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Abstract. To map QCD phase diagram is one of the greatest challenges for those who study
QCD at finite temperature. A class of observables of particular interest in this study are the
net-baryon cumulants. However, hydrodynamic-based hybrid models have trouble in computing
higher order cumulants due to the high statistics needed. The usual oversampling procedure
to increase statistics in such models does not help in this situation because it smears event-by-
event fluctuations. We propose a way to compute the cumulants avoiding this issue and show
its applications at LHC energies.

1. Introduction
Event-by-event fluctuations of conserved charges provide a direct probe for the behavior of the
transition between the deconfined quark-gluon phase and the hadronic matter observed in heavy-
ion collisions. In particular, susceptibilities will diverge if a critical point is present in the QCD
phase diagram [1, 2]. Useful observables to quantify these fluctuations are the cumulants of
the conserved charges, which are proportional to the susceptibilities. Experimentally, cumulants
of net-protons are typically used as a proxy for the baryon density cumulants [3, 4] and were
measured at both RHIC [3] and LHC [5].

Much like in experiments, obtaining precise values for these cumulants in heavy-ion collision
simulations requires a very large sample of events, which poses a computational challenge for
hydrodynamics-based simulations. On the other hand, particlization — the name given to the
switching from the hydrodynamic prescription to the hadron gas one — is comparatively cheaper
and stochastic in nature. It is common to use the random nature of the procedure to perform the
particlization many times over a single hydrodynamic simulation (see, e.g. [6, 7]), a procedure
usually called oversampling. In this way, one can achieve the same statistic level as experiments
within a reasonable computational time. For works that are mainly interested in mean values
this procedure has no drawbacks. However, it tends to underestimate fluctuations coming from
particlization, severely compromising cumulants calculations.

In this work, we show a way to correctly account for the oversampling in the particlization
procedure. This is the same two-step averaging procedure shown in [8]. Here, we also present a
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toy model where we parameterize the probability of emitting particles during the particlization
using an analytical function. The parameters of this function are dependent on the initial
condition and can be numerically estimated for each event from the oversampling procedure. At
the same time, an analytical value for the cumulants can also be computed. Therefore, we use
it to benchmark the two-step averaging procedure. We show that one can obtain precise values
for the cumulants with statistics which are easily available in a typical simulation. We also show
the results applied in a boost-invariant simulation at LHC energies.

2. Cumulants and moments
As mentioned, the net-charge fluctuations are codified in the corresponding observable cumulants
of the event-by-event probability distribution. They are derived analytically as the Maclaurin
coefficients for the Cumulant Generating Function (CGF) KX(z). However, expanding it
directly may lead to cumbersome expressions. Instead, one can use the moments µn, which
can later be related to the cumulants. The momentum are defined from the Moment Generating
Function (MGF)

MX(z) ≡
〈
ezX

〉
= 1 +

∞∑
n=1

µX
n

zn

n!
. (1)

Direct derivation of (1) shows that µX
n = ⟨Xn⟩. The relation between cumulants and momentum

are established by the CGF

KX(z) = lnMX(z) . (2)

The higher the order of the cumulants, the higher the necessary statistics are needed to
accurately determine it. For hydrodynamic-based hybrid models this can be an issue, since
hydrodynamic simulations are computationally expensive. As was also mentioned in Section 1,
the typical solution of oversampling particles during the particlization leads for fluctuations being
washed away. Naively applying the procedure outlined above would underestimate cumulants
other than C1.

2.1. Two-step averaging
The way we propose to account for the oversampling procedure is to split the calculation of the
averages in Eq. (1) in two steps: the innermost (FO) runs over the different samples while the
outermost (IC) contains loops over the different initial conditions. The event-by-event MGF
becomes

MX(z) =
〈
ezX

〉
=

〈〈
ezX

〉
FO

〉
IC

=
〈
MX

FO(z)
〉
IC

. (3)

With this splitting, the moments µn in (1) can be computed as

µn =
dnM

dzn

∣∣∣∣
z=0

=

〈
dnMFO

dzn

∣∣∣∣
z=0

〉
IC

. (4)

Eq. (4) is the basis of the method developed in this work. Throughout this work we will refer
to the procedure to correct cumulants and moments as two-step averaging.

