must look for the numerical solutions or impose some sorts of 

restrictions on the metric coefficients to obtain analytic solutions. Another approach which may 

be applied is perturbation approach is to find the solutions of above equations. But it requires 

complicated calculations. Further, finding solutions become easier if first we perform some 

algebraic manipulations on equations (5.2.18) to (5.2.20). As a first step in this direction, we are 

subtracting equations (5.2.19) and (5.2.20) from equation (5.2.18) results in two equations which 

on subtraction yields  

2 2

2 2 3 2 2 2
0.

F Q Q Q QP P Q Q F QF Q P F P

F Q Q QP QP PQ QF QFP Q P PF P

         
            (5.2.22) 

As already mentioned that we are in search of those solutions for which the space-times (5.2.2) 

become proper non static. Here, we are omitting the details and only giving solutions of 

equations (5.2.21) and (5.2.22) in the form of following cases:  
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(i) constant,P    
1

2
1 22 2 ,Q a t a   

 

2

1

2

1 2

2

2 2
R

a

a

t a



 and  3 4 5( ) ,f R a x a R a    where 

ia   with 11,2,3,4,5( 0).i a    

(ii) 
 

3
2

1 21 2

1

2 2
( ) ( ) ,

3

a x a
P H t H t

a

 
  
 
 

  
3

2
1 22 2 ,Q a x a   

2

1 ,
2

a u
R   3 4( ) ,f R a R a   where 

 

    

21 2

1 2 1 1 2

32 1 22
1 2 1 2 1 2 1

32 ( ) 3 ( ) 2 2
,

2 2 ( ) 2 2 3 ( )

H t a x a a H t a x a
u

a x a a x a H t a x a a H t

 
   

  
    

 

 
1( ),H t  

2 ( )H t  are functions of 

integration and ia   with 11,2,3,4( 0).i a    

(iii) 1 2( ) ( ),P H t x H t   constant,Q   0,R   1 2( ) ,f R a R a   where 1( ),H t  2 ( )H t  are 

functions of integration and 1 2 1, ( 0).a a a   

(iv) 2 1,nP t   ,nQ t  2 42 nR n t  and  1 2 3( ) ,f R a x a R a    where 1 2 3, , , ( 0,1).n a a a n    

(v)  1 2 ,P Q a t a    
 

4

1

2

2

12
R

a t

a

a



 and  3 4 5( ) ,f R a x a R a    where 

1 2 3 4 5 1, , , , ( 0).a a a a a a    

(vi)  1 2 3 4 ,P Q a tx a x a t a      
   

2 2

1 2 1 3

2

4
2

3 a t a a x a
R

Q

Q   
  

  

 and 5 6( ) ,f R a R a   

where , 1,2,3,4,5,6ia i   and 2 3
1 2 3 4

4

, , , 0 .
a a

a a a a
a

 
  

 
  

(vii) constant,P    1 2 ,Q a t a   
 

2

2

2

1

1

2
R

a

a

t a


  and 

 
3

4

1 2

( ) ,
a R

f R a
a t a

 


 where 

1 2 3 4 1, , , ( 0).a a a a a   

Now, we will find proper CVFs for each of the above cases by putting the values of metric 

components in equation (5.2.1) and then solving the system of equations (5.2.5) to (5.2.14) 
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applying direct integration approach. The procedure is somewhat lengthy and laborious therefore 

we are omitting the details and discussing each case briefly in the sequel.  

