17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072055 doi:10.1088/1742-6596/219/7/072055

CMS data quality monitoring web service

L Tuura', G Eulisse', A Meyer?>?

! Northeastern University, Boston, MA, USA
2 DESY, Hamburg, Germany
3 CERN, Geneva, Switzerland

E-mail: lat@cern.ch, giulio.eulisse@cern.ch, andreas.meyer@cern.ch

Abstract. A central component of the data quality monitoring system of the CMS experiment
at the Large Hadron Collider is a web site for browsing data quality histograms. The production
servers in data taking provide access to several hundred thousand histograms per run, both live
in online as well as for up to several terabytes of archived histograms for the online data taking,
Tier-0 prompt reconstruction, prompt calibration and analysis activities, for re-reconstruction
at Tier-1s and for release validation. At the present usage level the servers currently handle in
total around a million authenticated HTTP requests per day. We describe the main features
and components of the system, our implementation for web-based interactive rendering, and
the server design. We give an overview of the deployment and maintenance procedures. We
discuss the main technical challenges and our solutions to them, with emphasis on functionality,
long-term robustness and performance.

1. Overview

CMS [I] developed the DQM GUI, a web-based user interface for visualising data quality
monitoring data for two reasons. For one, it became evident we would much prefer a web
application over a local one [2, Bl 4] (Fig.). Secondly, we wanted a single customisable
application capable of delivering visualisation for all the DQM needs in all of CMS, for all
subsystems, for live data taking as much as archives and offline workflows [5].

Content is exposed as workspaces (Fig. B]) from high-level summaries to shift views to expert
areas, including even a basic histogram style editor. Event display snapshots are also accessible.
The server configuration specifies the available workspaces.

Within a workspace histograms can be organised into layouts to bundle related information
together. A layout defines not only the composition, but can also provide documentation
(Fig. [3(b)l B(e))), change visualisation settings, and for example turn the reference histogram
display on (Fig.|3(d))). Shift views are usually defined as collections of layouts.

2. Implementation

Our server is built on CherryPy, a Python language web server framework [6]. The server
configuration and the HT'TP API are implemented in Python. The core functionality is in a
C++ accelerator extension. The client is a GUI-in-a-browser, written entirely in JavaScript.
It fetches content from the server with asynchronous calls, a technique known as AJAX [3] [4].
The server responds in JSON [3| [7]. The browser code forms the GUI by mapping the JSON
structure to suitable HTML+CSS content (Fig. 2 [3)).

© 2010 IOP Publishing Ltd 1

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072055 doi:10.1088/1742-6596/219/7/072055

Remote console
Local console

monitoring “/ accgss
elements, access , L
events roxy
PN DQM S _t Server
Client . e v access
Storage >///~‘ ~
Manager
DQM GUI servers
at various locations
events \
Event
Display SVSuite B
. _/ DQM
Local ~ \\\
ROOT S
Files Tier-0
DQM

Figure 1. GUI architecture overview.

([{kind: ’AutoUpdate’, interval: 300, stamp: 1237219783, serverTime: 96.78},
{ kind: °DQMHeaderRow’, run: "77°025", lumi: "47", event: "6’028°980",
service: ’Online’, workspace: ’Summary’, page: 1, pages: 1, services: [...],
workspaces: [{title: ’Summary’, label: ’summary’,
category: ’Summaries’, rank: 0}, ...],
runs: ["Live", "77057", ...], runid: 77025},
{ kind: ’DQMQuality’, items: [
{ label: "CSC", version:1236278233000000000,
name: "CSC/EventInfo/reportSummaryMap",
location: "archive/77025/Global/Online/ALL/Global run",
reportSummary: "0.998", eventTimeStamp: "1236244352" }, ...1}1)

Figure 2. A JSON state response from which the Summary page of Fig. was rendered.
The response contains the minimal raw data needed for this particular page view, grouped by
browser side JavaScript GUI plug-in which knows how to translate the state in HTML+CSS,
including the user interaction controls.

