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1. Introduction

We have obtained in previous works [6, 7, 3] a proof of the non linear stability (i.e. future
completeness for small initial data) of Einsteinian vacuum spacetimes with compact space
sections and a S' spatial isometry group, in the case where the space is an S! bundle over
a surface ¥ of genus greater than one. We intend in this paper to extend this result to the
Einstein Maxwell Higgs system. Our previous result is proved by using the fact that the 4
dimensional vacuum Einstein equations with a one parameter isometry group are essentially (i.e.
up to a harmonic one form on ¥ which we chose to be zero) equivalent to an Einstein - wave
map system on the quotient 3 dimensional manifold, the Einstein equations being equivalent
to a time dependent elliptic system on ¥ coupled in the case of genus(X) > 1 with ordinary
differential equations governing the evolution of conformal classes of the time dependent metric
of 3. The appearance of a harmonic map generalizing the Ernst equation in the stationary
Einstein Maxwell system has been found by Kinnersley and Mazur (see [11]) who studied the
associated invariance group. The reduction of the Einstein Maxwell system, with a spatial S!
isometry group to a coupled Einstein wave map system on three dimensional space has been
proved by Moncrief [12] in the case ¥ = S2, and for a class of Einstein Maxwell Higgs equations
in the case ¥ = T2. Though the notations and formalism used in these reductions were different
from the one with which we obtained our global existence proof, it was likely, that the proof
of future completeness obtained for the vacuum unpolarized Einstein equations in [3] with ¥ of
genus greater than one will extend to the Einstein Maxwell Higgs system.

It is known since the works of Kaluza and Klein that one can recover the Einstein Maxwell
equations by considering a Lorentzian metric (g on a five dimensional manifold V5 with a
spacelike 1 - parameter isometry group (G, writing the vacuum Einstein equations for (V5,(5) 9)
and discarding a wave type equation for a scalar field taken to be constant. If one considers
the full equations (see [10]) one finds them equivalent to the Einstein Maxwell equations with
an additional scalar field ¢ which interacts with both gravitation and electromagnetism. If
the gravitational and electromagnetic fields as well as the additional scalar field are themselves
invariant under another spatial isometry group, then the 5 dimensional metric ()¢ is invariant
under a 2 - parameter abelian group Go endowing V5 with a G fiber bundle structure with
base a manifold V3. In this article we consider more generally a d dimensional manifold Vj
with a Lorentzian metric (¢ which admits an m dimensional isometry group which endows it
with a fiber bundle structure with base an n = d — m dimensional manifold V,,. We write the
general Kaluza Klein formulas expressing the Ricci tensor of (¥ g in terms of geometric elements
defined on V,,, in the case of an abelian isometry group. We show that in the case n = 3
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the vacuum Einstein equations in dimension d, Ricci((9g) = 0, are (modulo the choice zero
for d — m harmonic one forms) equivalent to a coupled Einstein wave map system on Vi. It
gives in particular by taking d = 5 the Einstein wave map system which is equivalent to the 4
dimensional Einstein equations with Maxwell - Higgs sources and S! isometry group. We finally
sketch the extension to that system of the proof used for the non linear stability theorem [3] of
the vacuum unpolarized 4 dimensional Einstein equations with S' isometry group.

2. General Kaluza Klein equations

If the Lorentzian metric (Yg on the d manifold V; admits a d — n dimensional isometry group
G4 endowing Vy with a fiber bundle structure with base the n manifold V,, this metric (g
can be written as follows in a local trivialization of the bundle over an open set of V,:

(d)g =g+ & (0™ +a™)(0" +a"), (2.1)

where g is a Lorentzian metric on V,, 6™ a basis of invariant 1 forms on G4, a = (a™) the
representation V,, of a G4_,, connection on Vg, i.e. a 1 form with values in G, the Lie algebra of
G4—n, we denote by F' = (F™) its curvature 2 form. In local coordinates on V,, we have:

g= gaﬁdxo‘dmﬁ, a™ = aldx®. (2.2)
We suppose that, as in the example given above, G4_,, is an abelian group then:

F =da,ie. Fys= 0sa3 — Opay’ (2.3)
and the gauge covariant derivatives on sections of vector bundles, associated with the principal
fiber bundle with group G4, over (V,,, g), coincide with the usual covariant derivatives in the
metric g B

We recall the Kaluza-Klein form of the Ricci tensor of (Vg (see [5] II , V 13) and use it to
write the vacuum Einstein equations on (Vy,(@ g).

