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Abstract
Nonstabilizerness, also known as ‘magic’, is a crucial resource for quantum
computation. The growth in complexity of quantum processing units (QPUs)
demands robust and scalable techniques for characterizing this resource. We
introduce the basis-independent notion of set magic: a set of states has this
property if at least one state in the set is a magic state. We show that cer-
tain two-state overlap inequalities, recently introduced as witnesses of basis-
independent coherence, are also witnesses of set magic. Finally, we show that
using such witnesses one can robustly certify nonstabilizerness in a network
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of QPUs without having to entangle the different devices and with reduced
demands compared to the individual certification of each QPU.

Keywords: nonstabilizerness, coherence witnesses, quantum processing unit,
quantum resource certification

1. Introduction

The certification of quantum devices is a crucial task [1]. One fundamental characteristic
of quantum computing hardware is the ability to generate non-classical resources: quantum
coherence [2, 3], quantum entanglement [4, 5], Hilbert space dimension [6], quantum con-
textuality [7] are all necessary resources for quantum information processing. The growth
in complexity of near-term noisy devices [8–10] demands scalable and robust methods for
witnessing non-classical properties. This is something that has remained elusive for the case
of nonstabilizerness [11], a resource without which quantum speed-up is impossible [12].
Nonstabilizerness fuels one of the main approaches to fault-tolerant quantum computation
via the so-called magic-state injection scheme [11, 13] and is the most expensive resource to
generate and characterize in some quantum computing architectures [11, 14–17].

In this work, we propose a technique for certifying the presence of nonstabilizerness in a
network of quantum processing units (QPUs), without the need to entangle resources between
separate units. Our protocol is efficient, robust, and based on estimating two-state overlaps
ri,j = Tr(ρi ρj) (also known as fidelity, when one of the states is pure). An illustration of our test
can be seen in figure 1. Interestingly, we can use this scheme to certify nonstabilizerness among
various QPUswithout having to entangle the different units.We envisionmany use cases. First,
we can certify the presence of nonstabilizer resources in a single QPU. Secondly, we can cer-
tify the generation of nonstabilizerness by multiple QPUs in a network; for example, a referee
collects overlap statistics from different QPUs and, after processing these values (i.e. calcu-
lating linear functionals of overlaps), they can infer that nonstabilizer resources were present
in at least some QPUs. Moreover, our method can be used to certify (unknown) states shared
by third parties and to detect nonstabilizerness present in n-qubit systems and not realizable
by systems with fewer than n qubits. As such, we expect our results to be relevant both for the
management of quantum networks—in the sense of certifying their correct operation and abil-
ity to generate nonstabilizer resources needed for quantum advantage—and for the delegated
certification of quantum states [18, section 3.5].

Many tools for certifying nonstabilizerness exist. However, as the majority is aimed at the
task of resource quantification—in the formal resource-theoretic sense [19]—rather than the
simpler one of witnessing, most protocols have stringent requirements. Most commonly, there
is a need for: (i) full tomographic information on the quantum states [20], (ii) purity of states
(or restriction to specific subclasses of states) [21–23], (iii) additional entanglement genera-
tion [24, 25], or (iv) vertex characterization of the stabilizer polytope [26–30]. We avoid all of
these requirements. Our certification scheme depends on two promises of the device-generated
statistics: (a) the data is described by two-state overlaps and (b) the device consists of a multi-
qubit system. For certain witnesses, it will be possible to relax the second requirement.

Our method is based on showing that some inequalities, initially introduced as coherence
witnesses [31, 32], can also be used as witnesses of nonstabilizerness. The basis-independent
nature of such inequalities implies the existence of a relational notion of nonstabilizerness
defined for a set of states; we term this notion set magic or set nonstabilizerness. The idea of
viewing set-based resources has recently emerged as a prominent research topic [33–40]. This
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Figure 1. Pictorial description of our protocol. An experimentalist uses a quantum pro-
cessing unit (QPU) to evaluate two-state overlaps ri,j = Tr(ρiρj) for a given set of states
either generated by that same QPU or by a state-preparation device of a third party. With
this information, and using the scheme we propose, they can benchmark nonclassical
resources: nonstabilizerness, coherence, and Hilbert space dimension. This certification
is agnostic to the procedure used by the QPU to compute the overlaps.

novel foundational understanding is at the core of the application we envision, allowing us to
distribute a quantum certification protocol among various parties in a network of QPUs.

The structure of this paper is as follows. Section 2 contains all the background needed for
the understanding of our work; section 2.1 introduces important aspects of the stabilizer form-
alismwhile section 2.2 reviews the overlap paradigm recently introduced in references [31, 32]
and the notion of set coherence [33]. In section 3, we define our basis-independent formula-
tion of magic which, as mentioned above, we dub set magic and provide some intuition for
it. Afterward, in section 4, we show that set magic can be witnessed using certain two-state
overlap inequalities. Section 5 pushes our results even further. There, we introduce the notion
of full set magic and leverage its witnessing by certain inequalities to certify that, in a given
set of states , all states but one are magic; moreover, all the magic states must differ from one
another. Since nonstabilizerness is a well-studied topic, in section 6 we comment on different
experimental implementations of our method, as well as on its robustness and scalability, and
compare it with the existing literature on the subject. In section 7, we make some final remarks
and discuss promising open research lines stemming from this work.

2. Background

2.1. Stabilizer subtheory

In this work, we will focus on the stabilizer subtheory of n-qubit systems. We say that a pure
quantum state |ψ 〉 is a stabilizer state when it is the eigenvector with eigenvalue +1 for all
elements of a maximal abelian subgroup of the Pauli group Pn. The Pauli group is formed by
all possible n-qubit Pauli operators, multiplied by phases ±1 and ±i. The dynamics of this
subtheory is described in terms of Clifford operations, defined to be those that preserve the
Pauli group under conjugation, i.e. CPnC† = Pn.

For many different architectures, it is relatively easy to perform Clifford operations and
prepare stabilizer states. This subtheory is crucial to applications in fault-tolerant magic-state
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injection schemes and quantum error correction, and much work has been done to understand
its geometrical properties. García et al [41] showed that stabilizer states have a fixed overlap
structure. Recall that any two pure states |ψ〉, |ϕ〉 ∈ H can be orthogonal (|〈ψ |ϕ〉|= 0), par-
allel (|〈ψ |ϕ〉|= 1), or oblique (0< |〈ψ|ϕ〉|< 1). When two pure stabilizer states are oblique,
their two-state overlap obeys the following:

Theorem 1 (Adapted from [41]). Given two oblique n-qubit pure stabilizer states |ψ 〉 and
|ϕ〉 their overlap is given by |〈ϕ |ψ 〉|2 = 2−k for some k ∈ {1,2, . . . ,n}.

The convex hull of all n-qubit pure stabilizer states, for each fixed value of n⩾ 1, forms
a polytope that we will refer to as STAB. Any state outside of STAB is termed in the lit-
erature magic or nonstabilizer state11. Theorem 1 presents a simple method for witnessing
nonstabilizerness in pure states using overlaps: Any deviation from the values 1/2k witnesses
the presence of such a resource. Beyond that, purity allows efficient schemes to quantify non-
stabilizerness. References [21, 23] provide quantifying protocols that are close to being optim-
ally efficient. However, without the assumption of purity (which is never perfectly attained
experimentally), any overlap is possible by states inside of STAB and the task of witnessing
magic becomes non-trivial. The test we propose, although based on two-state overlaps, does
not require purity of states.

2.2. Coherence based on two-state overlaps

Initially motivated by benchmarking various resources in linear optical devices—Hilbert space
dimension [42], quantum coherence [42], indistinguishability [43, 44]— references [31, 32]
proposed an inequality formalism based solely on linear functionals of two-state overlaps.
These overlaps are defined by ri,j = Tr(ρiρj) for any two states ρi and ρj over the same Hilbert
space.

Consider edge-weighted graphs (G,r)where G = (V(G),E(G)) is a graph12, and r : E(G)→
[0,1] is a function. We refer to fully connected finite simple graphs G as event graphs13, as
introduced in [32]. Any (re)e∈E(G) is merely a tuple of numbers. We will be interested in the
problem of deciding when the numbers ri,j in these tuples are realizable by quantum states,
thus equating to Tr(ρi ρj); this is an instance of a quantum realization problem [45]. More
formally, let D(H) represent the set of all quantum states with respect to a system H and
consider a finite set of states ρ≡ {ρi}i ⊂D(H)where {ρi}mi=1 ≡ {ρ1, . . . ,ρm}. Denote r(ρ)≡
r({ρi}i) := (Tr(ρiρj)){i,j}∈E(G); we will refer to r(ρ) as a quantum realization for a given edge-
weight r. Tuples r ∈ [0,1]|E(G)| can have any number of quantum realizations, including none
at all [32].

We proceed to discuss the notion of coherence for a set of states [31, 33] that differs from
the commonly described basis-dependent view on coherence [2, 3] and its witnesses [46–48].
It also differs from the basis-independent coherence discussed in [49–51] defined with respect
to a single state ρ instead of sets ρ.

