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Abstract. A central component of the data quality monitoring system of the CMS experiment
at the Large Hadron Collider is a web site for browsing data quality histograms. The production
servers in data taking provide access to several hundred thousand histograms per run, both live
in online as well as for up to several terabytes of archived histograms for the online data taking,
Tier-0 prompt reconstruction, prompt calibration and analysis activities, for re-reconstruction
at Tier-1s and for release validation. At the present usage level the servers currently handle in
total around a million authenticated HTTP requests per day. We describe the main features
and components of the system, our implementation for web-based interactive rendering, and
the server design. We give an overview of the deployment and maintenance procedures. We
discuss the main technical challenges and our solutions to them, with emphasis on functionality,
long-term robustness and performance.

1. Overview

CMS [I] developed the DQM GUI, a web-based user interface for visualising data quality
monitoring data for two reasons. For one, it became evident we would much prefer a web
application over a local one [2, Bl 4] (Fig. ). Secondly, we wanted a single customisable
application capable of delivering visualisation for all the DQM needs in all of CMS, for all
subsystems, for live data taking as much as archives and offline workflows [5].

Content is exposed as workspaces (Fig. B]) from high-level summaries to shift views to expert
areas, including even a basic histogram style editor. Event display snapshots are also accessible.
The server configuration specifies the available workspaces.

Within a workspace histograms can be organised into layouts to bundle related information
together. A layout defines not only the composition, but can also provide documentation
(Fig. [3(b)l B(e))), change visualisation settings, and for example turn the reference histogram
display on (Fig.|3(d))). Shift views are usually defined as collections of layouts.

2. Implementation

Our server is built on CherryPy, a Python language web server framework [6]. The server
configuration and the HT'TP API are implemented in Python. The core functionality is in a
C++ accelerator extension. The client is a GUI-in-a-browser, written entirely in JavaScript.
It fetches content from the server with asynchronous calls, a technique known as AJAX [3] [4].
The server responds in JSON [3| [7]. The browser code forms the GUI by mapping the JSON
structure to suitable HTML+CSS content (Fig. 2 [3)).
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Figure 1. GUI architecture overview.

([{kind: ’AutoUpdate’, interval: 300, stamp: 1237219783, serverTime: 96.78},
{ kind: °DQMHeaderRow’, run: "77°025", lumi: "47", event: "6’028°980",
service: ’Online’, workspace: ’Summary’, page: 1, pages: 1, services: [...],
workspaces: [{title: ’Summary’, label: ’summary’,
category: ’Summaries’, rank: 0}, ...],
runs: ["Live", "77057", ...], runid: 77025},
{ kind: ’DQMQuality’, items: [
{ label: "CSC", version:1236278233000000000,
name: "CSC/EventInfo/reportSummaryMap",
location: "archive/77025/Global/Online/ALL/Global run",
reportSummary: "0.998", eventTimeStamp: "1236244352" }, ...1}1)

Figure 2. A JSON state response from which the Summary page of Fig. was rendered.
The response contains the minimal raw data needed for this particular page view, grouped by
browser side JavaScript GUI plug-in which knows how to translate the state in HTML+CSS,
including the user interaction controls.

The user session state and application logic are held entirely on the web server; the browser
application is “dumb.” User’s actions such as clicking on buttons are mapped directly to HTTP
API calls such as setRun?7v=123. The server responds to API calls by sending back a new
full state in JSON, but only the minimum required to display the page at hand. The browser
compares the new and the old states and updates the page incrementally. This arrangement
trivially allows one to reload the web page, to copy and paste URLs, or to resume the session
later.

The server responds to most requests directly from memory, yielding excellent response time.
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Figure 3. DQM GUI views.
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Figure 4. A render plug-in can be added to modify the appearance of a histogram.

All tasks which can be delayed are handled in background threads, such as receiving data
from the network or flushing session state to disk. The server data structures support parallel
traversal, permitting several HI'TP requests to be processed concurrently.

The histograms are rendered in separate fortified processes to isolate the web server from
ROOT’s instability. The server communicates with the renderer via low-latency distributed
shared memory. Live DQM data also resides in distributed shared memory (Fig. [f). Each
producer hosts its own histograms and notifies the server about updates. The renderer retrieves
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Figure 5. One of the central DQM and event display consoles at the CMS centre in Meyrin,

10 Sept 2008.
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Figure 6. The distributed shared memory system.
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histograms asynchronously from the producers on demand; although single-threaded for ROOT,
it can have dozens of operations in progress concurrently. Recently accessed views are re-rendered
automatically on histogram update to reduce the image delivery latency.

Our DQM data is archived in ROOT files [8]. As reading ROOT files in the web server itself
would be too slow, use too much memory, prone to crash the server, and would seriously limit
concurrency, we index the ROOT data files on upload. The GUI server computes its response
using only the index. The ROOT files are accessed only to get the histograms for rendering in
a separate process (Fig.[d)). The index is currently a simple SQLite database [9].

The server supports setting basic render options, such as linear vs. log axis, axis bounds and
ROOT draw options (Fig. . These settings can be set interactively or as defaults in the
subsystem layout definitions. The subsystems can further customise the default look and feel of
the histograms by registering C++ render plug-ins, which are loaded on server start-up (Fig. ).
We improve image quality significantly by generating images in ROOT in much larger size than
requested, then reducing the image to the final smaller size using a high-quality anti-alias filter.

3. Operation and experience

CMS centrally operates four DQM GUI instances for online and offline each, an instance per
purpose for the existence of data: Tier-0, CAF, release validation, and so on. In addition at
least four instances are operated by detector subsystems in online for exercises private to the
detector. Most DQM developers also run a private GUI instance while testing. A picture of a
live station is shown in Fig. Bl

Early on it became abundantly evident ROOT was neither robust nor suitable for long-
running servers. Some three quarters of all the effort on the entire DQM GUI has gone into
debugging ROOT instabilities and producing countermeasures. We are very pleased with the
robustness of the rest of the DQM GUI system.

CMS typically creates approximately 50’000 histograms per run. The average GUI HTTP
response time is around 270 ms (Fig. , which we find satisfactory. The production server
has scaled to about 750’000 HTTP requests per day with little apparent impact on the server
response time (Fig. . Interestingly the vast majority of the accesses are to the online
production server from outside the online environment. This indicates the web-based monitoring
and visualisation solution applies well to the practical needs of the experiment. We have exercised
the GUI with up to 300’000 histograms per run. The GUI remains usable although there is a
perceivable interaction delay. We plan to optimise the server further such that it has ample
capacity to gracefully handle growing histogram archives and special studies with large numbers
of monitored entities.
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