Azimuthal decorrelation between leptons in the Drell-Yan
process as a probe of infrared QCD: Phenomenology,
predictions and measurement of a novel collider observable
using perturbative resummation techniques

The following correspondingly numbered figures and tables should replace those ap-
pearing in Sections 13.1 and 13.3 of the aforementioned PhD thesis by Lee Tomlinson.

None of the associated text in the thesis requires modification.

Lee Tomlinson
March 2015
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FiGure 13.1. Bin-by-bin correction factors for the ¢* distributions in the
66 GeV < M < 116 GeV region, in different |y| bins. These factors are
to be applied to the background-subtracted distributions of the number of

candidate events in data.
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FIGURE 13.2. Bin-by-bin correction factors for the ¢* distributions in the
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right) regions,
in different |y| bins. These factors are to be applied to the background-
subtracted distributions of the number of candidate events in data.
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FIGURE 13.7. The results of the ATLAS ¢* analysis in the Z — uu chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass region shown is 66 GeV < M < 116 GeV, and each
distribution corresponds to one of the six equally-sized rapidity bins across

the total range |y| < 2.4.
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FIGURE 13.8. The results of the ATLAS ¢* analysis in the Z — uu chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass regions shown are 46 GeV < M < 66 GeV (left) and
116 GeV < M < 150 GeV (right), and each left-right pair of distributions
corresponds to one of the three equally-sized rapidity bins across the total

range |y| < 2.4.
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FIGUurE 13.9. ATLAS data compared with NNLL+NLO prediction at 8 TeV (66 GeV < M < 116 GeV, |y| < 1.2)
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FIGURE 13.11. ATLAS data compared with NNLL+NLO prediction at 8 TeV (116 GeV < M < 150 GeV)
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TABLE 13.2. Tabulation of ¢* distributions, along with corresponding systematic and statistical uncertainties, for the off-peak
analyses: 46 GeV < M < 66 GeV and 116 GeV < M < 150 GeV. The relative dominance of the uncertainties for each bin are
indicated using a red-blue spectrum: red = more dominant, blue = less dominant.

10

46 GeV < M < 66 GeV 116 GeV < M < 150 GeV
ly] < 0.8 08< |yl <1.6 16 <yl <24 ly| < 0.8 08< |yl <1.6 1.6 < |yl <24

low  high (1/0)do/dg™ 6¢"[%] 0¢"gal%] (1/0)do/dd™ 6¢" (%] 0" sarl%] (1/0)do/dd™ 6¢" (%] 6¢"sarl%] (1/0) do/dd™ 6¢" (%] 60" ail0] (1/0) do/dd™ 6¢" (%] 60" an[%] (1/0) do/dd™  5¢" %] 60" sasl %]
0.0001  0.004 7.29 8.06 1.98 7.19 1.87 6.88 2. 11.6 2.07 1.76 12.3 2.37 1.79 11.8 3.37
0.004  0.008 7.13 6.73 1.99 6.98 1.91 7.25 2.4 11.3 1.57 1.75 11.8 2.03 1.82 11.3 2.91
0.008 0.012 6.81 10 2.06 6.95 1.88 7.02 2.49 10.8 2.45 1.78 10.7 2.86 1.9 10.9 2.86
0.012  0.016 6.58 4.09 2.05 6.42 1.93 7.22 2.46 10.8 1.73 1.78 11.2 2.77 1.88 10.6 3.28
0.016  0.02 6.62 9.06 2.03 6.57 1.95 6.73 2.55 9.9 1.86 9.98 1.86 1.98 10.1 3.67
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0.024  0.029 6.06 7.45 1.93 5.94 1.8 6.2 2.39 8.67 1.79 8.47 2.16 1.91 9.32
0.029 0.034 5.73 7.01 2 5.77 1.88 5.99 2.5 8.46 1.82 8.02 2.71 1.98 8.38
0.034  0.039 5.4 2.1 5.49 1.88 5.51 2.58 7.69 1.88 7.19 7.11
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Abstract

Azimuthal decorrelation between leptons in the Drell-Yan process as a probe of infrared
QCD: Phenomenology, predictions and measurement of a novel collider observable using

perturbative resummation techniques

A thesis submitted to the University of Manchester for the degree of Doctor of
Philosophy in the Faculty of Engineering and Physical Sciences

This thesis presents phenomenological studies of a state-of-the-art NNLL+NLO the-
oretical calculation of a novel collider observable known as ¢*. In these studies the ¢*
observable, a measure of azimuthal decorrelation, is applied directly to the leptons in the
production of massive lepton pairs in hadron collisions (the Drell-Yan process). This
provides an alternate measure of the recoil of the massive vector boson (Z/v*) against
initial state QCD radiation, but with distinct experimental advantages over the tradi-
tional boson transverse momentum. Attention is focused on the small-¢* régime (the
quasi-back-to-back régime) where the infrared dynamics of soft/collinear gluon emissions
become important. These phenomenological studies are followed up with the presentation
of a measurement of ¢* in Z — pu events using 20.3 fb~! of collision data collected by the
ATLAS experiment in 2012. Finally, studies directly related to the ATLAS absolute lu-
minosity calibration by the van der Meer (vdM) method are presented, with the objective
of elucidating the role of transverse linear beam correlation. In particular, I present stud-
ies using an analytical method I have developed in order to precisely extract individual
beam information by way of studying phenomena pertaining to the luminous region during
vdM scans. In addition, a dedicated study of the long- and short-term stabilities of the
principal detectors for luminosity monitoring is also presented, along with an appropriate

recalibration of these detectors.

Lee Tomlinson
The University of Manchester
December 24, 2014
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Preface

I became a PhD student in the particle physics group at Manchester in 2010, and
have since worked on both high-energy particle physics theory and experiment, under the
joint supervision of Dr. Mrinal Dasgupta and Prof. Terry Wyatt FRS. My primary PhD
research has been in precision QCD and electroweak physics, focusing in particular on a
novel collider observable called ‘¢*’. The theoretical aspects of this work have centred on a
state-of-the-art calculation of ¢* along with several associated phenomenological studies. I
now work within the ATLAS collaboration at CERN where I have been a qualified author
since November 2012 and where, most recently, I have also been performing a measurement
of ¢* using the 2012 data set. I performed my service work for authorship qualification
within the luminosity measurement task force, becoming a primary author on the 2011
luminosity measurement paper. During my PhD I have also become a primary author of
software which automates our theoretical calculation of ¢* for and end-user, and which has
now been used by ATLAS and D@, with whom I have enjoyed very fruitful collaboration.
The following thesis is divided into three parts, covering the work I have done on ¢* in
association with the Drell-Yan process (the production of massive lepton pairs in hadronic
collisions) and the luminosity studies I performed within the ATLAS collaboration.

The first part of this thesis is dedicated to theoretical and phenomenological work I
have done with the ¢* observable. It is my intention that this part will form a pedagogical
introduction to QCD and calculational techniques within, finally culminating in explicit
calculations for ¢* and the results of my phenomenological work as applied to experiments
at Tevatron and the LHC. I had more than my thesis defence examiner in mind when
writing this part: In fact, I was writing to a student very much like myself, who might
decide to pursue a PhD in QCD research, or who might simply want to become familiar
with some of the calculational techniques therein for his or her own needs. However, for
the purpose of this remaining a thesis to be ezamined, I opted to remove quite a significant
amount of material that I had brought together as pedagogy but which may, nonetheless,
be discovered in the literature following the references I have retained. The reader will
still find explicit calculations, in some cases relegated to appropriate appendices, which
are directly relevant to my work herein.

A reader who is already familiar with the foundations of perturbative QCD might wish
to skip Chapter 2. The remaining chapters however, even for a familiar reader, are very
relevant to my work on ¢* and should still provide crucial insight. Chapter 3 discusses
relevant aspects of the dynamics of soft and collinear gluon emission by way of explicit
calculation, followed by a discussion of the interpretation of the final results. Chapter 4

ultimately describes our ‘resummed’ calculation of ¢*, after first addressing theoretical
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aspects of the Drell-Yan process and the origin of logarithmically enhanced terms. In
addition, this chapter provides the reader with the connection to the more familiar Q
observable: the transverse momentum of the lepton pair. Finally, Chapter 5 presents my
phenomenological work in detail. This work includes comparisons to data available at the
time, and also predictions for data that would become available later.

The second part of this thesis describes the experimental measurement of ¢* I per-
formed in the Z — pp channel at /s = 8 TeV using data from the ATLAS experiment.
It had always been foreseen that I would perform an experimental measurement of ¢*
in order to complement the theoretical calculations I worked on. A measurement of ¢*
within ATLAS had already been performed at /s = 7 TeV by the time I had made the
transition to dedicating my research efforts to experiment (i.e. after becoming a qualified
ATLAS author). The results of my earlier phenomenological work strongly indicated that
a measurement performed at 8 TeV, with approximately four times the data as used in the
7 TeV measurement, could be very complementary to the former analysis if it included
additional measurements performed away from the Z peak. Put concretely, the role of
non-perturbative effects in comparisons to D@ data, and the remarkable agreement of our
prediction with low-mass D@ data, suggested that additional off-peak measurements at
8 TeV should form an essential aspect of this experimental analysis.

The third and final part of this thesis details the service work I contributed to the
ATLAS collaboration within the luminosity measurement task force, in the form of three
dedicated internal analysis notes. It is within this group that I worked closely with the
Beam Conditions Monitor—the principal luminosity monitor within ATLAS. Chapter 15
introduces the concept of a van der Meer beam separation scan as a method for determin-
ing the absolute luminosity calibration, and then presents a study I performed with the aim
of addressing the short- and long-term stability of the BCM detector. Chapters 16 and 17
then present my worked aimed at quantifying the transverse beam correlation within AT-
LAS, and the uncertainty this induced in the determination of the absolute luminosity
calibration.

I owe huge thanks to my supervisors Dr. Mrinal Dasgupta and Prof. Terry Wyatt FRS,
not only for the opportunity to pursue such exciting research topics and the commitment
they’ve had towards my career, but also for the pleasure of having them as mentors. I also
owe special thanks to Dr. Andrea Banfi, Prof. Witold Kozanecki and Dr. Simone Marzani
for the enormous dedication and devotion they have given to my work and to my learning
of physics—I am truly grateful to have had the opportunity to work with, and learn from,
these kind and committed people. It has been a privilege to collaborate with Samuel Webb,
whom I would like to acknowledge and thank for innumerable insightful discussions. I also
gratefully acknowledge the financial support of the UK Science & Technology Facilities
Council (STFC), and wish to thanks the Particle Physics Group at Manchester for being
such a warm and pleasant place in which to carry out my research.

I dedicate this thesis to Mum, Dad and my sister Lisa, for their love, understanding
and unwavering support throughout my physics career, particularly during the years it
has taken me far from home. I would like to thank those who are both colleagues and dear

friends, for all the wonderful times and adventures we’ve shared together. It has been my
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pleasure to meet my friend Aidan whilst on LTA at CERN, and to be permitted to ask
the most naive questions without judgement! I finally owe my warmest thanks to Mandy
for always being there, despite the ~ 5,300 miles between us.

In loving memory of Roo.

Lee Tomlinson
Manchester, September 2014
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CHAPTER 1

Introduction

Part 1 of this thesis details the theoretical calculations and phenomenological work that
have formed a significant part of my PhD research. The theory presented herein centres
on the production of massive lepton pairs in high-energy hadron-hadron collisions [1] (the
Drell-Yan process) which has earned a great deal of attention since its conception, in both
collider physics theory and experiment. In particular, I present and discuss the calculation
of several observables, starting with the classic transverse momentum of the lepton pair,
@1, which has remained central to phenomenology over the decades [2, 3, 4, 5, 6, 7, 8],
since the pioneering work of Dokshitzer, Diakonov & Troian (DDT) [9], Altarelli, Parisi
& Petronzio [10, 11], Davies, Stirling & Webber [12, 13] and Collins, Soper & Sterman
(CSS) [14], taking place between the late *70s and mid ’80s.

Much more recently, the closely related but completely angular ¢* observable [15]
was introduced, which has distinct experimental advantages over its Q cousin, making it
suitable for precision electroweak phenomenology. For this reason, it has been the focus
of detailed theoretical [16, 17, 18] and experimental [19, 20] studies in recent years. It
is the theoretical study, predictions and a recent experimental measurement of ¢* (Part
2) with which I have been involved, and which form the main topic of my thesis.

In our research, the calculational efforts have been in computing the perturbative quan-
tum chromodynamical (pQCD) corrections to the underlying electroweak process. As I
will show, this involves invoking the technology of resummation to produce a calculation
to all orders in perturbation theory. The reason for doing so is that a calculation of the
simplest process capable of generating a non-zero (1 of the lepton pair is mathematically
divergent as Q1 becomes small. In this limit, and at each order of the perturbative ex-
pansion in ag, one finds the effective expansion parameter in the differential distribution
to be of the form o log™(M?/Q3), where M is the invariant mass of the lepton pair and
m < 2n — 1, with m,n € N. The disparity between M and T means each term can
be numerically large, and the formal validity of a truncated (or ‘fixed-order’) perturba-
tion series breaks down. One must be careful to treat these logarithmic enhancements
appropriately, and in practice this amounts to the aforementioned all-orders approach.

The physical content of such a calculation is that one is forced to consider the emission
of up to an infinite number of collinear and /or soft gluons, which themselves dominate the
dynamics in the kinematic region where fixed-order fails. In the non-divergent regions of
phase space where QT ~ M—the mass of the lepton pair or, equivalently, the intermediate
~v*/Z boson—a fixed-order calculation provides a good description of the physics. Given
one’s aim of obtaining a differential distribution that is free of divergences across all values

of the observable, it is necessary to use a consistent scheme for matching the two main
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elements of the calculation: both fixed-order and resummed. The scheme we adopt is a

smooth one in which

<dff> _ <d0) N <da> _ <d0> (1.1)
do matched do resummed do fixed-order do expanded’ '

where O = {Qr,¢*} is the observable under consideration and ‘expanded’ denotes the
expansion of the resummed calculation. The expansion is performed to the same order in
as with which the fixed-order piece is calculated, in order to remove double counting of
emissions. One is at liberty to do this because all logs are properly accounted for. Using
this method we obtain a calculation that is, in principle, well-suited to describe the physics
over a broad range of O.

With reference to the method of resummation, one is in principle regrouping the calcu-
lable terms of an all-orders perturbation expansion into an exponentiated form, such that
one recovers a series (in the exponent) in which each successive term is formally suppressed
relative to the previous one, and which may be truncated. Schematically, for an observ-
able whose leading enhancement is double-logarithmic and provided the observable fulfils
certain requirements, as are both the case for the cumulative Q1 and ¢* distributions,
this may be written [21]

oo 2m
Z Z Crnn o' L™ = (1 4 consts) exp [ L g1(as L) + g2(as L) + as g3(as L) /7 + ... ],
m=0n=0 " !
LL NLL NNLL

(1.2)
where C),,,, are the coefficients at each order in the expansion and L is the large logarithm.
This is the origin of the associated adjectives LL (leading log), NLL (next-to-leading
log), NNLL (next-to-next-to-leading log), etc. when one speaks of such calculations. The
work presented herein makes use of a full NNLL+NLO! calculation, which at the time of
writing is the state of the art, building on former pioneering work at NNLL (e.g. [12])
and mirroring the state of the art at NNLL accuracy in more recent pioneering work
(22, 23, 24, 25, 26].

The remainder of Part 1 is set out as follows: First, in Chapter 2, I review the founda-
tions of QCD as a quantum gauge field theory. In Chapter 3 I discuss the elements of soft
and collinear QCD that are relevant to the process and observables under consideration,
by way of explicit calculations. In Chapter 4 I present and discuss the ¢* observable and
its resummed calculation as applied to the Drell-Yan process, with details consigned to
the appendices. In particular, Appendix A contains a fully worked NLO calculation of
qq — v*+ X. Finally, I present my phenomenological work, as applied to various collider
experiments, in Chapter 5. This work, in addition to comparisons with data, also includes

the predictions for certain experiments when data were not present at the time.

Here NLO refers to the calculation of the Z+jets process; i.e. meaning O(af)



CHAPTER 2

Fundamentals of QCD

Quantum chromodynamics', or QCD, is a non-Abelian gauge field theory, which ex-
hibits exact symmetry under the SU(3) group (of ‘colour’). It is a theory of quarks and
gluons, being the elementary fields, which transform under the group’s fundamental and
adjoint representations respectively. Since the gauge group of QCD is the (non-Abelian)
SU(3) group—as opposed to the U(1) group in the case of electrodynamics—there exist

three distinct charges, also known as colour.

2.1. The classical Lagrangian

The classical QCD Lagrangian, up to gauge-fixing terms, is given by

1 o o :
['classical = _ZFSVFCLMV + Z 1/}7} (ZFYM DL] — oY mf) ;7 (21)
f
where 1) = 1T 40,

Ff, = 0,G% — 0,G% + gs f**°GLGS (2.2)

is the field strength tensor for the Yang-Mills (gluon) field Gf,(z), and
DY = 9,6 —igs (T")7 GY(x) (2.3)
is the covariant derivative. The gluon colour index a € {1,...,8} is implicitly summed

over in the first term of Eq. 2.1. Furthermore, i € {1,2,3} indexes the quark colour, and
f €{u,d,c,s,t,b} indexes the flavour of the quark. The SU(3) generator T is explained in
the following section. The spinor indices have been suppressed on the Dirac spinors, w}(m),
and matrices, y*, the latter of which satisfy the Clifford algebra: {y*,~+"} = 2¢* I, where
{,} denotes anticommutation, g"” is the Minkowski metric tensor and I is the identity
matrix, whose dimension is that of . The numbers f%¢ € R are the structure constants
of the SU(3) algebra. The final term in Eq. 2.2 is a non-Abelian term, whose consequence
is to give rise to triple and quadruple self-couplings of the gluon. Finally, g5 is the gauge
field coupling strength and will be discussed at length throughout this thesis.

2.2. Gauge invariance, colour and quantization

The SU(N) group is the group of N x N unitary matrices with unit determinant. For
an element U € SU(NNV), these properties are summarized as:

SU(N) = {U € GL(N,C) : UTU = UUT = 1 Adet U = 1} , (2.4)

where GL is the general linear group, the set of N x N invertible matrices with complex

entries. Elements of the defining representation of the SU(3) group follow immediately,

1Examples of excellent and accessible texts on QCD and gauge theories are given in [27, 28].
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and may be generated by exponentiation of the group generators, T :
1 8 ™
U(o,...,0°% = 0% 2.5
( ) ) ) exp <Z 9 ) ) ( )

where a € {1,...,8} since the number of generators of the SU(N) group is N2 — 1, #% are
elements of the group parameter space, and T satisfy

[T“,I*}::if“MTTC. (2.6)

The structure constants themselves, when interpreted as the 8 x8 matrices (7). = —i f2,
satisfy the same algebra and generate the adjoint representation.

Elements of the SU(N) group can be regarded as linear transformations on an N-
dimensional complex vector space, effecting the mapping U € SU(N) : CV — CV. As
such, we may write

i = i = Uy, (2.7)
for 1y € CV, which may be written as a column vector, with implicit summation over
repeated indices. The placement of indices here is deliberate, and affords a compact
notation for the transformation of its complex conjugate, ¥¢ = 1}:

P =t = Uy, (2.8)
where the identification UZ-*j = U%; is made. The SU(N) invariant mapping (1, ¢) :
CN x €N — R may now be written, contracting up and down indices, as 1)'®;.

If we insist that the theory of QCD is locally gauge invariant, then its Lagrangian
should remain invariant—up to divergence terms, which do not affect the derived Euler-
Lagrange equations of motion—if we allow elements of the SU(3) parameter space to
become space-time dependent, i.e. % — 6%(x). Acting from the left with 9, on Eq. 2.7,
the z-dependence of U would generate an additional term, wvis-a-vis the global case,
demonstrating that the partial derivative is not gauge-invariant. Demanding that a so-
called covariant derivative, however, should transform in the same manner as the fields
themselves—preserving the invariant nature of the Lagrangian—one can derive the appro-
priate transformation of the Yang-Mills field G, which must be performed simultaneously

with any gauge transformation of the Dirac fields ;. This transformation is
TGy (7) — T“Gf(aj) = U(l‘)Tan(l‘)UT(l‘) — z'gs_l [0,U ()] UT(a:), (2.9)
with a summation over the colour index a, which in infinitesimal form becomes
Gu(z) = G(x) — f“bCGb(a:)GZ(x) + g;lf)uﬂa(a:). (2.10)

Furthermore, the gauge-invariant Yang-Mills term —%Fl‘fyF‘”‘” is built from the field
strength tensor, which may be defined via the commutator

i
9
in which the non-Abelian term of Eq. 2.2 has its origin. In order to remove the arbitrariness

Fu:=——[Dyu,D,], (2.11)

of the gauge freedom permitted by Eq. 2.10, one has to fix the gauge. At the level of the
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Lagrangian, this can be achieved by adding a Lagrange multiplier of the form
2
Lgauge = X [0"GS (2)]” . (2.12)

This introduces the Lorentz covariant constraint that the gauge be fixed according to
8“Gz(m) = 0, the Lorenz? gauge, obtained by extremizing Lgauge With respect to A. The
gauge parameter 7 is introduced, and is related by A = —1/(2n). The QCD Lagrangian,
before passing to the quantized theory, now stands as

L= ﬁclassical + £gauge~ (2'13)

Other forms of gauge fixing may be used, e.g. the axial (physical) gauge in which n-G = 0,
introducing the gauge vector n.

In order to practically quantize the theory using the method of path integrals, the
classical Lagrangian is supplemented with a Faddeev—Popov contribution [29], which gives
rise to ghosts:

Lpp = (0"x") DX (2.14)
Here, x is the ghost field (x* being the complex conjugate ghost field), and ijb is the

covariant derivative in the adjoint representation,
Db =570, — g f* G5, (2.15)
Taking all contributions collectively, the quantum Lagrangian for QCD is

L= ﬁclassical + ﬁgauge + ﬁFfP . (2‘16)

2.3. The Feynman rules

Many of the calculations in this thesis necessarily take place in d dimensions, with
d # 4, in order to regulate the divergences that occur for integrals over unconstrained loop
momenta. Nonetheless, one would like to preserve the dimensionlessness of the physical
couplings involved. The following short exercise shows how this may be done in practice.
The concept of mass dimension is introduced, such that a quantity of mass has mass
dimension [m] = 1. We work with natural units in which 47 = ¢ = 1, thus the action has

mass dimension [S] = 0. Since
S = /dda:L', (2.17)

and [x] = —1, one infers the mass dimension of the Lagrange density to be [£] = d. In the
case of QCD, whose classical Lagrangian is given by Eq. 2.1, one is able to systematically
infer that [¢] = %, G] = %—1 and [gs] = 4%‘1. In four space-time dimensions (d = 4) the
coupling is dimensionless. This dimensionlessness may be preserved in d # 4 dimensions by
introducing a new (arbitrary) mass parameter y, making the replacement gs — gs p(*=4/2
in the Feynman rules. Indeed this is what has been done in many of the calculations
throughout this thesis, hence the appearance of 1€ in several places, where d is taken to

be 4 — 2¢ in order to dimensionally regulate divergent integrals [30]. In order to avoid

2The Danish mathematician and physicist Ludvig Valentin Lorenz, not to be confused with the Dutch
physicist Hendrik Antoon Lorentz



32

2. FUNDAMENTALS OF QCD

[ iQ(ep)y"
i
a o i(gs po) Tip A"
J
k — 5ab

a, i (000000000 b, v

P rie <9uu — (1= 77)k;2“+i6> = —i0" Dy (k)

p i ptm i
P g T
1, a
_(gs /’L€> fabc [(kQ - k3)u gup
b k1 +(k3 — k1)y Gpu
ko k3 +(k1 - k2)p ng]
(all momenta flow away from vertex)
p,c

FI1GURE 2.1. The conventions for the Feynman rules used throughout this
thesis. The corresponding propagator rules for the photon and colourless
fermion are given by those for the gluon and coloured fermion above, but

removing the § or §% as appropriate.

any ambiguity, the conventions for the Feynman rules used throughout this thesis are

summarized in Figure 2.1.
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2.4. Renormalization in the Lagrangian

The quantities appearing in the original Lagrangian, Eq. 2.16, are not necessarily
observable (i.e. are bare) and may therefore be suitably infinite in such a way as to cancel
the divergences arising from loop integrations in calculations of observable quantities (S-
matrix elements, etc.). To this end, we introduce renormalized quantities which are related
to the bare quantities, denoted® by a ‘0’, as follows:

U =/ Zy ¥’ gom = Zgg e
Go, =VZa Gy, mg = Zy,m (2.18)
X0 = vV Zx X" no = Zyn

Writing the bare Lagrangian in terms of renormalized quantities, using Eq. 2.18, one
obtains in d = 4 — 2¢ dimensions:

L=— i Z (0,G% — 0,G%) (9"G*Y — 9" G M)
+ i Zy P A0 — Zy Ly mAp'Y
+ Zy (O"X*™) 9ux”

1
— %ZGZ;l (0"Ge)?
1/2 € 1 Ua b YA (raNtg /g (219)
+ ZyZgZ " guS Pyt GL(T) 9
1
. 5 2922/2 Q,U/E fabc (8MG,CL/ _ aVGZ) Gb,u GV
1 € aoc raae C ev
= ZeZ5 (gu)? [ 6L GGG
— 2y ZyZL? guc F (97X ) G

The free parts (lines 1 — 4) are written separately from the interaction parts (lines 5 — 8)
for clarity. The renormalization procedure is now briefly summarized.

In this section I outline the formulation of renormalization due to Bogoliubov, Para-
siuk, Hepp & Zimmermann (BPHZ) [31, 32, 33, 34]|. One uses the Lagrangian above,
L, to compute amplitudes for physical processes. For a tree-level computation, all the
renormalization constants {Z;}, where i € {G, g,1, m, x,n}, may be set to unity, since
no UV divergences will occur. For a one-loop calculation, however, one anticipates the

appearance of UV divergences and thus writes Z; = 1+ (§Z);. In doing so, one obtains
L= £R + £counter, (220)

where Ly is the renormalized Lagrangian, which has precisely the same form as the original
Lagrangian but is written simply by replacing the bare quantities with their renormalized
counterparts; i.e. mg — m, etc. Thus the same set of Feynman rules, but with renormal-
ized quantities, may be established. The remaining terms, collectively Lcounter and which
contain the ‘(§7);’s, are known as counter terms and give rise to new Feynman rules.
One must supplement the calculation with the remaining necessary tree-level diagrams
generated from the counter-term Feynman rules. The ‘(07);’s which enter the amplitude

3The subscript ‘s’ for the strong coupling is dropped here to accommodate the new notation.
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are then chosen specifically to cancel the UV divergences arising due to integrations over
unconstrained loop momenta.

The principle that allows this seemingly arbitrary cancellation to be made is that nei-
ther the bare quantities nor the ‘Z;’s can be physically measured, and may simultaneously
be infinite in such a way as to yield finite measurable quantities—i.e. the renormalized
ones. This procedure extends to all orders in a renormalizable theory without introducing

new interactions at each successive order and, as such, one is led to write
Zi=1+(62)F+(62)2 +(82)} + ..., (2.21)

where the ‘(67);’s are carefully chosen at each loop order.
Associating a renormalization constant, Zgyy, with the entire interaction term
g iyt GZ(T“)UW in Eq. 2.19 allows us to identify

LGy

L, = . (2.22)
Y ZuNZg
The ultraviolet-divergent parts of Zy, and Zg, at one-loop order, are [35]
Qg

Zy=1——CpnA 2.23
(0] A F1 ) ( )

as (2Ngp 13 —3n
Zo—1_ 25 _ Cx | A 2.24
s=1- 2 (-5 a) a (2.24)

and the renormalization constant, Zgy,, for this quark-quark-gluon interaction is, in the
MS scheme to O(as),

Qg 3+
Zaypy =1— (n Cr+—— L CA> A, (2.25)
with .
A= < —7E + 1n47r> . (2.26)
€
This allows us to deduce
Qg 110A NF
Z,=1——= —— A 2.2
g 4 ( 6 3 > (2.27)

which, referring to Eq. 2.18, is the multiplicative relationship between g uf and g pc.

2.5. The renormalization group equation

The definition of a renormalized quantity is not unique, for one may choose which finite
parts to simultaneously absorb ad libitum, provided that the Slavnov-Taylor identities

[36, 37] are respected. Consider the renormalized coupling, defined as

g(1) = = Zg() go po (2.28)
for instance. One could just as well have defined a different renormalized coupling as
g(u") = (W)~ Zg(u') go o - (2.29)

Since the bare coupling is unique, the two renormalized couplings are related via a finite

renormalization, namely
9(') = Zg(p', 1) 9(11) , (2.30)
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with Z(/ - 1€ Zg(ﬂ)
SN = e Zy ()

The set of finite renormalization constants, {Z,(y/, i)}, are endowed with group structure

(2.31)

under multiplication, and hence form the renormalization group. Exploiting the indepen-
dence of certain quantities on a given renormalization scale leads to powerful differential
equations known as the renormalization group equations (RGEs), of which we will be
interested in those that are associated with the minimal subtraction scheme [38, 39].

Defining the dimensionless S-function

dg(p)
=y 2.32
B(g(w) = n i (2.32)
and using Eq. 2.30 with Eq. 2.31, it can be deduced that
Az,

Bg(w) = —eg(p) — g(p) Z,)  dy

= —eg(n) — 900 Blal)) T2,

(2.33)

where the second equality holds if we may assume that the p-dependence of Z,(p) is only

implicit via g(p), permitting one to use

ng(M) o dg(p) 829
dy = i g (2.34)

A remarkable property of working in a minimal subtraction (e.g. MS) scheme is that
the renormalization constants, the ‘Z;’s, are indeed independent of any mass scale by
construction: save for a factor (4m)¢, only the divergent ¢! pole terms are subtracted.
These pole terms are of ultraviolet origin, and are thus associated with a régime in which
masses are negligible. The MS schemes are therefore mass-independent schemes. Further-
more, since the -function is dimensionless, it can only depend upon p implicitly via g(u),
since a dimensionless ratio p/m does not exist, hence the minimally indicated functional
dependence in Eq. 2.32.

It can also be shown that 3 is finite in the limit ¢ — 0, and that it is independent of
the gauge parameter 1. Here we take these properties as given, and deduce that § must

have the expansion
o0
B=Y ane", (2.35)
n=0

i.e. including only positive powers of €. It’s easily shown by direct substitution into Eq.

2.33, given the Laurent expansion of Z, in general as
00 (n)
Zy " (9)
Zy=1+ ; ==, (2.36)
that the expansion of § terminates after O(e). Substituting Eq. 2.36 into Eq. 2.33, i.e.

o4
Zgﬁ+eng+gB8—gg:O with 8 =ag + €a, (2.37)
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one obtains

(1) oo 0
Z Z
<1+i+n§ gﬁf@) lao + (a1 + g) €]

=2

W - (2.38)
1dZ d = Zg"
+g(ag+ear) | - —2 +— Zs(9) =0.
€ dg dg =
Comparing coefficients of € and 1, one obtains
ap = —g (2.39)
dzW
and ap = g° TZ. (2.40)
Finally, taking the limit ¢ — 0, one obtains a simple expression for the S-function:
azsV
=g ——. 2.41
Blo(w) =" = (2.41)
From Eq. 2.27 it is easily deduced that
2¢> [(11CA Ng
= — -— . 2.42
It is also useful to define the S-function alternatively, using ¢? = 4may, as
das(p) =
Blos(u) = p* =33~ = =i ) _Bual, (2.43)
n=0

where an expansion in ag has been assumed. With this definition, the expansion coefficients

for SU(NV) are [40]
 11C — 2N

= 2.44
/BO 197 y ( )
17C%2 — 5CA Ny — 3Cp Ny
gy = =50 N (2.45)
and
2857 3 1415 2 205 2 79 2 11 2
By — =1 CA - S CANF — ﬁCACFNF + CFNF + @CANF + ?CFNF ' (2.46)

6473
We now consider the renormalization of a general truncated connected Green’s function

with Ny, external quarks and Ng external gluons, which is given as

Ny /2 N,
To(ao,mo, no, {pi}) = Zy*'> Z8* T(, ae,m 1, {pi}), (2.47)
where {p;} represents the external momenta. Since I'¢ is independent of the renormaliza-

tion scale u, we have

d Ny, /2
12 e {Z¢w/ ZN D, 0, m,, {pi})} —0 (2.48)
and so

9 9 ,dm 9 ,dn 9

27
{M 8u2+ﬁaas+u dp? Om K du? on

Ny dIn Z IAY dlnZ
2 VY P 2 VG G

5 l u / I Qs, T, 7] i) =Y,
2 2 2 2 } (M) Sy 9 7{p }) 0

(2.49)
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which is the RGE for a general truncated connected Green’s function, with S given in
Eq. 2.43.

The renormalization group equation, FEq. 2.49, may be solved by the method of char-
acteristics. First, the renormalized parameters and the mass scale pu are assumed to be
functions of a parameter t, and as such they become u(t), as(t), m(t) and n(t). We thus
have T' = T'(u(t), as(t), m(t),n(t),{pi;}) and so its total derivative with respect to ¢t may

be written as

dar du?(t) 0 das(t) 0 +dm(t)i+dn(t)g r
dt — \ dt Op? dt  Oag dt  Om dt on)

Upon making identifications between the coefficients of the partial derivatives in Eq. 2.50

(2.50)

and Eq. 2.49, particularly

= (2.51)

dos(t
dt

~—

= B(as) ) (2.52)

and

we recover the RGE in the form
d o Ny dInZy, o No dInZg

= ¥ —a T(u(t), as(t), m(t), n(t), {p;}) = 0. 2.53

R S CONNURUCRICR ) (259

Therefore, the solution of the RGE by the method of characteristics necessarily gives rise

to parameters that run with ¢, and the relevant equations that govern these evolutions for
1 and ag are Eqgs. 2.51 and 2.52. Solving the first of these, Eq. 2.51, gives

u(t) 7,2 t /2
/ di (1) :/ ' =t=1n (5], (2.54)
p(0) HA(t) 0 0

where the definitions p := p(0) and g/ := p(t) have been made. Eq. 2.52 is then solved

using this expression for ¢, as in

as(t) doxs t M/Q
/a(o) 5 :/O dt' =t=1n (MZ : (2.55)

In order to continue one must take the expression for 8 as a power series in as (Eq. 2.43),

whose coefficients were presented previously, and perform the integration over ag. To begin
with, we work to leading order and truncate 3 after the a2 term, i.e. taking 8 = —fp a2

Thus
/as(t) dovs 1 /O‘S(t) dovs
a©@ B BoJayo) o2

N Blo (aiﬂ) - ozs(lu’)) ’

(2.56)

and, taken with Eq. 2.55, implies

o) = —— B (2.57)
1 (1) Bo In (47 )
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Working to next-to-leading order and taking 8 = —a2(By+as 31), one obtains the two-loop

running coupling implicitly as

2 as(ﬂl)
n|—=|=|—+h|{——7+— ) 2.58
% ( IS ) as  fo \bBo+Bras/ o (2.58)
for which an approximate solution, accurate to next-to-leading order, is given by [41]
/ as () < B Inp )
aS = —_— 1 —_ aS _— 5 259
(1) P %o (1) P (2.59)

where p = 1+ 2 fy (1) In(u' /1),



CHAPTER 3

QCD in the infrared régime

In this chapter I address the dynamics of soft and collinear QCD, where soft is used to
describe emission in the case where the energy carried away is significantly smaller than
any of the harder characteristic energy scales in the picture. One of the profound prop-
erties of calculations performed in this ‘infrared’ régime is that of factorization, whereby
the squared emission amplitude amounts to only a multiplicative factor on the squared
amplitude for the original process in absence of the emission. This property is vital when
one considers calculations to all orders, on account of the dramatic simplifications it pro-
vides. The physical principle at work with the emission of soft gluons is that the relatively
long wavelengths of the emitted gluons become incapable of resolving the details of the
short-distance-scale hard scattering process and, as such, they respond only to the over-
all charge of the system: a phenomenon known as coherence. We begin by computing
the amplitude for one soft gluon emission from a ¢ g ‘dipole’. Afterwards we move on to
computing the two-soft-gluon amplitude where I will make some assumptions about the
relative ordering of gluon energies. This will allow us to witness coherence at work and

deduce certain features that persist to an arbitrary number of emissions.

3.1. Factorization of gluons in the soft limit

Consider the production of a quark and anti-quark pair, from the decay of a virtual
photon, v*, supplemented by an additional single gluon radiation in the final state: v* —
qq g. The two distinct mechanisms by which this process can occur are show in Fig. 3.1.
The momenta of the quark and anti-quark are labelled p; and po, respectively, and k is
the gluon momentum. We consider this process to occur in the limit where the emitted
gluon is soft; i.e. k < p1,p2.

The amplitude for this process, in reference to Fig. 3.1, is

fo(p+E+m)g £ (p,+E—m)f,

_ . a g

where the following shorthand notation has been used: For the quark and anti-quark
spinors 41 = @'(p1,s1) and vg = v?(pa, s2), where i and j are colour indices and s, sy
label their spins, respectively. For the polarization vectors, (ey), = €.(q,0) denotes that
of the photon, of momentum ¢ ~ p; +pz and polarization labelled o, and (€;)a = €5 (k, \)
denotes that for the gluon, of momentum & and polarization labelled . In general, these

vectors are complex. Finally, Feynman slash notation is used, e.g. p = v"p,.

39
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1SF (p1 + k)

U2

Ficure 3.1. The production of a quark and anti-quark pair, from the
decay of a virtual photon, supplemented by an additional single gluon ra-
diation in the final state: v* — ¢gg. iSr(p) is the Feynman fermion
propagator.

Invoking the ‘eikonal” approximation, whereby we neglect k£ terms in the numerators
of the propagators, one obtains, for the two terms in square brackets in Eq. 3.1,

foptE+m)d, fo(ptm)d, [2pi-eg— (P —m)fle,
(p11+ k)% —m?2 - 21191 ko 21?11' k (3:2)

and
g (P tk—m)d, £ (p,—m)f, £ [2p2-€— £, (P, +m)]
7(]022%-76)2—”%29 o 22pz'k = ;pz'z : ’ (3:3)

where the Clifford algebra for v matrices has been used in the form p¢ =2p-e— ¢p, and

only the gluon is assumed massless: k% = 0 but p? = p3 = m?. Finally, using the Dirac

equation for the quark and anti-quark spinors, namely 1 (p, —m) = 0 and (;/52 +m)vy =0,

1
we obtain the amplitude in the eikonal approximation,

pL-€, D2-€,
= —q 57 Ta g_ g 4
M i1 Qegst ”¢7v2<p1-k p2~k>7 (3.4)

where the soft gluon emission has factorized from the amplitude for v* — gg. We seek the
squared amplitude where the factorization, when inclusive over all the quantum numbers of
the gluon, takes a particularly simple expression. The complex conjugate of the amplitude

is

*x __ - — kb P1-€g P2-€g
M =iQegerg Thu (P50 - 220 (35

where a distinct gluon colour dummy index has been introduced, and the Hermiticity of

the fundamental generators has been used: (T,Z)* = T]l-’i. The squared matrix element is
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then

IM? = Qg2 TE Ty Tr [ur w7 va B2 e 6

o b ( v v )( o pg> (36)
P77 \p-k pa-k)\pr-k pa-k)’

where a trace over Dirac matrices has been introduce to permit their permutation as

shown, in the case that one would like to sum over spins of the quark and anti-quark.
We now perform the sum over the gluon’s quantum numbers. In addition, it is useful
to also sum over the colours of the quark and anti-quark, since these quantum numbers
‘talk’ to the gluon. First, we obtain the summation over gluon polarization states via the
replacement (in the physical gauge; cf. Eq. 3.16)

kpng +npks (n? + Xk?) k, ko 5ab
Jpo n-k (n- k)2 '

D e (kN ek, A) = —
A

(3.7)

Note that the final two terms give zero upon contraction with the eikonal currents in
Eq. 3.6. One then obtains

(M=) IMP?
v (3.8)

2p1‘p2
2 2

= Cp——=
‘Mo‘ gs Fl-kg-k

where Cp = Tr [T%T?], and |My|? is the squared amplitude for the process v* — qg, with
a summation over colours of the final state quark and anti-quark.

We thus see that, in the eikonal approximation, the soft gluon emission factorizes.
The gluon has in some sense become dissociated from any particular emitter, and is rather
associated with the hard process (the QED vertex) as a whole. The physical interpretation,
as mentioned in the introduction to this chapter, is that the gluon’s wavelength is too long
to resolve any detailed structure of the hard process, although this picture breaks down
when one considers emission that is simultaneously collinear to a given emitter. It is
a straightforward exercise to show that this factorization property extends to any hard
process, as shown for example in Sec. 3.7 of [35]. The softness of the gluon means we ought
only to consider it attached to an external leg of a general hard process, as in Fig. 3.2, if
we wish to extract the leading soft enhancement, since highly virtual internal propagators
cannot be put on shell.
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F1GURE 3.2. A soft gluon factorizes completely from any general hard
process, labelled My,,q in the diagram. It only gives rise to a soft en-
hancement when attached to external legs, since highly virtual internal
propagators cannot be put on shell.

3.2. Soft gluon emission and coherence

The emission of two soft gluons from a ¢g pair in QCD is complicated somewhat
by the presence of two extra diagrams as compared with the equivalent case in QED,
namely those involving the triple-gluon vertex. Furthermore, the non-Abelian nature of
the theory gives rise to a complicated colour structure. Notwithstanding, the situation
may be simplified by making some underlying assumptions that one need not invoke in the
case of soft photon emission. For a more general survey, the reader might wish to consult
[42]. The following calculation I present is one I computed independently, as an exercise
to offer insight regarding the angular properties of soft emissions and their connection
with the coherence phenomenon in QCD [43, 44, 45, 46, 47].

To begin with, Fig. 3.3 shows the eight diagrams that contribute to the process under
present consideration. In order to be explicit, I do not write down the amplitudes for
these diagrams using the eikonal Feynman rules, but rather write down the full amplitude
and subsequently take limits. This way the reader can observe the subtleties involved,
particularly where the triple-gluon vertices are concerned. The explicit amplitude for the
first diagram, Fig. 3.3(a), is given by

?1+k1

a=1u s . Js * ) ﬂa e
Ma = u(p1,s1)igs ¢ (k1, M) Tij, d (p1 + k1)2 + de

(3.9)
+ k1 + ks
% 7 0o * ko. A Tb' . ?1 . « )
190 ¢ (ko Do) Ty b (o S e P e olp)
Taking the limit ki, ko < p1, po allows this to be written as
. * . *
My =iQfetu; v* va g2 TS b P14 LA (3.10)

" pr -k pye (k1 + ko)
where 41 = u(p1, 51), € = €"(k1, A1), etc. In the same way as before, the Clifford algebra of
the v matrices, and the Dirac equation for spinors have been used. The following diagrams
(b)—(f) proceed straightforwardly in the same manner. However, the final two diagrams

(g) and (h) are complicated due to the presence of the triple-gluon vertex, and further
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b1, Slai
kh)\lva \“-)J 1 1
(6%
ko, Ao, b 2 2
P25 52, ]
(a) (b) (c)
1 1
2 2

(8) (h)

F1GURE 3.3. The eight diagrams contributing to the two-gluon emission
from a g pair. Gluon 1 (2) has colour a (b), spin A; () and momentum k; s).
The outgoing (anti-) fermion has colour i (j), spin sy and momentum

P1(2)-

assumption about the nature of the emissions k1 and ks must be made. First, recall the

triple-gluon vertex is given by the Feynman rule
—Ys fabc [(_2]€1 - k2)u Jopu + (kl - k?)a Guv + (kl + 2k2)u gua]a (3‘11)

as shown in Fig. 2.1.
We thus obtain, for diagram (g),

o —idP? (k1 + ka)
= S T¢.
Mg U1t gs Tp Lig (kl + k2)2 + 1€
X (_gs)fabc [(_2k1 - kQ)V Gou + (kl - k?)a 9uv + (kl + 2k2)/¢ gya] (312)
i pl + kl + %2
(p1 + k1 + ka)? + ie

i

. @ * *U
1QreY v 7,
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which again may be simplified by taking the limit ki, ko < p1, p2, then using the Clifford
algebra and Dirac equation for spinors, thus obtaining

P1ip dpg(kl + k2)
1 (k1 + k) 2k ko (3.13)
X [(_le - kZ)I/ Jop + (kl k2)0‘ 9uv + (kl + 2k2)u gl/O'] 61 62 .

Computing all eight diagrams, the final expression for the amplitude for v* = ¢ggg

M, :iQfeﬂ,lfyavggs (—zTC fabc)

in the limit where the two gluons are soft, k1, ko < p1, p2, may be written
M =iQety v vs g2
(a) (e) (c)

A

{ qugj-Pl'GT pPL-€  P1L-€] P2-6 P2-€f P26l
L p1-k1pr- (k14 Fke) pr-kypa-ke  pa2- (kL4 k) p2-ke |
) 0 @
+T5€T,§j_ PL-€]  P1-€ Pa-€ PL-€  P2-€] P26
L p1- (ky 4 ko) pr-ka  p2-kipr-ka  pa2-kipa- (ki +k2) |
(8) (h)
_ ZTC fabc [ P1p _ DP2p dpa(kl + ]{}2)

p1- (ki + ko) pa2- (ki +ka) 2k1 - ko

X [(_2k1 - k?)u Jop + (kl - k?)a Juv + (2k2 + kl)u gua] 61 62 }7
(3.14)

where the aforementioned shorthand has been used. Extracting the polarization vectors,
we have

M =M, e e (3.15)
Before continuing, it is instructive to consider what happens when €; in Eq. 3.15 is replaced
with the corresponding momentum k;, with ¢ € {1,2}. First we turn to d*?(k; + kg) for
two specific gauge choices:

d’’ (k) = g*” — (1 —n) Ll covariant
k2
kP n? 4 nf k° n (n? + \Nk?) kP k°
n-k (n-k)?

In these two expressions, k = ki + ko, and 71 parameterizes the covariant gauge freedom,

(3.16)
d’? (k) = g —

axial (physical)

while A and the vector n parameterize the axial (physical) gauge freedom.
By a direct computation, making the replacements ¢; — ki and/or €5 — ko as neces-
sary, it can be shown that
M, kY kS =0 (3.17)
and
~ 1 pi-ki pek
2ky ko |p1- (k14 k) p2- (k1 + ko)
along with a similar expression for M,,, ;" k5. In the limit k2 < k1, one may make the

M, k€5 kg - €}, (3.18)

replacement k1 — k1 + ko in the numerators with impunity, and the resulting expression
for Eq. 3.18 is identically zero. Thus, a useful Ward identity holds in the limit of soft
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gluons strongly ordered in energy. Writing this second expression more explicitly as
1 Py E9(1 — cosb11)

2k1 - ko [ PO KY(1 — cosb11) + pl k9(1 — cos 012)
B Py k(1 — cos 1)

Py k(1 — cosba1) + pY kY (1 — cos fa9)

M, k' €5V o
(3.19)

*
k2'€2,

and then parameterizing the energy of the first gluon as k! = a kY, one can make a Taylor
expansion about o = 0 to find that this expression also vanishes in the limit o < 1,
showing that the Ward identity also holds when the gluons are strongly ordered in energy
as k1 < k. The same results would hold if one were to make the replacement €5 — ks.

To summarize,

M k' kS =0 when ki, ks < p1,p2  and
My " kY = My ki €5V =0 when ki, ke < pi1,p2 with k <ko or ki > ko.
(3.20)
These Ward identities have very important consequences, particularly for the triple-
gluon vertex and the sum over gluon polarisations in the squared amplitude. I will address

the latter here first. The squared amplitude, inclusive over all gluon polarisations, may

be written
STIMP =D (M e, e5,) (MY ey ea,)
A1,A2 A1,A2 (3.21)

= MM MY (=g + gauge terms) (—g,,s + gauge terms),

where the usual completeness relation for spinors has been used. Upon multiplying out
the terms in parentheses, one finds that the only term to survive is the one proportional to
Guu' Yo o0 account of the Ward identities derived above, assuming the strong ordering of
gluon energies. Thus, in this limit, the sum over gluon polarization states is accomplished
simply as
> IMP = MM, (3.22)
A1,A2
The second manner in which the Ward identities help us is in simplifying the triple
gluon vertex. Assuming strong ordering of the gluons’ energies, taken here with complete
generality to mean ks < k1, the part of the expression in Eq. 3.14 due to the triple-gluon

vertex becomes
(_2k1 - k2)1/ go-y, + (k’l - k2)o‘ g,uy + (2k2 + kl)y, Gvo

(3.23)
— —2k1, Jopu + k1o Guv + kl,u Guo

of which the final two terms in the second line may be discarded for the following reasons:
The third term in this expression, k1, gy», Will appear multiplying the complex conjugate
amplitude in the polarization-inclusive squared amplitude, yielding zero by the Ward
identity. In the same manner as before, the second term in this expression, ki, g, may
be replaced with (k1 + k2), 9w, which gives zero identically in the broader context of the
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expression:
P1p b2y o
— dP? (k1 + k2) (k1 + k2) o guu
p1 - (k1 + k2) p2'(k‘1+k‘2)] Uk -he) (b + k)o g
_ [Pl (k1 + k) p2- (ki + ko) g (3.24)
p1 - (]{:1 -+ ]{32) D2 - (kl + kg) wy
=0,

since dP? (k1 + k2) may be shown to be effectively g~7.
Our starting point for the remainder of the calculation, is Eq. 3.14 in the limit ko < k1,
using the simplified triple gluon vertex and taking d”?(k; + k2) = ¢”?, namely

dpo(kl + k2) [(_2k1 - k?)u Gopu + (kl - k2)a Guv + (2k2 + kl)u gl/a] — =2k gﬁ , (3-25)

on account of the derived Ward identities in this limit. Thus we start with

M=iQyeisy* vag?

x{ a b [pl‘é’f I T S p2'6§+ p2- € p2-6§]
KR py kg pr- (ki 4 ko) pr-kLpa-ka po- (k1 + ko) pa - ke
D1 € pL-€ DP2-€ p1-€  P2-€] D2 - €5
+T5 T@[ - + ]
kKT py (ki ko) proke  pa-kipi-ke  pa-kipa- (ki ko)
i TS fobe ki- e [ pL-€l  pa-e€] ]}
* ky-ky [p1-(ki+k2) p2-(ki+ka)] )

(3.26)

which, after using the Lie algebra i T} febe = [T, T°;; to write T2 T,gj — 15 Ty +

i T fee becomes

M=iQpetsy* vag? {ng Tj; % eikonal
PL-€]  PL-€  PL-€] P2-€
p1 ki pi- (ki +ka)  prokip2-ke

D2 - € D2 - €
p2 - (k1 + ko) p2 - ko

+k1'6§< pi-€l  p2-€ ﬂ}
ki-ko \p1- (k1 +ka) p2-(k1+k2) ’
where ‘eikonal’” indicates the usual product of eikonal currents:
: PL-€1 P26 (P16 P26
eikonal = — — 3.28
(Pl'kl pz‘k1> (Pl'kz Pz'kz) (3:28)

The final part is very subtle, as we now analyse the angular ordering of the two gluons.

+i jvlc] fabc |:
(3.27)

Using p; as a reference, I will now define three angles according to p;-k; = Ej; wi (1—cos6;1),
pi - ko = Fywa (1 — cosbio) and ky - ko = wq ws (1 — cos 912), where E; is the energy of the
fermion and wy (o) is the energy of gluon 1 (2). If we now take the expression

Di- (k‘l + ]432) =F;w |:(1 — COS 911) + %(1 — COS 912):| (329)
1
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we identify a problem. On account of the condition wo < w1, we would like to drop the
second term and conclude p; - (k1 + ko) = p; - k1, however we may only! do this as long
as 0;1 % 0. Our interest begins with the region for which k; is collinear, without loss of
generality, to p;.
In the collinear limit of k1 we may approximately replace k1 — (w1/E1)p1 in the
numerator. Therefore,
ki-e5 wi P1- € P1- € P16

- — = S = 3.30
k1-ka  Eiwiwy (1 —cosfip) Erwa(l—cosfia) p1-ke (3:30)

~

where 512 ~ 012 has been used, which requires 11 < #12, i.e. the softer gluon is emitted at
a much wider angle. Using this result, and the fact that py - (k1 + k2) may be replaced with
p2 - k1 (kp is already assumed collinear to p;, and so this approximation is safe according

to the above arguments) one finds upon direct computation that

i T fabc |:p1 : ET b1 - 63 . p1 - 61( b2 - éj p2 - 6; p2 - 6;
" pr-kipr- (ki +k2)  pi-kipa-ka  po- (ki +k2) po- ko
+k1 - €5 < pi-€ P2 )] (3.31)
ki-ky \p1- (k1 + k) pa2-(ki+ ko)

- e pabe :
— 1 T35 [ x eikonal,

and so

M=iQretu; " vo g2 T}, T,fj x eikonal. (3.32)
The same result may have been achieved by taking k; collinear to po instead. The physical
content of this result is that, if the softer gluon is emitted at a wider angle it resolves only
the total colour charge of the system, and this emission is independent and eikonal. This
is coherence.

