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1. Introduction
We have obtained in previous works [6, 7, 3] a proof of the non linear stability (i.e. future
completeness for small initial data) of Einsteinian vacuum spacetimes with compact space
sections and a S1 spatial isometry group, in the case where the space is an S1 bundle over
a surface Σ of genus greater than one. We intend in this paper to extend this result to the
Einstein Maxwell Higgs system. Our previous result is proved by using the fact that the 4
dimensional vacuum Einstein equations with a one parameter isometry group are essentially (i.e.
up to a harmonic one form on Σ which we chose to be zero) equivalent to an Einstein - wave
map system on the quotient 3 dimensional manifold, the Einstein equations being equivalent
to a time dependent elliptic system on Σ coupled in the case of genus(Σ) > 1 with ordinary
differential equations governing the evolution of conformal classes of the time dependent metric
of Σ. The appearance of a harmonic map generalizing the Ernst equation in the stationary
Einstein Maxwell system has been found by Kinnersley and Mazur (see [11]) who studied the
associated invariance group. The reduction of the Einstein Maxwell system, with a spatial S1

isometry group to a coupled Einstein wave map system on three dimensional space has been
proved by Moncrief [12] in the case Σ = S2, and for a class of Einstein Maxwell Higgs equations
in the case Σ = T 2. Though the notations and formalism used in these reductions were different
from the one with which we obtained our global existence proof, it was likely, that the proof
of future completeness obtained for the vacuum unpolarized Einstein equations in [3] with Σ of
genus greater than one will extend to the Einstein Maxwell Higgs system.

It is known since the works of Kaluza and Klein that one can recover the Einstein Maxwell
equations by considering a Lorentzian metric (5)g on a five dimensional manifold V5 with a
spacelike 1 - parameter isometry group G1, writing the vacuum Einstein equations for (V5,

(5) g)
and discarding a wave type equation for a scalar field taken to be constant. If one considers
the full equations (see [10]) one finds them equivalent to the Einstein Maxwell equations with
an additional scalar field φ which interacts with both gravitation and electromagnetism. If
the gravitational and electromagnetic fields as well as the additional scalar field are themselves
invariant under another spatial isometry group, then the 5 dimensional metric (5)g is invariant
under a 2 - parameter abelian group G2 endowing V5 with a G2 fiber bundle structure with
base a manifold V3. In this article we consider more generally a d dimensional manifold Vd

with a Lorentzian metric (d)g which admits an m dimensional isometry group which endows it
with a fiber bundle structure with base an n = d − m dimensional manifold Vn. We write the
general Kaluza Klein formulas expressing the Ricci tensor of (d)g in terms of geometric elements
defined on Vn, in the case of an abelian isometry group. We show that in the case n = 3
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the vacuum Einstein equations in dimension d, Ricci((d)g) = 0, are (modulo the choice zero
for d − m harmonic one forms) equivalent to a coupled Einstein wave map system on V3. It
gives in particular by taking d = 5 the Einstein wave map system which is equivalent to the 4
dimensional Einstein equations with Maxwell - Higgs sources and S1 isometry group. We finally
sketch the extension to that system of the proof used for the non linear stability theorem [3] of
the vacuum unpolarized 4 dimensional Einstein equations with S1 isometry group.

2. General Kaluza Klein equations
If the Lorentzian metric (d)g on the d manifold Vd admits a d − n dimensional isometry group
Gd−n endowing Vd with a fiber bundle structure with base the n manifold Vn this metric (d)g
can be written as follows in a local trivialization of the bundle over an open set of Vn:

(d)g ≡ g + ξmn(θm + am)(θn + an), (2.1)

where g is a Lorentzian metric on Vn, θm a basis of invariant 1 forms on Gd−n, a ≡ (am) the
representation Vn of a Gd−n connection on Vd, i.e. a 1 form with values in G, the Lie algebra of
Gd−n, we denote by F ≡ (Fm) its curvature 2 form. In local coordinates on Vn we have:

g ≡ g
αβ

dxαdxβ, am ≡ am
α dxα. (2.2)

We suppose that, as in the example given above, Gd−n is an abelian group then:

F = da, i.e. Fm
αβ = ∂αam

β − ∂βam
α (2.3)

and the gauge covariant derivatives on sections of vector bundles, associated with the principal
fiber bundle with group Gd−n over (Vn, g), coincide with the usual covariant derivatives in the
metric g