The user session state and application logic are held entirely on the web server; the browser
application is “dumb.” User’s actions such as clicking on buttons are mapped directly to HTTP
API calls such as setRun?7v=123. The server responds to API calls by sending back a new
full state in JSON, but only the minimum required to display the page at hand. The browser
compares the new and the old states and updates the page incrementally. This arrangement
trivially allows one to reload the web page, to copy and paste URLs, or to resume the session
later.

The server responds to most requests directly from memory, yielding excellent response time.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072055 doi:10.1088/1742-6596/219/7/072055

(b) Reduced histograms in normal (¢) An event display workspace.
browsing mode, rendered with anti-
aliasing.

gﬂ(:;’;'[x[zls’lvalue
'IL 50 100 150 200 250 300 350
phi (deg)
(d) Reference histogram drawn. (e) The standard ECAL barrel (f) Single histogram explorer and
shift workspace. editor.

Figure 3. DQM GUI views.

Fraction of CE racords without ALCT data Fraction of CC records without CLCT data

Fraction of CSC records without ALCT data Fraction of CSC racords without CLCT data

i [
LT T
BEoEmocD CEQEER
B _go B8 B5

oz
o &

:HIH!!!!!!E‘!

Chamber Chamber

Fraction of GSG racords without CFEB data Fraction of DMB Records with GFEB B-Words

Fraction of CSC Records with CFEB B-Words

el

3
DMEITHE Siot D

juoom

B AEERCEROE @
utioppoge E
0ioen e

N B ek e

Figure 4. A render plug-in can be added to modify the appearance of a histogram.

All tasks which can be delayed are handled in background threads, such as receiving data
from the network or flushing session state to disk. The server data structures support parallel
traversal, permitting several HI'TP requests to be processed concurrently.

The histograms are rendered in separate fortified processes to isolate the web server from
ROOT’s instability. The server communicates with the renderer via low-latency distributed
shared memory. Live DQM data also resides in distributed shared memory (Fig. [f). Each
producer hosts its own histograms and notifies the server about updates. The renderer retrieves

17th International Conference on Computing in High Energy and Nuclear Physics (CHEPQ9)

IOP Publishing

Journal of Physics: Conference Series 219 (2010) 072055

doi:10.1088/1742-6596/219/7/072055

Figure 5. One of the central DQM and event display consoles at the CMS centre in Meyrin,

10 Sept 2008.

Source

o0
oA

Source

Source

N Y 27

Archive
Renderer

atChdog

Archive Store
- DQM files
- Index file

Collector

HTTP requests

Source

o0
oA

Shared memory
accesses

Live

Renderer
+ Watchdog

Threads
HTTP servers

Service work

Figure 6. The distributed shared memory system.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP(09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072055 doi:10.1088/1742-6596/219/7/072055

histograms asynchronously from the producers on demand; although single-threaded for ROOT,
it can have dozens of operations in progress concurrently. Recently accessed views are re-rendered
automatically on histogram update to reduce the image delivery latency.

Our DQM data is archived in ROOT files [8]. As reading ROOT files in the web server itself
would be too slow, use too much memory, prone to crash the server, and would seriously limit
concurrency, we index the ROOT data files on upload. The GUI server computes its response
using only the index. The ROOT files are accessed only to get the histograms for rendering in
a separate process (Fig.[d)). The index is currently a simple SQLite database [9].

The server supports setting basic render options, such as linear vs. log axis, axis bounds and
ROOT draw options (Fig. . These settings can be set interactively or as defaults in the
subsystem layout definitions. The subsystems can further customise the default look and feel of
the histograms by registering C++ render plug-ins, which are loaded on server start-up (Fig.).
We improve image quality significantly by generating images in ROOT in much larger size than
requested, then reducing the image to the final smaller size using a high-quality anti-alias filter.

