
Azimuthal decorrelation between leptons in the Drell-Yan
process as a probe of infrared QCD: Phenomenology,

predictions and measurement of a novel collider observable
using perturbative resummation techniques
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Figure 13.1. Bin-by-bin correction factors for the φ∗ distributions in the
66 GeV < M < 116 GeV region, in different |y| bins. These factors are
to be applied to the background-subtracted distributions of the number of
candidate events in data.
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Figure 13.2. Bin-by-bin correction factors for the φ∗ distributions in the
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right) regions,
in different |y| bins. These factors are to be applied to the background-
subtracted distributions of the number of candidate events in data.
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Figure 13.7. The results of the ATLAS φ∗ analysis in the Z → µµ chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass region shown is 66 GeV < M < 116 GeV, and each
distribution corresponds to one of the six equally-sized rapidity bins across
the total range |y| < 2.4.
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Figure 13.8. The results of the ATLAS φ∗ analysis in the Z → µµ chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass regions shown are 46 GeV < M < 66 GeV (left) and
116 GeV < M < 150 GeV (right), and each left-right pair of distributions
corresponds to one of the three equally-sized rapidity bins across the total
range |y| < 2.4.
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Abstract

Azimuthal decorrelation between leptons in the Drell-Yan process as a probe of infrared

QCD: Phenomenology, predictions and measurement of a novel collider observable using

perturbative resummation techniques

A thesis submitted to the University of Manchester for the degree of Doctor of

Philosophy in the Faculty of Engineering and Physical Sciences

This thesis presents phenomenological studies of a state-of-the-art NNLL+NLO the-

oretical calculation of a novel collider observable known as φ∗. In these studies the φ∗

observable, a measure of azimuthal decorrelation, is applied directly to the leptons in the

production of massive lepton pairs in hadron collisions (the Drell–Yan process). This

provides an alternate measure of the recoil of the massive vector boson (Z/γ∗) against

initial state QCD radiation, but with distinct experimental advantages over the tradi-

tional boson transverse momentum. Attention is focused on the small-φ∗ régime (the

quasi-back-to-back régime) where the infrared dynamics of soft/collinear gluon emissions

become important. These phenomenological studies are followed up with the presentation

of a measurement of φ∗ in Z → µµ events using 20.3 fb−1 of collision data collected by the

ATLAS experiment in 2012. Finally, studies directly related to the ATLAS absolute lu-

minosity calibration by the van der Meer (vdM) method are presented, with the objective

of elucidating the rôle of transverse linear beam correlation. In particular, I present stud-

ies using an analytical method I have developed in order to precisely extract individual

beam information by way of studying phenomena pertaining to the luminous region during

vdM scans. In addition, a dedicated study of the long- and short-term stabilities of the

principal detectors for luminosity monitoring is also presented, along with an appropriate

recalibration of these detectors.

Lee Tomlinson

The University of Manchester

December 24, 2014
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Preface

I became a PhD student in the particle physics group at Manchester in 2010, and

have since worked on both high-energy particle physics theory and experiment, under the

joint supervision of Dr. Mrinal Dasgupta and Prof. Terry Wyatt FRS. My primary PhD

research has been in precision QCD and electroweak physics, focusing in particular on a

novel collider observable called ‘φ∗’. The theoretical aspects of this work have centred on a

state-of-the-art calculation of φ∗ along with several associated phenomenological studies. I

now work within the ATLAS collaboration at CERN where I have been a qualified author

since November 2012 and where, most recently, I have also been performing a measurement

of φ∗ using the 2012 data set. I performed my service work for authorship qualification

within the luminosity measurement task force, becoming a primary author on the 2011

luminosity measurement paper. During my PhD I have also become a primary author of

software which automates our theoretical calculation of φ∗ for and end-user, and which has

now been used by ATLAS and DØ, with whom I have enjoyed very fruitful collaboration.

The following thesis is divided into three parts, covering the work I have done on φ∗ in

association with the Drell–Yan process (the production of massive lepton pairs in hadronic

collisions) and the luminosity studies I performed within the ATLAS collaboration.

The first part of this thesis is dedicated to theoretical and phenomenological work I

have done with the φ∗ observable. It is my intention that this part will form a pedagogical

introduction to QCD and calculational techniques within, finally culminating in explicit

calculations for φ∗ and the results of my phenomenological work as applied to experiments

at Tevatron and the LHC. I had more than my thesis defence examiner in mind when

writing this part: In fact, I was writing to a student very much like myself, who might

decide to pursue a PhD in QCD research, or who might simply want to become familiar

with some of the calculational techniques therein for his or her own needs. However, for

the purpose of this remaining a thesis to be examined, I opted to remove quite a significant

amount of material that I had brought together as pedagogy but which may, nonetheless,

be discovered in the literature following the references I have retained. The reader will

still find explicit calculations, in some cases relegated to appropriate appendices, which

are directly relevant to my work herein.

A reader who is already familiar with the foundations of perturbative QCD might wish

to skip Chapter 2. The remaining chapters however, even for a familiar reader, are very

relevant to my work on φ∗ and should still provide crucial insight. Chapter 3 discusses

relevant aspects of the dynamics of soft and collinear gluon emission by way of explicit

calculation, followed by a discussion of the interpretation of the final results. Chapter 4

ultimately describes our ‘resummed’ calculation of φ∗, after first addressing theoretical
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aspects of the Drell–Yan process and the origin of logarithmically enhanced terms. In

addition, this chapter provides the reader with the connection to the more familiar QT

observable: the transverse momentum of the lepton pair. Finally, Chapter 5 presents my

phenomenological work in detail. This work includes comparisons to data available at the

time, and also predictions for data that would become available later.

The second part of this thesis describes the experimental measurement of φ∗ I per-

formed in the Z → µµ channel at
√
s = 8 TeV using data from the ATLAS experiment.

It had always been foreseen that I would perform an experimental measurement of φ∗

in order to complement the theoretical calculations I worked on. A measurement of φ∗

within ATLAS had already been performed at
√
s = 7 TeV by the time I had made the

transition to dedicating my research efforts to experiment (i.e. after becoming a qualified

ATLAS author). The results of my earlier phenomenological work strongly indicated that

a measurement performed at 8 TeV, with approximately four times the data as used in the

7 TeV measurement, could be very complementary to the former analysis if it included

additional measurements performed away from the Z peak. Put concretely, the rôle of

non-perturbative effects in comparisons to DØ data, and the remarkable agreement of our

prediction with low-mass DØ data, suggested that additional off-peak measurements at

8 TeV should form an essential aspect of this experimental analysis.

The third and final part of this thesis details the service work I contributed to the

ATLAS collaboration within the luminosity measurement task force, in the form of three

dedicated internal analysis notes. It is within this group that I worked closely with the

Beam Conditions Monitor—the principal luminosity monitor within ATLAS. Chapter 15

introduces the concept of a van der Meer beam separation scan as a method for determin-

ing the absolute luminosity calibration, and then presents a study I performed with the aim

of addressing the short- and long-term stability of the BCM detector. Chapters 16 and 17

then present my worked aimed at quantifying the transverse beam correlation within AT-

LAS, and the uncertainty this induced in the determination of the absolute luminosity

calibration.

I owe huge thanks to my supervisors Dr. Mrinal Dasgupta and Prof. Terry Wyatt FRS,

not only for the opportunity to pursue such exciting research topics and the commitment

they’ve had towards my career, but also for the pleasure of having them as mentors. I also

owe special thanks to Dr. Andrea Banfi, Prof. Witold Kozanecki and Dr. Simone Marzani

for the enormous dedication and devotion they have given to my work and to my learning

of physics—I am truly grateful to have had the opportunity to work with, and learn from,

these kind and committed people. It has been a privilege to collaborate with Samuel Webb,

whom I would like to acknowledge and thank for innumerable insightful discussions. I also

gratefully acknowledge the financial support of the UK Science & Technology Facilities

Council (STFC), and wish to thanks the Particle Physics Group at Manchester for being

such a warm and pleasant place in which to carry out my research.

I dedicate this thesis to Mum, Dad and my sister Lisa, for their love, understanding

and unwavering support throughout my physics career, particularly during the years it

has taken me far from home. I would like to thank those who are both colleagues and dear

friends, for all the wonderful times and adventures we’ve shared together. It has been my
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pleasure to meet my friend Aidan whilst on LTA at CERN, and to be permitted to ask

the most näıve questions without judgement! I finally owe my warmest thanks to Mandy

for always being there, despite the ∼ 5, 300 miles between us.

In loving memory of Roo.

Lee Tomlinson

Manchester, September 2014
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CHAPTER 1

Introduction

Part 1 of this thesis details the theoretical calculations and phenomenological work that

have formed a significant part of my PhD research. The theory presented herein centres

on the production of massive lepton pairs in high-energy hadron-hadron collisions [1] (the

Drell–Yan process) which has earned a great deal of attention since its conception, in both

collider physics theory and experiment. In particular, I present and discuss the calculation

of several observables, starting with the classic transverse momentum of the lepton pair,

QT, which has remained central to phenomenology over the decades [2, 3, 4, 5, 6, 7, 8],

since the pioneering work of Dokshitzer, Diakonov & Troian (DDT) [9], Altarelli, Parisi

& Petronzio [10, 11], Davies, Stirling & Webber [12, 13] and Collins, Soper & Sterman

(CSS) [14], taking place between the late ’70s and mid ’80s.

Much more recently, the closely related but completely angular φ∗ observable [15]

was introduced, which has distinct experimental advantages over its QT cousin, making it

suitable for precision electroweak phenomenology. For this reason, it has been the focus

of detailed theoretical [16, 17, 18] and experimental [19, 20] studies in recent years. It

is the theoretical study, predictions and a recent experimental measurement of φ∗ (Part

2) with which I have been involved, and which form the main topic of my thesis.

In our research, the calculational efforts have been in computing the perturbative quan-

tum chromodynamical (pQCD) corrections to the underlying electroweak process. As I

will show, this involves invoking the technology of resummation to produce a calculation

to all orders in perturbation theory. The reason for doing so is that a calculation of the

simplest process capable of generating a non-zero QT of the lepton pair is mathematically

divergent as QT becomes small. In this limit, and at each order of the perturbative ex-

pansion in αs, one finds the effective expansion parameter in the differential distribution

to be of the form αns log
m(M2/Q2

T), where M is the invariant mass of the lepton pair and

m ≤ 2n − 1, with m,n ∈ N. The disparity between M and QT means each term can

be numerically large, and the formal validity of a truncated (or ‘fixed-order’) perturba-

tion series breaks down. One must be careful to treat these logarithmic enhancements

appropriately, and in practice this amounts to the aforementioned all-orders approach.

The physical content of such a calculation is that one is forced to consider the emission

of up to an infinite number of collinear and/or soft gluons, which themselves dominate the

dynamics in the kinematic region where fixed-order fails. In the non-divergent regions of

phase space where QT ≈M—the mass of the lepton pair or, equivalently, the intermediate

γ∗/Z boson—a fixed-order calculation provides a good description of the physics. Given

one’s aim of obtaining a differential distribution that is free of divergences across all values

of the observable, it is necessary to use a consistent scheme for matching the two main
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28 1. INTRODUCTION

elements of the calculation: both fixed-order and resummed. The scheme we adopt is a

smooth one in which
(
dσ

dO

)

matched

=

(
dσ

dO

)

resummed

+

(
dσ

dO

)

fixed-order

−
(
dσ

dO

)

expanded

, (1.1)

where O = {QT, φ
∗} is the observable under consideration and ‘expanded’ denotes the

expansion of the resummed calculation. The expansion is performed to the same order in

αs with which the fixed-order piece is calculated, in order to remove double counting of

emissions. One is at liberty to do this because all logs are properly accounted for. Using

this method we obtain a calculation that is, in principle, well-suited to describe the physics

over a broad range of O.

With reference to the method of resummation, one is in principle regrouping the calcu-

lable terms of an all-orders perturbation expansion into an exponentiated form, such that

one recovers a series (in the exponent) in which each successive term is formally suppressed

relative to the previous one, and which may be truncated. Schematically, for an observ-

able whose leading enhancement is double-logarithmic and provided the observable fulfils

certain requirements, as are both the case for the cumulative QT and φ∗ distributions,

this may be written [21]

∞∑

m=0

2m∑

n=0

Cmn α
m
s L

n = (1 + consts) exp
[
Lg1(αs L)
︸ ︷︷ ︸

LL

+ g2(αs L)
︸ ︷︷ ︸

NLL

+αs g3(αs L)/π
︸ ︷︷ ︸

NNLL

+ . . .
]
,

(1.2)

where Cnm are the coefficients at each order in the expansion and L is the large logarithm.

This is the origin of the associated adjectives LL (leading log), NLL (next-to-leading

log), NNLL (next-to-next-to-leading log), etc. when one speaks of such calculations. The

work presented herein makes use of a full NNLL+NLO1 calculation, which at the time of

writing is the state of the art, building on former pioneering work at NNLL (e.g. [12])

and mirroring the state of the art at NNLL accuracy in more recent pioneering work

[22, 23, 24, 25, 26].

The remainder of Part 1 is set out as follows: First, in Chapter 2, I review the founda-

tions of QCD as a quantum gauge field theory. In Chapter 3 I discuss the elements of soft

and collinear QCD that are relevant to the process and observables under consideration,

by way of explicit calculations. In Chapter 4 I present and discuss the φ∗ observable and

its resummed calculation as applied to the Drell–Yan process, with details consigned to

the appendices. In particular, Appendix A contains a fully worked NLO calculation of

q q̄ → γ∗ +X. Finally, I present my phenomenological work, as applied to various collider

experiments, in Chapter 5. This work, in addition to comparisons with data, also includes

the predictions for certain experiments when data were not present at the time.

1Here NLO refers to the calculation of the Z+jets process; i.e. meaning O(α2
s )



CHAPTER 2

Fundamentals of QCD

Quantum chromodynamics1, or QCD, is a non-Abelian gauge field theory, which ex-

hibits exact symmetry under the SU(3) group (of ‘colour’). It is a theory of quarks and

gluons, being the elementary fields, which transform under the group’s fundamental and

adjoint representations respectively. Since the gauge group of QCD is the (non-Abelian)

SU(3) group—as opposed to the U(1) group in the case of electrodynamics—there exist

three distinct charges, also known as colour.

2.1. The classical Lagrangian

The classical QCD Lagrangian, up to gauge-fixing terms, is given by

Lclassical = −1

4
F aµνF

aµν +
∑

f

ψ̄if
(
iγµDij

µ − δijmf

)
ψjf , (2.1)

where ψ̄ = ψ† γ0,

F aµν = ∂µG
a
ν − ∂νG

a
µ + gsf

abcGbµG
c
ν (2.2)

is the field strength tensor for the Yang-Mills (gluon) field Gaµ(x), and

Dij
µ = ∂µδ

ij − igs (T
a)ij Gaµ(x) (2.3)

is the covariant derivative. The gluon colour index a ∈ {1, . . . , 8} is implicitly summed

over in the first term of Eq. 2.1. Furthermore, i ∈ {1, 2, 3} indexes the quark colour, and

f ∈ {u, d, c, s, t, b} indexes the flavour of the quark. The SU(3) generator T a is explained in

the following section. The spinor indices have been suppressed on the Dirac spinors, ψif (x),

and matrices, γµ, the latter of which satisfy the Clifford algebra: {γµ, γν} = 2gµν I, where

{, } denotes anticommutation, gµν is the Minkowski metric tensor and I is the identity

matrix, whose dimension is that of γ. The numbers fabc ∈ R are the structure constants

of the SU(3) algebra. The final term in Eq. 2.2 is a non-Abelian term, whose consequence

is to give rise to triple and quadruple self-couplings of the gluon. Finally, gs is the gauge

field coupling strength and will be discussed at length throughout this thesis.

2.2. Gauge invariance, colour and quantization

The SU(N) group is the group of N ×N unitary matrices with unit determinant. For

an element U ∈ SU(N), these properties are summarized as:

SU(N) =
{

U ∈ GL(N,C) : U †U = UU † = 1 ∧ detU = 1
}

, (2.4)

where GL is the general linear group, the set of N ×N invertible matrices with complex

entries. Elements of the defining representation of the SU(3) group follow immediately,

1Examples of excellent and accessible texts on QCD and gauge theories are given in [27, 28].
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30 2. FUNDAMENTALS OF QCD

and may be generated by exponentiation of the group generators, T a :

U
(
θ1, . . . , θ8

)
= exp

(

iθa
T a

2

)

, (2.5)

where a ∈ {1, . . . , 8} since the number of generators of the SU(N) group is N2 − 1, θa are

elements of the group parameter space, and T a satisfy
[

T a, T b
]

= i fabc T c . (2.6)

The structure constants themselves, when interpreted as the 8×8 matrices (T a)bc = −ifabc,
satisfy the same algebra and generate the adjoint representation.

Elements of the SU(N) group can be regarded as linear transformations on an N -

dimensional complex vector space, effecting the mapping U ∈ SU(N) : CN → C
N . As

such, we may write

ψi → ψ′
i = Ui

jψj , (2.7)

for ψ ∈ C
N , which may be written as a column vector, with implicit summation over

repeated indices. The placement of indices here is deliberate, and affords a compact

notation for the transformation of its complex conjugate, ψi ≡ ψ∗
i :

ψi → ψ′i = U ijψ
j , (2.8)

where the identification U∗
i
j ≡ U ij is made. The SU(N) invariant mapping (ψ, φ) :

C
N × C

N → R may now be written, contracting up and down indices, as ψiφi.

If we insist that the theory of QCD is locally gauge invariant, then its Lagrangian

should remain invariant—up to divergence terms, which do not affect the derived Euler-

Lagrange equations of motion—if we allow elements of the SU(3) parameter space to

become space-time dependent, i.e. θa → θa(x). Acting from the left with ∂µ on Eq. 2.7,

the x-dependence of U would generate an additional term, vis-à-vis the global case,

demonstrating that the partial derivative is not gauge-invariant. Demanding that a so-

called covariant derivative, however, should transform in the same manner as the fields

themselves—preserving the invariant nature of the Lagrangian—one can derive the appro-

priate transformation of the Yang-Mills field Gaµ, which must be performed simultaneously

with any gauge transformation of the Dirac fields ψi. This transformation is

T aGaµ(x) → T aG′a
µ (x) = U(x)T aGaµ(x)U

†(x)− ig−1
s [∂µU(x)]U †(x), (2.9)

with a summation over the colour index a, which in infinitesimal form becomes

Gaµ(x) → Gaµ(x)− fabcθb(x)Gcµ(x) + g−1
s ∂µθ

a(x). (2.10)

Furthermore, the gauge-invariant Yang-Mills term −1
4F

a
µνF

aµν is built from the field

strength tensor, which may be defined via the commutator

Fµν := − i

gs
[Dµ, Dν ] , (2.11)

in which the non-Abelian term of Eq. 2.2 has its origin. In order to remove the arbitrariness

of the gauge freedom permitted by Eq. 2.10, one has to fix the gauge. At the level of the



2.3. THE FEYNMAN RULES 31

Lagrangian, this can be achieved by adding a Lagrange multiplier of the form

Lgauge = λ
[
∂µGaµ(x)

]2
. (2.12)

This introduces the Lorentz covariant constraint that the gauge be fixed according to

∂µGaµ(x) = 0, the Lorenz2 gauge, obtained by extremizing Lgauge with respect to λ. The

gauge parameter η is introduced, and is related by λ = −1/(2η). The QCD Lagrangian,

before passing to the quantized theory, now stands as

L = Lclassical + Lgauge. (2.13)

Other forms of gauge fixing may be used, e.g. the axial (physical) gauge in which n·G = 0,

introducing the gauge vector n.

In order to practically quantize the theory using the method of path integrals, the

classical Lagrangian is supplemented with a Faddeev–Popov contribution [29], which gives

rise to ghosts:

LF–P = (∂µ χa∗)Dab
µ χb (2.14)

Here, χ is the ghost field (χ∗ being the complex conjugate ghost field), and Dab
µ is the

covariant derivative in the adjoint representation,

Dab
µ = δab ∂µ − g fabcGcµ . (2.15)

Taking all contributions collectively, the quantum Lagrangian for QCD is

L = Lclassical + Lgauge + LF–P . (2.16)

2.3. The Feynman rules

Many of the calculations in this thesis necessarily take place in d dimensions, with

d 6= 4, in order to regulate the divergences that occur for integrals over unconstrained loop

momenta. Nonetheless, one would like to preserve the dimensionlessness of the physical

couplings involved. The following short exercise shows how this may be done in practice.