We recall the Kaluza-Klein form of the Ricci tensor of (d)g (see [5] II , V 13) and use it to
write the vacuum Einstein equations on (Vd,

(d) g).
We set:

(det ξ)
1
2 =: eX , hence ξmn∂αξmn = 2∂αX, (2.4)

then the general Kaluza Klein formulas give the following system, all quantities being fields on
Vn with greek indices raised with g and latin indices m, n, ... with ξ :

(d)Rαβ ≡ Rαβ −∇α∂βX +
1
4
∂αξmn∂βξmn +

1
2
Fm,α

λFm
βλ = 0 (2.5)

(d)Rαm ≡ −e−X

2
∇λ[Fmα

λeX ] = 0 (2.6)

(d)Rmn ≡ −1
2
[∇α∂αξmn + ∂αX∂αξmn] +

1
2
ξpq∂αξmp∂

αξnq −
1
4
Fm,αβFαβ

n = 0. (2.7)

We see that the equations (d)Rmn = 0 are a quasidiagonal, semilinear system of wave equations
for the field ξ ≡ ( ξmn), they are first order in the derivatives of the other unknowns g and a.

The equations (d)Rαm = 0 look like Maxwell type equations for F, with a weight eX .
The equations (d)Rαβ = 0 look like Einstein equations with source the Maxwell and scalar

fields, except for the appearance of second derivatives of X. The combination of these equations
with the system (d)Rmn = 0 takes the form of usual Einstein equations with sources by
introduction of a metric g̃ conformal to g. We will perform the explicit computation in the
case of interest to us, n = 3, which permit the introduction of twist potentials to solve the
Maxwell type equations.
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3. Case n=3
3.1. Twist potentials, definition
The equations 2.6 are equivalent to

dEm = 0with Em =: ∗[FmeX ] (3.1)

with ∗ the adjoint operator on forms in the metric g. When n = 3 the adjoint Em of the 2 form
Fm is a 1 form. The general solution of 2.6 is then:

Em = dωm + Hm (3.2)

with ωm an arbitrary scalar function on V3, called a twist potential, and Hm a representant of
a 1 cohomology class. We consider the class of solutions such that Hm = 0.

3.2. Associated tensors
The inversion of the defining equations for Em gives

Fm = e−X∗Em = e−X∗(dωm) (3.3)

that is with η the volume form of g:

Fm,αβ = η
αβλ

e−Xgλµ∂λωm hence Fm
αβ = η

αβλ
e−Xgλµξmn∂λωn. (3.4)

Lemma 3.1 The following identities hold (underlining means that greek indices are raised with
gαβ) :

Fm,α
λFn,βλ ≡ e−2X [g

αβ
∂λωm∂λωn − ∂αωm∂βωn] (3.5)

Fm
λµFm

λµ ≡ 2e−2Xξmn∂λωm∂λωn. (3.6)

Proof. The first identity is obtained for instance by a computation in orthonormal frame,
the second results by contraction on the 3 manifold V3.

3.3. Equations
The 2 forms Fm being the differentials of the 1 forms am are necessarily closed, hence the
functions ωm must satisfy the equations

d[∗e−Xξmndωm] = 0 (3.7)

equivalently the functions ωm must satisfy the following semilinear wave equations on (V3, g) :

∇α[e−Xξmn∂αωm] = 0. (3.8)

4. Conformal metric
We introduce on V3 the conformal metric

g̃αβ =: e2Xg
αβ

, hence gαβ = e2X g̃αβ . (4.1)

A simple calculation shows that the divergence of covariant vectors v are linked by the identity

∇αvα ≡ e2X(∇̃αṽα − ṽα∂αX), vα = e2X ṽα. (4.2)

In particular the wave operators in the metrics g and g̃ are linked by the identity

∇α∂α ≡ e2X∇̃α∂̃α − ∂αX∂α. (4.3)
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4.1. Scalar equations
We deduce from 2.7 that

(d)Rmn ≡ −e2X

2
[∇̃α∂αξmn + ξpq∂αξmp∂̃

αξnq] −
1
4
Fm,αβFαβ

n ] = 0. (4.4)

where Fm,αβFαβ
n is given by 3.5.