11 Some authors prefer to term ‘magic states’ only those nonstabilizer states that can be distilled using stabilizer
operations [30]. Instead, we prefer to adhere to the terminology that any nonstabilizer state is a magic state.
12 A graph is an ordered pair (V(G),E(G)) where V(G),E(G) are sets. The first set V(G) is interpreted as a set of
nodes (or vertices) for the graph, hence a simple set of labels. The second set E(G) corresponds to elements of the
form e= {i, j} such that i, j ∈ V(G), i.e. the edges of G.
13 A finite graph is one in which |V(G)|<∞. A simple graph is undirected, no pair of nodes can have more than one
edge, and there exist no edges of the form {v,v} for v ∈ V(G). Finally, a fully connected graph is one in which for
any two vertices v,w there exists a family of edges connecting the two.
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Definition 1 (Set coherence [33]). Let ρ⊆D(H) be a finite set of states and d= dim(H)

<∞. When there exists some unitary U such that ρ satisfies UρU† = σ where σ is a set of
diagonal density matrices, we say that the set of states ρ is set-incoherent14. Otherwise, we say
that it is set-coherent.

Set coherence is a basis-independent property of a set of states. Importantly, for any event
graph G, it is possible to bound two-state overlaps r realized by incoherent set of states : in
such cases, incoherent states in the set satisfy σ 3 σ =

∑
λ∈Λσλλ|λ〉〈λ|, for some H with

d= dim(H) and some basis Λ = {|λ〉}dλ=1.
For any fixed event graph G, the set of all possible edge-weights r realizable by some set-

incoherent σ forms a full-dimensional convex polytope, denoted by C(G) [32]. Some convex
polytopes C(G) have been completely characterized for certain event graphs G.

The facet-defining inequalities for C(Cm), with Cm the cycle graph ofm-nodes, were presen-
ted in [31] and are the so-called m-cycle inequalities

cm (r) :=−re+
∑
e ′ ̸=e

re′ ⩽ m− 2, for eache ∈ E(Cm) . (1)

For any convex-linear functional h(r), we denote h(r(ρ)) its value attained by some quantum
realization r(ρ). Violations cm(r(ρ))> m− 2 witness the impossibility of the overlaps to be
realized by incoherent sets of states, i.e. they witness set coherence of any such ρ.

Another relevant family of inequalities, defined recursively, is the following:

hm (r) = hm−1 (r)+ r1m−
m−1∑
i=2

rim ⩽ 1 . (2)

The sequence above starts with h3(r) = r12 + r13 − r23 ≡ c3(r) and defines novel inequalit-
ies for any integer m> 3. Each hm inequality was shown in [32] to be facet-defining for the
polytope C(Km), where Km is the complete graph with m nodes. It has been shown for up to
12-qubit systems that hm(r)⩽ 1 cannot be violated by sets ρ⊆D(Cd) where d⩽ m− 2 [52].
Numerically, we can seemaximal quantum violations form states ρwith dimension d≥ m− 1.

3. Generalizing nonstabilizerness to set of states

We start the presentation of our main results by introducing the notion of set magic or set
nonstabilizerness.

Definition 2 (Set magic). Let ρ⊆D(H) be a finite set of states and d= dim(H)<∞. We say
ρ is set-magic or set-nonstabilizer when there exists no unitary U :H→H such that UρU† =
ρ ′ is a set of states within the stabilizer polytope.

Set magic implies the nonstabilizerness of some element in the set. Notably, the converse is
not true, as we will see in an example below. Definition 2 above is a straightforward translation
of set coherence [33] to the context of nonstabilizerness as a quantum resource. In section 5,
we will show that, under certain conditions, it is possible to bound the number of states ρ ∈ ρ
that are outside of STAB, instead of merely witnessing that some are.

Set magic and set coherence behave differently. Given any basis-dependent coherent pure
state |ψ〉, with respect to some basis of reference {|i〉}i, we have that {|ψ〉, |i〉} must be

14 Equivalently, a set of states is incoherent iff all its elements pairwise commute.
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Figure 2. Geometrical interpretation of set magic. Consider we have a set of pure,
single-qubit states that lie in a great circle of the Bloch sphere so that their projection in
this great circle is depicted in the figure. If there is some unitary U that, when applied to
the set of states, rotates them so they all lie inside the stabilizer polytope, then the set is
said to be set-stabilizer (in this precise, basis-independent way). If this is impossible, the
set is set-magic. This geometric picture allows some additional observations. Notably,
by changing how the states are represented, one can often transform set withmanymagic
states into one with fewer such states while preserving all relational properties (in this
case, their arrangement in the Bloch sphere). As an example, on the left of the figure,
we have a set with four magic states, but a suitable unitary operation can substitute this
for a set with only two magic states. Importantly, our method is not restricted to pure
states but applies also to mixed states. We will see later (section 5) that our techniques
can be fine-grained to allow the identification of sets such that only one state can ever
be mapped inside of STAB.

set-coherent. In contrast, given a magic state |ϕ〉 and a stabilizer state |s〉 ∈ STAB, the set
{|ϕ〉, |s〉} need not necessarily be set-magic. For example, the set {|0〉, |T〉}, with |T〉 :=
(|0〉+ eiπ/4|1〉)/

√
2, is not set-magic since

{|0〉〈0|, |T〉〈T|} T7−→ {|0〉〈0|, |+〉〈+|} ⊂ STAB ,

where T := diag(1,eiπ/4). However, the same set clearly has nonstabilizerness in the usual
sense, something that can be seen if we restrict global unitaries to be Clifford unitaries, i.e. ∀C
belonging to the Clifford group:

{|0〉〈0|, |T〉〈T|} C7−→ {|ψ1〉〈ψ1|, |ψ2〉〈ψ2|} 6⊂ STAB .

Set magic is therefore a more restricted notion than magic itself, being a property of the whole
set of states. Figure 2 provides a geometrical interpretation of set magic and set stabilizerness:
Given a set of states, if it is impossible to rotate it so that all states ‘fit’ inside the stabilizer
polytope, we have set magic.

4. Certifying nonstabilizerness

In any certification protocol, the assumptions behind the test play a central role. In our case,
we assume (a) multi-qubit or multi-qudit systems and (b) the ability to estimate two-state
overlaps. Our test can be understood within the framework of prepare-and-measure scen-
arios as a semi-device-independent technique [53, 54]. This kind of statistics can also be self-
tested [55]. The exact way in which this estimation is obtained may be unknown. Common
techniques involve performing SWAP tests, Bell measurements, or generating specific prepare-
and-measure statistics (more comments on this are deferred to section 6.1).Minimizing sample
and measurement complexity is desired for scalability, although not essential for the certific-
ation per se. Commonly, a minimal requirement is using a number of samples and measure-
ments smaller than the one needed to make (ideal) quantum state tomography [56–60], which
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Figure 3. Certifying nonstabilizerness using two-state overlaps. (a) One can use our
inequality witnesses for each device individually. (b) In case it is not necessary to certify
that all devices have nonstabilizerness, but that some do, it is possible to reduce the
time usage by distributing the overlap computation. (c) A third party sends states to be
certified by the QPU network, that now serves as a tool for generating overlap statistics.
With this information, one can witness nonstabilizerness in the provided set. We use
c3(r) as an example, but the same remains valid for cm(r) violations.

is of order O(d2T/ε
2), where ε is a fixed precision with respect to distance functions and dT

is the dimension of the whole Hilbert space considered. For QPUs with n qubits and asso-
ciated Hilbert space H= (C2)⊗n, a network of s ∈ N such units has space H⊗s, implying
dT = dim(H⊗s) = 2sn.

As shown in appendix A, event-graph inequalities cannot witness nonstabilizerness in gen-
eral. This is somewhat unsurprising, as they were not proposed for such a task. However, we
show that some event-graph inequalities are witnesses of both nonstabilizerness and coher-
ence, starting with the cycle inequalities.

Theorem 2. Every cycle inequality violation cm(r)> m− 2 is a robust witness of nonstabil-
izerness for any set ρ of multi-qubit states such that r= r(ρ).

Importantly, theorem 2 holds for any set of multi-qubit states and not only for pure states.
In appendix B, we use semidefinite programming (SDP) techniques [54] to find the maximal
quantum violations of the cycle inequalities for m= 3,4,5, . . . ,20 and show that these are
attained by single-qubit systems. It has been conjectured in [31] that all such inequalities are
maximally violated by sets of single-qubit pure states and our numerical investigations suggest
that this is indeed the case. In appendix C, we show that all facet-defining overlap inequalities
for C(G), for any event graph G, are maximally violated by sets of pure states and use this to
prove theorem 2.

Theorem 2 leads to three different certification procedures. Suppose we have a network
with s distinct units. The first method is illustrated in figure 3(a). Each individual QPU is
used to prepare certain states and output all the corresponding two-state overlaps. Violation of
the chosen inequality witnesses that each individual QPU resorted to magic resources in the
preparation of the states.

The second method is illustrated in figure 3(b). We can distribute the state preparation and
overlap estimation across different units, reducing the number of overlaps that need to be eval-
uated in each QPU. This certifies that the network as a whole can generate nonstabilizerness
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somewhere across its parties. Compared to other protocols [24, 25] ours has the advantage that
it foregoes the need to entangle the different QPUs in the network to carry out this certification.

Comparing these two schemes, suppose that the certification of each unit—as seen in
figure 3(a)—requires the evaluation of m overlaps. The first method requires a total of s×m
overlaps to be estimated, while for the second method, the evaluation of m overlaps suffices to
certify the entire network for the presence of nonstabilizerness.