The concept of mass dimension is introduced, such that a quantity of mass has mass

dimension [m] = 1. We work with natural units in which ~ = c = 1, thus the action has

mass dimension [S] = 0. Since

S =

∫

ddxL, (2.17)

and [x] = −1, one infers the mass dimension of the Lagrange density to be [L] = d. In the

case of QCD, whose classical Lagrangian is given by Eq. 2.1, one is able to systematically

infer that [ψ] = d−1
2 , [G] = d

2−1 and [gs] =
4−d
2 . In four space-time dimensions (d = 4) the

coupling is dimensionless. This dimensionlessness may be preserved in d 6= 4 dimensions by

introducing a new (arbitrary) mass parameter µ, making the replacement gs → gs µ
(4−d)/2

in the Feynman rules. Indeed this is what has been done in many of the calculations

throughout this thesis, hence the appearance of µǫ in several places, where d is taken to

be 4 − 2ǫ in order to dimensionally regulate divergent integrals [30]. In order to avoid

2The Danish mathematician and physicist Ludvig Valentin Lorenz, not to be confused with the Dutch
physicist Hendrik Antoon Lorentz
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µ iQ (e µǫ) γµ

a, µ

i

j

i (gs µ
ǫ)T aji γ

µ

k
a, µ b, ν

−i δab
k2 + i ǫ

(

gµν − (1− η)
kµ kν
k2 + i ǫ

)

= −i δabDFµν(k)

p
i j i δij

/p+m

p2 −m2 + i ǫ
= i δij SF(p)

k1

k2 k3

µ, a

ν, b

ρ, c

−(gs µ
ǫ) fabc [(k2 − k3)µ gνρ

+(k3 − k1)ν gρµ

+(k1 − k2)ρ gµν ]
(all momenta flow away from vertex)

Figure 2.1. The conventions for the Feynman rules used throughout this
thesis. The corresponding propagator rules for the photon and colourless
fermion are given by those for the gluon and coloured fermion above, but
removing the δab or δij as appropriate.

any ambiguity, the conventions for the Feynman rules used throughout this thesis are

summarized in Figure 2.1.
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2.4. Renormalization in the Lagrangian

The quantities appearing in the original Lagrangian, Eq. 2.16, are not necessarily

observable (i.e. are bare) and may therefore be suitably infinite in such a way as to cancel

the divergences arising from loop integrations in calculations of observable quantities (S-

matrix elements, etc.). To this end, we introduce renormalized quantities which are related

to the bare quantities, denoted3 by a ‘0’, as follows:

ψi0 =
√
Zψ ψ

i g0 µ
ǫ
0 = Zg g µ

ǫ

Ga0µ =
√
ZGG

a
µ m0 = Zmm

χa0 =
√
Zχ χ

a η0 = Zη η

(2.18)

Writing the bare Lagrangian in terms of renormalized quantities, using Eq. 2.18, one

obtains in d = 4− 2ǫ dimensions:

L = − 1

4
ZG (∂µG

a
ν − ∂νG

a
µ) (∂

µGa ν − ∂νGaµ)

+ i Zψ ψ̄
iγµ∂µψ

i − ZψZmmψ̄iψi

+ Zχ (∂
µχa∗) ∂µχ

a

− 1

2η
ZGZ

−1
η (∂µGaµ)

2

+ ZψZgZ
1/2
G gµǫ ψ̄iγµGaµ(T

a)ijψj

− 1

2
ZgZ

3/2
G gµǫ fabc (∂µG

a
ν − ∂νG

a
µ)G

b µGc ν

− 1

4
Z2
GZ

2
g (gµ

ǫ)2 fabcfadeGbµG
c
ν G

d µGe ν

− ZχZgZ
1/2
G gµǫ fabc (∂µχa∗)Gcµ χ

b.

(2.19)

The free parts (lines 1 – 4) are written separately from the interaction parts (lines 5 – 8)

for clarity. The renormalization procedure is now briefly summarized.

In this section I outline the formulation of renormalization due to Bogoliubov, Para-

siuk, Hepp & Zimmermann (BPHZ) [31, 32, 33, 34]. One uses the Lagrangian above,

L, to compute amplitudes for physical processes. For a tree-level computation, all the

renormalization constants {Zi}, where i ∈ {G, g, ψ,m, χ, η}, may be set to unity, since

no UV divergences will occur. For a one-loop calculation, however, one anticipates the

appearance of UV divergences and thus writes Zi = 1 + (δZ)i. In doing so, one obtains

L = LR + Lcounter, (2.20)

where LR is the renormalized Lagrangian, which has precisely the same form as the original

Lagrangian but is written simply by replacing the bare quantities with their renormalized

counterparts; i.e. m0 → m, etc. Thus the same set of Feynman rules, but with renormal-

ized quantities, may be established. The remaining terms, collectively Lcounter and which

contain the ‘(δZ)i’s, are known as counter terms and give rise to new Feynman rules.

One must supplement the calculation with the remaining necessary tree-level diagrams

generated from the counter-term Feynman rules. The ‘(δZ)i’s which enter the amplitude

3The subscript ‘s’ for the strong coupling is dropped here to accommodate the new notation.
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are then chosen specifically to cancel the UV divergences arising due to integrations over

unconstrained loop momenta.

The principle that allows this seemingly arbitrary cancellation to be made is that nei-

ther the bare quantities nor the ‘Zi’s can be physically measured, and may simultaneously

be infinite in such a way as to yield finite measurable quantities—i.e. the renormalized

ones. This procedure extends to all orders in a renormalizable theory without introducing

new interactions at each successive order and, as such, one is led to write

Zi = 1 + (δZ)1i + (δZ)2i + (δZ)3i + . . . , (2.21)

where the ‘(δZ)i’s are carefully chosen at each loop order.

Associating a renormalization constant, ZGψψ, with the entire interaction term

gµǫ ψ̄iγµGaµ(T
a)ijψj in Eq. 2.19 allows us to identify

Zg =
ZGψψ

Zψ
√
ZG

. (2.22)

The ultraviolet-divergent parts of Zψ and ZG, at one-loop order, are [35]

Zψ = 1− αs

4π
CF η∆ , (2.23)

ZG = 1− αs

4π

(
2NF

3
− 13− 3η

6
CA

)

∆ , (2.24)

and the renormalization constant, ZGψψ, for this quark-quark-gluon interaction is, in the

MS scheme to O(αs),

ZGψψ = 1− αs

4π

(

η CF +
3 + η

4
CA

)

∆ , (2.25)

with

∆ :=

(
1

ǫ
− γE + ln 4π

)

. (2.26)

This allows us to deduce

Zg = 1− αs

4π

(
11CA

6
− NF

3

)

∆ (2.27)

which, referring to Eq. 2.18, is the multiplicative relationship between g0 µ
ǫ
0 and g µǫ.

2.5. The renormalization group equation

The definition of a renormalized quantity is not unique, for one may choose which finite

parts to simultaneously absorb ad libitum, provided that the Slavnov-Taylor identities

[36, 37] are respected. Consider the renormalized coupling, defined as

g(µ) = µ−ǫ Zg(µ) g0 µ0 , (2.28)

for instance. One could just as well have defined a different renormalized coupling as

g(µ′) = (µ′)−ǫ Zg(µ
′) g0 µ0 . (2.29)

Since the bare coupling is unique, the two renormalized couplings are related via a finite

renormalization, namely

g(µ′) = Zg(µ
′, µ) g(µ) , (2.30)
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with

Zg(µ
′, µ) =

µǫ

(µ′)ǫ
Zg(µ)

Zg(µ′)
. (2.31)

The set of finite renormalization constants, {Zg(µ′, µ)}, are endowed with group structure

under multiplication, and hence form the renormalization group. Exploiting the indepen-

dence of certain quantities on a given renormalization scale leads to powerful differential

equations known as the renormalization group equations (RGEs), of which we will be

interested in those that are associated with the minimal subtraction scheme [38, 39].

Defining the dimensionless β-function

β
(
g(µ)

)
:= µ

dg(µ)

dµ
(2.32)

and using Eq. 2.30 with Eq. 2.31, it can be deduced that

β
(
g(µ)

)
= −ǫ g(µ)− g(µ)

µ

Zg(µ)

dZg(µ)

dµ

= −ǫ g(µ)− g(µ)β
(
g(µ)

) ∂ lnZg
∂g

,

(2.33)

where the second equality holds if we may assume that the µ-dependence of Zg(µ) is only

implicit via g(µ), permitting one to use

dZg(µ)

dµ
=
dg(µ)

dµ

∂Zg
∂g

. (2.34)

A remarkable property of working in a minimal subtraction (e.g. MS) scheme is that

the renormalization constants, the ‘Zi’s, are indeed independent of any mass scale by

construction: save for a factor (4π)ǫ, only the divergent ǫ−1 pole terms are subtracted.

These pole terms are of ultraviolet origin, and are thus associated with a régime in which

masses are negligible. The MS schemes are therefore mass-independent schemes. Further-

more, since the β-function is dimensionless, it can only depend upon µ implicitly via g(µ),

since a dimensionless ratio µ/m does not exist, hence the minimally indicated functional

dependence in Eq. 2.32.

It can also be shown that β is finite in the limit ǫ → 0, and that it is independent of

the gauge parameter η. Here we take these properties as given, and deduce that β must

have the expansion

β =

∞∑

n=0

an ǫ
n, (2.35)

i.e. including only positive powers of ǫ. It’s easily shown by direct substitution into Eq.

2.33, given the Laurent expansion of Zg in general as

Zg = 1 +

∞∑

n=1

Z
(n)
g (g)

ǫn
, (2.36)

that the expansion of β terminates after O(ǫ). Substituting Eq. 2.36 into Eq. 2.33, i.e.

Zg β + ǫ g Zg + g β
∂Zg
∂g

= 0 with β = a0 + ǫ a1, (2.37)
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one obtains
(

1 +
Z

(1)
g

ǫ
+

∞∑

n=2

Z
(n)
g (g)

ǫn

)

[a0 + (a1 + g) ǫ]

+ g (a0 + ǫ a1)

(

1

ǫ

dZ
(1)
g

dg
+

d

dg

∞∑

n=2

Z
(n)
g (g)

ǫn

)

= 0 .

(2.38)

Comparing coefficients of ǫ and 1, one obtains

a1 = −g (2.39)

and a0 = g2
dZ

(1)
g

dg
. (2.40)

Finally, taking the limit ǫ→ 0, one obtains a simple expression for the β-function:

β
(
g(µ)

)
= g2

dZ
(1)
g

dg
. (2.41)

From Eq. 2.27 it is easily deduced that

β(g) = − 2g3

(4π)2

(
11CA

6
− NF

3

)

. (2.42)

It is also useful to define the β-function alternatively, using g2 = 4παs, as

β
(
αs(µ)

)
:= µ2

dαs(µ)

dµ2
= −α2

s

∞∑

n=0

βn α
n
s , (2.43)

where an expansion in αs has been assumed. With this definition, the expansion coefficients

for SU(N) are [40]

β0 =
11CA − 2NF

12π
, (2.44)

β1 =
17C2

A − 5CANF − 3CFNF

24π2
(2.45)

and

β2 =
2857
54 C

3
A − 1415

54 C
2
ANF − 205

18 CACFNF + C2
FNF + 79

54CAN
2
F + 11

9 CFN
2
F

64π3
. (2.46)

We now consider the renormalization of a general truncated connected Green’s function

with Nψ external quarks and NG external gluons, which is given as

Γ0(α0,m0, η0, {pi}) = Z
Nψ/2
ψ Z

NG/2
G Γ(µ, αs,m, η, {pi}), (2.47)

where {pi} represents the external momenta. Since Γ0 is independent of the renormaliza-

tion scale µ, we have

µ2
d

dµ2

{

Z
Nψ/2
ψ Z

NG/2
G Γ(µ, αs,m, η, {pi})

}

= 0 (2.48)

and so
{

µ2
∂

∂µ2
+ β

∂

∂αs
+ µ2

dm

dµ2
∂

∂m
+ µ2

dη

dµ2
∂

∂η

+µ2
Nψ

2

d lnZψ
dµ2

+ µ2
NG

2

d lnZG
dµ2

}

Γ(µ, αs,m, η, {pi}) = 0 ,

(2.49)
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which is the RGE for a general truncated connected Green’s function, with β given in

Eq. 2.43.

The renormalization group equation, Eq. 2.49, may be solved by the method of char-

acteristics. First, the renormalized parameters and the mass scale µ are assumed to be

functions of a parameter t, and as such they become µ(t), αs(t), m(t) and η(t). We thus

have Γ = Γ(µ(t), αs(t),m(t), η(t), {pi}) and so its total derivative with respect to t may

be written as

dΓ

dt
=

(
dµ2(t)

dt

∂

∂µ2
+
dαs(t)

dt

∂

∂αs
+
dm(t)

dt

∂

∂m
+
dη(t)

dt

∂

∂η

)

Γ . (2.50)

Upon making identifications between the coefficients of the partial derivatives in Eq. 2.50

and Eq. 2.49, particularly

dµ2(t)

dt
= µ2(t) (2.51)

and
dαs(t)

dt
= β(αs) , (2.52)

we recover the RGE in the form
{
d

dt
+ µ2

Nψ

2

d lnZψ
dµ2

+ µ2
NG

2

d lnZG
dµ2

}

Γ(µ(t), αs(t),m(t), η(t), {pi}) = 0. (2.53)

Therefore, the solution of the RGE by the method of characteristics necessarily gives rise

to parameters that run with t, and the relevant equations that govern these evolutions for

µ and αs are Eqs. 2.51 and 2.52. Solving the first of these, Eq. 2.51, gives

∫ µ(t)

µ(0)

dµ2(t)

µ2(t)
=

∫ t

0
dt′ ⇒ t = ln

(

µ′2

µ2

)

, (2.54)

where the definitions µ := µ(0) and µ′ := µ(t) have been made. Eq. 2.52 is then solved

using this expression for t, as in

∫ αs(t)

αs(0)

dαs

β
=

∫ t

0
dt′ = t = ln

(

µ′2

µ2

)

. (2.55)

In order to continue one must take the expression for β as a power series in αs (Eq. 2.43),

whose coefficients were presented previously, and perform the integration over αs. To begin

with, we work to leading order and truncate β after the α2
s term, i.e. taking β = −β0 α2

s .

Thus
∫ αs(t)

αs(0)

dαs

β
= − 1

β0

∫ αs(t)

αs(0)

dαs

α2
s

=
1

β0

(
1

αs(µ)
− 1

αs(µ′)

)

,

(2.56)

and, taken with Eq. 2.55, implies

αs(µ
′) =

αs(µ)

1 + αs(µ)β0 ln
(
µ′2

µ2

) . (2.57)
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Working to next-to-leading order and taking β = −α2
s (β0+αs β1), one obtains the two-loop

running coupling implicitly as

β0 ln

(

µ′2

µ2

)

=

[
1

αs
+
β1
β0

ln

(
αs

β0 + β1 αs

)]αs(µ′)

αs(µ)

, (2.58)

for which an approximate solution, accurate to next-to-leading order, is given by [41]

αs(µ
′) =

αs(µ)

ρ

(

1− β1
β0
αs(µ)

ln ρ

ρ

)

, (2.59)

where ρ = 1 + 2β0 αs(µ) ln(µ
′/µ).



CHAPTER 3

QCD in the infrared régime

In this chapter I address the dynamics of soft and collinear QCD, where soft is used to

describe emission in the case where the energy carried away is significantly smaller than

any of the harder characteristic energy scales in the picture. One of the profound prop-

erties of calculations performed in this ‘infrared’ régime is that of factorization, whereby

the squared emission amplitude amounts to only a multiplicative factor on the squared

amplitude for the original process in absence of the emission. This property is vital when

one considers calculations to all orders, on account of the dramatic simplifications it pro-

vides. The physical principle at work with the emission of soft gluons is that the relatively

long wavelengths of the emitted gluons become incapable of resolving the details of the

short-distance-scale hard scattering process and, as such, they respond only to the over-

all charge of the system: a phenomenon known as coherence. We begin by computing

the amplitude for one soft gluon emission from a q q̄ ‘dipole’. Afterwards we move on to

computing the two-soft-gluon amplitude where I will make some assumptions about the

relative ordering of gluon energies. This will allow us to witness coherence at work and

deduce certain features that persist to an arbitrary number of emissions.

3.1. Factorization of gluons in the soft limit

Consider the production of a quark and anti-quark pair, from the decay of a virtual

photon, γ∗, supplemented by an additional single gluon radiation in the final state: γ∗ →
q q̄ g. The two distinct mechanisms by which this process can occur are show in Fig. 3.1.

The momenta of the quark and anti-quark are labelled p1 and p2, respectively, and k is

the gluon momentum. We consider this process to occur in the limit where the emitted

gluon is soft; i.e. k ≪ p1, p2.

The amplitude for this process, in reference to Fig. 3.1, is

M = −iQ e gs T aij ū1
[

/ǫ∗g (/p1 + /k +m) /ǫγ
(p1 + k)2 −m2

−
/ǫγ (/p2 + /k −m) /ǫ∗g
(p2 + k)2 −m2

]

v2 (3.1)

where the following shorthand notation has been used: For the quark and anti-quark

spinors ū1 ≡ ūi(p1, s1) and v2 ≡ vj(p2, s2), where i and j are colour indices and s1, s2

label their spins, respectively. For the polarization vectors, (ǫγ)µ ≡ ǫµ(q, σ) denotes that

of the photon, of momentum q ≈ p1+p2 and polarization labelled σ, and (ǫ∗g)α ≡ ǫa ∗α (k, λ)

denotes that for the gluon, of momentum k and polarization labelled λ. In general, these

vectors are complex. Finally, Feynman slash notation is used, e.g. /p ≡ γµpµ.

39
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iSF(p1 + k)

ǫγ

v2

ǫ∗g

ū1

iQeγµ

iSF(−(p2 + k))

ǫγ

v2

ǫ∗g

ū1

iQeγµ

Figure 3.1. The production of a quark and anti-quark pair, from the
decay of a virtual photon, supplemented by an additional single gluon ra-
diation in the final state: γ∗ → q q̄ g. iSF(p) is the Feynman fermion
propagator.

Invoking the ‘eikonal’ approximation, whereby we neglect k terms in the numerators

of the propagators, one obtains, for the two terms in square brackets in Eq. 3.1,

/ǫ∗g (/p1 + /k +m) /ǫγ
(p1 + k)2 −m2

→
/ǫ∗g (/p1 +m) /ǫγ

2p1 · k
=

[2 p1 · ǫ∗g − (/p1 −m) /ǫ∗g] /ǫγ
2p1 · k

(3.2)

and
/ǫγ (/p2 + /k −m) /ǫ∗g
(p2 + k)2 −m2

→
/ǫγ (/p2 −m) /ǫ∗g

2p2 · k
=
/ǫγ [2 p2 · ǫ∗g − /ǫ∗g (/p2 +m)]

2p2 · k
, (3.3)

where the Clifford algebra for γ matrices has been used in the form /p /ǫ = 2 p · ǫ− /ǫ /p, and

only the gluon is assumed massless: k2 = 0 but p21 = p22 = m2. Finally, using the Dirac

equation for the quark and anti-quark spinors, namely ū1(/p1−m) = 0 and (/p2+m)v2 = 0,

we obtain the amplitude in the eikonal approximation,

M = −iQ e gs ū1 T aij /ǫγ v2
(
p1 · ǫ∗g
p1 · k

−
p2 · ǫ∗g
p2 · k

)

, (3.4)

where the soft gluon emission has factorized from the amplitude for γ∗ → qq̄. We seek the

squared amplitude where the factorization, when inclusive over all the quantum numbers of

the gluon, takes a particularly simple expression. The complex conjugate of the amplitude

is

M∗ = iQ e gs v̄2/ǫ
∗
γT

b
jiu1

(
p1 · ǫg
p1 · k

− p2 · ǫg
p2 · k

)

, (3.5)

where a distinct gluon colour dummy index has been introduced, and the Hermiticity of

the fundamental generators has been used: (T bij)
∗ = T bji. The squared matrix element is
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then

|M|2 = Q2e2g2s T
a
ij T

b
ji Tr [u1 ū1 γ

µ v2 v̄2 γ
ν ] ǫµ ǫ

∗
ν

× ǫ∗aρ ǫbσ

(
pρ1
p1 · k

− pρ2
p2 · k

)(
pσ1
p1 · k

− pσ2
p2 · k

)

,
(3.6)

where a trace over Dirac matrices has been introduce to permit their permutation as

shown, in the case that one would like to sum over spins of the quark and anti-quark.