Case (i)  

The constraints with function ( )f R  in this case are constant,P    
1

2
1 22 2 ,Q a t a   

 

2

1

2

1 2

2

2 2
R

a

a

t a



 and  3 4 5( ) ,f R a x a R a    where ia   with 11,2,3,4,5( 0).i a   The 

space-times (5.2.1) after an appropriate rescaling of t  take the form  

 2 2 2 2 2

1 22 2 .ds dt dx a t a dy dz           (5.2.23) 

Adopting the procedure discussed above, we found that 12c   which indicates that CVFs are 

HVFs which are  

0 1 2
1

1

2 ,
a t a

E c
a

 
  

 
 

1

1 42 ,E c x c   
2

1 2 3,E c y c z c    
3

1 2 5,E c z c y c     (5.2.24) 

where 1 2 3 4 5, , , , \{0}.c c c c c   The above space-time (5.2.24) admit five CVFs in which four are 

KVFs. From these four KVFs, three are given in equation (5.2.2) while fourth KVF is .x  

Remaining fifth is proper HVF. The proper HVF after eliminating KVFs from (5.2.24) is  

0 1 2
1

1

2 ,
a t a

E c
a

 
  

 
 

1

12 ,E c x  
2

1 ,E c y  
3

1 .E c z   (5.2.25) 

Case (ii)  

Here, we have 
 

3
2

1 21 2

1

2 2
( ) ( ) ,

3

a x a
P H t H t

a

 
  
 
 

  
3

2
1 22 2 ,Q a x a   

2

1 ,
2

a u
R   

3 4( ) ,f R a R a   where 
 

    

21 2

1 2 1 1 2

32 1 22
1 2 1 2 1 2 1

32 ( ) 3 ( ) 2 2
,

2 2 ( ) 2 2 3 ( )

H t a x a a H t a x a
u

a x a a x a H t a x a a H t

 
   

  
    

 
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1( ),H t  
2 ( )H t  are FOI and 1 2 3 4 1, , , ( 0).a a a a a   The space-times (5.2.1) in this case become  

 
 

2
3

2
31 22 1 2 2 2 2 2

1 2

1

2 2
( ) ( ) 2 2 .

3

a x a
ds H t H t dt dx a x a dy dz

a

 
          
 
 

 (5.2.26) 

It is important to mention here that there exist the following two possibilities:  

(c) 
1 2( ) ( ).H t H t   

(d) 
1 2( ) ( ).H t H t   

(c) When 
1 2( ) ( ),H t H t  then we found that 0   which implies that the CVFs are KVFs which 

are given in equation (5.2.2). (d) When 
1 2( ) ( )H t H t  then the above space-time (5.2.26) after 

appropriate rescaling become static, therefore we do not consider this case further as we are 

interested in only those cases where the above space-times (5.2.1) become proper non static.  

Case (iii)  

Here is 
1 2( ) ( ),P H t x H t   constant,Q   0,R   1 2( ) ,f R a R a   where 

1( ),H t  
2 ( )H t  being 

functions depending on t  and 1 2 1, ( 0).a a a   The space-times (5.2.1) after appropriate 

rescaling of y  and z  become  

2
2 1 2 2 2 2 2( ) ( ) .ds H t x H t dt dx dy dz          (5.2.27) 

The above space-time (5.2.27) is conformally flat, therefore admits fifteen CVFs which are:  

   

   

2 22 2 2 2

0

3 2 13

6 7 9 10 11 12 1 4 5

2( ) 2( )

2( ) 2( )

1
,

( )

t t

t t t t t t

t x y z t x t x y z t x
E c e c e c

t x t x

c e c e z c e c e y c e c e c z c y c
t x



  

            
     

    
   

         
 
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   

      

2 22 2 2 2

1

2 3

1 4 5 6 7 9 10 11 12 13

2( 1) 2( 1)

2 2

,

t t

t t t t t t

t x y z t x t x y z t x
E c e c e

t x c z c y c z c e c e y c e c e c e c e c



  

              
    

   
   

          

  

 
   

2 2 2

2

4 2 10 3 9 1

5 8 14

( 1) ( 1)
2

,

t t
t x y z

E c t x c y c e t x c y c e c yz

c y c z c


   

           
 
 

  

  

 
   

2 2 2

3

1 2 7 3 6 4

5 8 15

( 1) ( 1)
2

,

t t
t x y z

E c t x c z c e t x c z c e c yz

c z c y c


   