The second method is more useful than the first in the following scenario. Suppose that, in
a network having a total of s QPUs, only a single (unknown) QPU is capable of generating
nonstabilizer resources. Running method (a) on a single (randomly chosen) QPU has a prob-
ability of success of 1/s of detecting the presence of magic, whilst the distributed certification
always succeeds. In section 5, we will show that, in some cases, this same procedure can enable
an even stronger certification, allowing us to guarantee that all but one QPU have produced
nonstabilizer resources.

The third method is depicted in figure 3(c). Suppose we are supplied with a set of m
unknown states provided by third parties and are asked the question: Is the set magic? In this
case, the network is not the object being investigated, but a useful tool for certifying the states
provided by the third parties. We can use our network to answer this question by distributing
the estimation of the overlaps among any number of the available QPUs.

In section 6.3, we provide a comprehensive comparison between our approach and other
protocols in the literature.

Cycle inequalities certify the presence of nonstabilizerness but, as stated above, they are
always maximally violated by sets ρ⊆D(C2) of single-qubit states. This feature implies that
such a certification scheme is not capable of capturing genuine properties of multi-qubit non-
stabilizer resources, i.e. magic states in D(C2n).

To address the possibility of witnessing nonstabilizerness that necessitates having access to
higher Hilbert space dimensions, we study inequalities that witness both of these properties.
The simplest example of such inequalities is h4(r)⩽ 1 which, as shown in [52], requires two-
qubit systems (or single qutrits) to have a violation. We complement this result by showing
that violations of h4(r)⩽ 1 also witness nonstabilizerness.

Theorem 3. The inequality h4(r)⩽ 1 cannot be violated by quantum realizations r= r(ρ
STAB

)
of sets of stabilizer states ρ

STAB
.

We defer the proof of this result to appendix D.

5. Full set magic

We have seen that our inequality witnesses can be used to signal the set magic of an arbitrary
set of states ρ. This indicates that some state(s) in ρmust be nonstabilizer. It is therefore natural
to ask whether it is possible to certify a lower bound on the number of states that must always
lie outside of STAB. Clearly, for any set ρ, at least one state ρref can always be unitarily mapped
inside STAB. With this in mind, we introduce the following notion.

Definition 3 (Full set magic). Let ρ⊆D(H) be a finite set of states, d= dim(H)<∞. We
say that the set ρ is fully set magic or fully set nonstabilizer if, for every unitary U :H→H,
all states (but one) lie outside of the stabilizer polytope.

There exist sets of states with full set magic. Let H= C2 and consider any triplet of states
{ρ1,ρ2,ρ3}. It can be shown numerically that c3(r(ρ))⩽ 1.21 if at most one state in ρ is outside
of STAB. Recall that the maximal value of c3 achieved with generic quantum states is 1.25.
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Figure 4. Certifying magic in many QPUs with a single witness. Fixing a certain tar-
get dimensionality (in this case single-qubit systems), one can certify all elements in a
network from the same inequality values. Equivalently, one can certify various qubits in
the same quantum computer running a parallel computation of the inequality values.

Table 1. Full set magic bounds. The first column shows the cycle inequality considered
and the second column shows the corresponding optimal value considering quantum
realizations of sets of states ρ⊆D(C2) where at least two states ρi,ρj ∈ STAB. The
last column presents the optimal tight values found in appendix B. Interestingly, even
cycles cannot witness full set magic, but odd cycles can.

m 3 4 5 6 7 8 9

cm 1.2071 2.4142 3.5061 4.5981 5.6468 6.6955 7.7254
cmax
m 1.2500 2.4142 3.5225 4.5981 5.6534 6.6955 7.7286

Note that, for analyzing full set magic, we fix the dimension. Therefore, there may be multi-
qubit systems realizing values larger than c3(r) = 1.21 while having only one nonstabilizer
state. Figure 4 depicts how this result can be explored to implement a protocol that certifies a
set of states for the presence of full set magic.

Although above we focus on the simplest example of the c3 inequality, we present numer-
ical evidence that other odd cycle inequalities can be also used to witness full set magic. As
can be seen from table 1, depending on how large the violation of cm(r(ρ))⩽ m− 2 is, we
have that, other than one reference state that can always be unitarily sent inside STAB, all the
other m− 1 states must be magic states. Moreover, all of these states must be different, other-
wise it would be possible to map two states inside of STAB. The second column from table 1
is obtained as follows. We assume that there are at least two states in a set {|ψi 〉}mi=1 that
are single-qubit stabilizer states. Without loss of generality, we can consider only the pairs
{|0〉, |+〉} or {|0〉, |1〉}. All the remaining m− 2 states are generic single-qubit states of the
form |ψi〉= cos(θi)|0〉+ eiϕi sin(θi)|1〉. For all possible combinations of m− 2 generic states
with the two chosen stabilizer states (or, equivalently, all possible edge ψ-labelings of the
graph Cm permuting the two stabilizer states), we maximize cm with respect to the variables
θ = {θi}i and ϕ = {ϕi}i.

The tool used for the maximization wasNMaximize ofWolframMathematica and all avail-
able solvers were tested; the final results correspond to the one that found the largest value.
Note that, as before, even though we are maximizing for pure states, the results presented in
table 1 hold for generic mixed states.

The last column of table 1 corresponds to the situation wherein the set is allowed to be full
set magic, i.e. all states but one are nonstabilizer states. We can see that the gap between set
magic and full set magic decreases as m increases. Interestingly, we cannot witness full set
magic for even cycle inequalities since m− 2 magic states are sufficient to maximally violate
the inequality.

9
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6. Experimental schemes

6.1. Different strategies for implementing our test

We take this opportunity to discuss different strategies for evaluating two-state overlaps. One
option is to consider prepare-and-measure estimation. In this case, a preparation stage pre-
pares states |ψi〉= Ui |0〉, while a measurement stage acts as a projection onto 〈ψj|= 〈0|U†

j .
Assuming we are in the regime of full set magic, each overlap inequality will certify the non-
stabilizerness of all the preparations Ui and all measurements Uj except one.

Another possibility is to use the SWAP-test [61] which, despite using a magic gate (the
Fredkin gate), can unambiguously witness nonstabilizerness of the quantum states that are sent
by a third party (sender). If we want to avoid the use of auxiliary qubits and magic operations
to estimate the overlaps, we can instead use Bell measurements [21].

Finally, in the context of linear-optical implementations, we can use the Hong-Ou-Mandel
effect [62]. Any linear-optical interferometer that is insensitive to internal degrees of freedom
of the photons (e.g. polarization, frequency, time of arrival) has outcomes determined only by
unitary-invariant properties of the spectral functions describing them [42, 63]. This means the
Hong-Ou-Mandel effect, or interferometry in more complex multimode interferometers, can
be used to directly estimate those invariant properties. Such a test could be used to certify the
nonstabilizerness of these states.

6.2. Robustness and scalability

The inequalities cm(r)⩽ m− 2 and h4(r)⩽ 1 are our main magic witnesses. By default, they
are both robust to incoherent noise and scalable. Robustness follows from the fact that they
remain valid witnesses if, rather than pure states, we consider any set of states. Specifically, any
state inside STAB cannot violate these inequalities. On the other hand, scalability stems from
the fact that (i) two-state overlaps are well-defined independently of any Hilbert space dimen-
sion and (ii) quantum computers can efficiently estimate overlaps [64]. We refer to a protocol
as scalable, or efficient, if one does not require exponentially increasing computational time,
number of measurements, or samples. Additionally, in our case, it is clear that scalability will
also depend on the trade-off between dimension and number of overlaps estimated in a given
inequality, for instance estimating h2n(r) is certainly not efficient.

6.3. Comparison with other schemes

In this section, we make a comprehensive review of existing methods for witnessing the non-
stabilizerness of quantum states and compare them with our approach. Clearly, any quantific-
ation scheme also constitutes a witness, thus, for a broader comparison, we were careful to
include such methods as well.

6.3.1. Methods that require additional entanglement generation. We start by presenting two
witnessing schemes that require additional entanglement; they use multifractal flatness [25]
and entanglement spectrum flatness [24]. First, define the inverse participation ratio,

Iq (|ψ 〉) :=
∑
b∈Fn2

|〈b|ψ〉|2q =
∑
b∈Fn2

rqb,ψ ,

where Fn2 denotes the n-dimensional vector space over the finite field F2 with two elements:
0 and 1. That is: Fn2 = {(b1, . . . ,bn) | bi ∈ {0,1}for all i = 1, . . . ,n}. We note that, to calculate
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Iq(|ψ 〉) for any fixed q, one needs to evaluate d= 2n overlaps. The multifractal flatness is
defined as

Fmulti (|ψ 〉) := I3 (|ψ〉)− (I2 (|ψ〉))2 .
This quantity witnesses nonstabilizerness whenever we obtain Fmulti(C|ψ 〉)> 0, where C
is an n-qubit Clifford operation. Since both calculating and measuring this quantity require
O(d) overlaps, this witnessing process is inefficient. We remark that, when averaged over the
Clifford orbit of the state |ψ 〉, this witness provides information about the stabilizer Rényi
entropy M2 which we will discuss in more detail below.