We now perform the sum over the gluon’s quantum numbers. In addition, it is useful

to also sum over the colours of the quark and anti-quark, since these quantum numbers

‘talk’ to the gluon. First, we obtain the summation over gluon polarization states via the

replacement (in the physical gauge; cf. Eq. 3.16)

∑

λ

ǫbσ(k, λ) ǫ
∗a
ρ (k, λ) → −

(

gρσ −
kρ nσ + nρ kσ

n · k +
(n2 + λ k2) kρ kσ

(n · k)2
)

δab. (3.7)

Note that the final two terms give zero upon contraction with the eikonal currents in

Eq. 3.6. One then obtains

|M|2 =
∑

i,j,a

|M|2

= |M0|2g2sCF
2p1 · p2

p1 · k p2 · k

(3.8)

where CF = Tr [T a T a], and |M0|2 is the squared amplitude for the process γ∗ → qq̄, with

a summation over colours of the final state quark and anti-quark.

We thus see that, in the eikonal approximation, the soft gluon emission factorizes.

The gluon has in some sense become dissociated from any particular emitter, and is rather

associated with the hard process (the QED vertex) as a whole. The physical interpretation,

as mentioned in the introduction to this chapter, is that the gluon’s wavelength is too long

to resolve any detailed structure of the hard process, although this picture breaks down

when one considers emission that is simultaneously collinear to a given emitter. It is

a straightforward exercise to show that this factorization property extends to any hard

process, as shown for example in Sec. 3.7 of [35]. The softness of the gluon means we ought

only to consider it attached to an external leg of a general hard process, as in Fig. 3.2, if

we wish to extract the leading soft enhancement, since highly virtual internal propagators

cannot be put on shell.
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Mhard

...

...

Figure 3.2. A soft gluon factorizes completely from any general hard
process, labelled Mhard in the diagram. It only gives rise to a soft en-
hancement when attached to external legs, since highly virtual internal
propagators cannot be put on shell.

3.2. Soft gluon emission and coherence

The emission of two soft gluons from a qq̄ pair in QCD is complicated somewhat

by the presence of two extra diagrams as compared with the equivalent case in QED,

namely those involving the triple-gluon vertex. Furthermore, the non-Abelian nature of

the theory gives rise to a complicated colour structure. Notwithstanding, the situation

may be simplified by making some underlying assumptions that one need not invoke in the

case of soft photon emission. For a more general survey, the reader might wish to consult

[42]. The following calculation I present is one I computed independently, as an exercise

to offer insight regarding the angular properties of soft emissions and their connection

with the coherence phenomenon in QCD [43, 44, 45, 46, 47].

To begin with, Fig. 3.3 shows the eight diagrams that contribute to the process under

present consideration. In order to be explicit, I do not write down the amplitudes for

these diagrams using the eikonal Feynman rules, but rather write down the full amplitude

and subsequently take limits. This way the reader can observe the subtleties involved,

particularly where the triple-gluon vertices are concerned. The explicit amplitude for the

first diagram, Fig. 3.3(a), is given by

Ma = ū(p1, s1) i gs /ǫ
∗(k1, λ1)T

a
ik i

/p1 + /k1

(p1 + k1)2 + iǫ

× i gs /ǫ
∗(k2, λ2)T

b
kj i

/p1 + /k1 + /k2

(p1 + k1 + k2)2 + iǫ
iQf e γ

α v(p2).

(3.9)

Taking the limit k1, k2 ≪ p1, p2 allows this to be written as

Ma = iQf e ū1 γ
α v2 g

2
s T

a
ik T

b
kj

p1 · ǫ∗1
p1 · k1

p1 · ǫ∗2
p1 · (k1 + k2)

, (3.10)

where ū1 ≡ ū(p1, s1), ǫ
∗
1 ≡ ǫ∗(k1, λ1), etc. In the same way as before, the Clifford algebra of

the γ matrices, and the Dirac equation for spinors have been used. The following diagrams

(b)–(f) proceed straightforwardly in the same manner. However, the final two diagrams

(g) and (h) are complicated due to the presence of the triple-gluon vertex, and further
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α

p2, s2, j

k2, λ2, b

k1, λ1, a

p1, s1, i

(a)

2

1

(b)

2

1

(c)

2

1

(d)

2

1

(e)

2

1

(f)

2

1

(g)

2

1

(h)

Figure 3.3. The eight diagrams contributing to the two-gluon emission
from a qq̄ pair. Gluon 1 (2) has colour a (b), spin λ1(2) and momentum k1(2).
The outgoing (anti-) fermion has colour i (j), spin s1(2) and momentum
p1(2).

assumption about the nature of the emissions k1 and k2 must be made. First, recall the

triple-gluon vertex is given by the Feynman rule

−gs fabc
[
(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (k1 + 2k2)µ gνσ

]
, (3.11)

as shown in Fig. 2.1.

We thus obtain, for diagram (g),

Mg = ū1 i gs γρ T
c
ij

−i dρσ(k1 + k2)

(k1 + k2)2 + iǫ

× (−gs)fabc
[
(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (k1 + 2k2)µ gνσ

]

× i
/p1 + /k1 + /k2

(p1 + k1 + k2)2 + iǫ
iQf e γ

α v2 ǫ
∗µ
1 ǫ∗ν2 ,

(3.12)
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which again may be simplified by taking the limit k1, k2 ≪ p1, p2, then using the Clifford

algebra and Dirac equation for spinors, thus obtaining

Mg = iQf e ū1 γ
α v2 g

2
s (−i T cij fabc)

p1ρ
p1 · (k1 + k2)

dρσ(k1 + k2)

2 k1 · k2
×
[
(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (k1 + 2k2)µ gνσ

]
ǫ∗µ1 ǫ∗ν2 .

(3.13)

Computing all eight diagrams, the final expression for the amplitude for γ∗ → q q̄ g g

in the limit where the two gluons are soft, k1, k2 ≪ p1, p2, may be written

M = iQf e ū1 γ
α v2 g

2
s

×
{

T aik T
b
kj

[

(a)
︷ ︸︸ ︷

p1 · ǫ∗1
p1 · k1

p1 · ǫ∗2
p1 · (k1 + k2)

−

(e)
︷ ︸︸ ︷

p1 · ǫ∗1
p1 · k1

p2 · ǫ∗2
p2 · k2

+

(c)
︷ ︸︸ ︷

p2 · ǫ∗1
p2 · (k1 + k2)

p2 · ǫ∗2
p2 · k2

]

+ T bik T
a
kj

[

(b)
︷ ︸︸ ︷

p1 · ǫ∗1
p1 · (k1 + k2)

p1 · ǫ∗2
p1 · k2

−

(f)
︷ ︸︸ ︷

p2 · ǫ∗1
p2 · k1

p1 · ǫ∗2
p1 · k2

+

(d)
︷ ︸︸ ︷

p2 · ǫ∗1
p2 · k1

p2 · ǫ∗2
p2 · (k1 + k2)

]

− i T cij f
abc

[
(g)

︷ ︸︸ ︷
p1ρ

p1 · (k1 + k2)
−

(h)
︷ ︸︸ ︷

p2ρ
p2 · (k1 + k2)

]
dρσ(k1 + k2)

2 k1 · k2

× [(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (2k2 + k1)µ gνσ] ǫ
∗µ
1 ǫ∗ν2

}

,

(3.14)

where the aforementioned shorthand has been used. Extracting the polarization vectors,

we have

M = Mµν ǫ
∗µ
1 ǫ∗ν2 . (3.15)

Before continuing, it is instructive to consider what happens when ǫ∗i in Eq. 3.15 is replaced

with the corresponding momentum ki, with i ∈ {1, 2}. First we turn to dρσ(k1 + k2) for

two specific gauge choices:

dρσ(k) = gρσ − (1− η)
kρ kσ

k2
covariant

dρσ(k) = gρσ − kρ nσ + nρ kσ

n · k +
(n2 + λ k2) kρ kσ

(n · k)2 axial (physical)

(3.16)

In these two expressions, k = k1 + k2, and η parameterizes the covariant gauge freedom,

while λ and the vector n parameterize the axial (physical) gauge freedom.

By a direct computation, making the replacements ǫ∗1 → k1 and/or ǫ∗2 → k2 as neces-

sary, it can be shown that

Mµν k
µ
1 k

ν
2 = 0 (3.17)

and

Mµν k
µ
1 ǫ

∗ν
2 ∝ 1

2 k1 · k2

[
p1 · k1

p1 · (k1 + k2)
− p2 · k1
p2 · (k1 + k2)

]

k2 · ǫ∗2 , (3.18)

along with a similar expression for Mµν ǫ
∗µ
1 kν2 . In the limit k2 ≪ k1, one may make the

replacement k1 → k1 + k2 in the numerators with impunity, and the resulting expression

for Eq. 3.18 is identically zero. Thus, a useful Ward identity holds in the limit of soft
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gluons strongly ordered in energy. Writing this second expression more explicitly as

Mµν k
µ
1 ǫ

∗ν
2 ∝ 1

2 k1 · k2

[
p01 k

0
1(1− cos θ11)

p01 k
0
1(1− cos θ11) + p01 k

0
2(1− cos θ12)

− p02 k
0
1(1− cos θ21)

p02 k
0
1(1− cos θ21) + p02 k

0
2(1− cos θ22)

]

k2 · ǫ∗2 ,
(3.19)

and then parameterizing the energy of the first gluon as k01 = αk02, one can make a Taylor

expansion about α = 0 to find that this expression also vanishes in the limit α ≪ 1,

showing that the Ward identity also holds when the gluons are strongly ordered in energy

as k1 ≪ k2. The same results would hold if one were to make the replacement ǫ∗2 → k2.

To summarize,

Mµν k
µ
1 k

ν
2 = 0 when k1, k2 ≪ p1, p2 and

Mµν ǫ
∗µ
1 kν2 = Mµν k

µ
1 ǫ

∗ν
2 = 0 when k1, k2 ≪ p1, p2 with k1 ≪ k2 or k1 ≫ k2.

(3.20)

These Ward identities have very important consequences, particularly for the triple-

gluon vertex and the sum over gluon polarisations in the squared amplitude. I will address

the latter here first. The squared amplitude, inclusive over all gluon polarisations, may

be written
∑

λ1,λ2

|M|2 =
∑

λ1,λ2

(Mµν ǫ∗1µ ǫ
∗
2ν)(M∗µ′ν′ ǫ1µ′ ǫ2ν′)

= Mµν M∗µ′ν′ (−gµµ′ + gauge terms
)
(−gνν′ + gauge terms) ,

(3.21)

where the usual completeness relation for spinors has been used. Upon multiplying out

the terms in parentheses, one finds that the only term to survive is the one proportional to

gµµ′ gνν′ on account of the Ward identities derived above, assuming the strong ordering of

gluon energies. Thus, in this limit, the sum over gluon polarization states is accomplished

simply as
∑

λ1,λ2

|M|2 = Mµν M∗
µν . (3.22)

The second manner in which the Ward identities help us is in simplifying the triple

gluon vertex. Assuming strong ordering of the gluons’ energies, taken here with complete

generality to mean k2 ≪ k1, the part of the expression in Eq. 3.14 due to the triple-gluon

vertex becomes

(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (2k2 + k1)µ gνσ

→ −2k1ν gσµ + k1σ gµν + k1µ gνσ ,
(3.23)

of which the final two terms in the second line may be discarded for the following reasons:

The third term in this expression, k1µ gνσ, will appear multiplying the complex conjugate

amplitude in the polarization-inclusive squared amplitude, yielding zero by the Ward

identity. In the same manner as before, the second term in this expression, k1σ gµν , may

be replaced with (k1 + k2)σ gµν , which gives zero identically in the broader context of the
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expression:
[

p1ρ
p1 · (k1 + k2)

− p2ρ
p2 · (k1 + k2)

]

dρσ(k1 + k2) (k1 + k2)σ gµν

=

[
p1 · (k1 + k2)

p1 · (k1 + k2)
− p2 · (k1 + k2)

p2 · (k1 + k2)

]

gµν

= 0,

(3.24)

since dρσ(k1 + k2) may be shown to be effectively gρσ.

Our starting point for the remainder of the calculation, is Eq. 3.14 in the limit k2 ≪ k1,

using the simplified triple gluon vertex and taking dρσ(k1 + k2) = gρσ, namely

dρσ(k1 + k2) [(−2k1 − k2)ν gσµ + (k1 − k2)σ gµν + (2k2 + k1)µ gνσ] → −2 k1ν g
ρ
µ , (3.25)

on account of the derived Ward identities in this limit. Thus we start with

M = iQf e ū1 γ
α v2 g

2
s

×
{

T aik T
b
kj

[
p1 · ǫ∗1
p1 · k1

p1 · ǫ∗2
p1 · (k1 + k2)

− p1 · ǫ∗1
p1 · k1

p2 · ǫ∗2
p2 · k2

+
p2 · ǫ∗1

p2 · (k1 + k2)

p2 · ǫ∗2
p2 · k2

]

+T bik T
a
kj

[
p1 · ǫ∗1

p1 · (k1 + k2)

p1 · ǫ∗2
p1 · k2

− p2 · ǫ∗1
p2 · k1

p1 · ǫ∗2
p1 · k2

+
p2 · ǫ∗1
p2 · k1

p2 · ǫ∗2
p2 · (k1 + k2)

]

+i T cij f
abc k1 · ǫ∗2

k1 · k2

[
p1 · ǫ∗1

p1 · (k1 + k2)
− p2 · ǫ∗1
p2 · (k1 + k2)

]}

,

(3.26)

which, after using the Lie algebra i T cij f
abc = [T a, T b]ij to write T aik T

b
kj → T bik T

a
kj +

i T cij f
abc, becomes

M = iQf e ū1 γ
α v2 g

2
s

{

T bik T
a
kj× eikonal

+i T cij f
abc

[
p1 · ǫ∗1
p1 · k1

p1 · ǫ∗2
p1 · (k1 + k2)

− p1 · ǫ∗1
p1 · k1

p2 · ǫ∗2
p2 · k2

+
p2 · ǫ∗1

p2 · (k1 + k2)

p2 · ǫ∗2
p2 · k2

+
k1 · ǫ∗2
k1 · k2

(
p1 · ǫ∗1

p1 · (k1 + k2)
− p2 · ǫ∗1
p2 · (k1 + k2)

)]}

,

(3.27)

where ‘eikonal’ indicates the usual product of eikonal currents:

eikonal =

(
p1 · ǫ∗1
p1 · k1

− p2 · ǫ∗1
p2 · k1

)(
p1 · ǫ∗2
p1 · k2

− p2 · ǫ∗2
p2 · k2

)

(3.28)

The final part is very subtle, as we now analyse the angular ordering of the two gluons.

Using pi as a reference, I will now define three angles according to pi·k1 = Ei ω1 (1−cos θi1),

pi · k2 = Ei ω2 (1− cos θi2) and k1 · k2 = ω1 ω2 (1− cos θ̃12), where Ei is the energy of the

fermion and ω1(2) is the energy of gluon 1 (2). If we now take the expression

pi · (k1 + k2) = Ei ω1

[

(1− cos θi1) +
ω2

ω1
(1− cos θi2)

]

(3.29)
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we identify a problem. On account of the condition ω2 ≪ ω1, we would like to drop the

second term and conclude pi · (k1 + k2) ≈ pi · k1, however we may only1 do this as long

as θi1 6≈ 0. Our interest begins with the region for which k1 is collinear, without loss of

generality, to p1.

In the collinear limit of k1 we may approximately replace k1 → (ω1/E1) p1 in the

numerator. Therefore,

k1 · ǫ∗2
k1 · k2

→ ω1

E1

p1 · ǫ∗2
ω1 ω2 (1− cos θ̃12)

≈ p1 · ǫ∗2
E1 ω2 (1− cos θ12)

=
p1 · ǫ∗2
p1 · k2

(3.30)

where θ̃12 ≈ θ12 has been used, which requires θ11 ≪ θ12, i.e. the softer gluon is emitted at

a much wider angle. Using this result, and the fact that p2 ·(k1+k2) may be replaced with

p2 · k1 (k1 is already assumed collinear to p1, and so this approximation is safe according

to the above arguments) one finds upon direct computation that

i T cij f
abc

[
p1 · ǫ∗1
p1 · k1

p1 · ǫ∗2
p1 · (k1 + k2)

− p1 · ǫ∗1
p1 · k1

p2 · ǫ∗2
p2 · k2

+
p2 · ǫ∗1

p2 · (k1 + k2)

p2 · ǫ∗2
p2 · k2

+
k1 · ǫ∗2
k1 · k2

(
p1 · ǫ∗1

p1 · (k1 + k2)
− p2 · ǫ∗1
p2 · (k1 + k2)

)]

→ i T cij f
abc × eikonal,

(3.31)

and so

M = iQf e ū1 γ
α v2 g

2
s T

a
ik T

b
kj × eikonal. (3.32)

The same result may have been achieved by taking k1 collinear to p2 instead. The physical

content of this result is that, if the softer gluon is emitted at a wider angle it resolves only

the total colour charge of the system, and this emission is independent and eikonal. This

is coherence.

The remaining scenario to consider is where θ12 . θ11; i.e. the softer gluon is emitted

at a similar or lesser angle than the harder gluon. If the harder gluon is not collinear to

either p1 or p2, this condition applies no constraint on what the angle of the softer gluon

may be. In this case, one may always replace pi · (k1 + k2) → pi · k1 with impunity in the

denominators. Upon making this simplification in Eq. 3.26, one finds

M = iQf e ū1 γ
α v2 g

2
s

{

T aik T
b
kj

[

eikonal +
p1 · ǫ∗1
p1 · k1

(
p1 · ǫ∗2
p1 · k1

− p1 · ǫ∗2
p1 · k2

)

+
p2 · ǫ∗1
p2 · k1

p1 · ǫ∗2
p1 · k2

+
k1 · ǫ∗2
k1 · k2

(
p1 · ǫ∗1
p1 · k1

− p2 · ǫ∗1
p2 · k1

)]

+T bik T
a
kj

[

eikonal +
p2 · ǫ∗1
p2 · k1

(
p2 · ǫ∗2
p2 · k1

− p2 · ǫ∗2
p2 · k2

)

+
p1 · ǫ∗1
p1 · k1

p2 · ǫ∗2
p2 · k2

+
k1 · ǫ∗2
k1 · k2

(
p2 · ǫ∗1
p2 · k1

− p1 · ǫ∗1
p1 · k1

)]}

.

(3.33)

Within the first and third sets of parentheses, the term proportional to (p1 · k1)−1 may be

dropped since it is small relative to the term proportional to (p1 · k2)−1, because of the

strongly ordered gluon energies ω2 ≪ ω1 and the fact that we are considering the case

1In fact, all we require is that θi1 6≪ θi2, i.e. the harder of the two gluons is not significantly more collinear
than the softer one.
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where θ12 . θ11. That is,
(
p1 · ǫ∗2
p1 · k1

− p1 · ǫ∗2
p1 · k2

)

→ − p1 · ǫ∗2
p1 · k2

, etc. (3.34)

Finally, this expression may be cast in the form

M = iQf e ū1 γ
α v2 g

2
s

(
p1 · ǫ∗1
p1 · k1

− p2 · ǫ∗1
p2 · k1

)

×
[

T aik T
b
kj

(
k1 · ǫ∗2
k1 · k2

− p2 · ǫ∗2
p2 · k2

)

− T bik T
a
kj

(
k1 · ǫ∗2
k1 · k2

− p1 · ǫ∗2
p1 · k2

)]

,

(3.35)

where the eikonal current for gluon 1, the harder of the two, is an overall factor in the

expression.

Squaring this result and summing over gluon polarization states and quark colours

gives, considering only the terms in the square brackets,
∑

i,j

∑

λ1,λ2

|M|2 ∝

2 iTr
[
T aT bT c

]
fabc

1

ω2
2

[
(k1, p1)

(k1, k2) (k2, p1)
+

(k1, p2)

(k1, k2) (k2, p2)
− (p1, p2)

(p1, k2) (k2, p2)

]

− 2Tr
[
T aT bT bT a

] p1 · p2
p1 · k2 p2 · k2

,

(3.36)

where the gluon’s energy ω2 has been factored out in the non-Abelian piece and

(a, b) := 1− cos θab (3.37)

is defined for the vectors a and b, with cos θab the angle between them. Independent

emission essentially means that the non-Abelian term—in the large square brackets, which

does not appear in QED—must vanish. We have already seen that this term disappears

when the softer of the two gluons is emitted at a significantly wider angle than the less

soft gluon. We now demonstrate that this term also vanishes in the case that the softer of

the two gluons is emitted significantly more collinearly to either the quark or anti-quark.