3. Operation and experience

CMS centrally operates four DQM GUI instances for online and offline each, an instance per
purpose for the existence of data: Tier-0, CAF, release validation, and so on. In addition at
least four instances are operated by detector subsystems in online for exercises private to the
detector. Most DQM developers also run a private GUI instance while testing. A picture of a
live station is shown in Fig. Bl

Early on it became abundantly evident ROOT was neither robust nor suitable for long-
running servers. Some three quarters of all the effort on the entire DQM GUI has gone into
debugging ROOT instabilities and producing countermeasures. We are very pleased with the
robustness of the rest of the DQM GUI system.

CMS typically creates approximately 50’000 histograms per run. The average GUI HTTP
response time is around 270 ms (Fig. , which we find satisfactory. The production server
has scaled to about 750’000 HTTP requests per day with little apparent impact on the server
response time (Fig. . Interestingly the vast majority of the accesses are to the online
production server from outside the online environment. This indicates the web-based monitoring
and visualisation solution applies well to the practical needs of the experiment. We have exercised
the GUI with up to 300’000 histograms per run. The GUI remains usable although there is a
perceivable interaction delay. We plan to optimise the server further such that it has ample
capacity to gracefully handle growing histogram archives and special studies with large numbers
of monitored entities.

Acknowledgments
The authors thank the numerous members of CMS collaboration who provided abundant
feedback and ideas on making the GUI server more effective and useful for the experiment.

References

[1] CMS Collaboration, 1994, CERN/LHCC 94-38, “Technical proposal” (Geneva, Switzerland)

[2] Giordano D et al, 2007, Proc. CHEPO7, Computing in High Energy Physics, “Data Quality Monitoring for
the CMS Silicon Strip Tracker” (Victoria, Canada)

[3] Eulisse G, Alverson G, Muzaffar S, Osborne I, Taylor L and Tuura L, 2006, Proc. CHEP06, Computing in
High Energy Physics, “Interactive Web-based Analysis Clients using AJAX: with examples for CMS, ROOT
and GEANT4” (Mumbai, India)

[4] Metson S, Belforte S, Bockelman B, Dziedziniewicz K, Egeland R, Elmer P, Eulisse G, Evans D, Fanfani A,
Feichtinger D, Kavka C, Kuznetsov V, van Lingen F, Newbold D, Tuura L and Wakefield S, 2007, Proc.
CHEPO07, Computing in High Energy Physics, “CMS Offline Web Tools” (Victoria, Canada)

17th International Conference on Computing in High Energy and Nuclear Physics (CHEPQ9) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072055 doi:10.1088/1742-6596/219/7/072055

[6] Tuura L, Meyer A, Segoni I and Della Ricca G, 2009, Proc. CHEP09, Computing in High Energy Physics,
“CMS data quality monitoring: systems and experiences” (Prague, Czech Republic)
[6] CherryPy—A pythonic, object-oriented HTTP framework, 2009, http://cherrypy.org

]
[7] Introducing JSON, 2009, http://json.org
(8]

]

[9] SQLite—A library implementing a self-cont

ROOT—A data analysis framework, 2009, http://root.cern.ch
ained SQL database engine, 2009, http://sqlite.org

o
1,000 ms -
@) o}
0 O
Avg: 270ms ’ .
5 270 e Q:
0 . ed &S
O o 0. ° O
: ¢ . @@
O O . o)
100 ms i
O O
0}
10 ms
Oct'08 Nov'08 Dec'08 Jan'09 Feb'09 Mar'09

(a) The daily average DQM
requests per day.

900,000
800,000
700,000
600,000
500,000
400,000
300,000
200,000

100,000

o

Dec'07

Jan'08 Feb'08 Mar'08 Apr'08 May'08

A

Total ° Offline

(b) Number of DQM GUI HTTP requests per day from December 2007 to March 20009.

Figure 7. DQM

Jun'08

GUI response time versus date and number of

Oct'08 Nov'08 Dec'08

Aug'08

Jul'os Sep'08

Online, remote access ¢ Online, control room

GUI HTTP server performance.

http://cherrypy.org
http://json.org
http://root.cern.ch
http://sqlite.org