           
 
 

  

 (5.2.28) 

where ic   with 1,2,3,...,15.i   Here, 
1( ) constantH t   and 

2 ( ) .H t t  Conformal factor 

turns out to be 1 2 3 4 5( 1) ( 1) .t tc z c t x e c t x e c y c            

Case (iv)  

Values of metric components are 
2 1,nP t   ,nQ t  2 42 nR n t  and  1 2 3( ) ,f R a x a R a    

where 1 2 3, , , ( 0,1).n a a a n   The space-times (5.2.1) take the form  

2 4 2 2 2 2 2 2 .n nds t dt dx t dy dz           (5.2.29) 

Here, system of equations (5.2.5) to (5.2.14) for the space-time (5.2.29) yields 12c   which 

indicates that the CVFs become HVFs which are  

0 1 ,
c t

E
n

  
1

1 32 ,E c x c   
2

1 2 4 ,E c y c z c    
3

1 2 5,E c z c y c     (5.2.30) 

where 1 2 3 4 5, , , , \{0}.c c c c c   Again, we obtain five CVFs including four KVFs and one proper 

HVF which is  

0 1 ,
c t

E
n

  
1

12 ,E c x  
2

1 ,E c y  
3

1 .E c z     (5.2.31)  
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Case (v)  

Here, we have  1 2 ,P Q a t a    
 

4

1

2

2

12
R

a t

a

a



 and  3 4 5( ) ,f R a x a R a    where 

1 2 3 4 5 1, , , , ( 0).a a a a a a   The space-times (5.2.1) become  

 
22 2 2 2 2

1 2 .ds dx a t a dt dy dz           (5.2.32) 

Ignoring the details, we come to know that 12c   which shows that the CVFs become HVFs 

which are  

0 1 2
1

1

,
a t a

E c
a

 
  

 
 

1

1 52 ,E c x c   
2

1 2 3,E c y c z c    
3

1 2 4 ,E c z c y c    (5.2.33) 

where 1 2 3 4 5, , , , \{0}.c c c c c   One can find proper HVF by excluding KVFs from (5.2.33) to 

get  

0 1 2
1

1

,
a t a

E c
a

 
  

 
 

1

12 ,E c x  
2

1 ,E c y  
3

1 .E c z     (5.2.34) 

Case (vi)  

The constraints here are constant,P    1 2 ,Q a t a   
 

2

2

2

1

1

2
R

a

a

t a


  and 

 
3

4

1 2

( ) ,
a R

f R a
a t a

 


 

where 1 2 3 4 1, , , ( 0).a a a a a   The space-times (5.2.1) after suitable rescaling of t  become  

 
22 2 2 2 2

1 2 .ds dt dx a t a dy dz           (5.2.35) 

CVFs here are:  

 0 1 2
1 2

1

2 ,
a t a

E c x c
a

 
   

 
 

2

3 5,E c z c    

2

1 21 2
1 2 4

1

,
a t a

E x c c x c
a

  
     
   

 
3

3 6 ,E c y c     (5.2.36) 
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where 1 2 3 4 5 6, , , , , \{0}.c c c c c c   The proper CVF after eliminating HVF from equation (5.2.36) 

is  

0 1 2
1

1

2 ,
a t a

E c x
a

 
  

 
 

2

1 21 2
1

1

,
a t a

E x c
a

  
   
   

 2 0,E   3 0.E     (5.2.37) 

Conformal factor in this case is  1 22 .c x c     

Case (vii)  

Here,  1 2 3 4 ,P Q a tx a x a t a      
   

2 2

1 2 1 3

2

4
2

3 a t a a x a
R

Q

Q   
  

  

 and 5 6( ) ,f R a R a   

where , 1,2,3,4,5,6ia i   and 2 3
1 2 3 4

4

, , , 0, .
a a

a a a a
a

 
  

 
 The space-times (5.2.1) become  

 
22 2 2 2 2

1 2 3 4 .ds dx a tx a x a t a dt dy dz            (5.2.38) 

Calculations show that the conformal factor turn out to be zero and we obtain the KVFs as 

shown in equation (5.2.2). 