The remaining scenario to consider is where 015 < 611; i.e. the softer gluon is emitted
at a similar or lesser angle than the harder gluon. If the harder gluon is not collinear to
either p; or ps, this condition applies no constraint on what the angle of the softer gluon
may be. In this case, one may always replace p; - (k1 + k2) — p; - k1 with impunity in the
denominators. Upon making this simplification in Eq. 3.26, one finds

, ~ . pL-€] (P1-€ D16
M=iQretu1y" vo Q{T‘l TP, [elkonal—i— < — >
! LR p1-ki \p1-k1 p1-ke

p2-€] 1€ | ki-€ (pl'ﬁf_pz'ﬁ)]
p2-kipr-ka  ki-ko

p1-k1 p2-ky

. p2-€f (p2-€5  pa-€d
+7b T [elkonal—i— < — >
i "k p2-ki \p2-k1  p2-keo

+p1'6>{ p2'€§+k‘1'6§ (pz'ﬁf_pl'q)]}
p1-kip2-ka  ki-ky \p2-k1 p1-k

Within the first and third sets of parentheses, the term proportional to (p - k1) ™! may be
dropped since it is small relative to the term proportional to (p; - k2)~!, because of the

strongly ordered gluon energies wy < w; and the fact that we are considering the case

l1n fact, all we require is that 0;1 &« 6,2, i.e. the harder of the two gluons is not significantly more collinear
than the softer one.
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where 912 5 911. That iS,

<p1'62—p1'62>—>—p1'€2 etc. (3.34)

p1-ki p1-ke p1- ko’
Finally, this expression may be cast in the form

, _ p1-€]  Pp2-€]
M=iQ eulvav292< —
d S\p1-k1 op2-ky

ki-€5  po-eb ki-€5  p1-és
'aTb. 2 2 _Tb T, 2 2
- [ ok (kl'k?Q p2 - k2 Wk Ky ke proke )]

(3.35)

where the eikonal current for gluon 1, the harder of the two, is an overall factor in the
expression.
Squaring this result and summing over gluon polarization states and quark colours

gives, considering only the terms in the square brackets,

Y IME

1,5 A1,A2
. 1 (k1,p1) (k1,p2) (p1,p2)
24 Tr [ToTT¢] f2be = [ i 1 ’ — ) (3.36)
[ ]f w% (kl) k2) (kQ)pl) (kl) k2) (k2)p2) (p17 k2) (kQ)p2)
— 2Ty [Tortrbye] —PLP2
[ ] p1 - kapo - ko

where the gluon’s energy ws has been factored out in the non-Abelian piece and
(a,b) :=1—cosfy (3.37)

is defined for the vectors a and b, with cosf,, the angle between them. Independent
emission essentially means that the non-Abelian term—in the large square brackets, which
does not appear in QED—must vanish. We have already seen that this term disappears
when the softer of the two gluons is emitted at a significantly wider angle than the less
soft gluon. We now demonstrate that this term also vanishes in the case that the softer of
the two gluons is emitted significantly more collinearly to either the quark or anti-quark.
Adopting the method used in [48, 49], the non-Abelian term, proportional to

__(hup) (ki,p2)  (p1p2)
NA = (kh k2) (k27p1) (kl, kz) (k‘27p2) (ph k2) (k2’p2) ) (338)

may be written in terms of

) - o
i PR ) R S 3.39
0GR () TGk Gk (3:39)
as
11k Trk Tk
NA =W = Wi, Wik, - (3.40)

A remarkable property of the function W[If]j is that, if we integrate over the azimuth of
the vector k, with the azimuth defined to be about the direction of the vector 7 in square
brackets, one obtains

/ %W[’;]j - (é% 01[(i, ) — (i, k)] = (i}k) O(cos By — cos b;) (3.41)
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as shown in Appendix B.3. Since the Wk . functions are scalars, we are free to choose our

[l
coordinate system in each case over which to perform the phase space integration. With
that in mind, we pick the azimuth of k£ to be the angle about the direction of the vector 4

(in square brackets to remind us). We therefore obtain the expression

dé 1
/277 NA = m{@[(m,/@) — (p1,p2)] — O[(p1. k2) — (p1, k?1)]} )

+ (l{}l,:le)@[(kl’pz) - (kl’k2)] :

The collinear enhancement as ks becomes parallel to p; is in the first term, but this
goes to zero as (pi,ks) — 0 because of the Heaviside step functions. The general result
may be stated [50] as follows: soft gluons emitted at widely disparate angular scales
are emitted independently because of QCD coherence, whereby the gluon emitted at a
wider angle ‘feels’ only the total colour charge of the (qg) system from which it’s being
emitted—which, in this case, is just that of the original quark. This result is crucial to
the consideration of soft gluon resummation to all orders.

As a final remark for the interested reader, I will point out that this thesis deals
principally with the resummation of continuous global observables. For a discussion of
the resummation of so called ‘non-global’ QCD observables, see [51]. In particular, [52]

presents a discussion of coherence in the context of such an observable.

3.3. Collinear gluon emission to all orders

In Appendix A.4 I have computed the (azimuthally averaged, d-dimensional) differen-
tial cross-section for a general process involving the splitting ¢ — ¢ g, in the limit where
the emitted gluon (g) is collinear to the quark (q). This demonstrates the universality of
the factor one obtains in association with such emissions which, in d = 4 dimensions, is

g dk;?F
% a dZ qu(Z) 5 (343)

where Py,(z) is the Altarelli-Parisi splitting function [53], z is the momentum fraction
carried forth by the quark, and kr is transverse momentum of the gluon with respect to
the direction of the quark?.

To understand how we might obtain a result to all orders, we follow [54]. Let us
therefore consider a quark of momentum p = (F,0, E') emitting a gluon of momentum £,

as shown in Fig. A.6. We parameterize the gluon momentum as
k= (ZEakTaﬁE) (344)

and, requiring the gluon to be massless—i.e. k? = 0, one can deduce that

Moo,k
=z 1_22E2NZ_2zE2 (3.45)

2There is a singularity associated with soft gluon emission, i.e. when 1 — 2z — 0.
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in the limit where kt < 2z F, the collinear limit. The momentum carried by the quark
after the emission is therefore

k2
g=p—k) = (E’, —kp, B + ZzTE> , (3.46)
where E' = (1 — 2) E, and so
]€2
¢’ = —7T +O(k}) . (3.47)

Upon integration over the gluon’s transverse momentum k% we obtain a logarithm asso-
ciated with the collinear emission.
Consider, the subsequent emission of a gluon carrying momentum k' = (2’ E', k%, 8’ E').

Similarly, in order that this gluon be massless, we have

12

B~ - ﬁ : (3.48)

We therefore find the momentum carried by the quark after the second emission to be

/ / 1 / /! k‘ll].2 k%
q=q—k=(E,—(k:T+/<:T),E +2Z,E,+M), (3.49)
where E” = (1 — 2’) E’. This implies that
/2 /1 \2 /! k'/I% k%

q°=—(kr +ky)* — E (Z,E,+2E>+..., (3.50)

where . .. represents terms O(k1), O(K%) and O(k% k). Only in the limit bt < k% does
q? vary as k’%, giving us a double logarithm upon integration of the propagators over the
second gluon’s transverse momentum k@, followed by integration over that of the first

/k%’“ dky [T dkE 1 o [ RE (3.51)
- —p5 = — I — 5 . .
k,%ﬂn ]{,‘% k%ﬂn k!lg 2 k%1n2

In performing the integration over k’TZ, we may set the upper limit to k?r, which is sufficient

gluon, namely k%:

to obtain the double-logarithm.

Since two gluon emissions gives a term formally O(a2), only the circumstance in
which we obtain this double logarithm do we find a correction that may be as large as
that associated with single collinear gluon emission at O(as). This necessarily implies
the ordering of emissions as kr < k7. This argument extends to an arbitrary number of
collinear gluon emissions straightforwardly.

The argument for strong ordering in transverse momenta of successive gluon emissions
has been based entirely on kinematical considerations for the propagators. It actually
gives rise to a simplification in the calculation of the dynamics for multiple collinear gluon
emission, for it implies that quantum mechanical interference between processes where
the gluons are ordered differently is suppressed. Pictorially, this interference may be
represented by ladder diagrams in which gluon ‘rungs’ cross, as shown in Fig. 3.4 (left).
Only those diagrams in which no rungs cross give the leading collinear contribution (of a
single log) at each order in ag, as shown in Fig. 3.4 (right).

Since interference may be neglected at this accuracy, this gives rise to the notion of
independent emission, where the probability for n successive collinear gluon emissions is
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(a) A ladder diagram (b) A ladder diagram
with  some  crossed in which no rungs
rungs. Cross.

FIGURE 3.4. A ‘ladder’ diagram representation of |M|? for an arbitrary
number of gluon emissions. In the collinear limit, the leading terms come
from the diagram in which no rungs cross, which gives rise to the concept
of independent emission probabilities. Diagrams in which rungs cross give
sub-leading contributions.

simply proportional to the probability of one collinear gluon emission to the nth power.
It should be borne in mind that this picture is correct only if one is concerned with the
leading collinear enhancements at each order. In fact, the so called DGLAP equations
presented in the following section (due to Dokshitzer, Gribov, Lipatov, Altarelli & Parisi
(63, 55, 56]) provide a resummation of these enhancements to all orders.

For processes in which the leading logarithmic enhancement at each order is a double
log, arising from soft and collinear emissions, then the approximation discussed above
contributes at NLL (next-to-leading logarithmic) accuracy, and it guarantees the single
collinear logs at each order.?

3.4. Parton evolution and the DGLAP equation

The DIS structure function F» [35, 48]—the DIS equivalent of Eq. 4.22 for Drell-Yan,
to be introduced later—is

1 _ 2
Fy(z, Q%) = xZQg/ % ¢g/ls (%,u) {5(1 —z)+ %i [Pq(g)(z) hrlﬁ2 +RquIS(z)]} .
0.q v

(3.52)
Here, ¢;(x, 1) is a parton density function (PDF)—the probability that a parton of flavour
1 carries a momentum fraction z of the parent hadron, discussed further in Chapter 4.
We take this, for example, as our starting point for obtaining the DGLAP [53, 55, 56|
evolution equations. First, it should be noted that we consider all quantities defined
in the MS scheme, i.e. only the modified collinear pole (47e®)¢ /¢ is absorbed into the
definition of the renormalized PDFs. In the ‘DIS’ scheme, the entire function R%S(z)

3This is only true if we consider ‘global’ observables. Observables with non-global logarithms are different,
and such arguments may not hold. For a discussion of such observables the reader is referred to [51].
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would have been absorbed but, for our purposes, it remains present in the expression for
Fy(z,Q?). Furthermore, the non-perturbative PDFs gf)NTS must be determined from an
initial experiment ‘A’ before they can be used to make a prediction of the outcome for
experiment ‘B’. In order to extract ¢WS from the measurement performed in experiment
‘A’, one necessarily chooses a particular value of p, since this will change the value of qﬁm
determined. A natural choice may be the characteristic hard scale u? = Q?, for then the
logarithm is zero. However, this means qﬁm acquires a dependence on y. When used to
make predictions for the outcome of experiment ‘B’, which may be performed at a different
characteristic energy scale, we need some way of ‘evolving’ the PDFs to this new scale.
It is precisely the observation that the physical quantity F»(z,Q?) cannot depend on this
mathematical construction p? that gives us the relevant evolution equation. One starts
with

NQ dFy(z, p?)

dp?

d Ydz s/ a Q>
2 = ZMS (2 _ s | p(0) DIS _
T A (Son) {5(1 2+ 5 [qu () In'% + R (Z)H 0
(3.53)

=0

Collecting terms of O(as), noting that p? ¢ (x, p)/0u? is itself an O(as) quantity, one
finds

0p(z, ) Vdz ag ( x
2 Y\ ) “e B p(0) el
a op? /x z 27 Fag (z)(;S(Z,,u>

Ys 50
= & PO() © 6l p)
after performing the trivial integration over the d-function. This integro-differential equa-

tion for ¢(z, ) is the DGLAP equation, which allows one to determine the PDFs at a

physical scale 4/, upon integration, from those known at a physical scale p.

(3.54)

In fact, the full DGLAP equations are (2 Ng + 1)-dimensional matrix equations for the
matrix of PDFs (¢q, ¢g, ¢g)

Qi bq(, 1) _ & Pyg(z,05(n))  Pag(x, as(p)) Pq(, 1)
: 8ﬂ2 ( (bg(x,,u,) ) 2 ( qu(x7as(u)) ng(.’IJ,OéS(,LL)) ) ? ( %(waﬂ) ) (355)

Focusing simply on Eq. 3.54, we can solve it by taking Mellin moments with respect

to x, i.e.
1
SN ) = [ s o). (3.56)
0
In Mellin space the convolution becomes a simple product, and one has simply

n b 8
pt S — S G, ) (V). (557

In this expression, y44(/V) is the anomalous dimension (see Eq. 4.48 later) namely the Nth

Mellin moment of the regularized splitting function. We may integrate this expression, for
a given N, to find
2 ~ 2
/Q L o) o /Q 42 as(p?)

7 Yaa(IV, a5 (1° 3.58
Q2 (N2  dp? o o gq(IV, o5 (11%)) (3.58)
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and so ,
Q d 2 2

- - 1= as(p)
¢(N7Q2):¢(N7Q(2)) exXp [/QQ o S(

0

The right-hand side may be solved exactly, for instance, if one assumes «g fixed, to give

7 on T as(u) | (3.59)

o 2D (N (42))
) (3.60)

o(N, Q%) = 6(N, Qf) <2

o5

We have the desired expression: given the PDF determined for some starting scale @,
the PDF at the new scale ). With this result, the term anomalous dimension may be

elucidated: it quantifies the deviation from naive scaling of the PDFs.
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CHAPTER 4

The Drell-Yan process and the ¢* observable

The Drell-Yan process [1] may be described as: hi(p1)+ha(p2) — £~ (ps)+01 (ps) + X,
namely the processes whereby two hadrons collide to produce two leptons of opposite
charge and same flavour, and anything else, X. This process, in the naive Parton Model!,
is shown in the Born approximation, O(a?) in the electroweak coupling parameter, in
Fig. 4.1. The factorization theorem for Drell-Yan production [57] permits us to write the
hadronic cross-section as a convolution of (possibly scale-dependent) parton distribution
functions (PDF's) for each hadron h; and he, with the partonic cross-section for an allowed
sub-process, up to terms formally suppressed by powers of A(QQCD /M6, the inverse hard
scale. Thus

d L ! dé; AZ
dTZ? NZ/O d§1/0 dﬁz@ﬂ(&;ﬂ)ﬁ(& §2.53 1) ¢j/2(€2;u)+0< ]\Qﬁ;D>- (4.1)
%,J

Here, & and & are the momentum fractions of partons 1 and 2 that enter the sub-process,
denoted by a hat, and ¢;/,(; i) is a scale-dependent PDF for a parton of type 7 in hadron
k, namely the probability that this parton is found to have a momentum between £ p; and
(& + d€) px, where pg is the momentum of the parent hadron, labelled k € {1,2}. A sum
over parton types is included. Eq. 4.1 is usually the starting point for the calculation of
hadronic cross-sections in perturbative QCD (pQCD).

In this chapter I will present in detail the calculation of the cross-section for the Drell-
Yan process in a hadron-hadron collider, including O («ag) perturbative corrections to the
Born result, which is itself O (a2), in the electroweak coupling. The aim is to introduce
the reader to a full next-to-leading order (NLO) calculation, demonstrating various results
along the way that will be invoked later. I have computed the differential partonic cross-
sections explicitly in Appendix A, for the Born process and also the real and virtual
corrections, for the benefit of the interested reader.

In this chapter I also finally introduce the ¢* observable [15] that has essentially
formed the topic of my PhD. The ¢* observable was originally introduced as a result
of experimental considerations. It has an entirely angular construction, which means
it is largely immune to experimental momenta mismeasurements, in contrary to its Qr
cousin. Throughout this thesis, the ¢* observable (along with Q) is directly applied
to the Drell-Yan process. It is important to note, however, that the observable itself is a
kinematic definition and could equally apply to other suitable processes, as a measure of the
azimuthal decorrelation between two objects. That said, we are for the present interested

in this observable in the context of Drell-Yan for its ability to probe the effects of gluon

1The model in which hadronic constituents, known as partons, are assumed to instantaneously and inco-
herently undergo the actual scattering.

55
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FIGURE 4.1. The Drell-Yan process in the Born approximation and the
naive Parton Model

emission from the process-initiating partons. In Section 4.4 I will present the kinematic
construction of ¢* and relate it to other observables, before presenting its resummed
calculation wvis-a-vis that of a and Qr for easy comparison in the sections that follow.
First, I will address the Drell-Yan cross-section and logarithmic enhancements that arise

in certain regions of phase space.

4.1. The hadronic cross-section

In this section I will address the full hadronic cross-section for the Drell-Yan process
and the role of PDFs, focusing on the annihilation mechanism with photonic exchange:
hihy = qd+ X — v*(+g) + X to serve as a concrete example?. The reader will find
detailed calculations of the relevant individual partonic processes in Appendix A, where
dimensional regularization has been used in d = 4 — 2¢ dimensions. Adding together the
contributions at O(as) to the Drell-Yan process under consideration, namely the real and
virtual contributions to the annihilation sub-process in Eqs. A.74, A.75 and A.104, one
obtains (see, for example, [35, 48, 60])

~R V. Qs dM2 2 0
dogq +do" = a9 o MZ D(e) [—6P(§q)(z) + Ryg(2) |, (4.2)

with D(e) defined in Eq. A.66, and where chg)(z) is one of the Altarelli-Parisi splitting
functions [53], given by

Z2
PO (2) = Op Mjm + 25(1 - z)} , (4.3)

2A calculation of Drell-Yan production via Z exchange may be found in [58]. Furthermore, the total O(a)
result may be found by consulting [59].
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and Ryg(2), given by

272

RW“)ZC%{&1—2)<3—8>+4u+¢%[bﬁ1—@

1—=z

}+—m%@ﬁ+f},@@

is a function which is completely finite in the limit ¢ — 0.

The quantity d&% + déV above is not finite in the limit ¢ — 0, on account of the
remaining pole in €, and is therefore not infrared (IR) safe. The purpose of this section is
to address this issue, and find how we can extract an IR safe quantity from it, by exploiting
factorization [57]. The essential point is that, in Eq. 4.1 for the hadronic cross-section,
we have introduced a new quantity, namely a PDF, which itself has an unrenormalized,
yet unmeasurable form, along with a renormalized, finite and measurable form. The
programme for obtaining the IR-safe version of the partonic cross-section will be via a
redefinition, whereby the singular pieces are absorbed into the unmeasurable bare PDFs.

Following the method of [60], we begin by defining a quantity known as a transition
function, I', which is to a parton what a bare PDF is to a hadron. The idea here is to
absorb the singular pole in € into the transition function, whose residue may be interpreted
as the probability of finding a parton of a given type inside another parton—in this case a
quark ‘within’ a quark—with a given momentum fraction z of the original parton. Thus,

we define . .
oi;(s) :/ dzl/ dzo T (21) ore(21228) T(22), (4.5)
0 0

where the € is there to remind the reader the quantity is not finite in the limit ¢ — 0.

Assuming a perturbative expansion in ag for each of the quantities in Eq. 4.5, namely

oij(s) = i (%i)nan,ij(s)a

n=0

r5(s) = 3 (22)" oty (4.6)

n=0
o (X n
and  Th(2) = dud(l—2)+ > (55) Thale).
n=1

we may write the finite quantity o order-by-order in terms of o€ and I'¢, by equating terms
at the same perturbative order upon substitution of Eq. 4.6 into Eq. 4.5:
00,i(8) = 00,45(5)

1

1
0147(5) = 0% 15(5) — /0 0o T 1y (21) 0 1 (215) — /0 A2 05 (209) T 05(22)  (47)

The method now is to pick suitable expressions for the ‘I'“’s in order that all the
divergences (poles in €) on the RHS of these expressions exactly cancel, leaving only finite
quantities on the LHS.
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First, the full hadronic cross-section is given, according to the factorization theorem,

by
dM2 /dfl/ déo

A X [ o) + g 0 0)] | Tt + Tl @] (1

q
+ 37 [bgpr(€1) dppa2) + (f ¢+ 9)] W}
f=a,4

From Eq. A.25 we already know that

dM? (8) = e ¥ =7
so we begin by finding the expression (using Eq. 4.7) for

d61,45 .. d&i - 1 . d%’ A 1 dﬁa T/ o e
dMq;(s): dMq;(s)—/O dz1 T 4q(21) dMqu(zls)_/O dzo dMqu(zgs) 1qq(#2)

1, &0(23) M?
= dMqu / dZ F1 qq( )+F1 qq( )] 3§ 6<1_ 535 )

(4.10)

where I have introduced Z = z; = 29 as the variable of integration. Performing the integral

over Z, we obtain

A~

1 G0(28 2 Go(8
[ 21082+ T2 22 5 (1= 20 = (000 T ) 25 4

z§
where 60(M?)/3 = 6¢(8)/M? and z = M?/5 has been used, as one may verify explicitly
from the expression in Eq. A.25. Using the expansion for D(e) given in Eq. A.72, one
may now see that, defining

¢ e 1 g€
Ifq(2) = T gq(2) = == (4me™®) PV (z), (4.12)

.
the poles in A}%‘]( ) of Eq. 4.10 are absorbed, yielding a finite expression for 5]:4%‘1 (8) in

the limit € — 0, namely

do g

5141 - 299 [0 g @42) R (413

with 6¢($) given in Eq. A.28 (d — 4). This particular choice results in additional finite

terms being absorbed, along with the singular pole in €. Such a choice is known as the
MS scheme.

Until now we have completely neglected the Compton sub-process: hi hs — gqg+ X —
v* + ¢+ X, which is absent until O(as) corrections are considered. Since the calculation
of the annihilation sub-process to O(as) has been worked in great detail, the result for the
Compton piece is simply quoted here, but the reader is referred to the literature [35, 48],

or the calculation may be used as an exercise. The result is

dof Qg 1
dMng :WQig —*Pq(g)( z) + Ryq(2) | , (4.14)
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where

Ryq(2) = Tr {2 [22 +(1- z)g] log [(I_ZZ)Q] +3+22— 3z2} , (4.15)
and
Py () =T [ + (1 - 2)°], (4.16)

with Ty = % Using Egs. 4.6 and A.25, we may now compute

do1.gq .. 05,4 . e d0hg,
91 gy = “Loa gy /0 42T o (z) 09 (4

2 2 2
T L e
O1,9q ;- ¢ a0(5
= dMng (S) - l,g(j(’z) M2
in a similar manner as before, and conclude that the definition
€ 1 — €
Ifgq(2) = == (4me7™) P(2) (4.18)

renders dgﬁ%q ($) finite.

So far we have computed the Drell-Yan partonic cross-section at NLO, necessarily in
d # 4 space-time dimensions, finding there are poles in € that remain when all pieces are
summed together, and which are associated with collinear emission. We have thus far
absorbed these poles into so-called transition functions, whose residues at the pole may
be interpreted as the probability to find a parton of a given type inside another parton.
It is now that we finally introduce the bare and renormalized PDF's, to absorb this pole
once-and-for-all, in a consistent fashion. Finally, order-by-order, we will demand that the
physical hadronic cross-section be independent of the mathematical construction g, intro-
duced to retain dimensionless coupling parameters, and thus insist that the renormalized
PDFs are themselves functions of 4 in such a way as to cancel the dependence due to
the renormalized partonic cross-section for Drell-Yan. We thus see that PDFs are scale-
dependent quantities which may be extracted from experiment and evolved according to a
set of coupled integro-differential equations given the name DGLAP [53, 55, 56|, for use
in predicting the outcome of experiments performed at a different scale. In this context,
1 becomes known as the factorization scale.

We begin by defining the renormalized PDF as the following convolution:

1 1
bil€) = /O da /O dz 6 1 (2) T5(2) 36 — w 2). (4.19)

The physical interpretation is as follows: The probability of finding a parton of type @
inside hadron k with a momentum fraction £ to £ + d€ of that of its parent, is the sum of
probabilities to find a parton of type j inside k with momentum fraction = to x4+ dz, times
the probability of finding a parton of type i inside the parton of type j, with momentum
fraction z to z + dz, in such a way that £ = x z in each case. This definition permits us to
compensate the singularity in I'{; with an equivalent one in the unmeasurable (bare) PDF
qb;. Ik such that the measurable ¢;/, remains finite.

To obtain the the Drell-Yan cross-section in terms of renormalized quantities, we begin

with the double convolution in terms of our calculated unrenormalized quantities which,
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as it stands, is dangerous (on account of the presence of explicitly infinite quantities in
the expression):

do do
dMQ Z/ dggl/ dxa @5 )y (1) dM2($1x23) @/2(362)

:Z / dn /0 dos (4.20)

~

€ € do’i‘ € €
<bk/1(=’1?1)/0 dzl/o dzo Ty (21) 305 (212021298) Ty (22) 6o (2) -

Introducing the identity in the form fol d€0(§ — x 2), given that x1/9 21/ € [0, 1] always,
then one may rewrite the argument of the partonic cross-section, as such:

dM2 Z/ dﬁl/ dwl/ dz ¢k/1 x1) T (21) 6(&1 — z121)

X /0 d{g /0 d$2 /0 dZQ (bZ/Q(ZCQ) F;Z(ZQ) 5(52 — .7}222) C(liM2 (.1‘121332228)
1 1 déi:
= Z déy [ déa dipn (&) 5 (E1€25) ¢j/2(E2) s
>, €6

(4.21)
where in the final line the expression for the renormalized PDF in terms of the convolution

in Eq. 4.19 has been used, hopefully elucidating the choice for its original definition. In
summary we have, for inclusive Drell-Yan at NLO,

d Lo - -
02 :/o d&/o d§2Z{ZQ§ [Qﬁ;ﬁ(fl;ﬂF) gbg/}%(&;/m) _|-(qu)]
q

X {5( )+ P [QP( )(2) In <]L42F2) +qu(2)} +O(O‘§)}
+ > QF [ ) oY (€ r) + (f 0 9)]

f=a.d
X {g‘; [QPq(g)(,é) In (i‘i) + Ryy(2 )] +0 (« )} }
(4.22)

In Appendix A.4 I discuss the universality of the initial-state collinear singularities

associated with parton emissions. Now that we have an expression for the differential

hadronic Drell-Yan cross-section, I will address the Q7 distribution of Drell-Yan pairs
and the issue associated with the small-Q limit.
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4.2. The full Q7 distribution

Taking Eq. A.49 (see also [60]), the differential partonic cross-section for real emission

in the annihilation sub-process is

dé R 0 1 2M?25 + 2 + 4 2+a2+2ta
The Mandelstam variables in the centre-of-momentum frame are t = —v/3 Ej, (1 — cos )

and @ = —V/3 By, (1 + cosf). We define kp := |k|sinf = Ej, sin6, since B, = |k| for a
massless particle, and deduce that

ti =5k (4.24)
and 2+ 4% =25 (2FF — k%) . (4.25)
We now have ) " )
IM?5 + 2 + 2
i j T = (M2 425} - k) (4.26)
T

and )
2+a?+2ta  AE}
ta kA
The differential phase space element in d = 4 — 2¢ dimensions is given in Eq. A.50:
E. "% dE), df sin' =0
(4m)l=<T(1 —¢)
after using d€2;_o given by Eq. A.53. Using the definition of kt = Ej sin6, along with
df = dsinf/+/1 — sin® §, we have
ki dky d' =k

E, "% dfsin' %0 =2 = (4.29)
VEI KB -k

The extra factor of two has been included since, when it comes to integrating the expression

(4.27)

dPS, = 5 (s —2EVE — M2) , (4.28)

for do/ dk% dM?, we could just as well integrate from 0, to m/2 (instead of from O, to
T — Omin) given that the expression in Eq. 4.23 is symmetric about 6 = 7/2, provided we
double the result. For an integration over kr, from kffli“ to k7®%, this change of limits is
convenient.
The d-function may be written
5 2
5 <s —2B5 — M2) - 2\1@ 5 <Ek - ”g\g) (4.30)

and so, collecting results so far, one has

do as (4rp?)e 1 dl_gk‘%
A~ T(1—e) T M2 R
| M2+ 2E? — k2 — 2¢ i M (4.31)
2x — dE S (B, — 2=
Ve
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Using the definitions z := M?/§ and A := k% /M?, the argument of the -function tells us
E), = +v35(1 — 2)/2 and calls for the replacement

1 M?>+2E; — k3 —2e¢E} 1+22-2Az—¢€(1—2)?

N 4.32
i Jmwe N 432
Furthermore, dEj, = —V/§dz /2, so changing variables of integration gives us
do . Oy 1 VIR 1 d'7cA
=5y Cp - =
dM? 27 T(1 —¢) \ M2 M? A
(4.33)

2 _ (] — )2 2
><2/dzl+z 2Az—¢€(1—2) 6(2—]\{),
V(I —2)2—4Az s

including the integration over z. It is important to note the limits of the z integration
are constrained by demanding a non-zero kt. The minimum energy carried away by the

gluon is k1. As such, we have the relation
BN = /5 (1 — 2™%%) /2 = foy )
4.34
= 2" =14 2A - 2y/A(1+A)~1-2VA for A < 1.

The lower limit of z is zero.
Finally, the differential hadronic cross-section is, according to the previous analysis of

Sec. 4.1, the convolution of the bare PDFs with the partonic cross-section derived above:

do do

2 4.35
k2 dM? k2 dM? (4.35)

1 1
= / dm/ dz (g1 (21) dgra(r2) +q > q|
0 0
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4.3. The origin of large logarithms

In this section, I adopt certain methods employed in [61, 62] in order to determine
the low-Q1 behaviour in Drell-Yan. Here I work with the integrated distribution, defined
by

O
) = e dk} 4.36
@)= [ g (136)
which is proportional to the number of events with kp < Q1. Explicitly, taking the results
of the previous section, we have
47 a2 Q2 1 1 1 4 2\ €
f . Oy Yy

SN, I / dfrl/ dz2 [dg/1(21) Ggja(w2) + 4 ¢ d] 5 Cr =0 < 2 )

1—e _ — —
><2/d A/ 1+z 2Az —¢e(1—2)? Sy w5z — M?).
VI —2)2—4Az

2(Qr) =

(4.37)

Taking moments of Eq. 4.92 with respect to the so-called Drell-Yan variable 7 := M? /s =

21 x9 z—the hadronic equivalent of z—as in

1
S(N,Qr) = / dr N7 8(Qr), (4.38)

0
decouples the convolution integrals yielding the simple product

1 a 1 AP\ [ dYEA
M2 2 FT(1—€) \ M2 A

. PN . 5 (4.39)
><2/dzzN{ T S cl-7) },
VI—-22-4Az J(1-2)2-4Az

£(N,Qr) = £O(N)

where
. 47 Q2 -
EOW) = s [4an (M) da2V) + 0. (4.40)
and .
d(N) := /0 dz 2N ¢(z) . (4.41)

It is convenient to treat the ‘€’ part of the integrand separately. Since for this term
there is no divergence as z — 1, we may take the upper limit of the integral to be 1
without losing any terms which don’t already vanish in the limit A — 0. Furthermore, we

can take the limit A — 0 in the denominator, thus

max

z € —22 1
/O dz N \/(1—(1z)2—)4Az_>6/0 dz 2N (1-2). (4.42)

The remaining A-integral for this term is simply

e d A ARS ]
/0 < I =+ 10g Aax + O(c) (4.43)

and so, in the limit ¢ — 0, we simply obtain
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Writing 2V as (2 —1)+1 in the first term of the integrand in Eq. 4.39—hence splitting
this term into two parts, the first of which contains no divergence as z — 1—results in

I=eA 1+22-2A 1ZEA g (N
A VI —2)2-4Az A Cr
N ) (4.45)
= M <_ + lOgAmax) + I
CF €
again using Eq. 4.43, where
! 1+ 22
Ygq(N) := Cr / dz (2N —1) : , (4.46)
0 —Z
and I—ep ) A
€ 1 -2
= / d dz —2 c (4.47)
A V(I —2)2—-4Az

In obtaining v44(/V), the limit A — 0 was taken in the denominator of the z integral and
the upper limit on z was taken to 1, again on account of the absence of a divergence as
z — 1. In fact, this may be written in terms of the ‘plus’ prescription as

1 1 2
Yag(N) == CF/ dz 2N ( e > (4.48)
0 1—2z n
and, on account of the equivalence
1+ 22 1+ 22 3 P (2)
— ) ="+ (1 -2)="4 4.49
<1—z>+ =2, T200-2 =" (449)

we see that 744(/V) is nothing more than the Nth moment of the regularized quark splitting
function.

Finally, the z integral in Eq. 4.47, evaluated between the proper limits, is

Zmax 2—
/ g AHEZ2AE 3 A 04 AP A+ (14 A A (14 A)]
0 V(I —2)2—4Az 2
:—g—lnA, in the limit A — 0.
(4.50)

The limit A — 0 here is sufficient to obtain the logarithmic and constant terms in X(Q)
at small Qp. (For that reason the 2 A z term might have been ignored in the numerator
of the integrand and the effective upper limit 1 — 2v/A for the z integral might have been
used.) Finally performing the A integral over this result gives

Amax 1_6
d' A 3 1 3 3 1
I = —Z _InA) == 2 Y p Amax _ T QAmax 4.51

/o A ( 2 M ) €2 +2e o i (4.51)

in the € — 0 limit.

Since X(Q1) contains contributions from the virtual corrections at Qp = 0, we ex-
pect the poles in € to cancel between the real and virtual contributions. The (partonic)
virtual contribution in Eq. A.104 is proportional to D(e), given by Eq. A.66. In order to

conveniently add in these virtual contributions we first rewrite, in the real part,

1 T(l—¢ I(1—-2) TI(l—¢) 2
Tl g T0-29 0o Ta_29  [[TTg O @
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With this in mind, the real contribution to 3(QT) is

xz{/oldzzN(l—zH%"C(év) {—1+ln <fj§)] +7;2 (4.53)

1 3 3 Q? 1 Q?
S S =) D2 =L .
Tato 2n<M2> 2D<M2
Since fol dz 2V §(1 — z) = 1, the Mellin transform is trivial to invert® and, adding in the
virtual piece from Eq. A.104, gives (69 =47 Q? a?/3 N, 5)

as 1

1 1
2(Qr) :/0 dwl/o dz2 [pg/1 (213 1) Pgj2(22; 1) + 4 & @ G0 o 7

X 2/01 dz [m (fj) P (2) + Rqu(z)] ) <J\f2 — x1 29 z>

(4.54)

in the limit € — 0, where

Ryy(z) = CF{5(1 —2) KW; _4> N gln (J?ﬁ) - % b <J?42T2>]
P,

()}

The expansion of D(e), Eq. A.72, has also been used, and the remaining pole term

—(1/€) (4me™ ") v44(N) has been absorbed into the transition function f‘iqq(N), ren-

dering the PDF's formally scale-dependent. The single-logarithmic Compton result is [62]

RO.(2) = T {2z(1—z)+]3quiéz) In (jfg)} (4.56)

(4.55)
+(1-2)+

and may be included in X(Q7) above, in a way analogous to Eq. 4.22.

Here I shall comment on the origin of the logarithmic terms. The double log in Eq.
4.54 comes from emission that is both soft and collinear. The single log, however, comes
solely from hard—collinear emission. In the case of the Q1 distribution of Drell-Yan lepton
pairs at leading-order—i.e. O(ag)—there are no single soft logs, which would be due to
soft—wide-angle’ emission. To see that this is the case, one can either show that the
single log which appears in Eq. 4.54 comes entirely from hard—collinear emission or, more
transparently, one can borrow the result of Eq. 3.8 and (using crossing symmetry) write
the partonic Drell-Yan cross-section as

2p1 - p2 &k
p1-kpe-k (27)3 2w
Qg dw db do

:4A _—
00271' K

do = 694 masCg
(4.57)

w sinf 27’

. 1 —
3Usmg fo dr N 5(zai 205 — M?) = #x{vxé\l 2N
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In the second line it has been assumed that the incoming parton momenta p; and po
are back-to-back, with § = (p1 + p2)2. In this expression k = (w, k) is the gluon’s four-
momentum. Introducing the rapidity of the gluon,

1 w+ ks, 1 1+ cosf
=—1 =—In{—— 4.
T n<w—/<:z> 2 n<1—cosl9> ’ (458)

and its transverse momentum k1 = w sin 0, we see that dw/w = dkt/kt and df/ sin 6 = dn.

We may thus write

dk?.
k2
The cross-section for a single soft gluon emission from the back-to-back dipole is therefore

dd>

dé = &, % Cr ot dn 5 (4.59)

uniform in rapidity and azimuth.
If we consider the integrated cross-section X(Qt) = fQQ (dé/dk3) dk4., the kinematic

1 max k,max
n < 5 In <w+z) . (4.60)

(max _ kmax

limits on n are

Using w? = k2 + k2, along with k" = Qp and w™ = /5/2, one finds in the limit

QT < V3 that
1.8

W — — In — 4.61
U 2 2 (4.61)
Performing the integration over 7 followed by k2 gives simply
Qg dk‘% s
X(Qr) = 69 — Cr /Q2 = In—— 2

(4.62)

= 6’0 @ CF |: ln2 <QAT):| .
T 2 5

We only need to consider the lower limit of k% to recover the logarithmic enhancement at
small Q7. The upper limit of k% corresponds to the configuration in which n — 0 for the
gluon, and so does not give a logarithmically enhanced term.

From this exercise we see that, in the soft limit, we necessarily obtain a double loga-
rithm since the limits on n corresponding to small QT are in the collinear region. Hence,
our observable is not sensitive to soft-‘wide-angle’ emission. Conversely, an observable
which places a restriction on 7, for example gaps-between-jets observables, may result in
single soft logarithms associated with wide-angle emission. Introducing an artificial cut-off

~ R as dk2
6=060— / / dn
T Q% (4.63)

=00 — CF[ 2y nQ7] |

which has an enhancement of the form ag L, and the gluon is necessarily emitted into

on 7 results in

the (‘wide-angle’) angular region corresponding to |n| < y. Once again, for the interested
reader, non-global observables (of which those involving rapidity gaps between jets are
examples) are discussed at length in [51, 52].
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As a final remark, if one were to have replaced

2 R
dz 142 24z with dz P(z) 4.64
V07 ia c
—2z)2 — z F

—i.e. the unregularized Altarelli-Parisi splitting function—simultaneously changing the

upper limit of z integration from zpmay, defined in Eq. 4.34, to 1 — v/A, then one could
show that the same logarithmic terms are obtained for 3(Qr):

1-VA 1422 3
/ d
0

e :—i—lnA, in the limit A — 0; (4.65)

(cf. Eq. 4.50). This is what is done in [61].
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4.4. Kinematics of ¢*

The ¢* observable was first introduced in [15] and is defined according to
* Qbacop . *
¢* := tan 5 sin 0 . (4.66)

The kinematics in the transverse plane are shown in Fig. 4.2. The angle ¢acop is the
acoplanarity angle, and is a measure of the deviation from ‘back-to-backness’ of the two
leptons in the transverse plane. The star indicates the frame in which the two leptons were
produced back-to-back longitudinally, which defines a unique boost from the lab frame.
In this frame, 6* is the angle made by the lepton(s) with respect to the beam axis.

Recoll

FIGURE 4.2. Kinematics of the ¢* observable in the transverse plane [15]

The ¢* observable clearly probes physics similar to the familiar ()7 observable, in that
they both measure the recoil of the vector boson (photon and/or Z boson). In the case
of QT, the net transverse momentum of the leptons will become non-zero under recoil,
and in the case of ¢* the leptons are no longer back-to-back, on account of the recoil.
The net transverse momentum QT = ﬁ{}) + ﬁ{?) may be decomposed into transverse and
longitudinal components, labelled a1 and ag, respectively, relative to the so-called lepton
thrust axis, which is defined to be the direction

; ﬁél) B ﬁf)

=T T _ (4.67)
(1 (2
5y — 5y
Thus we have ) )
(1) (2)
= .~ pp +p
ap, ;== Qr -t = H (4.68)
‘pT — Dy ‘
and (@)
= A 2 i aco
ap = |Qp x £ = 222 LT S Pacop (4.69)

) — 5|

using sin(A¢) = sin @acop. The ar observable was originally proposed as a novel way
to study the transverse momentum of the Z boson in [63]. Indeed, this observable was

studied phenomenologically in [61].
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In the small-Q1 limit, both components of the transverse vector QT are small and

therefore p( ) ﬁél). Therefore, in this limit,

at — p(Tl) SiN Gacop - (4.70)

In the frame in which the two leptons make the same angle 0* with respect to the

beam line, this angle may be given as
sin 0* = = . 4.71
PO~ [52) (4.71)

Since we have already established ]5’%2) R —ﬁél)

in the QT — 0 limit, we can now also

conclude that }ﬁ (2)} = ‘ﬁ (1)‘ in this frame. Finally, for massless p(*) and p®),
(e +p?)? = (1] + [p)? - (Y + 5P)? = M2 (472)
= 41V} = M2, in the limit Qp — 0. '
We finally conclude that
2p( )
sin §* = MT in the limit Q1 — 0. (4.73)
As ¢ — 0, we have tan(¢/2) ~ %sin ¢. Therefore
1 .
¢* - p(T) Sln¢acop _ al (474)

M M’
having used Eqs. 4.73 and 4.70.

By conservation of momentum, Q7 is balanced by the sum of all recoil emissions:

Go= i)+ =~ T (w75)

Picking the origin of the azimuthal angle to be in the direction of ﬁél), we define the
parameterization

Y =pP(1,0,0) (4.76)

and ki = ks (cos ¢, sin ¢;,0) . (4.77)

In the small-Qr limit, ¢ — pT /’ (1)’ and so

T = ZkTi sin ;| .

We have thus derived the kinematical dependence of at on multiple k1 emissions whose

(4.78)

vector sum Q7 remains small.

4.5. The low ¢* distribution

In this section we derive the integrated ¢* distribution in the low-¢* limit. Since we
have already done this in the case of Qr, Egs. 4.54 and 4.55, it turns out we will require

only a minimal modification to this result to obtain that for ¢*. We already derived an
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expression for ¢* in the small limit in the previous section, namely

. or

o~

We could therefore derive ¥(ar), obtaining the equivalent ¢* distribution automatically
with the replacement ap/M — ¢*, but 1T will proceed directly with 3(¢*). The only

differences from the calculation for 3(Qr) are that the A integration range will change,

(4.79)

and the azimuthal integration for the phase space is no longer trivial, on account of the ¢
dependence of ¢*.

In fact, the only part of the expression for ¥(Qr) that changes is the integral given
in Eq. 4.45, since this is the only integral to depend on the Q1 kinematics, via the upper
limit of integration over A—i.e. A™2* = ng /M?. Our attention is initially focused on the
integral I (Eq. 4.47). Furthermore, in order to recover the logarithmic terms generated by
this integral—which are independent of the other limit of integration—we may equivalently
integrate from A™?* = Q?F /M? to 1 (introducing an overall minus sign), thus avoiding the
singularity at QT = 0 and allowing us to work in d = 4 dimensions.

With one low-kt emission, we have

¢* =kp sing/M . (4.80)

To obtain the logarithms in the 3(¢*) distribution, we may therefore perform the A
integral over the interval [0, 1] and introduce the Heaviside step function © (\/Z | sin ¢| —qﬁ*)
to enforce the lower limit. Restoring the azimuthal phase-space integration and taking the
limit € — 0, we are thus left with the integral (cf. Eq. 4.47)

max

2 46 [LdA [ 1+22-2A2
Iy = — — —_ d O(VA|si —9"). 4.81
¢ /0 27 A /0 Z\/(l—z)2—4Az ( [singl = ¢7) (4.81)

Performing the integration over z as before, with the upper limit z™** = 1 + 2A —

2\/A (14 A), followed by the integration over A—with the Heaviside step-function en-
forcing a lower limit of (¢*)? |sin ¢|>—one obtains

[T [3 (@) 1, [ (6
oo [ (R ()] e

Using [61]
27 d 2
/0 5 In?[sing| = 1’2 + % (4.83)
2T
and / d¢ In|sing| =—1In2, (4.84)
0 2w
this becomes )
Ipe = —31n(2¢") —21n2(2¢%) — % . (4.85)

Therefore, the low-¢* limit of the integrated ¢* distribution differs from that of the Qr
distribution via the replacement Q1 — 2 M ¢* and the addition of a single constant term.
Equivalently, we also have the low-at integrated distribution ¥(ar), since ap =~ M ¢* in
this limit. This result should be compared with the finite part of Eq. 4.51 in the ¢ — 0

limit.
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In addition, the integral containing the anomalous dimension 744 (N) in Eq. 4.45 be-

comes

The final result, cf. Eqs. 4.54 and 4.55, is then
1 1 as 1
%(¢") :/ dw1/ das [bg/1 (215 1) Ggpa(@wai 1) + 4 < Q)60 5 73
0 0

x 2/01 dz [m (Aﬁff;) Pyy(2) + Rqu(z)] 5 (Af — 21 T z)

(4.87)

where

RA(2) = cp{au -9 [(5 1) -smes) 2w o)
(4.88)

Pyq(2)

+(1—2)+2 i ln(2¢*)}.

4.6. Logarithmic structure of observables

For observables that are sensitive to both soft and collinear emissions, one expects that
double large logarithms will appear for each emission. Since each emission is associated
with a single power of the coupling, such observables will have, at maximum, terms of the
form (as L?)™ appearing at the nth order in perturbation theory. The effective coupling is
no longer the relatively small ag, but rather ag L?, where L is the large logarithm, which
may be in the ratio of two disparate mass scales, e.g. Q1 /M, or in a small dimensionless
quantity, e.g. ¢*.

The general partonic structure for such double log observables is

2(¢*) = Coo + as (C12 L* 4+ O L+ ClO)
+ a2 (Caa L' 4+ Co3 L3+ Cog L + Coy L + Cao)
+Oé§ (036L6+035L5 +034L4—|-033L3+...)
.o,

(4.89)

where the ‘Cj;’s are perturbative coefficients with the potentially large logarithms factored
out, and are assumed not to spoil the perturbative expansion by themselves. Here, Cyy
0(¢*). Tt is clear that, on account of the large logarithm L negating the smallness of «g at
each order, a truncation of this perturbation series is rendered invalid.

The ¢* observable we have resummed, as is the case for all recursively infrared-safe
(rIRC-safe) observables [21], satisfies a property known as exponentiation, which means
one can define a resummed exponent R such that e essentially encapsulates the effect of
resumming the logarithmic enhancements due to soft—collinear emissions to all orders; of
course, that these terms may be expressed in the compact form of e® is highly non-trivial,
and requires stringent relationships between the ‘Cj;’s. Supplemented with appropriate

constant terms to the desired accuracy, the ¢* integrated cross-section may be written
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schematically as
2(¢*) o (14 C(ay)) efitios) (4.90)

with the resummed exponent given by
(6™
R(L;as) = Lgi(as L) + ga2(as L) + ﬁ g3(as L) + ... (4.91)

The leading logarithmic (LL) terms are generated from L ¢;(as L), the next-to-leading
logarithmic (NLL) terms from gs(ag L), the next-to-next-to-leading logarithmic (NNLL)
terms from ag g3(as L) /7, etc. Reorganizing the sum in Eq. 4.89 into this form, by exploit-
ing various factorization properties of gluonic emissions in certain kinematical régimes, is

what we call resummation.

4.7. Summation to all orders

The resummation of ¢* presented in this section follows closely that of ar, owing to
their simple relation in the small ¢* limit, namely Eq. 4.79. I have reproduced much
of the discussion originally given in [61] here for the purposes of pedagogy. However, in
this section—and related appendices—I provide some additional discussion for the reader,
along with certain proofs concerning the derivation. The resummed calculation of ¢* was
originally presented in [16].

In order to perform the all-orders resummation of the logarithmically divergent terms,
we consider the integrated cross-section defined by

v d%o
Y(v) = —— 4.92

where v is the observable under consideration: the transverse momentum of the lepton
pair (@), the component of QT perpendicular to the lepton thrust axis (at), or ¢*. The
case of ¢* will be discussed specifically, making reference to the cases of Q1 and/or ap
along the way, to compare the similarities and contrast the differences.

In the Born approximation, one has the equality

M? = 3= sz x9, (4.93)

with M? the invariant mass of the lepton pair, s the scattering energy in the centre-of-
momentum system (§ being that of the partonic system) and z 2 the momentum fractions
of partons 1 and 2 that initiated the process. The first equality no longer holds when
additional radiation is associated with the process. For this reason the energy fraction z;
is introduced, which is the fractional energy carried forth by an initial parton after the ¢th
emission, with respect to its energy immediately before this emission. After n emissions,

one therefore has .
z = H Zi, (4.94)

the fraction of energy remaining in the initial partons after all emissions occurred, and so
M?/5 = 2.

As before, we work with Mellin moments of the integrated distribution, with respect
to 7 := M?/s (see Eq. 4.38). Our concern here is with the logarithmically enhanced terms
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in the low-¢* limit, so we take as our starting point (cf. Eq. 4.39 in the limit d = 4):

(¢, N) = MQ/dkT/ /dzz

% Ozs;frT> quq(z) ) <¢* -

(4.95)

kT sin gb
7M .

for a single real emission in the annihilation sub-process. In this expression, Fy,(z) is the

unregularized Altarelli-Parisi splitting function [53], i.e

A 1422
qu(z) = CF

o (4.96)

Furthermore, a Heaviside step-function has been introduced in order to limit the integral
over kT to only those values which contribute to the integrated distribution up to the
value of ¢* we are considering. This greatly simplifies the extension to multiple real gluon
emissions. The upper limit on z is still 2™ = 1 — kp/M, as in Eq. 4.65. The factor of
two that multiplies qu(z) is to account for the fact that both incoming partons radiate.
The running coupling, evaluated at the scale of k2 for the emission, has also been used.
Finally, the azimuthal integration has been retained since our observable depends upon it.
The integral over k% in Eq. 4.95 diverges in the limit k:?F — 0, and so we may introduce a
lower limit of Q2 as a cutoff. We can therefore introduce scale-dependent PDFs in X(0) (V)
and consider all emissions with kt < Q)¢ to be included in the PDFs. We therefore write
explicitly
4 2 QQ
TR GV Q) Gas(V.Q) + ] (4.97)
which replaces (9 (N) used in Eq. 4.95 (i.e. that given in Eq. 4.40) in the case where we
regulate the k% integral. Using the DGLAP evolution equation for the PDFs (Eq. 3.59) we

can now evolve i(o)(N , Q%) from Q(Q) to the hard scale of the process under consideration,

SO(N,Q3) =

namely M?—the invariant mass of the lepton pair. Thus we have

(0) $(0) 2 M dk% as(kgf) 2

SO(N,Q3) = S O(N, M?) exp 2/ 2 T o- Yaa (N, as(kF)) | - (4.98)
Q3 T

This expression will prove useful later, since its exponential form will work seamlessly with

the exponentiated form of the all-order resummation. Eventually we will take the limit

Q% — 0, such that all emissions are taken account of by our resummation. Just for now,

we proceed using the scale-independent %) (V).

Eq. 4.95 generalizes, under the approximation of multiple independent real gluon emis-

sions, to
S * S 1 rea, *
S(¢*, N) = 2O(N) a2 N G} (4.99)
where
1 [dk2 [ do;
real T4 ?
Wil =3 LT[ 5 [ e [ e
n0 el ) (4.100)
aS(kTi) ~ x kTi sin ¢z
X27T2qu(2’l)®<¢ - ;M .
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In this expression, the probability for n gluons to be emitted is approximated by the
probability of one gluon to be emitted to the nth power. The probability for an arbitrary
number of gluons to be emitted then becomes a sum over all probabilities from n = 0
to oo gluons to be emitted. The n! factor in the denominator serves to remove multiple-
counting of final states which are degenerate under the exchange of identical gluons. What
we observe as a result is the exponential series and, for this reason, the gluon emissions
are said to exponentiate.

At this point, the reader will no doubt want further explanation as to why we may
treat the successive emission of gluons, fundamentally quantum in nature, as simply prob-
abilistic in this multiplicative manner. We can consider the leading logarithmic behaviour
to motivate this argument: We have seen in Sec. 3.2 that soft gluons emitted at widely
disparate angular scales are emitted effectively independently (i.e. one recovers factoriza-
tion of the emissions at the level of the squared amplitude). This phenomenon owes itself
to coherence, and amounts to the vanishing of the second correlated (non-Abelian) term
in

| Ma(ky, ko) |* = [Ma(k1) [P My (ko) + [Ma(ky, ko) (4.101)
where M7 and M are the matrix elements for one- and two-gluon production respectively,
and My denotes the correlation.

The leading logarithmic behaviour associated with a given emission is double loga-
rithmic: one logarithm if the emission is soft, and another if the emission is collinear.
The leading behaviour is recovered when each emission becomes successively ‘much more
collinear’ (to the emitter) than the previous one, for then we obtain the collinear log-
arithmic enhancement at each order. This is emphasized in Sec. 3.3 by way of explicit
calculation. For emissions that were equal in energy, this would immediately translate into
a disparity between the angular scales at which the gluons were successively emitted. In
the soft limit, which is also necessary to obtain the leading behaviour at each order, this
subsequently results in the relative independence of emissions, by the vanishing of |Ma|?.
Thus we have motivated Eq. 4.100 to extract the leading logarithmic enhancements to all
orders.

For the case of strictly hard collinear gluons, Sec. 3.3 demonstrates the krp-ordering
required in order to recover the leading logarithmic enhancements to all orders: this
time single logarithms. Interference (or squared) terms involving amplitudes in which
the strict kp-ordering is violated, even for a single emission, are suppressed relative to
the leading terms. One essentially ‘drops’ a logarithm each time this should occur, but
such considerations become important for a correct treatment of sub-leading logs. The
single collinear logarithms, in our framework, are identified as formally NLL. We have
already noted that our continuously global observables QT and ¢* are not sensitive to the
dynamics of soft gluons emitted at wide angles (see end of Sec. 4.3).