Three key aspects of this witness stand in stark contrast to our scheme. First, it is device-
dependent. Secondly, it is only applicable to pure states. Finally, to properly witness non-
stabilizerness of |ψ 〉, it requires additional entangling gates to be applied over the state |ψ 〉,
stemming from the Clifford unitary, C, needed for Fmulti(C|ψ 〉)> 0.

Another function that can be used to witness nonstabilizerness is the entanglement spectrum
flatness FA(|ψ 〉). We consider a pure state |ψ 〉15 and some n-qubit Clifford operation C such
that C|ψ〉 is sufficiently entangled. In some cases, shallow Clifford evolutions are enough.
We then choose an arbitrary bipartition HA⊗HB ' C⊗n of the n-qubit system and calculate
ρA := TrB(C|ψ 〉〈ψ |C†). The entanglement spectrum flatness of this bipartition is given by

FA (C|ψ〉) := Tr
(
ρ3A
)
−
[
Tr
(
ρ2A
)]2

.

If we obtain thatFA(C|ψ 〉)> 0, |ψ 〉must be amagic state, and thereforeFA(C|ψ 〉)> 0 acts as
awitness of nonstabilizerness. This witness can be efficientlymeasured (in terms of the number
of measurements and samples of ρA required) using simple quantum circuits [39, 65, 66].

Let us discuss more explicitly the advantages and drawbacks of these techniques when
compared to the scheme we propose. Entanglement spectrum flatness has the advantage that
it can witness almost any magic state (in the sense of Haar random states). In contrast, in
our inequality-based witness, certifications should target certain overlap values that become
increasingly rare for large systems to access randomly. This happens since the two-state over-
lap between Haar random n-qubit states behaves as ri,j ∼ 1/2n. Moreover, both flatness results
from above can approximate values of nonstabilizer monotones; thus, they can ultimately be
used for quantification (a task strictly more powerful than witnessing). At the moment, our pro-
tocol has no known link with quantification tools, although we believe this to be an interesting
direction for future research.

On the other hand, unlike our scheme, both of these methods are device-dependent and
applicable only to pure states. Additionally, let us assume that we would like to certify the gen-
eration of nonstabilizerness in some QPU of a network. Figure 3(b) illustrates our proposal to
handle this task. Notably, as previously explained, the certification can be distributed requiring
fewer resources than if we were to certify each QPU individually (figure 3(a)). Contrastingly,
with either of the two witnesses presented here, distributing the certification requires us to
entangle the degrees of freedom of the multiple QPUs in the network we are interested in
certifying, due to the Clifford operations that must be applied.

6.3.2. Methods that require full information about the STAB polytope or about the quantum
state. The vast majority of quantification schemes require full information on the stabilizer

15 Tirrito et al [24] exemplifies the task using an n-qubit fully separable state, but, to the best of our understanding,
their protocol works for any state.
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polytope. Beyond that, they often also require full (tomographic) information of the quantum
state. The following monotones require complete knowledge of the underlying state and of the
STAB polytope: stabilizer fidelity [27], stabilizer extent [27], stabilizer rank [27–29], stabilizer
nullity [67]. Some that are also well-defined for generic mixed states, having the same draw-
backs, are mana [30, 68], all variations of the robustness of magic [69], relative entropy [30],
min- and max-relative entropies [26], and dyadic negativity [69].

It is interesting to remark that the stabilizer extent ξ(|Ψ〉) has the extremely useful property
of being multiplicative,

ξ (|Ψ〉) := ξ (|ψ1〉⊗ · · · ⊗ |ψm〉) =
m∏
j=1

ξ (|ψj〉) ,

provided that all states |ψj〉 are 1-, 2- or 3-qubit states, i.e. that ψ ⊆D(C2s) with s ∈
{1,2,3} [27]. This implies that an alternative strategy to witnessing nonstabilizerness is to
make 1-, 2-, or 3-qubit state tomography of all states |ψj〉, use that information to calculate
their stabilizer extent, and then multiply the results. Compared to our scheme, beyond being
significantly device-dependent and demanding great control of the system (since one must per-
form full tomography), our scheme requires a smaller number of measurements and samples
(since overlap estimation is experimentally less demanding than performing full tomography,
even for single-qubit systems). It has been shown that the stabilizer extent is not multiplic-
ative in general [70]. It is also clear that, for larger systems, our witnessing technique will
outperform any strategy that demands full-state tomography.

The stabilizer nullity can be extended to treat unitaries [71]. In this form, it gives a lower
bound to the number of T gates required to apply a certain unitary. A similar property holds for
other magic monotones. Bounding the number of T gates is not possible with our formalism,
as this is a profoundly basis-dependent characterization.

It is noteworthy that several of the quantifiers mentioned above have been associated with
the perspective of witnessing as can be seen in [69]. Therein some witnesses for single-qubit
magic states were proposed. Additionally, the authors also show curious lower and upper
bounds on the scaling of magic monotones as the number of qubits n grows.

Interestingly, Rall et al [72] introduces a quantity called the stabilizer norm, defined as

S (ρ) =
1
2n
∑
P∈Pn

|Tr(ρP) |,

and shows that it can be used to witness nonstabilizerness, even for generic mixed states
of multi-qubit systems. The function S is multiplicative under tensor products and is upper
bounded by the robustness of magic. The authors use this construction to describe what they
refer to as ‘hyperoctahedral states’—states satisfying S(ρ)⩽ 1—which are particularly inter-
esting because they are nonstabilizer mixed states that admit fast classical simulation.

6.3.3. Methods that are not valid for generic mixed states. To the best of our knowledge,
various quantifiers have not been generalized beyond pure states; examples of these include
stabilizer fidelity, stabilizer rank, and stabilizer nullity. On the other hand, the stabilizer extent
has a mixed state version [69].

Recall that if one assumes purity of states and multi-qubit systems, a trivial witness is to
measure a single overlap of the state with respect to the |0n〉 state, in which case deviations
from 1/2n will witness nonstabilizerness. Because of that, it is only quantification that proves
to be a non-trivial task in the case of multi-qubit pure states. Therefore, in this section, we
focus on quantification methods that are, in some way, efficient to calculate or measure, at
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the cost of being defined only for pure states (or specific classes of mixed states). The stabil-
izer entropies are the most relevant measures in this category. The first such entropy introduced
was the stabilizer Rényi entropy [73]. Generally speaking, these are inefficient to compute (not
necessarily to experimentally measure) with respect to the number of qubits n of the quantum
system. Haug and Piroli [74] investigated when such functions can be considered monotones
and provided an explicit case study where stabilizer entropies could be computed efficiently.
Haug et al [23] introduced novel stabilizer entropies and algorithms for their efficient measure-
ment provided the α-moment of the Pauli spectrum of the quantum state under consideration
scales inversely polynomially with n.

It is simple to see for the case of stabilizer Rényi entropies why the quantifiers do not hold
for generic mixed states. Let us consider, for instance, the stabilizer 2-Rényi entropy defined
for mixed states ρ ∈ D(C2) as

M̃2 (ρ) :=− log2

(∑
P [Tr(Pρ)]

4

2Tr(ρ2)

)
where the sum is taken over the +1 elements of the single-qubit Pauli group {1,X,Y,Z}.
Crucially, M̃ is not a monotone for any mixed state ρ, but only for those with a specific
form, given by ρ= 1

2 +
1
2

∑
P∈GϕPP where G is a subset of the single-qubit Pauli group, and

ϕP ∈ {−1,1} [73]. For instance, considering the magic state

|F〉〈F|= 1
2

(
1+

1√
3
(X+Y+Z)

)
and mixed states ρν = Eν(|F〉〈F|) = (1− ν)|F〉〈F|+ ν 1

2 , the monotone as a function of ν
becomes

M̃2 (ρν) =− log2

{
1+ 3

[
(1− ν)/

√
3
]4

1+ 3
[
(1− ν)/

√
3
]2
}
.

Since M̃2(ρν)> 0 for any ν > 0, it is not a faithful monotone (or witness), since it would signal
the presence of nonstabilizerness for states arbitrarily close to the maximally mixed state.

Despite not being defined for mixed states, these monotones are extremely promising ways
of efficiently estimating nonstabilizerness. For instance, [21, 75] estimated nonstabilizerness
in a cloud-available quantum computer. Haug et al [23] showed that there are stabilizer entrop-
ies that can be efficiently measured, with the required number of measurements (or post-
processing) being independent of system size. Finally, [21] introduced a novel monotone,
which the authors termed ‘Bell magic’ that, besides being efficiently estimated on a quantum
computer via Bell measurements, also generalizes to certain sets of mixed states. Bell magic
was recently measured in [76].

6.3.4. Methods that are semi-device independent. Due to the connection between non-
stabilizerness, the negativity of quasiprobability distributions, and noncontextuality (both
Kochen–Specker and generalized), under certain considerations, any test of such notions of
classicality will also be a test capable of witnessing nonstabilizerness. This is discussed in
detail in appendix A; here, we comment on the device- or semi-device-independent nature of
these tests.

Our witnesses are inequality-based and semi-device independent in the sense that (i) the test
is made based only on statistics arising from two-state overlaps and (ii) we assume (in most
cases) that the underlying system is a multi-qubit system. These restrictions are the ‘semi’ for
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our approach. Inequalities that can be used to witness noncontextuality are significantly more
device-independent, in the sense that they are not necessarily overlap-based (or correlation-
based), while they will necessarily require some prior information about the Hilbert space
considered: even, odd, odd-prime, or composite system dimensionality structures.