These equations and X = log(det ξ)1/2 imply by a simple computation that:

ξmn(d)Rmn ≡ −e2X∇̃λ∂̃λX +
1
4
Fm,αβFm,αβ = 0, (4.5)

that is, using 3.6:

∇̃λ∂̃λX − 1
2
e−2Xξmn∂λωm∂̃λωn = 0. (4.6)

For simplicity of proofs we will sometimes introduce the scalar function X = log(det ξ)1/2 as an
auxiliary unknown. The equations 4.4 and 4.6 will imply that

X =
1
2
logdetξ (4.7)

if this property and its first time derivative are satisfied initially.

4.2. Twist potentials equations
We have the identities:

∇α[e−Xξmn∂αωm] ≡ e2X{∇̃α[e−Xξmn∂αωm] − ∂̃αX(e−Xξmn∂αωm)]} (4.8)

≡ e3X∇̃α[e−2Xξmn∂αωm] ≡ eXξmn∇̃α[∂αωm)] + eX [∂̃αξmn − 2ξmn∂̃αX]∂αωm (4.9)

The equations 3.8 for the twist potentials are therefore:

∇̃α∂αωp + ξnp[∂̃αξmn − 2ξmn∂̃αX]∂αωm = 0 (4.10)

that is
∇̃α∂αωp − ξmn(∂̃αξnp + 2∂̃αX)∂αωm = 0 (4.11)

4.3. Einstein equations on V3

On the 3 dimensional manifold V3 it holds that (see [5] I p351):

Rαβ ≡ R̃αβ + ∇α∂βX − ∂αX∂βX + g
αβ

(∇λ∂λX + ∂λX∂λX) (4.12)

We deduce from 2.5 and 4.12 that the term ∇α∂βX disappears from (d)Rαβ . We find that:

(d)Rαβ ≡ R̃αβ +
1
4
∂αξmn∂βξmn − 1

2
Fm,α

λFm
βλ − ∂αX∂βX + g̃αβ∇̃λ∂λX (4.13)

and we deduce from 4.5 that the combination (d)Rαβ + e−2X g̃αβξmn(d)Rmn = 0 reduces to the
following Einstein equations on (V3, g̃) :

R̃αβ = ραβ (4.14)

with, using 3.5:

ραβ ≡ −1
4
∂αξmn∂βξmn + ∂αX∂βX +

e−2X

2
ξmn∂αωm∂βωn. (4.15)
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Theorem 4.1 The equations 4.14 are the Einstein equations on (V3, g̃) with source a mapping
u : (V3, g̃) → (RD, G) by (xα) �→ (X, ξmn, ωm), where G is the riemannian metric:

G ≡ (dX)2 +
1
4
ξmpξnqdξmndξpq +

1
2
e−2Xξmndωmdωn. (4.16)

Proof. The stress energy tensor of the mapping u = (X, ξ, ω) is by definition

Tαβ =: ∂αu.∂βu − 1
2
g̃αβ∂λu.∂̃λu (4.17)

where a dot denotes a scalar product in the metric G. The corresponding right hand side for
R̃αβ is

ραβ ≡ ∂αu.∂βu (4.18)

The identity of this ραβ with 4.15 results from the definition of G.

5. Einstein wave map system
The Bianchi identities satisfied by the Ricci tensor of g̃ together with the equations 4.14 imply
that the stress energy tensor Tαβ of the mapping u satisfies the conservation law ∇̃αT̃αβ = 0.
For any map between pseudo riemannian manifolds it holds that

∇̃αT̃αβ ≡ ∇̂α∂αu.∂̃βu. (5.1)

where ∇̂α∂α is the wave map operator. It is straightforward to check that for the considered
ραβ , as foreseen due to the consistency of the original vacuum equations, the vector ∇̃αT̃αβ

takes the form of the scalar product of ∂̃βu with the semilinear wave operators found before for
X, ξ and ω.

We have proved the following theorem, where ”essentially” means ”with the choice Hm = 0
of harmonic 1 forms appearing in 3.2”:

Theorem 5.1 The class of d dimensional vacuum Einstein equations Ricci((d)g) = 0 with a d−3
dimensional spacelike abelian isometry group are essentially equivalent to Einstein equations for
a lorentzian metric g̃ on V3 with source a wave map u : (V3, g̃) → (RD, G), that is to the system

R̃αβ = ∂αu.∂βu, ∇̂α∂̃αu = 0, (5.2)

with a dot the scalar product in G and ∇̂ the covariant derivative1 associated with u.