If we work to NLL accuracy, a subtlety arises. At O(as) the double (soft and collinear)
log is oy L2, and the single log is as L. When we consider two emissions, however, the single
logs at O(a?2) are a2 L?. This means that, to NLL accuracy, we need to include also the

O(a?) correction to the double-log term for single gluon emission—a term which is formally
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NLL. The NLO splitting function [64], retaining only the soft (z — 1) contribution to the

NLO correction, is

. 1+ 22 Qg
Prgl2) = Cr —— (1+%K) , (4.102)
with )
67 w 5
K=Cy (2 -T) -2 Ny 4.1
@(B 6) ° Ne (4.103)

Alternatively, one may use the LO splitting function, but in the so-called Bremsstrahlung
scheme [65] for the running coupling, given as
oMW (k2) = (1 -+ o (k1) K) : (4.104)
27
where ag(k%) is defined in the MS scheme. With all these considerations, we have an
expression for the emission of up to an infinite number of gluons correct to NLL. For the
interested reader, this final subtlety, which has its origins in correlated two-gluon emissions
and which is intimately linked to the running coupling, is explained in greater detail in
[50] (Sec. 2.2). The reader may also find [42] useful for explicit calculations involving soft
gluon emissions. The extension of the above arguments to NNLL accuracy is, in terms of
explaining the esoteric details, beyond the scope of this thesis. The NNLL results we use
in our phenomenology are taken from the literature, and are documented with appropriate
references in Chap. 5.2. However, for a discussion of the considerations that must be made
in order to extend the picture of independent emission to NNLL accuracy, the reader is
again referred to [50].
So far the factorization is not yet complete, for we also require factorization of the
phase space. All that is required is to factorize the Heaviside step-function, which may be
achieved using an integral representation in impact parameter space (the Fourier conjugate

of transverse momentum) as in

9<¢*_ ZkTiEH@

where the real part of the RHS is implicitly assumed. To see why this is true, the reader

n

9 [ ) .
>:A‘fm@MwﬂIW“mWW, (4.105)

™
=1

is referred to Appendix B.1. We pause at this point to consider the Q1 distribution.

So far every consideration has been identical to the case of Q1 except the kinematics
which are encapsulated, for the integrated distribution, in the ©-function. It pays however
to consider the differential Q7 distribution: do/dQr. The kinematics are fixed by a mo-
mentum conserving ¢ function, which balances the boson )T against an arbitrary number

of recoil emissions, and which may be written in terms of an integral representation:

§ (QT—ZkTZ) = (2;)2/2% exp [z’b~ (QT—ZkTZ)]

1 * o ib cos —ibkr,; coso;
— (%)2/0 bdb/o dg 't @r ¢He Ti €08 i (4.106)

1 [ ,
— bdb b —ibkr; cos¢i.
277/0 JobQr) [ ] e

i
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In the last line,
2m
/ €459 dp = 21 Jo(|al), (4.107)
0

for a € R, has been used, where Jy is a Bessel function of the first kind. Furthermore, Qr,
kr; and b are the two-dimensional vectors whose moduli are Qr, kt; and b respectively.
To employ the equivalent kinematic constraint in the integrated distribution X(Q1) =
[5°T (do /dQ47) dQ'y?, we may use the result

[ @awan gy = 200,

In either case, we find the crucial difference between the two distributions to be the

(4.108)

presence of either a Bessel function or a trigonometric function. For the differential dis-
tributions, this difference results in a plateau for ¢* where one would observe a Sudakov
peak in the case of Q.

Returning now to ¢*, with the additional factorization of the phase space, we have for
Eq. 4.100,

db
me>=ébwwM¢>

:
AT oty o o

s(k3
» (e ( Tz) 2qu( ) ibkr; 51n¢l/M}

(4.109)

2

—/ %sm(bM¢)
0

™

In the final equality the infinite sum has been evaluated, yielding simply the exponential
function.

The next step is to include the appropriate virtual corrections to all orders since,
until now, we have only considered independent real emission. These contributions do not
change the kinematics, and so are independent of both the Mellin moments with respect
to the kinematic variable z;, and also of the impact parameter b. Unitarity arguments
[50] may be invoked to see that the virtual corrections have the same form as the real
corrections in the infrared limit (up to a minus sign). The resummed exponent, often
known as the radiator, becomes, with real and virtual corrections to all orders at NLL

accuracy,

2 2 .
R(b) — /dk / O‘S (b )2qu(z) (zN gibhr sin@/M _ 1) (4.110)

Note the convention of the minus sign.

We now briefly discuss the upper limit on the z integration. Since we consider the
integrated distribution ¥ (¢*) in the small-¢* limit, we may set our upper limit of the k%
integral to be M?2, since the ©-function introduced in Eq. 4.95 has already effected the
upper cutoff at the relevant value of QQT Furthermore, if we set the lower limit of the k?r

integral to be Q% and use SO)(N, Q3) in place of »O(N )—thereby relegating all emissions
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with k% < Q% to be included in scale dependent PDFs—we may use Eq. 4.98 to write

S(¢*, N) =SO(N, MZ)A;QQ/ %sm(qub) () (4.111)

where

’ ’IC2 ( ) N _ibkr si
- _ L Qs d¢ ibky singp/M
R(b)—Q/g 2 5 /2 {/d qu( )(z e 1)

— o (N, (k) }

is a modified form of the radiator. This expression henceforth replaces the expression for

(4.112)

S(¢*, N ) originally presented in Eq. 4.99, having now taken into consideration the above
analysis.

The explicit z integral in this expression has an upper limit z,,x, however the implicit
z integration in the definition of the anomalous dimension, Eq. 4.48, has an upper limit

of 1. Notwithstanding, the entire expression may be simplified as

Zmax " . .
A dZqu(Z) (ZN ezka sing/M 1) - ’qu(N)

Zmax i (4.113)
= / dz 2N Py(2) (e“’kT sing/M _ 1) +0 <T> ;
0 M
where the O(k1/M) terms may be neglected in our approximation.
We now make the approximation, valid to NNLL accuracy [66],
1 — eibkrsind/M ~ g ( br sin g Sin¢‘ — }> : (4.114)

derived* in Appendix B.4, where b = be”™ and 4 is the Euler-Mascheroni constant.
Again, the real part of the LHS is assumed. Since this sets a lower limit on the kr
integration, we may now safely take Qg — 0. Thus, we have truly started with PDFs with
no prior emission, and we are providing the full evolution with our resummation. The

radiator now stands at

M qk2, o Zmax M
R(b)=2/0 = o / / dz 2N Boy(2)© <kT—b|Sm¢’> . (4115)

As in Section 4.3, we split the z integration into two parts as
Zmax R Zmax R Zmax R
/ dz 2N Pyy(2) = / dz Pyqy(2) +/ dz (2N — 1) Pyy(2)
0 0 0

3
~ Cp <—2 - hlA) + Yqq(N)

(4.116)

where the upper limit zyax — 1 on the second z integral has been taken, yielding v44(NV),
and the final expression has been expanded about A = 0. The reader is encouraged to

consult the text surrounding Eqs. 4.50 and 4.65 for evaluating the first integral of the

41 offer a simplified derivation where I demonstrate it to be formally accurate to NLL.
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splitting function between the appropriate limits. The radiator therefore becomes

M? 512
_ dkt os(k3) (3 Yaa(N) M
QCF/ / k2 27r ( g AT T )@k b|sin |

=/2w<)

with

> (4.117)

M
R(b) = /0 dkr I(kt)© (kT — b|5]§4fl¢\> , (4.118)

thus defining I(kt). I now make a short digression regarding the logarithmic expansion
of R(b), which will serve to facilitate the evaluation of terms of a specific logarithmic
accuracy, and also help us deal with the residual azimuthal dependence. Performing a
series expansion in powers of In | sin ¢| about | sin ¢| = 1 for the integrand, as in [61], using

M M M M
O kr— = =0 (kr— = | +=0(kr— =) In|si 4.11
(T b\sin(;5|> <T b) b <T b) n|sing|, ( 9)

one obtains

R(b) = R(b;|singp| = 1) +/d¢/ dkr I( k:ﬂé(k:rp) In | sin ¢|
R(b; \81n¢5|—1)+1< )/ dé In|sin @|.

However, changing the variable of integration in R(b;|sin¢| = 1) to = M kr, such that

(4.120)

M b
- d M
R(b;|sing| = 1) = / dler I(kr) = M/ -y <> , (4.121)
M/b 1z z
one sees that, upon differentiating with respect to In b,
8 M M
b; =1 I{—= ). 4.122
bR sinel =1) = 5 1 (1) (1.122)
One may rather therefore write Eq. 4.120 as
- 0
R(b) = R(b;|sing| = 1) + 5 7R(b |sing| = 1) / a¢ In |sin ¢|. (4.123)

Since the second term contains a logarithmic derivative, each logarithm in R(b; | sin ¢| = 1)
becomes further suppressed by one power relative to ag. Thus, in this second term,
R(b;|sin$| = 1) may be replaced by its super-leading form; i.e. if R(b;|sing| = 1) is
already accurate to NLL, one may simply use the LL version.

The anomalous dimension may be dropped from the radiator if one simultaneously
uses PDFs at the relevant scale, this time 1/b. Performing the final integration over kt in
the expression for R(b), using the running coupling appropriately converted into the MS
scheme, one obtains

R(b) = Lgi(asL) + ga(as L) + ... (4.124)

where L = In (52 M 2). The explicit calculation for g; follows: Working to LL accuracy,
we start with

M?2 2 2 2
dk s(k M
Ri1(b) = QOF/ dkz as(ky) In (4.125)

e ke 2T kR
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Here we are considering simply R(b;|sin¢| = 1) of Eq. 4.117 (the azimuthal dependence
is sub-leading) and only the terms in its integrand that would give leading logs according
to our definition; i.e. we only require the log A term. Using the one-loop expression for
the running coupling in Eq. 2.59—the difference between the MS and CMW schemes does
not play a role here—and writing A = kgf /M?, we have

A vy
Wﬁo 1/(Mb)2 A 14 as By InA

where @ = ag(M?). Performing the integration and defining A\ = asfy L and L =
In (132 MQ), we have

RpL(b) = (4.126)

Cr —A—In(1—-X)
7 Bo A '
A similar exercise, considering terms in the radiator which give rise to single logarith-

Lgi=Ry(b) =1L (4.127)

mic terms (as L)™ upon integration, yields ga(as L). The new terms, formally NLL, that

arise in go have their origins in:

e the hard-collinear term —% in Eq. 4.117,

e the change from the CMW (Bremsstrahlung) scheme to the MS scheme; i.e. K,
e the two-loop running coupling (approximation),

e the azimuthal dependence; i.e. |sin ¢|, and

e the anomalous dimension ~y,,(N).

The difference with respect to the Q1 distribution, at this order, comes from this additional
¢-dependent piece in Eq. 4.123.

Since we have already developed a convenient way to handle the azimuthal dependence
by taking logarithmic derivatives, we again consider as our starting point Eq. 4.117 with
R(b;|sing| =1):

! dA « 61 logp Qs 3
szzc/ — = <l—a ><1+K 5)(——10 A). 4.128
©) "o A 2mp Bo " p 2mp 2~ % ( )

I have explicitly used the two-loop running coupling approximation where necessary, and

the one-loop running coupling elsewhere, all in terms of p = 1 4+ a5 logA. 1 have
also explicitly included the conversion for the scheme dependence. The one-loop running
coupling, without scheme dependence, and considering only the logarithmic term —log A
was enough to compute the LL function L g;. We now explicitly compute new NLL terms

(following, in order, the first four items in the list above):

RNLL = Ruard-coll. + Romw + R21oop + Razimuthal (4.129)

The integrals in these terms may be directly evaluated to give

! dA o 3 3Cr
Rar_co_:20/ —— <—): log(1 — \), 4.130
hard-coll F U D 2mp B 2780 g( ) ( )
1
RCMW:2CF/ 44 o K= (—logA)
1Bz A 2mp - 2mp (4.131)

K Cp A+ (1—A) log(1—\)]
B 2m235(1 — A) ’
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! dA  ag ]
R2—loop = QCF/ A~ a <_I61 Qg ng) (_ lOg A)
/b2 A 2mp \ Bo p (4.132)
Cpfy [A+log(l—X) 1. '
— Z 1—
53 [ oA alee A
and d 20 A
_F A
Raznnuthal dlo BRLL (_ 10g 2) = 7760 1—\ ( log 2) . (4133)

In the cases of the two-loop running coupling and the CMW scheme change, we are
computing only those O(as) corrections to the soft-collinear term ag log A in R(b), which
would have become double-logarithmic upon integration. Thus we are controlling the
terms containing a2 L?, and which are therefore formally NLL. We have thus derived the
NLL function g9, written explicitly in full in Eq. 5.32. The expression for the remaining
NNLL function g3, with explicit dependence on the perturbative scales pq and pr, will be
presented in Sec. 5.2. Prior to this, in Sec. 5.1, I explicitly compute this scale dependence
for g1 and gs.

As already mentioned, in our formalism the anomalous dimension is used to evolve
the PDF's via DGLAP evolution. We thus neglect this term in the radiator and choose to
evaluate our PDFs at the correct scale ~ 1/b instead. Inverting the Mellin transform® in

Eq. 4.111 and adopting ~ 1/b as the relevant scale, we have

4 2
E(¢*) - 37;\?]\4—@2 / dwl/ dzs |:d)q/1 <xla b2> ¢q/2 <ZL‘2, b2) (q A (D:|

5 [ gp ) A2 (4.134)
X / — sin(b M ¢*) e ) Z 5 (wl T9 — > .
o b S 5

™

As a final remark, by making the replacement §(x1 2o — M?/s) — fol dz0(1—2)6(xy 29 2—
M?/5s) in the above expression, it is easy to incorporate the non-logarithmic O(as) correc-
tions to the small-¢* integrated cross-section. Such terms are formally NNLL, since they
are of the same form as terms arising from the expansion of exp(as gs(as L)/m), albeit
non-logarithmic. The O(as) small-¢* integrated cross-section is presented in Eqs. 4.87
and 4.88. The terms in Rqu(z) arising from the integration of the logarithmic terms in
I (see Eq. 4.85) are of course already included in our resummation via the resummed
exponent, and we can adopt the remaining constant terms in our resummed expression

for X(¢*) above. It is also instructive to consider the integral

2 [ db 1
/0 " sin(b M ¢*) log (W) = log(2¢") (4.135)

™

which shows that, in our b-space formalism, the correspondence between the logarithms
is log(2 ¢*) <> log (1/(5 M)) We observe yet again that choosing p = 1/b as the scale at
which to evaluate the PDFs, the logarithmic terms multiplying the splitting functions in
Eqgs. 4.87 and 4.88 cancel, suggesting this is the appropriate scale. The full expression for
the resummed cross-section in presented in the following section, where the PDFs have
been convolved with constant functions to effect this incorporation of these non-logarithmic

terms.

5As before but with z = 1; i.e. using %fol dr N7 (zz0 — T) = ﬁ 2l
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4.8. The final resummed result

So far I have discussed the Drell-Yan differential cross-sections in Q1 and ¢*, and
the logarithmic enhancements that arise for small values of these observables, all in the
context of photon-only exchange, solely to serve as a simplified paradigm in which to lay
the theoretical foundations. The unabridged calculation that I have worked with, and
which I have used in my phenomenological studies, is presented in this section.

The result for the resummed form of the differential ¢* distribution, for a Drell-Yan
lepton pair of invariant mass M at a hadronic scattering energy of /s, is

2
0" Mcost ) = T

db M cos(bM ¢* e~ BObM pq,pr)
s Ne Jo ( : (4.136)

X E(I’l, T2, COS 9*7 b7 M7 HQs HR, /’LF) s

where 21 = %eiy, y is the rapidity of the boson, b = be;E, e = 0.5772... being

the Euler-Mascheroni constant, and full scale dependence (to be discussed in detail in
Sec. 5.1) is explicitly indicated in terms of puq, pr and pp: the resummation, renor-
malization and factorization scales, respectively. The function X is essentially the Born
calculation, supplemented with additional coefficients and correction factors appropriate
for the resummation, and is given by

E(CC17$27 COs 0*7 b7 M7 HQ, HR, MF) =

M _
exXp |:_OZS(7TIUR)QCOH <,LLQ>:| E(ﬂj‘hI‘Q,COS 9*)b7 Mv HQ)/"LR7/’LF)

(4.137)

where

2(3317332,(3080*,[), M7 /’LQ7/’LR7/’LF) =
(1+cos®0%) [Q2 —2Qq Ve Vg xa(M?) + (A7 + Vi) (A2 + V2) xo(M?)] Ff
+cos 0% [—4Qq Ay Ag x1(M?) + 8 Ay Vy Ag Vy x2(M?)] F,y .
(4.138)

The factor containing g°**

will be explained in detail in Sec. 5.1, but it suffices to say this
factor acts as a counter-term to absorb spurious scale dependence arising in the resummed

exponent. The axial and vector electroweak couplings are
Ap =T} (4.139)
and Vy =T} —2Qy sin’ Oy, (4.140)
respectively, with f = ¢, ¢ (for a lepton or quark), T})’ is the third component of weak isospin
(T})’ = —i—% for f =v,u,...and TJ:Z’ = —% for f =e,d,...), and Oy is the electroweak mixing,

or ‘Weinberg’, angle. The functions x1(M?) and x2(M?) model the v*/Z interference and
the Z resonance respectively, and may be found in [48]. They are

M? (M? — M)
(M? = M7)* +T7 Mj

x1(M?) =k (4.141)

and
M4

(- BF+T300

X2(M?) = K? (4.142)
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where My is the Z mass and I'y is the Z width. In these expressions,

2Gp M}
K= 14:44544;;7 (4.143)
471
G being the Fermi constant.
The functions F*,

FE=[Cp® b1 ) (21,0, 1, i, p17) [Caar @ G ja) (2, b, 1q, R, 1v) (4.144)

+[Cq5 @ ¢g/1](x1,b, pQ, pir, 1F) [Capr @ b o) (w2, b, 1y, PR pF) 5
are convolutions of the parton density functions (PDFs) with the relevant coefficient func-

tions (with an implicit sum over incoming parton flavours, e.g. « € {q,7,g}) as in

1
- dz UR Ti HE
C RIS - [ Z¢ R
[ qo ®¢o¢/z](wz; 7MQ7MR7,U/F> /xl > qo <as (bMQ) . /~LQ (ba/z b,UJ
(4 145)
Here i = 1,2 labels the incoming hadron. The coefficient functions themselves are the

perturbative expansions

Cor <as (“R>x “F> = G0 (1 — )+O‘S(’”‘/(5“Q))C<1>< MQ>+(9( 2) (4.146)

buq 1Q 2
and the O(ag) terms for ¢ ¢ and ¢ g are, respectively,

2 2
It ™ I
cly (:c Mg) Cr <2 - 4) §(1 —2) +Cp(1 —z) +1n <u‘§> PO (z) (4.147)

and

2
ciy <;1: ”F> —z(1—xz)+In (“‘;) P9 (z). (4.148)

HQ HE
The purpose of these coefficient functions is to incorporate the non-logarithmic (i.e. con-
stant) terms that appear in the fixed-order calculation of the small-¢* differential cross-
section for Drell-Yan; they represent the perturbative corrections to the collinear branch-
ing of the incoming partons. Our computer software package, which provides an automated
implementation of the resummed calculation for an end-user, interfaces with both HOP-
PET [67] and LHAPDF [68] to obtain information pertaining directly to the PDF sets

we use, and also to effect their DGLAP evolution and provide other manipulations.

All scale-dependence has been explicitly written in the above equations. I will postpone
the discussion of the scale dependence of R, which will be elucidated in Sec. 5.1 after which
I will also present the full NNLL form in Sec. 5.2. At this point I would like to address
the scale dependence appearing in the coefficient terms, i.e. the choices for the arguments
of the running coupling and the PDFs. I will start with the running coupling, whose
argument in Eq. 4.146 is ur/(buq). Setting all perturbative scales, for now, such that
pr = pq = M, we find the argument to be 1/ b. To see why this should be so, consider (to
truncated NLL accuracy) the exponentiated radiator supplemented with our coefficient
terms, as in

[1 -+ a(1/5) consts] exp [~ (L g + g3)]. (4.149)
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Here, L g; is given in Eq. 4.127, and we consider a truncated go term (g3) given simply by
Ryard-con. in Eq. 4.130. Changing the argument of the running coupling from 1 /5 to M,
using the one-loop approximation in Eq. 2.57 with = M and u’ = 1/, i.e.
- QA Qg

1 b = = s
as(1/0) 1—afBol  1—2

(4.150)

we recover
[1 + as(l/i)) consts} exp [— (L g1 + g5)]

@ls consts Cr2LXA+ (2L —3)) log(l — \)]
S R el
< +1—07560L>6Xp{ 27 Bo A

=1+ g—s (consts—i—BCFL — CFLQ)
T
(4.151)

after using a series expansion in as on the RHS. Once again I have adopted the notation
L = In(b?> M?) and as = as(M), and used A\ = as By L. This expression, which includes
the soft-collinear double log, and the single log from hard collinear emission, is precisely
in accordance with the O(as) terms we derived for the small-¢* differential cross-section®;
ie 2x Rqu(z) in Eq. 4.88. Thus we have demonstrated the correct scale of the running
coupling to be 1/b.

Repeating this analysis with the scale-dependent radiator (i.e. ur and puq left free) the
appropriate scale of the running coupling, required to reproduce the correct logarithms
when we combine with constant terms to get Rqu(z), is ur/(bug). In this case our
resummed exponent is in terms of A\ = as(ur) Bo L, with L = In(b? ,ué), and we change
the argument of the coupling from pr/(bpg) to pr. After truncating a series expansion
in as(pr), we recover the correct terms in Rqu(z).

More succinctly, one may simply consider the absence of any explicit resummation,
for which then the resummed exponent R(b) = 0. This is the case when b = uél, since
then the resummed logarithms L are absent. In this limit we should recover simply the
small-¢* differential cross-section at fixed-order, with the running coupling and the PDF's
evaluated at the relevant scales ugr and up, respectively. This is ensured if the scale choices

in Eq. 4.146 are chosen as they presently stand.

6Recall the correspondence L = log(b> M?) > —2 log(2 ¢*)
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CHAPTER 5

Phenomenology of ¢* at Tevatron and the LHC

In this chapter I present my phenomenological work on the ¢* observable. The struc-
ture of the presentation is as follows: First I discuss the various aspects of my phenomeno-
logical study of ¢*, starting with a survey of the scale dependence in the resummed com-
ponent, and then I will present comparisons and predictions for the D@, ATLAS and CMS
experiments, before moving to a technical discussion regarding the role of non-perturbative
effects I have studied.

In order to obtain theoretical predictions over a broad range of ¢*, it is necessary
to match fixed-order and resummed predictions. The fixed-order approach describes the
high-¢* physics well, where one is not sensitive to soft or collinear gluon emission, and
the resummed approach (as we have seen) is necessary to obtain a theoretically sound
description of the low-¢* physics. In our work we take both descriptions and combine
them according to

<d0> _ <da> L <d0> _ <d0) (5.1)
d(b* matched d¢* resummed d¢* fixed-order d¢* expansion’ '

where ‘expansion’ denotes the series expansion of the resummed component in «g, trun-
cated at the same perturbative order to which the fixed-order component is calculated. For
example, NLL+LO matching would involve subtracting the expansion of the resummed
component to O(as), NNLL+NLO matching would involve subtracting the expansion of
the resummed component to O(a2), etc. A NNLL+NLO matching is what we employ in
particular, yielding a smooth description of the physics of azimuthal decorrelation over a
broad range.

In order to obtain the fixed-order component we use the calculation in MCFM [69]. In
addition, the Born weights used in the resummation are also taken from MCFM, however
the structure of our code is adapted to use other fixed-order calculations, e.g. DYNNLO
[70]. Our calculation is also fully differential in all of the relevant kinematic variables,
allowing experimental cuts to be placed on the final-state (leptons). In principle, our
code may be extended to the study of azimuthal decorrelation in other processes whose
final state is a colour-singlet system, e.g. ¢* in H — ~~. The Q7 distribution for this
process has already been studied at NNLL accuracy, and the interested reader is referred
o [25]. Furthermore, one could in principle use any NLO calculation for the fixed-order
component, e.g. FEWZ [71, 72|, provided the cancellation between the large logarithms
inherent in the fixed-order and expanded components could be numerically demonstrated
as one approached smaller values of ¢*.

One of the remarkable properties of ¢* is that is has been able to unambiguously
discriminate against a certain non-perturbative (NP) model, which was unprecedented,

85
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FIGURE 5.1. ¢* data from D@ corresponding to 7.3 fb~!, showing both

the Z — ee and Z — pp channels for Drell-Yan [19]. These data are

in comparison with ResBos predictions, although the perturbative scale
uncertainty does not include the resummation scale, 1q.

o
[e2)

even after many years of Drell-Yan study with the Q1 observable. The small-x broadening
model implemented in ResBos [73, 74, 75] is a non-perturbative prescription, which
contributes principally when the Bjorken z variable for either parton is small—i.e. at
higher /s or at higher boson rapidities—and which gives rise to a broader spectrum of
the transverse momentum of the boson. In particular, Fig. 5.1 shows how this small-x
broadening model is disfavoured by ¢* data from DO [19]. Figure 5.2 shows the equivalent
comparison for the Qr observable in the |y| > 2 region, albeit for only 0.98 fb™! of
integrated luminosity, where a similar conclusion this time cannot be made on account
of the larger measurement uncertainties. It is important to note that the uncertainties
which set a limitation on the overall achievable measurement uncertainty for Q1 here are
systematic in nature.

The experimental precision of ¢*, owing to its immunity to momentum resolution
inefficiencies, provides an exciting opportunity to attempt to determine what NP physics
(if any) are required to supplement a purely perturbative prediction, in order to gain good
agreement with data. The phenomenological study presented here attempts to address this
issue, but also draws attention to the need for a good understanding of the perturbative
component. To this end, full consideration of the theoretical uncertainty, estimated by

varying the perturbative scales, is made.
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FIGURE 5.2. DO Qr data, corresponding to 0.98 fb~!, in comparison with
ResBos both with and without the small-z broadening effect [76].

5.1. Scale dependence in the radiator

In this section I will derive the dependence of the radiator R on the perturbative scales
pr and pq, the renormalization and resummation scales respectively. Note that I have
independently computed this here in a very explicit manner, which differs from the way it
was originally computed in our work. I hope the level of detail here offers a certain insight
for the reader. We begin by recalling the NLL expression for R(bM) in the absence of
these scales:

RNLL(B M) = l_}gl (ds E) + gg(ds E) (5.2)
where L = In(b%® M?) and a5 = as(M?). The overline in L and a; denotes that the scale
at which these quantities are evaluated is M, the invariant mass of the lepton pair.

We consider, just for the moment, the LL scale dependence. The resummation scale,
g, is introduced in order to generalize the argument of the logarithms we resum. As
such, we replace

L— L=In"u3)- (5.3)
In principle, the value of ug should be set to ~ M, but is otherwise arbitrary. Defining

xqQ = puq/M we see, for instance, that a general LL term
as L? = ag [ln(l;2 M?) +1n xé]z

72 2 7 2,2 (5-4)
=g L +21n:UQaSL+aS In g -

The first term in the final line is of the form (ag L?)"—of course, with n = 1—and is
therefore a genuine LL term. However, the second term in the final line is of the form
(as L)™ and is therefore formally a NLL term. The final term is even more sub-leading.
Thus, to LL accuracy, L = L. The arbitrariness in the choice of pq here is a NLL
correction, and the variation of pq about its nominal value of M may therefore be used
to estimate the size of genuine NLL terms.

If we perform a calculation to NLL logarithmic accuracy, however, then any NLL

terms introduced by the arbitrariness of ;g in g; are spurious, and must be cancelled by
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introducing appropriate counter-terms in go. This is the programme we adopt for deriving
the scale dependence of R.
We begin with
_ A X +1n(1 - )
Vs L) = — = ) 5.5
pa D) =~ 2 X
where A = ags(M?) By In(b? M?). Now, the LL radiator evaluated with ur = ug = M is

RLL(I_)M) = Egl(ds E)

AWM M2 In(1-— ) (5.6)
A M U
T BO ,UQ Qg BO
The one-loop running coupling in our notation is
s = as , (5.7)

= p
1 —asfo In 5%
and so we may also write A in terms of ), as

) ) A+asﬁolnﬁ4—;
AN=as0L = 2 (5.8)
1—asfB ln%

This further implies that

- G
l—A:(l—)\)ﬁ, (5.9)
where I have introduced, as shorthand, the quantities
as Bo In Z—E{
2
and H:=1-0os06 In % ) (5.11)

Using Eq. 5.9 for 1 — X\ and Eq. 5.7 for the running coupling, we may write the

In(1 — \)/as B term in Eq. 5.6 as
1— A 1— ) 1 :
ln(_ )\)zln( )\)—ln(l—)\)lnu—%—i—InG—nH— G MRQ'
as Bo as Bo M asfo  asBo H M

Given that

Ry =——5 5.13
" " (513

7 Bo

i.e. the LL radiator with full dependence on pq and pr, we are now in a position to isolate

L RTLES |

the counter-terms, which are given by

_ AM
Ry, — Ry, = ———

7 Bo

The counter-terms appropriate for go, however, are those which are NLL. We now proceed

M? 21 In H 2
LA MY M R R A R B

— 5.14
Mé M? as Bo as Bo H M? ( )

to isolate these NLL pieces.

First we write, using series expansions (since 0 < A < 1),

2 o0
G=1-asf n B3y (5.15)
Q n=0
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N <as o n 2 5022, A”)

In G 1
7 ah __as/BOmZI m (5.16)
n - 5 B n
_IHNRZ)\ _1%22%731( HRZ)\>

The terms in the sum from m = 2 to oo in the second line are beyond NLL accuracy,
leaving only the m = 1 contribution which is NLL and which has been isolated. Thus, to
NLL accuracy,
In G ,UQ 1
~ In —*
Qg ,80 MR 1-— )\
reverting to the 1/(1— \) form. For the case of In G, i.e. without the division by ay By, we

(5.17)

may take G to be simply 1 — s 8o In(u% / ué) (to NLL accuracy with an O(ag) correction,
i.e. retaining only the n = 0 term of the sum in Eq. 5.15) and so we may approximate
2

In G~ —asfy In M—g , (5.18)
e
having used In(1 4+ x) ~ z, owing to the fact that
12
as Bo In 5 < 1 (5.19)
HQ

since the scales are chosen such that g ~ pr ~ M. Similarly, we may approximate

2

In H ~ —as fo In % (5.20)

These expressions will be useful later when we determine constant NNLL counter-terms.
For now, to NLL accuracy, the In G/H term in Eq. 5.14 does not contribute.

We are now in a position to extract the NLL counter-terms from Eq. 5.14. Using the
NLL expressions for the various terms derived above, namely Eqgs. 5.17 and 5.20, we may

finally write

2
RRgiprerterm = A { [ A m(1— )| "9 -0 m M;} (5.21)
77/60 MR MG
where the logarithm multiplying In(1 — ) has been split as In(M?/p%) = ln(ué/,u%{) +
In(M?/ ,ué) Note that we only consider NLL terms in this expression, i.e. terms in the
single-logarithmic variable \.

If one works to NNLL accuracy, a new possibility arises. In addition to spurious scale-
dependent logarithmic terms appearing in gz—owing to the arbitrariness of ur and puq
in g; and go—one should also consider spurious constant terms at O(ag), since these are
also of the NNLL form ag (as L)™ (just with n = 0) and appropriate counter-terms must
be introduced. Here, for example, we focus just on deriving these constant terms.

We first begin by including the O(ag) constant term in Eq. 5.16, to obtain

InG ,u%{ 1 as Bo lnzﬁ

OCSBO_ ,UJQQI_/\ 2 /‘2Q'

(5.22)
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The second term here is new, and corresponds to the m = 2 (O(as)) with n = 0 (non-
logarithmic, i.e. A°) term of the sum in Eq. 5.16. Furthermore, we retain the O(as) term

in the series expansion for In H/as By, giving

IHH__ ﬁ_asﬁOIQMQR

P Ve S R VP
We now use the O(ag) expressions for In G and In H, given in Egs. 5.18 and 5.20 re-

(5.23)

spectively, to write the O(ag) expression for the final term in Eq. 5.14 which we did not

previously consider:

G M M2 /’LQ
In E In MR2 = —0O4 ﬂo In % In ﬁ% . (524)

Including all the constant O(as) corrections considered above (Egs. 5.22, 5.23 and
5.24) in the expression for Ry, — Ry, in Eq. 5.14, the additional counter-terms (from g1)
are

_A(l){ Oés50127R+0555012NR

7 Bo 2 ,u(2Q 2 M?
M 2 2
+oufo In 4 In 0% — a, fo In? 48 (5.25)
ag AW M2
== g
T ,u,Q

In fact, the only other O(as) non-logarithmic NNLL counter-term is required for the

—BW In(1 — \)/7 By term in gy. Using results derived above, we have

_ G M2
In(1-=X)=In(1-=X) —In— ~In(l - X) +as B In —-. (5.26)
H G
Therefore, the only counter-term required for go is
B(l) M2
— a5 fo In —. (5.27)
T Bo Mg
Finally, taking all O(ag) non-logarithmic NNLL counter-terms together, we introduce
M C M? M?
<> = G2 ME S o M (5.28)
HQ 2 oy 2 .

Since these counter-terms are of a constant nature, we rather choose to associate them
with the Born weight in our formalism, rather than with the resummed exponent, although
this is just a convention. Constant terms at O(as) that arise in Rypp, — Rnpp (LL and
NLL inclusive) are factored out, and written

exp [ = (Raus = Foaa)] = exp [ = (R, = B exp | =28 grom (22| (s.0)

5.2. The fully scale-dependent radiator

Using the methods of the previous section we were able to derive the scale dependence
of the radiator along with appropriate NLL counter-terms which should be added to go

when one considers a resummed calculation to NLL accuracy. If one wishes to work to
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NNLL accuracy, then appropriate counter-terms must also be added to gs in order to
absorb the spurious scale-dependence which materializes at this order due to the arbi-
trariness of choosing ur and pq in g1 and go. In this section I simply summarize the full
NNLL radiator, with all scale dependence included.
The radiator is given by
R (buqv M kg, as(uR)) =Lgi(as L) + g2 (as 2L MQ)
HQ MR HQ HR
M uQ)

TpQ pR

where L = In(b? ,u(%) and ag is shorthand for the scale-dependent running coupling in the

(5.30)

MS scheme, ag(pgr). The functions ¢, i € {1,2,3}, are given by
A X +1In(1 - \)
7 Bo A ’
B A®2) A
g2(A\) =—— In(1 —\) + 2 ( +In(1 - )\))

51 )\—Hn( —A) 1
- Wﬁg[ Y +21n2(1—)\)] (5.32)

AW A HQ
T b (1_ + In(1 —)\)) In —*

91(A) = — (5.31)

and
A®) 22 B@ )
95N =3 T T i 1A
AP B FABA-2)  (1—-2X)In(1—-N)
CoaB <2(1—>\)2_ (1—X)2 )
AN B2 12
5 <2 (1—N)2
A
+m (BoB2(2—3X)+ 5% )‘)) (5.33)
BB [ A AL N2
)\ A<2> A2
— 7r50 (1—=X)2
2

1B A 1—-2A I206)
+A ﬁo (1_)\—1-(1_)\)2 ln(l—A))]lnﬂ%{,

—_

-

\ (Bo B2 (1= A)+ BT A)

In(1-2)
In?(1—\) + -

B(l)

where
A = ag(pr) Bo In(b? ,u2Q) . (5.34)

The coefficients appearing in these expressions are given by

AW = Oy, (5.35)

C 67 w2\ 5
2 _ “F or_m™\ _»
A 2 [C (18 6 ) NF] ’ (5.36)
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4@ _ CF {Cg <245 B, M, 232C(3)>

16 6 27 45
1 418 40 , 56

1 55 4 L] 1

(for which, see [26])

2
B = —g Cp+ AD 1In MT , (5.38)
e
and [12]
1 3 11 193
@ _tl2(.2_°2_ Lo 190
B 1 [CF (7T 1 12C(3)> + CrCa ( 5" 5+ 6((3)) 0
9 .
—i-}CFNF —%772 + H + AP 1n M—Q :
2 9 3 1o
The coefficient dy is given by [26]
808 112

Finally, the coefficients of the S-function for QCD, in the convention we use, are given in
Egs. 2.44, 2.45 and 2.46.

5.3. Comparison of results to D@ data

In this section I present the results of our resummed calculation with D@ kinematic
cuts in place, and comparisons to D@ data. The D@ data are from proton—antiproton
collisions at an energy /s = 1.96 TeV, and correspond to an integrated luminosity of
7.3fb~1. The data are divided into two channels, corresponding to final states consisting
of either eTe™ pairs or u "~ pairs, known as the electron and muon channels respectively.
In the electron channel, the data are divided into three boson rapidity (y) bins: |y| < 1,
1 < |y| <2 and |y| > 2. The muon-channel data are binned in |y| < 1 and 1 < |y| < 2 only.
The invariant mass of the lepton pair is restricted to the range 70 GeV < M < 110 GeV
for both channels. However, cuts on lepton transverse momenta (pif) and pseudorapidity
(') of the ith lepton differ between the two channels. For the muon channel, one has
plT’2 > 15GeV and |n%?| < 2. For the electron channel, one has p%Q > 20GeV. The
pseudorapidity cut is more complicated in the electron channel, and allows leptons with
either |p12| < 1.1 or 1.5 < |p*?| < 3. The resummed calculations presented in this section
reflect these experimental cuts. In addition, the CTEQG6M [77] PDFs are used, where the
value of the strong coupling (evaluated at the Z boson mass) is ag(Mz) = 0.1179.

Additionally, it is important to test the numerical cancellation of the large logarithms
that appear in the fixed-order component of Eq. 5.1 at low ¢* against the large logarithms
that appear in the expansion of the resummed component. For small values of ¢*, the
resummation of soft and collinear gluon emission in this quasi-back-to-back region of the
two leptons should dominate. The additional contribution from the fixed-order component

in this region should be exactly cancelled by the expansion of the resummed component
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to the same perturbative order. We therefore want to check that, indeed,

do do
lim | oo - -0, 5.41
¢* =0 [ (d¢* ) fixed-order < dd)* > expansion] ( )

a quantity which we call the remainder. Figures 5.3 demonstrate this cancellation across

the five rapidity bins for Z — ee and Z — pu p, for the scale choice uqg = ur = pr = M.
The rapidity range |y| > 2 for the electron channel remains the only exception, where
will employ a LO matching and therefore only the cancellation at O(«s) is shown. The
equivalent plots for other scale choices considered are summarized in Appendix C.1, in
Figs. C.1 to C.15.

The results of our calculations in comparison with D@ data are shown in Figs. 5.4 and
5.5 for electrons and muons, respectively. The yellow band represents the estimate of the
theoretical uncertainty. It is determined by varying the three perturbative scales (uq, pr
and pp) about their nominal value of M. The actual variations are discrete and are subject
to the constraint M/2 < uq, pr, ur < 2M. Furthermore, the ratio between any two scales
may not exceed the range % to 2; ie. 1/2 < wi/p; < 2Vi,j € {R,F,Q}. The data
show good agreement with our NNLL+NLO matched calculation for the ¢* distribution
in Drell-Yan events at /s = 1.96 GeV, taking into account experimental errors and the
theoretical uncertainty due to the arbitrariness in perturbative scale choices.

It is crucial to consider a variety of combinations of the scale choice, as opposed to
varying only one at a time whilst keeping the remaining scales fixed at their nominal
values. This is exemplified in Fig. 5.6 which shows, for the muon channel in the |y| < 1

rapidity bin, the theoretical uncertainty band produced by varying

e only the resummation scale (uq),
e only the factorization and renormalization scales (up and pg) and

e all scales.

One observes that indeed the band widens and becomes more symmetric about the central
scale choice (uq = pr = pr = M) when all variations are considered. A comparison of
the estimated size of these bands for a NLL and a NNLL calculation is shown in Fig. 5.7.

Uncertainties associated with the PDF set used have been omitted in the evaluation
of the theoretical uncertainties quoted here, owing to their relative insignificance. I have
studied the propagation of PDF uncertainties onto the resummed component of the nor-
malized ¢* distribution, demonstrating them to be at the level of ~ 1% for values of
¢* < 0.1. Moreover, differences between two distributions evaluated using CTEQ6M [77]
and MSTW 2008 [78] PDF sets is significantly smaller than the per mill level across most
of the ¢* range.



94

Fixed-order - expansion

Fixed-order - expansion

5. PHENOMENOLOGY OF ¢* AT TEVATRON AND THE LHC
0.15 T T 0.15 T T
01k O(ag) —— | 01l O(ag) —— |
0.05 | 'JQ =M, HRr = M, HE = - ++++*’*++++ 4 0.05 } uQ =M, HR = M, Mg = ++++++*’H“‘++ 4, -
0 M#++++ Hﬁ 0 . #,W-ﬁ* +,
¥ g c Tt
-0.05 1 g -o0s5} .
-0.1 | |y| < 1, muons R S -0.1F 1<ly|l<2, muons E
-0.15 . . . < -0.15 . . .
0.15 A T 015 . Py
—t 1 —t
o1l (@s) 1 Lo ﬁ ﬁ} (@s) ]
0.05 f%ﬁ {1 B o005 [ { i Is 1
0 i }ﬂ %TI = ; T T Q 0 Lﬂ 1 E}%}ﬁ}tfﬂéa}&s%*‘*“wru I
©
-0.05 1 £ -005 [ E
0.1 {1 L .01t E
_0.15 1 1 1 _0.15 1 1 1
0.001 0.01 0.1 1 0.001 0.01 0.1 1
* *
¢ ¢
0.15 T T T 0.15 : :
01} O@y) 1 01} Oy
0.05 | Fo=M bR =M, up =M e 4 0.05 - Q=M B =M, yp =M ey J
0 A T tt? +‘+ Tt c 0 ST aa t+ ot
-0.05 | 1 2-005} .
-0.1  |y] <1, electrons k % -0.1 | 1< y| <2, electrons b
-0.15 : : : £ -015 : : :
0.15 T YA T 0.15 T Y
01 ;{E} (as”) = 01 } } # (as”) i
0.05 | f {1 B oos H f -
0 % H #T}#TI Toras it Q 0 I } %H%IT#B?{%H - gt Ry
llII T T T ey S LJJ T % 1[ R
-0.05 } {1 £ 005+t -
0.1t 1 Y 01} .
-0.15 L . . -0.15 . : .
0.001 0.01 0.1 1 0.001 0.01 0.1 1
¢ ¢
S 015 : . N
@ g1 | HeTMEREM b =M s i
< s
% 005 | e o o
> 2, electrons T +
,I_ 0 ggtﬂ‘;&w&* W—PM%MW ++
[} +++++
T 005} g
Q
g 01f E
X
IL _0.15 1 1 1
0.001 0.01 0.1 1
*
¢

FiGqure 5.3. Remainder plots showing the cancellation of large logarithms
between the fixed-order component and the expansion of the resummed

component, order by order, for small values of ¢*.

The plots show the

various rapidity ranges for the muon and electron channels in D@ data.
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FIGURE 5.4. Our matched calculation for D@ data in the electrons chan-
nel, for the three boson rapidity regions |y| < 1, 1 < |y| < 2 and |y| > 2.
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F1GURE 5.7. A direct comparison of the estimated theoretical uncertainties
for a NLL and a NNLL calculation.

I have additionally used our resummed calculation to produce predictions for low-mass
Drell-Yan data from D). At the time of writing, data are not yet publicly available. The
predictions for the ¢* distribution with the kinematic selection

p(T1 ) > 15 GeV (transverse momentum of leading lepton)

pg_? ) > 10 GeV (transverse momentum of second lepton)
30 GeV < M < 60 GeV (invariant mass)
In| <2 (pseudorapidities of both leptons)

in the two rapidity regions |y| < 1 and 1 < |y| < 2, are show in Fig. 5.8. The corresponding
remainder plots for the scale choice uq = pr = pur = M are shown, for illustration, in
Fig 5.9. Due to large statistical uncertainties in the fixed-order component at O(a2),
the numerical cancellation of large logarithms is only guaranteed at O(ag). Remainder
plots corresponding to other scale choices considered are summarized in Appendix C.1, in
Figs. C.16 to C.21.
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FIGURE 5.8. Predictions for the low-mass ¢* distributions at D@, in the
two rapidity regions |y| < 1 and 1 < |y| < 2.
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FIGURE 5.9. Remainder plots for the predicted low-mass ¢* distributions
at DO. in the two rapidity regions |y| < 1 and 1 < |y| < 2. The scales
correspond to puq = pur = pr = M.

5.4. Predictions for the ATLAS experiment

In this section I present predictions for the ¢* distribution with the kinematics appro-
priate for the ATLAS experiment. At the time these predictions were made, ATLAS data
on ¢* were not available. However, at the end of this section I will present a compari-
son to ATLAS data that were subsequently made public in 2012 [20]. In addition to ¢*
predictions, the Q1 observable is also shown in comparison to ATLAS data as a way of
validating our resummed calculation.

The following predictions are for proton—proton collisions at an energy of /s = 7TeV.
For each lepton ¢ = 1,2, a cut is placed on its transverse momentum and pseudorapidity,

L2 S 20GeV and In'2| < 2.4 respectively. The invariant mass of the lepton pair

of py
is also constrained to be within the range 66 GeV < My, < 116 GeV. Initially, results
are presented across the entire range of boson rapidities, i.e. |y| < 2.4. At the end of
this section, however, I present our results binned in the three rapidity regions |y| < 0.8,
0.8 < |yl < 1.6 and 1.6 < |y| < 2.4.

Our predictions were also generated for a variety of scale choices. We allowed each
scale, R, pr and pq, to vary independently between M /2 and 2M, with the additional
constraint that the ratio of any two scales must be between 1/2 and 2. To summarize,
we allow M/2 < p; < 2M provided that 1/2 < p;/p; < 2V14,j, where 4,5 € {R,F,Q}.
Figures C.22-C.27 in Appendix C.2 show the remainders (do /d¢f, .4 order — 40/ D}
and similarly for Qr) for our ATLAS predictions in the full rapidity region |y| < 2.4, for

expansmn ?

all discrete scale choices we considered. Below, the corresponding plots for the case of
pq = pr = pr = M are shown (Fig. 5.10). The left plot shows the case of ¢* and the right
plot shows the case of Q1. The top plots show the cancellation of the remainder at O(as),
while the bottom plots show this cancellation at O(a2). The objective here is to determine
if the large logs cancel numerically between the fixed-order component and the expansion of

the resummed component, as they should. In practice, one becomes statistically limited
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FIGURE 5.10. The remainder plots for our ATLAS ¢* and Q1 (pr) pre-
dictions, where ur = pp = pug = M. These plots show the numerical
cancellation of the large logarithms between the fixed-order calculation
and the expansion of the resummation.

for small values of either ¢* or Qr, particularly for the O(a2) contribution. For this
reason, one attempts to determine if the logs show a trend towards cancellation for small
values of the observable. If this is the case, one can neglect the contribution from the
fixed-order (which is statistically limited in this region, along with the remainder) below
a certain value of the observable. Thus, below this cut value, the only contribution to
the distribution is from the resummed component. Since the Born weights which enter
the resummed component are just O(a)—i.e. not even an O(as) contribution—one is not
statistically limited.

There is no reason to use the same cut value for both the O(a) and O(a?) contributions.
In the case of ¢* we choose ¢* = 0.0035 for the O(a) cut and ¢* = 0.03 for the O(a?) cut.
In reference to Fig. 5.10, this is the point at which one is confident about the numerical
large-logarithmic cancellation, yet at which one does not experience large statistical errors.
In this light, the cut parameter is tuned.

There is also a cut which we apply for higher values of ¢*. This time, however,
we observe that the resummation becomes unnecessary and the fixed-order component
describes the data well. For this reason we adopt a cut in ¢* beyond which the resummation
(and its expansion) is manually set to zero. This is in effort to suppress spurious O(a?)
terms (and beyond) for high values of ¢*, which lie beyond the jurisdiction of resummation.
The position we choose for this cut is at ¢* = 0.5. Thus, for values of ¢* > 0.5 only the
fixed-order component is used.

The corresponding low-Qt cuts, below which only the resummed component is used,
are set to Qr = 0.2GeV and Qp = 4.5GeV for the O(a) and O(a?) contributions,
respectively. For values of Q1 > 50 GeV, only the fixed-order component is used. As in
the case of ¢*, this high-@Q1 cut is at a point where the resummation is deemed unnecessary,
since the argument of the resummed logarithms is 50 GeV /M, with M ~ My. Not only

is resummation unnecessary in this region, where the logs in Q1 /M are not large, but we
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FIGURE 5.11. Our NNLL+NLO prediction for the ¢* observable (left) for
ATLAS at /s = 7 TeV. On the right, our corresponding calculation for
@t is shown in comparison to existing ATLAS data [79], for the purpose
of validating our calculation.

again want to suppress spurious O(a?) contributions (and beyond) where the resummation
has no jurisdiction.

With these considerations in place, the ¢* prediction and Q1 comparison to existing
ATLAS data [79] are shown in Fig. 5.11. The plot on the left shows our ¢* prediction while
the plot on the right shows our calculation of Q1 in comparison with existing ATLAS data.
The black line is the curve determined by setting all scales equal to the invariant mass of
the lepton pair, i.e. uq = ur = pr = M. The yellow band extends to the extreme points
on any curve, each of which comes from considering the scale variations already discussed.
For each value of ¢*, the yellow band extends from the minimum value of do/d¢* to the
maximum value, generated by any of the scale choices under consideration.

In March 2013, the ATLAS measurement of the differential ¢* cross-section measure-
ment at /s = 7TeV was published [20]. Figure 5.12, below, shows a comparison between
our resummed prediction and the ATLAS data. These data correspond to an integrated
luminosity of 4.6 fb~!, and have the same kinematic cuts applied to the final-state leptons

as described above.
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parison with 4.6 fb~! of ATLAS data at /s = 7 TeV, published in March
2013 [20], but which became publicly available in 2012.
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Finally, I present our ¢* predictions for ATLAS in the three rapidity ranges |y| < 0.8,
0.8 < |yl < 1.6 and 1.6 < |y| < 2.4, as shown in Fig. 5.13. Figure 5.14 shows a ratio
of these distributions for easy comparison, in which a significant amount of theoretical

perturbative uncertainty cancels.
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FIGURE 5.13. Our ¢* predictions for ATLAS kinematics at /s = 7 TeV,
in the three rapidity regions |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4,
top left, top right and bottom centre, respectively.
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ATLAS ¢* predictions, to supplement Fig. 5.13.

5.5. Probing the small-z régime

In our DO studies corresponding to Tevatron energies of /s = 1.96 GeV, we chose to

freeze the PDF evolution below values of QQ = g, i.e.

¢i(z,Q) for Q> Qo
¢i(z,Qo) for Q< Qo

In this case, the freezing point was chosen at Qg = 1 GeV. Since the PDFs are evaluated

gbi(x, Q) — q?),(l‘, Q) = { (5.42)

using DGLAP evolution at Q = up/(uqb), low values of @ correspond to high values of
b in the argument, and vice versa. I have varied the value of )y about this nominal value
to ensure that this non-perturbative prescription results in an uncertainty much less than
our perturbative uncertainty.

Owing to the increase in /s at the LHC relative to Tevatron, the momentum fractions
21 and x2 of the partons at the LHC entering the hard scattering process are conversely
typically much smaller than those at Tevatron. The @-dependence of ¢;(x,Q) in this
small-z régime is steeper and a fixed cutoff in the PDF evolution below @ = Qg is not
appropriate. In fact, in the b-space formalism (in which one works in the space Fourier
conjugate to Q) the discontinuity that arises because of the piecewise construction of
the PDFs, Eq. 5.42, results in oscillatory behaviour of the ¢* and Qt spectra. We thus
employ an exponential extrapolation of ¢;(z, Q) below @ = Qp, mitigating this behaviour.
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The extrapolation in fact rather concerns the actual Drell-Yan weight 3 given in
Eq. 4.138, which itself contains the PDFs. We consider the piecewise construction

oy ) 2@ for Q>Qo
e { AeB@ for Q<Qy (5.43)
where
A=%(Q) e B@
d | p 08 (E@)/2@2) (5.44)

Q2 — Q1

The transition scale @y is now taken to be 1.5 GeV. While still not a mathematically
continuous construction, the extrapolation is sufficiently continuous numerically in its
first derivative so as to mitigate former modulations in the resummed distribution, owing
to a local deficiency of Fourier modes around @) = Qp, without introducing new ones. The
two scales Q1 and Qo are taken to be 1.4 and 2.0 GeV respectively!, and the weight ¥
is evaluated at these two scales in order to deduce the constants A and B used in the
extrapolation.

Certain combinations of perturbative scale choices which result in lower values of
Lr/ 11q, however, serve to enhance the inversely proportional relationship between @) and b
in the argument of the PDFs. Whilst the oscillations are no longer present after employing
the exponential extrapolation of the PDF's, these combinations of scale choices still result
in significantly outlying curves for the ¢* and @t spectra. Considering that PDF evolution
based on the DGLAP framework of collinear factorization may become invalid for ) <
1GeV, we simply choose to ignore these scale choices in our uncertainty band. Thus,
we impose the additional restriction that scale combinations which enter our theoretical
uncertainty band must also yield pp/pug > 1. Such manifestations may be indicative of
the need of transverse-momentum-dependent PDFs (or ‘TMDs’). For further information
regarding TMDs, collinear factorization and the small-z régime, the reader is encouraged
to consult [80, 81, 82].