Adopting the method used in [48, 49], the non-Abelian term, proportional to

NA =
(k1, p1)

(k1, k2) (k2, p1)
+

(k1, p2)

(k1, k2) (k2, p2)
− (p1, p2)

(p1, k2) (k2, p2)
, (3.38)

may be written in terms of

W̃ k
[i]j :=

(i, j)

(i, k) (k, j)
+

1

(i, k)
− 1

(j, k)
(3.39)

as

NA = W̃ k2
[p1]k1

− W̃ k2
[p1]p2

+ W̃ k2
[k1]p2

. (3.40)

A remarkable property of the function W̃ k
[i]j is that, if we integrate over the azimuth of

the vector k, with the azimuth defined to be about the direction of the vector i in square

brackets, one obtains
∫
dφ

2π
W̃ k

[i]j =
1

(i, k)
Θ[(i, j)− (i, k)] =

1

(i, k)
Θ(cos θik − cos θij) , (3.41)
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as shown in Appendix B.3. Since the W̃ k
[i]j functions are scalars, we are free to choose our

coordinate system in each case over which to perform the phase space integration. With

that in mind, we pick the azimuth of k to be the angle about the direction of the vector i

(in square brackets to remind us). We therefore obtain the expression
∫
dφ

2π
NA =

1

(p1, k2)

{

Θ
[
(p1, k2)− (p1, p2)

]
−Θ

[
(p1, k2)− (p1, k1)

]}

+
1

(k1, k2)
Θ
[
(k1, p2)− (k1, k2)

]
.

(3.42)

The collinear enhancement as k2 becomes parallel to p1 is in the first term, but this

goes to zero as (p1, k2) → 0 because of the Heaviside step functions. The general result

may be stated [50] as follows: soft gluons emitted at widely disparate angular scales

are emitted independently because of QCD coherence, whereby the gluon emitted at a

wider angle ‘feels’ only the total colour charge of the (q g) system from which it’s being

emitted—which, in this case, is just that of the original quark. This result is crucial to

the consideration of soft gluon resummation to all orders.

As a final remark for the interested reader, I will point out that this thesis deals

principally with the resummation of continuous global observables. For a discussion of

the resummation of so called ‘non-global’ QCD observables, see [51]. In particular, [52]

presents a discussion of coherence in the context of such an observable.

3.3. Collinear gluon emission to all orders

In Appendix A.4 I have computed the (azimuthally averaged, d-dimensional) differen-

tial cross-section for a general process involving the splitting q → q g, in the limit where

the emitted gluon (g) is collinear to the quark (q). This demonstrates the universality of

the factor one obtains in association with such emissions which, in d = 4 dimensions, is

αs

2π

dk2T
k2T

dz Pqq(z) , (3.43)

where Pqq(z) is the Altarelli–Parisi splitting function [53], z is the momentum fraction

carried forth by the quark, and kT is transverse momentum of the gluon with respect to

the direction of the quark2.

To understand how we might obtain a result to all orders, we follow [54]. Let us

therefore consider a quark of momentum p = (E, 0, E) emitting a gluon of momentum k,

as shown in Fig. A.6. We parameterize the gluon momentum as

k = (z E, kT, β E) (3.44)

and, requiring the gluon to be massless—i.e. k2 = 0, one can deduce that

β = z

√

1− k2T
z2E2

≈ z − k2T
2 z E2

(3.45)

2There is a singularity associated with soft gluon emission, i.e. when 1− z → 0.
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in the limit where kT ≪ z E, the collinear limit. The momentum carried by the quark

after the emission is therefore

q = (p− k) =

(

E′,−kT, E′ +
k2T

2 z E

)

, (3.46)

where E′ = (1− z)E, and so

q2 = −k
2
T

z
+O(k4T) . (3.47)

Upon integration over the gluon’s transverse momentum k2T we obtain a logarithm asso-

ciated with the collinear emission.

Consider, the subsequent emission of a gluon carrying momentum k′ = (z′E′, k′T, β
′E′).

Similarly, in order that this gluon be massless, we have

β′ ≈ z′ − k′2T
2 z′E′2 . (3.48)

We therefore find the momentum carried by the quark after the second emission to be

q′ = q − k′ =

(

E′′,−(kT + k′T), E
′′ +

k′2T
2 z′E′ +

k2T
2 z E

)

, (3.49)

where E′′ = (1− z′)E′. This implies that

q′2 = −(kT + k′T)
2 − E′′

(
k′2T
z′E′ +

k2T
z E

)

+ . . . , (3.50)

where . . . represents terms O(k4T), O(k′4T) and O(k2T k
′2
T). Only in the limit kT ≪ k′T does

q′2 vary as k′2T , giving us a double logarithm upon integration of the propagators over the

second gluon’s transverse momentum k′2T , followed by integration over that of the first

gluon, namely k2T:
∫ kmax

T

kmin
T

dk2T
k2T

∫ kT

kmin
T

dk′2T
k′2T

=
1

2
ln2

(

kmax
T

2

kmin
T

2

)

. (3.51)

In performing the integration over k′2T , we may set the upper limit to k2T, which is sufficient

to obtain the double-logarithm.

Since two gluon emissions gives a term formally O(α2
s ), only the circumstance in

which we obtain this double logarithm do we find a correction that may be as large as

that associated with single collinear gluon emission at O(αs). This necessarily implies

the ordering of emissions as kT ≪ k′T. This argument extends to an arbitrary number of

collinear gluon emissions straightforwardly.

The argument for strong ordering in transverse momenta of successive gluon emissions

has been based entirely on kinematical considerations for the propagators. It actually

gives rise to a simplification in the calculation of the dynamics for multiple collinear gluon

emission, for it implies that quantum mechanical interference between processes where

the gluons are ordered differently is suppressed. Pictorially, this interference may be

represented by ladder diagrams in which gluon ‘rungs’ cross, as shown in Fig. 3.4 (left).

Only those diagrams in which no rungs cross give the leading collinear contribution (of a

single log) at each order in αs, as shown in Fig. 3.4 (right).

Since interference may be neglected at this accuracy, this gives rise to the notion of

independent emission, where the probability for n successive collinear gluon emissions is
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(a) A ladder diagram
with some crossed
rungs.

(b) A ladder diagram
in which no rungs
cross.

Figure 3.4. A ‘ladder’ diagram representation of |M|2 for an arbitrary
number of gluon emissions. In the collinear limit, the leading terms come
from the diagram in which no rungs cross, which gives rise to the concept
of independent emission probabilities. Diagrams in which rungs cross give
sub-leading contributions.

simply proportional to the probability of one collinear gluon emission to the nth power.

It should be borne in mind that this picture is correct only if one is concerned with the

leading collinear enhancements at each order. In fact, the so called DGLAP equations

presented in the following section (due to Dokshitzer, Gribov, Lipatov, Altarelli & Parisi

[53, 55, 56]) provide a resummation of these enhancements to all orders.

For processes in which the leading logarithmic enhancement at each order is a double

log, arising from soft and collinear emissions, then the approximation discussed above

contributes at NLL (next-to-leading logarithmic) accuracy, and it guarantees the single

collinear logs at each order.3

3.4. Parton evolution and the DGLAP equation

The DIS structure function F2 [35, 48]—the DIS equivalent of Eq. 4.22 for Drell–Yan,

to be introduced later—is

F2(x,Q
2) = x

∑

q,q̄

Q2
q

∫ 1

x

dz

z
φMS
q

(x

z
, µ
){

δ(1− z) +
αs

2π

[

P (0)
qq (z) ln

Q2

µ2
+RDIS

qq (z)

]}

.

(3.52)

Here, φi(x, µ) is a parton density function (PDF)—the probability that a parton of flavour

i carries a momentum fraction x of the parent hadron, discussed further in Chapter 4.

We take this, for example, as our starting point for obtaining the DGLAP [53, 55, 56]

evolution equations. First, it should be noted that we consider all quantities defined

in the MS scheme, i.e. only the modified collinear pole (4πeγE)ǫ/ǫ is absorbed into the

definition of the renormalized PDFs. In the ‘DIS’ scheme, the entire function RDIS
qq (z)

3This is only true if we consider ‘global’ observables. Observables with non-global logarithms are different,
and such arguments may not hold. For a discussion of such observables the reader is referred to [51].
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would have been absorbed but, for our purposes, it remains present in the expression for

F2(x,Q
2). Furthermore, the non-perturbative PDFs φMS must be determined from an

initial experiment ‘A’ before they can be used to make a prediction of the outcome for

experiment ‘B’. In order to extract φMS from the measurement performed in experiment

‘A’, one necessarily chooses a particular value of µ, since this will change the value of φMS

determined. A natural choice may be the characteristic hard scale µ2 = Q2, for then the

logarithm is zero. However, this means φMS acquires a dependence on µ. When used to

make predictions for the outcome of experiment ‘B’, which may be performed at a different

characteristic energy scale, we need some way of ‘evolving’ the PDFs to this new scale.

It is precisely the observation that the physical quantity F2(x,Q
2) cannot depend on this

mathematical construction µ2 that gives us the relevant evolution equation. One starts

with

µ2
dF2(x, µ

2)

dµ2
= 0

⇒ µ2
d

dµ2

∫ 1

x

dz

z
φMS

(x

z
, µ
){

δ(1− z) +
αs

2π

[

P (0)
qq (z) ln

Q2

µ2
+RDIS

qq (z)

]}

= 0

(3.53)

Collecting terms of O(αs), noting that µ2 ∂φ(x, µ)/∂µ2 is itself an O(αs) quantity, one

finds

µ2
∂φ(x, µ)

∂µ2
=

∫ 1

x

dz

z

αs

2π
P (0)
qq (z)φ

(x

z
, µ
)

=
αs

2π
P (0)
qq (x)⊗ φ(x, µ)

(3.54)

after performing the trivial integration over the δ-function. This integro-differential equa-

tion for φ(x, µ) is the DGLAP equation, which allows one to determine the PDFs at a

physical scale µ′, upon integration, from those known at a physical scale µ.

In fact, the full DGLAP equations are (2NF+1)-dimensional matrix equations for the

matrix of PDFs (φq, φq̄, φg)

µ2
∂

∂µ2

(

φq(x, µ)

φg(x, µ)

)

=
αs

2π

(

Pqq(x, αs(µ)) Pqg(x, αs(µ))

Pgq(x, αs(µ)) Pgg(x, αs(µ))

)

⊗
(

φq(x, µ)

φg(x, µ)

)

(3.55)

Focusing simply on Eq. 3.54, we can solve it by taking Mellin moments with respect

to x, i.e.

φ̃(N,µ2) =

∫ 1

0
dxxN−1 φ(x, µ2) . (3.56)

In Mellin space the convolution becomes a simple product, and one has simply

µ2
dφ̃(N,µ2)

dµ2
=
αs(µ

2)

2π
φ̃(N,µ2) γqq(N,αs(µ

2)) . (3.57)

In this expression, γqq(N) is the anomalous dimension (see Eq. 4.48 later) namely the Nth

Mellin moment of the regularized splitting function. We may integrate this expression, for

a given N , to find
∫ Q2

Q2
0

1

φ̃(N,µ2)

dφ̃(N,µ2)

dµ2
dµ2 =

∫ Q2

Q2
0

dµ2

µ2
αs(µ

2)

2π
γqq(N,αs(µ

2)) (3.58)
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and so

φ̃(N,Q2) = φ̃(N,Q2
0) exp

[
∫ Q2

Q2
0

dµ2

µ2
αs(µ

2)

2π
γqq(N,αs(µ

2))

]

. (3.59)

The right-hand side may be solved exactly, for instance, if one assumes αs fixed, to give

φ̃(N,Q2) = φ̃(N,Q2
0)

(
Q2

Q2
0

)αs(µ
2)

2π
γqq(N,αs(µ2))

. (3.60)

We have the desired expression: given the PDF determined for some starting scale Q0,

the PDF at the new scale Q. With this result, the term anomalous dimension may be

elucidated: it quantifies the deviation from näıve scaling of the PDFs.



54



CHAPTER 4

The Drell–Yan process and the φ∗ observable

The Drell-Yan process [1] may be described as: h1(p1)+h2(p2) → ℓ−(p3)+ℓ+(p4)+X,

namely the processes whereby two hadrons collide to produce two leptons of opposite

charge and same flavour, and anything else, X. This process, in the näıve Parton Model1,

is shown in the Born approximation, O(α2) in the electroweak coupling parameter, in

Fig. 4.1. The factorization theorem for Drell-Yan production [57] permits us to write the

hadronic cross-section as a convolution of (possibly scale-dependent) parton distribution

functions (PDFs) for each hadron h1 and h2, with the partonic cross-section for an allowed

sub-process, up to terms formally suppressed by powers of Λ2
QCD/M

6, the inverse hard

scale. Thus

dσ

dM2
∼
∑

i,j

∫ 1

0
dξ1

∫ 1

0
dξ2 φi/1(ξ1;µ)

dσ̂ij
dM2

(ξ1 ξ2 s;µ)φj/2(ξ2;µ) +O
(

Λ2
QCD

M6

)

. (4.1)

Here, ξ1 and ξ2 are the momentum fractions of partons 1 and 2 that enter the sub-process,

denoted by a hat, and φi/k(ξ;µ) is a scale-dependent PDF for a parton of type i in hadron

k, namely the probability that this parton is found to have a momentum between ξ pk and

(ξ + dξ) pk, where pk is the momentum of the parent hadron, labelled k ∈ {1, 2}. A sum

over parton types is included. Eq. 4.1 is usually the starting point for the calculation of

hadronic cross-sections in perturbative QCD (pQCD).

In this chapter I will present in detail the calculation of the cross-section for the Drell-

Yan process in a hadron-hadron collider, including O (αs) perturbative corrections to the

Born result, which is itself O
(
α2
)
, in the electroweak coupling. The aim is to introduce

the reader to a full next-to-leading order (NLO) calculation, demonstrating various results

along the way that will be invoked later. I have computed the differential partonic cross-

sections explicitly in Appendix A, for the Born process and also the real and virtual

corrections, for the benefit of the interested reader.

In this chapter I also finally introduce the φ∗ observable [15] that has essentially

formed the topic of my PhD. The φ∗ observable was originally introduced as a result

of experimental considerations. It has an entirely angular construction, which means

it is largely immune to experimental momenta mismeasurements, in contrary to its QT

cousin. Throughout this thesis, the φ∗ observable (along with QT) is directly applied

to the Drell-Yan process. It is important to note, however, that the observable itself is a

kinematic definition and could equally apply to other suitable processes, as a measure of the

azimuthal decorrelation between two objects. That said, we are for the present interested

in this observable in the context of Drell-Yan for its ability to probe the effects of gluon

1The model in which hadronic constituents, known as partons, are assumed to instantaneously and inco-
herently undergo the actual scattering.
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ξ1 p1

ξ2 p2

∑

f=q,q̄

ℓ+

ℓ−φf,1(ξ1)

φf̄ ,2(ξ2)

Q2
f

Figure 4.1. The Drell-Yan process in the Born approximation and the
näıve Parton Model

emission from the process-initiating partons. In Section 4.4 I will present the kinematic

construction of φ∗ and relate it to other observables, before presenting its resummed

calculation vis-à-vis that of aT and QT for easy comparison in the sections that follow.

First, I will address the Drell–Yan cross-section and logarithmic enhancements that arise

in certain regions of phase space.

4.1. The hadronic cross-section

In this section I will address the full hadronic cross-section for the Drell–Yan process

and the rôle of PDFs, focusing on the annihilation mechanism with photonic exchange:

h1 h2 → q q̄ + X → γ∗(+g) + X to serve as a concrete example2. The reader will find

detailed calculations of the relevant individual partonic processes in Appendix A, where

dimensional regularization has been used in d = 4 − 2ǫ dimensions. Adding together the

contributions at O(αs) to the Drell-Yan process under consideration, namely the real and

virtual contributions to the annihilation sub-process in Eqs. A.74, A.75 and A.104, one

obtains (see, for example, [35, 48, 60])

dσ̂Rqq̄ + dσ̂V = σ̂0
αs

2π

dM2

M2
D(ǫ)

[

−2

ǫ
P (0)
qq (z) +Rqq̄(z)

]

, (4.2)

with D(ǫ) defined in Eq. A.66, and where P
(0)
qq (z) is one of the Altarelli–Parisi splitting

functions [53], given by

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]

, (4.3)

2A calculation of Drell–Yan production via Z exchange may be found in [58]. Furthermore, the total O(αs)
result may be found by consulting [59].



4.1. THE HADRONIC CROSS-SECTION 57

and Rqq̄(z), given by

Rqq̄(z) = CF

{

δ(1− z)

(
2π2

3
− 8

)

+ 4(1 + z2)

[
log(1− z)

1− z

]

+

− 2 log(z)
1 + z2

1− z

}

, (4.4)

is a function which is completely finite in the limit ǫ→ 0.

The quantity dσ̂Rqq̄ + dσ̂V above is not finite in the limit ǫ → 0, on account of the

remaining pole in ǫ, and is therefore not infrared (IR) safe. The purpose of this section is

to address this issue, and find how we can extract an IR safe quantity from it, by exploiting

factorization [57]. The essential point is that, in Eq. 4.1 for the hadronic cross-section,

we have introduced a new quantity, namely a PDF, which itself has an unrenormalized,

yet unmeasurable form, along with a renormalized, finite and measurable form. The

programme for obtaining the IR-safe version of the partonic cross-section will be via a

redefinition, whereby the singular pieces are absorbed into the unmeasurable bare PDFs.

Following the method of [60], we begin by defining a quantity known as a transition

function, Γ, which is to a parton what a bare PDF is to a hadron. The idea here is to

absorb the singular pole in ǫ into the transition function, whose residue may be interpreted

as the probability of finding a parton of a given type inside another parton—in this case a

quark ‘within’ a quark—with a given momentum fraction z of the original parton. Thus,

we define

σǫij(s) =

∫ 1

0
dz1

∫ 1

0
dz2 Γ

ǫ
ik(z1)σkℓ(z1z2s) Γ

ǫ
jℓ(z2), (4.5)

where the ǫ is there to remind the reader the quantity is not finite in the limit ǫ → 0.

Assuming a perturbative expansion in αs for each of the quantities in Eq. 4.5, namely

σij(s) =
∞∑

n=0

(αs

2π

)n
σn,ij(s),

σǫij(s) =
∞∑

n=0

(αs

2π

)n
σǫn,ij(s)

and Γǫik(z) = δikδ(1− z) +
∞∑

n=1

(αs

2π

)n
Γǫn,ik(z) ,

(4.6)

we may write the finite quantity σ order-by-order in terms of σǫ and Γǫ, by equating terms

at the same perturbative order upon substitution of Eq. 4.6 into Eq. 4.5:

σ0,ij(s) = σǫ0,ij(s)

σ1,ij(s) = σǫ1,ij(s)−
∫ 1

0
dz1 Γ

ǫ
1,ik(z1)σ

ǫ
0,kj(z1s)−

∫ 1

0
dz2 σ

ǫ
0,iℓ(z2s) Γ

ǫ
1,ℓj(z2)

... =
...

(4.7)

The method now is to pick suitable expressions for the ‘Γǫ’s in order that all the

divergences (poles in ǫ) on the RHS of these expressions exactly cancel, leaving only finite

quantities on the LHS.
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First, the full hadronic cross-section is given, according to the factorization theorem,

by

dσ

dM2
(s) =

∫ 1

0
dξ1

∫ 1

0
dξ2

×
{
∑

q

[
φq/1(ξ1)φq̄/2(ξ2) + (q ↔ q̄)

]
[
dσ̂0,qq̄
dM2

(ξ1ξ2s) +
dσ̂1,qq̄
dM2

(ξ1ξ2s)

]

+
∑

f=q,q̄

[
φg/1(ξ1)φf/2(ξ2) + (f ↔ g)

] dσ̂1,gq(ξ1ξ2s)

dM2

}

.

(4.8)

From Eq. A.25 we already know that

dσ̂0,qq̄
dM2

(ŝ) =
dσ̂ǫ0,qq̄
dM2

(ŝ) =
σ̂0(ŝ)

ŝ
δ

(

1− M2

ŝ

)

, (4.9)

so we begin by finding the expression (using Eq. 4.7) for

dσ̂1,qq̄
dM2

(ŝ) =
dσ̂ǫ1,qq̄
dM2

(ŝ)−
∫ 1

0
dz1 Γ

ǫ
1,qq(z1)

dσ̂ǫ0,qq̄
dM2

(z1ŝ)−
∫ 1

0
dz2

dσ̂ǫ0,qq̄
dM2

(z2ŝ) Γ
ǫ
1,q̄q̄(z2)

=
dσ̂ǫ1,qq̄
dM2

(ŝ)−
∫ 1

0
dz̄ [Γǫ1,qq(z̄) + Γǫ1,q̄q̄(z̄)]

σ̂0(z̄ŝ)

z̄ŝ
δ

(

1− M2

z̄ŝ

)

,

(4.10)

where I have introduced z̄ = z1 = z2 as the variable of integration. Performing the integral

over z̄, we obtain
∫ 1

0
dz̄ [Γǫ1,qq(z̄) + Γǫ1,q̄q̄(z̄)]

σ̂0(z̄ŝ)

z̄ŝ
δ

(

1− M2

z̄ŝ

)

= [Γǫ1,qq(z) + Γǫ1,q̄q̄(z)]
σ̂0(ŝ)

M2
(4.11)

where σ̂0(M
2)/ŝ = σ̂0(ŝ)/M

2 and z = M2/ŝ has been used, as one may verify explicitly

from the expression in Eq. A.25. Using the expansion for D(ǫ) given in Eq. A.72, one

may now see that, defining

Γǫ1,qq(z) = Γǫ1,q̄q̄(z) = −1

ǫ

(
4πe−γE

)ǫ
P (0)
qq (z), (4.12)

the poles in
dσ̂ǫ1,qq̄
dM2 (ŝ) of Eq. 4.10 are absorbed, yielding a finite expression for

dσ̂1,qq̄
dM2 (ŝ) in

the limit ǫ→ 0, namely

dσ̂1,qq̄
dM2

(ŝ) =
σ̂0(ŝ)

M2

[

2P (0)
qq (z) log

(
M2

µ2

)

+Rqq̄(z)

]

(4.13)

with σ̂0(ŝ) given in Eq. A.28 (d → 4). This particular choice results in additional finite

terms being absorbed, along with the singular pole in ǫ. Such a choice is known as the

MS scheme.