2.2. Poisson parametrization of emitted particles
If the particlization distribution of particles is parametrized or known analytically, the
computation of two-step averaging in a simulation is reduced to an averaging over the parameters
specific to each IC, by directly computing MFO(z). We will assume the simplest case, which is
an independent emission of particles resulting in a Poisson distribution. In this scenario,

X ∼ Pois(λ) : MX
FO(z) = exp (λez − λ) , (5)
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where the parameter λ can be estimated as λ = ⟨X⟩FO. A useful property of a MGF is that
MX±Y (z) = MX(z)MY (±z), so for the net-particle X − X̄, with X̄ ∼ Pois(λ̄), it becomes

MX−X̄
FO (z) = exp

[
λ(ez − 1) + λ̄(e−z − 1)

]
. (6)

The two-step averaging are straightforwardly computed applying (6) into (4). We show, as
an example, the first four moment calculated explicitly

µX−X̄
1 = ⟨q⟩IC , (7)

µX−X̄
2 =

〈
n+ q2

〉
IC

, (8)

µX−X̄
3 =

〈
q + 3nq + q3

〉
IC

, (9)

µX−X̄
4 =

〈
n+ q2 + 6n2 + 6nq2 + q4

〉
IC

. (10)

where we introduced the shorthand q = λ− λ̄ and n = λ+ λ̄. The event-by-event cumulants can
then be determined by inserting the two-step averaging (7)-(10) into the usual relations between
moments and cumulants.

3. Results
We will apply the calculations proposed above in the simple scenario of a toy model. In this
scenario the probability density function is completely known and thus no hypotheses is necessary
for it. More importantly, it allow us to generate a high amount of statistics without the need
to run the computationally intensive task of hydrodynamic simulations and compare the results
with a semi-analytical approach as well as the situation where no oversampling is performed. It
also serves as a way to validate our analysis tools.

We then proceed to show the results for a real-life simulation where we run boost-invariant
viscous hydrodynamic for 100 thousand events, in which we repeat the Cooper-Frye procedure
a thousand times. We repeat the same kind of analysis as in the toy model above, i.e. compare
the results of cumulants computed using the two-step averaging versus the cumulants computed
using a single particlization sample.

3.1. Toy Model
As stated above, the Toy Model does not contain any physical information, but serves rather
as a way to easily generate large amounts of data, allowing us to study statistical effects in the
two calculations methods. Nevertheless, we desire for the data generated to resemble real data.

We start by setting the probability density function of selecting an impact parameter b as

P (b) =
2b

B2
, (11)

where B is the biggest impact parameter we will allow1. This naturally leads to the usual
expression relating centralities bin edges C and impact parameter

b = B
√
C . (12)

Since we desire a simple model that allow us to keep track of the density probability functions,
we will assume the colliding nuclei are circular with radius R = B/2. Then, the area where the

1 This choice comes from the argument that the differential cross section can be written as dσ = 2πb db, i.e., it
will be proportional to the flux of nuclei crossing a ring of radius b
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two circles intersect will be given by

A(b) =
B2

2

arccos( b

B

)
− b

B

√
1−

(
b

B

)2
 . (13)

Lastly, we say that the entropy produced in a collision will be proportional to the area in Eq. (13)
and thus that the number of particles produced in such event will be proportional to this area as
well. In practice, this is done by normalizing Eq. (13) to unity and multiplying for the expected
multiplicity M̃(0) at b = 0 fm, i.e.

M̃(b) =
4M̃(0)

πB2
A(b) . (14)

Note also that Eq. (14) can be rewritten in terms of the centrality dependency, hence this
model does not incorporate any system-size effects. We are also neglecting IC fluctuations due
to different number of participants and/or difference on their positions. But we stress that
incorporating these effects is not our main objective in this section. We simply want to obtain a
probability density function which functional form can be kept track of and that has a minimal
resemblance with experiments.