5.6. Predictions for the CMS experiment

At the time of writing, CMS public results for the differential Drell-Yan cross-section in
¢* are not available for \/s = 7TeV. Notwithstanding, adopting the same kinematic cuts
as applied in the CMS measurement of the ()1 observable for Drell-Yan, we have generated
a prediction for ¢*. This prediction is shown in Fig. 5.15, along with our computed Qt
observable compared with existing CMS data [83]. The kinematic cuts applied in each case
are as follows: For each lepton ¢ = 1,2, a minimum transverse momentum plT’2 > 20 GeV is
required, along with a constraint on its pseudorapidity |p'2| < 2.1. Finally, the invariant
mass of the lepton pair is required to fall within the window 60 GeV < My, < 120 GeV. In
comparison with the event selection performed by ATLAS, this corresponds to a slightly
tighter n cut and a slightly looser M cut. The corresponding remainder plots for all scale

variations may be found in Appendix C.3.

Hn principle, @1 should equal Qo to ensure the continuity of the construction.
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FIGURE 5.15. Our NNLL+NLO prediction for the ¢* observable (left)
for CMS at /s = 7 TeV. On the right, our corresponding calculation for
Q7 is shown in comparison to existing CMS data [83], for the purpose of
validating our calculation.

5.7. Non-perturbative prescriptions in the b-space formalism

The coefficients g; in the resummed exponent R(b 1q), Eq. 5.30, depend on the dimen-
sionless parameter
A = Boas(ur) In(b? 13y , (5.45)
with as(pr) defined in the MS scheme. Substituting the one-loop expression for as(ugr),
written in terms of the dimensionful quantity Aqcp, i.e.
1

as(pr) = Bo (/A 0p) (5.46)

one obtains _
In(b
_ _Inlbra) (5.47)
In(ur/Aqep)
As A\ — 1, this implies b — (ur/ MQ)A(S%;D- In this limit one approaches the Landau
pole of QCD, where the notion of a perturbative expansion breaks down. In order to
safeguard against this, we introduce an upper limit of by, on the b integration such that

brmax < A(?zch' In principle, the upper limit on the b-space integration (set by Apax = 1) is

bmax = 2 ,u(il e exp[l/(2 o as(pr))] (5.48)

having used b = be® /2.

The cutoff at by.x is an intrinsically non-perturbative prescription which is arbitrary,
along with the actual choice of by ax. For this reason we have varied by, about the value
we choose (which is typically ~ (3 Aqcp)™!) in order to verify that it has negligible impact

on the theoretical prediction, which is indeed the case. From a practical point of view,
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setting byax no higher than necessary to achieve our desired accuracy also increases the
performance of the numerical integration over b.
There is also a lower limit of A at Ay, = 0. This limit requires In(b? ué) — 0, and so

b— ,uQ As such, we have a lower limit on the b integration, set by
brin = 2”621 e ) (549)

beneath which one is outside the jurisdiction of the resummation. At precisely b = bnin,
the resummed exponent R(Z;min pq) = 0. At values of b < byin, we adopt the prescrip-
tion of freezing the radiator R(b pq) at zero. The b-integral is thus separated into two
contributions, as in

/ db M cos(b M ¢*) e~ ROMuq.um)
0

min bmax
—>/ db M cos(b M ¢*) +/ db M cos(b M ¢*) e BOMuq.um) (5.50)
0 bmin

] . * bmax
— —sm(bmm*qu ) +/ db M cos(bM ¢*)e ~R®Mpa, “R)
¢ bmln
of which the remaining integral from by, to byax is performed numerically. In the case of
the Q1 observable, the separation is

/ dbb Jo(b Q) e~ BOMupiqur)
0

bmin bmax
%/ dbbJo(bQT)+/ dbb Jo(b Q) e~ BEMnqmm) (5.51)
0 bmin

bmin bmin Dmes
— Jl( QT) + / dbbJ()(b QT) anLLQ NR)
QT bmin

The numerical evaluation of the remaining integrals in b-space is performed for both ob-

servables using a lightweight implementation of a 32-point Gaussian quadrature rule. A
fast numerical implementation of b-space integration is of course critical for our purposes
of obtaining precise resummed predictions which require high statistics. This bespoke im-
plementation is very competitive in terms of performance, with computation times similar

to other free implementations, owing to its lightweight nature.

5.8. A non-perturbative study

In addition to the purely perturbative computations which were compared to DO
data, with the caveat of the aforementioned prescriptions in b-space, I also studied a
non-perturbative (NP) model designed to mimic the effect of intrinsic parton transverse
momenta within the hadrons. NP models have previously been studied in the context of
Drell-Yan Q [84] and also the energy-energy correlation in e*e™ annihilation [85]. The
model we utilize in our phenomenological approach adds a Gaussian smearing term to the
radiator, such that

R(bM) — Rxp(bM) = R(bM) + gnp b, (5.52)
where the parameter gyp characterizes the smearing and has units (GeV)?. In the context

of the resummed expression, this amounts to an overall multiplication by a Gaussian in b
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FIGURE 5.16. The inclusion of a non-perturbative Gaussian form factor in
our NNLL+NLO calculations for DO at /s = 1.96 TeV. The curves shown
correspond to different values of the associated parameter, gnp. The two
rapidity bins for the muons channel are shown.

with a width o = 1/4/2 gnp. Since b is the Fourier conjugate to Qr, this translates into a
Gaussian smearing of QT by /2 gnp.

Indeed, the Gaussian ansatz of our model is consistent with the exponentiation of the
model employed in [84] (which is quadratic in b near b = 0) where further discussion of its
motivation may be found. Further parameterizations of a NP form factor on the Drell-
Yan Q7 spectrum may be found in the literature, including the BLNY parameterization
of Brock, Landry, Nadolsky & Yuan [86], which is also of the Gaussian form.

Figures 5.16 and 5.17 show the impact of this NP model on the calculation correspond-
ing to the ‘central’ scale choice (i.e. with ug = ur = prp = M) for different values of the
NP parameter gnp.

Ostensibly, given the size of the theoretical uncertainties on the perturbative calcula-
tions for DO kinematics, estimated by varying the perturbative scales about their nominal
values, one cannot make a conclusive statement regarding the need for NP effects to suc-
cessfully describe the data. The essential point is that one should be careful not to falsely
ascribe any discrepancy between data and theory to the need for NP input, which may
be mitigated using purely perturbative techniques. To this end it is of crucial importance
that one has a sound perturbative prediction and understanding of theoretical uncertainty.
Recent work has shown, however, that even in light of a theoretical uncertainty band seem-
ingly concluding an agreement with data in the absence of explicit NP input, the data do
indeed prefer a non-zero value of gyp [87]. This conclusion is reached by treating scales

related to pq, pur and pp as nuisance parameters in a x? minimization attempting to fit

gNP-
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In this work, M. Guzzi, P. M. Nadolsky and B. Wang (GNW) pursue two approaches
in the determination of a parameter labelled ayz (equivalent to gnp; i.e. the coefficient of
b? in an exponentiated NP form factor) associated with the NP model in ResBos. It is
important to note that the studies therein are carried out in the CSS formalism [14], and
so a different and non-trivially related set of perturbative scales are considered, namely
C1, Cy, C3 and C4. The first approach assumes these scales to be fixed at some values,
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while the y? is minimized by discretely varying the parameter ayz to find the best fit. The
x? definition adopted for this specific case is given by

N ~ 2
Xlaz) = <D_ST(GZ)> : (5.53)
i=1 !
which is minimized with respect to ayz, yielding the preferred value. In this definition,
N data points {D;} are considered, with corresponding uncorrelated uncertainties {s;}.
Theoretical predictions are computed for each data point 7 using fixed scales and distinct

values of ayz, and are denoted Tj(az).

The second approach extends this method by allowing the scales to effectively float in
the fit. The scales themselves are treated by defining corresponding nuisance parameters
Ao = logy(Cy/Cy), where the bar denotes a specific nominal configuration for these values.
It is assumed that the scale variations should be small. As such, the theoretical prediction

for the ith point is written as a Taylor expansion

3
_ o _
Ti(az, {Aa}) = Tiaz. {0a}) + Y | 5 Tilaz, {Aa Ao — M), 5.54

where the expansion is truncated beyond the first derivative. Here, {\,} is shorthand for
A1, A2, A3, and the bar denotes those nuisance parameters corresponding to the nominal
values of the scales. By definition of the nuisance parameter, however, A, = 0. The partial

derivative is then estimated by a finite-difference derivative:

8 T:L aZ))‘;tv 5\ « 7,1—12 aZv)‘;a 5\ « Y
s Ton ) = 2102 Gzl S da Botel) — s, () (559
0o Adg
Here, AN, = A\l — ), the difference between positive and negative variations of the

nuisance parameter \,. The variations actually used are AT = 41, corresponding to scale
variations ranging from % to 2 times their nominal values. The theoretical prediction for

the 7th point is now written simply

3
Ti(az, {\a}) = Ti(az, {}a}) + Y _ Bia Aa (5.56)

a=1
incorporating this linearized model of scale variations.
As in the first approach, the goodness of fit is measured using a x? expression which

accounts for the nuisance parameters:

XClaz) =) (Dz Ti(02) = Dgm o Aa) +Z)‘—% (5.57)

5
i=1 g

The final term effectively restricts scale variations by penalizing those which are considered
beyond reasonable. This second method considers the fit without this additional term,
but also with the value oy ' = 1. The reader is encouraged to consult [87] for the values
of az determined in specific cases. However, I note here the value az = 0.82703% GeV?
determined from the fit to 60 DO data points, covering all rapidity bins with ¢* < 0.1.
The reduced x? for this fit is 1.31.
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FIGURE 5.18. A comparison between our NNLL+NLO prediction and that
of ResBos is shown, for the D@ electrons channel in the two rapidity bins
ly| <1 (central) and |y| > 2 (forward).

5.9. Comparison with ResBos

In this section I present the comparison of our calculations for the D@ experiment with
those computed using ResBos [73], another program widely used within the community to
performed resummed calculations of processes involving vector bosons. The comparisons
for both a central and forward boson rapidity are shown in Fig. 5.18. In this comparison,
the ResBos calculation also includes a non-perturbative model, very similar to the one
studied in Sec. 5.8, with an associated parameter go = 0.6, which essentially plays the
role of gyp in our calculation. More specifically, the ResBos program employs a non-
perturbative model using the BLNY (Brock-Landry—Nadolsky—Yuan) parameterization
[86].

In addition to this non-perturbative contribution, there exist other differences between
ResBos (or rather the back-end software named ‘Legacy’ [73, 86, 88]) and our prediction.
The formal accuracy of the two calculations is essentially the same, namely a NNLL
resummation matched to a fixed-order calculation at O(a?2). ResBos, however, is an
implementation of the CSS formalism [14] while our formalism is more closely related to
that of G. Bozzi, S. Catani, D. de Florian, M. Grazzini (e.g. [25]). A notable consequence
of employing the two different formalisms is that the perturbative scales defined in each
are not in a simple one-to-one correspondence.

A further difference between our predictions and those of ResBos is that we use coef-
ficient functions (Wilson coefficients) computed exactly to O(as), as in Eq. 4.146, while
ResBos uses approximate Wilson coefficients which extend this accuracy to O(a2), em-
ploying a mixture of K-factors and exact computation, such that the scale dependence is
indeed exact at O(a?).

Furthermore, the prescription for curtailing the b integral as one approaches the non-
perturbative régime is also different. Our calculation simply employs a hard upper limit
of bmax while ResBos rather defines the quantity [14]

b

1+ (b/bmax)?

b (b, bnax) 1= (5.58)
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This is then used to redefine the perturbative scales in the Sudakov exponential, and to
avoid evaluating PDFs below some minimum scale ~ 1 GeV [87].

The final major difference concerns the fixed-order component used in the matching of
our formalism, which is computed to O(a?2) accuracy by MCFM. The ResBos formalism
prefers to consider as a single entity the the non-singular remainder (‘fixed-order minus
expansion’) labelled Y. The fixed-order component of Y is computed exactly to O(a2) in
the large-Q limit according to [89].

The figure on the left in Fig. 5.18 compares the ResBos prediction for the |y| < 1
rapidity bin of the electrons channel to our prediction. The yellow theory band on our
prediction includes the full perturbative scale dependence (i.e. pq, pr and pp) whilst the
red theory band on the ResBos prediction only includes the factorization and renormal-
ization scale dependence and is hence narrower. The figure on the right makes the same
comparison but for the |y| > 2 bin, again in the electrons channel. This time, the ResBos
result which also includes a non-perturbative small-z broadening model is also shown, as
the blue dashed curve.
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CHAPTER 6

Conclusions

The technology of all-orders resummation, in the context of the transverse momentum
distribution of massive lepton pairs produced in hadron collisions, has existed since the late
"70s [9]: the DDT formula in the LLA (leading-logarithmic approximation). Resummation
is based on factorization principles that persist to the level of the squared amplitude. These
were first demonstrated in the case of Abelian theories and were subsequently borrowed for
QCD [11]. The logarithmic accuracy of resummation has increased since its conception,
such that NNLL accuracy is now the state of the art in the cases of the ¢* and Q7
distributions for Drell-Yan, but also for the Higgs Q1 spectrum [25]. This has important
implications for phenomenology, but it seems that experimental results are ahead of theory
in terms of uncertainty [20], as we will soon see first-hand in Part 2.

From a technical point of view, we have seen that resummation presents the issue of
b-space integration. The utility of b-space rests in the convenient factorization of phase
space it provides, but we find that we must introduce various prescriptions for handling
the integration. First we consider prescriptions which are intimately related to the non-
perturbative domain. In our case, for example, we use a cutoff for the upper limit of
integration, bpax. Other authors use a prescription in which the contour of integration
is modified so as to skirt the Landau pole, examples of which are given by [90, 91].
At the other end of the spectrum, we consider the lower limit of integration, bpi,. In
our formalism we freeze the radiator at R(b) = 0 for values of b < bpin; the high-¢*
region in which resummation has no jurisdiction, and which is controlled by fixed-order
calculations. The Florence group (e.g. [25]) adopt an alternative prescription, in which
the b-space logarithm is replaced as follows: L = log(b? M?) — log(1 + b M?). For values
of b> M? < 1, the logarithm and, hence, the resummed exponent go smoothly to zero.
For b M >> 1, the logarithm may be written log(1 + b% M?) = log(b* M?) + O(1/(bM)?)
and thus the formal perturbative accuracy is preserved in the kinematic region where
resummation is important.

Non-perturbative (NP) effects have played a particularly important réle in the studies
presented herein. The mantra we have followed is to ensure we have a sound perturba-
tive calculation of the ¢* observable, using a resummation formalism based on collinear
factorization. We then allow ourselves, within our established perturbative uncertainties,
to ascribe any discrepancies with collision data to the apparent need for NP physics. 1
have therefore presented studies of a phenomenologically driven NP model, based on a
simple Gaussian form factor, driven by a single parameter gnp. Ostensibly, within our
well-established perturbative uncertainties, it is not possible to make absolute claims re-

garding the role of NP physics on the ¢* distribution. However, more recent work by
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M. Guzzi, P. M. Nadolsky and B. Wang [87], in which perturbative scales are treated as
nuisance parameters, has shown that data unambiguously favour a NP contribution. It is
noteworthy that the work presented in this thesis, culminating in [17] and [18] for ¢*, has
been a driving factor in the importance placed on precisely understanding perturbative
scale uncertainties and their role in the precise determination of NP contributions. It is
also noteworthy that an ezperimentally driven definition of a collider observable has paved
the way in making such studies possible. Even after decades of study using the classic Qr
observable for the Drell-Yan process, this was unprecedented; experimental insight and
theoretical collaboration have provided a unique opportunity to pin down a long-standing
issue.

It could now be said that the focus of future theoretical work should be to match the
unprecedented experimental precision, which now resides around the ~ 1% level or better,
of Drell-Yan ¢* data. The state of the art from the theoretical side, depending on the /s
energy, remains at the 5-10% level. This does have implications for future work, which
might involve extending the formal accuracy of theoretical calculations to N3LL.

During the course of this thesis there has been a revolution in our understanding of
the Standard Model: the discovery, in 2012, of a new particle consistent with the Higgs
boson, proposed nearly fifty years earlier [92]. Presumably, with the estimated 3,000 fb~?
of collision data that the LHC will have delivered by the end of its third run, we will
be endowed with a high number of Higgs events sufficient for precision phenomenology.
An important mechanism for Higgs production at the LHC is via gluon fusion, for which
the QCD transverse-momentum resummation is carried out in [93]. High-statistics data
samples of H — v would then permit a precise phenomenological study of soft-collinear
gluon radiation (employing a ¢* definition applied to the photons) from a gluon-gluon-
initiated process. One would expect in this case to observe a broader spectrum, and this
would provide an ideal paradigm in which to test the predictions of a richer structure
inherent in such a resummation. Indeed such studies are already underway within ATLAS
[94].

Until this point I have not begun to mention a wealth on literature dedicated to effec-
tive theories in which the infrared divergences inherent in soft/collinear QCD amplitudes
are consistently treated in a reformulation of QCD theory, which provides an alternative
to traditional resummation techniques. One such theory, known as soft-collinear effective
theory (or ‘SCET’) has itself received significant attention (as applied to Drell-Yan Q¢
[95, 96|, for example) although an in-depth discussion would be far beyond the scope of
this thesis.

The phenomenological study of NP effects motivates a new experimental measurement
of ¢* using high-statistics Run I LHC data: we have witnessed a mild rapidity dependence
of the gnp parameter in our rudimentary NP model vis-d-vis DO data. In particular, it
is desirable to have high-statistics experimental data, both in narrow |y| (absolute boson
rapidity) bins and in mass bins away from the Z resonance peak, with which to make
precise comparisons, in order to elucidate the functional dependence of NP physics. Part
2 of this thesis is concerned with an experimental measurement of ¢* in Z — puu events
that I performed at /s = 8 TeV, using 20.1fb~! of ATLAS collision data.



Part 2

Experimental analysis of ¢* in Drell-Yan
events at ATLAS
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CHAPTER 7

Introduction

The present part of this thesis details and discusses an analysis of the ¢* observable I
have performed, as applied to Drell-Yan events at /s = 8 TeV, using the ATLAS detector.
It is an analysis that is currently in progress, and a fully corrected measurement of this
observable in Z — pu events is presented herein. This analysis has formed the latter stage
of my PhD research topic, but forms Part 2 of this thesis for continuity with Part 1, which
discusses the relevant theory in detail.

We begin with an overview of the ATLAS experiment in Chapter 8, emphasizing the
detector systems that are relevant to the current analysis. (A discussion of the principal
detectors relevant to my luminosity studies is postponed until Part 3.) Chapter 9 then
discusses precisely the measurement definition and the strategy I follow, along with the
collision and simulated data samples used as input. A discussion of the various corrections
applied to simulated data samples then follows in Chapter 10. In Chapter 11 I document
the criteria used to select candidate muon objects and Drell-Yan signal events from data.
Chapter 12 then presents various studies which are aimed at estimating the background
contamination of data events selected in this manner. The final results of this analysis,
namely the normalized, detector-corrected and background-subtracted distributions for
the ¢* observable, are presented along with their corresponding uncertainties in Chap-
ter 13, in comparison with theoretical predictions. I close this part with a discussion of

future prospects for this measurement.
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CHAPTER 8

The ATLAS experiment

8.1. Detector components

The ATLAS experiment, Fig. 8.1, derives its name from the highly descriptive! acronym
A Toroidal LHC ApparatuS. Measuring 25 m in diameter and 44 m in length, and weigh-
ing 7 kilotons, its constituent detectors and systems can be roughly categorized into four
essential components: the inner detector, the calorimeters, the muon spectrometer and
the magnet systems. For the analysis presented in this thesis, the muon spectrometer and
other detectors and systems related to muon tracking, identification and reconstruction
are the most important and, as such, emphasis will be placed on these. A recent and
comprehensive survey of the ATLAS detector may be found in [97].

The inner detector, shown in Fig. 8.2, is surrounded by a solenoidal magnet produc-
ing a magnetic field of ~ 2 T. Extending from a radius of several centimetres from the
beam line to 1.15 m, and covering a longitudinal distance of ~ 7 m in total, the primary
purpose of the inner detector is to track charged particles that interact with material in
its constituent components: the pizel detector, the SCT (semiconductor tracker) and the
TRT (transition radiation tracker). The pixel detector comprises silicon (Si) pixel sensors
in three concentric layers and three discs on each end, and its proximity to the interaction
point (IP) affords precise tracking in this region. The minimum size of a pixel, expressed

IThe magnet systems employed in the ATLAS detector significantly dictated the R&D of other constituent
parts of ATLAS.

25m

Tile calorimeters

LAr hadronic end-cap and

forward calorimeters
Pixel detector

Toroid magnets LAr eleciromagnetic calorimeters

Solenoid magnet | Transition radiation tracker

Muon chambers
Semiconductor fracker

FiGURE 8.1. A cutaway drawing of the ATLAS detector, revealing all its
detector systems [97].
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} End-cap semiconductor tracker

FIGURE 8.2. The ATLAS inner detector, often shortened to ‘ID’ [97].

as (r¢) x z, is 50 um x 400 yum. The SCT further provides tracking beyond the radial
extent of the pixel detector. The SCT is comprised of silicon detectors arranged in a
configuration of four concentric double layers in the central (‘barrel’) region and nine discs
on each side. In the barrel region, each detector contains 780 6.4 cm-long readout strips
with an 80 pm pitch. The barrel SCT is used to provide tracking in the transverse plane,
although a relative rotation between pairs of corresponding strips by 40 mrad in a stereo
configuration also provides longitudinal tracking capabilities. Finally, the outermost TRT
is composed of drift tubes known as ‘straws’, which are 4 mm in diameter. Each straw in
the barrel region contains a 114 cm-long, 30 pm-diameter gold-plated tungsten-rhenium
(W-Re) wire held at a potential of —1.5 kV and is filled with Xe (xenon), CO2 and Og
gases in the ratio 70:27:3, respectively. The passage of charged particles causes ionization
of the gaseous mixture, the ions of which are collected by the wires and manifest as pulses
of current which can be measured. In terms of pseudorapidity, the geometrical acceptances
of the components of the ID are: |n| < 2.5 for the pixel detector and the SCT, and |n| < 2
for the TRT.

The purpose of the calorimeters is to capture all the energy of a particle in order
to measure it. Components of the calorimeter system are categorized according to their
specialization in terms of electromagnetic (EM) or hadronic calorimetry. For present
purposes, we are most concerned with the EM part of the calorimetry system sharing a
common geometrical acceptance with the ID—approximately the region |n| < 2.5, which
is well-suited for precision physics. The EM calorimeter is made from lead (Pb) absorber
plates, corrugated in the fashion of an accordion, with liquid argon (LAr) as the sensing
element. It has a greater precision in its localization of particles than its hadronic cousin,
with an |n|-dependent granularity, ranging from 0.025 to 0.1 in both |n| and ¢.

The muon spectrometer subjects particles to a local magnetic field of up to ~ 4 T
depending on their location within the field produced by the superconducting toroids,

of which there are three sets, each arranged in an octant structure. The two smaller
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sets supply the magnetic field in the end-cap regions, while the largest set supplies the
barrel region. The purpose of the muon spectrometer is to measure the curvatures of the
tracks of muons in this field, and hence deduce their momenta. This part of the ATLAS
detector occupies the region radially outward from 4.25 m. The muon spectrometer itself
has triggering chambers (consisting of resistive plate chambers and thin gap chambers)
effective in the range |n| < 2.4. This is permitted since the time-of-flight of muons from
their typical interaction vertices out to these distances is comparable to the time scale of
bunch crossings (10s of ns), and not significantly greater. Muon data is also recorded on a
separate data stream, as compared with electrons and photons which are detected by the
EM calorimeter. The tracking of muons is provided largely by drift tubes known as the
MDT (monitored drift tubes). In addition, multi-wire proportional chambers known as the
CSC (cathode strip chambers) provide tracking at large pseudo-rapidity (1 < |n| < 2.7).
Various aspects of the candidate muon and electron selection criteria (to be presented
in Chap. 11), both in terms of kinematic selection and quality control cuts, will follow as
direct consequences of the nature of the components of the ATLAS detector described in

this section.

8.2. Muons and electrons

ATLAS defines several types of reconstructed muon candidates (or ‘muons’) according
to the detector system(s) in which they were identified. The three muons with which we
are concerned are known as ‘ID’ muons, which are reconstructed from tracks in the in-
ner detector, ‘MS’ muons, which are reconstructed from tracks in the muons spectrometer,
and ‘combined’ muons, which are reconstructed from tracks in both the inner detector and
the muon spectrometer. There are also ‘calo’ muons, which are identified using energy
depositions in the calorimeters, but these are of no real concern in this analysis—they are
typically only employed to recover efficiency losses in the |n| < 0.1 region, but this mea-
surement of the normalized differential cross-section will not be affected. We actually need
not consider stand-alone MS muons, since they extend muon acceptance from |n| = 2.5 up
to |n| = 2.7, which is outside the kinematic acceptance chosen for this analysis. Using ¢*
as a precision observable necessarily demands good azimuthal angular resolution, which
the ID is very effective at providing given its precision tracking capabilities. Since the
geometrical acceptance of the ID is curtailed for |n| > 2.5 and we demand ID tracking in-
formation as part of our muon reconstruction, we therefore restrict our kinematic selection
criteria accordingly.

Corresponding to the sub-detector in which a track may be reconstructed and identified
as a muon candidate, is an algorithm for performing the reconstruction. For ID and
MS muons, there are dedicated algorithms. The choice of algorithm used for combining
information in the inner detector and the muon spectrometer performs a full refit to
all track data, as opposed to a statistical combination, and is known as the third chain
algorithm. Reconstructed muon candidates are therefore known as third-chain muons.

This thesis presents a measurement of ¢* in muonic Drell-Yan events. However, I have
used various data-driven techniques in order to validate simulated data, one in particular

which performs an ey selection. I will therefore briefly describe here the measurement of
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electrons in ATLAS. There is presently only one algorithm for reconstructing the kine-
matics of an electron, which straightforwardly makes use of information regarding energy
depositions in the EM calorimeter and tracking information taken from the ID. In cer-
tain cases, more loosely defined electrons may use tracking information made available
directly by the EM calorimeter, although this will be of a diminished precision. It is the
properties of the manner in which the particle undergoes a showering of electromagnetic
bremsstrahlung, as it relinquishes its energy in the EM calorimeter, which enables one to
discern an electron from a photon.



CHAPTER 9

Measurement definition and strategy

9.1. Binning

The quantity we would like to determine is the normalized differential cross-section
1 3o
o do*dM dy -

To estimate this quantity, we measure a discrete distribution in the number of Drell-Yan

(9.1)

events that yield a value of ¢*, M (invariant mass of lepton pair) and y (boson rapidity)

within the specified ranges respectively: ¢F to (¢ + A¢Y), M; to (M; + AM;) and y; to

(yi + Ay;), with A¢r AM; Ay; being the volume of the bin labelled i. Thus, the integrated

cross-section over this “th’ bin is

N cand — T Njreco back
A; L

Here, Njcana is the number of candidate events in data, T IV;reco back 1S the estimated

(9.2)

o; =

number of background events in data, L = [ dt £ is the integrated luminosity of the data
sample and A; is the acceptance efficiency of this ¢th bin. The latter is determined using
a simulated model of the detector, as

Nireco

Ai = )
Nigen

(9.3)

where Njgen is the number of events generated in bin ¢ and NNjeco is the number of Drell-
Yan dimuon signal events reconstructed in bin ¢. The measurement further takes place
within a fiducial volume, defined by kinematic cuts on the final state: p(T1 ) > 20 GeV,
p(TQ) > 20 GeV, [nM| < 2.4 and || < 2.4, where the superscript in parentheses indexes
the lepton. The bins of M are 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and
116 GeV < M < 150 GeV. The binning in |y| will depend on the mass region under
consideration. The binning |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 is employed
for the low- and high-mass regions, while a finer binning of |y| < 0.4, 0.4 < |y| < 0.8,
0.8 < |y < 12,12 < |y| < 1.6, 1.6 < |y| < 2.0 and 2.0 < |y| < 2.4 is chosen for the
central mass region, exploiting the availability of a high-statistics data set.

In fact, it is actually rather the shape of the ¢* distribution that provides the phe-
nomenological handle to the soft—collinear QCD we are most interested in. The overall
normalization 1/0, in Eq. 9.1, ostensibly refers to the fiducial cross-section integrated
over all ¢*, M and y bins. This would seem to be a natural choice. It is experimentally
advantageous, however, to consider the one-dimensional ¢* distribution (1/0) do/d¢*, in
individually-normalized bins of M and y. In this way, each kinematic region in M and y is
experimentally independent and, e.g., the resonant (‘on-peak’) analysis remains immune

to systematic uncertainties and large backgrounds that would otherwise arise from the
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‘off-peak’ regions via a global normalization. For this reason, each of the (twelve) distri-
butions in ¢*—corresponding to the different coarse bins in M and y—will be individually
normalized.

Let us return now to the bin-by-bin detector correction factor. Since N eco may be
decomposed as

Nireco = 1Vigen + Nifaked - Ni missed 1 Ni mig. in — Ni mig. out » (9.4)
which may be verified by considering the sets of events

e generated in the ith bin,

e reconstructed in the ith bin from a lepton pair which does not correspond to the
two prompt leptons from Drell-Yan (faked),

e not reconstructed but generated in the ith bin (missed),

e reconstructed in the ith bin but generated in another bin (migrated in), and

e generated in the i¢th bin but reconstructed in another bin (migrated out),

we see that the definition of A; in Eq. 9.3 not only accounts for the reconstruction effi-
ciency but also implicitly treats faked events and any bin-to-bin migration of events upon
reconstruction, owing to the limited resolution of the detector. If the bin purities are
sufficiently high, then bin-to-bin migration is significantly reduced in any case. The purity
(P;) is defined, respectively along with stability (S;), using a simulated detector model,
for a given bin labelled 7, as

p - Nireco & gen and S, = Nireco & gen ’ (9.5)

Nj reco N; gen

where Njreco & gen 15 the number of events both generated and reconstructed in the same
bin ¢. The bin purities are indeed high, as shown in Fig. 9.2 for the on-peak analysis, and
Fig. 9.3 for the off-peak analysis.

The terminology of generated muon in the definition of purity remains ambiguous,
and several generation levels exist. Two notable definitions of a level relevant herein are
called Born and bare, corresponding to generator-level muons before and after the effects
of FSR (final-state radiation) respectively. In principle, it is the bare muon which is
most representative of the nature of an actual muon before the indelible effects of particle
detection have been imprinted on its kinematics. The Born muon hence differs from the
bare muon by a theory-dependent model of FSR. For this reason, it is crucial to keep
in mind that no additional physics content is introduced to the measurement by such a
correction, which is purely to facilitate the comparison with theoretical predictions that
do not inherent model FSR.

The ¢* bin purities for all twelve kinematic regions of interest are shown in Figs. 9.2
and 9.3, where the definition of purity both in terms of Born and bare generator-level
muons is considered. As expected, the bin purity in terms of bare muons is significantly
higher than that for Born muons on account of the absence of any correction for FSR,
which would clearly otherwise result in an enhanced degree of bin-to-bin migration of
events due to the resulting changes to the momenta of the muons upon radiative emission.

Furthermore, Fig. 9.1 shows the extent to which mass bins become impure, owing to the
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FIGURE 9.1. The left plot probes the simulated mass resolution of the
detector, along with that of the combined FSR model and detector. The
reconstructed invariant mass is plotted for signal events in which: no event
vetoes are applied (black), vetoes are applied to impure events whose gen-
erator reference is bare level (red), and vetoes are applied to impure events
whose generator reference is Born level (blue). The right plot shows, in bins
of the reconstructed ¢*, the percentage of events reconstructed in the mass
range 46 GeV < M < 66 GeV, given they have a generated mass (bare or
Born) of > 75 GeV.

migration of events due to FSR and particle reconstruction. In particular, the right pane
shows the percentage of events reconstructed in the mass range 46 GeV < M < 66 GeV,
given they were generated with a mass > 75 GeV, quantifying event migration into the low-
mass region. The two orders of magnitude between event yields of Born and bare muons
is not surprising, since for Born muons we must correct for FSR which is the principal
cause of this migration, while the migration is largely absent for bare muons. Given the
established bin purities in ¢* and M, and the philosophical implications of making theory-
dependent corrections, the measurement presented in this thesis is corrected for detector
effects only—i.e. back to bare-level muons.

The cross-section and number of events summed over all bins are respectively given
as 0 = y 0, and N = Y . N;. Thus, the definition of my measurement to estimate

(1/o)do/de* is

1 <d0‘> - or NNicand — T Njreco back
i

o o) = siag (9.6)

T o (AdY) (Ag*); A; ’
where N remains a normalization constant (for the corresponding kinematic region) to be
determined.

The number of background events is typically estimated using simulated data, with
N; reco back being the determined number of background events reconstructed in the ith

bin. 7 corrects for the difference between the true luminosity of the data sample, L, and
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the effective luminosity of the simulated data sample:

sim L
g (9.7)

T=—
Ngen back

where 0, is the simulated cross-section and Ngep pack is the total number of generated

(simulated) background events.
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F1GURE 9.3. The purities of the ¢* bins proposed for the off-peak measurement.

9.2. Observable definition

As already mentioned, the ¢* observable provides a measure of the azimuthal decor-
relation between two objects (see Part 1 for a detailed theoretical discussion). In this
analysis it is applied to the two leptons produced in Drell-Yan events in proton—proton
collisions at a centre-of-momentum energy of /s = 8 TeV, and is measured using the AT-
LAS detector using ~ 20fb~! of integrated luminosity. The formal definition of ¢* used
in this analysis is [15]

¢, = tan <¢a§"p) sin 0, (9.8)
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with ) given using

cos 0, = tanh (77;77+) . (9.9)
The purpose and advantage of this definition of #*—as opposed to, for example, that
defined in the Collins—Soper frame—is that it does not rely on measurements of lepton
momenta, rendering 0;'; immune from lepton momenta mismeasurements due to limitations
imposed by detector resolutions and inefficiencies. The ability to precisely track muons
with the ATLAS detector makes a high-precision determination of ¢* very feasible, partic-
ularly for the Z — pp channel. My work on non-perturbative effects immediately suggests
phenomenological utility of a cross-section differential in |y|, and also in M.

In studying the quasi-back-to-back region of massive lepton pair production via the
Drell-Yan mechanism, one is in a position to probe the dynamics of gluon emission in the
soft—collinear régime, providing a test of perturbative calculations to adequately describe
these dynamics. Owing to the presence of large logarithms which appear in calculations
truncated at finite order in perturbation theory in the kinematical region of low ¢*, the-
oretical predictions must generally make use of resummation techniques, for example in
[16, 17, 18, 73, 86, 88]. For a detailed account of these techniques, the reader is referred
to Part 1 of this thesis.

9.3. Monte Carlo input, collision data and luminosity

In this analysis, extensive use is made of simulated data generated using Monte Carlo
methods. The simulated data-sets (or ‘Monte Carlo samples’) are generated using a va-
riety of computer tools—namely POWHEG [98, 99, 100, 101], PYTHIA 8 [102, 103],
MC@NLO [104], JIMMY [105], SHERPA [106] and HERWIG [107]—in order to simu-
late the physical processes, before being further processed in a GEANT 4-based simulation
[108, 109] in order to model the effects of the ATLAS detector. The principal purposes
of these Monte Carlo samples are to model the contamination of the ‘signal’ process with
other ‘background’ processes, and also to understand the detector and its potential ef-
fects on the measured observable distribution. Such modelling of signal and background
processes is invaluable, as it allows us to better understand and discern differences in
their experimental signatures, and to optimize discrimination between them where such
signatures may potentially be very similar. With the exception of HERWIG-generated
processes, which uses CTEQ6L1 PDF's [77], all physics simulations make use of the newer
CT10 PDF sets [110].

In addition to containing simulated data after the effects of the ATLAS detector have
been modelled (the ‘detector-level’ simulation), the Monte Carlo samples also retain the
corresponding simulation of the underlying physical processes only (the ‘generator-’ or
‘truth-level” simulation). This is how the Monte Carlo samples are used to correct the
measured data for the effects of the detector, such that as-close-as-possible a comparison
may be made with theoretical predictions.

The Monte Carlo samples used in this analysis for the various signal and background
contributions are listed in Table 9.1. The total numbers of events in each sample, along

with the corresponding cross-sections of these samples, are also shown. The 2012 data
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FIGURE 9.4. The total integrated luminosity delivered by the LHC,
recorded by ATLAS and good for physics during the year 2012 [112].

used in this analysis are spread over 10 ‘periods’. Within these periods, only those runs
during which all the relevant detectors within ATLAS were fully operational and perform-
ing properly, corresponding to an integrated luminosity [ £dt = (20.3 £ 0.6) b1 [111],
are included. Figure 9.4 shows the relevant integrated luminosities throughout the year.
The luminosity for 2012 data is determined using the same method outlined in the 2011
luminosity measurement paper [113], which is described in Part 3 of this thesis.
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Number of events Theoretical

Nomenclature Description (before selection) cross-section [fb]
PowhegPythia8_AU2CT10_Zmumu Z — pp (M > 60 GeV) 21,108,857 6.28 - 10°
PowhegPythia8 AU2CT10 DYmumu 20M60 7 — pu (20 GeV < M < 60 GeV) 4,998,191 7.89-10°
PowhegPythia8 AU2CT10_Ztautau Z =TT 4,999,692 1.15-106
McAtNloJimmy CT10_ttbar_LeptonFilter tt 14,993,322 1.29 - 10°
Sherpa_CT10_Wmunu W — uv 39,996,634 1.22-107
Sherpa_CT10_Wtaunu W — v 6,998,385 1.22-107
Herwig AUET2CTEQ6L1_WW WwW 2,494,694 1.24-10*
Herwig AUET2CTEQ6L1_ZZ 77 249,999 9.93 - 102
Herwig AUET2CTEQ6L1_WZ WZ 999,797 3.67 - 103
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The average number of interactions per bunch crossing—aka the average pileup—
is defined over a short interval of collision data-taking (typically 60 secs) known as a
lumiblock, and is labelled (u). The pileup distributions in collision and simulated data differ
somewhat and may be corrected for by re-weighting each simulated event such that the
distributions before event cuts agree by construction. This is known as pileup re-weighting.
Pileup re-weighting has been applied to all simulated data in this analysis, and the final
comparison between simulated and collision data is shown in Fig. 10.1. There remain some
very severe discrepancies outside the bulk of events, although discrepancies of any kind

are taken into account in the study of systematic uncertainties and are demonstrated to

CHAPTER 10

Monte Carlo corrections

10.1. Pileup re-weighting

be inconsequential with respect to the final measurement.

data/MC (data-MC)/o

F1cURE 10.1. A comparison of the distributions of the average number of
interactions per bunch crossing in simulated and collision data
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10.2. Efficiencies

Muons are not reconstructed with 100% efficiency by the ATLAS detector. Similarly,
the triggering, e.g. of events containing muons, is also not 100% efficient. Instead of cor-
recting data for such inefficiencies, the simulated (Monte Carlo) data are rather corrected
such that the simulated efficiencies are representative of real data. Small corrections to
event weights (known as scale factors) are therefore applied to Monte Carlo events such
that various efficiencies are well-modelled. It is important to note that Monte Carlo sam-
ples are already generated with such simulated inefficiencies, and the purpose of these
corrections is fine-tuning a posteriori. The precise corrections are typically determined
using so-called tag and probe methods. In this analysis, corrections are applied to improve
simulated reconstruction and trigger efficiencies for muons.

The tag and probe method is a data-driven technique by which one determines the
efficiency of an algorithm or selection criterion (e.g. object triggering and reconstruction,
object isolation, etc.) by means of exploiting a ‘standard candle’! process. This process
should result in two objects being correlated, in the sense of being directly entangled via
the process dynamics, and a kinematic selection on the two objects can be used to ensure
this—e.g. as a suitably restrictive mass window cut might be applied to a pair of particles
in order to ensure they are the decay products of a common unstable particle. One of the
objects will have been known a priori, and is identified (or ‘tagged’) as such. The other
object is then ‘probed’; using the selection for the standard candle process, to determine
its correlation with the tagged object. Once this correlation has been established and the
probe is thus identified, one can compute the efficiency of the algorithm (e.g. to identify
a high-pr track as a muon) by observing if this identification had been made in reality.

To flesh out this description, its instructive to follow with the example of muon iden-
tification efficiency. One begins, for instance, by confidently tagging a high-pr isolated
muon. One then identifies tracks compatible with a second high-pt muon, and determines
the invariant mass of the two-particle system formed by this putative muon and the for-
mer tagged muon. If this invariant mass is sufficiently close to My, one can reasonably
conclude the high-pt track under consideration is indeed that of a muon, resulting from
the standard candle process Z — pp~. One might also ensure the curvature of the
probed high-p track is also compatible with a muon of opposite charge to the tagged
muon. In reality, the probed track either will or will not have been reconstructed as a
muon candidate, and so for many tag and probe ‘experiments’ a statistical efficiency can
be ascertained. As mentioned, the modelling of such efficiencies is already present, to an
extent, in simulated data. The tag and probe method is applied to both data and Monte
Carlo, and the relevant factors by which the weights of Monte Carlo events must be scaled
can thus be determined.

1An adjective I have appropriated from astronomy.
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10.3. Muon momenta corrections

Muon momenta are of course not measured in data without some degree of uncertainty.
The detector simulation itself attempts to model this uncertainty to an extent, although
this alone is insufficient for our needs. The simulated muon momenta are therefore ap-
propriately smeared a posteriori to better model this imprecision. In order to determine
the amount by which muon momenta should be smeared, the Z and Y resonance peaks in
the invariant mass distribution of the lepton pair for Drell-Yan events are used, while the
J /W resonance provides a low-mass cross-check. The level of random momenta smearing
is optimized in order to maximize the agreement between data and simulation in this
distribution. Muon momenta in simulated data are accordingly smeared in this analysis,

using the results of dedicated studies.

10.4. Z line-shape re-weighting

The comparison of two distributions is particularly troublesome if the distributions
contain strong peaks, since a misalignment in the position of the peaks will dominate the
discrepancies observed and mask any finer details of discrepancy that one might try to
deduce. This is particularly true of the invariant mass distribution of lepton pairs in Drell—
Yan events, should the Z mass be insufficiently modelled when comparing simulation with
data. In order to mitigate such a gross discrepancy, events generated using the POWHEG
generator have been re-weighted, since an insufficiency in the modelling of the Z propagator

and electroweak coupling is well-identified and understood.
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CHAPTER 11

Object and event selection

11.1. Muon selection

The ¢* analysis described in this thesis employs various criteria to identify and select
candidate muon signatures (‘muons’) in the detector to be treated as genuine physical
objects. The algorithm used for identifying muons uses the following components of the
ATLAS detector:

e The muon spectrometer (MS)
e The inner detector (ID)
e The electromagnetic calorimeter

Muon momenta are determined by performing a full fit to all tracking information made
available by these components. The muons must first pass selection criteria which ensure
a good-quality track, i.e. the reconstruction of an actual trajectory, is correspondingly
recorded in the inner detector. Before reviewing these criteria, I shall expound some
terminology. Given the properties of a track in the ID (e.g. direction) one expects a priori
a certain number of hits in each of the constituent parts of the ID, based on the number of
sensory layers the particle would necessarily traverse. The absence of a hit when one would
otherwise be expected is termed a ‘hole’. A muon in the barrel region would be expected
to leave three hits in the pixel detector along its trajectory, for example, owing to the three
concentric sensory layers of which the pixel detector is comprised. A sensor along a track
which is known not to be operational is termed ‘dead’, and a certain clemency is granted
to a track which is devoid (to varying degrees depending on the actual detector part) of
the expected number of hits, should the culpability lie with a dead sensor. In the case of
the TRT, the term ‘outlier’ refers to a hit whose fit to the track yields a x? above a given
threshold, and which is therefore excluded in the determination of track parameters. The

following requirements are then made (where ngomething indicates ‘number of something’):

b Require Npixel hits + Ndead pixel sensors >0

e Require ngcT hits + Ndead SCT sensors > 4

b Require Tpixel holes + MSCT holes < 3

Defining n = NTRT hits + MTRT outliers, it 0.1 < |n| < 1.9 then require n > 5 and

TTRT outliers < 0.9n

The muon candidate is then required to satisfy the criterion of being combined, having
good-quality tracks established in both the ID and the MS, with a momentum imbalance
(MI) significance MI/oyr < 4. A large discrepancy between the track momenta of a
candidate muon in the ID and the MS (i.e. an ‘imbalance’, of which MI is a quantitative

measure) is indicative of a muon produced during the in-flight decay of a pion or kaon,
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where the ID track is actually that of the heavier meson. Requirements on the ID track fit
quality and the momentum imbalance significance therefore strongly favour the acceptance
of direct muons, whilst simultaneously rejecting the partially irreducible backgrounds due
to in-flight decays of mesons.

Finally the muon candidate is required to satisfy certain kinematical conditions and
isolation requirements, namely:

e ] <24

e [/ <0.1

pr > 20 GeV

|zp sin 6| < 0.5 mm
|d0/0’d0| <3

Here, the isolation, I, is defined to be the scalar sum over the transverse momenta of tracks
within a ‘cone’ of radius AR = \/An? + A¢? = 0.2, divided by the transverse momentum
(magnitude) of the muon itself:
I = ZZ pr;
pr
where the sum runs over all objects (indexed ¢) within the cone.

: (11.1)

In a single bunch-crossing, there is an average of (u) proton—proton (pp) interactions,
each of which may result in detector tracks corresponding to the detected particulate
products of the reaction. Algorithmic methods are then used to deduce the approximate
locations, known as vertices, of each pp interaction based on this track information. The
vertex corresponding to the largest scalar sum of associated track transverse momenta is
labelled the primary vertex. Respectively, zo and dy are the longitudinal and transverse
displacements of the reconstructed track of the muon under consideration with respect
to the primary vertex, at the point of closest approach to the z axis, and 6 is the angle
between this track and the z axis at the same point. Such cuts reject, for example, cosmic
ray muons and muons produced in other pp collisions within the same bunch crossing. If
all the aforementioned conditions are met, then the muon candidate is considered to be a
‘good’ muon.

11.2. Electron selection

A putative electron object, whose identity is to be confirmed according to a standard
clustering algorithm, must be found within the electromagnetic calorimeter. This may
additionally be accompanied by a corresponding track in the ID. In the case of electron
selection, we consider a quantity called the transverse energy defined as

(11.2)

E coshngack  if Mpixel hits + NSCT hits => 4, or
Er = )
FE cosh ncalo otherwise.

Again, npixel hits and scT hits are the numbers of hits in the pixel detector and SCT re-
spectively. This definition ensures that tracking information from these components of the
ID is used if and only if the track quality exceeds a certain threshold defined in terms of
these numbers of hits, in order to provide a measure of the pseudorapidity as 7iack- In the

absence of a track quality established according to this criterion, calorimetry information
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is used to establish the pseudorapidity instead, i.e. as 7ca0- The electron energy itself, F,
is of course taken from clusters in the electromagnetic calorimeter.
In order to select electrons, for use in the data-driven t¢, WW and Z — 77 event

selections, I define a ‘good’ electron to be one for which

In| < 1.37 or 1.52 < |n| < 2.47
Et > 20 GeV, where Ep = E/ coshn is its transverse energy

|20 sinf| < 0.5 mm
|d0/0’d0| <3
e [ <0.1

where 7 here is obtained from ID tracking information, and [ is defined in precisely the

same way as for the corresponding criterion in the muon selection.

11.3. Event selection

For an event to be considered a genuine Drell-Yan candidate event, it must also fulfil

various selection criteria:

e The number of tracks, niracks, associated with the primary vertex must be > 2
e The EF mu18_tight mu8_EFFS trigger must have fired (Z — pp selection)

— This dimuon trigger requires at least two muons with transverse momenta
> 8 GeV and > 18 GeV. This trigger is unprescaled; i.e. all triggered events
are retained.

e The EF mu18 tight e7 mediuml trigger must have fired (e u selection)

— This dilepton trigger requires at least one electron and one muon with trans-

verse momenta > 8 GeV and > 18 GeV respectively. This trigger is also

unprescaled.

The event must contain exactly two ‘good” muons (events with more are vetoed)
— The e u selection requires exactly one ‘good’ electron and one ‘good’ muon

(events with more of either are vetoed)

The two ‘good’ leptons must be oppositely charged

The two ‘good’ leptons together must have an invariant mass M that lies within
a prescribed range, depending on the bin under consideration:

— 46 GeV < M < 66 GeV (‘low mass’) or

— 66 GeV < M < 116 GeV (‘on peak’) or

— 116 GeV < M < 150 GeV (‘high mass’)

Control plots and the multi-jet background fits include events with 20 GeV< M <600 GeV,

unless otherwise specified.
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CHAPTER 12

Backgrounds

In this chapter I analyse and discuss the backgrounds which contaminate the Drell-
Yan signal selection. In the majority of cases, such backgrounds are modelled using Monte
Carlo methods, and appropriate data-driven methods have been used to ensure these
models produce reliable predictions, which are explained in Secs. 12.1 and 12.2. For
the estimation of the contamination due to events which predominantly contain jets (the
‘multi-jet’ events) I make exclusive use of data-driven methods, which are presented in
Sec. 12.3. A compendium of the relative background fractions expected for the various ¢*
distributions is presented in Sec. 12.4, after which I conclude this chapter by presenting a
discussion of control distributions in which all such backgrounds are explicitly considered,
in Sec. 12.5.

12.1. Electroweak and top backgrounds

Particularly in the low and high mass bins of the lepton pair, common electroweak
backgrounds include ¢, WW and Z — 77 events, which pass the selection criteria for the
signal Drell-Yan events. The principal reason for this contamination is the presence of two
W bosons in each of these three processes which decay leptonically, yielding two muons
which mimic the signature of genuine (muonic) Drell-Yan. Examples of such processes
are shown in Fig. 12.1, below.

In addition to the ¢# production mechanism shown, there also exist two other tree-
level processes: that induced by quark annihilation (¢G — g — tt) which is relatively
suppressed in pp collisions, and the gluon-induced ‘t-channel’ process without the triple-
gluon coupling (i.e. two gluons coupling to the top quark current). Furthermore, WW
production may also occur via sequential emission of two oppositely charged bosons during
the scattering of quarks, again in a t-channel process. Other possibilities for these processes
become available at higher orders. In all cases, since the muons are produced in W decays,
there is missing transverse energy (E%iss) associated with the event, due to the absence
of any interaction between neutrinos and the detector. Unfortunately, the requirement
of E%‘iss ~ 0 is not an efficient discriminator between these background events and the
signal Drell-Yan events, because it is often the case that missing transverse energy will
be recorded in the case of genuine Drell-Yan, should a physics object not be properly
reconstructed within the geometrical acceptance of ATLAS.

A feature of these processes which may be exploited is that such events may be effi-
ciently selected by requiring the presence of two isolated and oppositely charged high-pr

leptons in the final state, where the leptons are of different flavour; i.e. e™ pu~ or pte™.
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FiGURE 12.1. Examples of the most common types of electroweak pro-
cesses that form a background to the Drell-Yan signal selection. Top-left,
top-right and bottom, respectively, show examples of the Z — 77, tt and
WW background processes that are encountered in this analysis. In addi-
tion to the processes shown here, other tree-level mechanisms for ¢¢ and
WW processes also exist, as explained in the text.

Lepton universality in weak decays implies the probability for these two final states to oc-
cur is precisely twice that for the u* = final state, which may contaminate the Drell-Yan
signal. Thus, a reasonable data-driven estimate of the t¢, WW and Z — 77 background
event numbers may be obtained by simply replacing the lepton flavour requirements in the
signal event selection, and dividing by two (while accounting for the difference between
electron and muon acceptance efficiencies).

An et ;¥ selection has indeed been performed, and the level of agreement with simu-
lated Monte Carlo events is shown, for various control distributions, in Figs. 12.2—12.9.
The purpose of this data-driven estimate is to validate the simulated ¢ and electroweak
backgrounds, particularly in the low and high mass bins, where these backgrounds can
represent as many as half of the collision events in high-¢* bins. It should be noted that in
all cases the kinematic selection is 20 GeV < M < 600 GeV and |y| < 2.4, unless otherwise
specified on the plot. At this point, corrections to the modelled electron efficiencies have

not been applied, although corrections to the modelled muon efficiencies are applied, as
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described in Chap. 10. Furthermore, all control distributions for this et uT selection in-
clude the multi-jet backgrounds, as estimated according to the principal method explained
in Sec. 12.3.1. The normalization of the simulated events in Figs. 12.2—12.9 is intimately
linked to that of data, on account of the fit used in this multi-jet background estimate.

Figure 12.2 shows the E%liss distribution in different mass bins, for the e y event selec-
tion. This is a particularly important distribution in which to validate the Monte Carlo
estimates for ¢, WW and Z — 77, since all involve leptonic weak decays in this analy-
sis, nominally resulting in two undetected neutrinos. The agreement between simulated
and collision data is particularly good for El}liss > 40 GeV. The agreement is also fair
in the invariant mass distributions for M > 66 GeV, shown in Fig. 12.3. Troublesome
distributions, include the invariant mass distribution of the boson in the low-mass region
(Fig. 12.3, left) along with the transverse momentum distributions of both the boson itself
(Fig. 12.4) and the leptons (Fig. 12.5, bottom). It appears as though the Monte Carlo
predictions consistently overestimate the number of Z — 77 events.
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12.2. W+jets backgrounds

In addition to the multi-jet background (to be discussed in Sec. 12.3) and the three
main electroweak backgrounds discussed in Sec. 12.1, there are also potential backgrounds
from events containing W bosons and other hadronic activity (‘W+jets’) which are not
classifiable as strictly multi-jet or electroweak. Such events are expected to contain one
high-pt muon which arises directly in the leptonic decay of the W boson, along with other
possible muon candidates. These other muons, however, are expected to originate ‘within’
jets (perhaps via the decay of a charged ‘pion’, 7%, buried within the hadronic jet).