We set: )

(det )2 =: X, hence EM™OpEmn = 20X, (2.4)

then the general Kaluza Klein formulas give the following system, all quantities being fields on
Vy, with greek indices raised with g and latin indices m,n, ... with ¢ :

1 1
DRup = R.5—V,03X + Zaaﬁmnagﬁm” + §Fm,aAEE‘A =0 (2.5)
(d) _ X AX
Ram = 7TZA[Ema € ] =0 (26)
(d) —_— 1 (¢4 [e% 1 pq Q 1 aﬁ .
Ry = —5[2 Oalmn + 0 X 0amn] + 55 Oamp0™&ng — ZFm,aﬁEn =0. (2.7)

We see that the equations (Y R,,,, = 0 are a quasidiagonal, semilinear system of wave equations
for the field £ = ( {mn), they are first order in the derivatives of the other unknowns g and a.

The equations (Y Ry, = 0 look like Maxwell type equations for F, with a weight eX.

The equations (d)Raﬁ = 0 look like Einstein equations with source the Maxwell and scalar
fields, except for the appearance of second derivatives of X. The combination of these equations
with the system DR, = 0 takes the form of usual Einstein equations with sources by
introduction of a metric § conformal to g. We will perform the explicit computation in the
case of interest to us, n = 3, which permit the introduction of twist potentials to solve the
Maxwell type equations.



3. Case n=3
3.1. Twist potentials, definition
The equations 2.6 are equivalent to

dE,, = Owith E,, =: [F,,e~] (3.1)

with x the adjoint operator on forms in the metric g. When n = 3 the adjoint Ey, of the 2 form
F,, is a 1 form. The general solution of 2.6 is then:

E,, =dwy, + Hy (3.2)
with wy,, an arbitrary scalar function on V3, called a twist potential, and H,, a representant of

a 1 cohomology class. We consider the class of solutions such that H,, = 0.

3.2. Associated tensors
The inversion of the defining equations for F,, gives

Fp = e XxE,, = e X x(dwp) (3.3)
that is with n the volume form of g:

67XQ)‘“§m”8>\wn. (3.4)

Frog = QamefXg)‘”a,\wm hence Fjj =

ﬂaﬂ)\

Lemma 3.1 The following identities hold (underlining means that greek indices are raised with
By .
9
Em,a/\Fn,ﬁA = 2X [gaﬁﬁ,\wkawn — OawmOpwn] (3.5)

EmA“F/’\Z = 272X M9y W O wi. (3.6)

PRrOOF. The first identity is obtained for instance by a computation in orthonormal frame,
the second results by contraction on the 3 manifold V3. =

3.3. Equations
The 2 forms F™ being the differentials of the 1 forms a™ are necessarily closed, hence the
functions w,,, must satisfy the equations

dlxe™ XM dw,,] = 0 (3.7)
equivalently the functions w,, must satisfy the following semilinear wave equations on (V3,g) :

Ve XM Pqwpm] = 0. (3.8)

4. Conformal metric
We introduce on V3 the conformal metric

Jap =: eQXgaﬁ, hence gaﬁ = X gl (4.1)
A simple calculation shows that the divergence of covariant vectors v are linked by the identity
V0" = X (Vot® — 090, X), v* = e2X5°. (4.2)

In particular the wave operators in the metrics g and g are linked by the identity

V0% = e2XV,0% — 9°X0,. (4.3)



4.1. Scalar equations
We deduce from 2.7 that

€2X

~ ~ 1
DRy = —T[VQaagmn + EP900Emp0Eng] — ZFm,aﬁzgﬁ] =0. (4.4)

where meﬂgﬁ is given by 3.5.
These equations and X = log(det £€)'/2 imply by a simple computation that:

~ 1
gmn(d)Rmn = —€2XV/\8>\X + ZFm@éBEm’aﬁ = 07 (45)

that is, using 3.6:
S 1 -
VA X — 56—2X§m"aw,namn =0. (4.6)

For simplicity of proofs we will sometimes introduce the scalar function X = log(det { )1/ 2 as an
auxiliary unknown. The equations 4.4 and 4.6 will imply that

1
X = §logdet§ (4.7)
if this property and its first time derivative are satisfied initially.

4.2. Twist potentials equations
We have the identities:

VO e XM Pqwp] = XXV e X €MD gwm] — 0° X (7 X E™ D))} (4.8)
= AV e MY wm] = €XEMVY [ Dawim )] + €X[0%E™ — 26™1 )% XD (4.9)
The equations 3.8 for the twist potentials are therefore:
Ve Oawp + Enpl0“E™™ — 260 XDy, = 0 (4.10)
that is B ~ R
V@ Oqwp — EM"(0%np + 20% X ) Oawm =0 (4.11)