To emulate the Cooper-Frye procedure, we will assign the multiplicity obtained above as the
mean of a Poisson distribution. The actual number of observed particles is then sampled from
this distribution. The number of times we sample this distribution corresponds to the number of
times we “oversample” the event. With these ingredients we may write the probability density
function of generating an event with multiplicity m as

PM (m, b) =
e−M̃(b)

[
M̃(b)

]m
m!

2b

B2
. (15)

With the probability distribution above, one can compute µn in the centrality window C1-C2 as

µn =

∫ B
√
C2

B
√
C1

m=∞∑
m=0

mnPM (m, b)

C2 − C1
db . (16)

In our case, we choose a centrality window in the 50-60% range. A typical simulation generates
data of the order of 103-104 events. Meanwhile, experiments can easily go above 106-107 events.
We will mock-up a situation “simulation vs. experiment” by applying this toy model to a scenario
where a 1000 initial conditions are generated, each oversampled 1000 times. Then we compare
with a second scenario where we generate 1 million events, each sampled only once.

In Fig. 1 we show the cumulants computed using the two-step averaging procedure for the first
scenario as red points. Results for the second scenario are shown as blue points. Notice that for
the second scenario, since no oversample is emulated, one must not employ two-step averaging
but compute moments with the usual expression µn = ⟨Xn⟩. We also show the calculation of Cn

using only one sample per initial condition from scenario one. Since we are using only a single
sample, moments are computed in the usual way, as in scenario two. But we do have many
samples from the same simulation available. This allow us to repeat the calculation for each one
of them. The distribution of these values are shown as a violin plot (light red) in Fig. 1.A possible
alternative would be to take the mean of the cumulants computed in the way just described.
However, this leads to larger deviations from the expected values (black points) — which are
obtained by evaluating Eq. (16). Also, the results tends to be skewed to lower values, specially
for the higher-order cumulants. Meanwhile, comparison between the two-step averaging method
and the semi-analytical calculation shows no such bias within statistical errors.

Another point to be made is that we obtain C1
∼= C2. This is a simple consequence that on

each bin, b ≈ constant and thus Poisson fluctuations dominates.
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Figure 1. Comparison between cumulants computed via two-step averaging on top of 1000 toy
model events sampled 1000 times each (red points), calculations performed on top of one million
toy model events without oversampling (blue points) and semi-analytical cumulants (black
points) from evaluating Eq. (16). The violin distribution comes from evaluating the cumulants
taking only one sample from each event of the toy model events which were oversampled. The
relative deviation is computed using the semi-analytical result as reference.

3.2. MUSIC Simulation results
Here we show a real world simulation where we used data from events evolved with relativistic
hydrodynamics. We use a simulation chain similar to [9], but without pre-equilibrium
dynamics and without simulation of the hadronic phase. In short, we use Trento as [10] as
initial condition generator, evolve these initial conditions with second-order, boost-invariant,
hydrodynamics[11, 12] on top of which we apply the Cooper-Frye procedure as implemented by
iSS [6]. We also do not consider any sort of decays. As in [9], we restrict our study to Pb-
Pb collisions at

√
sNN . To make simulations computationally cheaper, we restricted the initial

condition generation to the range b ∈ [10.48, 11.73] fm. The choice of peripheral collisions with
a boost-invariant simulation allowed us to push the statistics to 105 events, each one sampled a
thousand times. In contrast to what was done in the previous section, instead of looking into the
cumulants of protons, we look at the cumulants of net baryonic number, that is, the cumulants
of net protons, which we use as a proxy for net-baryons.

The results we obtain are shown in Fig. 2. As before, the violin plot shows the distribution
of Cn taking one sample individually from each event. The open point is the mean of
this distribution, while the filled point is the cumulant computed by the two-step averaging
procedure. The same effect as in the toy model where the two-step averaging is always above
the mean of the distribution of Cn’s is present for n ≥ 2, highlighting the importance of correcting
for the oversampling procedure.