Until now we have completely neglected the Compton sub-process: h1 h2 → g q+X →
γ∗ + q +X, which is absent until O(αs) corrections are considered. Since the calculation

of the annihilation sub-process to O(αs) has been worked in great detail, the result for the

Compton piece is simply quoted here, but the reader is referred to the literature [35, 48],

or the calculation may be used as an exercise. The result is

dσ̂ǫ1,gq
dM2

=
σ̂0
M2

Q2
f

αs

2π

[

−1

ǫ
P (0)
qg (z) +Rgq(z)

]

, (4.14)
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where

Rgq(z) = TF

{

2
[
z2 + (1− z)2

]
log

[
(1− z)2

z

]

+ 3 + 2z − 3z2
}

, (4.15)

and

P (0)
qg (z) = TF

[
z2 + (1− z)2

]
, (4.16)

with TF = 1
2 . Using Eqs. 4.6 and A.25, we may now compute

dσ̂1,gq
dM2

(ŝ) =
dσ̂ǫ1,gq
dM2

(ŝ)−
∫ 1

0
dz̄ Γǫ1,gq̄(z̄)

dσ̂ǫ0,q̄q
dM2

(z̄ŝ)

=
dσ̂ǫ1,gq
dM2

(ŝ)− Γǫ1,gq̄(z)
σ̂0(ŝ)

M2
,

(4.17)

in a similar manner as before, and conclude that the definition

Γǫ1,gq̄(z) = −1

ǫ

(
4πe−γE

)ǫ
P (0)
qg (z) (4.18)

renders
dσ̂1,gq
dM2 (ŝ) finite.

So far we have computed the Drell-Yan partonic cross-section at NLO, necessarily in

d 6= 4 space-time dimensions, finding there are poles in ǫ that remain when all pieces are

summed together, and which are associated with collinear emission. We have thus far

absorbed these poles into so-called transition functions, whose residues at the pole may

be interpreted as the probability to find a parton of a given type inside another parton.

It is now that we finally introduce the bare and renormalized PDFs, to absorb this pole

once-and-for-all, in a consistent fashion. Finally, order-by-order, we will demand that the

physical hadronic cross-section be independent of the mathematical construction µ, intro-

duced to retain dimensionless coupling parameters, and thus insist that the renormalized

PDFs are themselves functions of µ in such a way as to cancel the dependence due to

the renormalized partonic cross-section for Drell–Yan. We thus see that PDFs are scale-

dependent quantities which may be extracted from experiment and evolved according to a

set of coupled integro-differential equations given the name DGLAP [53, 55, 56], for use

in predicting the outcome of experiments performed at a different scale. In this context,

µ becomes known as the factorization scale.

We begin by defining the renormalized PDF as the following convolution:

φi/k(ξ) =

∫ 1

0
dx

∫ 1

0
dz φǫj/k(x) Γ

ǫ
ij(z) δ(ξ − x z). (4.19)

The physical interpretation is as follows: The probability of finding a parton of type i

inside hadron k with a momentum fraction ξ to ξ + dξ of that of its parent, is the sum of

probabilities to find a parton of type j inside k with momentum fraction x to x+dx, times

the probability of finding a parton of type i inside the parton of type j, with momentum

fraction z to z+ dz, in such a way that ξ = x z in each case. This definition permits us to

compensate the singularity in Γǫij with an equivalent one in the unmeasurable (bare) PDF

φǫj/k, such that the measurable φi/k remains finite.

To obtain the the Drell-Yan cross-section in terms of renormalized quantities, we begin

with the double convolution in terms of our calculated unrenormalized quantities which,
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as it stands, is dangerous (on account of the presence of explicitly infinite quantities in

the expression):

dσ

dM2
(s) =

∑

i,j

∫ 1

0
dx1

∫ 1

0
dx2 φ

ǫ
k/1(x1)

dσ̂ǫkℓ
dM2

(x1x2s)φ
ǫ
ℓ/2(x2)

=
∑

i,j

∫ 1

0
dx1

∫ 1

0
dx2

φǫk/1(x1)

∫ 1

0
dz1

∫ 1

0
dz2 Γ

ǫ
ik(z1)

dσ̂ij
dM2

(z1z2x1x2s) Γ
ǫ
jℓ(z2)φ

ǫ
ℓ/2(x2) .

(4.20)

Introducing the identity in the form
∫ 1
0 dξ δ(ξ − x z), given that x1/2 z1/2 ∈ [0, 1] always,

then one may rewrite the argument of the partonic cross-section, as such:

dσ

dM2
(s) =

∑

i,j

∫ 1

0
dξ1

∫ 1

0
dx1

∫ 1

0
dz1 φ

ǫ
k/1(x1) Γ

ǫ
ik(z1) δ(ξ1 − x1z1)

×
∫ 1

0
dξ2

∫ 1

0
dx2

∫ 1

0
dz2 φ

ǫ
ℓ/2(x2) Γ

ǫ
jℓ(z2) δ(ξ2 − x2z2)

dσ̂ij
dM2

(x1z1x2z2s)

=
∑

i,j

∫ 1

0
dξ1

∫ 1

0
dξ2 φi/1(ξ1)

dσ̂ij
dM2

(ξ1ξ2s)φj/2(ξ2) ,

(4.21)

where in the final line the expression for the renormalized PDF in terms of the convolution

in Eq. 4.19 has been used, hopefully elucidating the choice for its original definition. In

summary we have, for inclusive Drell–Yan at NLO,

dσ

dM2
=

∫ 1

0
dξ1

∫ 1

0
dξ2

σ̂

ŝ

{
∑

q

Q2
g

[

φMS
q/1(ξ1;µF)φ

MS
q̄/2(ξ2;µF) + (q ↔ q̄)

]

×
{

δ(1− ẑ) +
αs

2π

[

2P (0)
qq (ẑ) ln

(
M2

µ2F

)

+Rqq̄(ẑ)

]

+O
(
α2
s

)
}

+
∑

f=q,q̄

Q2
f

[

φMS
g/1(ξ1;µF)φ

MS
f/2(ξ2;µF) + (f ↔ g)

]

×
{
αs

2π

[

2P (0)
qg (ẑ) ln

(
M2

µ2F

)

+Rgq(ẑ)

]

+O
(
α2
s

)
}}

.

(4.22)

In Appendix A.4 I discuss the universality of the initial-state collinear singularities

associated with parton emissions. Now that we have an expression for the differential

hadronic Drell–Yan cross-section, I will address the QT distribution of Drell–Yan pairs

and the issue associated with the small-QT limit.



4.2. THE FULL QT DISTRIBUTION 61

4.2. The full QT distribution

Taking Eq. A.49 (see also [60]), the differential partonic cross-section for real emission

in the annihilation sub-process is

dσ̂

dM2
= 4 σ̂0 αs µ

2ǫCF
1

M2
dPS2

[
2M2ŝ+ t̂2 + û2

t̂ û
− ǫ

(
t̂2 + û2 + 2 t̂ û

t̂ û

)]

. (4.23)

The Mandelstam variables in the centre-of-momentum frame are t̂ = −
√
ŝ Ek (1 − cos θ)

and û = −
√
ŝ Ek (1 + cos θ). We define kT := |~k| sin θ = Ek sin θ, since Ek = |~k| for a

massless particle, and deduce that

t̂ û = ŝ k2T (4.24)

and t̂2 + û2 = 2ŝ (2E2
k − k2T) . (4.25)

We now have
2M2ŝ+ t̂2 + û2

t̂ û
=

2

k2T
(M2 + 2E2

k − k2T) (4.26)

and
t̂2 + û2 + 2 t̂ û

t̂ û
=

4E2
k

k2T
. (4.27)

The differential phase space element in d = 4− 2ǫ dimensions is given in Eq. A.50:

dPS2 =
E1−2ǫ
k dEk dθ sin

1−2ǫθ

(4π)1−ǫ Γ(1− ǫ)
δ
(

ŝ− 2Ek
√
ŝ−M2

)

, (4.28)

after using dΩd−2 given by Eq. A.53. Using the definition of kT = Ek sin θ, along with

dθ = d sin θ/
√

1− sin2 θ, we have

E1−2ǫ
k dθ sin1−2ǫθ = 2

k1−2ǫ
T dkT
√

E2
k − k2T

=
d1−ǫk2T
√

E2
k − k2T

(4.29)

The extra factor of two has been included since, when it comes to integrating the expression

for dσ̂/dk2T dM
2, we could just as well integrate from θmin to π/2 (instead of from θmin to

π − θmin) given that the expression in Eq. 4.23 is symmetric about θ = π/2, provided we

double the result. For an integration over kT, from kmin
T to kmax

T , this change of limits is

convenient.

The δ-function may be written

δ
(

ŝ− 2Ek
√
ŝ−M2

)

=
1

2
√
ŝ
δ

(

Ek −
ŝ−M2

2
√
ŝ

)

(4.30)

and so, collecting results so far, one has

dσ̂

dM2
= σ̂0

αs

2π

(4πµ2)ǫ

Γ(1− ǫ)
CF

1

M2

d1−ǫk2T
k2T

2× 1√
ŝ

M2 + 2E2
k − k2T − 2 ǫE2

k
√

E2
k − k2T

dEk δ

(

Ek −
ŝ−M2

2
√
ŝ

)

.
(4.31)
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Using the definitions z :=M2/ŝ and ∆ := k2T/M
2, the argument of the δ-function tells us

Ek =
√
ŝ (1− z)/2 and calls for the replacement

1√
ŝ

M2 + 2E2
k − k2T − 2 ǫE2

k
√

E2
k − k2T

→ 1 + z2 − 2∆ z − ǫ (1− z)2
√

(1− z)2 − 4∆ z
. (4.32)

Furthermore, dEk = −
√
ŝ dz/2, so changing variables of integration gives us

dσ̂

dM2
= σ̂0

αs

2π

1

Γ(1− ǫ)

(
4πµ2

M2

)ǫ

CF
1

M2

d1−ǫ∆
∆

× 2

∫

dz
1 + z2 − 2∆ z − ǫ (1− z)2

√

(1− z)2 − 4∆ z
δ

(

z − M2

ŝ

)

,

(4.33)

including the integration over z. It is important to note the limits of the z integration

are constrained by demanding a non-zero kT. The minimum energy carried away by the

gluon is kT. As such, we have the relation

Emin
k =

√
ŝ (1− zmax)/2 = kT

⇒ zmax = 1 + 2∆− 2
√

∆(1 +∆) ≈ 1− 2
√
∆ for ∆ ≪ 1 .

(4.34)

The lower limit of z is zero.

Finally, the differential hadronic cross-section is, according to the previous analysis of

Sec. 4.1, the convolution of the bare PDFs with the partonic cross-section derived above:

dσ

dk2T dM
2
=

∫ 1

0
dx1

∫ 1

0
dx2 [φq/1(x1)φq̄/2(x2) + q ↔ q̄]

dσ̂

dk2T dM
2
. (4.35)
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4.3. The origin of large logarithms

In this section, I adopt certain methods employed in [61, 62] in order to determine

the low-QT behaviour in Drell–Yan. Here I work with the integrated distribution, defined

by

Σ(QT) :=

∫ Q2
T

0

d2σ

dk2T dM
2
dk2T, (4.36)

which is proportional to the number of events with kT ≤ QT. Explicitly, taking the results

of the previous section, we have

Σ(QT) =
4π α2Q2

f

3NcM2

∫ 1

0
dx1

∫ 1

0
dx2 [φq/1(x1)φq̄/2(x2) + q ↔ q̄]

αs

2π
CF

1

Γ(1− ǫ)

(
4πµ2

M2

)ǫ

× 2

∫
d1−ǫ∆
∆

∫

dz
1 + z2 − 2∆ z − ǫ (1− z)2

√

(1− z)2 − 4∆ z
δ(x1 x2 s z −M2) .

(4.37)

Taking moments of Eq. 4.92 with respect to the so-called Drell–Yan variable τ :=M2/s =

x1 x2 z—the hadronic equivalent of z—as in

Σ̃(N,QT) :=

∫ 1

0
dτ τN−1Σ(QT) , (4.38)

decouples the convolution integrals yielding the simple product

Σ̃(N,QT) = Σ̃(0)(N)
1

M2

αs

2π
CF

1

Γ(1− ǫ)

(
4πµ2

M2

)ǫ ∫
d1−ǫ∆
∆

× 2

∫

dz zN

{

1 + z2 − 2∆ z
√

(1− z)2 − 4∆ z
− ǫ (1− z)2
√

(1− z)2 − 4∆ z

}

,

(4.39)

where

Σ̃(0)(N) =
4π α2Q2

f

3NcM2

[

φ̃q/1(N) φ̃q̄/2(N) + q ↔ q̄
]

(4.40)

and

φ̃(N) :=

∫ 1

0
dxxN φ(x) . (4.41)

It is convenient to treat the ‘ǫ’ part of the integrand separately. Since for this term

there is no divergence as z → 1, we may take the upper limit of the integral to be 1

without losing any terms which don’t already vanish in the limit ∆ → 0. Furthermore, we

can take the limit ∆ → 0 in the denominator, thus
∫ zmax

0
dz zN

ǫ (1− z)2
√

(1− z)2 − 4∆ z
→ ǫ

∫ 1

0
dz zN (1− z) . (4.42)

The remaining ∆-integral for this term is simply
∫ ∆max

0

d1−ǫ∆
∆

= −∆−ǫ
max

ǫ
= −1

ǫ
+ log∆max +O(ǫ) (4.43)

and so, in the limit ǫ→ 0, we simply obtain

−
∫
d1−ǫ∆
∆

∫

dz zN
ǫ (1− z)2

√

(1− z)2 − 4∆ z
→
∫

dz zN (1− z) . (4.44)
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Writing zN as (zN−1)+1 in the first term of the integrand in Eq. 4.39—hence splitting

this term into two parts, the first of which contains no divergence as z → 1—results in
∫
d1−ǫ∆
∆

∫

dz zN
1 + z2 − 2∆ z

√

(1− z)2 − 4∆ z
=

∫
d1−ǫ∆
∆

γqq(N)

CF
+ I

=
γqq(N)

CF

(

−1

ǫ
+ log∆max

)

+ I

(4.45)

again using Eq. 4.43, where

γqq(N) := CF

∫ 1

0
dz (zN − 1)

1 + z2

1− z
, (4.46)

and

I =

∫
d1−ǫ∆
∆

∫

dz
1 + z2 − 2∆ z

√

(1− z)2 − 4∆ z
. (4.47)

In obtaining γqq(N), the limit ∆ → 0 was taken in the denominator of the z integral and

the upper limit on z was taken to 1, again on account of the absence of a divergence as

z → 1. In fact, this may be written in terms of the ‘plus’ prescription as

γqq(N) := CF

∫ 1

0
dz zN

(
1 + z2

1− z

)

+

(4.48)

and, on account of the equivalence
(
1 + z2

1− z

)

+

≡ 1 + z2

(1− z)+
+

3

2
δ(1− z) =

Pqq(z)

CF
, (4.49)

we see that γqq(N) is nothing more than the Nth moment of the regularized quark splitting

function.

Finally, the z integral in Eq. 4.47, evaluated between the proper limits, is
∫ zmax

0
dz

1 + z2 − 2∆ z
√

(1− z)2 − 4∆ z
= −3

2
−∆− 2 (1 + ∆)2 ln∆ + (1 + ∆)2 ln[∆ (1 + ∆)]

= −3

2
− ln∆ , in the limit ∆ → 0.

(4.50)

The limit ∆ → 0 here is sufficient to obtain the logarithmic and constant terms in Σ(QT)

at small QT. (For that reason the 2∆ z term might have been ignored in the numerator

of the integrand and the effective upper limit 1− 2
√
∆ for the z integral might have been

used.) Finally performing the ∆ integral over this result gives

I =

∫ ∆max

0

d1−ǫ∆
∆

(

−3

2
− ln∆

)

=
1

ǫ2
+

3

2 ǫ
− 3

2
ln∆max − 1

2
ln2∆max (4.51)

in the ǫ→ 0 limit.

Since Σ(QT) contains contributions from the virtual corrections at QT = 0, we ex-

pect the poles in ǫ to cancel between the real and virtual contributions. The (partonic)

virtual contribution in Eq. A.104 is proportional to D(ǫ), given by Eq. A.66. In order to

conveniently add in these virtual contributions we first rewrite, in the real part,

1

Γ(1− ǫ)
=

Γ(1− ǫ)

Γ(1− 2ǫ)
× Γ(1− 2ǫ)

Γ2(1− ǫ)
=

Γ(1− ǫ)

Γ(1− 2ǫ)
×
[

1 + ǫ2
π2

6
+O(ǫ3)

]

. (4.52)



4.3. THE ORIGIN OF LARGE LOGARITHMS 65

With this in mind, the real contribution to Σ(QT) is

Σ̃(N,QT) = Σ̃(0)(N)
1

M2

αs

2π
CFD(ǫ)

×2

{
∫ 1

0
dz zN (1− z) +

γqq(N)

CF

[

−1

ǫ
+ ln

(
Q2

T

M2

)]

+
π2

6

+
1

ǫ2
+

3

2 ǫ
− 3

2
ln

(
Q2

T

M2

)

− 1

2
ln2
(
Q2

T

M2

)}

.

(4.53)

Since
∫ 1
0 dz z

N δ(1 − z) = 1, the Mellin transform is trivial to invert3 and, adding in the

virtual piece from Eq. A.104, gives (σ̂0 = 4πQ2
f α

2/3Nc s)

Σ(QT) =

∫ 1

0
dx1

∫ 1

0
dx2 [φq/1(x1;µ)φq̄/2(x2;µ) + q ↔ q̄] σ̂0

αs

2π

1

M2

× 2

∫ 1

0
dz

[

ln

(
M2

µ2

)

Pqq(z) +R∆
qq̄(z)

]

δ

(
M2

s
− x1 x2 z

)

(4.54)

in the limit ǫ→ 0, where

R∆
qq̄(z) = CF

{

δ(1− z)

[(
π2

2
− 4

)

− 3

2
ln

(
Q2

T

M2

)

− 1

2
ln2
(
Q2

T

M2

)]

+ (1− z) +
Pqq(z)

CF
ln

(
Q2

T

M2

)}

.

(4.55)

The expansion of D(ǫ), Eq. A.72, has also been used, and the remaining pole term

−(1/ǫ) (4πe−γE)ǫ γqq(N) has been absorbed into the transition function Γ̃ǫ1,qq(N), ren-

dering the PDFs formally scale-dependent. The single-logarithmic Compton result is [62]

R∆
gq(z) = TF

{

2 z (1− z) +
Pqg(z)

TF
ln

(
Q2

T

M2

)}

, (4.56)

and may be included in Σ(QT) above, in a way analogous to Eq. 4.22.

Here I shall comment on the origin of the logarithmic terms. The double log in Eq.

4.54 comes from emission that is both soft and collinear. The single log, however, comes

solely from hard–collinear emission. In the case of the QT distribution of Drell-Yan lepton

pairs at leading-order—i.e. O(αs)—there are no single soft logs, which would be due to

soft–‘wide-angle’ emission. To see that this is the case, one can either show that the

single log which appears in Eq. 4.54 comes entirely from hard–collinear emission or, more

transparently, one can borrow the result of Eq. 3.8 and (using crossing symmetry) write

the partonic Drell-Yan cross-section as

dσ̂ = σ̂0 4π αsCF
2 p1 · p2

p1 · k p2 · k
d3k

(2π)3 2ω

= 4 σ̂0
αs

2π
CF

dω

ω

dθ

sin θ

dφ

2π
.