4.3. Einstein equations on V3
On the 3 dimensional manifold V3 it holds that (see [5] I p351):

Rop = Rap + Vo05X — 0aX95X +g,, (VX + ' X, X) (4.12)
We deduce from 2.5 and 4.12 that the term V03X disappears from (d)Rag. We find that:
. 1 1 .
DRops = Rop + 7 0a€mndpE™" — igmvakpgg — 00X X + GupV X (4.13)

and we deduce from 4.5 that the combination (d)Raﬁ +e72X g}aﬁém"(d) Ry = 0 reduces to the
following Einstein equations on (V3,g) :

Rag = Pop (4.14)
with, using 3.5:
oe—2X
2

1
Paf = —Zaaﬁmnaggmn + aaXagX + §m”8awm85wn. (4.15)



Theorem 4.1 The equations 4.14 are the Einstein equations on (Vs, g) with source a mapping
u: (V3,3) — (RP,G) by (%) — (X, &mn,wm), where G is the riemannian metric:

1
G=(dX)*+ gmpg“ngmndgpq 3¢ —2X M o din, (4.16)
PROOF. The stress energy tensor of the mapping v = (X, {,w) is by definition
1 .
Top =: Opu.0pu — igaﬁaw.aku (4.17)

where a dot denotes a scalar product in the metric G. The corresponding right hand side for
Raﬁ is

Pap = Oqu.0gu (4.18)
The identity of this p,g with 4.15 results from the definition of G. m

5. Einstein wave map system

The Bianchi identities satisfied by the Ricci tensor of g together with the equations 4.14 imply
that the stress energy tensor 7,3 of the mapping u satisfies the conservation law V, T8 = .
For any map between pseudo riemannian manifolds it holds that

Vol = Ve9uu.0%u. (5.1)

where V9, is the wave map operator. It is straightforward to check that for the considered
Pag, as foreseen due to the consistency of the original vacuum equations, the vector Vo TP
takes the form of the scalar product of d°u with the semilinear wave operators found before for
X, & and w.

We have proved the following theorem, where ”essentially” means ”with the choice H,, = 0
of harmonic 1 forms appearing in 3.2”:

Theorem 5.1 The class of d dimensional vacuum Einstein equations Ricci('\Dg) = 0 with a d—3
dimensional spacelike abelian isometry group are essentially equivalent to Einstein equations for
a lorentzian metric § on Va with source a wave map u : (V3,3) — (RP,G), that is to the system

]:Zag = Oqu.0gu, Va0 = 0, (5.2)
with a dot the scalar product in G and V the covariant derivative! associated with w.

6. Einstein Maxwell Higgs equations

We return to the case d = b5, Einstein-Maxwell-scalar equations, to give the physical
interpretation of the metric & wich is now on R2. In the Kaluza - Klein formulation the spacetime
is a Lorentzian manifold (V5,) ¢) with a S! fiber bundle structure induced by a spacelike Killing
vector field 9/0x* and with base a 4 manifold V4. The metric can be written:

®lg =™ g+ 2 (dat + B)2. (6.1)

with g a Lorentzian metric, B a locally defined 1 form and ¢ a scalar field all defined on Vj,
the vacuum Einstein equations for (Vz,(®) ¢) imply the Einstein Maxwell equations on (V4,(*) g)
with electromagnetic potential B coupled with the scalar field ¢. Suppose that the gravitational

L That is %aﬁuf‘ = aaaﬁuf‘ — féﬁakuA + chaauBaﬁuC, with I' and T’ connection coefficients respectively of
the metrics g and G.



and electromagnetic fields as well as the additional scalar field are invariant under another 1 -
parameter group S! endowing Vj with a S* fiber bundle structure, with Killing vector field 9/9z3
and base a 3 dimensional manifold V3 with local coordinates =, o = 0, 1, 2. This hypothesis is
equivalent to the independence of ¢ and B = B + Bsdx? on x3, with B = B,dz®, together with
the possibility of writing (Y¢g under the following form, all quantities defined on the quotient
manifold V3,

g = g+ e¥ (dz® + A)?, g= gaﬁd:ﬁadwﬂ, A =: A,dz®. (6.2)

The hypotheses are equivalent to saying that the metric )¢ admits a 2 parameter abelian
group G, as shown explicitly by the following lemma.