A simple discriminator which should distinguish such events from genuine Drell-Yan
signal and the aforementioned electroweak backgrounds is the isolation of the muons.
One expects, in principle, one isolated muon and other possible muons which are not
isolated—i.e. they are accompanied by substantial hadronic activity. Since the signal
selection criteria stipulates exactly two muons, we consider W+jets events with precisely
one isolated and one ‘anti-isolated’” muon. Specifically, the relatively small W+jets back-
grounds, as estimated using Monte Carlo methods, are therefore validated by considering
data—MC comparisons for distributions of events which pass the signal event selection,
but with one of the muons failing the isolation cut—i.e. simultaneously having I'(®) < 0.1
and I2() > 0.1, where 1,2 labels the muon candidate.

Figures 12.10 to 12.17 show the main control distributions of events passing these
selection criteria, where the estimation of the multi-jet background component is obtained
using the data-driven method to be explained in Sec. 12.3. Once again, since these W+jets
events involve leptonic decays of W bosons, the distributions of events according to the
missing transverse energy EIS are of immediate interest, and are shown in Fig. 12.10. The
agreement is generally rather good, as is the case for most other distributions, although
there is a noticeable discrepancy associated with events around the Z peak in the signal
Z — pp process, as is evident from the invariant mass distribution in the peak region
(Fig. 12.11). This discrepancy is also observed in the two lepton transverse momentum
distributions (Fig. 12.13, bottom) around My /2 ~ 46 GeV. Since these discrepancies are
associated with the signal process, they are taken into account with the inclusion of a
general systematic uncertainty associated with the correction factor A;; the modelling of
the signal process is also used in the determination of A;, and a re-weighting of events
to account for such physics modelling insufficiencies is employed, as explained in detail in
Sec. 13.2.

There are also discrepancies at the very low end (~ 20 GeV) of the lepton transverse
momentum distributions (Fig. 12.13, bottom) along with the Q7 < 10 GeV bins of the
boson transverse momentum distribution (Fig. 12.12). These discrepancies are due to a
very general difficulty associated with the modelling of low-Q1 Drell-Yan pairs.

The W+jets selection we consider here does indeed enhance the acceptance of W+jets
events. This can be seen in absolute terms by comparing the event yields for W+jets in
this selection with those of the Drell-Yan signal selection, for instance by studying the
relatively flat invariant mass distributions for 46 GeV < M < 116 GeV in Fig. 12.11 and
Fig. 12.28 (of Sec. 12.5). Even with the enhanced W+jets acceptance however, the absolute
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numbers of these events remain small in most of our control distributions. The W+jets
selection we consider here in fact simultaneously enhances the acceptance of multi-jet
background events, owing to the allowance of a single muon which is strictly not isolated.
An overall conclusion we may deduce is that, away from those regions associated with the
7 resonance and low-QT objects, both the W+jets and multi-jet backgrounds appear to
be well-modelled in our control distributions. Moreover, this study then demonstrates we
can be confident regarding the predicted very low W-jets background event yields across
all ¢* bins.
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Ficure 12.10. Missing transverse energy distributions of events selected in which one muon is isolated and the other is anti-
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respectively.



data/MC-1 [%] (data-MC)/c

TT‘TTTNTTTNTTT{TTTNTTT{TTT{TTT{TTT{TT
Zpp M > 60 GeV Zpp 20 GeV < M < 60 GeV

I Multi-jet (data-driven)

. 7z

B 71t M > 60 GeV
Wuv

vl ol vd v v

e b e b b e bl g 1y

L L L L L L L L L Y

Ll

N
T
T ]

+

- -

- pe P <+

- - - -4

h AINTERRENARA AT

TTIT[TTTT T 77T

(NI

-+
LJJ\l\l\lll\lll‘lll‘lll‘lllJJlJll\Jlll

»—-o—_l_-o—

| -l-‘ l-l-+- -+—-L'+' +1|
AR AR AR

'10H\i\\\i\\\\\H\H\MH\HMHH\HMH

46 48 50 52 54 56 58 60 62 64 66

Invariant mass [GeV/c?]

[N NS

TTTT [T T I T T[T

data/MC-1 [%)] (data-MC)/c

-30

E Zup 20 GeV < M < 60 GeV
E tt B Multi-jet (data-driven)

E mm wz . 7z

E ww B 77T M > 60 GeV

E Wiv Wpv

e

o e

S 0 O PO PP O A
é”w””w”w””w'1”{””.‘\””\‘”W”W”w;
F | +l++T+ |.+| B
SR X4 AR SN Y
AACE Ik
;HwHwHw‘Hwwwww‘wwwwwwwi
; 0.y onoterte®etterngth | | . ® i
%Y”” oo * ?+#+ +,T IR
£ l ]

70 75 80 85 90 95 100105110115
Invariant mass [GeV/c?]

data/MC (data-MC)/c

LA

Zpp M > 60 GeV

T T T { T T T T { T T T 7T { T T T 7T
Zpp 20 GeV < M < 60 GeV
I Multi-jet (data-driven)
. 7z
N 71t M > 60 GeV
Wuv

cod vod ool v vl ol vod vvd vowd 1

g

1% IIT\ wﬁ wtﬁm[T‘!T *J] !"x 1§
05 fe ) | E
FUARE s
_-; "m‘ [T eTH 5 s
_3@ L lT l 1 L L L \ 1 1 1 L \ L L 1 1 ‘ L L 1 1 é
4E \ \ T j ]
3E I (] E
2: 1+ )( f 7
: Wﬂ WIS Ix'es E
I — I — L \ - l“\ ﬂ * 1 I | — E
200 300 400 500 600

Invariant mass [GeV/c?]

FIGURE 12.11. Invariant mass distributions of lepton pairs for events selected in which one muon is isolated and the other is
anti-isolated, for the mass bins 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and 116 GeV < M < 600 GeV, from left to

right respectively.

SANNOYDIDVL SLAL+M TTT

€q1



154 12. BACKGROUNDS

1E - zmm>socey| mem zmcev<m<amcev 10E  zimmobocey mem zZuwzoceviM<cocey -
it I Multi-jet (data-driven) El i I Multi-jet (data-driven)
101 = wz - 7z - 15 mmwz - 7z
10_2 ww -ZWTTM>SOGeV 3 10_1 -WW -ﬁrM>GOGeV
I wy Hv = Wiy (Y
1073 < 102
10* 4 107 E o0 *osse,,
10° 1 107 PSS SR S -
10° *o%ee = 10° F* |
107 B T TS
108 < 107
10-9 cloe e b Ly 1IA 10-8
S gn\\H‘HH‘HH‘HH‘HH: S 2?””””””\1\”\HHHHHHHHHE
N T = N E | E|
% 4f + # = % 3; %o o1l @ [y o| ¢ [ ;
© 2f | + +. L ++.+ + 1l | + |.+: & 2 [ ole 3
"E OF ++++T+ H'?+u+?+++' ++?+++++?+++ ++ g (%l 7. 997 ® 40+ L] "l
S R BRI & 2 S RN ) AT A LA (PP, LA AL
% -%7T T T T { T T T T { T T T T { T T T T { T T |O\E| 2-3-TTTETTTTITTTTITTTTETTTTITTTTETTTTITTTTETTTT;TTTi
C ' = R
8 15f + l M < 10 +++++ PR o]
-g L + P9 Q |l+£ ‘++A 6”“#;*# 6’“ +.AL+6+ +++ 4
R p 0
1..:_ 000 ..".-A.. ('Y +++ ++++ ik *0 % Fel T L L4 ? [ 34 A I
:1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lil 1 = -10:111llllllllllllllllllllllllllllllllllllllll}lll
s

0 50 100 150 200 250 -2-15-1-050 05 115 2
Transverse momentum [GeV/c] Longitudinal boson rapidity

FIGURE 12.12. Transverse momentum and rapidity distributions of the
lepton pairs for events selected in which one muon is isolated and the other
is anti-isolated.
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FiGURrE 12.17. The ¢* distributions of events selected in which one muon is isolated and the other is anti-isolated. Left to
right, respectively, show the |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 rapidity bins in the 116 GeV < M < 150 GeV region.
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12.3. Multi-jet background

In principle, multi-jet events are those events which produce multiple instances of col-
limated hadronic activity, owing to the showering and hadronization of partons produced
in hard scatterings. The decay of short-lived hadrons via the weak interaction can give
rise to the production of secondary leptons in this picture. Particularly troublesome is
the case in which two secondary muons are produced via such decays, which might mimic
the signature of a genuine Drell-Yan event. The event selection attempts to safeguard
against this largely by applying isolation cuts to the muons, which severely restrict the
amount of hadronic activity by which these muons may be accompanied, in an attempt
to ensure they are themselves produced as a direct result of the hard scattering. In prac-
tice, the multi-jet events are defined by exclusion, according to this isolation parameter:
multi-jet events are those events in which muons are typically not isolated, but which are
also not the diboson, t#, W+jets, etc. events already explicitly considered using Monte
Carlo methods. The fact that a small fraction of multi-jet events will nonetheless pass the
isolation criterion is what gives rise to a background, the data-driven estimation of which

is presented in this section.

12.3.1. Principal multi-jet background estimate. The multi-jet background is
estimated using a data-driven method, in which the isolation requirement on the muons
in the event is inverted; i.e. the only change in the event selection becomes I > 0.1 for
both muons. The reason for this is that such an ‘anti-isolation’ cut strongly suppresses
genuine Drell-Yan signal processes, whose muons are produced in absence of accompanying
hadronic activity in the geometrical vicinity. Contrarily, muons as a result of mesonic
decays, for instance bb and cé would, by expectation, be accompanied by substantial
hadronic activity within the detector. Whilst strongly suppressing signal, the anti-isolation
cut therefore enhances the multi-jet background contribution. The anti-isolation cut is
applied directly to events in collision data. Further subtracting Drell-Yan signal and
non-multi-jet backgrounds according to the same selection (modelled using Monte Carlo
simulated data) from this result then yields an estimation of the shape of the multi-jet
background in the distribution of a given observable.

The overall scale of the multi-jet background contribution is then estimated by per-
forming a x? fit in the invariant mass distribution of collision events in the signal region.

The x? function is defined as
vey
i
where Nfa“d is the number of candidate events in data in the ¢th bin, NiEW is the estimated

number of ‘physics’ (signal and non-multi-jet background) events (established using Monte

(12.1)

or}

cp\ 2
(Nfand — ANEW _ BN )

Carlo) in the ith bin, B NiQCD is the estimated number of multi-jet background events
in the 7th bin, determined from the aforementioned procedure—with A and B left as
constants to be fitted—and o; is the appropriate statistical error for the ith bin. The
values chosen for A and B are those which minimize y2. Since x? is quadratic and bilinear

in A and B, this minimization is trivially performed to yield Apin and Bpi,. This overall
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FiGURE 12.18. The plots on the left show the fitted values of A and B,
along with the reduced y? for the fit, as a function of M., where the fit
is performed over the range 20 GeV < M < M ax. The plot on the right

shows the binning of the invariant mass distribution used to perform the
fit.

scale factor is then applied to the multi-jet background event shape determined for the
distribution of a given observable, in order to provide the estimate of the number of multi-
jet events. The overall scale factor for the signal and non-multi-jet backgrounds (A in
Eq. 12.1) is allowed to float, since such freedom would be permitted by the theoretical
cross-section uncertainty in any case, provided a value of A ~ 1 is preferred by the fit.
This is indeed the case, and the fit results show A, = 1.00044 + 0.00045 (stat) and
Bmin = 0.068+0.026 (stat). In order to mitigate the effects of small discrepancies between
the precise shape and position of the Z peak in data and Monte Carlo, which would
otherwise have a devastatingly adverse effect on the quality of the fit, the invariant mass
distribution used not only has wider 5 GeV bins, but also a single 40 GeV bin which spans
the entire Z resonance.

The determination of Ayin and By, is performed over the bins of the invariant mass
distribution, from 20 GeV < M < 600 GeV, and the fit results in a reduced x? = 181/109.
Other ranges have been considered, specifically 20 GeV < M < M,ax where My, varies
between 40 GeV and 600 GeV. Figure 12.18 shows the quality of these fits and the scale
factors determined. The purpose of including lower values of M in this fit is because it
is expected that more multi-jet background events will contribute at this low end of the
spectrum, owing to the soft spectrum in pr of muons from b and ¢ decay. It should be
noted that, since the scale of the non-multi-jet event weights A is also allowed to float, the
correction factor for the effective luminosity is effectively replaced according to 7 — Ar,
thus rendering this formerly absolute normalization now relative to data.

The various ¢* distributions of collision and simulated events selected using anti-

isolation cuts on both muons are shown in Figs. 12.19 and 12.20. The discrepancy between
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TABLE 12.1. Results of the multi-jet background fits

Selection Anin Bnin x%/DOF
Signal 1.00044 £ 0.00045 (stat)  0.068 & 0.026 (stat)  181/109
Wtjets 1.0368 + 0.0039 (stat)  0.3203 & 0.0057 (stat) 237/93

ep (tt, WW & Z — 77)  0.9852 4 0.0075 (stat)  0.0449 + 0.0022 (stat) 436/115

data and simulation is then ascribed to the multi-jet background not included in Monte
Carlo simulations. Directly adopting this discrepancy as our data-driven multi-jet estimate
in each of the distributions for this event selection, these data-MC comparisons therefore
agree by construction. The fundamental assumption of this prescription is that the multi-
jet distributions are the same in both the anti-isolated and signal regions. The reason
for employing a data-driven method instead of Monte Carlo is simply that one cannot
guarantee a dedicated simulation would faithfully model the multi-jet processes.

Since an event-selection in which one muon is isolated and the other is anti-isolated is
also statistically independent of the events in which the multi-jet shape is determined, one
can also use this method to estimate the multi-jet background for such a selection, where
the overall normalization is again fitted in the corresponding invariant mass distribution.
This has indeed been done, and is used in the validation of W+jets events in Sec. 12.2.
Moreover, a similar anti-isolation requirement has additionally been employed for the
electron when estimating the multi-jet backgrounds in ey events. These fits for these
estimates are again performed over the range 20 GeV < M < 600 GeV, and all fit results
for the scales of the multi-jet backgrounds (Bpiy) and the non-multi-jet processes (Amin)
are collected in Table 12.1. The interpretation of By, is essentially the number of multi-
jet events which pass a given selection, expressed as a fraction of the number of events
which pass the same selection but with an anti-isolation requirement on both leptons.
Since the Wjets selection requires one isolated lepton, where both the signal and e pu
signal | pep (BW+jetS)2'

selections require two, B - oin (B in

The fit results we have considered for the signal region and the selections designed
to enhance the acceptance of W+jets, t¢ and electroweak events are inconsistent with
one another if we consider statistical uncertainties alone. The discrepancies between the
various fitted values are accounted for by the inclusion of appropriate systematic uncer-
tainties. For the multi-jet background, a systematic uncertainty is included on the final
result, which is presently taken to be 100% of the event yields determined in the signal
region. The discrepancies between values of Ay determined for the different selections is
well within the systematic uncertainties associated with the theoretically computed cross-
sections for the non-multi-jet processes. These cross-sections are known approximately
to within 5% for the Drell-Yan and electroweak processes, and within 7% for the ¢t and
W+jets processes.

The overall determinations of the multi-jet backgrounds for the ¢* distributions, ex-
pressed as a fraction of the total event yields along with all other backgrounds considered,
are presented in Sec. 12.4. It will be clear from Figs. 12.24 and 12.25 that the multi-jet

background contribution determined using this method is small. Consequently, in light of
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other systematic uncertainties that will be considered in Sec. 13.2, a precise determination
of that due to the multi-jet background estimation will be far from paramount. The fol-
lowing subsection explores an alternative data-driven technique to determine the multi-jet

background contribution in the hope of corroborating this principal estimate.
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FicUure 12.19. Plots showing the ¢* distributions of events in which
both muons are anti-isolated. Upon subtraction of the Drell-Yan signal
and non-multi-jet background events which contaminate in this selection,
and following appropriate scaling, these distributions become the multi-
jet background estimates. The plots here correspond to off-peak regions:
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right).
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FicUre 12.20. Plots showing the ¢* distributions of events in which
both muons are anti-isolated. Upon subtraction of the Drell-Yan signal
and non-multi-jet background events which contaminate in this selection,
and following appropriate scaling, these distributions become the multi-jet
background estimates. The plots here correspond to the on-peak region:
66 GeV < M < 116 GeV.
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12.3.2. Alternative multi-jet background estimate. In order to provide an al-
ternative estimate of the multi-jet background, I have used a second technique. This
involves dividing the data into statistically independent samples, based on the likeness of
the muon charges and a combined measure of their isolations. Put concretely, I consider an
event to be isolated if and only if I < 0.1 for both muons. Similarly, an event is considered
to be anti-isolated if and only if I > 0.1 again for both muons. Once again, this method is
data-driven.

Consider the candidate signal event selection criteria, lifting the restriction of the
opposite charge requirement on the two muons. Denoting the number of events by N =
Nos + Ny, where ‘os” and ‘Is” denote opposite-sign and like-sign categories respectively,
one can further categorize these events as ‘physics’ and ‘QCD’. For our purposes, the
‘physics’ category encompasses all events which are not strictly multi-jet events, which we

call ‘QCD’ for convenience. Thus one can write
Nos = NPIS 1 NIOP = ¢ yphys | ¢ yQOD (12.2)
and N = NPs 4 yQCD (12.3)

Here, e = NI /NPhys is the efficiency with which the charge-relaxed event selection yields
an opposite-sign event (given that the event is physics in nature), and f = N(%CD /N QCD
is the corresponding efficiency for multi-jet events. One can solve these four equations to
obtain four new equations, the subjects of which are the quantities NEBY ® N(%CD, Nphys
and NQCP_ The relevant quantity we seek is, expressed in terms of directly accessible
quantities,

nQep _ L Nos = e N). (12.4)

f—e€

The object now is to determine € and f independently, such that one may use the event
yields Nos and N in collision data (the latter according to the charge-relaxed candidate sig-
nal selection) to obtain a data-driven estimate of the multi-jet background contamination,
N(%CD, in the signal region.

The efficiency € may be determined directly from simulated events generated using
Monte Carlo techniques. The efficiency f, however, may in fact be obtained using collision
data, in a statistically independent manner. As already discussed, the candidate event
selection may be reasonably optimized for multi-jet event acceptance and physics event
rejection, simply by reversing the isolation requirement on both muons, thus defining a
‘loose’ event selection. Further subtracting physics events from the resulting samples,
using simulated data events, one can determine f: the ratio of opposite-sign to any-sign
multi-jet events.

Unlike the template-fit method, which determines the overall normalization of the
multi-jet background by appealing to the invariant mass distribution, this alternative
method is performed individually for each distribution of interest. The efficiencies de-
termined for the ¢* distribution, in the kinematic region 66 GeV < M < 116 GeV and
ly| < 2.4, are shown in Fig. 12.21 to provide an example. The loosely isolated event dis-
tributions (with I > 0.1 for both muons, selected in order to determine the efficiency f in

this example) in the cases of opposite-sign and like-sign, are shown in Fig. 12.22.
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F1GURE 12.21. The efficiencies for selecting opposite-sign events from any-
sign samples, for physics (left) and multi-jet (right) events.
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FIGURE 12.22. The ¢* distributions, in the on-peak region integrated over
all boson rapidities, for events selected in which the isolation requirement
on both muons is inverted. Furthermore, the events are separated into
opposite-sign (left) and like-sign (right) categories. Simulated ‘physics’
events are subtracted from this collision data selection to yield the multi-
jet estimate in each case. These estimates are then used to determine f.

An unfortunate shortcoming of this method is the instability of the expression in
Eq. 12.4. The number of candidate signal events having suppressed the opposite-charge
requirement, N, is surely greater than N,s, the number of candidate signal events according
to the usual event selection criteria. The efficiency € is approximately unity, while the
efficiency for faked events f is much lower. The denominator is therefore negative and
robustly determined, given available event statistics. The remaining problem exists owing
to the fact that the numerator is not necessarily negative, on account of limited available
event statistics across the distribution. While such a high-statistics sample of candidate
Drell-Yan events exists in order to perform a precision measurement, the sample of like-
sign events is small and Eq. 12.4 is unstable. In order to mitigate this issue, I have produced

an estimate of the multi-jet background according to this method for the rapidity-inclusive
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FicUure 12.23. Estimated percentage background contamination of signal
events as a function of ¢*, for the kinematic region 66 GeV < M < 116 GeV
and |y| < 2.4. The multi-jet background event distribution is computed for
the left plot using the alternative method described in this section. The
right plot uses the default template fit method.

peak mass bin, i.e. 66 GeV < M < 116 GeV and |y| < 2.4. The final result is shown in
Fig. 12.23 (left), in comparison to the corresponding result of the template fit method
(right).

It is clear that this method furthermore yields a strikingly different conclusion regard-
ing the azimuthal correlation of muons produced in multi-jet events, compared with the
default method (Fig. 12.23, right). According to this alternative estimate there are fewer
events populating the low-¢* bins, and a large degree of decorrelation causes a peak in
the high-¢* region. The prediction at low-¢* here is consistent with the former prediction
of the template fit method, if one assumes the conservative 100% systematic uncertainty
on the former result. The high-¢* prediction here is apparently somewhat statistically
significant in this rapidity-integrated distribution.

Notwithstanding, given the relative robustness of the principal method with respect
to this alternative method, I have elected to take the result of the former estimate at face
value. This is taken along with a conservative systematic uncertainty, which is nonetheless
very small, given the smallness of the estimated fraction of multi-jet background events de-
termined according to both methods (albeit with significant differences in the determined
shapes).

12.4. Total background contamination

A compendium of all backgrounds to the ¢* distributions of events passing the Drell-
Yan signal selection criteria are shown, expressed as percentages of the total event yields, in
Figs. 12.24 and 12.25. These plots take the principal estimates for the multi-jet background
contaminations, using the template fit method described in Sec. 12.3.1. The salient feature

of all these plots is that many of the backgrounds are peaked around the high-¢* region.
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Interpreting ¢* as the degree to which the two final-state muons become azimuthally
uncorrelated with one another (i.e. high-¢* implies low correlation) we see this is the
result we would have expected. The notable exceptions include the multi-jet background
events, which are roughly uniformly distributed in ¢*, and the Z — 77 events, which are
distributed favouring the low-¢* region.

To better understand these differences, take for example the Z — 77 and t ¢ processes.
We note the high mass of the top quark in comparison to that of the tau lepton will
result in different kinematics and therefore different distributions of momenta among the
final-state particles. For the Z — 77 process, the tau leptons with masses of ~ 1.8 GeV
are produced highly boosted with respect to Z rest frame. The subsequent weak decays
produce muons which are therefore also boosted in the same directions, and thus the di-
rections of the muons are representative of the directions of the tau leptons, which are
themselves azimuthally correlated in the lab frame in the absence of recoil against the
emission of one or more hard jets in the initial state. In contrast, the much heavier top
quarks will likely not be produced with any significant boost at ‘moderate’ partonic col-
lision energies. The subsequent weak decays produce muons, missing energy and bottom
quarks which recoil strongly against one another, but any correlation between the direc-
tions of the muons becomes washed out. It has here been tacitly assumed that effects due

to spin correlations do not play a significant role.
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FiGURE 12.24. Distributions of background events, expressed as a per-
centage of the total event yield, for ¢*. The template fit method is used
here to estimate the multi-jet background contribution. Statistical uncer-

tainties are shown. These plots correspond to measurements made on peak:
66 GeV < M < 116 GeV.
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FiGurg 12.25. Distributions of background events, expressed as a per-
centage of the total event yield, for ¢*. The template fit method is used
here to estimate the multi-jet background contribution. Statistical uncer-

tainties are shown. These plots correspond to measurements made off peak:
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right).
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12.5. Control distributions

This section is a compilation of plots showing comparisons between collision data
and simulated data events in various control distributions. In summary, the agreement
is impressive in the majority of cases, which is a testament to the quality of physics
modelling in the various Monte Carlo generators available today. Certainly in all aspects
consequential to this particular analysis, the agreement is highly satisfactory, and one
is inclined to trust the background event yields are faithfully estimated. Appropriate
systematic errors, assigned to various inadequacies of the simulations in terms of either
their physics or detector modelling, are considered in Sec. 13.2.

The reader will nonetheless observe that for certain observables, in which good agree-
ment between collision and simulated data would presumably be critical, there are some
striking discrepancies. I will take this opportunity to indicate such instances, and explain
how they are mitigated or indeed inconsequential. The first major discrepancy observed
in a seemingly critical observable concerns the peak mass region of the invariant mass
distribution, shown in Fig. 12.28. Small differences between the peak observed in the
distribution of collision events and the peak modelled in simulated data are exacerbated
in the comparison, which Z line shape re-weighting attempts to mitigate. While there
are indeed many instances of statistically significant discrepancies in bins surrounding the
peak mass region, the on-peak analysis is integrated over this entire region. It has already
been demonstrated that, at least in the case of muons corrected back to the bare level, the
migration of events between coarse mass bins is negligible, as demonstrated in Fig. 9.1.
Precisely the same phenomenon is observed in the transverse momentum distributions of
the individual muons (Fig. 12.30, bottom) where the discrepancies are observed around
~ 46 GeV.

Another critical concern is the transverse momentum distribution of the lepton pairs,
as shown in Fig. 12.29. There is a high degree of correlation between Q1 and ¢* in
the low-@Q region in particular, as shown in Fig. 12.26. It is this low-Q7 region where
another striking discrepancy is observed. Therefore, let us also consider the actual ¢*
distributions shown in Figs. 12.31 to 12.34, where again there are many instances of
statistically significant discrepancies at the level of many standard deviations in the low-
¢* region. In order to account for these discrepancies in the final result, I have introduced
a corresponding systematic uncertainty. The discrepancies are typically at the level of no
more than 10% in relative terms, so for the background subtraction this should introduce
a negligible uncertainty in the peak region, for the backgrounds themselves are typically
< 3% at most, and indeed < 1% across several orders of magnitude of ¢*. The issue is
instead pertinent to the computed bin-by-bin correction factors, which themselves make
use of simulated signal events. The method used to obtain an appropriate systematic
uncertainty is described in Sec. 13.2. Given the high degree of correlation between ¢* and
@1, we thus consider the discrepancies observed in both distributions as being one and

the same, and moreover accounted for by the same systematic.
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by construction.

Ultimately, the principal use of simulated signal data here is to model detector effects,
and thus implement appropriate corrections of distributions in collision data. The mod-
elling of the strongly peaked Effniss distributions (shown in Fig. 12.27 for the three mass
regions) of simulated signal events is not precisely representative of the distributions in
collision data. The culpability again lies with the signal process, and the discrepancies
are likely due to mismodelling of the muon momentum resolution in simulation, since
nominally of course there is no missing energy in muonic Drell-Yan signal events, lest an
object fall outside the geometrical acceptance of ATLAS or be improperly measured. The
discrepancy is inconsequential for this measurement of ¢* however, whose advantage over
Q7 lies in its immunity to such momenta mismeasurements.

Given the ostensible eight-fold symmetry of the ATLAS detector about the central axis,
owing itself to the structure of the toroidal magnet system and muon detection system,
a priori one would expect a regular modulation in the muon reconstruction efficiency.
This has important implications for ¢*, which is driven by the so-called acoplanarity angle
between the leptons, since this could introduce a potential bias if not properly corrected
for.

To elucidate this point a little more, consider an ensemble of events in which the
first muon so happens to have been reconstructed in a particularly efficient region of
the detector. Given the known symmetry of the detector about the central axis, the
supposition that a second muon produced back-to-back with respect to the first muon
would therefore be reconstructed more efficiently, yields concern over the potential for
lower values of ¢* to be favoured. A similar but reverse argument may be applied to cases
in which the first muon is reconstructed in an inefficient region of the detector. Now
the reconstruction of the back-to-back configuration is disfavoured, owing to the supposed
similar inefficiency with which a second muon would be reconstructed to yield such a
configuration.

Plots in Figs. D.1—D.8 of Appendix D show the finely binned distributions of events in
the azimuthal angle for the leading and sub-leading muons, in data and Monte Carlo. This
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confirms that, within statistical uncertainties, any modulations in efficiency, or indeed any
isolated regions of inefficiency, are correctly modelled by the detector simulation. Thus
one expects to be able to reliably correct for detector effects, in order to recover the physics
¢* distribution. This is what is done in Sec. 13.1.
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FIGURE 12.33. The ¢* distributions of collision and simulated events selected in the signal region, for the mass range 46 GeV <
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FiGURE 12.34. The ¢* distributions of collision and simulated events selected in the signal region, for the mass range 116 GeV <

M < 150 GeV. Rapidity ranges |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 are shown.



CHAPTER 13

Final results

13.1. Bin-by-bin corrections

Bin-by-bin correction factors (see Eq. 9.3 in the context of Eq. 9.6) are applied to
background-subtracted ¢* distributions populated by collision data events, before nor-
malizing to obtain the final results. The purpose of these correction factors, plotted in
Figs. 13.1 and 13.2, is to account for the effect of particle detection and reconstruction,
which are peculiar to the experiment, thus recovering the underlying physics distributions
in ¢*.

In principle, since generator-level particle information is available, contingent on the
nature of the given Monte Carlo generator, one can also correct to various physics gen-
erator levels beyond a simple detector correction. One can correct, for instance, to the
bare level distribution but equally to the Born level distribution. This certainly raises
some philosophical issues however, and it is my opinion that an experimental measure-
ment should minimally depend on any specific theoretical assumptions. For that reason,
I present the ¢* distribution correction factors applicable to obtain the bare level distri-
butions, and so the content of the measurement is experimentally driven. A theoretical
prediction should therefore include the effects of, e.g., final-state radiation (FSR) before
a comparison is made to these results. Any residual theoretical dependence is accounted
for by the inclusion of an appropriate systematic uncertainty on the final measurement,
as in Sec. 13.2.
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FicUre 13.1. Bin-by-bin correction factors for the ¢* distributions in the
66 GeV < M < 116 GeV region, in different |y| bins. These factors are
to be applied to the background-subtracted distributions of the number of
candidate events in data.
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F1cURE 13.2. Bin-by-bin correction factors for the ¢* distributions in the
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right) regions,
in different |y| bins. These factors are to be applied to the background-
subtracted distributions of the number of candidate events in data.
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13.2. Systematic uncertainties

The final background-subtracted and normalized distributions of events in bins of ¢*,
corrected for detector effects, are to be presented in Sec. 13.3 for the on-peak and off-peak
analyses. A compendium of established uncertainties on these distributions, expressed in
terms of percentages of the event yields in each bin, are shown in Figs. 13.3 to 13.6. The
bin uncertainties that are considered here on 1/0 (do/d¢*); (for which, see Eq. 9.6) arise
from the uncertainties on N;cands Nireco back and A;. The normalization factor N then
introduces a bin-to-bin correlation on these uncertainties. In principle the factor 7 is also
a source of uncertainty. The multi-jet background estimation employed in this analysis,
however, allows the overall scale of simulated signal and non-multi-jet background data
to float in the fit. This therefore inhibits the propagation of the luminosity uncertainty
into our final distribution, since the effective luminosity of the simulated data sample is
now tethered to that of collision data. The uncertainty on N;canq is purely statistical in
nature. It is therefore the quantities IV, reco back and A; which contribute to the systematic
uncertainties. In this section I will describe the methodology behind ascertaining these
uncertainties.

A significant systematic uncertainty on the distributions owes itself to the modelling
of final-state QED radiation. This uncertainty, labelled ‘FSR’, is currently estimated in
a very conservative fashion, by simply correcting background-subtracted distributions of
candidate signal events to both the bare and Born levels, and examining the difference
between the resulting distributions. The percentage difference between corresponding bins
in the two distributions is taken to be the uncertainty on that bin in the final distribution,
which is corrected to the bare level. It may be argued that this is indeed too conservative.
The typical fashion in which such uncertainties are computed is to take two models of
FSR and examine the differences between the resulting final distributions.

As mentioned in Sec. 12.5, our estimate of the normalized differential cross-section in ¢*
(Eq. 9.6) relies heavily on simulated data via the correction factor A;. For a correction back
to the bare level, this dependence is rather more largely via the modelling of the detector
in simulated data than on the modelling of physics. Ideally, this correction factor should
indeed depend as minimally as possible on the modelling of the actual physical process,
and any residual dependence on this modelling must be accounted for via the inclusion
of an appropriate systematic uncertainty. Here I demonstrate how this uncertainty is
computed.

If we keep under consideration the measured distribution corrected for detector effects—
so precisely our estimate according to Eq. 9.6—then the appropriate comparison to theory
is made at the level of generated signal event distributions. We can therefore define an

event weight which depends on the ¢* bin in which the event was generated, as

M;
= — 13.1
Wi T, ( )
where M; = (do/d¢*); as estimated in Eq. 9.6 and
N,
T, =N 5% (13.2)

—~

A¢*);



13.2. SYSTEMATIC UNCERTAINTIES 187

is simply our theoretical physics distribution. Here NN;gen is the number of generated
events in the ith ¢* bin and A is an independent normalization factor for the generated
distribution. We thus have a set of weights which may be applied directly to generated
events such that the generated and estimated distributions agree by construction. Adopt-
ing the notation V; reco,j gen for the number of events reconstructed in the ith ¢* bin having
been generated in the jth bin, and assuming a negligible number of faked events, we may
explicitly write

Nireco = Z Ni reco,j gen - (13.3)

J

Now we define a new correction factor
Zj iji reco,j gen

A,, pu—
w; N; gen

7

; (13.4)

which differs from A; simply by the inclusion of the weights, which themselves depend on
the bin in which the event was generated. We see of course that, in the absence of bin-to-
bin migration of events, we simply obtain the same weight A; as computed initially, since
then Njreco,jgen = Nireco,jgen 0ij = Nireco& gen and the weight w; cancels in the numerator
and the denominator. This is as we would expect, for then the underlying physics would
have no impact on a correction factor contrived to solely correct for detector effects. Using
the new correction factor A} instead, we now re-evaluate our estimation of the differential

cross-section as

1 < do >/ ~ Uz,' — N Nicand — T Nireco back (13.5)

o' \d¢* ), o (A¢*); (Ag*); Al
In principle we have re-weighted the generated event distribution, in order that the physics
modelling is as perfectly representative of that in nature as possible, and assessed the
extent to which our detector correction depends upon this change in underlying physics.
The systematic we have computed here is labelled ‘correction factor’.

A far-less-significant source of systematic uncertainty is the multi-jet background es-
timation, labelled ‘QCD’. The uncertainty on the final distributions associated with the
determination of the multi-jet background event yields is conservatively ascertained by
simply computing the final distributions both with and without multi-jet background sub-
traction, and examining the differences.

Additional sources of systematic uncertainty that are similarly far less significant in-
clude those due to muon momenta modelling in simulated data (‘muon momenta’), the
theoretical cross-sections computed for all physical processes considered (‘cross-section’),
the average number of interactions per bunch crossing (‘pileup’), the ‘Z line shape’, the
modelling of the efficiencies with which muons are reconstructed in simulated data (‘muon
reco. efficiency’) and the modelling of the trigger efficiency in simulated data (‘trigger
efficiency’). For all sources, the final distributions have again been recomputed assuming
the appropriate variations in the applied event weights, or simply in the absence of such
corrections, and comparing to the final distribution with all appropriate corrections in
place, to yield a percentage uncertainty. Such variations have been applied independently

to obtain each uncertainty.
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For these uncertainties, I have considered a total weight for each simulated event j,
expressed as the product of component weights:

VVj = WMC : VVline : Wpileup : Wtrig. “Wiu 1 Winu 2 - Waset (136)

It is important to note here that there is one such weight for each event, although for
notational simplicity I have dropped the event index j on the RHS. The remaining weights,
read from left to right respectively, account for the Z line shape (mass distribution), the
average number of interactions per bunch crossing (pileup), the trigger efficiency, the
reconstruction efficiencies of the two muons, and finally the theoretical cross-section of the
process considered.

Systematic uncertainties corresponding to the Z line shape and the event pileup are
obtained simply by independently setting Wii,e = 1 and Wiieup = 1, and examining the
differences with respect to the final distribution computed using the nominal weights.
Systematic uncertainties corresponding to the simulated trigger efficiency and muon re-
construction efficiencies are obtained by independently setting

Wtrig. — Wtrig. + 5Wtrig.

and Wmu 1 Wmu 2 — Wmu 1° Wmu 2 + \/Wiu 1 + (6Wmu 1)2 + \/Wéu 2 + (6Wmu 2)2 )
(13.7)

where §W is the uncertainty computed for a particular weight W, and again examining
the differences with respect to the final distribution computed using the nominal weights.
An uncertainty on the theoretically computed cross-section for background processes in
simulated data is obtained by varying Wiyt for all events simultaneously. For ¢t and
diboson (WW, WZ and ZZ) processes, the variation is 7%. For W+jets (W+7r and
W+pur) and Z — 77 processes, the variation is 5%. Finally, the systematic associated
with the modelling of muon momenta in simulated data is obtained simply by examining
the differences between the final distributions in which muon momenta smearing is either
applied or absent.

The total systematic uncertainty, on a given bin in a distribution, is taken to be the
quadrature sum of all systematic uncertainties considered, along with the Monte Carlo
statistical uncertainty (labelled ‘MC stat.’) due to the bin-by-bin correction factor. In-
deed, all sources of systematic uncertainty are assumed to be uncorrelated with respect
to one another in this analysis. Uncertainties due to FSR tend to dominate, typically
across most of the ¢* range. The total statistical uncertainties (for collision data) are
also shown in Figs. 13.3 to 13.6, and afford a direct comparison with the total systematic
uncertainties. For the on-peak analysis, the statistical and systematic uncertainties are of
a similar magnitude. This is also true for the high-mass analysis, while for the low-mass
analysis the systematic uncertainties dominate.
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FIGURE 13.3. Systematic uncertainties on the final on-peak ¢* distribu-

tions (66 GeV < M < 116 GeV)
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FIGURE 13.4. Systematic uncertainties on the final on-peak ¢* distribu-
tions (66 GeV < M < 116 GeV)
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FIGURE 13.5. Systematic uncertainties on the final low-mass ¢* distribu-
tions (46 GeV < M < 66 GeV)
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FIGURE 13.6. Systematic uncertainties on the final high-mass ¢* distribu-
tions (116 GeV < M < 150 GeV)
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13.3. Results

The results of this analysis are presented in this section. Figures 13.7 and 13.8 show the
normalized ¢* distributions determined for this analysis, in the twelve kinematic regions
of interest; i.e. the twelve bins of boson invariant mass and rapidity. The normalized
distributions presented are of background-subtracted candidate data events, and these
distributions have then been corrected for the various detector effects, in order to present
a result that is representative of the underlying physical process, defined in terms of bare-
level muons. The figures include systematic and statistical uncertainties on each bin, the
computation of the former of which is presented in Sec. 13.2. These results are tabulated
in Tables 13.1 and 13.2. Figures 13.7 and 13.8 additionally present a comparison to
corresponding data simulated using Powheg and Pythia8.

The same collision data are reproduced in Figs. 13.9 to 13.11 for masses in the range
66 GeV < M < 150 GeV, this time in comparison to results of the NNLL+NLO calculation
presented in Part 1 of the thesis, evaluated at /s = 8 TeV and with the appropriate
experimental cuts. The yellow bands represent the perturbative theoretical uncertainties
on these results, determined as usual by discretely varying the three perturbative scales pq,
pr and pp—the resummation, renormalization and factorization scales—within the range
M/2 to 2M. PDF uncertainties are not included in these uncertainty estimates, since
they have previously been shown to be small. The green lines indicate the predictions
corresponding to the particular configuration in which all scales are set to the nominal
value M.

The NNLL+NLO results presented in this section do not account for final-state radi-
ation (FSR). In principle, any comparisons to data should therefore be made at the Born
level, wherein collision data are corrected for this radiation instead. However, given the
conservative uncertainty assigned to FSR in this analysis (which is determined from the
differences between distributions corrected back to the bare and Born levels in any case)
the absence of explicit inclusion of FSR modelling in the NNLL+NLO results is essentially
already covered in the comparisons.

The reader will note that a comparison is only made for masses in the range 66 GeV <
M < 150 GeV, thereby excluding the low-mass region. Presumed idiosyncrasies have
presented themselves in this low-mass region at /s = 8 TeV, as compared with our
similar Tevatron study at /s = 1.96 TeV (Section 5.3), apparently owing to unprece-
dented low values of M/ V/§ being sampled. At the time of writing, an effort continues
to understand these newly presented features, which are inherent in the theoretical result
itself. Specifically, the cancellation of large logarithms between the fixed-order component
and the expansion of the resummed component is postponed to the significantly lower
value of ¢* ~ 1074, as compared with other studies presented in this thesis. To a far
lesser degree, this effect is also present in some of the NNLL4+NLO results in the range
66 GeV < M < 116 GeV, although the size of this effect is smaller than the quoted theo-
retical uncertainties. It is important for the reader to bear in mind that, for the fixed-order
component, we are using MCFM in a kinematic region beyond that intended, i.e at very

low ¢*, and there may be inherent features that are not understood in this extreme region.
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FiGURE 13.7. The results of the ATLAS ¢* analysis in the Z — upu chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass region shown is 66 GeV < M < 116 GeV, and each
distribution corresponds to one of the six equally-sized rapidity bins across
the total range |y| < 2.4.
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FiGURE 13.8. The results of the ATLAS ¢* analysis in the Z — puu chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass regions shown are 46 GeV < M < 66 GeV (left) and
116 GeV < M < 150 GeV (right), and each left-right pair of distributions
corresponds to one of the three equally-sized rapidity bins across the total

range |y| < 2.4.
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FIGURE 13.9. ATLAS data compared with NNLL+NLO prediction at 8 TeV (66 GeV < M < 116 GeV, |y| < 1.2)
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FIGURE 13.10. ATLAS data compared with NNLL4+NLO prediction at 8 TeV (66 GeV < M < 116 GeV, 1.2 < |y| < 2.4)
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FIGURE 13.11. ATLAS data compared with NNLL+NLO prediction at 8 TeV (116 GeV < M < 150 GeV)



TABLE 13.1. Tabulation of ¢* distributions, along with corresponding systematic and statistical uncertainties, for the on-peak
analysis: 66 GeV < M < 116 GeV. The relative dominance of the uncertainties for each bin are indicated using a red-blue
spectrum: red = more dominant, blue = less dominant.

ly| < 0.4 04 <yl <08 0.8 <yl <12 12 <yl <16 1.6 < |yl <2.0 20<Jyl <24

low  high (1/0)do/de* 66 [%] 00" ul%] (1/0)dojde” 66" %) 06" wul%] (1/0)do/de® 66° %) 66" wul%] (1o)do/dd® 60" %) 66" wul%] (/o) do/dp® 66" %] 06" ul%] (1/0)do/dd" 50" %] 66" ul%]
0.0001 0.004 8.45 0.846 0.569 8.57 1.04 0.561 8.57 0.824 0.56 8.63 1.02 0.593 8.67 0.985 0.733 8.83 1.44 1.28
0.004  0.008 8.4 0.693 0.562 8.44 0.953 0.559 8.48 1.24 0.555 8.47 1.02 0.591 8.65 0.607 0.724 8.66 1.19 1.26
0.008 0.012 8.31 1.19 0.566 8.29 0.809 0.563 8.4 0.655 0.558 8.37 1.24 0.595 8.45 115 0.733 8.28 1.27 1.29
0.012  0.016 8.09 0.99 0.574 8.13 0.922 0.569 8.18 0.722 0.565 8.22 0.744 0.6 8.34 1.16 0.74 8.56 111 1.27
0.016  0.02 7.8 0.726 0.583 7.9 0.677 0.577 7.92 0.746 0.573 8.02 1 0.608 7.98 0.988 0.753 8.21 1.28 1.3
0.02  0.024 7.53 0.74 0.595 7.51 1.05 0.592 7.72 0.694 0.582 7.72 0.937 0.62 7 0.773 0.767 7.85 1.64 1.33
0.024  0.029 717 0.609 0.543 7.21 0.757 0.539 7.25 0.927 0.536 7.27 0.512 0.571 7.39 1.12 0.7 7.16 1.21 1.24
0.029  0.034 6.85 0.594 0.557 6.87 0.45 0.553 6.9 0.537 0.549 6.91 0.64 0.585 6.98 0.879 0.72 6.97 0.956 1.26
0.034  0.039 6.37 0.669 0.577 6.45 0.606 0.569 6.44 0.534 0.567 6.54 0.672 0.601 6.47 0.678 0.746 6.53 0.989 1.29
0.039  0.045 5.97 0.776 0.543 6.01 0.447 0.539 6.09 0.44 0.532 6.05 0.609 0.57 6.03 0.548 0.706 6.19 0.935 1.23
0.045 0.051 5.48 0.535 0.567 5.53 0.471 0.56 5.52 0.651 0.558 5.56 0.478 0.593 5.65 0.607 0.731 5.67 0.939 1.28
0.051  0.057 5.1 0.478 0.587 5.18 0.478 0.579 5.13 0.522 0.58 5.14 0.5 0.617 5.11 0.622 0.766 5.19 1.02 1.33
0.057  0.064 4.72 0.562 0.565 4.67 0.453 0.564 4.76 0.462 0.555 4.77 0.484 0.594 4.7 0.751 0.737 4.77 1.01 1.29
0.064 0.072 4.31 0.569 0.552 4.27 0.441 0.551 4.3 0.493 0.547 4.32 0.658 0.582 4.33 0.674 0.721 4.33 0.933 1.25
0.072  0.081 3.8 0.486 0.554 3.88 0.498 0.544 3.86 0.468 0.544 3.95 0.506 0.575 3.86 0.604 0.717 3.88 1.05 1.25
0.081  0.091 347 0.572 0.55 3.48 0.608 0.546 3.43 0.758 0.547 3.46 0.769 0.58 3.44 0.674 0.72 3.5 0.982 1.25
0.091  0.102 3.08 0.692 0.558 3.05 0.582 0.556 3.07 0.489 0.551 3.08 0.644 0.587 3.13 112 0.721 3.04 1.06 1.27
0.102  0.114 2.73 0.646 0.565 2.69 0.822 0.565 2.7 0.8 0.562 2.71 0.948 0.599 2.7 0.732 0.74 2.77 14 1.28
0.114  0.128 2.36 0.924 0.563 2.36 0.622 0.559 2.36 0.51 0.555 2.38 0.853 0.59 2.38 0.653 0.73 2.44 0.958 1.25
0.128 0.145 2.03 0.785 0.55 2.04 0.691 0.543 2.02 0.595 0.543 2.03 0.702 0.579 2.05 0.961 0.711 2.03 1.51 1.24
0.145  0.165 1.73 0.613 0.55 1.72 0.863 0.546 171 0.732 0.545 1.73 0.891 0.579 1.74 0.768 0.711 1.75 1.01 1.25
0.165 0.189 1.43 0.979 0.55 1.41 0.57 0.548 1.44 0.631 0.541 1.44 0.914 0.579 1.45 1.03 0.711 1.49 1.01 1.23
0.189 0.219 1.14 0.697 0.551 1.16 0.709 0.541 1.17 0.87 0.538 1.16 0.679 0.575 1.17 0.718 0.707 1.17 1.24 1.23
0.219 0.258 0.912 0.686 0.541 0.903 0.709 0.538 0.891 0.683 0.539 0.903 0.687 0.572 0.92 0.746 0.698 0.926 1.01 1.21
0.258  0.312 0.678 0.451 0.533 0.668 0.54 0.531 0.668 0.579 0.529 0.679 0.523 0.56 0.673 0.679 0.691 0.682 0.96 1.19
0.312  0.391 0.469 0.556 0.531 0.465 0.469 0.527 0.461 0.491 0.526 0.456 0.512 0.564 0.473 0.677 0.683 0.472 0.907 118
0.391  0.524 0.285 0.458 0.526 0.28 0.483 0.523 0.28 0.427 0.522 0.279 0.462 0.558 0.282 0.568 0.68 0.282 0.929 1.17
0.524  0.695 0.157 0.502 0.626 0.157 0.492 0.616 0.154 0.565 0.62 0.152 0.565 0.667 0.156 0.642 0.808 0.158 1.09 1.38
0.695  0.918 0.085 0.613 0.747 0.0839 0.657 0.74 0.083 0.652 0.743 0.0812 0.665 0.804 0.0791 0.885 0.996 0.0772 1.33 1.74
0918 1.15 0.0463 0.866 0.988 0.0468 0.898 0.972 0.0456 0.842 0.98 0.0439 0.888 1.08 0.0419 1.13 1.34 0.0383 2.11 2.41
115 1.5 0.026 0.896 1.09 0.0259 0.888 1.08 0.0251 1.01 1.1 0.0235 1.08 1.22 0.0216 1.35 1.56 0.018 2.26 2.92
1.5 1.95 0.0136 1.41 1.3 0.0135 1.28 1.31 0.0132 1.13 1.32 0.0118 1.33 1.51 0.00998 1.91 2 0.00739 3.16 4
1.95 252 0.00709 1.42 1.6 0.00702 1.36 1.6 0.00667 1.42 1.66 0.0059 1.85 1.91 0.00494 2.24 2.6 0.00283 6.14 6.24
252 3.28 0.00382 1.62 1.89 0.00383 1.68 1.91 0.00353 1.68 2.01 0.00303 1.94 2.35 0.00222 2.83 3.4 0.00115 7.54 9.05
3.28 5 0.00176 1.56 1.84 0.00173 1.81 1.87 0.00159 1.75 2 0.00142 1.96 2.29 0.00101 3.25 3.45 0.000504 8.58 10.3

5 10 0.000524 1.86 1.95 0.000533 1.64 1.99 0.000488 1.79 2.12 0.000389 2.12 2.57 0.000282 3.65 4 0.000121 12.4 13.8
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TABLE 13.2. Tabulation of ¢* distributions, along with corresponding systematic and statistical uncertainties, for the off-peak
analyses: 46 GeV < M < 66 GeV and 116 GeV < M < 150 GeV. The relative dominance of the uncertainties for each bin are

indicated using a red-blue spectrum: red = more dominant, blue = less dominant.