One subtle point needs to be made: Violations of noncontextuality inequalities per se do
not suffice to experimentally witness the failure of noncontextual explanations of the data. One
must also test that the experimental requirements relative to the notions of KS-noncontextuality
or generalized noncontextuality are operationally met. Similarly to Bell inequality violations,
merely violating them does not attest to the failure of a local explanation of the data; somemin-
imal requirements need to be met (such as space-like separation between parties, no-signaling,
etc). In our case, the requirement is that the data is described by two-state overlaps, while in
noncontextuality inequalities other requirements are needed, and should be taken into consid-
eration, even if one is only interested in witnessing nonstabilizerness due to contextuality.

7. Discussion and future directions

We have shown that some two-state overlap inequalities that have been recently introduced
and successfully applied to investigate, theoretically and experimentally, a wide range of non-
classical resources [31, 39, 42–44, 52, 77, 78] are also nonstabilizerness witnesses. Using this
framework, we develop certification methods applicable to a single QPU, networks of QPUs,
and a form of delegated certification of states shared by third parties. Our witnesses are robust
in the sense of applying to both pure and mixed states of any kind. They are also scalable,
meaning they are independent of the system’s dimension.

It is worth mentioning that, arguably, a major drawback of our protocol is that, for multi-
qubit systems, violations of the inequality become increasingly rare in the following sense:
Haar-random pure quantum states of many qubits have an exponentially decreasing prob-
ability of violating the witnesses we propose, simply because in such cases, quantum two-
state overlaps scale as Tr(ρσ)∼ 1/2n. We expect this to remain true even if other inequalities
from the event graph polytope are later shown to serve as nonstabilizerness witnesses. Future
work could explore whether incorporating higher-order invariants might help to address this
limitation.

Various of the tools put forward either have their own technical interest or present novel
theoretical opportunities. For instance, set magic and full set magic can be further investigated
within the resource-theory framework. In this paper, set magic arises naturally from using unit-
ary invariants as our witnesses. There are several open questions on the possible operational
importance of these results for quantum computation. Is it possible to connect set magic to the
hardness of classically simulating a stabilizer circuit given a specific set of input states? Put
differently, can set magic be a good signature of quantum computational advantage? Does a
suitable quantifier for set magic exist? Framing simulation within a unitary-invariant frame-
work could better pinpoint the resources responsible for the exponential overhead of classical
simulation and even lead to a unified view of different simulation schemes [79].

In parallel, after the release of our paper, two other works [80, 81] have proved related
results, highlighting the growing interest in connecting resource theories of magic with opera-
tional tests related to the violation of inequalities more commonly considered by the quantum
foundations community. We believe our approach opens the door to a broader class of
inequality-based tests—drawing on tools from quantum foundations, such as Bell andKochen–
Specker inequalities—that may also serve as witnesses of nonstabilizerness even for the case
of multi-qubit systems. This perspective suggests promising new directions for identifying
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and characterizing magic using foundational principles, similar to what has been investigated
previously by [82–84].

In another direction, exploring if a similar effect to full set magic exists when considering
the notion of set coherence could be of interest [31, 33]. Moreover, for composite systems,
large violations of the inequality h4(r)⩽ 1 may also require the presence of entanglement. We
believe these are aspects that merit further investigation.
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Appendix A. Two-state overlap inequalities cannot witness nonstabilizerness
in general

In this appendix, we will prove the existence of an event-graph inequality that is both facet-
defining and violated by sets of stabilizer states. To do so, we use some results within the field
of Kochen-Specker noncontextuality [7]. We then extend these considerations to generalized
noncontextuality [85]. We also discuss how our findings compare with existing connections
between contextuality and nonstabilizerness.

To provide some context, recall that magic-state injection is the leading model for experi-
mentally realizing fault-tolerant quantum computation. While it involves only stabilizer oper-
ations at every step of the computation, the injection of magic states elevates the model to
quantum universality. Howard et al [82] showed that contextuality is a necessary resource for
universal quantum computation via magic-state injection. The scope of this result depends on
whether the model involves even-prime dimensional qudits (i.e. qubits) or odd-prime qudits.
For the latter case, a state is non-contextual if and only if it belongs to the set of states unable
to unlock any computational speed-up. This set forms a polytope, denoted as PSIM, meaning
that the subtheory within this polytope is efficiently simulable with classical computation. This
polytope strictly contains the set of stabilizer states but is not equivalent to it.
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Therefore, for odd-prime dimensions, Kochen–Specker noncontextuality inequalities serve
as witnesses of nonstabilizerness. However, for even-dimensional systems, the same does not
hold, as we now show. We start by constructing the relevant event graph. First, we construct
the so-called exclusivity graph Gexc [86, 87]. We take this graph to be the complement graph16

of the Shrikhande graph [88]. See [89, figure 2, pg 10] for a representation of Gexc. We follow
closely the discussion of the proof of KS-contextuality discussed in [89]. Secondly, we take the
suspension graph [87, Definition 2.23, pg 36] ∇Gexc by a new node ⋆. This new graph will be
our event graph G =∇Gexc. It was shown in [32] that any inequality from an exclusivity graph
Gext is mapped to some facet defining inequality of the event graph G =∇Gexc. Therefore, the
inequality ∑

v∈V(Gexc)

r⋆,v ⩽ 3

is both a noncontextuality inequality (within the Cabello–Severini–Winter framework [86])
and a facet-defining event-graph inequality, when a specific mapping takes place (see [32] for
details). This inequality corresponds to Mermin’s Bell inequality [90] and can be violated by
letting the vertices v ∈ V(Gexc) be given by the stabilizer (separable) states

|0,+,+〉, |1,−,+〉, |1,+,−〉, |0,−,−〉
|+,0,+〉, |−,1,+〉, |−,0,−〉, |+,1,−〉
|+,+,0〉, |−,−,0〉, |−,+,1〉, |+,−,1〉
|1,1,1〉, |0,0,1〉, |0,1,0〉, |1,0,0〉

and ⋆ by the Greenberger–Horne–Zeilinger (GHZ) state |GHZ〉= 1√
2
(|0,0,0〉+ |1,1,1〉). In

this way, ∑
v∈V(Gexc)

r⋆,v =
∑

v∈V(Gexc)

|〈GHZ|v〉|2 = 4> 3.

The above shows that there are event-graph inequalities that can be violated by stabilizer
states.

Let us now discuss the relationship between generalized noncontextuality [85] and non-
stabilizerness. It was shown in [83, 84] that odd-dimensional stabilizer subtheory allows for
a generalized noncontextual model. In this case, any violation of a noncontextuality inequal-
ity attesting to the failure of generalized contextuality will also be a witness of having states
(transformations, measurement effects) outside the stabilizer subtheory. However, similarly to
the case of KS-noncontextuality, for even-dimensional systems, no such noncontextual model
for the stabilizer subtheory exists. Therefore, in general, even dimensional stabilizer subthe-
ory can violate generalized noncontextuality inequalities. Finding which inequalities are not
violated by such stabilizer subtheory becomes a case-by-case study.

In summary, the connection between event graph inequalities and noncontextuality inequal-
ities does not imply that any event graph inequality will immediately be a nonstabilizerness
witness and therefore does not render our results trivial. On the other hand, it also does not
make our results immediately incorrect. The fact that our inequality witnesses (which can also
be interpreted as noncontextuality inequalities) cannot be violated by stabilizer states does
not imply that they do not violate some noncontextuality inequality. As it is in general, for

16 The complement of a graph G is a new graph Gc such that V(G) = V(Gc) and, e ∈ Gc iff e /∈ G.
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a given KS-measurement scenario (or equivalently, a generalized prepare-and-measure non-
contextuality scenario), it is only if one satisfies all the noncontextuality inequalities that a
noncontextual model exists.

Appendix B. Quantum bounds for magic witnesses

In this appendix, we investigate what are the optimal quantum violations of the inequality wit-
nesses that we have proposed as nonstabilizerness witnesses. We start with a brief description
of how SDP techniques can be used for such a task. We then use these tools to find the optimal
quantum violations for the cyclic inequalities and the h4(r)⩽ 1 inequality.

B.1. Lower bounds

Let f :D(H)|V(G)| → R be a convex-multilinear functional defined with respect to some facet-
defining inequality of C(G), for some G, i.e. f(·)≡ h(r(·)). In its generic form, f is given by,

f
(
ρ
)
=

∑
u,v∈V(G)

αuvTr(ρuρv) ,

whereαuv ∈ Z for all u,v. We are interested in evaluating the quantum bound of this functional,
i.e. max{ρx}Nx=1

f , over all possible quantum realizations, where N= |V(G)|.
To determine lower bounds for the quantum bound, we employ a seesaw of SDPs [91].

Indeed, by fixing all the states except one, the problem of maximizing the bound over the
remaining state is an SDP task and can be performed efficiently.