6. Einstein Maxwell Higgs equations
We return to the case d = 5, Einstein-Maxwell-scalar equations, to give the physical
interpretation of the metric ξ wich is now on R2. In the Kaluza - Klein formulation the spacetime
is a Lorentzian manifold (V5,

(5) g) with a S1 fiber bundle structure induced by a spacelike Killing
vector field ∂/∂x4 and with base a 4 manifold V4. The metric can be written:

(5)g =:(4) g + e2φ(dx4 + B)2. (6.1)

with (4)g a Lorentzian metric, B a locally defined 1 form and φ a scalar field all defined on V4,
the vacuum Einstein equations for (V5,

(5) g) imply the Einstein Maxwell equations on (V4,
(4) g)

with electromagnetic potential B coupled with the scalar field φ. Suppose that the gravitational

1 That is ∇̂α∂βuA ≡ ∂α∂βuA − Γ̃λ
αβ∂λuA + ΓA

BC∂αuB∂βuC , with Γ̃ and Γ connection coefficients respectively of
the metrics g̃ and G.
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and electromagnetic fields as well as the additional scalar field are invariant under another 1 -
parameter group S1 endowing V4 with a S1 fiber bundle structure, with Killing vector field ∂/∂x3

and base a 3 dimensional manifold V3 with local coordinates xα, α = 0, 1, 2. This hypothesis is
equivalent to the independence of φ and B ≡ B + B3dx3 on x3, with B ≡ Bαdxα, together with
the possibility of writing (4)g under the following form, all quantities defined on the quotient
manifold V3,

(4)g ≡ g + e2γ(dx3 + A)2, g ≡ g
αβ

dxαdxβ , A =: Aαdxα. (6.2)

The hypotheses are equivalent to saying that the metric (5)g admits a 2 parameter abelian
group G2, as shown explicitly by the following lemma.

Lemma 6.1 The metric

(5)g =: g + e2γ(dx3 + A)2 + e2φ(dx4 + B + B3dx3)2 (6.3)

reads as a metric on V5 with an abelian G2 isometry group, namely, setting a =: aαdxα,
b = bαdxα :

(5)g ≡ g + ξ33(dx3 + a)2 + 2ξ34(dx3 + a)(dx4 + b) + ξ44(dx4 + b)2 (6.4)

with

e2φ = ξ44, B3 =
ξ34

ξ44
, e2γ =

det ξ

ξ44
≡ ξ33 −

ξ34)2

ξ44
(6.5)

and
A = a, B = b +

ξ34

ξ44
a (6.6)

Proof. Straightforward calculation.
In the case where B3 = 0, that is when the electromagnetic potential vector is orthogonal to

the Killing vector ∂/∂x3, the field ξ reduces to:

ξ44 = e2φ, ξ34 = 0, ξ33 = e2γ , X = γ + φ. (6.7)

and the metric G is given by2:

G ≡ (dX)2 + (dφ)2 + (dγ)2 +
1
2
e−2(X+φ)(dω4)2 +

1
2
e−2(X+γ)(dω3)2. (6.8)

7. Cauchy problem
7.1. Wave map equation
The wave map equation is a semilinear wave equation on V3 when the metric g̃ is known.

7.2. Einstein equations
Einstein equations on a 3 manifold are essentially3 non dynamical, since the Riemann tensor
is in that case equivalent to the Ricci tensor. To solve the Cauchy problem for the Einstein
equations 5.2 one takes as usual V3 = Σ × R and consider a 2+1 splitting of the metric g̃, with
N and ν its lapse and shift, g a t− dependent riemanian metric on Σ :

g̃ ≡ −N2dt2 + gab(dxa + νadt)(dxb + νbdt).