Lemma 6.1 The metric

®lg = g+ e (dz’ + A)* + ¢*?(dz* + B + Bsdz®)? (6.3)
reads as a metric on Vs with an abelian Go isometry group, namely, setting a =: andx®,
b =bodx® :

Glg =g+ &3(da® + a)? + 2634 (da® + a)(dz® + b) + Eaa(da? + b)? (6.4)
with 1 )
t
¢*? = ¢, Bs= fﬁ, S < = {33 — ba4)” (6.5)
a4 a4 a4
and
A=a, ﬁzb—i—@a (6.6)
44

PROOF. Straightforward calculation. m
In the case where B3 = 0, that is when the electromagnetic potential vector is orthogonal to
the Killing vector 0/0x3, the field ¢ reduces to:

Cu=e*, &4=0, &Gz=¢e", X=v+0¢. (6.7)

and the metric G is given by?:
1 1
G = (dX)? 4 (d9)? + (dy)? + e 5T (dwn)? + e (dug)?. (6.8)

7. Cauchy problem
7.1. Wave map equation
The wave map equation is a semilinear wave equation on V3 when the metric g is known.

7.2. Einstein equations

Einstein equations on a 3 manifold are essentially? non dynamical, since the Riemann tensor
is in that case equivalent to the Ricci tensor. To solve the Cauchy problem for the Einstein
equations 5.2 one takes as usual V3 = X x R and consider a 241 splitting of the metric g, with
N and v its lapse and shift, g a t— dependent riemanian metric on X :

§=—N2dt* + gop(dz® + vodt) (dzb 4 v0dt).
2 In the case of vacuum 4 dimensional Einstein equations with 1 spacelike isometry group ¢ = w4 = 0 the metric

G reduces to the metric of the Poincaré plane used in previous articles.
3 We will see that they are non dynamical if and only if the surface ¥ is topologically a sphere.



We denote by k the extrinsic curvature of a surface ¥; = ¥ x {t} embedded in (V3, g), by 7 its
mean extrinsic curvature. Then, with h a traceless tensor:

1 - 1
kab = _Waogab = hab + §gab7-a T = gabkab'

7.2.1. Finstein constraints. Part of the Einstein equations are the constraints on each ¥, that

is:
R(g) — kk+ 72 = |u)? + ¢®0u.0pu, u =: N~'ogu, (7.1)

Vpk? — 0,7 = ' .Oqu. (7.2)

To solve these constraints one uses the conformal method, that is we set:

Gab = €2>\0-ab (73)

and we take as a gauge condition that 7 is a given function of ¢ alone (CMC gauge).
The constraints become on each 3;, with covariant derivative, laplacian and norms in the
metric oy :

e The equation linear in A, given o, u, @
Dyh? = Lo = —Dgu.ti, @ =: €N "1du

One solves this system by setting h = ¢ + r with h a TT' (Transverse, Traceless) tensor,
that is a solution of the homogeneous system

Dyg =0, q¢%=0, (7.4)

and r a conformal Lie derivative of a vector field Y, solution then of an elliptic system.

e The nonlinear elliptic equation for A

T SR |
Aa)\ = f(:Ea >‘) = Ze - 5]926 + 5]?3’

po=lu >+ |h|* p3s=R(0)— |Dul?

7.2.2. FEquations for lapse and shift. The Einstein equation Roo = poo gives the following
elliptic equation for IV :
A N —aN = —* 0,7 (7.5)

2
_ . T
a=e (| h \Z + |4 ]g) + 62)‘3 (7.6)

A linear differential equation for v, depending on A, h, N and linearly on 0;0, results form the
expression of k. This differential equation admits solutions only if its non homogeneous term is
L? orthogonal to conformal Killing vector fields.

When o, ¢ and the mapping u are known on V3 the equations for r, A\, N are an elliptic system
on each .



7.3. Hyperbolic-elliptic system, given o and q

When the family of metrics o; and TT tensor ¢; are given, the wave map u and the metric
coefficients N, A, v in CMC gauge satisfy a coupled hyperbolic - elliptic system with auxiliary
unknown r. The Bianchi identities show that the space part of Ricci(g) — p is a TT tensor on
>t when this system is satisfied.