B.2. Upper bounds

A way to evaluate upper bounds for this quantity is to adapt the Navascues-Vértesi (NV) hier-
archy of SDP relaxations [92] to this particular problem. In a similar spirit, we make a list of
operators S = {1,{ρx}} and choose a degree of relaxation k. A relaxation of degree k con-
sists of keeping all products of at most k operators from the list. The moment matrix is then
constructed,

Γij = Tr [Si Sj] ,

where Si,Sj ∈ S . For a good introduction and review of SDP techniques in quantum informa-
tion science see [91].

One samples a linearly independent basis of such moment matrices {Γ(1), . . . ,Γ(m)}. The
relaxation then consists of finding an affine combination Γ =

∑m
j=1 cjΓ

( j) ∈ f, with Γ⩾ 0, as
follows,

max
c⃗∈Rm

f(Γ) s.t. Γ≥ 0 ,
m∑
j=1

cj = 1.

B.3. Maximal quantum violation of m-cycle inequalities

B.3.1. Qubit model. The optimal solution of the maximization problem for cm(r) is a set of
states {|ψx〉}mx=1 of the form

|ψx〉= cos
(
θ(m)x

)
|0〉+ sin

(
θ(m)x

)
|1〉 . (B1)
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where

θ(m)x =

{
π
2 − (x−1)π

2m if m is odd,
π
2 + (x−1)π

2m if m is even.

This family of optimal states is found explicitly using the seesaw SDP technique. Using the
hierarchy, we could prove that the quantum bound is tight (to 10−5 precision) for this family
of states up tom= 8. For larger values ofm,m⩽ 20, we have checked the lower bounds match
the analytical formula up to the same precision. For m> 20, we conjecture that this remains
the optimal quantum solution.

B.3.2. Asymptotic behavior. Let us denote the set of optimal quantum states as ψmax. The
maximum quantum violation is then given by

cm
(
r
(
ψmax))= (m− 1)cos2

( π

2m

)
− cos2

[(
1− 1

m

)
π

2

]
.

On the other hand, the optimal incoherent quantum realization is cm(r(ψ
inc)) = m− 2. The

fraction between these two quantities goes to 1 as m grows.

Proposition 1. The limit of the ratio cm(r(ψ
inc))/cm(r(ψ

max)) when m→∞ is 1.

Proof. To see this, write

cm
(
r
(
ψinc

))
cm
(
r
(
ψmax)) =

m− 2

(m− 1)cos2
(
π
2m

)
− cos2

[
1
2

(
1− 1

m

)
π
] .

The term cos2( 12 (1−
1
m )π) is bounded, therefore the limit reduces to

lim
m→∞

cm
(
r
(
ψinc

))
cm
(
r
(
ψmax)) = lim

m→∞

m− 2

(m− 1)cos2
(
π
2m

) = lim
m→∞

m− 2
m− 1

= 1.

Figure 5 shows the ratio as a function of m, denoted, for simplicity, as C/Q. The numer-
ics above suggest that pure single-qubit states always provide the optimal violation. We have
numerically showed this to be true for m up to 20.

B.4. Maximum quantum violation of h4(r)⩽ 1

Again, using the methods described in this section, we can show tight bounds for the maximal
quantum realizations violating h4(r)⩽ 1, for sets ρ⊆D(Cd) with d= 3,4.

Note that h4 (as any event-graph functional) satisfies h4(r(ρ)) = h4(r(UρU†)) for any unit-
ary U and UρU† ≡ {UρiU†}mi=1. This implies that any maximal quantum violation can be
attained using Hilbert spaces of at most dimension d= 4. We find a tight bound of 1+ 1/3, up
to 10−5 precision, for both d= 3,4, proving that qutrits are sufficient to achieve the maximum
quantum violation of h4.
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Figure 5. Asymptotic behavior of C/Q for the optimal solution of the cyclic inequal-
ities. Here, C≡ m− 2, which is the optimal value attainable by cm(r) with incoherent
quantum realizations r= r(ρinc). Q represents the optimal value obtainable using any
quantum state, attained with ρ= ψmax given by equation (B1). We present their fraction
as a (continuous) function of m.

Appendix C. Proof of theorem 2

Before proving theorem 2, we present some novel technical results that are of general interest
to the event-graph formalism introduced in [32].

Following the same notation used, for any given event graphG, with edgesE(G) and vertices
V(G), we denote the polytope of all edge-weights r : E(G)→ [0,1] realizable by set-incoherent
tuples as C(G). The Hamming weight of a string (or, equivalently, a tuple) s of 0/1-assignments
equals the number of 1 assignments in the string (or tuple) and is denoted |s|H.

Lemma 4. Let G = Cm be the m-cycle graph. Fix m≥ 3 and some ẽ ∈ E(Cm). If we denote

Cẽ := {r ∈ C(Cm) : rẽ = 1} ,

we have that Cẽ = {1}×C(Cm−1).

This lemma shows that if we define the cross-section Cẽ of the polytope C(Cm) along the
direction rẽ = 1, the resulting polytope is isomorphic to C(Cm−1). This implies that given any
facet-defining inequality of C(Cm), if we force an edge to be equal to one, the resulting inequal-
ity will be a facet-defining inequality of C(Cm−1), or a trivial inequality.

Proof of lemma 4. Because C(Cm) is a convex polytope, the same is true for Cẽ. Let
ext(P) denote the set of extremal points of any convex polytope P, and hence P=
CONVHULL[ext(P)]. Let us assume, wlog, an ordering r= (re)e∈E(Cm) = (rẽ,re1 , . . . ,rem−1).
We want to show that,

ext(Cẽ) = {(1,s) ∈ Rm : s ∈ ext(C(Cm−1))} .

(⊆) Let r̃ ∈ ext(Cẽ). By construction, we must have that r̃≡ (1, s̃) ∈ ext(C(Cm)), with s̃ a
deterministic assignment for which |s̃|H 6= m− 2. Therefore, s̃ ∈ ext(C(Cm−1)).

(⊇) This direction follows trivially.
Hence, we have that

Cẽ = {1}×C(Cm−1) ,
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where {1} is the singleton polytope, as we wanted.

This simple result will be instrumental for constructing the inductive step used in the proof
of theorem 2.

We now make the notion of a quantum realization within the context of the event graph

formalism precise. We can associate nodes of the graph to quantum states V(G) 3 v
ℓ7→ ρv ∈ ρ

via some vertex ρ-labeling ℓ : V(G)→ ρ. Once such labeling ℓ is fixed, we associate edge-

weights re ≡ ru,v to two-state overlaps E(G) 3 e= {u,v} ℓ7→ {ρu,ρv}
⟨·,·⟩HS7→ Tr(ρuρv)17, with

〈X,Y〉HS = Tr(X†Y) the Hilbert–Schmidt inner product.
The cardinality of ρ is not necessarily equal to that of V(G), e.g. the same state can be

associated to all vertices by the labeling ℓ(v) = ρ,∀v ∈ V(G). Each vertex labeling ℓ is iso-
morphic to a tuple (ℓ(v))v∈V(G) ∈ D(H)|V(G)|. Given some ρ-labeling ℓ, we can see r as a
function that outputs a tuple of two-state overlaps rℓ(ρ) for an input set ρ. For instance, take
ρ= {|ψ 〉〈ψ |} ∪ {σ1,σ2} and ℓ(v) = |ψ 〉〈ψ | for all v ∈ V(G), as above. Since all vertices of
V(G) have been assigned the same state, the associated rℓ(ρ) is rℓ(ρ) = (1,1, . . . ,1). When it
is clear from the context which labeling ℓ is being used, we simply write r(ρ).

Recall that, any edge-weight r : E(G)→ [0,1] for an event graphG, is said to have a quantum
realization [45, 77] if there exists ρ= {ρi}i∈V(G) such that r= r(ρ)≡ (Tr(ρiρj)){i,j}∈E(G). We
denote |X| the cardinality of a set X. We say that a quantum state ρ ∈ D(H) is pure when
Tr(ρ2) = 1, in which case we denote it as a rank-1 projector ρ= |ψ 〉〈ψ | ≡ ψ.

Lemma 5. Let h : R|E(G)| → R be any convex-linear functional, acting over elements r ∈
[0,1]|E(G)|, for any event graph G. Then, for any quantum realization r= r(ρ)with states {ρi}i,
there exists a pure state quantum realization r= r(ψ) with states {|ψi 〉}i, such that

h
(
r
(
ρ
))

⩽ h
(
r
(
ψ
))
.

Moreover, ψ ⊆ CONVHULL(ρ).

Proof. Each ρi ∈ ρ is a convex combination of pure states {ψ(i)
ωi }ωi∈Ωi for some set of pure

states Ωi. Noticing that h(r) are, by construction, linear functionals over the overlaps,

∀i,ρi =
∑
ω

λ(i)ω |ψ(i)
ω 〉〈ψ(i)

ω |=⇒ h
(
r
(
{ρi}i

))
=

∑
ω1,...,ωm

λ(1)ω1
. . .λ(m)ωm h

(
r
({
ψ(i)
ωi

}
i

))
.

To conclude the above, one needs to introduce some redundant values of 1=
∑
ωi
λ
(i)
ωi . The

equation then follows from linearity with respect to r, and hence multilinearity with respect to
the states.

