

## Unified description of Q values and half lives of $\alpha$ -decay for A = 152 – 181

S. Mahadevan<sup>1\*</sup>, C. S. Shastry<sup>1</sup>, A. Bhagwat<sup>2</sup>, and Y. K. Gambhir<sup>3</sup>

<sup>1</sup>Department of Sciences, Amrita Vishwa Vidyapeetham, Coimbatore - 641105, INDIA

<sup>2</sup>Department of Physics, IIT-Gandhinagar, Ahmedabad - 382424, INDIA

<sup>3</sup>Department of Physics, IIT-Powai, Mumbai - 400076, INDIA

\* email: s\_mahadevan@cb.amrita.edu

### Introduction

The success of the microscopic  $\alpha$ -daughter nucleus potential providing the unified description of both Q values and half lives of the  $\alpha$ -decay chains of super-heavy elements (SHE) based on the WKB and S-matrix methods, prompted us to extend the analysis to the nuclei in the rare earth regions with A=152-181. The microscopic  $\alpha$ -nucleus potential is generated in the double folding model (tpp - approximation) using relativistic mean field (RMF) densities along with density dependent M3Y nucleon- nucleon interaction. This potential is then used in the WKB approximation to calculate both the Q values and decay half-lives. Here we report the WKB results both Q values and half lives for the nuclei with A=152 - 181.

### Calculations, Results and Discussions

The total effective  $\alpha$ -nucleus potential  $U_{\text{eff}}(l, r)$  governing the WKB method is a sum of alpha-nucleus nuclear potential,  $\alpha$ -nucleus electrostatic potential  $U_c(r)$  and the kinematical centrifugal term  $U_{\text{cf}}(r) = (l+1/2)^2/r^2$

$$U_{\text{eff}}(l, r) = U_n(r) + U_c(r) + U_{\text{cf}}(r) \quad (1)$$

The Q value is calculated using the WKB formula for eigenenergy given by

$$\int_{r_1}^{r_2} [k^2 - U_{\text{eff}}(l, r)]^{1/2} dr = \left( n + \frac{1}{2} \right) \pi$$

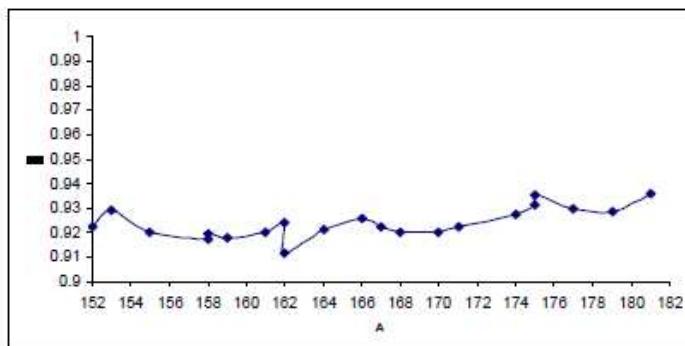
At decay energy Q this potential has three turning points  $r_1 < r_2 < r_3$ . The range  $r_1 < r < r_3$  governs the generation of WKB quasi-bound state eigenvalue Q and the domain  $r_2 < r < r_3$  defines the barrier the tunneling alpha particle experiences. With the Q value so obtained, one

uses the following WKB formula for the half width:

$$\Gamma_{1/2} = P A_f (kR) \exp \left[ -2 \int_{r_2}^{r_3} (U_{\text{eff}}(l, r) - E_R)^{1/2} dr \right]$$

Here P is the pre formation factor assumed to be unity and  $A_f$  is the assault frequency factor and

$$E_R = k_R^2 = (\text{Re}(k_R))^2 - (\text{Im}(k_R))^2$$


Using the doubly folded RMF based alpha-nucleus potentials we have calculated Q and  $T_{1/2}$  for a set of nuclei in the mass range A=150-181. The Coulomb radius parameter  $r_c = 1.2$  fm is used.

We found that in order to get reasonable fits RMF generated potentials need to be fine tuned (marginally adjusted) by multiplying an overall factor f. The value of f varies between 0.91 – 0.94 (close to unity) as shown in Fig. 1.

The calculated Q-values and half lives shown in Figures 2 and 3 respectively closely agree with the experiment.

### References

[1] P. Prema, S. Mahadevan, C. S. Shastry, A. Bhagwat and Y. K. Gambhir, International Journal of Modern Physics E, **17**, 611, 2008 and references cited therein.



Legend

| Sl No | A   | Z  |
|-------|-----|----|
| 1     | 152 | 68 |
| 2     | 153 | 69 |
| 3     | 155 | 70 |
| 4     | 158 | 74 |
| 5     | 158 | 73 |
| 6     | 159 | 74 |
| 7     | 161 | 75 |
| 8     | 162 | 75 |
| 9     | 162 | 76 |
| 10    | 164 | 76 |
| 11    | 166 | 77 |
| 12    | 167 | 76 |
| 13    | 168 | 78 |
| 14    | 170 | 78 |
| 15    | 171 | 78 |
| 16    | 174 | 80 |
| 17    | 175 | 79 |
| 18    | 175 | 80 |
| 19    | 177 | 80 |
| 20    | 179 | 81 |
| 21    | 181 | 82 |

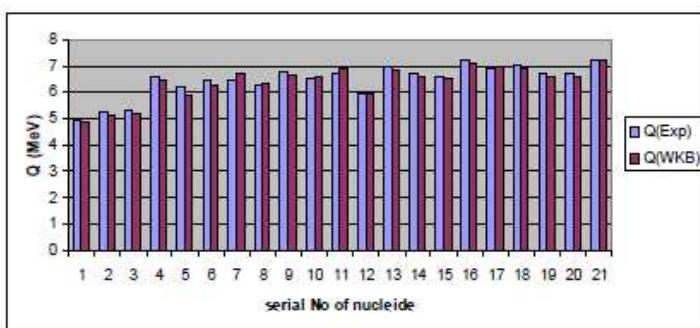

Fig 1: Variation of the norm factor  $f$  with Mass number of nuclide

Fig 2: Variation of calculated Q-value (WKB) with Experimental Q-value for nuclides with A = 152 to A= 181 (see legend).

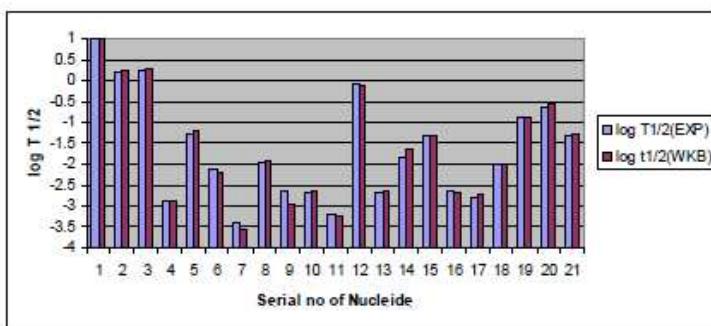



Fig 3: Variation of calculated log T 1/2(WKB) with Experimental log T1/2 for nuclides with A = 152 to A= 181 (see legend).