5.3  Summary  

In the first section of this chapter, we have found some proper non static solutions of EFEs in the 

f(R) theory of gravity while in the second section, we have found CVFs of the obtained space-

times. During the process of finding solutions of EFEs, seven cases arose. It turns out that the 

dimension of CVFs for the proper non static plane symmetric space-times is three, five, six and 

fifteen. The clear picture of results is given in the following table:  
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Table 5.1 

Case 

No 

Metric components Equations 

showing CVFs 

Conformal 

Factor 

Description 

and 

dimension  

(i) constant,P   

 
1

2
1 22 2 .Q a t a   

Equation (5.2.24). 
1.c   HVFs and  

5 

(ii) 
 

3
2

1 21

1

2

2 2
( )

,3

( )

a x a
H t

P a

H t

 
 

  
 
 

 

 
3

2
1 22 2 .Q a x a   

Equation (5.2.2). 0.   KVFs and 3 

(iii)  .P Q x t    Equation (5.2.28). 
2

3

4 1 5

( 1)

( 1)

.

t

t

c t x e

c t x e

c y c z c

   

  

   

 

CVFs and 

15 

(iv) 2 1,nP t   .nQ t  
Equation (5.2.30). 

1.c   HVFs and 5 

(v)  1 2 .P Q a t a    Equation (5.2.33). 
1.c   HVFs and 5 

(vi) constant,P   1 2 .Q a t a   Equation (5.2.36).  1 22 .c x c     CVFs and 6 

(vii) 
1 2

3 4

.
a tx a x

P Q
a t a

  
   

 
 

Equation (5.2.2). 0.   KVFs and 3 

 

From the above table, we see that  

(a) The space-times in the cases (i), (iv) and (v) admits five CVFs. Out of these five CVFs, four 

are KVFs and one is proper HVF. The space-times for these cases are given in equation (5.2.23), 

(5.2.29) and (5.2.32).  

(b) In the cases (ii) and (vii), CVFs are the KVFs. The space-times for these cases are given in 

equations (5.2.26) and (5.2.38). KVFs provide laws of conservation for example 
t  corresponds 

to energy conservation, ,y  
z  represents spatial translational giving well defined conservation 
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of linear momentum and z yy z    is the rotation in the pair y  and z  giving conservation of 

angular momentum (Jamal and Shabbir, 2018).  

(c) The space-time in the cases (iii) and (vi) admits proper CVFs. In the case (iii), the space-time 

is conformally flat, therefore admits fifteen independent CVFs. The space-time for this case is 

given in equation (5.2.28). In the case (vi), the space-time admits six CVFs out of which four are 

KVFs, one is proper HVF and one is proper CVF. CVFs for this case are given in equation 

(5.2.36) and the space-time is given in equation (5.2.35).  
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Chapter 6 

6.1  Conclusion 

In this thesis, we have discussed conformal symmetries of some space-times in the f(R) theories 

of gravity. The study includes static spherically symmetric, static plane symmetric, static 

cylindrically symmetric, Bianchi type I, II, III, V, Kantowski Sachs, Spatially homogeneous 

rotating space-times, pp-waves and non-static plane symmetric space-times. Initially, we have 

found some solutions of EFEs using different fluid matters in the f(R) theories of gravity by 

means of some algebraic techniques. After finding these solutions, we have found CVFs using 

direct integration technique. Studying all the considered space-times in details, we determined 

that there exist sixteen conformally flat cases and admit fifteen independent CVFs. The space-

times for these cases are given in equations (2.3.20), (2.3.22), (2.3.24), (2.3.26), (2.4.37), 