We can collectively write s= (ω1, . . . ,ωm) and define qs = λ
(1)
ω1 . . .λ

(m)
ωm . Because each set

of weights {λ(i)ωi }ωi∈Ωi correspond to convex weights, i.e.
∑
ωi
λ
(i)
ωi = 1 with 0⩽ λωi ⩽ 1, we

get that {qs}s is also a set of convex weights. With this simplified notation we have that

17 Sometimes the inner-product ⟨ϕi |ϕj⟩ is called an overlap. We will not use this terminology here and simply refer
to the overlap as the absolute value square of inner-product between states, or more generally, to the trace between
the product of two density matrices.
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h(r({ρi}i)) =
∑

s qsh(r({ψ
(i)
s }i)) with

∑
s qs = 1 and 0⩽ qs ⩽ 1. In other words, the linear

functional h realized by overlaps between general quantum states can be written as the convex
combination of the same functional realized by overlaps between pure states. Choosing now a
particular s⋆ such that ∀s,h(r({ψ(i)

s⋆ }i))⩾ h(r({ψ(i)
s }i)) we see that

h
(
r
(
{ρi}i

))
=
∑
s

qsh
(
r
({
ψ(i)
s

}
i

))
⩽
∑
s

qsh
(
r
({
ψ
(i)
s⋆

}
i

))
.

Since
∑

s qs = 1 we have that h(r({ρi}i))⩽ h(r({ψ(i)
s⋆ }i)).

Theorem 6. Let h(r) be any linear-functional over r= (re)e∈E(G) for any event graph G and
Q(G), defined by

Q(G) :=
{
r : E(G)→ [0,1] : ∃ρ,r= r

(
ρ
)}
,

be the set of quantum realizable edge-weights. Then, there always exists a pure state quantum
realization r= r(ψ) such that

h
(
r
(
ψ
))

= max
r∈Q(G)

h(r) .

The same holds if we restrict realizations to some convex and compact subset S⊆D(H) of
all states, so that the quantum realizations are such that r= r(ρ

S
), with ρ

S
⊆S.

Proof. For any such h, lemma 5 shows that to every quantum realization r= r(ρ), there exists
a larger pure state realization within the convex hull of ρ. Therefore, the maximum attainable
value, among all quantum realizations r ∈Q(G), must be pure-state realizable, otherwise this
would contradict lemma 5. The argument is the same if S is used instead.

This theorem implies the immediate corollary.

Corollary 1. The maximal quantum violation of any facet-defining inequality of C(G), for any
event graph G, is attained by pure states.

Proof. Since C(G) is a convex polytope, any facet-defining inequality from C(G) is described
by convex-linear functionals h(r), together with some b ∈ R satisfying h(r)⩽ b.

This corollary proves (and generalizes) a conjecture from [31], that the maximal bounds
violating the c3(r)⩽ 1 inequality using pure states were also valid for mixed states in general
and for any dimension. While here we will use these results to prove theorem 2, they are
important by themselves for the event-graph approach and the theory of coherence witnesses.

Proof of theorem 2 of the main text. Due to theorem 6, we can restrict ourselves to pure sta-
bilizer states. Consider first the 3-cycle inequality. We have

r1,2 + r1,3 − r2,3 ⩽ 1.

From theorem 1, we see that if all states in the graph are oblique to their neighbors there can
be no violation since r1,2 + r1,3 − r2,3 ⩽ r1,2 + r1,3 ⩽ 1

2k +
1
2k′

⩽ 1 for all k,k ′ = 1, . . . ,n. The
same holds if we allow some edge-weights to be zero. If we allow any edge-weight in the
inequality to be equal to one, it is simple to see that we cannot have a violation, as we would
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have two nodes corresponding to the same stabilizer state, implying that the remaining pair of
overlaps is equal. This shows the result for c3(r).

To show that the same is true for any m-cycle inequality we proceed by induction. Assume
that an m-cycle inequality cannot be violated by quantum realizations r= r(ρ

STAB
), with

ρ
STAB

⊆ STAB. For any (m+ 1)-cycle inequality we have that, ∀e ∈ E(Cm+1),

−re+
∑

e ′ ∈ E(Cm+1)
e ′ 6= e

re′ ⩽
∑

e ′ ∈ E(Cm+1)
e ′ 6= e

re′ ⩽
m
2

for any set of pure stabilizer states oblique or orthogonal to their neighbors in the graph. Since
m/2⩽ m− 2 for allm≥ 4 it remains to show that if two (or more) neighboring stabilizer states
are equal we still cannot have a violation.

From lemma 4, if any edge-weight is equal to one, this implies that the cycle inequality from
C(Cm+1) becomes an inequality from C(Cm), which, by hypothesis, cannot be violated with the
stabilizer subtheory, i.e. by any quantum realization r= r(ρ

STAB
). We conclude that if the sta-

bilizer subtheory cannot violate inequalities from C(Cm) it will also not violate the inequalities
from C(Cm+1). As we know this is true for the cycle inequalities C(C3), by induction, this prop-
erty must be satisfied by all facet-defining inequalities for the event graph polytopes C(Cm) for
any m.

Appendix D. Proof of theorem 3

In this section, we start by building a series of results that are used to facilitate the proof of
theorem 3.

The inequality h4(r)⩽ 1 is facet-defining for C(K4), where K4 is the complete graph of
four vertices. This inequality is given by

h4 (r) = r1,2 + r1,3 + r1,4 − r2,3 − r2,4 − r3,4 ⩽ 1. (D1)

We now demonstrate the following lemma.

Lemma 7. Let G =Km. If r= r(ψ) such that the ψ-labeling ℓ : V(G)→ ψ assigns the same
pure state to adjacent vertices (any pair of vertices sharing an edge), then hm(r(ψ))⩽ 1.

Proof. Without loss of generality, we may consider r1,k⋆ = 1 for some k⋆ 6= 1. Let r= r(ψ) be
any pure state realization satisfying this constraint. In this case, wemust have that |ψ1〉= |ψk⋆〉.
Therefore, r1,k = rk⋆,k for all k= {2, . . . ,m}\{k⋆}. The inequality hm(r)⩽ 1 is then written as
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hm (r) =
m∑
k=2

r1,k−
m−1∑
i=2

m∑
j>i

ri,j

= 1+
m∑

k= 2
k 6= k⋆

rk⋆,k−
m−1∑
i=2

m∑
j>i

ri,j

= 1−
m−1∑
i = 2
i 6= k⋆


m∑

j > i
j 6= k⋆

ri,j

⩽ 1

where we have used the fact that every element rk⋆,k is present in the sum
∑m−1

i=2

∑m
j>i ri,j.

Recall that Q(G) is the set of all quantum realizable edge-weights given an event graph G.
Any stabilizer realization is (evidently) a quantum realization. In the remainder of this section,
we will focus on situations concerning stabilizer realizations.

Consider a triple of non-orthogonal stabilizer states. We can use the value of two of the
overlaps to lower bound the third.

Proposition 2. Take three (arbitrary, non-orthogonal) n-qubit stabilizer states |ψ1〉, |ψ2〉, and
|ψ3〉 such that r1,2 = 1/2N2 , r1,3 = 1/2N3 and r2,3 6= 0. Then, r2,3 ≥ 1/2N2+N3 where N2,N3 ∈
{0, . . . ,n}.

Proof. Without loss of generality, we can take |ψ1〉= |0n〉. Let us start by considering the case
where both N2,N3 6= 0 or, equivalently, where r1,2,r1,3 6= 1. Since r1,2 = 1/2N2 , we have that
|ψ2〉 is of the form

|ψ2〉=
1

2N2/2

|0n〉+
2N2−1∑
j=1

iαj |aj〉


where αj ∈ Z4 and aj ∈ Fn2\{0n}. Similarly, r1,3 = 1/2N3 implies that the state |ψ3〉 is of the
form

|ψ3〉=
1

2N3/2

|0n〉+
2N3−1∑
j=1

iβj |bj〉

 ,
where βj ∈ Z4 and bj ∈ Fn2\{0n}. From this, we see that

r2,3 =
1

2N2+N3

∣∣∣∣∣∣1+
∑
j,j ′

iαj−βj′ 〈bj′ |aj〉

∣∣∣∣∣∣
2

.

If r2,3 6= 0, it is clear from the expression above that r2,3 ⩾ 1/(2N2+N3).
Finally, we note that, if either Ni = 0, we have the corresponding state |ψi〉= |0n〉. In that

case, it is clear that r2,3 = 1/2Nj , with j 6= i, which complies with the lower bound established
above.
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Next, we demonstrate a result concerning realizations containing orthogonal states. This
is the most important stepping stone to the proof of theorem 3 because realizations involving
null edge-weights are significantly harder to analyze with respect to inequality violations.

Lemma 8. Let G =K4 and consider a quantum realization r= r(ρ
STAB

) ∈Q(K4), where
STAB denotes the set of n-qubit stabilizer states. If such a realization assigns to any two
vertices two orthogonal states, then h4(r)⩽ 1.

Proof. Consider the set of four (pure) n-qubit stabilizer states: {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉}, where
|ψi〉 is the stabilizer state associated with the ith vertex. The following observations follow
trivially from lemma 7 when considering realizations with stabilizer states: (i) If four or more
overlaps are zero, equation (D1) cannot be violated; (ii) If |ψ1〉 is orthogonal to any of the other
states, again no violation of equation (D1) is possible; (iii) To achieve a violation, at least two
of the overlaps r1,j must equal 1/2 and the remaining overlap with positive contribution must
obey r1,k > r2,3 + r2,4 + r3,4 with k 6= j.