46 GeV < M < 66 GeV

116 GeV < M < 150 GeV

ly] <0.8 0.8 <yl <1.6 1.6 < y| <24 ly| < 0.8 08 <yl <16 1.6 < |yl <24

low  high (1/0)do/dg™ 3¢"5s[%] 6¢"sael%] (1/0)do/dg™ 3¢75[R] 60" swael%] (1/0)do/dg™ 3¢75[h] 60" swat[%] (1/0) do/dd™ 06"5[] 60" swat[R] (1/0)do/dd™ 06"5[%] 66 stat[%] (1/0) do/dd™ 06"5[%] 56" stas[ %)
0.0001 0.004 6.43 7.91 2.77 6.27 12.3 2.65 5.7 9.57 3.82 11 2.32 2.45 11.1 2.81 2.55 11.6 4.58 4.08
0.004  0.008 6.3 9.67 2.82 6.11 7.34 2.65 6.27 7.02 3.44 10.5 2.85 2.46 10.5 2.42 2.57 11.1 3.33 4.06
0.008 0.012 5.85 12.5 2.95 6.12 5.39 2.68 6.82 10.4 34 9.73 3.15 2.54 9.75 3.51 2.7 10.4 4.73 4.25
0.012  0.016 5.48 6.17 2.97 5.72 10.6 2.71 6.72 6.65 3.43 9.83 2.73 2.55 10.4 2.74 2.65 10.1 3.62 4.12
0.016  0.02 6.07 7.27 2.8 5.75 6.82 2.78 6.21 9.11 3.67 8.75 3.61 2.64 9.45 2.45 2.74 9.77 4.03 4.32
0.02  0.024 5.81 5.9 2.93 5.76 8.95 2.78 5.29 10.7 3.83 8.33 3.06 2.74 9.05 2.83 2.8 9.64 3.74 4.41
0.024  0.029 5.35 9.85 2.67 5.2 7.7 2.57 5.73 6.28 3.31 7.94 3.46 2.55 8.11 2.46 2.62 9.29 5.01 4.07
0.029 0.034 5.23 8.75 2.82 4.9 12.3 2.68 5.67 7.35 3.48 8 2.65 2.53 7.3 2.46 2.78 7.86 7.33 4.3
0.034  0.039 4.86 11.5 2.95 5 9.21 2.65 5.1 7.36 3.59 7.17 2.68 2.63 6.81 3.43 2.86 6.87 5.47 4.5
0.039  0.045 4.78 5.14 2.69 4.94 9.38 2.45 4.97 7.8 3.14 6.18 3 2.6 6.46 3.72 2.68 5.97 4.53 4.36
0.045 0.051 4.47 6.05 2.72 4.73 10.2 2.51 4.6 11.1 3.34 5.72 2.51 2.71 5.54 2.61 2.9 5.66 5.06 4.69
0.051 0.057 4.02 9.5 2.84 4.68 6.16 2.51 4.66 7.7 3.34 5.47 4.2 2.77 5.29 2.72 2.95 5.35 3.82 4.59
0.057  0.064 3.82 6.42 2.6 4.14 6.89 2.45 4.29 8.12 3.17 4.91 2.34 2.72 4.83 2.6 2.95 4.65 4.12 4.61
0.064 0.072 3.43 7.68 2.61 3.94 6.77 2.39 4.01 6.38 3.05 4.15 2.23 2.77 4.17 2.89 2.91 4.14 4.82 4.67
0.072  0.081 3.54 9.98 247 3.69 8.62 2.23 3.63 6.91 3.04 3.74 2.69 2.76 3.57 4.07 2.95 4.02 4.52 4.43
0.081  0.091 3.33 6.57 2.4 3.41 5.51 2.26 3.34 6.6 3.01 3.17 2.65 2.81 3.31 2.36 2.89 3.23 3.79 4.62
0.091  0.102 2.91 5.44 2.44 2.89 4.46 2.3 2.81 6.45 3.2 3.02 2.48 2.76 2.93 3.63 2.93 2.94 5.91 4.84
0.102  0.114 2.73 6.12 2.44 2.6 5.89 2.33 2.75 6.66 3.04 2.57 2.93 2.91 2.35 4.58 3.11 2.35 4.8 4.93
0.114 0.128 2.45 4.03 2.36 2.42 4.08 2.24 2.5 7.49 2.91 2.15 2.77 2.91 2.1 4.04 3.12 2.3 4.6 4.8
0.128 0.145 2.14 4.24 2.32 2.06 3.8 2.16 2.05 5.54 2.91 1.69 2.83 2.99 1.86 2.46 3.01 1.9 5.27 5.03
0.145 0.165 1.73 3.92 2.33 1.85 3.83 2.12 1.65 6.65 2.97 1.52 4.85 2.94 1.65 2.61 2.9 1.58 5.66 4.63
0.165 0.189 1.5 4.35 2.29 1.5 3.87 2.11 1.59 5.21 2.77 1.26 2.8 3.02 1.24 4.23 3.12 1.47 5.02 4.63
0.189  0.219 1.25 5.51 2.24 1.34 7.91 2.12 1.14 5.97 2.97 0.972 2.96 3.04 1.05 2.97 2.99 1.01 3.61 4.97
0.219  0.258 1.09 5.89 2.16 0.987 5.49 2.04 1.05 8.14 2.81 0.854 4 2.86 0.849 3.89 2.96 0.826 4.16 4.77
0.258 0.312 0.793 10.6 2.1 0.758 9.06 2.04 0.798 10.1 2.56 0.589 3.49 2.96 0.659 3.08 2.94 0.604 4.46 4.74
0.312  0.391 0.571 8.73 2.08 0.575 13.2 1.92 0.603 10 2.47 0.398 2.87 3.11 0.377 3.67 3.28 0.38 4.23 4.95
0.391 0.524 0.388 14.9 1.99 0.391 12.4 1.82 0.376 10.9 2.42 0.25 3.29 3.2 0.245 4.6 3.23 0.236 5.43 4.91
0.524  0.695 0.246 14.6 2.18 0.229 11.6 2.12 0.21 8.94 2.87 0.144 4.91 3.8 0.129 4.55 4.06 0.108 6 6.33
0.695 0.918 0.151 8.83 2.54 0.136 13.2 2.44 0.133 7.85 3.19 0.076 5.2 4.72 0.0685 6.09 4.86 0.0531 9.33 7.46
0918 1.15 0.0871 6.54 3.35 0.0912 7.35 2.95 0.0799 7.14 4.15 0.0381 5.99 6.24 0.0373 7.47 6.32 0.0299 11.1 10.3
1.15 1.5 0.0528 7.45 3.64 0.05 10.1 3.43 0.0469 9.15 4.64 0.0246 6.82 6.31 0.0182 8.69 7.54 0.0116 10.6 13.8
1.5 1.95 0.0277 8.59 4.49 0.0268 12.6 4.12 0.0233 14 6.25 0.0086 7.37 10.1 0.0121 6.88 8.46 0.0041 17 19.4
1.95 2.52 0.0174 10.2 4.92 0.0148 16.9 4.75 0.011 13.7 7.6 0.0056 10.2 10.2 0.0071 10.4 9.07 0.00228 24.7 26.4
2.52 3.28 0.00755 11.2 6.36 0.00834 14 5.51 0.00701 20.9 9.34 0.00454 12.3 9.87 0.00172 22.8 17.2 0.000397 59.8 79.3
3.28 5 0.00406 11.3 6.02 0.00385 11.9 5.61 0.002 21.6 10.3 0.0011 15.1 15.6 0.00103 11.7 14.3 0.000137 38.5 65.3
5 10 0.00116 23.5 6.51 0.000952 174 6.67 0.00194 54 10.5 0.000405 13.4 14.7 0.00029 10.9 16.6 0.000209 37.3 37
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13.4. Conclusions and future prospects

I have presented a measurement of the normalized differential ¢* distribution, cor-
rected for detector effects back to the bare level, using 20.3fb~! of ATLAS collision data
at /s = 8 TeV. Backgrounds which potentially contaminate the signal event selection
have been modelled using both Monte Carlo and data-driven techniques, as appropriate,
and have been subtracted from the distributions of candidate events in data in order to ac-
count for this contamination. Systematic uncertainties applicable to both the background
subtraction and the detector correction have been ascertained for the final distributions.

It is worth recapitulating all these considerations in light of what a precision mea-
surement of the ¢* distribution in different kinematic régimes aims to achieve. The ¢*
observable, as it has been employed in this analysis, aims to quantify the azimuthal decor-
relation between the muons in Drell-Yan events in order to probe the infrared régime of
QCD, which amounts to studying the nature of the soft and collinear dynamics of gluon
radiation for the purposes of testing the perturbative approach and also quantifying any
discrepancies which might indicate the need for further non-perturbative treatment. It is
therefore vital that our measured ¢* distribution of events remains unbiased, for such a
precision measurement. Biases induced both by the simulation of physical processes used
in this analysis and by the varying detector efficiencies have been taken into account by
assigning appropriate systematic uncertainties. It is certainly a testament to the precision
of the experimental apparatus and to the quality of simulated data in terms of physics and
detector modelling that, across a broad kinematic range for on-peak data, these systematic
uncertainties rival the statistical uncertainties.

The measurement has been performed in a variety of boson invariant mass and abso-
lute rapidity ranges, not only in order to provide an opportunity to further elucidate the
kinematical dependence of non-perturbative dynamics which was identified in earlier phe-
nomenological work (Chap. 5), but also to test the validity of the resummed approached
in the framework of collinear factorization to make theoretical predictions in a variety of
kinematic régimes. The off-peak analyses presented in this thesis have posed new chal-
lenges not present in the on-peak analysis. Most notable is the migration of events between
mass bins when one considers corrections back to the Born level. A measurement of the
¢* distribution corrected back to the Born level muons, particularly in the low-mass re-
gion, is the subject of continuing work. A possible avenue to be pursued might involve
the vetoing of additional photonic radiation in the final state, since it is such radiation
which distinguishes the two levels and which is also responsible for the aforementioned
migration. In particular, defining a fiducial measurement volume which included such a
veto will serve to increase the physical correspondence between the two levels.

Since t t events form a significant background at high-¢*, particularly in the high-mass
region, one might envisage applying a cut on the number of b-tagged jets. These are jets
nominally arising on account of the b-quarks produced in top decays, which may be tagged
with a fairly high efficiency owing to their peculiar properties. These properties include

namely the appreciable distances the b-quarks may travel (~ 1mm) before hadronization
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effects take place, which typically result in a secondary vertices displaced somewhat with
respect to the primary vertex of the t¢ interaction.

The final comparisons of the measured ¢* distributions in all kinematic regions of inter-
est show agreement with the distribution of events simulated using the Powheg+Pythia8
Monte Carlo event generator at approximately the level of 10% we might have expected
from previous studies performed at /s = 7 TeV. Theoretical uncertainties are not shown
for the distributions predicted by Powheg+Pythia8 however. Comparisons to the results
of the calculation presented in Part 1 of this thesis have also been presented for masses
in the range 66 GeV < M < 116 GeV. The results of this calculation are in agreement
with corresponding collision data, within the both the quoted experimental and theoretical

uncertainties, across most of the ¢* range, which itself spans five orders of magnitude.
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Luminosity studies within ATLAS
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CHAPTER 14

Introduction

The following and final part of this thesis describes my luminosity work within the
ATLAS collaboration. This part is comprised of three single-authored notes [114, 115,
116] which I contributed to the collaboration. Chapter 15 describes my work with the
Beam Conditions Monitor (BCM) where I performed studies on the short- and long-
term drifts which were observed in the reported luminosity. I have then followed these
studies with an appropriate recalibration of the wvisible cross-section for proton—proton
collisions. This chapter also introduces the van der Meer (vdM) method for the absolute
luminosity calibration, along with other terminology and principles that are necessary
for the subsequent two chapters. The two chapters which follow—Chapters 16 and 17—
address the issue of transverse beam correlation and establish its effect on the absolute
luminosity calibration as determined using the vdM method. Specifically, Chapter 16
introduces the method I have developed to extract precise beam quantities by studying
properties of the luminous centroid during a typical vdM scan, and Chapter 17 extends
these studies to further vdM scans which occurred during Run I, this time explicitly taking
into account the possibility of non-zero crossing angles between the two colliding beams.
I present the combined results of these studies as applied to vdM scans in October 2010,
May 2011, March 2011, April 2012 and July 2012. The analyses presented herein became
an integral part of the 2011 ATLAS luminosity determination at /s = 7 TeV [113].
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CHAPTER 15

Long- and short-term detector stabilities: A study on the
drift in the BCM-reported luminosity and the recalibration

of the visible cross-section

15.1. Introduction

During 2011, significant luminosity drifts over several periods were reported by the
diamond-based Beam Conditions Monitor (BCM) in ATLAS. In this chapter the use of
the BCM as a luminosity monitor is introduced, along with a review of the van der Meer
(vdM) method for the absolute luminosity calibration. The observation of significant
drifts in the reported luminosity over several periods is then presented, with an attempt
to quantify the nature of these drifts in terms of stabilization and relaxation times of
the BCM detector. It is found that, in order to achieve accurate luminosity reporting
from the diamond BCM detectors, they should be subjected to a recent radiation dose
corresponding to an integrated luminosity of L > 5-10%6 cm™2. Thus, a vdM calibration
scan immediately following a long technical stop is not advised. This chapter concludes

with a recalibration of the BCM algorithm known as the ‘AND’ algorithm. New values

AND
vis

for the visible cross-section, o , are finally presented for the BCM detectors, updating

the preliminary values reported in [117].

15.2. The Beam Conditions Monitor (BCM)

The BCM has been used as a event-counting luminosity monitor, with several algo-
rithms defined for what a signal should correspond to. The BCM consists of eight small
diamond detectors in total, four on each side, A and C, of the interaction point (IP) at
a distance of 184 cm. Each set of four, arranged as a cross, has two detectors on the
horizontal, or H, axis and two on the vertical, or V, axis. Collectively these pairs are
known as BCMH and BCMV, and are treated independently.

The algorithms, defined separately for BCMH and BCMV, concern the presence of at
least one recorded hit on each side, A and C. The (inclusive) OR algorithm is satisfied
when at least one hit on either side (or indeed both sides) is recorded. The (coincidence)
AND algorithm is satisfied when a coincidental hit is recorded by a detector pair of the
same orientation, i.e. at least one hit on each side simultaneously, where 6t = 12.5 ns is
the interval defined for simultaneity. Finally, the inclusive single-sided algorithms ORA
and ORC are satisfied when at least one hit on that side is recorded.

The BCM detectors, originally designed to issue beam abort requests in the event
of a problem and whose electronics have a rise time of 2 ns, are capable of luminosity

monitoring on a bunch-by-bunch basis (whose separation is a minimum of 25 ns). The
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detectors themselves have limited acceptance at pseudo-rapidities of || = 4.2, where
n = —log[tan(6/2)], and @ is the angle made with the z (beam) axis at z = 0. This small
acceptance means the algorithms at the luminosities encountered during 2011 worked
particularly well without the problem of saturation—the situation in which a particular
algorithm is satisfied on every bunch crossing.

In order to convert from a rate of a given algorithm being satisfied to a value for
the instantaneous luminosity, one applies the principle of zero counting. One makes the
assumption that the event rate, i.e. the expected fraction of bunch crossings satisfying the
algorithm, should be governed by Poisson’s law:

Ak e
k!
gives the probability of k arrivals to occur, where X is the expected number. For example,

P(k;\) = (15.1)

the probability for the OR algorithm to be satisfied in a given interval is

Nor OR 5 (,OR

—— = P, <)=1-P -

NBC OR (Mws ) OR (Mws ) (152)

1 o ().

where the overline indicates the complement; i.e. Pog is the probability that the OR
algorithm is not satisfied (k = 0). The parameter uOR plays the role of A in Eq. 15.1.
The subscript ‘vis’ indicates this is the visible, or measured, interaction rate (events per
bunch crossing) and not the total inelastic rate, simply written p. Finally, Nor and Npc
are the number of times the OR algorithm is satisfied and the number of bunch crossings,

respectively, in a given time interval. Inverting this gives

N
pOR = _log (1 — OR) . (15.3)
Npc
A similar argument is applied for the case of the AND algorithm, to obtain
Nanp AND
= P .
NBC AND (/”LVIS )

(15.4)

o8\ pon T8 AND
1—2exp [— (1+ X§D> ‘”25 ]—Fexp [—( Avll\?D> Uiis ],
Oyis Oyis

where Nanp is the number of times the AND algorithm is satisfied in the same time interval
AND

(over which Npc bunch crossings occur) and pii "~ is the expected visible interaction rate,
according to the AND algorithm. Unfortunately, this expression cannot be analytically
inverted, so a numerically generated look-up table is used in practice. It should be noted
here that the limit in which uis > 1, the aforementioned saturation of the algorithms
begins to occur.

The notion of a single-sided inclusive algorithm may also be introduced, observing that
Por + Panp = Pa + Fc, (15.5)

which follows directly from considering two non-mutually-exclusive events in probability
theory, defining Por := P(AUC), Paxp := P(ANC), and Pr := P(F). The event A
(C) occurs when the algorithm ORA (ORC)—requiring at least one hit on side A (C),
irrespective of what happens on side C (A)—is satisfied. The visible interaction rate for
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these two algorithms are derived in a similar way, assuming Poisson statistics and applying
the zero-counting principle, and one obtains

pORA — _log (1 — Py) and A—C. (15.6)

The expression for the AND algorithm introduced two new quantities, known as the
visible cross-sections for the two algorithms, written a{}in and agsR. To understand the
meaning of these, and further elucidate the ‘vis’ notation, it is instructive to write the

luminosity of the LHC (or indeed any storage ring) as

AC:ZLb:Zber :Zﬂb,visfr ~ Mvisnbfr’ (157)
b b b

Oinel Ovis Ovis

where b indexes the colliding bunch pair, f; = 11245.5 Hz is the revolution frequency of
the LHC and oy, is the total inelastic cross-section for a proton—proton collision. Since
the independent detectors (along with a choice of algorithm defined on each detector) will
operate with < 100 % efficiency, one defines

Hvis = € and Ovis = € Oinel, (158)

where € is the efficiency of that detector and algorithm combination. The AND and OR
algorithms for BCM may have different efficiencies. The visible cross-section ratios in Eq.
15.4 may then be understood as an efficiency conversion, allowing one to use uéiIS\ID in the
expression, the variable for which one would like to solve. In the final equality of Eq. 15.7,
the bunch-averaged values ovis = (05 vis)p and fivis = (tp,vis)» have been used, introducing
the number of bunches ny,, which is an approximation. In order to avoid excessive notation,
the b index is dropped where no confusion would arise.

The final ingredient in the process for writing the instantaneous luminosity in terms
of an event counting rate is the calibration of the detector and algorithm. This is typically
done by performing a van der Meer (vdM) scan, which involves recording the event rates
for each algorithm (simultaneously) as the beams are separated by a known distance, then
varying this distance, as described in the following section.

15.3. The van der Meer calibration method

The vdM calibration method [118], for our purposes, is a way of determining oy;s in
the expression for the luminosity, Eq. 15.7, of a given detector and algorithm combination.
It is assumed herein that bunches of each beam collide with zero crossing angle, and that
the individual proton densities for each bunch may be factorized into a product of one-
dimensional densities.! At no point, however, is any particular model for the beam profile
invoked.

One can therefore write an alternative expression for the luminosity of a given colliding
bunch pair b, as

Ly = frnins / dz dy p1(z,y) p2(, ), (15.9)

1One is not concerned with the proton density distribution in z here, since this plays an irrelevant réle
because of the zero-crossing angle assumption.



210 15. LONG- AND SHORT-TERM DETECTOR STABILITIES

where ny and ns are the populations of the colliding bunches of beam 1 and 2, and
pj(z,y) is a normalized proton density for the colliding bunch in the jth beam, with
j € {1,2}. One should keep in mind that proton densities here are also strictly for
the bunch pair b under consideration, i.e. p = pp and similarly in what follows, al-
though not explicitly indicated. The assumption of factorization amounts to writing
pi(x,y) = pi () p?(y), for bunches of each beam. One writes the beam overlap integral as

the functional

Qq, [p1(3), p2 ()] := /dxi p1(wi) pa(wi), (i €{1,2}) (15.10)
where 21 = x and z2 =y, and p;(7;) = p}'(;) is understood. Then,
Ly = frning Qalp1(x), p2(2)] Qylp1(y), p2(y)]. (15.11)

Now consider the luminosity as a function of beam separation, such that

Eb(hﬂwhy) _ Qﬂc(hr) Qy(hy) _. Rx(hx) Ry<h’y) (15 12)
L,(0,0) Q,(0)92,(0)  ~ Ry(0) R,(0)’ '

where a separation hg,, in either direction = or y, is introduced into the overlap integral

by writing
Q$z<h$z> = Q-Ti [;01(.%'2‘), pQ(xi + hﬂﬁz)] - /dxz ,01(-%'2‘) pQ(xi + hﬂ?z) (15'13>

The counting rates Ry, (hg,), in arbitrary units, are introduced and are proportional to the
luminosity.

Dropping the explicit directionality, such that h,, — h and z; — x elsewhere, consider
the integral

JdhR(h) _ [dh[] dzpi(x) pa(x + h)]
R(0) [ dz pi(z) pa()
[ dz p1(z) pa()
1
 Jdz (@) pa)’

where the change of variables © +h — z, such that dh — dz, has been made in the second

line. Note, this requires the integration limits to be from —oo to oo in principle. The scan

is assumed to be performed to a sufficiently high separation that the luminosity becomes

negligibly small, and the limits may be effectively taken to infinity. Normalization of the

proton densities is used in the final equality, and means we may write
R(0)

= [dhR(h)

This s the vdM calibration method: the separation scan provides the overlap integral

Qu[p1(2), p2(a)] (15.15)

in terms of a peak counting rate and the integrated rate over a sufficiently large range
of beam separations, i.e. it gives the absolute luminosity when nothing of it, except
the independently determined bunch populations and revolution frequency, is known a
priori. It is precisely the validity of assuming factorization which my studies presented in

Chapters 16 and 17 aim to quantify.
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The convolved beam width is defined by
1 [dhRy,(hs,)

7

Vor o R(0)

which becomes the standard deviation in the case of Gaussian beams in x,y. The lumi-

S, = (15.16)

nosity of the colliding bunch pair is then written

_ frmang
2r¥, 8,

and, equating this with Eq. 15.7, the visible cross-section of the previous section is cali-

Ly (15.17)

brated as the bunch-averaged value of

MAX 27 g 2y

Ob,vis = :ub,vis (1518)

nin2
where ‘MAX’ indicates the peak value during the scan, which is in principle at zero nominal

separation, for symmetric beam profiles.

15.4. A study of drifts in BCM-reported luminosities
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FIGURE 15.1. These plots show the so-called ‘.7% problem’, namely a
fairly rapid drift in the ratio of the H and V components of the BCM
detector using the OR algorithm (BCMHOR and BCMVOR) since the de-
tectors were calibrated in the May 2011 vdM scan (left). Similar behaviour
is seen in the runs immediately following a technical stop (right) during
which the detectors received no radiation. The bottom plots show the cor-
responding integrated luminosity since the most recent technical stop. The
left plot shows runs 182013, 182032, 182034, 182161 and 182284, whilst the
right plot shows runs 185353, 185518, 185536 and 185644.

15.4.1. BCM and the ‘.7% problem’. After having reviewed the vdM scan cali-
bration method along with the BCM detector and its algorithms, the so-called ‘.7% prob-
lem’ is now introduced. A manifestation of the essential problem may be stated as a
relative excursion of approximately 0.7% of the BCM-reported luminosity ratio across two
independent detectors (BCMH and BCMV) after a period of several hours following the
vdM calibration scan of May 2011. Figure 15.1 shows this drift in the luminosity ratio,

over four consecutive runs immediately following the initial scan (left plot) and then four
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consecutive runs immediately following a technical stop that occurred in June/July 2011
(right plot).

To put these algorithms into a broader context, Fig. 15.2 shows the recorded (u) val-
ues of all the ATLAS luminosity monitors in ratio to that of BCMH_EventOR—the OR
algorithm defined on BCMH (BCMHOR). The BCM detectors are calibrated simultane-
ously at the point of the vdM scan, which took place on 16 May 2011. It is therefore clear
that a rapid relative drift between BCMH and BCMV occurred shortly after, as indicated
by the blue points in Fig. 15.2, situated at -0.5 % to -0.8 %. This is consistent with Fig.
15.1 which shows the drift occurring in the four runs immediately following the May 2011
vdM scan and then in runs following the June/July technical stop. A further comparison
is made with the luminosity reported by the tile calorimeter (Tile) in Fig. 15.3. The
equivalent plot, but showing the Event_AND algorithms for BCM instead, is shown in
Fig. 15.4.

Clearly the drifts appear to stabilize, so one would like to understand the time scale
over which the stabilization takes place. It should also be noted in Fig. 15.2 that several
technical stops occurred during the year of running during which the BCM detectors
received no radiation: immediately prior to the vdM scan, then later in the year (as
mentioned) in June/July, late August/early September and finally late September/early
October. It was therefore suggested that the performances of the BCM diamond detectors
may be sensitive to the amount of radiation they had recently received, and the technical
stops provided ‘dry’ periods, during which the response would ‘relax’.

With this in mind, the integrated luminosities since the previous technical stop are
shown underneath the ratios in Fig. 15.1. It is clear that stabilization of the ratios appears
to occur after an integrated luminosity of L = [dt £ 2 5- 1036 cm ™2, which is consistently
established from both plots (left and right).

In conclusion, there are apparently two time scales in the problem: a time during which
the BCM-reported luminosity stabilizes (7gtap,) whilst it is subject to ongoing radiation,
and a relaxation time (7Tyelax) during which there is no received radiation and the BCM-
reported luminosity reverts. The limit of the time constant Tielax associated with the
effect of any radiation dose wearing off is set by the duration shortest technical stop after
which an immediate drift was observed. The maximum value for this time constant is
therefore around 21 days, the duration of the technical stop immediately before the vdM
scan in May 2011. Since the BCM detectors should be accurately reporting luminosity
during all runs with beam in collision, it is clear that the vdM calibration scan is best not
performed immediately after a dry period, but rather after the BCM detectors have had
a recent radiation dose corresponding to an integrated luminosity of at least 5-1036 cm=2.
This way the detectors are calibrated in the same state as when they are required to give

accurate luminosity monitoring during normal high-luminosity physics running.
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FIGURE 15.2. The average p values (interactions per bunch cross-
ing) are shown for each detector—algorithm combination, in ratio to
BCMH_EventOR, throughout 2011 [112, 113]. It is clear there are several
drifts in the reported luminosities of different detectors and at different
levels, and that all ATLAS luminosity monitors agree on the level < +1%
overall. In particular our concern in this note is with BCM, whose hori-
zontal (OR) component also appears here in the denominator.
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F1GUuRE 15.3. Here is shown the ratio of the luminosity reported by the
BCMH_ and BCMV_EventOR detector-algorithms to that reported by the
ATLAS tile calorimeter (Tile), following the May 2011 vdM scan (occurring
at time ¢ &~ 0 in the plot). A simple afterglow subtraction has been applied
to the data. The Tile luminosity was calibrated such that it coincided with
that of BCMV_EventOR during the vdM scan session, i.e. at time t = 0 in
this figure.
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FIGURE 15.4. Here is shown the ratio of the luminosity reported by the
BCMH_ and BCMV_EventAND detector-algorithms to that reported by
the ATLAS tile calorimeter (Tile), following the May 2011 vdM scan (oc-
curring at time ¢ ~ 0 in the plot).
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15.5. Recalibration of the visible cross-section for the AND algorithm

15.5.1. Introduction and method. The following study begins by considering the
expressions for Por and Panp, given by Eqs. 15.2 and 15.4, in the limits of large and
small pyis € {pO8, pANP1. Tn the limit of small puyis, one finds

PaND = fais " and Por = pos, (15.19)

x

derived using e = 1 — z for x < 1. In the limit of large s, the expression for Por

is the same as that in Eq. 15.2, but Panxp becomes, making a Taylor expansion about
AND _

luvis = 00,
AND _OR AND ( _AND OR
Hyis ~ Oy M O~ +o05
PAND — 1 + exp <_ VlSANDVIS > o 2exp (_ V1S (Q;I-IZND V1S ))
v vis (15.20)
AND [OR\ 1?2
— |:1 — exp <_ Hyis AN]\)/is >:| ,
2avis
where the factorization in the second line is permitted when one assumes that UéigID < 085

in the final exponential of the first line, which is valid for BCM. In the two limiting cases,
OR

the expressions for both Por and Panp can now be analytically inverted, to obtain pg
AND

vis ~ in terms of Por and Panp, respectively. This then allows us to write down an

and p
expression for the ratio of the luminosities determined according to each algorithm:

2log (1 — \/PAND)

for high piyis, and

AND AND _OR -
L o Hig Oyis _ log (1 POR) (15 21)
OR — OR _AND — ‘
L Fvis™ Ovis Panp o for low fiyis
VIS
Por o3P

It is clear from this expression that, in the limit of high s, the ratio is independent of
AND AND

o, . Moreover, in the low-jiyis domain, the ratio is directly proportional to pgi, ~, and

therefore any variation in the uéils\m calibration would be expected to alter this luminosity
ratio only for low s values.

The ‘AND’ algorithm may be satisfied in two distinct ways: by a genuine coincidence,
whereby the ‘A’- and ‘C’-side detectors each record one or more hits from particles coming
from pp interactions in the same bunch crossing, or by an accidental coincidence, whereby
the algorithm is satisfied but not for the previous reason—e.g. particles from different
proton—proton collisions in the same bunch crossing, afterglow, etc. The accidental coin-
cidences thus form a background for the ‘AND’ algorithm. Given the relative unlikelihood
of satisfying the ‘AND’ algorithm compared with that of the ‘OR’ algorithm, this back-

ground is very small in all but the very-low-u régimes, specifically p < 1. Using the
AND

previously derived result that the luminosity ratio (LANP/£OR) is independent of o/
AND

in the high-;, régime, one can recalibrate oy~ to obtain better agreement for this ratio

at low pu.
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The initial calibration involved applying Eq. 15.4 directly in the vdM calibration

method, i.e. fitting the luminosity scan curve? determined from this algorithm then ex-
AND
V1S

was initially calibrated, since it does not rely on the X, and X, values determined

tracting o
AND

vis

, as explained in Sec. 15.3. This recalibration differs from the way in which
o

during the vdM scan for this algorithm.
AND by

The recalibration procedure, for each detector, was to vary the value of oy
some small amounts (1% and +2%) about its nominal value in order to minimize the
discrepancy with the reported luminosity by the OR algorithm. The ratios of luminosities
according to each algorithm (minus one) were binned in g—determined according to the
OR algorithm—and the minimization of the discrepancy precisely amounted to minimizing
the x? fit of these data with respect to the ‘model’ LANP /LOR — 1 = 0% over the entire

p range. The resulting x? values, as a function of the variation in Jf}iSND, are fitted
A

with a parabola, whose minimum point is the precise value of ¢2NP that minimizes the

VIS
discrepancy, with errors given by the variation in a{,*igD required in either direction to
increase the y? by one.

AND

The effect of variations of o(;;'” on the ratio for May 2011 vdM scan data are shown

in Fig. 15.5. The corresponding parabolae to determine the best x? fit are shown in Fig.
15.6.

BCM Horizontal, May 2011 vdM run BCM Vertical, May 2011 vdM run
4 T T 4 r r r .
UvisAND=99% of nominal value +——+— ovisAN'D:QQ% of nominal value +——+—
3| 100% —+— | sl 100% —+— |
101% —+— 101% —+—

102% —+— 102% —+—

H2 ’_\2
o iw Phptesitess o ¥ ol i}%¥$iiiiiiiiil
Sal Lﬁfﬁ”“?%% PSS ERR SRR EANAE:
21 2 1
Y 3:25;:;‘03?359 75 oo 1350

Ovor = 4. OvoR = 4.

Gyanp = 0.1387 Gyanp = 0.1387

’ 0 015 ;l 1.5 .2 2‘.5 3 0 0‘.5 .1 1‘.5 .2 2‘.5 3
M n
FiGURE 15.5. The effect of variations of JQSND on the ratio for May 2011
vdM scan data. The nominal (starting) visible cross-sections are shown on
the plot; i.e. the values before the optimization took place. Multiplying
these nominal values by the determined percentage multipliers yields the

new UéSND values.

2The luminosity scan curve is obtained during the vdM scan by measuring a quantity proportional to the
luminosity as a function of beam separation.
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FIGURE 15.6. The corresponding parabolae to determine the best y? for

May 2011 data
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TABLE 15.1. This table shows the appropriate percentages by which the
nominal values of mez_uu i.e. those reported in [117], should be multiplied
in order to minimize the luminosity discrepancy with respect to the OR
algorithm, as determined for May 2011 vdM scans VII and VIII, both

individually and together.

after correction [mb]

(from BCMH or BCMV as appropriate)
0.1371 £ 0.0003
0.1400 £ 0.0003
0.1368 £+ 0.0004
0.1399 + 0.0004
0.1375 £ 0.0004
0.1401 + 0.0004

AND

vis

(2

Percentage multiplier
for ATLAS-CONF-2011-116 values

(100.912 +0.198) %
(100.959 + 0.204) %
(100.67 £+ 0.264) %
(100.86 + 0.281) %
(101.195 +0.282) %
(101.041 +0.276) %

BCM
H
v
H
\Y%
H
\%

VII & VIII
VII
VII
VIII
VIII

Scan
VII & VIII
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15.5.2. Background subtraction. In the lowest p bins in Fig. 15.5, the back-
ground for the EventOR algorithm can be significant enough to have a > 1% effect on the
luminosity, and so appropriate background corrections should be in place. The analysis
above has been repeated but this time with background subtraction applied directly to u
values determined from the OR algorithms, given that

B = Hraw + Hbkg- (15-22)

Once the background subtraction is applied to the luminosities computed according to
the OR algorithm in the correct calibration scheme, the variation and fitting of the best
value of UQED is repeated, now using background-subtracted OR data, as shown in Fig.
15.7 for the May 2011 vdM scan, for both BCMH and BCMV. The ratios are this time
binned for background-subtracted p values, namely ug‘l){reCted. The results, in addition to
results where bins in beam separation were used in place of u, are summarized in Table
15.2. Furthermore, plots may be found in Fig. E.1 as an appendix, which show the effect

of these optimizations on the luminosity ratios.

= 2r | = 2r |
é £ | é = |
< 15 E - 15F E
™ C | « C I
Q C i Q c ;
B u>.4‘ l: B 3 ﬁ‘ l: 3
Sz £ 3 g2 £ ]
£2 05F E £5 05 E
[S~] r 1 Ooa r =
2 o 3 =z o 3
: I ]
E -0.5F = s 05 =
z £ E 2 = 3
g o ERE E
-1.5F = -15F E
ok 3 = ! Ll ! L ! B

% 3 2 05 1 15 2 25

Corrected Corrected

uOR IJOR

F1GURE 15.7. The effect of variations of af}igD on the ratio for May 2011
vdM scan data. The nominal visible cross-sections are shown on the plot.
This time background-subtracted p-values for the OR algorithm are used,
and all variations are with respect to the nominal visible-cross sections
given in [117].



220

diation dose) they have received. It has been observed in all instances that the associated
drifts in efficiency stabilize after some time. The recommendation is therefore that, be-
fore a vdM scan which is the crucial point at which all BCM detector calibrations are
performed, these diamond detectors should have been recently subjected to the amount of
radiation corresponding to L = 5 - 103 cm™
to prevent drifting of up to ~ 0.7% after the calibration has already been performed, thus

15. LONG- AND SHORT-TERM DETECTOR STABILITIES

TABLE 15.2. The values of JﬁSND determined for BCMH and BCMV using
background-corrected OR data (u&areet*d) in the analysis. The values have
been determined for all scans both collectively and individually, and binned
in either p or beam separation as indicated. The corresponding plots for
values determined using background-corrected p bins are shown in Fig. E.1,
and those corresponding to binning in nominal separation (or equivalently
pseudo-lumiblocks) are shown in Fig. E.2.

Scan

AND

vis

AND
vis

(BCMH) [mb]

(BCMV) [mb]

VII & VIII (p)
VII (1)
VIIT (1)

VIIx (beam sep.)
VIly (beam sep.)

VIIIx (beam sep.)
VIIIy (beam sep.)

0.1372 £+ 0.0003
0.1366 £ 0.0004
0.1377 £+ 0.0004
0.1366 £= 0.0005
0.1362 £ 0.0005
0.1372 £ 0.0005
0.1380 £ 0.0005

0.1398 £ 0.0003
0.1394 £ 0.0004
0.1402 £ 0.0004
0.1401 £ 0.0005
0.1393 = 0.0005
0.1404 £ 0.0005
0.1403 £ 0.0005

15.6. Conclusions

2

mitigating a fairly severe systematic uncertainty.

The BCM detectors show a clear dependence on the recent integrated luminosity (ra-

in order that the detectors have stabilized,



CHAPTER 16

Transverse beam coupling part 1: The effect of linear
transverse coupling on the luminosity calibration by the van
der Meer method

We return now to the question of the validity of the assumed factorization of the x
and y components of the bunch densities in the vdM calibration method, which was raised
towards the end of Sec. 15.3. In this chapter, an analysis of the effect of beam correlation
on the measured luminosity is presented. A single-Gaussian model is used to parameterize
the individual beam densities, which includes the possibility of having a non-zero z-y
correlation within each beam. Using the approximation that any non-zero beam crossing
angle may be ignored, the internal parameters of the model are systematically constrained
using a set of analytically derived equations, in a method I have developed. The neglect
of crossing angle is reintroduced as a systematic error on those constraints where it is
deemed necessary. Finally, the implication of non-zero beam correlation on the measured
luminosity is considered explicitly for the results of van der Meer scans performed during
October 2010 and May 2011, namely scans IV, V, VII and VIII.

16.1. Introduction

The van der Meer (vdM) scan was first introduced in [118], and is summarized in
Sec. 15.3. It involves the displacement of two colliding beams by some amount h= (hay hy),

in a direction transverse to the common!

axis of their respective motions, in order to
determine the convolved beam widths, 3, ,, which appear in the standard definition? of

the luminosity:
1

L= [|d&7LF) x ————
/d T L(T) x TS

where z and y are orthogonally chosen directions in the transverse plane. The vdM

(16.1)

method also holds for arbitrary beam directions and scan plane, as explained in [119]. In
addition, the beams may be centred or displaced in one direction whilst a scan takes place
in the orthogonal direction, giving rise to in-plane (centred) and out-of-plane (offset) scans
respectively.

The analysis presented here focuses on employing a single-Gaussian model for the
individual beam densities, which may be used to predict a certain class of linear movements
of the luminous centroid, to be soon defined formally, during a vdM scan. Confrontation

of the predictions of this model with data from vdM scans performed during October 2010

IThe two beams may be collided with a small crossing angle, as considered shortly.
2This definition is derived from the assumption that the individual beams have no internal correlation; i.e.
no mixing of the - and y-dependence
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(scans IV and V) and May 2011 (scans VII and VIII)? enable relatively tight constraints to
be placed on the internal parameters of such a model, of which there are six: the individual
x and y beam widths, and an -y correlation coefficient for each beam.

Under an approximation made here, namely that any beam crossing angles* are ig-
nored, it should be noted that luminous centroid movements in the z direction will not
arise but are, in any case, understood as a consequence of beam crossing at a non-zero
angle. The focus of this analysis will be to extract information about x-y beam correlation
using luminous centroid movements in the z = 0 plane, and to determine how the neglect
of this correlation will impact the final luminosity result. It is instructive to summarize, for
the single-Gaussian model, how certain observed phenomena should arise. If we use (Z),
with Z = (z,y, 2), to label the position of the luminous centroid, we expect the measured
quantities to be affected as summarized in Table 16.1.

TABLE 16.1. Observed phenomena related to the movement of the lumi-
nous centroid during vdM scans in the single-Gaussian model.

Observed phenomenon Cause

d
d}§2> Beam crossing angle in z-z or y-z plane;
vy o> and oy, respectively.
d d
ﬂ # M #0 Different beam sizes in transverse plane.
dhy dh,
d d
a;ij ~ d<ha;> #£0 x-y correlation within each beam.

3Note that out-of-plane (offset) scans have not been included here, for reasons addressed towards the end.
4This has been examined numerically [120] for all scans, and deviations from this approximation will be
dealt with on a case-by-case basis.
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FI1GURE 16.1. These plots show the position of the luminous centroid dur-
ing the first set of = and y scans in October 2010, collectively labelled ‘Scan
IV’. A linear fit has been made to the central scan data, namely where the
separation |h| < 0.25 mm. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d(z)/dh,, d(y)/dh,;
and d(z)/dhg, as in Table 16.1.
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F1GURE 16.2. These plots show the position of the luminous centroid dur-
ing the second set of  and y scans in October 2010, collectively labelled
‘Scan V’. A linear fit has been made to the central scan data, namely
where the separation |h| < 0.25mm. The linear fit gives the gradient of the
movement, and corresponds to the extraction of the observables d(z)/dh,,

d(y)/dhy and d(z)/dhy, as in Table 16.1.



Luminous centroid position <x> (mm)

Luminous centroid position <y> (mm)

-0.045

-0.05

-0.055

-0.06

-0.065

-0.07

-0.075

1.187

1.186

1.185

1.184

1.183

1.182

1.181

16.1. INTRODUCTION

Scan VI

d<x>/dh, = -0.00074 + 0.00261 }

1

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation h, (mm)
(a)

Scan VI

d<y>/dh, =-0.00164 + 0.00355

s

B mmm}}ELL{,?}iii{

i

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Luminous centroid position <z> (mm)

Separation h, (mm)
(c)

Scan VI

B { d<z>/dh, =-9.21769 + 1.21109 b

M . ?

. |
*mﬂ

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation h, (mm)

()

Luminous centroid position <x> (mm)

Luminous centroid position <y> (mm)

-0.056

-0.057

-0.058

-0.059

-0.06

-0.061

-0.062

1.192

1.19
1.188
1.186
1.184
1.182

Scan VII

d<x>/dhy =-0.00002 + 0.00162

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)

(b)
Scan VII
L d<y>/dhy =0.01870 £ 0.00216 }
| tr
x g

L i/{{y, i

L {{ii i

1.18 (73 b
I i

1.178
1.176
1.174

Luminous centroid position <z> (mm)

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)
(d)

Scan VII

= T T T T T T T

:‘\i\d<z>/dhy =-195.52489 + 1.51261

0 | | |
-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)

(f)

F1GURE 16.3. These plots show the position of the luminous centroid dur-
ing the first set of x and y scans in May 2011, collectively labelled ‘Scan
VIT'. A linear fit has been made to the central scan data, namely where
the separation |h| < 0.05 mm—these data show far greater non-linearity
than scans IV and V. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d(z)/dh,, d(y)/dh,;
and d(z)/dhg, as in Table 16.1.

225



226

Luminous centroid position <x> (mm)

Luminous centroid position <y> (mm)

-0.052
-0.054

-0.056

-0.062
-0.064

-0.066 . . :
-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

16. TRANSVERSE BEAM COUPLING PART 1

Scan VIII

-0.06

-0.058

d<x>/dh, =-0.00170 + 0.00172

1.185

Separation h, (mm)
(a)

Scan VIl

1.184

1.183 -

1.182

1.181

1.18

1.179

1.178

d<y>/dh, =-0.00310 + 0.00210

=

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation h, (mm)
(c)

Scan VIII

o

'
=

'
N

' ' '
a b~ W

6 F
7+

Luminous centroid position <z> (mm)

{ d<z>/dh, = -15.28312 + 2.70341

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation h, (mm)

()

Luminous centroid position <x> (mm)

Luminous centroid position <y> (mm)

-0.0545
-0.055
-0.0555
-0.056
-0.0565

-0.057

-0.0575
-0.058
-0.0585
-0.059
-0.0595

1.188

1.186

1.184

1.182

1.18

1.178

1.176

1174

Luminous centroid position <z> (mm)

Scan VIII

d<x>/dhy =-0.00345 + 0.00273 R

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)
(b)

Scan VIII

d<y>/dh,, = 0.02287 + 0.00380
Y ]
=

-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)
(d)

Scan VIII

f*;\(:l<z>/dhy =-197.39808 + 3.12395

I

0 |
-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2

Separation hy (mm)

()

FI1GURE 16.4. These plots show the position of the luminous centroid dur-
ing the second set of x and y scans in May 2011, collectively labelled ‘Scan
VIIT'. A linear fit has been made to the central scan data, namely where
the separation |h| < 0.05 mm—these data show far greater non-linearity
than scans IV and V. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d(z)/dh,, d(y)/dh,;
and d(z)/dhg, as in Table 16.1.
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16.2. The single-Gaussian model

In the single-Gaussian model, the density of each individual bunch is parameterized
as a single Gaussian profile in three dimensions, as in Eq. 16.2,

exp (<37 7" - )

pi(z,y,z,t) = , (16.2)
(2m)3|a;]
with the so-called covariance matriz given by
Ug,i KiOgi0yi 0 T
;= | KiOziOy; Uii 0 with ¥ = Y (16.3)
0 0 o2, z =+ 2(t)

and ¢ € {1,2} labelling the beam. (See, for instance, [121].) This matrix describes the
linear x-y correlation of the proton density within a bunch by introducing the correlation
coefficient k;, in addition to specifying the overall individual beam widths o;; in each
direction j € {x,y}. The appropriate sign + should be chosen for each beam according to
convention.

At this point, an approximation is made in which the two beams collide with a zero
crossing angle. A consequence of employing this approximation is the factorization of
the z- and y-dependence from the z- and t-dependence in Eq. 16.2, owing to the block-
diagonal form of the covariance matrix in Eq. 16.3. Up to factors of the collider revolution

frequency (f;) and the bunch populations (n;2) the luminosity density may be written

L(x,y,z) O</p1(rﬂ,y,z,t) p2(z,y, z,t)dt
(16.4)

= () pa(o0) [ pr(e ) (e,

where the factorization permitted by the zero-crossing-angle approximation is made ex-
plicit in the second line. The convolution integral may be evaluated in the z = 0 plane,
reducing the problem to two dimensions. The luminous centroid, (Z), is then defined to

be the vector Zpax, such that the quantity £(Zpax) is maximized:
(¥) :== & such that L(Z) = max(L). (16.5)

This statement can become ill-defined for more sophisticated parameterizations of the
bunch densities that go beyond the single-Gaussian model (e.g. a double-Gaussian model),
but here it is given by the simple condition
dL(T)
AT z—z)

=0, (16.6)

which holds for all three components of 7.
The remainder of this analysis will be concerned with the two-dimensional luminosity
density
E(JJ, Y; ha:v hy) = p1 (.ZC - E:v/Qv Yy — EQ/Q) pg(.%‘ + Ez/Qa Yy + Ey/2>7 (16'7)
where the possibility of a beam separation Ex,y has been explicitly introduced in the z- and
y-directions respectively, which is symmetric about the origin. The bar is used to denote

the beam separation defined with respect to the ATLAS co-ordinate system. Furthermore,
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in the LHC coordinate system, the separation is defined to be the position of beam 2 minus
that of beam 1. The separations in the LHC co-ordinate system (used in the remainder

of this analysis) are given by
hy = —hy and hy = hy,. (16.8)

It should be well-noted here that the model itself, along with all predicted and mea-
sured quantities, are defined with respect to the ATLAS coordinate system, where only

the beam separations are given in the LHC coordinate system.

16.3. Method

The principal aim of the method I have developed here is to exploit the measurable
movements of the luminous centroid during vdM scans in order to indirectly infer the
properties of the individual beams as precisely as possible. Specifically, I appeal to the
observable phenomena listed in Table 16.1 in order to attempt to extract the individual
beam parameters under the assumption of the single-Gaussian model for the bunches
within the two beams. The emphasis is on precisely quantifying the level of z-y correlation,
in order to establish an appropriate systematic uncertainty for the absolute luminosity
calibration by the vdM method, which assumes factorization.

It can be shown that the single-Gaussian model has the property that it predicts only

linear movements of the luminous centroid with respect to scan separation. That is, one

can write d< _») d< _»)
T T
) = hy hy ——, 16.9

which is an ezxact expression for this model, and holds for both cases of an in-plane and
an out-of-plane scan. It should be borne in mind that the single-Gaussian model is one of
a limited set of models that actually possesses an analytical solution.

Adopting an analytical approach, my analysis of linear transverse correlation now
follows by writing d(Z)/dh;, where j € {z,y}, as a formal power series in k1 2, since it is
assumed that this correlation coefficient should be small®. It is physically justified that
any correlation coefficient as defined in Eq. 16.3 should indeed be small, i.e. k12 < 1,
since any larger coefficients would give rise to such highly deformed beams they are beyond
reasonable consideration for LHC optics. One can therefore derive a set of four equations
which govern the movement of the luminous centroid in the z = 0 plane, upon expanding
the exact results in powers of the individual beam correlations, k12, and retaining only

up to linear terms:
d o2, — o2
@) _ Bl (16.10)
dh’x 2(Gm,1 + Gx,Q)

d(y)  oy10y2(Kk10010y2 — Ko 0p20y1)

= + ... 16.11
dhy (Ug,l +U§,2)(‘75,1 + ‘75,2) ( )
d(z)  051052(K20010y2— K1 0z20y1)

= + ... 16.12
dhy = {02y +02) (02, 1 02,) 1o

5Mathematically speaking, it is defined only for the open interval (—1,1) anyway, but the smallness is
required so that we may formally truncate the expansion after only one term in each expression.
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d o2, — g2
W) _ 2=, (16.13)
dh, 2(0%1 + O'y72)
Here ... refers to higher-order terms in 1 2.

It is instructive at this point to observe the dependence of these analytical expressions
for the gradients of the (linear) luminous centroid movements on the individual beam
parameters. The x (y) movement during an z (y) scan is independent of the beam pa-
rameters in the orthogonal, y (z), direction and is, moreover, independent to first order of
the correlation coefficients k1 2. Therefore it is formally consistent for one to immediately
use these gradients of the luminous centroid movements in the scan direction (Egs. 16.10
and 16.13) in the extraction of the individual beam widths. The gradients themselves are
determined, within some error, via a linear fit to data.

In the case of a vdM scan in which the residual beam crossing angles are negligible,

the convolved beam widths can be shown to be

Ej =4 /0']2.’1 + 0']2.72 . (1614)

We may supplement Eqgs. 16.10-16.13 with this expression for the convolved beam widths
in z and y, along with an expression for the correlation of the convolved luminous region,

K103z20y92+ KaOg 10
:‘££ _ 10220y2 20z,1 y,l7 (1615)
Yo Xy
which is also a measured quantity. This way one has enough equations to solve for the six
‘unknowns’: .1, 042, 0y1, 0y2, k1 and k2. A redundant second handle on the individual

beam widths is provided by the width of the luminous region, which is related by

(0F) =02 +052, (16.16)
where again j € {x,y}.

The inclusion of individual z-y beam correlation affects the individual beam widths,
the convolved beam widths (X, ,) and the width of the luminous region (alg,y) only beyond
terms linear in either x12—for proof in the case of 3, ,, the reader is referred to Section
16.7. It is therefore again formally consistent to extract the individual beam widths using

the gradients of the luminous centroid movements in the scan direction (Eqs. 16.10 and

L
x?y’

The analysis then proceeds by substituting the determined widths back into the expressions

16.13) supplemented with the measured ¥, , and o} ,, while neglecting beam correlation.
for the measured luminous centroid movements orthogonal to the scanning direction (i.e.
Egs. 16.11 and 16.12) and the measured correlation of the luminous region (Eq. 16.15) in
order that we may then extract xq 2.

This summarizes the prescription followed in this analysis. Since the standard lu-
minosity formula (Eq. 16.1) neglects beam correlation, this analysis concludes with a
determination of how much the constrained beam correlation would impact a luminosity
measurement that ignored this effect.

Eq. 16.9 has already demonstrated how the single-Gaussian model is insufficient to
describe non-linear phenomena which, in some instances, is seen in the data (see Figs.

16.3(a) and 16.4(a), for examples of this more general feature). It should be noted that
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the fits for the gradients are therefore often restricted somewhat to a limited range of
beam separation where the data appear more linear.
As a final remark, one should note that the standard formula relating the convolved

widths, the widths of the luminous region and the individual beam widths, i.e.

(16.17)

2 4
o2 _ Ex,y Zz,y 2 (UL )2
z,y;1,2 9 4 zy\Cay/ >

remains valid, since no terms linear in 12 appear as corrections to this formula. Thus,

it is demonstrated how the measured ¥  is used as a consistency check on the derived

x?y
constraints but, as one will observe, these constraints from the luminous region widths are
typically much less stringent. The solution of the widths for beams 1 and 2 corresponds to

the choice of sign in Eq. 16.17. The ambiguity in this choice will be addressed in Sec. 16.5.

16.4. Fitted slopes and errors
The gradients for the linear fit of the various luminous centroid movements with respect

to scan separation (h) are shown in Tables 16.2 and 16.3, below, and in Figs. 16.1 to 16.4.

TABLE 16.2. The fitted d{{x,y, z2})/dh{,,; values for October 2010 vdM
scan data and fit errors.

Scan Observable Value Percentage error
IV d(z)/dh,  (66.842.4)-1073 4%
IV d(x)/dh, (47.1£3.2)-1073 %
V  d(z)/dh,  (60.34+2.0)-1073 3%
VvV d(z)/dh, (47.24£2.7)-1073 6%
IV d(y)/dh, (—80.6+2.7)-1073 3%
IV d(y)/dh, (=7.7£3.3)-107° 43%
VvV  d{y)/dh, (—81.2423)-1073 3%
vV d{y)/dh, (-7.8+21) 1073 27%

TABLE 16.3. The fitted d{{z,y, z})/dh{, , values for May 2011 vdM scan
data and fit errors.

Scan Observable Value Percentage error
VII  d{x)/dh, (—0.7+£2.6)-1073 370%

VII  d(z)/dh, (-2+162)-107° 8100%
VIII  d(z)/dh, (—=1.741.7)-1073 100%

VI  d(z)/dh, (—3.5+2.7) 1073 7%

VII  d{y)/dh, (—1.6=+3.6)-1073 220%

VII  d{y)/dh, (18.7+2.2)-1073 12%

VII  d(y)/dh, (—3.1+2.1)-1073 68%

VIIL  d(y)/dh, (22.9+£3.8)-1073 17%
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16.5. Constraints on individual beam widths and correlation

In this section, the constraints on the six single-Gaussian model parameters implied
by the fitted quantities of Tables 16.2 and 16.3 are presented. The measured quantities
used to constrain the model are, for Figs. 16.5(a) to 16.6(b), the convolved beam widths,
Y,y (orange), and the movements of the luminous centroid in the direction of the scan,
d({z,y})/dh{z,y (blue and red, sometimes overlapping). For the determination of the x
widths (01 42) the blue and red bands are due to d(x)/dh,, and for the determination of
the y widths (041 42) the blue and red bands are due to d(y)/dh,, with blue corresponding
to scans IV and VII, and red corresponding to scans V and VIII. The widths of the

luminous region (o), as measured by the beamspot fit, are taken to be ol = 38.1 ym and

L

0'?5' = 37.8 pm for scans IV and V, and o

VIIL

= 25 um and O'ZI/‘ = 27 um for scans VII and

40l L ——— — =

50 55 60 65 70
Ox1
(a) Constraints on the individual x beam (b) Constraints on the individual y beam
widths. widths.

FIGURE 16.5. Constraints from October 2010 scans. Blue indicates scan
IV and red indicates scan V. Orange is the constraint imposed by X, ,,
and yellow & green are the constraints imposed by a:I;’y, of which only one
must be satisfied, as explained in the text.
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(a) Constraints on the individual z beam (b) Constraints on the individual y beam
widths. widths.

F1GURE 16.6. Constraints from May 2011 scans. Blue indicates scan VII
and red indicates scan VIII. Orange is the constraint imposed by ¥, ,, and
yellow & green are the constraints imposed by U%7y, of which only one must
be satisfied, as explained in the text.

The consistency of the constraints is verified by overlaying a much weaker constraint
implied by the measured width of the luminous region, a;y (light yellow and green). In
the latter case, because of the ambiguity in choosing the sign in Eq. 16.17, only one of
the regions must overlap, not both.

The absence of a plotted region of constraint by U;y in Fig. 16.6(a) is due to the lack of
a consistent overlap of this constraint with the others that are shown. The overlap region
from the remaining constraints is much more stringent in any case, so the assumption is
made here that the individual beam widths may be determined from the plotted constraint
regions alone.

In order to determine the widths of the constraining bands, which themselves corre-
spond to lo uncertainties, errors from the corresponding measured quantities have been
taken into account. These are, namely, an absolute error® of 1 ym on the determined
convolved beam widths, ¥, ,, and the errors on the fitted d({z,y})/dh,,, values shown

in Tables 16.2 and 16.3. The error on the constraining regions imposed by the measured

L

oy, values is taken to be ~ 2.5 ym.