(2.4.39), (2.4.41), (2.4.43), (2.4.45), (2.4.47), (2.4.49), (3.2.59), (3.2.62), (3.4.27), (4.2.32), 

(5.2.27) and the equations showing the expressions of CVFs are (2.3.21), (2.3.23), (2.3.25), 

(2.3.27), (2.4.38), (2.4.40), (2.4.42), (2.4.44), (2.4.46), (2.4.48), (2.4.50), (3.2.60), (3.2.63), 

(3.4.28), (4.2.33) and (5.2.28). In nine cases, the space-times admit proper CVFs. The space-

times admitting proper CVFs are shown by the equations (2.4.31), (3.2.32), (3.2.35), (3.2.38), 

(3.5.20), (3.5.29), (4.3.35), (4.3.38) and (5.2.35). The forms of proper CVFs for the above ten 

space-times are given by the equations (2.4.33), (3.2.34), (3.2.37), (3.2.40), (3.5.22), (3.5.31), 

(4.3.37), (4.3.40) and (5.2.37). In thirty cases, space-times admit proper HVFs. The space-times 

admitting proper HVFs are represented by the equations (2.2.18), (2.4.22), (2.4.28), (2.4.34), 

(3.2.12), (3.2.26), (3.2.29), (3.2.41), (3.2.44), (3.2.47), (3.2.50), (3.2.53), (3.2.56), (3.3.23), 

(3.3.26), (3.3.29), (3.3.35), (4.2.21), (4.2.28), (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27), 

(4.3.29), (4.3.31), (4.3.33), (5.2.23), (5.2.29) and (5.2.32). The forms of proper HVFs are shown 

by the equations (2.2.19), (2.4.24), (2.4.30), (2.4.36), (3.2.25), (3.2.28), (3.2.31), (3.2.43), 

(3.2.46), (3.2.49), (3.2.52), (3.2.55), (3.2.58), (3.3.25), (3.3.28), (3.3.31), (3.3.37), (4.2.23), 

(4.2.30), (4.3.21), (5.2.25), (5.2.31) and (5.2.34). Note that the proper HVFs corresponding to the 

space-times (4.3.19), (4.3.22), (4.3.23), (4.3.25), (4.3.27), (4.3.29), (4.3.31) and (4.3.33) are the 

same and are shown in the equation (4.3.21). In rest of the cases, CVFs become KVFs. As a 

result of the above study, we have obtained three types of vector fields namely proper CVFs, 

proper HVFs and KVFs. From the physical point of view, HVFs form homothetic algebra which 
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coincides with the Lie and Noether point symmetries of wave and Klein-Gordon equations. 

Analysis of such equations is important in the problem of stability. Further, HVFs play a 

significant role in the dynamics of cosmological models and have capability to model the 

universe which enables one to find new facts related to singularities in general relativity. On the 

other hand, the KVFs give laws of conservation. For example z rr z    represents rotational 

invariance in the coordinates ,r  z  and the conservation law is angular momentum. Similarly, 

t  shows that the total energy of a system is conserved. Other Killing vector fields like   and 

z  denote the translational invariance in   and z  respectively and the conservation law is linear 

momentum. The existence of conformal symmetries predicate something about the inner 

structure of a space-time. As discussed earlier that the wave and Klein-Gordon equations are also 

related to the conformal algebra of pseudo-Riemannian spaces. The generators of the conformal 

algebra are used to classify the potentials of wave and Klein-Gordon equations. CVFs are 

important objects for studying the geometry of several kinds of manifolds as well as acts as a key 

probes in the characterization of several kinds of important spaces, like Euclidean space, 

Euclidean sphere and the complex projective space. There is a close relationship between the 

potential functions of CVFs and Obata’s differential equation. One can obtain energy  e X of a 

smooth CVF X  on a Riemannian manifold M  using the relation given by (Deshmukh, 2017).  
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