Throughout, we take r1,2 = 1/2 and |ψ2〉= |0n〉 which imposes that |ψ1〉= (|0n〉+
iα|s〉)/

√
2,whereα ∈ Z4, s ∈ Fn2\{0n}, and |s〉 denotes the corresponding computational-basis

state. Moreover, we can set α= 0 because there is always a Clifford unitary that transforms
(|0n〉+ iα|s〉)/

√
2 into (|0n〉+ |s〉)/

√
2 while leaving the state |0n〉 unchanged. Thus, for sim-

plicity, we take |ψ1〉= (|0n〉+ |s〉)/
√
2. All of this is done w.l.o.g.

If we have three overlaps equal to zero, the only way for a violation to occur is that: (i) r2,3 =
r2,4 = r3,4 = 0, (ii) r1,3 = 1/2, and (iii) r1,4 > 0. Note that the roles of r1,3 and r1,4 could be
switched, leading exactly to the same conclusion.Wewill now show that these three conditions
are incompatible. A generic stabilizer state takes the form:

|ψj〉=
1√
|Wj|

∑
w∈Wj

iαw |w〉 (D2)

where Wj ⊆ Fn2 and |Wj|= 2Nj , for some Nj ∈ {0,n}. For the state to be a stabilizer state, Wj

and αw must possess specific properties; these are irrelevant for the purposes of our proof
and we will therefore omit them, but the interested reader is pointed to appendix A of [93] or
theorem 9 of [41] for details.

Since, r2,3 = 0, for the state |ψ3〉, 0n cannot belong toW3. Combining this observation with
condition (ii) and given that |ψ1〉= (|0n〉+ |s〉)/

√
2, it clear that |ψ3〉= |s〉. Because r2,4 =

r3,4 = 0, the remaining state |ψ4〉 must be a linear combination of computational-basis states
so that 0n,s /∈W4. This necessarily means that r1,4 = 0, violating condition (iii).

If exactly two of the overlaps {r2,3,r2,4,r3,4} are zero, figure 6(a) illustrates the nine possible
combinations of edge-weight assignments that could potentially lead to violations. Fortunately,
symmetry constraints illustrated therein mean that we can restrict ourselves to only two dif-
ferent sub-cases.
Sub-case 1.–We consider the case depicted in the second row of the second column of

figure 6(a): r1,2 = r1,3 = 1/2 and r2,3 = r2,4 = 0. Every scenario in the top two rows is equi-
valent to this one.

For a violation to occur, we must have r1,4 > r3,4. The fact that r1,3 = 1/2 and r2,3 =
0 implies that |ψ3〉= |s〉. The state placed at the fourth vertex can admit the form in
equation (D2). Because r2,4 = 0 then 0n /∈W4; contrarily, since r3,4 6= 0, s ∈W4. Immediately,
this means that r1,4 = 1/2N4+1 while r3,4 = 1/2N4 , which means that r3,4 > r1,4, and therefore
no violation can occur.
Sub-case 2.–We now consider the sub-cases in the bottom row of figure 6(a) which are all

equivalent between themselves, but non-equivalent to the six sub-cases in the top two rows.
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Figure 6. Vertex assignments with null edge-weights. The figure illustrates the cases
where (a) exactly two overlaps are zero and (b) there is exactly one null overlap. Dashed-
red lines indicate edges of the graph with an assigned weight equal to zero, dotted-blue
lines represent the edges assignedwith the value 1/2, while solid-black lines depict edges
with positive (but arbitrary) edge-weight.

We take the edge-weight assignment on the first column: r1,2 = r1,4 = 1/2 and r2,3 = r3,4 = 0.
This means that, for a violation to occur r1,3 > r2,4. The condition that r1,4 = 1/2 enforces one
of the following three forms for |ψ4〉 :

|ψ4〉=


|0n〉
|s〉
|0n⟩+iβ |s⟩√

2
,β ∈ {1,3} .

Lemma 7 informs us that the first option will lead to no violation; moreover, the second option
leads to r2,4 = 0 taking us back to the three-null-overlaps situation which we already proved
leads to no violation. This leaves us with the last option, that is: |ψ4〉= (|0n〉+ iβ |s〉)

√
2, with

β ∈ {1,3}. Immediately, we see that r2,4 = 1/2, and therefore it is impossible to meet that
condition that r1,3 > r2,4, so that no violation is possible in this case either.

Finally, it remains to assess the case where only a single null overlap exists. Figure 6(b)
illustrates the three possible edge-weight assignments that may lead to violations. We note
that the top two scenarios are equivalent, meaning that, again, we have to focus only on two
subcases.
Sub-case 1.–We consider r1,2 = r1,4 = 1/2 and r2,3 = 0 (second row of figure 6(b)). For

a violation to occur, the following must hold r1,3 > r2,4 + r3,4. We note that r1,4 = 1/2 and
r2,4 6= 0 implies that |ψ4〉= (|0〉+ iβ |s〉)/

√
2, with β = {1,3}. This fixes r2,4 = 1/2 which

immediately means that the condition r1,3 > r2,4 + r3,4 can never be met, and therefore no
violation can occur.
Sub-case 2.–We consider r1,2 = r1,3 = 1/2 and r2,3 = 0. This means that for a violation to

hold, we must have r1,4 > r2,4 + r3,4. The fact that r1,3 = 1/2 and r2,3 = 0 implies that |ψ3〉=
|s〉. The state in the fourth vertex can assume the general form given by equation (D2) where
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both 0n and s must belong to the set W4 (otherwise, we fall back into the cases with two or
three null overlaps). Automatically this means that r2,4 = r3,4 = 1/2N4 . On the other hand, r1,4
can be (at most) r1,4 = 1/2N4−1, which means that the condition r1,4 > r2,4 + r3,4 cannot be
met, and therefore no violation can occur.

This concludes the assessment of all possible cases. Therefore, if any overlap ri,j is zero,
no violation of the inequality (D1) is possible.

Finally, we have all the tools needed to prove theorem 3.

Proof of theorem 3 of the main text. Consider a set of four (pure) n-qubit stabilizer states:
{|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉}. Recall that, if we want to find a violation of equation (D1), no two
states can be the same (lemma 7) so that: |ψi〉 6= |ψj〉 for i 6= j. Therefore, to obtain h4 > 1 the
following conditions must hold: (i) there are at least two r1,j = 1/2, (ii) the remaining overlap
r1,k with k 6= j must obey: r1,k > r2,3 + r2,4 + r3,4 .

Without loss of generality, take |ψ1〉= |0n〉 and assume that r1,2 = r1,4 = 1/2 . Under these
assumptions, for a violation to occur we must have r1,3 > r2,3 + r2,4 + r3,4 .

Because r1,2 = 1/2 this means that |ψ2〉= (|0n〉+ |s〉)/
√
2 where s ∈ Fn2\{0n}. Evidently,

something similar can be said for |ψ4〉 : |ψ4〉= (|0n〉+ iα|w〉)/
√
2, with w ∈ Fn2\{0n}

and α ∈ Z4. This will impose a constraint on the overlap r2,4 :

r2,4 =


1, if w= s∧α= 0

0, if w= s∧α= 2

1/2, if w= s∧α= {1,3}
1/4, if w 6= s

. (D3)

Lemmas 7 and 8 guarantee, respectively, that the first and second options give no violation and
we can thus focus on the other two.

Taking r2,4 = 1/2 we have: r1,3 > 1/2+ r2,3 + r3,4, which is impossible to verify since at
most r1,3 can be 1/2.

Taking r2,4 = 1/4 we get the condition r1,3 > 1/4+ r2,3 + r3,4. In order for this to hold,
r1,3 must be equal to 1/2 which implies that the corresponding state must take the form |ψ3〉=
(|0n〉+ iβ |t〉)/

√
2. Immediately, this will imply that the values for r2,3 and r3,4 are bounded

as r2,4 in equation (D3). Since we know realizations with null overlaps to yield no violation
(lemma 8), it is clear that the condition r1,3 > 1/4+ r2,3 + r3,4 can never be met, because r1,3
can be at most 1/2.

Theorem 6 guarantees that this holds also for mixed stabilizer states. This concludes the
proof.

We conclude this section by generalizing theorem 3 for d-dimensional qudits.

Theorem 9. There exists no quantum realization r= r(ρ
STAB(d)

) ∈Q(K4), where STAB(d)

denotes the set of stabilizer states of nd-dimensional qudits, such that h4(r)> 1, for any integer
value n≥ 1.

Proof. The overlap |〈ψ |ϕ〉|2 of any two non-orthogonal stabilizer states, |ψ〉 and |ϕ〉, of n
qudits of dimension d can assume value 1/dN with 0⩽ N⩽ n , see lemma 2 of [94] on the
overlap between pure stabilizer states.

Again, lemma 7 guarantees that, if any state is repeated, there is no violation of the inequal-
ity, so we assume all states to be different. The positive terms in h4(r) lead to r1,2 + r1,3 + r1,4 =
3/d , in the best case. For d= 3 this leads to a value of at most 1 and for d> 3 the value will
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be smaller than one. As a consequence, it is immediately realized that no violation of the
inequality is possible.
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