(4.57)

3Using
∫ 1

0
dτ τN−1 δ(z x1 x2 s−M2) = 1

M2 xN1 xN2 zN
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In the second line it has been assumed that the incoming parton momenta p1 and p2

are back-to-back, with ŝ = (p1 + p2)
2. In this expression k = (ω,~k) is the gluon’s four-

momentum. Introducing the rapidity of the gluon,

η :=
1

2
ln

(
ω + kz
ω − kz

)

=
1

2
ln

(
1 + cos θ

1− cos θ

)

, (4.58)

and its transverse momentum kT = ω sin θ, we see that dω/ω = dkT/kT and dθ/ sin θ = dη.

We may thus write

dσ̂ = σ̂0
αs

π
CF

dk2T
k2T

dη
dφ

2π
. (4.59)

The cross-section for a single soft gluon emission from the back-to-back dipole is therefore

uniform in rapidity and azimuth.

If we consider the integrated cross-section Σ(QT) =
∫

Q2
T
(dσ̂/dk2T) dk

2
T, the kinematic

limits on η are

|η| ≤ 1

2
ln

(
ωmax + kmax

z

ωmax − kmax
z

)

. (4.60)

Using ω2 = k2T + k2z , along with kmin
T = QT and ωmax =

√
ŝ/2, one finds in the limit

QT ≪
√
ŝ that

ηmax =
1

2
ln

ŝ

k2T
(4.61)

Performing the integration over η followed by k2T gives simply

Σ(QT) = σ̂0
αs

π
CF

∫

Q2
T

dk2T
k2T

ln
ŝ

k2T

= σ̂0
αs

π
CF

[
1

2
ln2
(
Q2

T

ŝ

)]

.

(4.62)

We only need to consider the lower limit of k2T to recover the logarithmic enhancement at

small QT. The upper limit of k2T corresponds to the configuration in which η → 0 for the

gluon, and so does not give a logarithmically enhanced term.

From this exercise we see that, in the soft limit, we necessarily obtain a double loga-

rithm since the limits on η corresponding to small QT are in the collinear region. Hence,

our observable is not sensitive to soft-‘wide-angle’ emission. Conversely, an observable

which places a restriction on η, for example gaps-between-jets observables, may result in

single soft logarithms associated with wide-angle emission. Introducing an artificial cut-off

on η results in

σ̂ = σ̂0
αs

π
CF

∫

Q2
T

dk2T
k2T

∫ y

−y
dη

= σ̂0
αs

π
CF

[
−2 y lnQ2

T

]
,

(4.63)

which has an enhancement of the form αs L, and the gluon is necessarily emitted into

the (‘wide-angle’) angular region corresponding to |η| < y. Once again, for the interested

reader, non-global observables (of which those involving rapidity gaps between jets are

examples) are discussed at length in [51, 52].
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As a final remark, if one were to have replaced
∫

dz
1 + z2 − 2∆ z

√

(1− z)2 − 4∆ z
with

∫

dz
P̂ (z)

CF
(4.64)

—i.e. the unregularized Altarelli-Parisi splitting function—simultaneously changing the

upper limit of z integration from zmax, defined in Eq. 4.34, to 1 −
√
∆, then one could

show that the same logarithmic terms are obtained for Σ(QT):

∫ 1−
√
∆

0
dz

1 + z2

1− z
= −3

2
− ln∆ , in the limit ∆ → 0 ; (4.65)

(cf. Eq. 4.50). This is what is done in [61].
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4.4. Kinematics of φ∗

The φ∗ observable was first introduced in [15] and is defined according to

φ∗ := tan

(
φacop
2

)

sin θ∗ . (4.66)

The kinematics in the transverse plane are shown in Fig. 4.2. The angle φacop is the

acoplanarity angle, and is a measure of the deviation from ‘back-to-backness’ of the two

leptons in the transverse plane. The star indicates the frame in which the two leptons were

produced back-to-back longitudinally, which defines a unique boost from the lab frame.

In this frame, θ∗ is the angle made by the lepton(s) with respect to the beam axis.

Ta

La

(2)
T

p(1)
T

p TQ
φ∆

acopφ
 t 

Recoil
Figure 4.2. Kinematics of the φ∗ observable in the transverse plane [15]

The φ∗ observable clearly probes physics similar to the familiar QT observable, in that

they both measure the recoil of the vector boson (photon and/or Z boson). In the case

of QT, the net transverse momentum of the leptons will become non-zero under recoil,

and in the case of φ∗ the leptons are no longer back-to-back, on account of the recoil.

The net transverse momentum ~QT = ~p
(1)
T + ~p

(2)
T may be decomposed into transverse and

longitudinal components, labelled aT and aL respectively, relative to the so-called lepton

thrust axis, which is defined to be the direction

t̂ =
~p
(1)
T − ~p

(2)
T

∣
∣~p

(1)
T − ~p

(2)
T

∣
∣
. (4.67)

Thus we have

aL := ~QT · t̂ = p
(1)
T

2
+ p

(2)
T

2

∣
∣~p

(1)
T − ~p

(2)
T

∣
∣

(4.68)

and

aT :=
∣
∣ ~QT × t̂

∣
∣ =

2 p
(1)
T p

(2)
T sinφacop

∣
∣~p

(1)
T − ~p

(2)
T

∣
∣

(4.69)

using sin(∆φ) = sinφacop. The aT observable was originally proposed as a novel way

to study the transverse momentum of the Z boson in [63]. Indeed, this observable was

studied phenomenologically in [61].
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In the small-QT limit, both components of the transverse vector ~QT are small and

therefore ~p
(2)
T → −~p (1)

T . Therefore, in this limit,

aT → p
(1)
T sinφacop . (4.70)

In the frame in which the two leptons make the same angle θ∗ with respect to the

beam line, this angle may be given as

sin θ∗ =
p
(1)
T∣

∣~p (1)
∣
∣
=

p
(2)
T∣

∣~p (2)
∣
∣
. (4.71)

Since we have already established ~p
(2)
T ≈ −~p (1)

T in the QT → 0 limit, we can now also

conclude that
∣
∣~p (2)

∣
∣ =

∣
∣~p (1)

∣
∣ in this frame. Finally, for massless p(1) and p(2),

(p(1) + p(2))2 = (|~p(1)|+ |~p(2)|)2 − (~p(1) + ~p(2))2 =M2

⇒ 4 |~p(1)|2 =M2, in the limit QT → 0 .
(4.72)

We finally conclude that

sin θ∗ =
2 p

(1)
T

M
in the limit QT → 0 . (4.73)

As φ→ 0, we have tan(φ/2) ≈ 1
2 sinφ. Therefore

φ∗ ≈ p
(1)
T sinφacop

M
=
aT
M

, (4.74)

having used Eqs. 4.73 and 4.70.

By conservation of momentum, ~QT is balanced by the sum of all recoil emissions:

~QT = ~p
(1)
T + ~p

(2)
T = −

∑

i

~kTi (4.75)

Picking the origin of the azimuthal angle to be in the direction of ~p
(1)
T , we define the

parameterization

~p
(1)
T = p

(1)
T (1, 0, 0) (4.76)

and ~kTi = kTi (cosφi, sinφi, 0) . (4.77)

In the small-QT limit, t̂→ ~p
(1)
T /

∣
∣~p

(1)
T

∣
∣ and so

aT =

∣
∣
∣
∣
∣

∑

i

kTi sinφi

∣
∣
∣
∣
∣
. (4.78)

We have thus derived the kinematical dependence of aT on multiple kT emissions whose

vector sum ~QT remains small.

4.5. The low φ∗ distribution

In this section we derive the integrated φ∗ distribution in the low-φ∗ limit. Since we

have already done this in the case of QT, Eqs. 4.54 and 4.55, it turns out we will require

only a minimal modification to this result to obtain that for φ∗. We already derived an
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expression for φ∗ in the small limit in the previous section, namely

φ∗ ≈ aT
M

. (4.79)

We could therefore derive Σ(aT), obtaining the equivalent φ∗ distribution automatically

with the replacement aT/M → φ∗, but I will proceed directly with Σ(φ∗). The only

differences from the calculation for Σ(QT) are that the ∆ integration range will change,

and the azimuthal integration for the phase space is no longer trivial, on account of the φ

dependence of φ∗.

In fact, the only part of the expression for Σ(QT) that changes is the integral given

in Eq. 4.45, since this is the only integral to depend on the QT kinematics, via the upper

limit of integration over ∆—i.e. ∆max = Q2
T/M

2. Our attention is initially focused on the

integral I (Eq. 4.47). Furthermore, in order to recover the logarithmic terms generated by

this integral—which are independent of the other limit of integration—we may equivalently

integrate from ∆max = Q2
T/M

2 to 1 (introducing an overall minus sign), thus avoiding the

singularity at QT = 0 and allowing us to work in d = 4 dimensions.

With one low-kT emission, we have

φ∗ = kT sinφ/M . (4.80)

To obtain the logarithms in the Σ(φ∗) distribution, we may therefore perform the ∆

integral over the interval [0, 1] and introduce the Heaviside step function Θ
(√

∆ | sinφ|−φ∗
)

to enforce the lower limit. Restoring the azimuthal phase-space integration and taking the

limit ǫ→ 0, we are thus left with the integral (cf. Eq. 4.47)

Iφ∗ = −
∫ 2π

0

dφ

2π

∫ 1

0

d∆

∆

∫ zmax

0
dz

1 + z2 − 2∆ z
√

(1− z)2 − 4∆ z
Θ
(√

∆ | sinφ| − φ∗
)
. (4.81)

Performing the integration over z as before, with the upper limit zmax = 1 + 2∆ −
2
√

∆(1 +∆), followed by the integration over ∆—with the Heaviside step-function en-

forcing a lower limit of (φ∗)2 | sinφ|2—one obtains

Iφ∗ = −
∫ 2π

0

dφ

2π

[
3

2
ln

(
(φ∗)2

| sinφ|2
)

+
1

2
ln2
(

(φ∗)2

| sinφ|2
)]

. (4.82)

Using [61]
∫ 2π

0

dφ

2π
ln2 | sinφ| = ln2 2 +

π2

12
(4.83)

and

∫ 2π

0

dφ

2π
ln | sinφ| = − ln 2 , (4.84)

this becomes

Iφ∗ = −3 ln (2φ∗)− 2 ln2 (2φ∗)− π2

6
. (4.85)

Therefore, the low-φ∗ limit of the integrated φ∗ distribution differs from that of the QT

distribution via the replacement QT → 2M φ∗ and the addition of a single constant term.

Equivalently, we also have the low-aT integrated distribution Σ(aT), since aT ≈ M φ∗ in

this limit. This result should be compared with the finite part of Eq. 4.51 in the ǫ → 0

limit.
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In addition, the integral containing the anomalous dimension γqq(N) in Eq. 4.45 be-

comes ∫
dφ

2π

γqq(N)

CF

(

−1

ǫ
+ log∆max

)

=
γqq(N)

CF

(

−1

ǫ
+ 2 log(2φ∗)

)

. (4.86)

The final result, cf. Eqs. 4.54 and 4.55, is then

Σ(φ∗) =
∫ 1

0
dx1

∫ 1

0
dx2 [φq/1(x1;µ)φq̄/2(x2;µ) + q ↔ q̄] σ̂0

αs

2π

1

M2

× 2

∫ 1

0
dz

[

ln

(
M2

µ2

)

Pqq(z) +R∆
qq̄(z)

]

δ

(
M2

s
− x1 x2 z

)

(4.87)

where

R∆
qq̄(z) = CF

{

δ(1− z)

[(
π2

3
− 4

)

− 3 ln (2φ∗)− 2 ln2 (2φ∗)

]

+ (1− z) + 2
Pqq(z)

CF
ln (2φ∗)

}

.

(4.88)

4.6. Logarithmic structure of observables

For observables that are sensitive to both soft and collinear emissions, one expects that

double large logarithms will appear for each emission. Since each emission is associated

with a single power of the coupling, such observables will have, at maximum, terms of the

form (αs L
2)n appearing at the nth order in perturbation theory. The effective coupling is

no longer the relatively small αs, but rather αs L
2, where L is the large logarithm, which

may be in the ratio of two disparate mass scales, e.g. QT/M , or in a small dimensionless

quantity, e.g. φ∗.

The general partonic structure for such double log observables is

Σ̂(φ∗) = C00 + αs

(
C12 L

2 + C11 L+ C10

)

+ α2
s

(
C24 L

4 + C23 L
3 + C22 L

2 + C21 L+ C20

)

+ α3
s

(
C36 L

6 + C35 L
5 + C34 L

4 + C33 L
3 + . . .

)

+ . . . ,

(4.89)

where the ‘Cij ’s are perturbative coefficients with the potentially large logarithms factored

out, and are assumed not to spoil the perturbative expansion by themselves. Here, C00 ∝
δ(φ∗). It is clear that, on account of the large logarithm L negating the smallness of αs at

each order, a truncation of this perturbation series is rendered invalid.

The φ∗ observable we have resummed, as is the case for all recursively infrared-safe

(rIRC-safe) observables [21], satisfies a property known as exponentiation, which means

one can define a resummed exponent R such that eR essentially encapsulates the effect of

resumming the logarithmic enhancements due to soft–collinear emissions to all orders; of

course, that these terms may be expressed in the compact form of eR is highly non-trivial,

and requires stringent relationships between the ‘Cij ’s. Supplemented with appropriate

constant terms to the desired accuracy, the φ∗ integrated cross-section may be written
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schematically as

Σ(φ∗) ∝
(
1 + C(αs)

)
eR(L;αs) (4.90)

with the resummed exponent given by

R(L;αs) = Lg1(αs L) + g2(αs L) +
αs

π
g3(αs L) + . . . (4.91)

The leading logarithmic (LL) terms are generated from Lg1(αs L), the next-to-leading

logarithmic (NLL) terms from g2(αs L), the next-to-next-to-leading logarithmic (NNLL)

terms from αs g3(αs L)/π, etc. Reorganizing the sum in Eq. 4.89 into this form, by exploit-

ing various factorization properties of gluonic emissions in certain kinematical régimes, is

what we call resummation.

4.7. Summation to all orders

The resummation of φ∗ presented in this section follows closely that of aT, owing to

their simple relation in the small φ∗ limit, namely Eq. 4.79. I have reproduced much

of the discussion originally given in [61] here for the purposes of pedagogy. However, in

this section—and related appendices—I provide some additional discussion for the reader,

along with certain proofs concerning the derivation. The resummed calculation of φ∗ was

originally presented in [16].

In order to perform the all-orders resummation of the logarithmically divergent terms,

we consider the integrated cross-section defined by

Σ(v) :=

∫ v

0

d2σ

dv′ dM2
dv′, (4.92)

where v is the observable under consideration: the transverse momentum of the lepton

pair (QT), the component of ~QT perpendicular to the lepton thrust axis (aT), or φ
∗. The

case of φ∗ will be discussed specifically, making reference to the cases of QT and/or aT

along the way, to compare the similarities and contrast the differences.

In the Born approximation, one has the equality

M2 = ŝ = s x1 x2, (4.93)

with M2 the invariant mass of the lepton pair, s the scattering energy in the centre-of-

momentum system (ŝ being that of the partonic system) and x1,2 the momentum fractions

of partons 1 and 2 that initiated the process. The first equality no longer holds when

additional radiation is associated with the process. For this reason the energy fraction zi

is introduced, which is the fractional energy carried forth by an initial parton after the ith

emission, with respect to its energy immediately before this emission. After n emissions,

one therefore has

z =
n∏

i=1

zi , (4.94)

the fraction of energy remaining in the initial partons after all emissions occurred, and so

M2/ŝ = z.

As before, we work with Mellin moments of the integrated distribution, with respect

to τ :=M2/s (see Eq. 4.38). Our concern here is with the logarithmically enhanced terms
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in the low-φ∗ limit, so we take as our starting point (cf. Eq. 4.39 in the limit d = 4):

Σ̃(φ∗, N) = Σ̃(0)(N)
1

M2

∫
dk2T
k2T

∫
dφ

2π

∫

dz zN

× αs(k
2
T)

2π
2 P̂qq(z)Θ

(

φ∗ −
∣
∣
∣
∣

kT sinφ

M

∣
∣
∣
∣

)

.

(4.95)

for a single real emission in the annihilation sub-process. In this expression, P̂qq(z) is the

unregularized Altarelli–Parisi splitting function [53], i.e.

P̂qq(z) = CF
1 + z2

1− z
. (4.96)

Furthermore, a Heaviside step-function has been introduced in order to limit the integral

over kT to only those values which contribute to the integrated distribution up to the

value of φ∗ we are considering. This greatly simplifies the extension to multiple real gluon

emissions. The upper limit on z is still zmax = 1 − kT/M , as in Eq. 4.65. The factor of

two that multiplies P̂qq(z) is to account for the fact that both incoming partons radiate.

The running coupling, evaluated at the scale of k2T for the emission, has also been used.

Finally, the azimuthal integration has been retained since our observable depends upon it.

The integral over k2T in Eq. 4.95 diverges in the limit k2T → 0, and so we may introduce a

lower limit of Q2
0 as a cutoff. We can therefore introduce scale-dependent PDFs in Σ(0)(N)

and consider all emissions with kT < Q0 to be included in the PDFs. We therefore write

explicitly

Σ̃(0)(N,Q2
0) =

4π α2Q2
f

3NcM2

[

φ̃q/1(N,Q
2
0) φ̃q̄/2(N,Q

2
0) + q ↔ q̄

]

, (4.97)

which replaces Σ̃(0)(N) used in Eq. 4.95 (i.e. that given in Eq. 4.40) in the case where we

regulate the k2T integral. Using the DGLAP evolution equation for the PDFs (Eq. 3.59) we

can now evolve Σ̃(0)(N,Q2
0) from Q2

0 to the hard scale of the process under consideration,

namely M2—the invariant mass of the lepton pair. Thus we have

Σ̃(0)(N,Q2
0) = Σ̃(0)(N,M2) exp

[

−2

∫ M2

Q2
0

dk2T
k2T

αs(k
2
T)

2π
γqq
(
N,αs(k

2
T)
)

]

. (4.98)

This expression will prove useful later, since its exponential form will work seamlessly with

the exponentiated form of the all-order resummation. Eventually we will take the limit

Q2
0 → 0, such that all emissions are taken account of by our resummation. Just for now,

we proceed using the scale-independent Σ̃(0)(N).

Eq. 4.95 generalizes, under the approximation of multiple independent real gluon emis-

sions, to

Σ̃(φ∗, N) = Σ̃(0)(N)
1

M2
W real
N (φ∗), (4.99)

where

W real
N (φ∗) =

∞∑

n=0

1

n!

n∏

i=1

∫
dk2Ti
k2Ti

∫
dφi
2π

∫

dzi z
N
i

× αs(k
2
Ti)

2π
2 P̂qq(zi)Θ

(

φ∗ −
∣
∣
∣
∣
∣

∑

i

kTi sinφi
M

∣
∣
∣
∣
∣

)

.

(4.100)
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In this expression, the probability for n gluons to be emitted is approximated by the

probability of one gluon to be emitted to the nth power. The probability for an arbitrary

number of gluons to be emitted then becomes a sum over all probabilities from n = 0

to ∞ gluons to be emitted. The n! factor in the denominator serves to remove multiple-

counting of final states which are degenerate under the exchange of identical gluons. What

we observe as a result is the exponential series and, for this reason, the gluon emissions

are said to exponentiate.

At this point, the reader will no doubt want further explanation as to why we may

treat the successive emission of gluons, fundamentally quantum in nature, as simply prob-

abilistic in this multiplicative manner. We can consider the leading logarithmic behaviour

to motivate this argument: We have seen in Sec. 3.2 that soft gluons emitted at widely

disparate angular scales are emitted effectively independently (i.e. one recovers factoriza-

tion of the emissions at the level of the squared amplitude). This phenomenon owes itself

to coherence, and amounts to the vanishing of the second correlated (non-Abelian) term

in

|M2(k1, k2)|2 = |M1(k1)|2 |M1(k2)|2 + |M2(k1, k2)|2 (4.101)

whereM1 andM2 are the matrix elements for one- and two-gluon production respectively,

and M2 denotes the correlation.

The leading logarithmic behaviour associated with a given emission is double loga-

rithmic: one logarithm if the emission is soft, and another if the emission is collinear.

The leading behaviour is recovered when each emission becomes successively ‘much more

collinear’ (to the emitter) than the previous one, for then we obtain the collinear log-

arithmic enhancement at each order. This is emphasized in Sec. 3.3 by way of explicit

calculation. For emissions that were equal in energy, this would immediately translate into

a disparity between the angular scales at which the gluons were successively emitted. In

the soft limit, which is also necessary to obtain the leading behaviour at each order, this

subsequently results in the relative independence of emissions, by the vanishing of |M2|2.
Thus we have motivated Eq. 4.100 to extract the leading logarithmic enhancements to all

orders.