Figures 16.7(a)-16.7(e) show the constraints on the individual beam correlation, x1 2,
implied by the measured quantities d{{x,y})/dhy, ) (note the reversal of z and y) and
the measured correlation of the luminous region, ", which is related to beam parameters
as in Eq. 16.15. It may be instructive at this point to refer back to Eqs. 16.11 and Egs.
16.12, observing again that they have linear terms in x1 2.

The following colour correspondence is made for the constraining bands in Figs.
16.7(a)—16.7(e): blue and red are due to d(z)/dh, and d(y)/dh, respectively and green

6This is a very conservative error, which has since been reduced. Nonetheless, it is sufficiently small to
provide a good constraint on the individual beam widths.
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is due to k. All the constraints made here are summarized in Tables 16.4 and 16.6. The
convolved beam widths used in this analysis are tabulated in Table 16.5.

Figures. 16.7(a) and 16.7(b) certainly demonstrate an inconsistency with respect to
the constrained values of k1 and kg for the October 2010 scans (IV and V). The scans
themselves are in fact rather scan pairs: an X scan and a Y scan. The red and blue slopes
were respectively determined individually from the X and Y scans within the scan pair.
One might therefore speculate as to the reproducibility of the results, since the X and Y
scans are necessarily performed at slightly different times, or indeed a model limitation.
Notwithstanding, the systematic uncertainty determined for the October 2010 scans is
conservatively determined by considering both points of overlap with the x* constraint
(green) and is still shown to be small (Sec. 16.7). In contrary, the consistency seen for
scan (pair) VII for May 2011 (Fig. 16.7(c)) is very noteworthy, and both x; and ko are
unambiguously determined to be very small.

The width of the blue band implied by the luminous centroid movement in Fig. 16.7(e)
includes an approximate systematic of having neglected the beam crossing angle, cf. Fig.
16.7(d), an effect giving rise to ~ 75% error on the measured value, as determined numer-
ically. Nonetheless, these bands still provide a good constraint on x12. The width of this
band is now the quadrature sum of this systematic and the previously determined error
neglecting beam crossing angles. (See Appendix E.2 for a description of the determination
and the particular values used.)

The following section describes how a beam crossing angle can masquerade as an
effective x-y beam correlation, and how these numerically determined systematics are

given theoretical footing.

TABLE 16.4. Constraints on individual beam widths. Errors are deter-

mined by taking the approximate widths of the corresponding overlap re-
gions in Figs. 16.5(a)-16.6(b).

Parameter October scan IV October scan V. May scan VII May scan VIII

Ozl 60.9£1.0 pm 60.6£1.0 ym  40.2£1.0 pm  40.2£1.0 pm
022 53.3£1.0 pm 53.8+1.0 pm  40.4+1.0 pm  40.4£1.0 pm
Oyl 58.7+£1.0 pm 58.7+1.0 pm  40.941.0 pm  40.9£1.0 pm
Oy2 57.8+£1.0 pm 57.8+1.0 pm  42.6+1.0 pm  42.6£1.0 pm

TABLE 16.5. Table of bunch-averaged convolved beam widths (3) mea-
sured during scans IV, V, VII and VIII.

Scan Yy (pm) X, (pm)
Scan IV 81.0 82.3
Scan V 81.0 82.3
Scan VII 57 59

Scan VIII 57 59
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FIGURE 16.7. Constraints on the correlation coefficient of each beam. In
the following cases, the beam crossing angle has been neglected: Figs.
16.7(a) and 16.7(b) show October 2010 scans IV and V respectively, where
16.7(c) and 16.7(d) show May 2011 scans VII and VIII respectively. Whilst
a good approximation for scans IV and V it may not be a valid approxima-
tion to neglect beam crossing angles in VIII. The inclusion of the crossing
angle is shown in Fig. 16.7(e), where the inclusion serves to widen one
band. In all of the above, the green bands are constraints implied by the
measured correlation of the luminous region, where the remaining bands
are due to the measured quantities d({z,y})/dhy, . of Eqs. 16.11 (blue)
and 16.12 (red).
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TABLE 16.6. Constraints on the z-y correlation coefficient, x, for each
beam. Again, errors are approximate widths of the corresponding overlap
regions, this time in Figs. 16.7(a)—16.7(d).

Parameter October IV~ October V.= May scan VII May scan VIII

k1 from d(y)/dhy, (ted) —0.0840.01 —0.09+0.01 0.010+0.005 0.015 % 0.010
k1 from d(z)/dh, (blue) —0.16+0.01 —0.18+0.01 0.005+0.010 0= 0.005

ko from d(y)/dhy (red)  0.084£0.01  0.09+0.01 0.005+0.005 0 0.010
ko from d(z)/dh, (blue) 0.1540.01  0.1740.01 0.010+0.010 0.015 = 0.005

16.6. The effect of beam crossing angles

Realistically, the profile for each bunch should be transformed accordingly to mirror
any small crossing angle in the collider. The numerical impact of such half-crossing angles
of the order ay./2 ~ 100-120 prad in a single plane, e.g. with og./2 ~ 0 prad, is
safely negligible for observables of scans IV and V under consideration in this analysis.
However, the introduction of a non-zero second crossing angle ay,/2 ~ 20 urad (which
may be determined by observing the z motion of the luminous centroid during a scan in
the x direction) for scan VIII gives rise to certain observables for which it may be argued
otherwise, and we will correspondingly introduce an appropriate systematic error, whose
effect will be to relax the constraints on 1 2.

Generally it is seen that the aforementioned approximation of neglecting any beam
crossing angles is sufficient for the determination of k1. It will be shown here, in ad-
dition, that the approximation is still valid insofar as determining the individual beam
widths. The effect of having neglected crossing angles in the determination of x1 2 is then
reintroduced as a systematic on the measured d{{x,y})/dhy, .1 values, which has the ef-
fect of relaxing one constraint and slightly improving the consistency of scan VIII, as in
Fig. 16.7(e).

16.6.1. Including crossing angles in the covariance matrix. Consider the co-
variance matrix for a single-Gaussian model which includes beam correlation but does not
account for any beam crossing angle, as in Eq. 16.3. In this special case, we have a neat
factorization of the x- and y-dependence from the z- and ¢-dependence, which is the basis
for the independent two-dimensional study of beam correlation.

Passively transforming the coordinate system (for the correlated model) in order to
additionally model a small crossing angle in either the x-z or y-z plane (or both7) and
retaining only linear, bilinear and quadratic terms in the corresponding rotation angles,

o> and oy, respectively, one obtains

2 2 2 2 2
Oyt Qg 03 KOy Oy — Qgz Qyz 0y Qg O
_ o 2 2 2 2 _ 2 (16 18)
g = KOy Oy — Qgzy Oy O oy + 0, 0% Qyz O .
2 2 2
Qyr O —Qy, O} oy

where the beam index ¢ has been dropped.

"Commutation does not pose an issue here, since the angles in question are very small.
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One is at liberty to restrict attention only to the features of the two-dimensional
projection of the beam densities in the z = 0 plane, in which case is it not necessary to
consider terms in the final row or column of Eq. 16.18; such elements would be important
in the study of the z-movement of the luminous centroid, for instance. However, one may
study, as before, just the terms directly affecting the z- and y-dependence of the beam
profile.

It is now observed that beam crossing introduces corrections to the transverse beam
widths (due to extra terms on the diagonal) and a new effective beam correlation in the off-
diagonal terms K o, 0y — iz Oty o2. Quadratic and bilinear terms in the crossing angles
have been retained, since if they appear multiplying o2 they may still be numerically
large. As usual, however, terms beyond the linear coupling, x, have been ignored. Other
conservative approximations have been invoked in deriving this rotated covariance matrix,

such as 0, , < 0, etc.

16.6.2. Numerical impact and discussion. The beam crossing angle can indeed

masquerade as x-y correlation, if the term o oy, o? is of a comparable magnitude to

2
k0, 0y. However, one requires at least a small crossing angle in both planes, which did
not appear to be the case for scans IV-VI, for which the zero crossing angle was a good
approximation. Scans VII-IX indicate a crossing angle in both planes, where it may be
argued that this approximation begins to break down.

An approximate numerical evaluation reveals the extent to which this approximation
fails for scans VII and VIIL. Taking o, ~ 70mm, oy, ~ 20 urad, oy, ~ 120 prad and
0z &~ oy ~ 40 pm (which are very reasonable for the May 2011 data) along with x which

was found® to be of order 0.01 yields:

gz Oty ag ~ 107° mm?

KOy Oy ~ 107° mm?

This justifies the choice of assigning a ~ 50%-80% systematic to the determined x values
for these scans. The specific uncertainties within this range may be determined by ap-
pealing to the actual values of a,. ay . o2 and Ko, oy on a case-by-case basis, e.g. as in
Qaz Qyr 02 (K Oy Oy).

Finally, the numerical impact on the determination of the beam widths is addressed.

Taking the same order-of-magnitude values reveals:

2
Tz

2

o2, 02~2-10"%mm

2 2 -5
a0, ~7-107° mm

2

These are to be compared with the original widths used: o2 ~ ag ~ 2-10"3mm?. In
conclusion, the May 2011 scan analysis (scans VII and VIII) is still perfectly valid, since
this error corresponds to ~ 1.7 % on the measured value of o, and is negligible on o, —
the estimated error on the current determination from luminous centroid movements and
luminous width constraints was already ~ 3 %, so taking the error from crossing angle in

quadrature means the error should be quoted slightly higher, at around ~ 4%, but this

89ee Tables 16.4 and 16.6 for details.
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does not affect the aim of the study: a determination of k and its impact on the measure
luminosity.
Figure 16.7(e) shows how the inclusion of the systematic due to beam crossing some-

what improves the consistency of the overlap region for the extraction of x1 .

16.7. Error on luminosity

The standard formula for luminosity, L = [ £ dZ over all space, may be derived from
the assumption of uncorrelated, single-Gaussian beams. It is given by Eq. 16.1, where

Yz,y are the so-called convolved beam widths,

Ei’y = o-g,y;l + 0?3,3;;2' (16.19)

For a model that includes beam correlation, these definitions must change accordingly.
If we are blind to correlation, and therefore ignore it in a naive computation of the
luminosity, the ratio of the luminosity with the beams separated in the z-direction by

some amount h and the luminosity measured at zero separation is

L(h) h? B h?
I0) ~ exp [_2(05%1‘1‘032) = exp <—22%> . (16.20)

The vdM analysis gives us direct access to this value, since it is simply related to the

width of the resulting Gaussian distribution. A similar equation holds for a y-scan, giving
DI
Yy

Explicitly including beam correlation in our considerations, this becomes

L 2 2
L) _ pd - . h b =exp - (16.21)
L(0) 2 [EI — (mamayl + Hgaxgayg) /Ey] o3

T

and, of course, a similar equation holds for the y-scan. The tilde is used to distinguish
this luminosity from that used in Eq. 16.20 above. Note: Ziy are the ones defined in Eq.
16.19. Here, one can then solve for the measured convolved beam widths in the correlated
model (denoted by a bar), to obtain

=2 9 (K10z1041 +/€20m20y2)2
Yo =37 —

T xT 22
Y

(16.22)

and similarly for fz.g A binomial expansion reveals that ¥, , are independent of linear
terms in K1 o:
iw,y = Y.y + bilinears + quadratics + h.o.t. (16.23)

explicitly demonstrating the formal validity of its constraint on the individual beam widths
(which were sought before attempting to constrain the correlation coefficients).

In the standard prescription, one would use the measured values of iz,y to determine
the luminosity using Eq. 16.1. However, the actual (k-corrected) luminosity, distinguished
with a tilde, in terms of the beam parameters is more complicated, and is given by I}(O)

One may expand the two definitions of luminosity in powers of the correlation coefficients

91t should be noted here that, as always, the 0,,,;1,2 quantities are the projected individual beam widths,
as defined via the covariance matrix in Eq. 16.3, i.e. not the widths in the basis where this matrix would
be diagonal.
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R1,2:
= 1 K1o0001 | K300900y | K1K204102203202
L(0 2 - —ies—— +hot. 16.24
O orss, T amsgss T dmess ZES5:)> R (16.24)

where ‘h.o.t.” are higher-order terms, more than bilinear or quadratic in the x12. Ex-
panding that one which would use in a naive calculation of the luminosity that neglects

potential correlation, one obtains

1 1 Ki021020]  K3029009  K1KoOp10220y20y2
L0 — = Y Y T EE YTV 4 hot. (16.25
O s, = 2m,s, T amds? | amind rxayy ot (16:25)

The first term in each series is exactly that obtained from an uncorrelated model. The
bilinear and quadratic terms in each series differ by a factor of 2. Taking the fractional
difference between the two definitions of the luminosity therefore gives the error induced by
beam correlation on the measured luminosity. Using the results of the preceding analysis,

one obtains ~ N
LjiL(O) < 0.1% and L%L(O)
L(0) L(0)

for the October 2010 scan and the May 2011 scan respectively.

< 0.02% (16.26)

16.8. Concluding remarks

In principle, the preceding analysis should be performed on a per BCID basis. The
convolved beam widths are determined in this way, and only their average has been used in
this analysis. In practice, however, statistics may become a problem. It has, nonetheless,
been possible to constrain the model in a consistent fashion for scans VII and VIII, but
October scans IV and V are indicative of a model limitation, due to the lack of consistent
overlap for the s 2 constraints. A discussion of extensions to the single-Gaussian model
which have been considered is presented in Chap. 18. The preceding analytical analysis
has been corroborated using a completely numerical tool, confirming the determination
of the various parameters by reproducing the same movements with these parameters as
input.

In summary, it has been possible to determine the parameters of the single-Gaussian
model that give rise to the salient linear phenomena observed in distributions of the
luminous centroid position with respect to beam separation, with the aforementioned
October exception in mind. Even so, the results still indicate that one is dealing with
a small correction to the luminosity via the neglect of beam correlation. A systematic
method has been developed to constrain these parameters in a manner which is formally
consistent, by studying the dependence of these phenomena analytically on parameters
such as the beam correlation coefficient.

In addition, it would be interesting to see how one could make a minimal addition to
the single-Gaussian model to mitigate the problem of inconsistency of the x determination
of scans IV and V.

The present study concerns October 2010 and May 2011 in-plane scan data. In addi-
tion, two out-of-plane scans were performed for each of the two months, namely scans VI

and IX, in which beams were offset in the orthogonal-to-scan direction. These additional
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scans should provide the ability to study the tails of the distributions of the luminous
centroid movement with separation. In fact, the out-of-plane scans performed in May
2011 (scan IX) had a fixed orthogonal displacement of several times the nominal Gaussian
width of the beams themselves, where the October scans (VI) were performed with a much
smaller constant offset, closer to a single Gaussian width. This makes the scan IX data
an ideal ground upon which to study non-linearities of the luminous centroid movement
observed in these tails.

A foreseeable extension to the model presented herein would be to that of a double-
Gaussian model, where each beam is modelled as the sum of two concentric Gaussians,
each with different widths and peak heights. In particular, one would wish to recover the
linear phenomena observed at small scan separations, so the model should consist of a tall
and narrow ‘primary’ Gaussian with a ‘secondary’ flat and broad Gaussian which would
begin to dominate the dynamics in the high-scan-separation régime. For sufficiently high
scan separations (or, equivalently, an out-of-plane scan at large offset as in scan IX) the
secondary Gaussian would dominate the dynamics of the luminous centroid movements,
even to the extent that a carbon-copy of the single-Gaussian model presented here might
be appropriate, neglecting the primary Gaussian, out of whose jurisdiction one becomes.
In principle, one could then constrain the parameters of the secondary Gaussian in this
régime, then proceed to construct the double-Gaussian model with all the parameters
determined thus far, with the aim of reproducing the non-linear tail data observed for the
in-plane scans.

One could further isolate the effect of the primary Gaussian by fitting only to high-
separation scan data for out-of-plane scans, in a way analogous to how the linear fits have
been made for in-plane scans neglecting the non-linear tail data in this analysis.

The following chapter aims to extend the analysis formalism presented here, in order

to explicitly account for the possibility of non-zero beam crossing angles.
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CHAPTER 17

Transverse beam coupling part 2: An analytical
determination of the parameters of the single-Gaussian
model of bunch densities and their impact on the

luminosity calibration by the van der Meer method

17.1. Introduction

In this chapter, the effect of linear transverse coupling on the luminosity calibration by
the van der Meer (vdM) method [118]—presented for the reader in Sec. 15.3—is studied
for additional vdM scans which took place in March 2011, April 2012 and July 2012. The
principal method is already described in Chap. 16 and [115], but this chapter presents
an extension of the formalism to include explicit beam crossing angles in either plane.
The new analysis is then followed with a compilation of all results obtained, for easy
comparison. Finally, I conclude this chapter with a discussion of the results.

Upon repeating the analysis of October 2010 and May 2011 on data from more recent
vdM scans, it has become unequivocally clear that the single-Gaussian model presented
herein is insufficient to describe the high-separation scan data, since in this region one
generally observes strong non-linear tails in the data. It was demonstrated in Eq. 16.9
the manner in which the single-Gaussian model may only describe linear movements of
the luminous centroid during a vdM scan. It is clear that a more sophisticated model is
required, but this necessarily requires the dimensionality of parameter space to more than
double in most cases, e.g. a double-Gaussian model. Furthermore, the single-Gaussian
model has the remarkable property that it is easily studied analytically, without recourse
to numerical methods, even in the case of arbitrary z-y coupling and a beam crossing
angle. For this reason, this analysis—as applied to central scan data which is usually very
linear—has formed the starting point for analyses using more sophisticated models, since
it may be used to provide a sensible starting point for a search within a large parameter
space. Maintaining the single-Gaussian as the principal model for this analysis, I begin
now by addressing the inclusion of explicit beam crossing angles.

17.2. Analysis method and formalism with beam crossing angles

An analysis of the characteristic length scales of this problem reveals a subtle incon-
sistency in the formalism of Chap. 16, when there exists a beam crossing angle in either
(or both) direction(s). The problem, as analysed in Sec. 16.6 and [115], stems from the
fact that, whilst the quantity a—the beam crossing angle in radians—may be the smallest
dimensionless scale of the model (typically ~ 10 — 100 prad), if it appears multiplying the

large z width, o,, of either beam then the numerical impact may be significant. In fact,
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the numerical impact of such a term may be approximately that of the off-diagonal terms
in the covariance matrix (Eq. 16.3) and will thus manifest as an effective correlation. In
addition, a beam crossing angle gives rise to a new phenomenon: movement of the z po-
sition of the luminous centroid. Overall, it is identified to play a significant role in some
of the vdM scans considered in this chapter.

One includes a non-zero crossing angle into the single-Gaussian model by simultane-
ously making the following passive transformations of the coordinate system for each of
the two beams:

- - « —
Ty — X1 = R <:|:§) T (171)
and
- - —1 ay
To — T = R (:l:g) X9, (17.2)

where the particular choice of + and — is chosen according to convention. Here, R is a
rotation matrix by an angle a/2 of the vector Z;, given in Eq. 16.3, about the relevant
axis. Indeed, the rotations may be compounded to include a crossing angle in both planes.

This way,
[,(.T, Y,z t) O(pl(aj7 Y, =, t) pz(l“, Y,z t)

1
- eXp{g [#1- (1) -1+ 32 (037) ‘fﬂ} (17.3)
%exp{_; [fl .R*l . (gl_l) Rfl +f2 - R- (Q2_1) ,R*l (f2j|}

The transformation may actually be absorbed into the definition of the covariance matrix,
which will result in at least some of the remaining zero elements in Eq. 16.3 becoming
non-zero. In this sense, beam crossing angle is mathematically equivalent to x-z and y-z
coupling. Revisiting the arguments presented at the start of this section, this coupling
may be numerically as large as transverse (x-y) coupling.

The mathematical difficulty that one encounters when trying to include a beam cross-
ing angle is that the expression in Eq. 16.4 for the luminosity no longer factorizes. How-
ever, as shown below, an analytical solution may still be obtained, and the corrections to
the previous model appear explicitly as new terms in a set of equations similar to Egs.
16.10 — 16.13.

The solution to this problem begins by identifying that the terms in the exponent of
Eq. 17.3 are either bilinears or quadratics in the four space-time variables x, y, z and t.

Thus, we may write the expression for the luminosity in matrix form, as

4 4
1
L(z,y,z,t) =N exp 3 Z z; Kijxj + Zji z; | =N exp(€), (17.4)
ij=1 i=1

where N is just a proportionality factor. In this expression, x1, x9 and x3 are x, y and
z, respectively, and x4 is t. One can always determine the components of the vector J or

the elements of the matrix K by differentiation of the exponent:
d&

Ji =

! dl’i

B d*&
dx,;xj '

Vk € {1, 2,3,4} and Kij =

(17.5)

x—0
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One need not worry about any constant terms appearing, since these may be absorbed
into the overall factor A/, which will remain unimportant in our analysis here.

In order to perform the temporal convolution that appears in the definition of the
luminosity in Eq. 16.4 we integrate Eq. 17.4 over x4 = t to obtain

J2

L(wy,2) /OO dt Lz, y, 2, 1) = N V2T SR Z + 23: 7!
xr,Y,z) = x,Y, =, - exp A xz .T] ix’i )
%) \ K i,7=1 =1

(17.6)
where x; are now components of the 3-tuple (z,y, z), since one variable has been integrated
out. K’ and J’ are a 3 x 3 matrix and a 3-tuple respectively. Written in terms of the

original components or elements of J and K, they are

Kot Kyt K.+ K
Ktt +Ka::1: K:):y o sz* L2t

K2 Kt Kt
K, — o Kthyt _ Kytht 17.
ny Kyt Ktt ‘;K]gy Ky;{2 Kt ( 7 7)
Kot Kot _ BytKae K7
K Kt Kyz Kt Ky Kex
and
Jy — JtK:ct
g = g - 2Eu (17.8)
. ti 2t
Jz Kyt

As before, one obtains the luminous centroid (the position of the peak of the luminosity

density) by maximizing £(Z). Thus

3 3
oL 0 1
— =N — exp —55 xiKZ(]mj—FE J! x;
i=1

a$k al’k i1 (17 9)

3
( ZKkzszFJk:) exp ffoZ :UjJrZJZ"azi = 0.
i,j=1 =1

—

The co-ordinates of the maximum, (), are then obtained by solving the three simultaneous

equations
3
> K = Jj. (17.10)

By differentiating the resulting expression for (Z) with respect to h, or h, (the beam
separations) and expanding the (six) results in x;2 and Oz y:2, One obtains a new set
of equations, performing the role of Egs. 16.10 — 16.13. The new equations are rather
cumbersome, so only two particularly elucidating examples are included here, which have

0z, =0 and a = ay, # 0:

d(y) 051 - ‘7332 2‘7@2,10'32 - 052‘731
- 17.11
dh, vz T gmr (17.11)
d(z) a (¥ - X7)
- . 17.12
dh, iz (17.12)

These are further simplified by setting 0.1 = 0.2 = 0., and noting that ¥, < ¥,. The
reader is encouraged to compare Eq. 17.11 with Eq. 16.13, and note the fact that Eq.
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17.12 is now no longer identically zero. Furthermore, the symbol ¥ is being used with
the same definition as Eq. 16.14, and it is stressed that this no longer corresponds to the
definition of the convolved beam width in the case of non-zero beam crossing angle. For
a compendium of all six equations, see Appendix E.3.

The actual convolved beam width one measures during a vdM scan, henceforth written

Y, is given in terms of 3 and a single crossing angle « by the expression [122]

~ 202 «
1 1 z
xX=%S5 where ST = \/1 + 50l tan? (—2) ) (17.13)

where o, is the z-width of the colliding bunches. Thus, when beam crossing angles are
present and significant, the above definition will be used when considering the constraint

implied on the individual beam widths.

17.3. Application to in-plane vdM scan data

In this section the fits of the luminous centroids, along with the constraints they imply
on the individual beam parameters, are presented for the in-plane vdM scans in March
2011, April 2012 and July 2012. Finally, a summary of all scans (including October 2010
and May 2011) is presented.

17.3.1. March 2011. Figures 17.1 and 17.2 show scan data for Scans I and II of
(March) 2011. Specifically, the position of the luminous centroid in (z,y,z) is shown,
for each scan, as a function of beam separation, h, in either the x- or the y-plane. A
linear fit to this data has been applied to the central scan data, since these data remain
largely linear. The non-linear tails are a clear sign that one requires a model more sophis-
ticated that the single-Gaussian model, which is incapable of reproducing such non-linear
phenomena. Nonetheless, a linear analysis continues, in order to find the parameters of a
single-Gaussian model that is expected to dominate the evolution of the luminous centroid
at small beam separation.

Scans I and IT did not call for a beam crossing angle to be introduced into the model.
The justification for this can be seen by observing the final two plots in both Figs. 17.1
and 17.2, where the gradient of the luminous centroid movement in z with respect to scan
separation is very small. One can quantify this by saying if d(z)/dh,, < 0./v/23,, then
we may ignore the crossing angle in the (z;,z) plane. The justification for this limit is
given in Appendix E.4. This does indeed imply that a residual crossing angle was present
in reality, but at this level it has been learnt to be negligible. Since it has been chosen
to neglect beam crossing angle, no knowledge of the z profile of the proton densities is
required, since the factorization of Eq. 16.4 still holds.

The errors on the constraint plots shown in Figs. 17.3 and 17.4 (i.e. the widths of
the constraining bands) arise as follows: the bands of positive slope, which describe the
constraints due to either d(z)/dh, or d(y)/dh,, follow directly from the errors on the
fitted gradients of Figs. 17.1 and 17.2. The width of the band of negative slope directly
corresponds to the error on the convolved beam width for the given scan. Table 17.1

summarizes the convolved widths used. The quoted values are the BCID-averaged widths,
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and the quoted errors are the standard deviations of the values that go into these averages.
Table 17.2 shows the values used as input for the correlation of the luminous region.
Finally, Fig. 17.5 shows the constraint plots for the correlation coefficients x; and ks.
The red and blue bands come from the requirement that the expressions for d(z)/dh, and
d(y)/dh, must satisfy the fitted quantities within the fit errors. In addition, the errors on
the constrained individual beam widths have been propagated through into these plots,
which is responsible for giving the bands their arched appearance. The orange bands
are constructed according to the requirement that x; and ko satisfy Eq. 16.15 for the

L within errors. The value of k£ is taken

measured correlation of the luminous region, k
to be the X-Y scan pair BCID-average, with the error quoted as the standard deviation

on the numbers that go into this average.

TABLE 17.1. Convolved widths used as input in the March 2011 analyses.
The quoted values are the BCID-averaged widths, and the quoted errors
are the standard deviations of the values that go into these averages.

Scan X, (pm) 3, (pm)

I 229£16 249+19
I 200£16 215418

TABLE 17.2. Luminous region z-y correlation coefficients. The quoted
values are the scan-point-averaged values from X-Y scan pairs, and the
quoted errors are the standard deviations of the values that go into these
averages.

Scan KL

1 0.014 + 0.001
I 0.013£0.001
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FIGURE 17.2. Luminous centroid movements during Scan II in (March)
2011. The continued presence of clearly non-linear tails again require that
the fits are to central scan data only, in the range [—0.3,0.3] mm. The
errors on the luminous centroid positions are of statistical origin only.
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FIGURE 17.3. These plots show the constrained region of the (o1, 0,2) and
(oy1,042) parameter spaces for Scan I of March 2011. The constraints are
determined by a direct comparison between the fitted sloped of Figs. 17.1
and 17.2 with Egs. 16.10 and 16.13 (producing the bands with positive
slope) in addition to supplementary information given by the measured
values of ¥, and Y, the convolved beam widths (bands with negative
slope). The errors directly represent either the fit errors for the gradients,
or the error on the convolved beam width, as explained in the text.
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above.
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FIGURE 17.5. The constrained regions of (k1, k2) space, for scans I and 11
of March 2011. The constraints are generally very consistent, especially in
scan II, and they are both strongly indicative of negligibly small correlation
coefficients from the standpoint of the luminosity calibration error. The
bands of negative slope come from a direct comparison of Eq. 16.15 with
the values of £* measured for the luminous region. The widths of the bands
directly reflect the errors on these measurements. The bands of positive
slope come from comparing the analytical expressions for d(x)/dh, (blue)
and d(y)/dhg (red) with the corresponding fitted slopes of Figs. 17.1 and
17.2. The widths come from the fit errors and the propagated errors from
the constrained individual beam widths.
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17.3.2. April 2012. It should be clear from Figs. 17.6 — 17.8 that much of the
April 2012 vdM scan data is almost pathologically non-linear, from the standpoint of the
single-Gaussian model. Whilst effort has been made to isolate a central, small-separation
region of data for which one can approximately justify a linear fit, this remains close to
impossible. The final extracted individual beam parameters should therefore be used with
caution, but give ballpark figures with corresponding errors nonetheless.

The reader is encouraged to keep in mind that this analysis aims to determine the
uncertainty induced by transverse beam correlation on the luminosity calibration by the
van der Meer method, which itself assumes factorization of the transverse proton densities
of the bunches in z and y. It does so by assuming a Gaussian form for these densities,
on account of the analytic solubility it offers. While there will therefore in principle be a
model uncertainty associated with this choice of Gaussian form on the determined degree of
correlation, this study does not intend to provide an estimate of the fit model uncertainty
associated with determining the luminosity calibration itself (by way of analysing the van
der Meer scan curves). A separate study has shown this distinct uncertainty to be at the
few percent level for these April 2012 scans [123].

Furthermore, the large gradients of the luminous centroid movement in z (with respect
to beam separation in y) are highly indicative of the necessity to include a beam crossing
angle into the model. Indeed, there is a nominal crossing angle in the y-z plane. For this
reason, we begin using the extended analysis described in Sec. 17.2 from the beginning. As
previously mentioned, the inclusion of a crossing angle necessarily introduces a correlation
between the bunch profiles in z, with those in x and y. Therefore, information about the
z profile will be required as input, and the width in z is taken from an independent source
known as the Beam Quality Monitor (BQM). The profile of the proton distribution in z is
relatively poorly known, compared with that of x or y. Nonetheless, the z width is used
in the sense of being an approximate measure of the width over which 68% of the protons
are contained, like a Gaussian width. Fundamentally in the analysis, this width sets the
scale for the dimensional parameters oy, and a ., the crossing angles.

Table 17.3 shows the parameters assumed a priori. The value of o, is assumed to
be the same for all bunches of both beams. The crossing angles used are the nominal
crossing angles. The values for the correlation of the luminous region, x%, are determined
by averaging over all colliding BCIDs.

Once again, constraint plots are generated from the fitted slopes of the movements of
the luminous centroid, supplemented with the input data above, and the expressions for
the convolved beam width (in the presence of a non-zero crossing angle) and the correlation
of the luminous region.

It should be noted that modelling of the crossing angle is important here for a correct
determination of the widths (in y). Since one crossing angle is still small, it has limited
impact on the determination of 12, however, which would require a large crossing angle
to be present in both planes. For more information, the reader is referred to the discussion
in Sec. 16.6 (also [115]).
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Figures 17.9 — 17.12 show the constrained parameters of the single-Gaussian model (in
the small-scan-separation limit) for the April 2012 scans. The widths of the constraining
bands are determined in exactly the same way as described for March 2011.

TABLE 17.3. Table of input parameters for the April 2012 analysis. Errors
on X values are standard deviations across all BCIDs, whilst the actual
value is taken to be the BCID-average. Errors on x* values are standard
deviations across all scan points with the actual value given by the average
across all scan points in a given X-Y scan pair.

Parameter Value

/2 0 prad

Oy /2 145 prad
L (24.9 4+ 0.4) ym
zily (32.5 £ 0.3) um
yil (25.2 4 0.3) ym
Eé’[l (32.5+£0.3) um
il (26.3 £ 0.3) um
st (33.140.3) um
o, 90 mm
KE —0.02 +0.04
KH —0.03 £0.04
KE —0.03 4 0.05
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F1cUre 17.6. April 2012 Scan I data.
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The linear fit is to the central

scan points corresponding to separations < 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.
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FicUure 17.7. April 2012 Scan II data. The linear fit is to the central
scan points corresponding to separations < 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.
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FicUure 17.8. April 2012 Scan III data. The linear fit is to the central
scan points corresponding to separations < 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Ficure 17.9. Individual beam widths for April 2012 scan 1. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.6 with Egs. E.3 and E.5 in the case of significant beam crossing
angle (producing the bands with positive slope) in addition to supplemen-
tary information given by the measured values of 3, and X, the convolved
beam widths (bands with negative slope). The errors directly represent ei-
ther the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.

19.0F 22 5F
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1 > 215}
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17.5} 21.0f

17.0L . . . . 205k . R . .
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Ox1 Oyl

FiGure 17.10. Individual beam widths for April 2012 scan II. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.7 with Egs. E.3 and E.5 (producing the bands with positive slope)
in the case of significant beam crossing angle in addition to supplementary
information given by the measured values of X, and X,, the convolved
beam widths (bands with negative slope). The errors directly represent
either the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.
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Ficure 17.11. Individual beam widths for April 2012 scan III. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.8 with Egs. E.3 and E.5 (producing the bands with positive slope)
in the case of significant beam crossing angle in addition to supplementary
information given by the measured values of X, and X,, the convolved
beam widths (bands with negative slope). The errors directly represent
either the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.
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0.2F
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-0.1}

~02k, . -V ~0.2k, . A w
202 =01 00 01 02 202 -01 00 o0l 02

K1 K1

02 <01 00 oI 02
K1

FiGurE 17.12. Correlation coefficient constraints for April 2012 scans I, I1
and III. The band of negative slope comes from a direct comparison of Eq.
16.15 with the values of x* measured for the luminous region. The width
of the band directly reflects the errors on this measurement. The bands of
positive slope come from comparing the analytical expressions for d(x)/dh,
and d(y)/dh, in the case of beam crossing angle (Egs. E.4 and E.6) with
the corresponding fitted slopes of Figs. 17.6, 17.7 and 17.8. The widths
come from the fit errors, though the errors from the constrained individual
beam widths have also been propagated through. The consistency of these
constraints is rather poor, compared with March 2011 and July 2012. This
is likely to be attributable to the use of a linear model where the data
clearly have non-linear features, however, the constraints still point to very
small linear z-y coupling, which has negligible impact on the luminosity
erTor.
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17.3.3. July 2012. The residual crossing angles for July 2012 were inconsequential
again, as corroborated by the last two plots in Figs. 17.13 — 17.18. Indeed, the nominal
crossing angles for this set of scans were zero by design. Table 17.4 shows all the input data
used and required for the associated linear coupling analysis. One again, the quantities
are all BCID-averaged (over X-Y scan pairs in the case of /‘iﬁ) with the error quoted as
the standard deviation of the values that went into these averages.

There are distinct regions of linear behaviour in the central scan regions, as shown
in Figs. 17.13 — 17.18, which is perhaps the reason for good consistency of the finally
determined correlation coefficients in Fig. 17.21. The intermediate determination of the
individual beam widths is shown in Figs. 17.19 and 17.20. Once again, the errors deter-
mined from the individual width constraints are propagated into the plots constraining
the values of k12 for each scan.

The plots are presented in the same way as for March 2011 and April 2012, so the
reader is referred to the text in Sec. 17.3.1 for a description. Furthermore, the widths of

the constraint bands are also determined in the same way.

TABLE 17.4. Table of input parameters for the July 2012 analysis. Errors
on Y values are standard deviations across all BCIDs, whilst the actual
value is taken to be the BCID-average. Errors on % values are standard
deviations across all scan points with the actual value given by the average
across all scan points in a given X-Y scan pair.

Parameter Value

v (120 + 2) um
22’ (125 £ 3) um
DI (124 £+ 2) um
E{\%’ (128 + 3) pm
PG (123 £ 3) um
zgl (128 + 3) um
yyi (144 + 4) pm
2\;}’“ (163 & 4) pm
NEL (121 + 3) um
wy (127 £ 2) pm
pIX (153 £ 5) um
nX (180 +7) pm
K& —0.004 £ 0.010
K —0.002 + 0.010
Ky —0.003 £ 0.011
;-cévin 0.02 & 0.08
k& —0.001 £ 0.012

KE 0.01 40.12
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FiGure 17.13. July 2012 Scan IV data. The linear fit is to the central
scan points corresponding to separations < 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.

0.6



260

Luminous centroid position <x>

Luminous centroid position <y>

-0.155

-0.16

-0.165

-0.17

-0.175

-0.18

-0.185

-0.19

-0.5-0.4-0.3-0.2-0.1 0 0.10.20304

0.778
0.776
0.774
0.772

0.77

0.768
0.766
0.764
0.762

0.76

17. TRANSVERSE BEAM COUPLING PART 2

July 2012, Scan V (5)

ld<x>/dhX =0.00313 + 0.00162
t i

.................... . .

| Bl

Beam separation h, (mm)

July 2012, Scan V (5)

0.5

5 ]d<y>/dh =-0.00087 + 0. OOOOF l

: llli o

-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 05

0
-2
\

s *

.§ 6
o

T -8
[5]

g -10
[0}

o
o0 -12
>
o

£ .14
g

3 -16

-18

Beam separation h, (mm)

July 2012, Scan V (5)

| d<z>/dh, =0.24967 + 0.02141

1 ] II!!!-

TR

[T

-0.5-0.4-0.3-0.2-0.1 0 0.1 0.20.3 04 05

Beam separation h, (mm)

Luminous centroid position <x>

Luminous centroid position <y>

-0.162
-0.164
-0.166
-0.168

-0.17
-0.172
-0.174
-0.176
-0.178

-0.18
-0.182
-0.184

-0.6

0.82
0.81

0.8
0.79
0.78
0.77
0.76
0.75
0.74
0.73
0.72

-0.6

Luminous centroid position <z>

July 2012, Scan V (5)

d<x>/dhy =0.00280 + 0.00362 l ‘

g et tH]

-04 -0.2 0 02 04
Beam separation hy (mm)

July 2012, Scan V (5)

0.6

d<y>/dh, = 0.00829 + 0.00193 [

..!-...-!-I-.-' o-.-o-.-..-..-.r....

-0.4 -0.2 0 02 04
Beam separation hy (mm)

July 2012, Scan V (5)

0.6

d<z>/dhy, = -6.09567 + 1.05903

“ [ ] l I ¥ .'.i.!.!'iiill

-04 -0.2 0 02 04
Beam separation hy (mm)

FIGURE 17.14. July 2012 Scan V data. The linear fit is to the central scan
points corresponding to separations < 0.1 mm. The errors on the luminous
centroid positions are of statistical origin only.
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FiGure 17.15. July 2012 Scan VI data. The linear fit is to the central
scan points corresponding to separations < 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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FiGure 17.16. July 2012 Scan VII data. The linear fit is to the central
scan points corresponding to separations < 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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FIGURE 17.17. July 2012 Scan VIII data. The linear fit is to the central
scan points corresponding to separations < 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.18. July 2012 Scan IX data. The linear fit is to the central
scan points corresponding to separations < 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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FIGURE 17.19. Constrained individual beam widths for scans IV — VI,
performed in July 2012. The constraints are determined by a direct com-
parison between the fitted slopes of Figs. 17.13, 17.14 and 17.15 with Egs.
16.10 and 16.13 (producing the bands with positive slope) in addition to
supplementary information given by the measured values of ¥, and %,
the convolved beam widths (bands with negative slope). The errors di-
rectly represent either the fit errors for the gradients, or the error on the
convolved beam width, as explained in the text.
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16.10 and 16.13 (producing the bands with positive slope) in addition to
supplementary information given by the measured values of ¥, and ¥,
the convolved beam widths (bands with negative slope). The errors di-
rectly represent either the fit errors for the gradients, or the error on the
convolved beam width, as explained in the text.
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17.4. Compilation of all vdM scan results

The following tables collect all the results of beam width determinations across in-
plane scans from October 2010 to July 2012. Since k12 values are often determined with
inconsistencies present in the relevant constraint plots, they are not tabulated here, and
the figures themselves may be used. That said, the values of k12 have been shown to be
consistently negligible as far as the luminosity error is concerned.

TABLE 17.5. October 2010 widths (pum)

Scan v Vv

oz1 609+1.0 60.6£1.0
oy1 58.7x£1.0 58.7%£1.0
oz2 953.3%£1.0 53.8+£1.0
oy2 57.8+£1.0 57.8+1.0

TABLE 17.6. March 2011 widths (um) and correlation coefficients

Scan 1 II
Ozl 166 + 12 143 + 11
oyl 179 + 14 155+ 13
029 158 + 11 140 + 11
Ty2 173 £13 149 + 12

k1 —0.03£0.02 —-0.03+0.01
K2 0.06 £0.02 0.05+£0.01

TABLE 17.7. May 2011 widths (pm)

Scan VII VIII

oz1 402+1.0 40.2+£1.0
oy 40.9£1.0 40.9%1.0
oz2 404+10 404+£1.0
oy2 426+£1.0 42.6+1.0

TABLE 17.8. April 2012 widths (ym)

Scan 1 11 IIT

op1 176+03 17.6£0.2 18.4+0.2
oy1 16.2+£0.3 16.0+£03 16.4+0.3
oz 176+0.3 18.0£0.2 18.8+0.2
oy 21.3+£0.2 21.44+0.2 220+£0.2
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TABLE 17.9. July 2012 widths (um) and correlation coefficients

Scan v \Y VI VII VIII X

Ozl 86.0£1.4 88.0£14 87.9+£2.0 999+27 86.6+2.2 107+4
oyl 87.9+1.9 89.9+1.9 89.9+21 115+3  899+13 12145
a2 83.8+1.4 87.4+14 86.2 £ 2.1 104+3 84.44+£22 109+4
Oy2 89.3£21 91.4£2.0 91.1+£21 1163 90.0+1.3 133+5
k1 —0.01£0.02 —-0.01+£0.02 —-0.01+0.02 0.024+£0.05 0+£0.02 0%£0.02
K2 0+0.02 0+0.02 0+0.02 0.02£0.05 04£0.02 0=+£0.02

The transverse size of a single beam may be written in terms of the normalized emit-
tance ey, the value of the interaction-point beta function 5*, and the Lorentz factor of the

beam particles v, as

oy = | (17.14)

y

with v determined simply from F = fymCQ, taking m = Mproton and E = Epeam. It

should be noted that the individual beam widths determined in this manner are indeed
only very approximate, owing to the combination of instrumental systematics and beta
function uncertainties which together are at the +20% level. Nonetheless, it is interesting
to compare the width results listed in Tables 17.5—17.9 above with the widths determined
from Eq. 17.14 taking the design emittance ex = 3.75 um - rad and the nominal beta

functions. The results are collected in Table 17.10 for comparison.

TABLE 17.10. Approximate individual beam widths determined from the
LHC design emittance and nominal beta functions.

Scan f* (m) [nominal] FEpeam (TeV) v op (um) [approx.|
October 2010 3.5 3.5 3730 59
March 2011 11 3.5 3730 105
May 2011 1.5 3.5 3730 39
April 2012 0.6 4 4263 23
July 2012 11 4 4263 98

17.5. Discussion of results and conclusions

An obvious shortcoming of the analysis presented here is that it is BCID blind. Con-
current studies within ATLAS have shown that the corresponding plots showing the move-
ment of the luminous centroid during a scan vary from one colliding BCID to the next. A
more thorough analysis would repeat the procedure but on a BCID-specific level.

We can derive a rough estimate the uncertainty on the determination of the individual
beam widths, owing to this bunch-by-bunch averaging, by appealing to the variation in
the convolved beam widths ¥ determined on a bunch-by-bunch basis from the vdM scans.
Making the approximation that beams 1 and 2 are of equal width o (in either direction)
we have the relation ¥ = /2. We consequently have do = §%/v/2, where § denotes the
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uncertainty on the given quantity. Considering, for example, the October 2010 scans, we
took 0% = 1 um which implies do ~ 0.7 um. A typical individual beam width determined
for these scans is 0 ~ (60 & 1) um, therefore implying an additional uncertainty at the
0.7/60 ~ 1% level.

This study is indicative of negligibly small linear xz-y correlations in all of the scans
considered, and therefore it is predicted that these correlations should have little impact on
the determination of the error of the respective luminosity calibrations, as shown explicitly
for October 2010 and May 2011 scans in Chap. 16 (also [115]). Non-linear effects do still
have a large impact.

It would be interesting to see if SMOG data from LHCb were consistent with the beam
asymmetry indicated in Table 17.8.

A general remark, regarding the error analysis, is that the errors on the luminous
centroid positions (e.g. in Fig. 17.18, but indeed for all such plots in this thesis) are
entirely statistical in nature, and systematics due to vertex resolution, for example, are
not included. Furthermore, the quoted errors on ¥ values in all cases are the standard
deviations across all bunches in the fill, for a given scan, and therefore do not contain
systematics either. Furthermore, the distance scale error, < 1%, is also assumed to be
negligible throughout this analysis.

It has already been stated that the single-Gaussian model is incapable of describing
the non-linear data seen in many of the vdM scans, since this model generates only linear
predictions for the movement of the luminous centroid with respect to beam separation.

Nonetheless, the single-Gaussian formalism remains important, for several reasons:

e The analytic solubility of the model offers a lot of intuition about the expected
behaviour of the luminous centroid movements, in the presence of x-y correla-
tion, beam crossing angles, and asymmetric beam sizes. Furthermore, it provides
insight as to which parameters are important in describing the salient phenom-
ena, and especially where certain approximations are valid, allowing one to make
progress with extracting individual beam information from knowledge only of the
movement of the maximum of the convolved bunch densities.

e It offers a robust method for confining a region of parameter space that, when
substituted into the model, reproduce the central scan data in the large number
of cases where these data are linear.

e More sophisticated models may not offer the luxury of a fully analytical solution,
so numerical methods must be sought. Extensions to the single-Gaussian model
will in general have much larger parameter spaces (often at least double in di-
mensionality) and may thus require significant computing time. The results of
the single-Gaussian model may be used as a starting point in parameter space

for improvement and optimization in a more sophisticated numerical model.

It is hoped that the compilation of results in Sec. 17.4 will prove to be useful for either
current or future analyses of the vdM scan data. The current issue for the luminosity
error may now be restated: k12 values tend to be inconsequential, but the non-linear

tails present in the data give rise to new problems. The principal aim of this analysis
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has therefore changed from just determining the linear correlation coefficients. Now it is
hoped that the analytical formalism itself may be used in finding good starting points for
future vdM scans in experiments across the LHC.

During the writing of the original note for this analysis, a note has become available
which the reader here may wish to consult [124].
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CHAPTER 18

Concluding remarks

I have approached my studies within the ATLAS luminosity measurement task force
from an analytical perspective, in order to complement numerical studies also performed
within the group. It is quite clear that, while an analytical approach can only take us
so far in terms of yielding a solution to a given model, it certainly offers much insight
for such soluble models, beyond that of a purely numerical analysis. Contrarily, while
a purely numerical approach may not rigorously expound the interplay between various
properties of the beams and its manifestation as salient beamspot phenomena, it certainly
allows us to obtain results for models of far greater complexity than the single-Gaussian
model studied in this thesis would permit. It is my hope that the analytical methods I
have developed will continue to complement future numerical studies and provide insight
for the study of more complicated models, which the data clearly demand.

The single-Gaussian model is a linear model, in that it is capable of describing only
those phenomena pertaining to the movements of the luminous centroid which are linear
functions of beam separation. The data clearly display non-linear ‘tails’ however. A
particularly beautiful example of this is the horizontal luminous centroid position vs.

horizontal beam separation, for Scan 2 data of March 2011 (see Fig. 18.1).

Scan |l
0.02 T T T T T T
o | d<x>/dh,=0.0107 + 0.0011 1

-0.02 | 4
-0.04 O
-0.06 SR
008 F—  ° 4
01 3 % .
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|
|

FIGURE 18.1. An example of non-linear tails in beamspot data: The hor-
izontal luminous centroid position vs. horizontal beam separation for Scan
2 of March 2011

Fitting exclusively to the tails of these data, as opposed to the central scan region, it
is clear we would determine different values for the individual beam parameters. A model

that has received much numerical scrutiny is the so-called ‘double-Gaussian’ model, in
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which the individual beams are modelled according to the weighted sum of two Gaussians,
as

p(x;01,02,w) = wpi(;01) + (1 — w) p(z;02) (18.1)
where p;(z;0;) is a Gaussian function of width o;—for the three dimensional case, we
consider a position vector # and a covariance matrix ¢;. Typically one Gaussian is taken
to be ‘wide’ while the other is taken to be ‘narrow’. In this case, the narrow Gaussian
then controls the dynamics of the beamspot phenomena at small scan separations, and is
therefore analogous to the single-Gaussian, while the wide Gaussian has different param-
eters and controls the dynamics of the beamspot phenomena in the tails of the scan data.
In principle, the transition between the two régimes is therefore smooth, as is observed in
the data.

A significant shortcoming of the double-Gaussian model is the multiplicity of the pa-
rameter space, which more-than-doubles: we require an additional set of parameters de-
scribing the second Gaussian, along with a weight, for each beam. I have described ways in
which the parameters may be decoupled from one-another, namely by focusing exclusively
on central scan data and high-separation scan data separately which, one might hope,
would mitigate this complication to a significant extent. Arbitrarily many Gaussians may
be added together in this manner, but it is far from clear that this would be a sensible
approach, given the aforementioned considerations. Already, the double-Gaussian model
places us in a situation where an analytical approach has not yet offered exact solutions for
the various beamspot phenomena—although I have studied the double-Gaussian model to
quite some extent in this manner in order to identify the specific problems—so the bulk
of study has been largely numerically driven.

A particularly interesting phenomenon is presented in Scan 14 data of November 2012
although it is by no means exclusive to these data. The grey curves in Fig. 18.2 are
produced within the framework of the double-Gaussian model, and are various attempts
to model all data points simultaneously by hand. The take-home point is that the double-
Gaussian is incapable of modelling a significant feature of the data: the width of the

luminous region decreases as the beams become separated. The kurtosis of a distribution is
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a measure of how it bulges', with a Gaussian having a kurtosis of precisely zero. Gaussians
have the remarkable property that the width of a product of two Gaussians is independent
of their relative separation.

The product of two double-Gaussians may have a width which varies as the relative
separation of the double-Gaussians varies, owing to the non-zero kurtosis of the double-
Gaussian. However, this width may only ever increase with increasing separation, since
the sum of two (different) Gaussians is platykurtic; i.e. broader than a Gaussian. In
order for the width of the product of two functions to decrease with increasing relative
separation, we require they be leptokurtic; i.e. narrower than a Gaussian. For this reason 1
have proposed a modification to the single-Gaussian model, introducing a new parameter
€, which directly modifies the kurtosis of the original Gaussian:

p(z;0,€) = N exp [—; <"§‘)2+] (18.2)

This function apparently carries the name ‘super-Gaussian’ [125]. For € > 0 the function
becomes leptokurtic, and for € < 0 it becomes platykurtic. It is interesting to note the

limit € — oo yields the top-hat function, with the piecewise definition

=y e 159
The function has since been used as a candidate model of beam profiles in numerical
simulations, and the red curve in Fig. 18.2 shows the striking agreement with data that may
be achieved for a suitable choice of €. It would appear that certain non-linear phenomena
may be adequately described with the introduction of only a single new parameter. It
would undoubtedly be very interesting to learn of a potential reason, rooted in accelerator
physics, as to why this functional form for the beam profiles might be anticipated.

1Etymology: modern Latin, < Greek xUptwolic a bulging, convexity, < xuptdéc bulging, convex. Source:
Oxford English Dictionary
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APPENDIX A

Explicit calculations

The calculations presented in this appendix follow those given in [35, 60, 126], and

are reproduced here for the benefit of the reader.

A.1. Drell-Yan in the Born approximation

The incoming partons have momenta p; = (E, p) and ps = (E, —p) since the collision
is collinear and the scattering is considered in a frame where the incoming partons have
equal energies. Finally, the scattering energy is defined by s := (p;+p2)? and so we deduce

2F = /3.

D1, 51,1 D3, 53

D2, 82, ] D4, 84

FIGURE A.1. The partonic amplitude for the Drell-Yan process in the
Born approximation. Only the process in which a virtual photon, ~v*, is
exchanged is considered for the sake of simplicity.