2 In the case of vacuum 4 dimensional Einstein equations with 1 spacelike isometry group φ = ω4 = 0 the metric
G reduces to the metric of the Poincaré plane used in previous articles.
3 We will see that they are non dynamical if and only if the surface Σ is topologically a sphere.
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We denote by k the extrinsic curvature of a surface Σt = Σ× {t} embedded in (V3, g̃), by τ its
mean extrinsic curvature. Then, with h a traceless tensor:

kab ≡ − 1
2N

∂̄0gab ≡ hab +
1
2
gabτ, τ = gabkab.

7.2.1. Einstein constraints. Part of the Einstein equations are the constraints on each Σt, that
is:

R(g) − k.k + τ2 = |u′|2 + gab∂au.∂bu, u′ =: N−1∂0u, (7.1)

∇bk
b
a − ∂aτ = u′.∂au. (7.2)

To solve these constraints one uses the conformal method, that is we set:

gab = e2λσab (7.3)

and we take as a gauge condition that τ is a given function of t alone (CMC gauge).
The constraints become on each Σt, with covariant derivative, laplacian and norms in the

metric σt :

• The equation linear in h, given σ, u, u̇

Dbh
b
a = La ≡ −Dau.u̇, u̇ =: e2λN−1∂0u

One solves this system by setting h = q + r with h a TT (Transverse, Traceless) tensor,
that is a solution of the homogeneous system

Dbq
b
a = 0, qa

a = 0, (7.4)

and r a conformal Lie derivative of a vector field Y, solution then of an elliptic system.
• The nonlinear elliptic equation for λ

∆σλ = f(x, λ) ≡ τ2

4
e2λ − 1

2
p2e

−2λ +
1
2
p3,

p2 ≡| u̇ |2 + | h |2, p3 ≡ R(σ) − |Du|2

7.2.2. Equations for lapse and shift. The Einstein equation R̃00 = ρ00 gives the following
elliptic equation for N :

∆σN − aN = −e2λ∂tτ (7.5)

a ≡ e−2λ(| h |2g + | u̇ |2g) + e2λ τ2

2
(7.6)

A linear differential equation for ν, depending on λ, h, N and linearly on ∂tσ, results form the
expression of k. This differential equation admits solutions only if its non homogeneous term is
L2 orthogonal to conformal Killing vector fields.

When σ, q and the mapping u are known on V3 the equations for r, λ, N are an elliptic system
on each Σt.
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7.3. Hyperbolic-elliptic system, given σ and q
When the family of metrics σt and TT tensor qt are given, the wave map u and the metric
coefficients N, λ, ν in CMC gauge satisfy a coupled hyperbolic - elliptic system with auxiliary
unknown r. The Bianchi identities show that the space part of Ricci(g̃) − ρ is a TT tensor on
Σt when this system is satisfied.

7.4. Teichmuller parameters (Σ compact)
From now on we consider only the case of a compact Σ.

When Σ is diffeomorphic to S2 all the possible metrics σt are conformal (up to
diffeomorphisms) to the canonical metric, and there does not exist on (Σ, σ) any non identically
zero TT tensor hence q ≡ 0, and Ricci(g̃)−ρ = 0 as soon as constraints and lapse equations are
satisfied. We can take as gauge condition, in addition to CMC, ∂tσ = 0. There are integrability
conditions for the shift equation (see [8]).

When Σ is a 2 torus, i.e. Genus(Σ) = 0, any metric σ on Σ admits two linearly independent
Killing vector fields, and two linearly independent TT tensors. A metric on Σ is conformal to a
metric with zero scalar curvature, one can choose σ such that R(σ) = 0. We do not treat this
case.

When G =:Genus(Σ) > 1, a metric on Σ is conformal to a metric with constant negative
scalar curvature, one can choose σ such that R(σ) = −1. The space of classes of conformally
equivalent metrics on Σ, called Teichmuller space Teich, can be identified with M−1/D0, quotient
of the space of metrics with R(σ) = −1 by the group of diffeomorphisms homotopic to the
identity. M−1→Teich is a trivial fiber bundle whose base can be endowed with the structure of
the manifold R6G−6. As a gauge condition we impose to the metric σt to be in some chosen
cross section Q → ψ(Q) of this fiber bundle. Let QI , I = 1, ..., 6G − 6 be coordinates in Teich,
then ∂ψ/∂QI is a known tangent vector to M−1 at ψ(Q), that is a traceless symmetric 2-tensor
field on Σ, sum of a TT tensor field XI(Q) and Lie derivative of a vector field on (Σ, ψ(Q)).
Solvability condition for the shift equation determines dQ/dt in terms of qt and conversely. One
obtains an ordinary differential system for the evolution of Q by the L2 orthogonality of R̃ab−ρab

with the 6G-6 dimensional vector space of TT tensors over Σ.