For the case of strictly hard collinear gluons, Sec. 3.3 demonstrates the kT-ordering

required in order to recover the leading logarithmic enhancements to all orders: this

time single logarithms. Interference (or squared) terms involving amplitudes in which

the strict kT-ordering is violated, even for a single emission, are suppressed relative to

the leading terms. One essentially ‘drops’ a logarithm each time this should occur, but

such considerations become important for a correct treatment of sub-leading logs. The

single collinear logarithms, in our framework, are identified as formally NLL. We have

already noted that our continuously global observables QT and φ∗ are not sensitive to the

dynamics of soft gluons emitted at wide angles (see end of Sec. 4.3).

If we work to NLL accuracy, a subtlety arises. At O(αs) the double (soft and collinear)

log is αs L
2, and the single log is αs L. When we consider two emissions, however, the single

logs at O(α2
s ) are α

2
s L

2. This means that, to NLL accuracy, we need to include also the

O(α2
s ) correction to the double-log term for single gluon emission—a term which is formally
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NLL. The NLO splitting function [64], retaining only the soft (z → 1) contribution to the

NLO correction, is

P̂qq(z) = CF
1 + z2

1− z

(

1 +
αs

2π
K
)

, (4.102)

with

K = CA

(
67

18
− π2

6

)

− 5

9
NF . (4.103)

Alternatively, one may use the LO splitting function, but in the so-called Bremsstrahlung

scheme [65] for the running coupling, given as

αCMW
s (k2T) = αs

(

1 +
αs(k

2
T)

2π
K

)

, (4.104)

where αs(k
2
T) is defined in the MS scheme. With all these considerations, we have an

expression for the emission of up to an infinite number of gluons correct to NLL. For the

interested reader, this final subtlety, which has its origins in correlated two-gluon emissions

and which is intimately linked to the running coupling, is explained in greater detail in

[50] (Sec. 2.2). The reader may also find [42] useful for explicit calculations involving soft

gluon emissions. The extension of the above arguments to NNLL accuracy is, in terms of

explaining the esoteric details, beyond the scope of this thesis. The NNLL results we use

in our phenomenology are taken from the literature, and are documented with appropriate

references in Chap. 5.2. However, for a discussion of the considerations that must be made

in order to extend the picture of independent emission to NNLL accuracy, the reader is

again referred to [50].

So far the factorization is not yet complete, for we also require factorization of the

phase space. All that is required is to factorize the Heaviside step-function, which may be

achieved using an integral representation in impact parameter space (the Fourier conjugate

of transverse momentum) as in

Θ

(

φ∗ −
∣
∣
∣
∣
∣

∑

i

kTi sinφi
M

∣
∣
∣
∣
∣

)

=
2

π

∫ ∞

0

db

b
sin (bM φ∗)

n∏

i=1

ei b kTi sinφi/M , (4.105)

where the real part of the RHS is implicitly assumed. To see why this is true, the reader

is referred to Appendix B.1. We pause at this point to consider the QT distribution.

So far every consideration has been identical to the case of QT except the kinematics

which are encapsulated, for the integrated distribution, in the Θ-function. It pays however

to consider the differential QT distribution: dσ/dQT. The kinematics are fixed by a mo-

mentum conserving δ function, which balances the boson QT against an arbitrary number

of recoil emissions, and which may be written in terms of an integral representation:

δ

(

QT −
∑

i

kTi

)

=
1

(2π)2

∫ ∞

−∞
d2b exp

[

ib ·
(

QT −
∑

i

kTi

)]

=
1

(2π)2

∫ ∞

0
b db

∫ 2π

0
dφ ei bQT cosφ

∏

i

e−i b kTi cosφi

=
1

2π

∫ ∞

0
b db J0(bQT)

∏

i

e−i b kTi cosφi .

(4.106)
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In the last line,
∫ 2π

0
ei a cosφ dφ = 2π J0(|a|) , (4.107)

for a ∈ R, has been used, where J0 is a Bessel function of the first kind. Furthermore, QT,

kTi and b are the two-dimensional vectors whose moduli are QT, kTi and b respectively.

To employ the equivalent kinematic constraint in the integrated distribution Σ(QT) =
∫ QT

0 (dσ/dQ′
T
2) dQ′

T
2, we may use the result

∫ QT

0
Q′

T J0(bQ
′
T) dQ

′
T =

QT J1(bQT)

b
. (4.108)

In either case, we find the crucial difference between the two distributions to be the

presence of either a Bessel function or a trigonometric function. For the differential dis-

tributions, this difference results in a plateau for φ∗ where one would observe a Sudakov

peak in the case of QT.

Returning now to φ∗, with the additional factorization of the phase space, we have for

Eq. 4.100,

W real
N (φ∗) =

2

π

∫ ∞

0

db

b
sin(bM φ∗)

×
{ ∞∑

n=0

1

n!

n∏

i=1

∫
dk2Ti
k2Ti

∫
dφi
2π

∫

dzi z
N
i

× αs(k
2
Ti)

2π
2 P̂qq(zi) e

i b kTi sinφi/M

}

=
2

π

∫ ∞

0

db

b
sin(bM φ∗) eR̄(b) .

(4.109)

In the final equality the infinite sum has been evaluated, yielding simply the exponential

function.

The next step is to include the appropriate virtual corrections to all orders since,

until now, we have only considered independent real emission. These contributions do not

change the kinematics, and so are independent of both the Mellin moments with respect

to the kinematic variable zi, and also of the impact parameter b. Unitarity arguments

[50] may be invoked to see that the virtual corrections have the same form as the real

corrections in the infrared limit (up to a minus sign). The resummed exponent, often

known as the radiator, becomes, with real and virtual corrections to all orders at NLL

accuracy,

R̄(b) → −R(b) =
∫
dk2T
k2T

∫
dφ

2π

∫

dz
αs(k

2
T)

2π
2 P̂qq(z)

(

zN ei b kT sinφ/M − 1
)

(4.110)

Note the convention of the minus sign.

We now briefly discuss the upper limit on the z integration. Since we consider the

integrated distribution Σ(φ∗) in the small-φ∗ limit, we may set our upper limit of the k2T
integral to be M2, since the Θ-function introduced in Eq. 4.95 has already effected the

upper cutoff at the relevant value of Q2
T. Furthermore, if we set the lower limit of the k2T

integral to be Q2
0 and use Σ̃(0)(N,Q2

0) in place of Σ̃(0)(N)—thereby relegating all emissions



4.7. SUMMATION TO ALL ORDERS 77

with k2T < Q2
0 to be included in scale dependent PDFs—we may use Eq. 4.98 to write

Σ̃(φ∗, N) = Σ̃(0)(N,M2)
1

M2

2

π

∫ ∞

0

db

b
sin(bM φ∗) e−R(b) (4.111)

where

−R(b) = 2

∫ M2

Q2
0

dk2T
k2T

αs(k
2
T)

2π

∫
dφ

2π

{∫

dz P̂qq(z)
(

zN ei b kT sinφ/M − 1
)

− γqq
(
N,αs(k

2
T)
)
} (4.112)

is a modified form of the radiator. This expression henceforth replaces the expression for

Σ̃(φ∗, N) originally presented in Eq. 4.99, having now taken into consideration the above

analysis.

The explicit z integral in this expression has an upper limit zmax, however the implicit

z integration in the definition of the anomalous dimension, Eq. 4.48, has an upper limit

of 1. Notwithstanding, the entire expression may be simplified as
∫ zmax

0
dz P̂qq(z)

(

zN ei b kT sinφ/M − 1
)

− γqq(N)

=

∫ zmax

0
dz zN P̂qq(z)

(

ei b kT sinφ/M − 1
)

+O
(
kT
M

)

,

(4.113)

where the O(kT/M) terms may be neglected in our approximation.

We now make the approximation, valid to NNLL accuracy [66],

1− ei b kT sinφ/M ≈ Θ

(∣
∣
∣
∣

kT sinφ

M

∣
∣
∣
∣
− 1

b̄

)

, (4.114)

derived4 in Appendix B.4, where b̄ = b eγE and γE is the Euler–Mascheroni constant.

Again, the real part of the LHS is assumed. Since this sets a lower limit on the kT

integration, we may now safely take Q0 → 0. Thus, we have truly started with PDFs with

no prior emission, and we are providing the full evolution with our resummation. The

radiator now stands at

R(b) = 2

∫ M2

0

dk2T
k2T

αs(k
2
T)

2π

∫
dφ

2π

∫ zmax

0
dz zN P̂qq(z)Θ

(

kT − M

b̄ | sinφ|

)

. (4.115)

As in Section 4.3, we split the z integration into two parts as
∫ zmax

0
dz zN P̂qq(z) =

∫ zmax

0
dz P̂qq(z) +

∫ zmax

0
dz (zN − 1) P̂qq(z)

≈ CF

(

−3

2
− ln∆

)

+ γqq(N)

(4.116)

where the upper limit zmax → 1 on the second z integral has been taken, yielding γqq(N),

and the final expression has been expanded about ∆ = 0. The reader is encouraged to

consult the text surrounding Eqs. 4.50 and 4.65 for evaluating the first integral of the

4I offer a simplified derivation where I demonstrate it to be formally accurate to NLL.
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splitting function between the appropriate limits. The radiator therefore becomes

R(b) = 2CF

∫
dφ

2π

∫ M2

0

dk2T
k2T

αs(k
2
T)

2π

(

−3

2
− ln∆ +

γqq(N)

CF

)

Θ

(

kT − M

b̄ | sinφ|

)

=

∫
dφ

2π
R̃(b)

(4.117)

with

R̃(b) =

∫ M

0
dkT I(kT)Θ

(

kT − M

b̄ | sinφ|

)

, (4.118)

thus defining I(kT). I now make a short digression regarding the logarithmic expansion

of R(b), which will serve to facilitate the evaluation of terms of a specific logarithmic

accuracy, and also help us deal with the residual azimuthal dependence. Performing a

series expansion in powers of ln | sinφ| about | sinφ| = 1 for the integrand, as in [61], using

Θ

(

kT − M

b̄ | sinφ|

)

= Θ

(

kT − M

b̄

)

+
M

b̄
δ

(

kT − M

b̄

)

ln | sinφ| , (4.119)

one obtains

R(b) = R̃(b; | sinφ| = 1) +
M

b̄

∫
dφ

2π

∫ M

0
dkT I(kT) δ

(

kT − M

b̄

)

ln | sinφ|

= R̃(b; | sinφ| = 1) +
M

b̄
I

(
M

b̄

)∫
dφ

2π
ln | sinφ| .

(4.120)

However, changing the variable of integration in R̃(b; | sinφ| = 1) to x =M kT, such that

R̃(b; | sinφ| = 1) =

∫ M

M/b̄
dkT I(kT) =M

∫ b̄

1

dx

x2
I

(
M

x

)

, (4.121)

one sees that, upon differentiating with respect to ln b̄,

b̄
∂

∂b̄
R̃(b; | sinφ| = 1) =

M

b̄
I

(
M

b̄

)

. (4.122)

One may rather therefore write Eq. 4.120 as

R(b) = R̃(b; | sinφ| = 1) +
∂

∂ ln b̄
R̃(b; | sinφ| = 1)

∫
dφ

2π
ln | sinφ| . (4.123)

Since the second term contains a logarithmic derivative, each logarithm in R̃(b; | sinφ| = 1)

becomes further suppressed by one power relative to αs. Thus, in this second term,

R̃(b; | sinφ| = 1) may be replaced by its super-leading form; i.e. if R̃(b; | sinφ| = 1) is

already accurate to NLL, one may simply use the LL version.

The anomalous dimension may be dropped from the radiator if one simultaneously

uses PDFs at the relevant scale, this time 1/b̄. Performing the final integration over kT in

the expression for R(b), using the running coupling appropriately converted into the MS

scheme, one obtains

R(b) = Lg1(αs L) + g2(αs L) + . . . (4.124)

where L = ln
(
b̄2M2

)
. The explicit calculation for g1 follows: Working to LL accuracy,

we start with

RLL(b) = 2CF

∫ M2

1/b̄2

dk2T
k2T

αs(k
2
T)

2π
ln
M2

k2T
. (4.125)
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Here we are considering simply R(b; | sinφ| = 1) of Eq. 4.117 (the azimuthal dependence

is sub-leading) and only the terms in its integrand that would give leading logs according

to our definition; i.e. we only require the log∆ term. Using the one-loop expression for

the running coupling in Eq. 2.59—the difference between the MS and CMW schemes does

not play a rôle here—and writing ∆ = k2T/M
2, we have

RLL(b) = − CF

π β0

∫ 1

1/(Mb̄)2

d∆

∆

ᾱs β0 ln∆

1 + ᾱs β0 ln∆
(4.126)

where ᾱs = αs(M
2). Performing the integration and defining λ = ᾱs β0 L and L =

ln
(
b̄2M2

)
, we have

Lg1 = RLL(b) = L
CF

π β0

−λ− ln(1− λ)

λ
. (4.127)

A similar exercise, considering terms in the radiator which give rise to single logarith-

mic terms (αs L)
n upon integration, yields g2(αs L). The new terms, formally NLL, that

arise in g2 have their origins in:

• the hard-collinear term −3
2 in Eq. 4.117,

• the change from the CMW (Bremsstrahlung) scheme to the MS scheme; i.e. K,

• the two-loop running coupling (approximation),

• the azimuthal dependence; i.e. | sinφ|, and
• the anomalous dimension γqq(N).

The difference with respect to theQT distribution, at this order, comes from this additional

φ-dependent piece in Eq. 4.123.

Since we have already developed a convenient way to handle the azimuthal dependence

by taking logarithmic derivatives, we again consider as our starting point Eq. 4.117 with

R(b; | sinφ| = 1):

R(b) = 2CF

∫ 1

1/(Mb̄)2

d∆

∆

αs

2πρ

(

1− β1
β0
αs

log ρ

ρ

)(

1 +K
αs

2πρ

)(

−3

2
− log∆

)

. (4.128)

I have explicitly used the two-loop running coupling approximation where necessary, and

the one-loop running coupling elsewhere, all in terms of ρ = 1 + αs β0 log∆. I have

also explicitly included the conversion for the scheme dependence. The one-loop running

coupling, without scheme dependence, and considering only the logarithmic term − log∆

was enough to compute the LL function Lg1. We now explicitly compute new NLL terms

(following, in order, the first four items in the list above):

RNLL = Rhard-coll. +RCMW +R2-loop +Razimuthal (4.129)

The integrals in these terms may be directly evaluated to give

Rhard-coll. = 2CF

∫ 1

1/(Mb̄)2

d∆

∆

αs

2πρ

(

−3

2

)

=
3CF

2πβ0
log(1− λ) , (4.130)

RCMW = 2CF

∫ 1

1/(Mb̄)2

d∆

∆

αs

2πρ
K

αs

2πρ
(− log∆)

=
K CF [λ+ (1− λ) log(1− λ)]

2π2β20(1− λ)
,

(4.131)
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R2-loop = 2CF

∫ 1

1/(Mb̄)2

d∆

∆

αs

2πρ

(

−β1
β0
αs

log ρ

ρ

)

(− log∆)

= −CFβ1
πβ30

[
λ+ log(1− λ)

1− λ
+

1

2
log2(1− λ)

] (4.132)

and

Razimuthal =
d

d log b̄
RLL (− log 2) =

2CF

πβ0

λ

1− λ
(− log 2) . (4.133)

In the cases of the two-loop running coupling and the CMW scheme change, we are

computing only those O(αs) corrections to the soft-collinear term αs log∆ in R(b), which

would have become double-logarithmic upon integration. Thus we are controlling the

terms containing α2
s L

2, and which are therefore formally NLL. We have thus derived the

NLL function g2, written explicitly in full in Eq. 5.32. The expression for the remaining

NNLL function g3, with explicit dependence on the perturbative scales µQ and µR, will be

presented in Sec. 5.2. Prior to this, in Sec. 5.1, I explicitly compute this scale dependence

for g1 and g2.

As already mentioned, in our formalism the anomalous dimension is used to evolve

the PDFs via DGLAP evolution. We thus neglect this term in the radiator and choose to

evaluate our PDFs at the correct scale ∼ 1/b̄ instead. Inverting the Mellin transform5 in

Eq. 4.111 and adopting ∼ 1/b̄ as the relevant scale, we have

Σ(φ∗) =
4π α2Q2

f

3NcM2

∫ 1

0
dx1

∫ 1

0
dx2

[

φq/1

(

x1,
1

b̄2

)

φq̄/2

(

x2,
1

b̄2

)

+ (q ↔ q̄)

]

× 2

π

∫ ∞

0

db

b
sin(bM φ∗) e−R(b) 1

s
δ

(

x1 x2 −
M2

s

)

.

(4.134)

As a final remark, by making the replacement δ(x1 x2−M2/s) →
∫ 1
0 dz δ(1−z) δ(x1 x2 z−

M2/s) in the above expression, it is easy to incorporate the non-logarithmic O(αs) correc-

tions to the small-φ∗ integrated cross-section. Such terms are formally NNLL, since they

are of the same form as terms arising from the expansion of exp(αs g3(αs L)/π), albeit

non-logarithmic. The O(αs) small-φ∗ integrated cross-section is presented in Eqs. 4.87

and 4.88. The terms in R∆
qq̄(z) arising from the integration of the logarithmic terms in

I∗φ (see Eq. 4.85) are of course already included in our resummation via the resummed

exponent, and we can adopt the remaining constant terms in our resummed expression

for Σ(φ∗) above. It is also instructive to consider the integral

2

π

∫ ∞

0

db

b
sin(bM φ∗) log

(
1

b̄M

)

= log(2φ∗) (4.135)

which shows that, in our b-space formalism, the correspondence between the logarithms

is log(2φ∗) ↔ log
(
1/(b̄M)

)
. We observe yet again that choosing µ = 1/b̄ as the scale at

which to evaluate the PDFs, the logarithmic terms multiplying the splitting functions in

Eqs. 4.87 and 4.88 cancel, suggesting this is the appropriate scale. The full expression for

the resummed cross-section in presented in the following section, where the PDFs have

been convolved with constant functions to effect this incorporation of these non-logarithmic

terms.

5As before but with z = 1; i.e. using 1
s

∫ 1

0
dτ τN−1δ(x1 x2 − τ) = 1

M2 xN1 xN2
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4.8. The final resummed result

So far I have discussed the Drell–Yan differential cross-sections in QT and φ∗, and

the logarithmic enhancements that arise for small values of these observables, all in the

context of photon-only exchange, solely to serve as a simplified paradigm in which to lay

the theoretical foundations. The unabridged calculation that I have worked with, and

which I have used in my phenomenological studies, is presented in this section.

The result for the resummed form of the differential φ∗ distribution, for a Drell–Yan

lepton pair of invariant mass M at a hadronic scattering energy of
√
s, is

dσ

dφ∗
(φ∗,M, cos θ∗, y) =

π α2

sNc

∫ ∞

0
dbM cos(bM φ∗) e−R(b̄,M,µQ,µR)

× Σ(x1, x2, cos θ
∗, b,M, µQ, µR, µF) ,

(4.136)

where x1,2 = M√
s
e±y, y is the rapidity of the boson, b̄ = b eγE

2 , γE = 0.5772 . . . being

the Euler-Mascheroni constant, and full scale dependence (to be discussed in detail in

Sec. 5.1) is explicitly indicated in terms of µQ, µR and µF: the resummation, renor-

malization and factorization scales, respectively. The function Σ is essentially the Born

calculation, supplemented with additional coefficients and correction factors appropriate

for the resummation, and is given by

Σ(x1, x2, cos θ
∗, b,M, µQ, µR, µF) =

exp

[

−αs(µR)

π
gcorr

(
M

µQ

)]

Σ̄(x1, x2, cos θ
∗, b,M, µQ, µR, µF)

(4.137)

where

Σ̄(x1, x2, cos θ
∗, b,M, µQ, µR, µF) =

(1 + cos2 θ∗)
[
Q2
q − 2Qq Vℓ Vq χ1(M

2) + (A2
ℓ + V 2

ℓ ) (A
2
q + V 2

q )χ2(M
2)
]
F+
q

+ cos θ∗
[
−4Qq AℓAq χ1(M

2) + 8Aℓ VℓAq Vq χ2(M
2)
]
F−
q .