7.4. Teichmuller parameters (¥ compact)
From now on we consider only the case of a compact 3.

When ¥ is diffeomorphic to S? all the possible metrics o; are conformal (up to
diffeomorphisms) to the canonical metric, and there does not exist on (X, o) any non identically
zero T'T tensor hence ¢ = 0, and Ricci(g) — p = 0 as soon as constraints and lapse equations are
satisfied. We can take as gauge condition, in addition to CMC, 9,0 = 0. There are integrability
conditions for the shift equation (see [8]).

When ¥ is a 2 torus, i.e. Genus(X) = 0, any metric o on ¥ admits two linearly independent
Killing vector fields, and two linearly independent TT tensors. A metric on X is conformal to a
metric with zero scalar curvature, one can choose o such that R(c) = 0. We do not treat this
case.

When G =:Genus(X) > 1, a metric on ¥ is conformal to a metric with constant negative
scalar curvature, one can choose o such that R(c) = —1. The space of classes of conformally
equivalent metrics on ¥, called Teichmuller space T¢;.p,, can be identified with M_; /Dy, quotient
of the space of metrics with R(c) = —1 by the group of diffeomorphisms homotopic to the
identity. M_1—T;qp is a trivial fiber bundle whose base can be endowed with the structure of
the manifold R%¢—6. As a gauge condition we impose to the metric o; to be in some chosen
cross section @ — (Q) of this fiber bundle. Let Q7,1 = 1,...,6G — 6 be coordinates in Tyicp,
then 0v/0Q! is a known tangent vector to M_; at ¥(Q), that is a traceless symmetric 2-tensor
field on ¥, sum of a TT tensor field X;(Q) and Lie derivative of a vector field on (X,9(Q)).
Solvability condition for the shift equation determines d@/dt in terms of ¢; and conversely. One
obtains an ordinary differential system for the evolution of Q by the L? orthogonality of Ry, — Pab
with the 6G-6 dimensional vector space of TT" tensors over .

7.5. Conclusion

We have to solve the coupled system:
1. Elliptic equations on (X, 0y) with o, = ¢¥(Q(t)), with coefficients depending on w.
2. ODE on R for Q(t) with coefficients depending on u and elliptic unknowns.
3. Wave map system on (X x R, g), g determined by o, and elliptic unknowns.

Theorem 7.1 (local existence.) The Cauchy data on the compact orientable smooth surface Ly,
genus(X) > 1 are:

1. A C* metric og and TT tensor qp.

2. Wave map initial data: ug = u(to,.) € Ha, iy = e**u/(to,.) € Hj.

The 2+1 FEinstein wave map system has a solution taking these Cauchy data and such that
u € C%[to, T), H2) N C*([to, T), H1), \,N,v € C([to,T),WE) N C*([to, T), WE), 1pj2, Ns0, if
T-ty is small enough.

There is a corresponding Finteinian spacetime (Vd,(d) g) if the initial data satisfy the Chern
integrability condition for the construction of A and B.

8. Scheme for global existence

We have chosen to work in CMC gauge: 7 is a time parameter which, in our conventions taken
from MTW inceases from —oo to 0 if the spacetime expands from a big-bang singularity to
a moment of maximum expansion. To have notations more familiar to the analyst we choose



as time parameter ¢ = —7~!, then ¢ increases from ¢y > 0 to infinity when ¥; expands from
70 < 0 to zero. In the case where R(g) < 0 the constraint 7.1 shows that this moment of
maximum expansion cannot be attained. Existence on (tg,c0) will result from a priori bounds
of the norms appearing in local existence theorem. These a priori bounds result from energy
estimates for the wave map and elliptic estimates, in particular for the confromal factor A which
satisfies a non linear equation for which estimation depends crucially on the negative sign of
R(0), i.e. by the Gauss Bonnet theorem the fact that Genus(X) > 1. The estimates involve
also the uniform equivalence of oy with og. This requires decay in ¢ of the "total energy”. This
decay is a consequence of the expansion of the metric g(t,.) of 3, obtained when Genus(X) > 1,
but its proof requires the introduction of corrected energies (as already in [7]). The proofs are
essentially the same as in the vacuum case of [3], at least for the Einstein - Maxwell Higgs system
with Bs = 0 where the target metric takes a simple form. We sketch below the main steps that
we use.