7.5. Conclusion
We have to solve the coupled system:

1. Elliptic equations on (Σ, σt) with σt = ψ(Q(t)), with coefficients depending on u.
2. ODE on R for Q(t) with coefficients depending on u and elliptic unknowns.
3. Wave map system on (Σ × R, g̃), g̃ determined by σt and elliptic unknowns.

Theorem 7.1 (local existence.)The Cauchy data on the compact orientable smooth surface Σt0 ,
genus(Σ) > 1 are:

1. A C∞ metric σ0 and TT tensor q0.
2. Wave map initial data: u0 = u(t0, .) ∈ H2, u̇0 = e2λu′(t0, .) ∈ H1.
The 2+1 Einstein wave map system has a solution taking these Cauchy data and such that

u ∈ C0([t0, T ), H2) ∩ C1([t0, T ), H1), λ, N, ν ∈ C0([t0, T ), W p
3 ) ∩ C1([t0, T ), W p

2 ), 1¡p¡2, N¿0, if
T-t0 is small enough.

There is a corresponding Einteinian spacetime (Vd,
(d) g) if the initial data satisfy the Chern

integrability condition for the construction of A and B.

8. Scheme for global existence
We have chosen to work in CMC gauge: τ is a time parameter which, in our conventions taken
from MTW inceases from −∞ to 0 if the spacetime expands from a big-bang singularity to
a moment of maximum expansion. To have notations more familiar to the analyst we choose
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as time parameter t = −τ−1, then t increases from t0 > 0 to infinity when Σt expands from
τ0 < 0 to zero. In the case where R(g) < 0 the constraint 7.1 shows that this moment of
maximum expansion cannot be attained. Existence on (t0,∞) will result from a priori bounds
of the norms appearing in local existence theorem. These a priori bounds result from energy
estimates for the wave map and elliptic estimates, in particular for the confromal factor λ which
satisfies a non linear equation for which estimation depends crucially on the negative sign of
R(σ), i.e. by the Gauss Bonnet theorem the fact that Genus(Σ) > 1. The estimates involve
also the uniform equivalence of σt with σ0. This requires decay in t of the ”total energy”. This
decay is a consequence of the expansion of the metric g(t, .) of Σt, obtained when Genus(Σ) > 1,
but its proof requires the introduction of corrected energies (as already in [7]). The proofs are
essentially the same as in the vacuum case of [3], at least for the Einstein - Maxwell Higgs system
with B3 = 0 where the target metric takes a simple form. We sketch below the main steps that
we use.

9. First energy estimate
One defines the first energy not only as the energy of the wave map but by, with | · |g the point
wise norm in the metrics g and G,

E(t) ≡
∫

Σt

(|∂u|2g + |u′|2 +
1
2
|h|2g)µg

The Hamiltonian constraint

R(g) +
τ2

2
= |∂u|2g + |u′|2 +

1
2
|h|2g

together with the Gauss Bonnet formula (χ the Euler Poincaré constant)
∫

Σt

R(g)µg = 4πχ (9.1)

give, without using wave map equation, that:

dE(t)
dt

=
1
2
τ

∫
Σt

N(|u′|2 +
1
2
|h|2g)µg ≤ 0. (9.2)

We deduce from this equality that E(t) is a non increasing function of t since τ < 0, but we do
not obtain its decay due to the absence of |Du|2 in the right hand side.

10. First elliptic estimates
The definition of E(t) implies

||h||L2(σ) ≤ e2λM E(t)

while under hypothesis R(σ) = −1 the maximum principle applied to ... implies

e2λ ≥ 2τ−2 (10.1)

and, with the parameter choice τ = −1
t , it implies, applied to ...