10.6 10.8 11 11.2 11.4 11.6

b (fm)

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

1
C two-step averaging

nCUsual 
Oversampled

viscous hydrodynamic
Boost invariant,
PbPb - 2.76 TeV

10.6 10.8 11 11.2 11.4 11.6

b (fm)

8

9

10

11

12

13

14

15

2
C two-step averaging

nCUsual 
Oversampled

viscous hydrodynamic
Boost invariant,
PbPb - 2.76 TeV

10.6 10.8 11 11.2 11.4 11.6

b (fm)

4−

3−

2−

1−

0

1

2

3

4

5

3
C two-step averaging

nCUsual 
Oversampled

viscous hydrodynamic
Boost invariant,
PbPb - 2.76 TeV

10.6 10.8 11 11.2 11.4 11.6

b (fm)

0

20

40

60

80

4
C two-step averaging

nCUsual 
Oversampled

viscous hydrodynamic
Boost invariant,
PbPb - 2.76 TeV

Figure 2. Cumulants of net protons for boost-invariant hydrodynamic simulations (closed
points). The light red violin plot distribution comes from evaluating the cumulants taking only
one sample from each event (in the same manner as the violin plot from Fig. 1 (see the text for
further explanation). The open circle corresponds to the mean of this distribution.
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4. Summary
In this work we have shown that an event-by-event simulation of an hydro-based hybrid model
cannot use the naive expressions for the net-proton cumulants. Instead, one needs to account
for the oversampling procedure by changing the usual cumulant expressions. We showed that
even in a simulation with very large statistics, these effects are still present and must be taken
into consideration.

A main limitation of what is shown here is the use of the Poisson distribution. This does
not reproduce well data since it does not accounts for cuts in the phase space, commonly
employed when comparing these calculations with experimental data. Results which take these
into considerations were computed and are available in the pre-print in Ref. [8].
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(FAPESP) through grants 2018/24720-6, 2018/14479-0, 2021/01670-6, and by the Helmholtz
Forschungsakademie Hessen für FAIR (HFHF).

References
[1] Stephanov M A 2009 Phys. Rev. Lett. 102 032301 (Preprint 0809.3450)
[2] Stephanov M A 2011 Phys. Rev. Lett. 107 052301 (Preprint 1104.1627)
[3] Abdallah M et al. (STAR) 2021 Phys. Rev. C 104 024902 (Preprint 2101.12413)
[4] Hatta Y and Stephanov M A 2003 Phys. Rev. Lett. 91 102003 [Erratum: Phys.Rev.Lett. 91, 129901 (2003)]

(Preprint hep-ph/0302002)
[5] Rustamov A (ALICE) 2017 Nucl. Phys. A 967 453–456 (Preprint 1704.05329)
[6] Shen C, Qiu Z, Song H, Bernhard J, Bass S and Heinz U 2016 Comput. Phys. Commun. 199 61–85 (Preprint

1409.8164)
[7] Bernhard J E 2018 Bayesian parameter estimation for relativistic heavy-ion collisions Ph.D. thesis Duke U.

(Preprint 1804.06469)
[8] Hirayama R, Grassi F, Serenone W M and Ollitrault J Y 2022 (Preprint 2204.07181)
[9] Nunes da Silva T, Chinellato D, Hippert M, Serenone W, Takahashi J, Denicol G S, Luzum M and Noronha

J 2021 Phys. Rev. C 103 054906 (Preprint 2006.02324)
[10] Moreland J S, Bernhard J E and Bass S A 2015 Phys. Rev. C 92 011901 (Preprint 1412.4708)
[11] Schenke B, Jeon S and Gale C 2010 Phys. Rev. C 82 014903 (Preprint 1004.1408)
[12] Schenke B, Jeon S and Gale C 2012 Phys. Rev. C 85 024901 (Preprint 1109.6289)