Figure A.1 shows the partonic Feynman diagram for the Drell-Yan process at O (on),
corresponding to the Born approximation. The amplitude corresponding to this diagram
may be written down using the tree-level Feynman rules, Fig. 2.1, and one obtains

Mo =iQy (e p)? b q12U3 Y V4 U2 Yo U1, (A.1)
where ¢ = p1 + p2 = p3 + p4, and uy, U9, U3 and vy are shorthand for the Dirac spinors
u1(p1, 1), V2(p2, 52), Us(p3, s3) and v4(pa, s4) respectively, where py 4 are momenta, s1,_ 4
label spin quantum numbers and the Roman indices label quark and anti-quark colours.
The arbitrary mass scale 1 has been introduced to retain a dimensionless coupling e. It
is possible to drop the ie prescription in the photon propagator, given that ¢? # 0, ever.
Furthermore, the calculation proceeds in d = 4 — 2¢ space-time dimensions, in order to

provide a regularization scheme for divergent integrals that we anticipate will appear when
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one considers O (ag) corrections. The complex conjugate amplitude, relabelling dummy
indices so as to avoid ambiguity, is therefore

‘ 1 _ _
M= =iQr ()0 5 147 ug T s 02, (A2)

where an obvious extension of the aforementioned spinor shorthand has been used. The

squared amplitude for the partonic process depicted in Fig. A.1 therefore becomes
1
Mol = Q? (en)! 5% “ (no summation on 7,j) (A.3)

X Tr [uy i1 v V2 U2 Yo | Tr [us i3 v v4 U4 77],

after writing the spinor-matrix products inside traces then exploiting the freedom of cyclic
permutation permitted by traces. Since the goal is to obtain the inclusive and unpolarized
cross-section, one now averages initial spins and colours, and sums over final spins, as

such:
(1< 1 Qg X
o (03) (2) (R v
S1 S2 S3 S4 1= 7=

1 QF(ep)? (A.4)

- N, 4 q* Tr [p1 V8P, %]Tr [p:’, e Py ’76]
1 QF(ep)?
N 4t

In the second line, the completeness relations for spinors (in the massless limit) have been

Qap L.

used:

Zu(p, s)u(p,s) =p+m and Zv(p, s)v(p,s) =p—m. (A.5)

Using standard techniques, the traces are evaluated and become

Qap = 4[P1a P28 + P15 P20 — P1 - P2 Yas] (A.6)

and
L% = 4[p§ pi + p5 v — ps - pag””]. (A7)
Our aim for this calculation is to compute the total cross-section and, for that, we will
make a simplifying assumption. We assume that the lepton tensor may be decomposed as
follows:
L = (A¢® g*" + B q” ¢°) L(d®); (A-8)
i.e. it depends only on the momentum q = p3 + ps. We will discuss the validity of this
decomposition further, below. We will not be differential in the individual directions of the
outgoing leptons this way, but this is not necessary if we are seeking the total cross-section
anyway. To conserve current,
go L*? = q5 L*® =0, (A.9)
we require B = —A and we pick A = 1 and B = —1. Furthermore, since the quark

traces must themselves obey current conservation, ¢“ Q.3 = ¢’ Qop = 0, only the term
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proportional to ¢ in L*? contributes to
L Qu, = ¢* 9°° Qup L(q°) (A.10)

and, therefore, it is only necessary to compute the trace, Q5. This will significantly simplify
the algebra when we come to computing traces for the real and virtual corrections. The

traces of these tensors are, using Eqs. A.6 and A.7,

Gop L =2(2—d) ¢*

= 9ap (4> 9" = ¢* ") L(¢®) = ¢* (d — 1) L(¢?) (A.11)
2
= L) = 2(2d_d1)q
and
QY =2(2-d) ¢, (A.12)
and therefore
198 Q= W' (A.13)

It is now time to consider the two-body phase-space in d dimensions. It is a direct
generalization of the usual two-body phase-space in 4D and is written, using ¢ = p3 + p4,
d1ps d"py
(2m)d=12F5 (2w)4-12E,

d of the integrals are somewhat trivial because, in collaboration with the d-dimensional o

apSy = [ (em)!§' 51— 0 (A.14)

function, they amount to overall energy and momentum conservation. However, it is good

to perform these integrals in a manifestly covariant manner using the identity

1

dpo 6(p* — m*) 0(py) = ———, A.15

[ bt =) oan) = (A.15)
where 0(pg) is the Heaviside step function. The two-body phase-space may now be written

d d'py 2
dPSy = 27T/5 (p3s +pa—q) T d'pad(p1) O(payp)
(27‘(’) 2E3
1p (A.16)
3 2
—or—— =95 _
u (27T)d_12E3 0 ((q p3) ) )

after integrating over py. Since the quantity (¢—p3)? is Lorentz-invariant, we may evaluate
it in any frame. The frame in which ¢ = (M,0) is particularly useful, so (¢ — p3)? =
M? — 2ME3. Now 6((q — p3)?) = 6(Es — M/2)/2M. Further rewriting the integral

measure for ps in terms of polar coordinates in d dimensions, i.e.

d"'ps = |p3|T 2 d|ps| dQa—o = B2 dE3 dQy_o, (A.17)
we obtain s
M2 dQy_o
aPS; = s (A.18)

after integrating over E3. Finally, introducing the flux factor for collinear particle scatter-
ing

1 (A.19)
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where s = (p1 + p2)?, we have all the pieces we need to write down the inclusive partonic
cross-section: 1
dog = I |M]? dPS, . (A.20)
The phase-space integral over the surface of the (d — 2)-sphere! may be evaluated imme-
diately, and is a standard result:
op(d—1)/2
dQg_0 = ————, A.21
fooes= i e
since the matrix element does not depend upon the angles of the outgoing leptons, ac-
cording to our simplification of the tensor product, and so
1 47\ T(1—¢)
dPSy = — | — | =— = A.22
/ >7 8 <M2> I'(2-2)’ (A.22)

where the duplication formula

(z)T (z + ;) = 21722 /1 T(22) (A.23)

with z = 1 — € has been used. The final partonic cross-section, in d = 4 — 2¢ dimensions,

is then
Q% (ep)* (2 — a)?

1
Qfﬁo(S):?S N, d—1 /dP82
_ 1 QFen)t 2-a? 1 (‘“T)e Td-¢ (A.24)
25 N, d—1 8t \M2) T(2-2¢)

_[(4Ar\© 4#@}042#46 (1—¢€)? T'(1—e)

-\ M2 N s (3 —2¢) T(2 — 2¢)
using @ = e?/4m, and factoring out the only flavour-dependent quantity, ch, for later
convenience. Using the identity [ dM? §(s — M?) = 1, we can make our result differential

in the mass of the lepton pair, M?:

déo 6y M?
— = —0(1-—. A.25
dM? s ( s ) ( )
This form will be useful later.
P3
3]
P1 > . < P2
P4

FIGURE A.2. The scattering angle used in the 2 — 2 scattering process.

1 use ‘n-sphere’ in the topologists’ sense. For example, a 2-sphere is the familiar object embedded in 3D
space.
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We now discuss the validity of the decomposition assumed for the lepton tensor in Eq.
A.10, when computing the total cross-section. At the Born level 1 would like to prove
the equivalence of this simplification for the total cross-section. For this discussion we
temporarily revert back to d = 4 dimensions, and note that Eq. A.24 becomes
. 47 ch a?

707 T3 N.s

Now, without the simplification, the tensor contraction in Eq. A.10is, in d = 4 dimensions,

(A.26)

Qap L =16 [2p1 - pap2 - ps + 2p1 - p3p2 - pa)
= 32p* [(1+ cos 0)? + (1 — cos 9)2] (A.27)
=64 E* [1+ cos® 0],

where 0 is the angle between p; and p3 or, equivalently, between ps and py4, as shown in
Fig. A.2. Given this definition, p; - p3 = p2 - p1 = E%(1 —cos6) and p1 -ps = p2 - p3 =
E?(1+cos®), where E is the energy of each particle in the frame for which the collision is
symmetric. Since the particles collide head-on, and the leptons are produced back-to-back,
we also have py-pa = p3-ps = 2E%. Once again, all particles participating in the scattering
process are assumed to be massless.

Finally, we again write the cross-section according to Eq. A.20, but this time using
Eq. A.18, in the limit d — 4, and using Eq. A.4 for the matrix element, but with L®? Qap
given in Eq. A.27. Putting this together, we have

2 4
60 = Qf64E4/(1+C0829)d(C059)d¢
25 N 4¢* 8(2m)? (A.28)
4 Q?c a? ‘
~ 3N.s '

which is the same as Eq. A.24.
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A.2. Real corrections to Drell-Yan

We now consider the emission of a single gluon during the Drell-Yan annihilation
process. The kinematics of the 2 — 3 scattering process qq — g¢* ¢~ is shown in Fig.
A.3. The emitted gluon momentum is k, and the gluon makes an angle # with respect to
the beam axis, defined by the direction of p;. The lepton pair recoils against the gluon
with total time-like momentum ¢, such that p; + po = k + ¢, and ¢> = M?, where M is
the invariant mass of the lepton pair.

P1 0 P2

Ps

P4

FicUure A.3. Kinematics of the 2 — 3 scattering process for real emission.
The momentum of the lepton pair is the time-like ¢ = ps + p4, where
¢*> = M?. The lepton pair recoils against gluon emission, whose momentum
is k, and which makes an angle 6 with respect to the beam-line.

D1, 51,1 kA a D3, 83 D1, 51,1 D3, 83

P2, 82, ] P4, S4 P2, 52, ] kM a P4, 54

F1cURE A.4. The two real diagrams contributing to the Drell-Yan annihi-

lation process at O(ag). External particle momenta and quantum numbers
have been labelled.

The amplitudes for the two real processes shown in Fig. A.4 are

1 2% (P, —F) ' ur

. €\2 ema ~ o
=—iQr(ep s 1€ T — A2
My iQf(ep)g i Uz Y va 2 [ — k2 1id €, (A.29)
and " B
. _ 1 v2y p Yo U1
€\2 € a a 2 *a
Q Ta _ . A.30
MQ =ty (eﬂ ) Js K ji U3y V4 q2 [(p2 k)g ZG] eu ( )

Additional shorthand for the gluon polarization has been introduced: €} = e;‘l(k,/\),

where A is the quantum number specifying its polarization, a indexes its colour, and k

is its momentum. Again, the squared amplitude that appears in the definition of the
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inclusive unpolarized cross-section is obtained by averaging over quantum numbers of the
initial state and summing those of the final state. In the case of real emission, one has the

additional sums over the polarizations and colours of the gluon. Therefore

|M|2=<;§;§) (ZZ) ;é;é ST M (A.31)

Ss3 83 ab A

The square of the sum of amplitudes is

1 *
My Maf? = QF (e i) (901 T T T [y 7 v ma | el

[(p1 — k)? +ie]?
Tr [ul u17s (—¢2 + §) v¥ vg Tg y# (_}bZ + k) '704]
[(p2 — k)? + ie]?
Tr[ug @1 v (—p, + B) 7 v2 0270 (P, — #) 7]
[(p1 = k)? +ie][(p2 — k)? + ie] 7
where new dummy indices have been introduced for the complex conjugate amplitudes, as

before, and the interference term has been written M} Mg + M; M5 = 2Re [M3 M;]. A
summation over repeated Greek (Lorentz) indices is implicit, but I will explicitly show the

" { Tr [Ul (el (;5251 — k) v5 v2 U274 (}7;1 -y 7“]

(A.32)

+2Re

summation over Roman (colour) indices. The sum over gluon polarization states amounts

to the replacement
6/*1(1 62 - _6ab Guv, (A33)
A

implicitly assuming the Feynman gauge choice. Then, the averaging over initial quark

colours and summing over gluon colours results in

1 al 1 ok b a sab 1 al Al a ra
NCZ;NCZ; | TR :NC?Z; ZZTUTJZ
i= j= i= =

a,b a j=1

(A.34)
1 Qe 1

Finally, as always, the completeness relations for massless Dirac spinors allow the spin
sums to be replaced by uj 11 — Py V202 = Py, uz iz — P and v4 04 — Py in the traces.
Now, we may write the square of the sum of amplitudes as

My + Maf? = QF (e p)* (g5 1) ]\1, ¥ (4_;2 L {Qls+ Q%5+ 2Re [@24]}, (A.35)
where
T [P (B — B) v Py e (B — K]
(116 - . [1(131 — k)2 _2,_2'6]2 ' ) (A.36)
o Ir [?1 V8 (=P, + k) Vu Py Y (—py + k) 7o)
aff — [(P2 — k)2 + i€]2 (A37)
and
3 _ Tr [7)1 B (_p2 + %) 7# ]ng Yo (Pl - %) 7“] . (A38)

o [(p1 = k)? + ie][(p2 — k)? + ie]
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As before, we are interested in the inclusive cross-section integrated over all directions
of the outgoing leptons, which permits the decomposition of the lepton trace, as in Eq.
A.8. Again, this requires one to compute only the traces of the tensors in Eq. A.36 to

A.38, which are reported below, in d = 4 — 2¢ space-time dimensions:

Qo= tutlzef (1t— Il (A.39)
Q%0 = 875(1;6)2 (A.40)

and
QBZ:8(1_6)(M2S_tUG), (A.41)

tu
in terms of the Mandelstam variables s = (p1 +p2)?, t = (p1 — k)? and u = (p2 — k)?. Note
that k? = 0 since the gluon is real. Their sum, as in Eq. A.35, is then

Qo+ Q% +2Re [Q%0] =8(1 —¢) [Z%SJF (iﬁt‘) (1—6)—26]. (A.42)

It is now time to consider the phase-space. The challenge this time will be in handling
the three-body phase space

dd—1p3 dd—lp4 dd—lk
(2m)12F;5 (2m)12E, (2m)9-12E),

where k = (Fj, k) is the four-momentum of the gluon. The phase-space for the two leptons

dPS; = (27T)d 5d(p3 +ps+k—p1— p2)7 (A43)

can be decoupled by introducing the momentum ¢, as in

dd— 1 P3 dd—l pa dd— 1 k

dPSs =
S (2m)d-12E, (2m)912E, (27)d-12E),

d'q (2m) 6% (ps + pa — @) 6% (g + k — p1 — o).
(A.44)
Now the identity

/dM2 §(¢* — M?)60(qo) = 1 (A.45)

is inserted into Eq. A.44. The Heaviside function is trivially satisfied since, from ¢ =
p3 + pa, we see that g = F3 + E4 > 0. Furthermore, ¢ is time-like: ¢ = 2p3 - ps > 0, so
the argument of the d-function can always be satisfied for a particular choice of M. We

can now write

di—1k
dPSg = dPSg dM2 ddq(S(q2 — M2> m (5d(q + k —pP1— p2)
e K (A.46)
=: dPS} dP
S 27 Sz,
thereby defining dPS,, where the lepton phase-space, denoted by £,
dd—l dd—l
dPSh = Ps Pi_ (9r)d 6%(ps + ps — q) (A.47)

(2m)d-12F5 (2m)d-12F,
is just the usual two-body phase-space. We have thus succeeding in factorizing the three-
body phase-space, necessarily making us differential in the squared invariant mass, M?,
of the lepton pair. Since we have been utilizing a decomposition of the lepton tensor that

produces no angular dependence of the final-state leptons, we may completely integrate
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dPSs as before. In addition, the reader is reminded that

2(2 — d)

2
af i q e
L Q= — Q' (A.48)

as before.

The differential partonic cross-section for real emission may now be written

M? lo+ Q% +2Re [Q%,
467 — b (g2 (—1) Cp P gpg, 1@ et @ ot 2Re [Qa]}
a7 o 2(2—d) ¢?
dM? 2M?*s [t w (4.49)
~ 2e
=60 (4ag) p*Cp e dPS, [ ™ + <u+t> (1—6)—26:|,

where the definition of 6y in Eq. A.24 has been used, along with ag = gs/4m and d = 4—2e.
The angular integration for the remaining phase space will not be trivial, since both the

gluon and lepton pair have a particular direction. Using p; + p2 = (2E,0) = (1/s,0), we

write
dPS —ﬂ(z )dlq8(q* — M?) % q+k —p1 — p2)
2 = (2m)T12E, m)a qolq q P1 — P2 )
El 3 dEy, dQy s ) '
= 0(s—2F - M*).
2 (2m)d—2 (S ks )
Now we set d = 4 — 2¢ and define the fraction z := M?/s, to obtain
1 (47T)2 ‘ € 1-2¢
dPSy = 39,2 [ e } 2°(1—z) dQq_s, (A.51)

where the identity d(ax) = d(x)/|a| has also been used. The differential angular measure,
extended to arbitrarily higher dimension, is written iteratively as

dQg_o = dfy_s (sinfg_3)? 3 dQy_s, (c.f.ddy = sinf db do) (A.52)
and so
/ dQq_o = 2 / " a0 (sin §)1 2 (A.53)
L Ny A ’ ‘
after integrating over all but one polar angle using
or(d=2)/2
dQa-3 = ——g5v (A.54)
/ I (5%

and relabelling 0;_3 — 6. In anticipation that the integral representation of the Beta
function will be of use, this is further re-expressed by introducing y = %(1 + cos6), such

that
1

/7T df (sin 9)' % = 2 dy [y(1 —y)] ™, (A.55)
0 4 Jo

and the phase-space becomes

7\€ 26 (1 —2)172¢ 1
aps, = L (j;) o [ rea (A.56)
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The Mandelstam variables ¢t and u must also be written in terms of M?, y and z. We

may start with

t=(p—k)?=—-2EE;(14cosh) =—2s <8 2_\/]\52> Y, (A.57)

using Ej, = (s — M?)/2,/s, which has already been constrained by the é-function in Eq.
A.50. Substituting s — M?/z gives

fo _Myd-2) (A.58)

and a similar exercise gives

u=— J . (A.59)

Finally, one obtains

dM? (47 p?\© 26 (1 — 2)1 72
M? M? I'l—e

) /oldy[y(l_y)]_e [1/(1—3/2)2(1—2)2 " <13y " l;y) (1=¢) _26]
(A.60)

. Oy
Aol = 60 —= Cp
qq 271'

for the real contribution to the annihilation Drell-Yan process. The integrals over y may be
performed immediately by using the integral representation of the Beta function, expressed

further in terms of Gamma functions:

ey e, D) T(n)
B(m,n) .—/0 Yy (I—y)" tdy = T(mtn)’ (A.61)
for Re(m), Re(n) > 0. Four integrals one has to perform are
Y L 4o _ =P 2 [0 -]
11—/0 dyy (1 —y) (+)—m——gm7 (A.62)
! —e)(—e —€ —e)]?
b= /0 Ay (1) = F(2F(2 2FQE) - ((11— 26)) ?8 = 2)61) - (A63)
! —€ —€
Iy = / dyy 179 (1—y)' = = F(F(;F—@Qe) -1 (A.64)
and
ra—-oP 1 [Ta-of
14_/dyy =y = Fe =20 ~ =20 M1-20) (A.65)

where the identity zI'(z) = I'(1+2) has been extensively used to obtain the final equalities.

A2\ T(1—e
D(e) ::< Mg‘ ) r((1—2e))’ (A.66)

Introducing the notation

we may write

(A.67)
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In order to obtain the total cross-section, one would have to integrate this real contri-
bution over all M? or, equivalently, over z from z = 0 to z = 1. Clearly, the integral is
not convergent on this closed interval, because the integrand diverges for z — 1. We will
see that the virtual contribution is divergent, containing poles in €, but this contributes
only for z = 1 since, without real emission, the invariant mass of the lepton pair M? = s.
We therefore proceed to isolate the divergence in the real contribution at z = 1, by use of
the ‘plus prescription’, which I present below.

Consider the integral

I R ()
I_/O dz (A.68)

1— Z)l+26’
where € is small and positive. The integrand is divergent as z — 1, so we isolate this
divergence by writing f(z) = [f(z) — f(1)] + f(1), to obtain

1A - 1) PR
I_/Od +f(1)/d(1 )

(1 _ Z)1+26 0

1 2) —
_ {/O ds W} _ 2iﬁm) (A.69)

=) o= {ia Lt e}

where the ‘plus prescription’ notation f(z)/g(z)+ = [f(2) — f(1)]/g(z) has been intro-
duced. I have also introduced the d-function, to maintain a single integral over z. One
expands (1 — 2z)~(1+29 about € = 0, namely

(1—2)" 429 — (1 — )7 [1 — 2elog(1 — 2) +...] . (A.70)
Therefore an identification can be made, which is understood to be valid only under
integration:
1 1 log(1 — 2) 1
= -2 —— (1 —2). ATl
1—2)+2% ~ (1_2), 6[ 1- 2 L 5 01 =2) (A.71)
We note that D(e) has no poles in e, for
2
7
D(e) =1+c¢ [log(47r) — & + log (]\42)} + O(é%). (A.72)

Neither does z¢ =1+ € log(z) + ..., and therefore we are left to expand

g 1422
€ (1 —z)tt2e’

dropping all terms proportional to €, for n > 1. Upon doing so, one at last obtains the

(A.73)

textbook expression for the real contribution to the Drell-Yan annihilation process:

. L« dM?
doyg = 60 5 Cr — 5 D(€) Faa(2), (A.74)
with
_ 2 2 1+Z2 2 log(l—Z) 1—’—22

The plus prescription is dropped on the final term, since log(1) = 0.
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A.3. Virtual corrections to Drell-Yan

plaslai P3,S3 plashi P3,S3
kN v ¥
k ./

p2752’j P4, S4 p27527j D4, 84

D1, 51,1 D3, 53

,}/*
k
p27527j P4, S4

FiGURE A.5. The three virtual diagrams contributing to the Drell-Yan
process at O(as). External particle momenta and quantum numbers have
been labelled.

In this section I compute the one-loop virtual QCD contributions to the annihilation
Drell-Yan process q7 — v*¢T¢~. The relevant diagrams are shown in Fig. A.5. The
amplitudes for these diagrams are, with a summation over the gluon and quark colour
indices a and k implied,

MY = Qy (e ) (gs 1) Tih Ti i3 ¥ v4
1 / d’k (A.76)

x p W’T& Ya SE(p1) v Sr(p1 — k)" u1 Dpy(k),

MY = Qy (e p)? (gs 1) T T 3 Y™ 04
1 [ dk p
X 2] ot U2 7" Sp(—(p2 — k) v* S¥(=p2) Ya u1 Drpw (k)
(A.77)

and
MV_ €\2 €\2 a a o «
3 = Qr(ep)” (gs 1) gk Lki U3 V4

1 dk
X q7 / W V27" Sp(—(p2 + k)) Ya Sk(p1 — k) 7" wa DFW(k),
(A.78)
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where Dr,,, (k) comes from the gluon propagator in a general covariant gauge, and is given
by

k2 + i€ k2+ze

Introducing the quark self-energy insertion, we may write My, for instance, as

DF;w(k) = # (g,w - (1 ) k k > . (A79)

1
MY = Qy (e pu)? 655 U3 Y* v4 Z U2 Yo SE(p1) X(p1) v, (A.80)

where the insertion is

. 'k (P — F)r"
Z(p) = (91" Cr {/ (2m)d [(p—l:)2+ie][k2+ie]

“k K- Bk e
- [ G [(p—k)yjl—ie][)khrie]z}:(QSM ) Cr (i + L),
(A.81)

We focus initially on the first integral in this expression, where the numerator of the
integrand is

Y=k =Q2—-d)(p—F). (A.82)
Using Feynman’s parameterization, the denominator can be first re-expressed:
1 B ! dz
[(p — k)% +ie][k2 +ie] /o [2[(p — k)2 +i€e] + (1 — 2)[k2 + ie]]?

B 1 dz
a /0 [(k — zp)? +ie]?’

where, to obtain the last equality, one completes the square and uses p? = 0. This suggests

(A.83)

we introduce the momentum ¢ = k—z p and apply the shift k¥ — ¢+ z p in the numerator of
the integrand, Eq. A.82. The integral measure is invariant under this shift, i.e. d%k = d%¢,

/ / ddgd 162?1] t_o. (A.84)

The integral is over symmetric limits, so the contribution associated with the odd term

and so the integral becomes

{ in the numerator evaluates to zero, and this term may be immediately dropped. The
remainder of the integral also evaluates to zero because there is no explicit mass scale in
the integrand. To see this more clearly, the integral over £ is re-written as the sum of two
parts, introducing an arbitrary mass scale A:

dte 1 e 1 1 die 1
/(27r)d[€2+ie] - / (2m)d <[€2+z’e] B [52—1\2]2) +/ (2m)d [12 — A2]2

{ 1
= — - log 47 — log A®
1672 <6UV ~vE + log 4w — log >

(A.85)

' 1
+ ! — + g — log 4w + log A?
1672 \ eR

pu— ()7
where the second line may be verified by explicit computation. Since we are working

in d = 4 — 2¢ dimensions, the quantity eyy = € regulates the ultraviolet divergences
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whilst ;g = —e€ (such that d = 4 + 2¢1r) regulates the infrared divergences. This can be
seen by considering which integration limit is responsible for the divergence in each case.
Dimensional regularization has systematically regulated both divergences simultaneously
and clearly the two divergences cancel. The physical content of this result is that the
masslessness of the theory is a feature that is not destroyed under quantum corrections.

Moving now to the second integral term in Eq. A.81, we consider the numerator

Kp— k= (kp— k)= 2k -p— pk - K)E, (A.86)

which reduces to
(2k-p— Kk = —(p — k)’ (A.87)
when multiplied from the left by p, as in Eq. A.80, where the p comes from Sp(p), and

using p? = 0. In the limit € — 0, part of the numerator cancels part of the denominator,
and one is left with

dk —k)? dik
L=(1- 77)/ 2m) [(p — k;g—i— ie%[lfz + i€)? —~ (1 77)/ (27T)d[k2—|-ki€]2' (A.88)

Since the integrand is purely odd, and the range of integration is between symmetric

limits, this evaluates to exactly zero. Since the quark self-energy insertion is universal, the
same steps to eliminate this contribution in the massless theory from the second diagram
of Fig. A.5 follow immediately, and thus the only diagram left to consider is the QCD
vertex correction of Fig. A.5.

It may be worth pausing for a moment. We have seen that the virtual corrections
corresponding to the quark self-energy play no role here. In summary, the quantum
loop corrections to the quark propagators do not generate quark masses in a theory that
was initially massless, and there is no gauge-dependent contribution from these diagrams
either. Since the gauge-dependence is only required to cancel out in the sum of all relevant
amplitudes, the final remaining amplitude for the vertex correction must be independent
of n to ensure this is the case. We now move to compute this final contribution.

In order to compute the inclusive unpolarized cross-section we must average over initial
spins and quark colours, and sum over final spins. Having done this, the interference of
these amplitudes with that of the Born approximation, My, is an O(as) contribution and

gives

N, N,
7 [11 1O 1 &
= (3255) (T3 (4 S ) 4 i
S1 S92 S3 S84 ¢ =1 ¢ j=1 (A89)
L Qf(en) (9s1)° OF
N, 4 gt

where T]@k Ty = CF 0;; has been used, L,z is that given in Eq. A.7, and where

_ d’k Tr[p 8P 'YV(J? +k>’7a(k_?)’}/“] K, k.,
Xﬁ - / (2m)? [(p2 -11- k)? i— ze}[(;l — k)2 + i€ [k; +iq (guv —(1-n) 25 ie) (A.90)

contains the integrals and traces one has to perform.

QZBLQB,
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According to Eq. A.10, one has only to compute sz = gaBQXB. After contracting
all Lorentz indices in Eq. A.90 and taking the trace, the quantity QVZ becomes

VO _ o d [(d—4)k?p1 - pa+4(k - p1 +p1-p2)(k - p2 — p1 - p2)]
Qla =42 d)/ (2m)d [(p2 + k)2 +i€][(p1 — k)2 + i€][k2 + i¢€]

dk (k —p1)? (k+p2)*p1 - p2 oy
~10- D00 [ G o

Focusing for a moment on the second integral here, in the limit ¢ — 0 there is some

significant cancellation between terms in the numerator and the denominator, and this
term becomes p
4(d—2)(1—77)p1-p2/dk1.:0 (A.92)
(2m)% [k2 + i€]? ’
which we know by now is exactly zero due to the lack of any mass scale. Reassuringly, the
dependence of the calculation on the arbitrary gauge parameter 7 has disappeared in all
three diagrams of Fig. A.5, and we will be left with a gauge invariant expression for the
virtual QCD corrections at O(ag). All that remains is to compute the integral in the first
term in Eq. A.91, which is the only non-zero contribution to these one-loop virtual QCD
corrections.
As it stands, the integrand does not simplify any further. Therefore, in the usual

manner, one can use Feynman’s parameterization to re-express the denominator as follows:

Zl+22+23—1)
[(p2 + k)2 +i€][(p1 — k)2 + ie][k2 + i€] —2'/ dZ1/ dZQ/ dzs :
(A.93)

where
D = z[(p2 + k)% +i€] + z2[(p1 — k)% + ie] + z3[k? + ie]. (A.94)
Now, performing the integral over z3 amounts to the replacement z3 — 1 — 21 — 29 in D,
by virtue of the d-function. Note, however, that the remaining integration limits must be
adjusted accordingly in order to make this replacement with impunity. One can now write
D= k2—2(22p1 — z1p2) - k +ie
(A.95)
= (k— zap1 + 21p2)” + 221 22 p1 - P2 + i€,
by completing the square. This suggests we shift the momentum . by introducing a new
momentum ¢ = k — zop1 + z1 p2. The first integral in Eq. A.91, making the change of
variables k — £ + zo p1 — z1 p2 and using d = 4 — 2¢, becomes

a 1=z de N
va _
QY ,=-8(1—c¢ 2'/ dzl/ dZQ/ (2m)d[02 4+ 21 295+ i ¢€)? (A.96)

with the numerator given by
N ==2ep; po+4L-p1l-po+4(p1-p2)? ez 22 — (21 — 1) (22 — 1)] (A97)
:—6628+4€'p1€-p2—32[(1—e)zlzg+1—z1—zg], '

where s = (p1+p2)? = 2 p1-p2 has been used and terms linear in £ have been dropped since

they integrate to zero over the symmetric limits of the integral. Exploiting the isotropy
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of the integral, one may also make the replacement
42 g/w 52 g,uy

VoV =
- d 4 —2¢’

(A.98)

SO we can now write

1—21 _
Qva —8(1 —¢) 2'8/ dzl/ dzg{(l o I4—s[(1—e)z1zQ+1—21—22]13}

9 _
(A.99)
in terms of the standard integrals
dv 1 —i T(l+e 1
I = = A.100
s / 2m)d[02 — A2 +ie® (4m)2—c 2 (AZ)1+e ( )
and p ) (o
dl l i I'e) 1
Iy = = 2—€)—= A.101
4 / (2m)d [02 — A2 +i¢)3 (4%)2_5( 2 2 (A%’ (A.101)
where A2 = —z; 29 5.
Putting everything together we obtain
s 3¢ C 4
1—2z1 1
X4S/ d21/ dZQ{ 1—6) (26) (AQ)
I'l+e 1
+s[(1—€)z1204+1— 21 — 29 5 (A2)1+€}
A1 ®\© s
!MO\Q < 7” > i
1= 1 1—e)? [(1- 1—21 —
1+6/d21/ dZQ {( e [(1-¢ziz+ 21 22]}
(21 z2)€ € 21 %2
(A.102)

In the final equality I have used I'(e) = T'(1 + €) /e.
One may now make the change of variables zo — (1 — 21) z, to render the integration

limits 0 and 1 on both integrals, preparing us for use of the integral representation of the
Beta function, Eq. A.61:

1 1—-21 . ) B B B
/ dz / dzy 1 { (1-e” [A-€ziz2+1—21 — 2] }
0 0 (21 22)€ € 71 22

:/Oldzl /Olda:{(l —z) e [(1_:)2 -« _6)]

— (1= ) T 9 (- x)} (A.103)

o=

€

—(1- e)] B(l—¢2—-¢)B(l—¢1)—B(—¢2—¢)B(—¢2)

T2

1[_2 3 8 }Fg(l—e)

€ € 1-2¢| I(1—2¢)



A.3. VIRTUAL CORRECTIONS TO DRELL-YAN 293

The phase space, dPSs is exactly the same as in the Born calculation and, of course, the

flux factor is common to all three pieces. With the result above, it follows that

1
sV Vgt
a6V = — 2Re [M M| aps,
L o 4 p? F1+6F21—e) 2 3 8 s
—UO%CFR€[< )} T(1 - 2¢) <_62_6_1—2€>q2 (A.104)
2
2

— 5y chA]‘j;D(e){ —‘:’+<2§—8ﬂ 51— 2),

where I have used D(e) given in Eq. A.66, inserted the identity in the form [ dM?§(s —
M?), with z = M?/s, and used the expansion

2 3 8 2 3+2i 272
(—1)°T(1+e)T(1 —¢) <—2——1_2€> o 2T ”—8—3m+% (A.105)

before finally taking the real part.

€

€2 €
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A.4. The collinear splitting function

In this section I demonstrate the universality of the collinear ¢ — ¢ + ¢ splitting
function, P, that appeared in the calculation of Drell-Yan at NLO, multiplying the
simple pole 1/e which had to be absorbed into a redefinition of the PDFs. This discussion
follows very closely that originally given in [35] for the case of d = 4 dimensions, and is

reproduced here for the benefit of the reader.
k,o,a

DS, J
, p_k7i

FicURE A.6. Initial-state gluon emission for an arbitrary hard process
M7, which may contain n additional gluons but which may not interfere
with the gluon k. Momenta and quantum numbers have been labelled.

One begins by writing down the matrix element for the process shown in Fig. A.6,
where a collinear gluon is emitted from an initial state quark:

/\/l”J“:l Z M" ]Z’_ }: i gs uEt M u(p, s) €, (k, o). (A.106)

Averaging over the colours and polarization states of the incoming quark, and summing
over those of the gluon, the squared matrix element becomes

—_— 1 1 2
112 _ | — L n+1
M = (305 S|
Ji s a,o
Cr
= g2 1> N 25“"
¢ o

X %Z [ﬂ(p, s)vY _}ﬁ—k My T M?&’WU(% s)

" (p k)2 + i€ (p— k:)2+z'e
kun, +n,k
(g Bt
(A.107)
where
DO ity = Cr i (A.108)
7 a
and

kuny +nyky,
~ n-k

has been used, taking n? = 0. Taking the trace of the quantity in square brackets (since this

> ek, o) en(k,0) = —gu + (A.109)

is just a number) one can permute the Dirac y-matrices within and, using the completeness
relation for the u(p, s) spinor, one obtains

‘M’;“) 2 ZE, (A.110)
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where, dropping the 7¢ prescription,

1 w Pk PR (L Bere

Tz—QTr[Mi(p—k)ﬂum (p—k)QMi](g“V+ n-k )
11 . p Epp+ohpk n
i R G e ) L R
11

ZQWTr[M?<(d—2)(p—%)p(p—%)

PO Ep R - 8) My

In the last line I have used the Clifford algebra in d space-time dimensions. The following
identities may be shown, again using the Clifford algebra in d space-time dimensions, and

assuming p? = k? = 0:

p-—KBpp-k =20 kk (A.112)
(p—K)(kprh+oppk) (p— k) =2(p k) [4(n-p)p—2(k-n)p+2(k-p)sh—2(n-p)k]
(A.113)

Therefore, T; becomes

s T [ME (0 (k) (K= )+ () p o+ (k) — e n ) R) MPT]

L= h i

in d = 4 — 2¢ space-time dimensions.

The task now is to evaluate this trace as far as possible. We will opt to retain only
those terms required to obtain the leading logarithmic dependence in the collinear limit.
In order to simplify the task of obtaining the collinear limit, the Sudakov decomposition
is introduced. The quark momentum after the emission is assumed to be some fraction z

of the initial quark momentum, plus a small amount transverse to its original direction.
q" = pt — k"

— Zp“ + Bnﬂ —k*
- (A.115)
- Kt = ph — gt

=1—z)p'—pBnt+E.
By definition, k; - p = 0, and we may choose n to be the gauge vector and to also satisfy

ki -n = 0. Thus, the quantity 8 may be thought of as the appropriate scale factor required
to retain a massless gluon, which may be determined by insisting that k? = 0:

B =01-22p+82n+k —2(1-2)Bp-n—28n-k, +2(1—2)p -k,

A.
=k —20-2)Bp-n=0 (A-116)

on account of p? = k? = 0, and choosing the gauge vector such that n? = 0, as we’ve done
already in the replacement for the gluon polarization sum, Eq. A.109. We may thus solve
for 3, to obtain
k2
B = .~

2(1—=2z)p-n’
where the parameterization k; = (0,kr) has been adopted, and k1 = |kp|.

(A.117)
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Finally, using

n-k=1-2)n-p, (A.118)
E-p=Fk%L/2(1 - 2), (A.119)
n-(k—p)=-z(mn-p) (A.120)
and f—p=—zp— B+, (A.121)
which follow directly from Eq. A.115, the trace becomes
T = kl% Tr [M’; ((1+z2)p+ Qz%nﬂ—zkj_ —e(1 —z)k> M?T]
(A.122)

=5 [(1+2%) —e(1=2)%] 2[M}(p— K Ry,
T

where the final equality is obtained after using § = (1 — 2) p + O(kr) and dropping all
O(kT) terms. The factor two is to account for spin averaging, and

M (p =R =T [2p M (p — k) (M) (p = B)] - (A.123)

Furthermore, M7 (p — k) = M} (zp), up to O(kr) corrections. The ratio Rp = 1/z is to
account for the change in flux factors.

The phase space for the additional gluon may be written

d-1k 1 dE},

dPS = = k272 dQy_o. A.124
5 (2m)d-12E, ~ 2(2m)3 2 Ej N -2 ( )

In the collinear approximation, Eq. A.52 reads
dQy_o ~ dO O 2 dQy_s. (A.125)

Taking d = 4 — 2¢ space-time dimensions, [dQ4_3 = 27'7¢/T'(1 — ¢), using Eq. A.54.
Noting that k1 = |k|sin @ ~ |k|f, and writing the energy of the gluon as a fraction of the
initial quark’s energy, i.e. E}, = E, (1 — z), one finally obtains for the phase space

1 (4m)€ dz

P =
ars 16m2 T'(2—¢€) (1—2)

kA% (A.126)

Therefore, one has

i1 Qs 47m2 6alk:?F 14 22 1 2
| M _%< k%> 2 Cr |7 —e(l=2) dzNCZi:‘MZ-} . (Aa27)




APPENDIX B

Mathematical appendix

B.1. Integral representations of Heaviside step functions

It follows from the definition of the Dirac d-function that

A —_— a
/ dpé(p—a)f(p)={f(a) o d<asd

—A 0  otherwise (B.1)
= f(a) ©(A — |a).
Combining this with the integral representation of the Dirac d-function in Fourier space,
i.e.
1 RS
d(p—a)= / et (P=a) gy (B.2)
21 J_ s

one establishes that, taking f(p) = 1,

1 00 A ]
O(A—la|]) = 271_/ da:/Adpem(pa)
> dx

1 .

_ - hatadan) A) e tTa B.
7T/_Ooagsm(:n ) e (B.3)

2 [®dw iva 21 [(a— A)?

_7-(-/0 ? Sll’l(fEA) & +? ln |:(a_|_14)2:|,

using €’? = cosf + i sinf and exploiting the parity of the integrand. Upon making the
replacements A — ¢* M and a — ), kt; sin ¢;, and implicitly taking the real part, one
obtains Eq. 4.105.
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B.2. Special functions

B.2.1. The Euler Gamma function. The Euler Gamma function may be defined

as
I(z) := /OO t*“te7tdt for Rez>0. (B.4)
Integrating by parts the correspon(ging integral form of I'(z + 1) reveals
I(z+1)=2T(z). (B.5)
As such, it is related to the factorial as

'n+1)=n! forneN. (B.6)

A common occurrence when dealing with d-dimensional spheres is I’ (%) Letting t = r2

and using symmetric limits, permitted by the parity of the integrand, one obtains the

r (;) = /Oo e dr = /1. (B.7)

o0

Gaussian integral

B.2.2. The Beta function. The Beta function may be defined as
I'(m)I'(n)

B(m,n) = T(m + 1)

, (B.8)

which is symmetric under the exchange m <> n. Taking the numerator in integral form

and changing variables through ¢t = z« and u = 2z (1 — «), one obtains
oo [ee]
F(m)T(n) = / tmlet dt/ u" e U du
0 0
00 1
= / LMl gz dz/ ™ (1 —a)" tda (B.9)
0 0

1
=T'(m+n) / ™1 —a)" tda
0

and so )
B(m,n) = / ™1 —a)" tda. (B.10)
0

It is often useful to identify such integrals as a form of the Beta function, writing them

subsequently in terms of Gamma functions.

B.2.3. The Euler—Mascheroni constant. The Euler-Mascheroni constant is de-

fined as

N—oo

N
g = lim [Z—log]\f] , (B.11)

n=1
i.e. the limiting difference between the harmonic series and the natural logarithm. The

series expansion of I'(e) about € = 0 involves this quantity and is

1 1
E—VEJrE (678 + ) e+ O(€%) . (B.12)
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B.3. Azimuthal integration of radiation function
Here it is shown that
o= o [@,;Ef)’(]),j) Rt

= ,2 @[cos@ik—COS%L

(i, k)

where (a,b) = 1—cos 0, by following the derivation which may be found in [48]. Energies

(B.13)

are assumed to have already been factored out, and so we have a = (1,a). The integration
is over the azimuth of k, about the direction of i. First, pick the directions of i, j and k
to be

i=(0,0,1) (B.14)
j = (sin®;;,0,cos b;;) (B.15)
and k = (sin 0, cos ¢, sin b sin ¢, cos ;) . (B.16)

The angle between j and k is then j - k, so

(4, k) =1—rcosbj, =A— B coso, (B.17)
where
A =1—cosb;; cosb (B.18)
and B =sin 97;]' sin Hik . (Blg)
Consider the integral
2w 2m
d¢ d¢
I = — = S B.20
I = (20
Introducing z = €'?, this may be written
2
I dz (B.21)

T iB (24 —2) (2 — 22)

where z1 = A/B + /A2/B? — 1, and the contour is the anticlockwise unit circle in the
complex plane. The only pole to reside within this contour is at z = z_. Therefore, by
Cauchy’s residue theorem,

2 1 1
= —=2Mi— =27 ——. (B.22)
iB (24 —2-) A2 _ 32

Using this result in Eq. B.13, and the fact that

I

A? — B? = | cosb;; — cos O], (B.23)
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/dqbwk _(i,j)/dcb 1,1 /d¢> !
or W (k) ) 2w (k,g) (i) 2m (K, j)
1 cos 0;; — cos O;,
(i, k)
(B.24)
0 if cosf;; > cos by
2 if cosf;; < cosby

gives

| cos 0;; — cos O,

2 . .
= G Ollnd) — R
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B.4. NNLL approximation

Aspects of this calculation are a reproduction of that originally presented in [66]. My
hope is that the additional working presented herein will provide insight for the interested
reader.

The aim here is to show that, to the desired accuracy, one may replace

(1-¢") e (m _ 2) (B.25)

R(b) = /M CZZF F <as In f\}) (1 - e“m) , (B.26)

0

n

where © = ky sin¢/M. Further discussion may also be found in [66]. We begin by
considering the more general integral

Ame
max dA i
1_/ %2 F(as InA) (1 —e“’“A). (B.27)
Amin A
Given that one can generate the single logarithmic terms, of which F' is a function, using
dA€

=InA, (B.28)

de e=0

we may write I as

d\ [Am= dAAC b A d
[=F <as d6> /Amm X (1 _e ) - F (as Ck) (I — I) N (B.29)
where A
max JA A€ AS — AS .
Il — / A — max min (B'30)
Amin €
and N
max A AG .
I, = / da At elbvs (B.31)
Amin A

the latter of which is the focus of our attention.

We consider I5 to be the ‘A’ leg of the integral around the closed contour, v, shown
in Fig. B.1. Since this contour encloses no poles in the variable of integration, A,
dA A€

I =
A

eiva:[A+IB+IC+[D+IR:0_ (B32)
y

ibv A

Along this contour, ImA > 0, so e = ¢ibvReA o=bvImA doeg not become large,

provided that bv > 0. Furthermore, since 0 < ¢ < 1,
AG
x 0 as Al = 0. (B.33)
Thus, the contribution to the integral from the contour piece ‘R’ is I'p = 0.
The contribution from the contour piece ‘C’,

2 Ami
min JA A€
IC:/ Telbvﬁ, (B.34)
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IM(A) joo—
Cy
iAmin_

FIGURE B.1. A closed contour in the Re(A)-Im(A) plane, within which
the integrand of Eq. B.32 contains no poles.

may be brought into a more convenient form by changing the variable of integration to
t=—ibvA. As such,

i\ [ i€
Ip=—|— ditc let=—(—) D(e,bvAnin B.
¢ <b) /M ¢ (b> (€00 Anin), — (B.35)

where I'(e,bv Apin) is the incomplete T' function. Performing a series expansion about

x = 0, we have

T(e,z) = D(e) — "’% TR (B.36)
and so, in the limit A, — 0, we have
) ¢ .Amin ¢
Ic = — <Z> T(e) + @7) . (B.37)
bv €

The integration around the quarter circle ‘D’ may be evaluated by writing A =

Amin €?, and changing the variable of integration to #. Thus

dA A€ 0 o )
ID _ X ezva _ / idb Ainin ezeeezvamin cos@e—vamin sin 6 ) (B38)
D w/2

Taking Apin to be sufficiently small, this is simply

0 i AS . — ‘Amin €
ID:iAfmn/ i <0 — Bimin = (0 Amin) (B.39)

/2 €
The final contribution is from the contour piece ‘B’. To the accuracy we desire, this
does not contribute. The logarithmic enhancements are in the ratio Apax/Amin, and so
the contribution from Ig is beyond our accuracy.
Taking all the contributions together, we have

L=Iy=-Ic—Ip= —% + () [(e). (B.40)
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Using, for small €,

. 1 im l—e€eyg im e 7B gqrm
‘T'le) = - — — = — — B.41
°T(e) = - —m+ 5 — +5 — 5 (B.41)
we have A .
€ . ]_ 6_’YE
Re(ly) = ——2 + — B.42
o(l) =~ 1 (2 (B.12)
and so A _
€ — (bv)~€
[ =1 — I, = Bmax = (007 (B.43)
€
where b = beY®. This is precisely I1, but with Ay, — 1/(bv). Therefore, we may replace
; 1
1—et2 50 (A — 5) (B.44)
v

up to NNLL accuracy in our expression for R(b), for v > 0. For general v, one obtains
Eq. B.25 where z = v A.



304



Fixed-order - expansion

Fixed-order - expansion

Control plots for resummed predictions

APPENDIX C

C.1. Cancellation of logs for D@ predictions

C.1.1. Predictions in peak region.
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Ficgure C.1. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — ee channel around the resonance and the rapidity range
ly| < 1. The scale pug = M/2.
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Figure C.2. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — ee channel around the resonance and the rapidity range
ly| < 1. The scale uq = M.
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FiGure C.3. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — ee channel around the resonance and the rapidity range
ly| < 1. The scale ug = 2M.
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FiGure C.5. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — ee channel around the resonance and the rapidity range

1 < |y| < 2. The scale uq = M.
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Ficure C.6. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — ee channel around the resonance and the rapidity range
1 < |y| < 2. The scale puqg = 2M.
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data in the Z — ee channel around the resonance and the rapidity range
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the fixed-order component and the expansion of the resummation, for DO
data in the Z — pp channel around the resonance and the rapidity range
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FiGure C.11. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — pp channel around the resonance and the rapidity range
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FiGure C.12. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — pp channel around the resonance and the rapidity range
ly] < 1. The scale ug = 2M.
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FiGURE C.13. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data in the Z — pp channel around the resonance and the rapidity range
1 < |y| < 2. The scale ug = M/2.
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1 < |y| < 2. The scale ug = M.
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1 < |y| < 2. The scale ug = 2M.
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Ficure C.16. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO

data at low invariant mass and the rapidity range |y| < 1.
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FiGure C.17. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO

data at low invariant mass and the rapidity range |y| < 1.
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Ficure C.18. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO

data at low invariant mass and the rapidity range |y| < 1.
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FiGure C.20. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data at low invariant mass and the rapidity range 1 < |y| < 2. The scale

pHo = M.
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FIGURE C.21. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DO
data at low invariant mass and the rapidity range 1 < |y| < 2. The scale
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Ficure C.22. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS ¢* distributions with uq = M/2.
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Figure C.23. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS ¢* distributions with pq = M.
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Figure C.24. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS ¢* distributions with ug = 2M.
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FiGUure C.26. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the

ATLAS Q@ distributions with puqg = M.
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Ficure C.28. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS ¢* and Q7 distributions with the central scale choices.
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FiGure C.29. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS ¢* distributions with uq = M/2.
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FiGure C.30. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS ¢* distributions with uq = M.
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Figure C.31. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS ¢* distributions with ug = 2M.
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Ficure C.32. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the

CMS Qr distributions with pg = M/2.
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Plots showing the cancellation of large logarithms between

the fixed-order component and the expansion of the resummation, for the
CMS Qr distributions with ug = M.
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Figure C.34. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
CMS Q@ distributions with pg = 2M.
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leading muon, covering the range —m < 6 < —7/2
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APPENDIX E

Luminosity

E.1. Optimized ¢2ANP plots
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FicUre E.1. These plots show the effect of optimizing aéisND on the AND-
over-OR luminosity ratios, in bins of p. In all instances, the u values
quoted for the OR algorithm have been background-corrected. The values
determined from these optimization studies are summarized in Table 15.2.
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Ficure E.2. These plots show the effect of optimizing U\%ED on the AND-
over-OR, luminosity ratios, in bins corresponding to pseudo-lumiblocks
(PLBs), which is equivalent to bins in nominal beam separation, since each
scan point corresponds to a distinct PLB. In all instances, the luminosity
determined according to the OR algorithm has had a background correc-
tion applied. The values determined from these optimization studies are

summarized in Table 15.2.
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E.2. Systematics due to non-zero ;.

Table E.1 shows how the gradients of linear movement of the luminous centroid change
for various discrete crossing angles, a.. The final two columns express the change as a
percentage difference to the value of the observable obtained for «,., = 0. Note, fitted
values of dz/dh,, provide direct constraints on this crossing angle. All quantities are
calculated using a numerical model employing the single-Gaussian beam profiles described
in this note. Percentage changes found for «a,, = 20 urad are used as the systematic in
determining the widths of the bands in Fig. 16.7(e), as explained in Sec. 16.5. In
particular, these Monte Carlo results were derived by assuming the values in the ‘May
scan VII' column of Table 16.4, and the ‘May’ column of Table 16.6, where o, is taken to
be 69 mm for both beams, and a,, = 120 prad.

TABLE E.1. This table shows changes in Monte Carlo observables with
respect to discrete changes in the oy, crossing angle. Note well, that all
values quoted are the absolute value (i.e. the modulus) of those determined.

Qi (urad) 0 20 40 20 (%) 40 (%)
|d(x)/dh;| 1.5-1072 1.5-1072 1.5-107%2 ~0% ~ 0%
|d(y)/dh,| 1.9-107% 3.5-107*% 4.3-107* 84%  130%
|d(z)/dh| 1.6 2.7-101  4.1-10% 1500% 2400%
d(z)/dh,| 1.8-107* 2.7-107* 3.2-107* 52%  78%
Yy
|d{y)/dh,| 2.3-1072 2.3-1072 2.3-1072 ~0% ~ 0%
|d(z)/dh,| 1.6-10*> 1.6-10*> 1.6-10>° ~0% ~ 0%




350 E. LUMINOSITY

E.3. Luminous centroid movements with non-zero beam crossing angle

The equations corresponding to Eqs. 16.10 — 16.13, but in the presence of a single
beam crossing angle (i.e. oy, =0 and «ay, # 0, for instance) may be derived according to
the method set out in Sec. 17.2. They are summarized for the benefit of the reader below.
The dots (...) are to remind the reader a series expansion has been performed, and higher
terms have been neglected.

To begin with, it is interesting to see how the z-position of the luminous centroid,
denoted (z), gains a dependence on h, and h,. The z-movement during a scan in the

crossing plane is the easiest to understand:

d(z) vy 02
= E +... (E.1)
dh, 2(0511 + 0372)

It should be noted that d(z)/dh,, the z-movement during a scan out of the crossing plane,
gains this dependence via the linear z-y coupling:
d<2’> . ayz O'g (/431 Oz,10y,1 —+ Ko 0,2 O'y,g)
dhy 2(0371 + 032072) (0371 + 05’2)

(E.2)

In the following, the label ‘no xing’ indicates the corresponding quantity in Eqs. 16.10 —
16.13, where crossing angles were not included. The quantity d(x)/dh, remains unaffected,

since the assumed crossing plane is (y, z), not (z, z):

dlz) 031 — 03, d(zx)

dhy — 2(02 ) +02,) T T

(E.3)

no xing
The changes to the remaining movements are neatly summarized in terms of the quantity

d(z)/dh,, above:

d{z) 021022 (HQ Og,10y2 — K10g2 Uy,l) 1_ Oézz a2
2(0 Y 2)

- 2 2 2 2 2
dhy (021 +022) (051 +052) y1 1o (E.A)
dfz)\ d{z)
= (1-ay, —"1) =
dhy dhy no xing
and
2 2
d<y> _ Oy2 ~ Ty 1— a?/z O-g +... = (1 —a d<Z>> d<y> <E5)
dhy 2(05,1 ‘1"7@2;,2) 2(05,1 +0’§,2) Y dhy ) dhy |, xing7
except in
d{y) 2y Hy)
=1+0 E.6
dhw [ + (ayz)] dhx o Xing? < )
where one recognizes that the quantity (d(y)/ dhx)no sing already depends on ki to first

2
Yz

) correction term in Eq. E.5. One can indeed verify

order, and so the (cumbersome) O(a ) correction terms may be neglected if we work to

2
Yz

this numerically, and in fact the same should be true of Eq. E.4, which is presented above

the same order as the (simple) O(«

to O(aiz /1172). Finally, it should be noted that this is consistent with the notion that one
requires a crossing angle in both planes in order to significantly impact the determination

of the linear x-y coupling coefficients.
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E.4. When does crossing angle become negligible?

It has been mentioned in the text that one can deduce whether or not one needs to
consider any beam crossing angle by observing the plots for d(z)/dh,,, where x; € {z,y}.
To make this statement quantitative, the scale at which one should judge these plots is
derived below.

Observing Egs. E.4 and E.5, above, we see that the effect of a single crossing angle

2
Yz

one can neglect the crossing angle when

becomes important when a2, 02 ~ 2 (0’511 + 0372) =2 Eg. The converse statement is that

s 0, K V25, (E.7)
Using the definition of d(z)/dh, in Eq. E.1, one can rewrite this expression as
d(z) o
— < ) E.8
< (E5)

and thus obtain a quantitative statement for when one can ignore the crossing angle, in
terms of quantities already known a priori. For example, the residual crossing angles may
be ignored in the July 2012 scans because o, ~ 90 mm and ¥, ~ 150 um, thus d(z)/dh,
should be much smaller than ~ 420. From the final plot in Fig. 17.13, for example, one
sees that |d(z)/dh,| ~ 5, justifying the neglect of o, in the analysis.
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