0 < N ≤ 2. (10.2)

Further elliptic estimates require bounds of ∂u.∂u and ∂u.u′ in W p
1 (σ), 1 < p < 2, which are

obtained in terms of the second energy of the wave map.
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11. Second energy
We denote by ∇̂ and ∂̂0 covariant derivatives for mappings (Σ, g) or (R, dt2) into (RD, G). Set:

E(1)(t) ≡
∫

Σt

(| ∆̂gu |2 + | ∇̂u′ |2)µg (11.1)

ε2 =: E(t), ε2
1 =: τ−2E1(t). (11.2)

One finds after long computations using elliptic estimates applied to the constraints and lapse
equations that:

1 ≤ 1√
2
|τ |eλ ≤ 1 + CE,σ(ε + ε1), (11.3)

0 ≤ 2 − N ≤ CE,σ(ε2 + εε1) (11.4)

where we denote by Cσ,E numbers depending only on a priori bound of ε and ε1, and on the
domain of σ in Teich supposed to be compact.

Using these bounds and the wave map (Σ × R, g̃) → (RD, G) which reads in our notations:

−N−1∂̂0∂0u + gab∇̂a(N∂bu) + Nu′ = 0. (11.5)

we find that:
dE(1)

dt
− 2τE(1) = τ

∫
Σt

N | Du′ |2 µg + Z ≤ Z (11.6)

with:
|Z| ≤ Cσ,E(ε + ε1)3. (11.7)

|Z| ≤ |τ |3Cσ,E(ε + ε1)3. (11.8)

The inequalities 11.6 and 9.2, are not sufficient to prove the bound of ε + ε1 and the fact that
σt projects on a fixed compact subset of Teich, the proof of this last property requires decay of
ε + ε1.

12. Corrected energies
To obtain the decay property one introduces corrected energies and exploit the negative (non
definite) terms in the energies inequalities:

Eα(t) = E(t) − ατ

∫
Σt

(u − ū).u′µg (12.1)

ū =
1

V olσt

∫
Σt

uµσ,

E(1)
α (t) = E(1)(t) + ατ

∫
Σt

∆̂gu.u′µg (12.2)

The use of elliptic estimates leads to

dEα

dt
− kτEα ≤ |τ |Cσ,E(ε + ε1)3, (12.3)

dE
(1)
α

dt
− (2 + k)τE(1)

α + |τ |3Cσ,E(ε + ε1)3. (12.4)

We denote by Λσ the first positive eigenvalue of −∆σ and we prove that Eα+τ−2E
(1)
α is equivalent

to the total energy ε2 + ε2
1 under the following conditions:
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•
α =

1
4
, k = 1 if Λσ >

1
8

(12.5)

•

α <
4

8 + Λ−1
σ

, 0 < k < 1, if Λσ ≤ 1
8
.

All these differential inequalities imply the inequalities:

(ε2 + ε2
1)(t) ≤ t−kM1(ε2 + ε2

1)(t0). (12.6)

13. Future complete existence (non linear stability)
Theorem 13.1 Let (σ0, q0) ∈ C∞(Σ0) and (u0, ū0) ∈ H2(Σ0, σ0) ×H1(Σ0, σ0) be initial data
on the compact manifold Σ0, Genus(Σ0) > 1, satisfying the Chern integrability condition. There
exists a number η > 0 such that, if Etot(t0) < η, the 4 dimensional Einstein Maxwell Higgs
system with S1 isometry group and electromagnetic field orthogonal to the Killing field have a
solution on Σ×S1× [t0,∞), t = −τ−1, with initial values determined by σ0, q0, u0, u̇0. This space
time is globally hyperbolic, future timelike and null complete.

Proof. Using the differential equation satisfied by Q and the decay of the total energy
proved using its a priori bound one obtains the inequality:

|Q(t) − Q(t0)| ≤ M2(ε2 + ε2
1)(t0). (13.1)

This inequality together with 12.6 give a bound of the total energy and of Q by a bootstrap
argument if the initial total energy small enough. One deduces the existence of the solution on
Σ× [t0,∞), and the existence for an infinite proper time along the lines {x}×R after estimating
the usual H2 norms in terms of the geometrically defined second energy. This estimate depends,
as in the proof given in [3], on the fact that the Riemann curvature of the target metric is
negative. The special form of this metric plays also a role in the estimate of the second corrected
energy.

The global hyperbolicity and completeness is a particular case of a theorem proved in [4].
We have not checked the corresponding properties for the general G given by 4.16, but we

conjecture that the proof goes through in that general case.
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