9. First energy estimate
One defines the first energy not only as the energy of the wave map but by, with |- |, the point
wise norm in the metrics g and G,

1
B = [ (0ul} + u + 3 1hE)n,
P

The Hamiltonian constraint
2
T 1
Rig) + o = 0ul? + [[* + |hf2

together with the Gauss Bonnet formula (y the Euler Poincaré constant)

[ Rtghy = 1mx (9.1)
P

give, without using wave map equation, that:
dE(t) 1 AP BN
— == N —|h <0. 9.2
=7 N SR < 92)

We deduce from this equality that E(t) is a non increasing function of ¢ since 7 < 0, but we do
not obtain its decay due to the absence of |Du|? in the right hand side.

10. First elliptic estimates
The definition of E(t) implies
1Pl 2y < € E()

while under hypothesis R(c) = —1 the maximum principle applied to ... implies

e > 92772 (10.1)

1

and, with the parameter choice 7 = —+, it implies, applied to ...

0<N<2. (10.2)

Further elliptic estimates require bounds of du.0u and du.v’ in W¥ (o), 1 < p < 2, which are
obtained in terms of the second energy of the wave map.



11. Second energy
We denote by V and 0y covariant derivatives for mappings (3, g) or (R, dt?) into (R”,G). Set:

EV® = [ (Agul+ | Py (11.1)
P
2= E(t), & =:72E\(t). (11.2)

One finds after long computations using elliptic estimates applied to the constraints and lapse
equations that:

1
1< E\ﬂe)‘ <14+ Cgqle+e1), (11.3)
0<2— N <Cpgy(e? +ee1) (11.4)

where we denote by C, g numbers depending only on a priori bound of € and ¢, and on the
domain of ¢ in Teich supposed to be compact.
Using these bounds and the wave map (X x R, §) — (RP,G) which reads in our notations:

—N"1900u + g“b@a(Nabu) + N =0. (11.5)
we find that:
dEM) (1) /2
p —2rEY =7 | N|Du |*p,+2<72 (11.6)
t 2,
with:
7] < Co (e +21)°. (11.7)
12| < |7 Cop(e + 1), (11.8)

The inequalities 11.6 and 9.2, are not sufficient to prove the bound of € 4+ ¢; and the fact that
ot projects on a fixed compact subset of T¢;.;, the proof of this last property requires decay of
E+eé1.

12. Corrected energies
To obtain the decay property one introduces corrected energies and exploit the negative (non
definite) terms in the energies inequalities:

Ea(t) = E(t) — ar /E (u — @)1, (12.1)
_ 1 t
= e
EWN @) = ED(t) + ar /E Aguad g (12.2)
The use of elliptic estimates leads to t
% — kTEq < |7|Cop(e +€1)3, (12.3)
s — 2+ k) TEY + |72C p(e +£1)°. (12.4)

dt

We denote by A, the first positive eigenvalue of —A, and we prove that Ea+T*2E((X1) is equivalent
to the total energy 2 + €7 under the following conditions:



1 1
== =1 if Ay>- .
a= k it A >3 (12.5)
[}
4 1
a< ——, 0<k<l, if Ar<c.
S+ A, 8

All these differential inequalities imply the inequalities:
(2 +e2)(t) < t7FM(e® + £2)(to). (12.6)

13. Future complete existence (non linear stability)

Theorem 13.1 Let (09,q0) € C™(Xg) and (ug,ug) € Ha(X0,00) XHi(X0,00) be initial data
on the compact manifold ¥g, Genus(Xo) > 1, satisfying the Chern integrability condition. There
exists a number n > 0 such that, if Ei(to) < m, the 4 dimensional Finstein Mazwell Higgs
system with S* isometry group and electromagnetic field orthogonal to the Killing field have a
solution on ¥ x S* x [tg, 00), t = —7 1, with initial values determined by g, qo, uo, tg. This space
time is globally hyperbolic, future timelike and null complete.

Proor. Using the differential equation satisfied by ) and the decay of the total energy
proved using its a priori bound one obtains the inequality:

|Q(t) = Q(to)| < Ma(e? + 1)(to)- (13.1)

This inequality together with 12.6 give a bound of the total energy and of @) by a bootstrap
argument if the initial total energy small enough. One deduces the existence of the solution on
¥ % [to, 00), and the existence for an infinite proper time along the lines {z} x R after estimating
the usual Hy norms in terms of the geometrically defined second energy. This estimate depends,
as in the proof given in [3], on the fact that the Riemann curvature of the target metric is
negative. The special form of this metric plays also a role in the estimate of the second corrected
energy.

The global hyperbolicity and completeness is a particular case of a theorem proved in [4]. =

We have not checked the corresponding properties for the general G given by 4.16, but we
conjecture that the proof goes through in that general case.
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