(4.138)

The factor containing gcorr will be explained in detail in Sec. 5.1, but it suffices to say this

factor acts as a counter-term to absorb spurious scale dependence arising in the resummed

exponent. The axial and vector electroweak couplings are

Af = T 3
f (4.139)

and Vf = T 3
f − 2Qf sin2 θW , (4.140)

respectively, with f = ℓ, q (for a lepton or quark), T 3
f is the third component of weak isospin

(T 3
f = +1

2 for f = ν, u, . . . and T 3
f = −1

2 for f = e, d, . . .), and θW is the electroweak mixing,

or ‘Weinberg’, angle. The functions χ1(M
2) and χ2(M

2) model the γ∗/Z interference and

the Z resonance respectively, and may be found in [48]. They are

χ1(M
2) = κ

M2 (M2 −M2
Z)

(M2 −M2
Z)

2 + Γ2
ZM

2
Z

(4.141)

and

χ2(M
2) = κ2

M4

(M2 −M2
Z)

2 + Γ2
ZM

2
Z

, (4.142)
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where MZ is the Z mass and ΓZ is the Z width. In these expressions,

κ =

√
2GFM

2
Z

4π α
, (4.143)

GF being the Fermi constant.

The functions F±,

F± = [Cqα ⊗ φα/1](x1, b̄, µQ, µR, µF) [Cq̄α′ ⊗ φα′/2](x2, b̄, µQ, µR, µF)

±[Cq̄β ⊗ φβ/1](x1, b̄, µQ, µR, µF) [Cqβ′ ⊗ φβ′/2](x2, b̄, µQ, µR, µF) ,
(4.144)

are convolutions of the parton density functions (PDFs) with the relevant coefficient func-

tions (with an implicit sum over incoming parton flavours, e.g. α ∈ {q, q̄, g}) as in

[Cqα ⊗ φα/i](xi, b̄, µQ, µR, µF) =

∫ 1

xi

dz

z
Cqα

(

αs

(
µR
b̄ µQ

)

,
xi
z
,
µF
µQ

)

φα/i

(

z,
µF
b̄ µQ

)

.

(4.145)

Here i = 1, 2 labels the incoming hadron. The coefficient functions themselves are the

perturbative expansions

Cqα

(

αs

(
µR
b̄ µQ

)

, x ,
µF
µQ

)

= δqα δ(1−x)+
αs

(
µR/(b̄ µQ)

)

2π
C(1)
qα

(

x,
µF
µQ

)

+O(α2
s ) (4.146)

and the O(αs) terms for q q̄ and q g are, respectively,

C
(1)
qq̄

(

x,
µF
µQ

)

= CF

(
π2

2
− 4

)

δ(1− x) + CF(1− x) + ln

(

µ2Q
µ2F

)

P (0)
qq (x) (4.147)

and

C(1)
qg

(

x,
µF
µQ

)

= x (1− x) + ln

(

µ2Q
µ2F

)

P (0)
qg (x) . (4.148)

The purpose of these coefficient functions is to incorporate the non-logarithmic (i.e. con-

stant) terms that appear in the fixed-order calculation of the small-φ∗ differential cross-

section for Drell–Yan; they represent the perturbative corrections to the collinear branch-

ing of the incoming partons. Our computer software package, which provides an automated

implementation of the resummed calculation for an end-user, interfaces with both HOP-

PET [67] and LHAPDF [68] to obtain information pertaining directly to the PDF sets

we use, and also to effect their DGLAP evolution and provide other manipulations.

All scale-dependence has been explicitly written in the above equations. I will postpone

the discussion of the scale dependence of R, which will be elucidated in Sec. 5.1 after which

I will also present the full NNLL form in Sec. 5.2. At this point I would like to address

the scale dependence appearing in the coefficient terms, i.e. the choices for the arguments

of the running coupling and the PDFs. I will start with the running coupling, whose

argument in Eq. 4.146 is µR/(b̄ µQ). Setting all perturbative scales, for now, such that

µR = µQ =M , we find the argument to be 1/b̄. To see why this should be so, consider (to

truncated NLL accuracy) the exponentiated radiator supplemented with our coefficient

terms, as in
[
1 + αs(1/b̄) consts

]
exp [− (Lg1 + g∗2)] . (4.149)
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Here, Lg1 is given in Eq. 4.127, and we consider a truncated g2 term (g∗2) given simply by

Rhard-coll. in Eq. 4.130. Changing the argument of the running coupling from 1/b̄ to M ,

using the one-loop approximation in Eq. 2.57 with µ =M and µ′ = 1/b̄, i.e.

αs(1/b̄) =
ᾱs

1− ᾱs β0 L
=

ᾱs

1− λ
, (4.150)

we recover
[
1 + αs(1/b̄) consts

]
exp [− (Lg1 + g∗2)]

=

(

1 +
ᾱs consts

1− ᾱs β0 L

)

exp

{
CF [2Lλ+ (2L− 3λ) log(1− λ)]

2π β0 λ

}

= 1 +
ᾱs

2π

(
consts + 3CF L− CF L

2
)

(4.151)

after using a series expansion in ᾱs on the RHS. Once again I have adopted the notation

L = ln(b̄2M2) and ᾱs = αs(M), and used λ = ᾱs β0 L. This expression, which includes

the soft-collinear double log, and the single log from hard collinear emission, is precisely

in accordance with the O(αs) terms we derived for the small-φ∗ differential cross-section6;

i.e. 2 × R∆
qq̄(z) in Eq. 4.88. Thus we have demonstrated the correct scale of the running

coupling to be 1/b̄.

Repeating this analysis with the scale-dependent radiator (i.e. µR and µQ left free) the

appropriate scale of the running coupling, required to reproduce the correct logarithms

when we combine with constant terms to get R∆
qq̄(z), is µR/(b̄ µQ). In this case our

resummed exponent is in terms of λ = αs(µR)β0 L, with L = ln(b̄2 µ2Q), and we change

the argument of the coupling from µR/(b̄ µQ) to µR. After truncating a series expansion

in αs(µR), we recover the correct terms in R∆
qq̄(z).

More succinctly, one may simply consider the absence of any explicit resummation,

for which then the resummed exponent R(b) = 0. This is the case when b̄ = µ−1
Q , since

then the resummed logarithms L are absent. In this limit we should recover simply the

small-φ∗ differential cross-section at fixed-order, with the running coupling and the PDFs

evaluated at the relevant scales µR and µF, respectively. This is ensured if the scale choices

in Eq. 4.146 are chosen as they presently stand.

6Recall the correspondence L ≡ log(b̄2 M2) ↔ −2 log(2φ∗)
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CHAPTER 5

Phenomenology of φ∗ at Tevatron and the LHC

In this chapter I present my phenomenological work on the φ∗ observable. The struc-

ture of the presentation is as follows: First I discuss the various aspects of my phenomeno-

logical study of φ∗, starting with a survey of the scale dependence in the resummed com-

ponent, and then I will present comparisons and predictions for the DØ, ATLAS and CMS

experiments, before moving to a technical discussion regarding the rôle of non-perturbative

effects I have studied.

In order to obtain theoretical predictions over a broad range of φ∗, it is necessary

to match fixed-order and resummed predictions. The fixed-order approach describes the

high-φ∗ physics well, where one is not sensitive to soft or collinear gluon emission, and

the resummed approach (as we have seen) is necessary to obtain a theoretically sound

description of the low-φ∗ physics. In our work we take both descriptions and combine

them according to
(
dσ

dφ∗

)

matched

=

(
dσ

dφ∗

)

resummed

+

(
dσ

dφ∗

)

fixed-order

−
(
dσ

dφ∗

)

expansion

, (5.1)

where ‘expansion’ denotes the series expansion of the resummed component in αs, trun-

cated at the same perturbative order to which the fixed-order component is calculated. For

example, NLL+LO matching would involve subtracting the expansion of the resummed

component to O(αs), NNLL+NLO matching would involve subtracting the expansion of

the resummed component to O(α2
s ), etc. A NNLL+NLO matching is what we employ in

particular, yielding a smooth description of the physics of azimuthal decorrelation over a

broad range.

In order to obtain the fixed-order component we use the calculation in MCFM [69]. In

addition, the Born weights used in the resummation are also taken from MCFM, however

the structure of our code is adapted to use other fixed-order calculations, e.g. DYNNLO

[70]. Our calculation is also fully differential in all of the relevant kinematic variables,

allowing experimental cuts to be placed on the final-state (leptons). In principle, our

code may be extended to the study of azimuthal decorrelation in other processes whose

final state is a colour-singlet system, e.g. φ∗ in H → γγ. The QT distribution for this

process has already been studied at NNLL accuracy, and the interested reader is referred

to [25]. Furthermore, one could in principle use any NLO calculation for the fixed-order

component, e.g. FEWZ [71, 72], provided the cancellation between the large logarithms

inherent in the fixed-order and expanded components could be numerically demonstrated

as one approached smaller values of φ∗.

One of the remarkable properties of φ∗ is that is has been able to unambiguously

discriminate against a certain non-perturbative (NP) model, which was unprecedented,
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Figure 5.1. φ∗ data from DØ corresponding to 7.3 fb−1, showing both
the Z → ee and Z → µµ channels for Drell–Yan [19]. These data are
in comparison with ResBos predictions, although the perturbative scale
uncertainty does not include the resummation scale, µQ.

even after many years of Drell–Yan study with the QT observable. The small-x broadening

model implemented in ResBos [73, 74, 75] is a non-perturbative prescription, which

contributes principally when the Bjorken x variable for either parton is small—i.e. at

higher
√
s or at higher boson rapidities—and which gives rise to a broader spectrum of

the transverse momentum of the boson. In particular, Fig. 5.1 shows how this small-x

broadening model is disfavoured by φ∗ data from DØ [19]. Figure 5.2 shows the equivalent

comparison for the QT observable in the |y| > 2 region, albeit for only 0.98 fb−1 of

integrated luminosity, where a similar conclusion this time cannot be made on account

of the larger measurement uncertainties. It is important to note that the uncertainties

which set a limitation on the overall achievable measurement uncertainty for QT here are

systematic in nature.

The experimental precision of φ∗, owing to its immunity to momentum resolution

inefficiencies, provides an exciting opportunity to attempt to determine what NP physics

(if any) are required to supplement a purely perturbative prediction, in order to gain good

agreement with data. The phenomenological study presented here attempts to address this

issue, but also draws attention to the need for a good understanding of the perturbative

component. To this end, full consideration of the theoretical uncertainty, estimated by

varying the perturbative scales, is made.
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Figure 5.2. DØ QT data, corresponding to 0.98 fb−1, in comparison with
ResBos both with and without the small-x broadening effect [76].

5.1. Scale dependence in the radiator

In this section I will derive the dependence of the radiator R on the perturbative scales

µR and µQ, the renormalization and resummation scales respectively. Note that I have

independently computed this here in a very explicit manner, which differs from the way it

was originally computed in our work. I hope the level of detail here offers a certain insight

for the reader. We begin by recalling the NLL expression for R(b̄M) in the absence of

these scales:

R̄NLL(b̄M) = L̄ g1(ᾱs L̄) + g2(ᾱs L̄) (5.2)

where L̄ = ln(b̄2M2) and ᾱs = αs(M
2). The overline in L̄ and ᾱs denotes that the scale

at which these quantities are evaluated is M , the invariant mass of the lepton pair.

We consider, just for the moment, the LL scale dependence. The resummation scale,

µQ, is introduced in order to generalize the argument of the logarithms we resum. As

such, we replace

L̄→ L = ln(b̄2 µ2Q) . (5.3)

In principle, the value of µQ should be set to ∼ M , but is otherwise arbitrary. Defining

xQ := µQ/M we see, for instance, that a general LL term

αs L
2 = αs

[
ln(b̄2M2) + lnx2Q

]2

= αs L̄
2 + 2 lnx2Q αs L̄+ αs ln

2 x2Q .
(5.4)

The first term in the final line is of the form (αs L̄
2)n—of course, with n = 1—and is

therefore a genuine LL term. However, the second term in the final line is of the form

(αs L̄)
n and is therefore formally a NLL term. The final term is even more sub-leading.

Thus, to LL accuracy, L̄ = L. The arbitrariness in the choice of µQ here is a NLL

correction, and the variation of µQ about its nominal value of M may therefore be used

to estimate the size of genuine NLL terms.

If we perform a calculation to NLL logarithmic accuracy, however, then any NLL

terms introduced by the arbitrariness of µQ in g1 are spurious, and must be cancelled by
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introducing appropriate counter-terms in g2. This is the programme we adopt for deriving

the scale dependence of R.

We begin with

g1(ᾱs L̄) = −A
(1)

π β0

λ̄+ ln(1− λ̄)

λ̄
, (5.5)

where λ̄ = αs(M
2)β0 ln(b̄2M2). Now, the LL radiator evaluated with µR = µQ =M is

R̄LL(b̄M) = L̄ g1(ᾱs L̄)

= −A
(1)

π β0

[

L+ ln
M2

µ2Q
+

ln(1− λ̄)

ᾱs β0

]

.
(5.6)

The one-loop running coupling in our notation is

ᾱs =
αs

1− αs β0 ln
µ2R
M2

, (5.7)

and so we may also write λ̄ in terms of λ, as

λ̄ = ᾱs β0 L̄ =
λ+ αs β0 ln M2

µ2Q

1− αs β0 ln
µ2R
M2

. (5.8)

This further implies that

1− λ̄ = (1− λ)
G

H
, (5.9)

where I have introduced, as shorthand, the quantities

G := 1−
αs β0 ln

µ2R
µ2Q

1− λ
(5.10)

and H := 1− αs β0 ln
µ2R
M2

. (5.11)

Using Eq. 5.9 for 1 − λ̄ and Eq. 5.7 for the running coupling, we may write the

ln(1− λ̄)/ᾱs β0 term in Eq. 5.6 as

ln(1− λ̄)

ᾱs β0
=

ln(1− λ)

αs β0
− ln(1− λ) ln

µ2R
M2

+
ln G

αs β0
− ln H

αs β0
− ln

G

H
ln
µ2R
M2

. (5.12)

Given that

RLL = −A
(1)

π β0

[

L+
ln(1− λ)

αs β0

]

, (5.13)

i.e. the LL radiator with full dependence on µQ and µR, we are now in a position to isolate

the counter-terms, which are given by

R̄LL −RLL = −A
(1)

π β0

[

ln
M2

µ2Q
− ln(1− λ) ln

µ2R
M2

+
ln G

αs β0
− ln H

αs β0
− ln

G

H
ln
µ2R
M2

]

. (5.14)

The counter-terms appropriate for g2, however, are those which are NLL. We now proceed

to isolate these NLL pieces.

First we write, using series expansions (since 0 < λ < 1),

G = 1− αs β0 ln
µ2R
µ2Q

∞∑

n=0

λn (5.15)
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⇒ ln G

αs β0
= − 1

αsβ0

∞∑

m=1

(

αs β0 ln
µ2R
µ2Q

∑∞
n=0 λ

n

)m

m

= − ln
µ2R
µ2Q

∞∑

n=0

λn −
∞∑

m=2

(αs β0)
m−1

m

(

ln
µ2R
µ2Q

∞∑

n=0

λn

)m

.

(5.16)

The terms in the sum from m = 2 to ∞ in the second line are beyond NLL accuracy,

leaving only the m = 1 contribution which is NLL and which has been isolated. Thus, to

NLL accuracy,

ln G

αs β0
≈ ln

µ2Q
µ2R

1

1− λ
, (5.17)

reverting to the 1/(1−λ) form. For the case of ln G, i.e. without the division by αs β0, we

may take G to be simply 1−αs β0 ln(µ2R/µ
2
Q) (to NLL accuracy with an O(αs) correction,

i.e. retaining only the n = 0 term of the sum in Eq. 5.15) and so we may approximate

ln G ≈ −αs β0 ln
µ2R
µ2Q

, (5.18)

having used ln(1 + x) ≈ x, owing to the fact that

αs β0 ln
µ2R
µ2Q

≪ 1 (5.19)

since the scales are chosen such that µQ ∼ µR ∼M . Similarly, we may approximate

ln H ≈ −αs β0 ln
µ2R
M2

. (5.20)

These expressions will be useful later when we determine constant NNLL counter-terms.

For now, to NLL accuracy, the ln G/H term in Eq. 5.14 does not contribute.

We are now in a position to extract the NLL counter-terms from Eq. 5.14. Using the

NLL expressions for the various terms derived above, namely Eqs. 5.17 and 5.20, we may

finally write

Rcounter-term
NLL = −A

(1)

π β0

{[
λ

1− λ
+ ln(1− λ)

]

ln
µ2Q
µ2R

+ ln(1− λ) ln
M2

µ2Q

}

(5.21)

where the logarithm multiplying ln(1 − λ) has been split as ln(M2/µ2R) = ln(µ2Q/µ
2
R) +

ln(M2/µ2Q). Note that we only consider NLL terms in this expression, i.e. terms in the

single-logarithmic variable λ.

If one works to NNLL accuracy, a new possibility arises. In addition to spurious scale-

dependent logarithmic terms appearing in g3—owing to the arbitrariness of µR and µQ

in g1 and g2—one should also consider spurious constant terms at O(αs), since these are

also of the NNLL form αs (αs L)
n (just with n = 0) and appropriate counter-terms must

be introduced. Here, for example, we focus just on deriving these constant terms.

We first begin by including the O(αs) constant term in Eq. 5.16, to obtain

ln G

αs β0
= − ln

µ2R
µ2Q

1

1− λ
− αs β0

2
ln2

µ2R
µ2Q

. (5.22)
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The second term here is new, and corresponds to the m = 2 (O(αs)) with n = 0 (non-

logarithmic, i.e. λ0) term of the sum in Eq. 5.16. Furthermore, we retain the O(αs) term

in the series expansion for ln H/αs β0, giving

ln H

αs β0
= − ln

µ2R
M2

− αs β0
2

ln2
µ2R
M2

. (5.23)

We now use the O(αs) expressions for ln G and ln H, given in Eqs. 5.18 and 5.20 re-

spectively, to write the O(αs) expression for the final term in Eq. 5.14 which we did not

previously consider:

ln
G

H
ln
µ2R
M2

= −αs β0 ln
M2

µ2Q
ln
µ2R
M2

. (5.24)

Including all the constant O(αs) corrections considered above (Eqs. 5.22, 5.23 and

5.24) in the expression for R̄LL −RLL in Eq. 5.14, the additional counter-terms (from g1)

are

−A
(1)

π β0

{

−αs β0
2

ln2
µ2R
µ2Q

+
αs β0
2

ln2
µ2R
M2

+αs β0 ln
µ2R
µ2Q

ln
µ2R
M2

− αs β0 ln2
µ2R
M2

}

= −αs

π

A(1)

2
ln2

M2

µ2Q

(5.25)

In fact, the only other O(αs) non-logarithmic NNLL counter-term is required for the

−B(1) ln(1− λ)/π β0 term in g2. Using results derived above, we have

ln(1− λ̄) = ln(1− λ)− ln
G

H
≈ ln(1− λ) + αs β0 ln

M2

µ2Q
. (5.26)

Therefore, the only counter-term required for g2 is

B(1)

π β0
αs β0 ln

M2

µ2Q
. (5.27)

Finally, taking all O(αs) non-logarithmic NNLL counter-terms together, we introduce

gcorr
(
M

µQ

)

:=
CF

2
ln2

M2

µ2Q
− 3

2
CF ln

M2

µ2Q
. (5.28)

Since these counter-terms are of a constant nature, we rather choose to associate them

with the Born weight in our formalism, rather than with the resummed exponent, although

this is just a convention. Constant terms at O(αs) that arise in RNLL − R̄NLL (LL and

NLL inclusive) are factored out, and written

exp
[
−
(
RNLL − R̄NLL

)]
= exp

[
−
(
Rlog

NLL − R̄log
NLL

)]
exp

[

−αs(µR)

π
gcorr

(
M

µQ

)]

. (5.29)

5.2. The fully scale-dependent radiator

Using the methods of the previous section we were able to derive the scale dependence

of the radiator along with appropriate NLL counter-terms which should be added to g2

when one considers a resummed calculation to NLL accuracy. If one wishes to work to
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NNLL accuracy, then appropriate counter-terms must also be added to g3 in order to

absorb the spurious scale-dependence which materializes at this order due to the arbi-

trariness of choosing µR and µQ in g1 and g2. In this section I simply summarize the full

NNLL radiator, with all scale dependence included.

The radiator is given by

R

(

b̄ µQ,
M

µQ
,
µQ
µR

;αs(µR)

)

=Lg1(αs L) + g2

(

αs L,
M

µQ
,
µQ
µR

)

+
αs

π
g3

(

αs L,
M

µQ
,
µQ
µR

)

,

(5.30)

where L = ln(b̄2 µ2Q) and αs is shorthand for the scale-dependent running coupling in the

MS scheme, αs(µR). The functions g(i), i ∈ {1, 2, 3}, are given by

g1(λ) = −A
(1)

π β0

λ+ ln(1− λ)

λ
, (5.31)

g2(λ) =− B(1)

π β0
ln(1− λ) +

A(2)

π2 β20

(
λ

1− λ
+ ln(1− λ)

)

− A(1) β1
π β30

[
λ+ ln(1− λ)

1− λ
+

1

2
ln2(1− λ)

]

− A(1)

π β0

(
λ

1− λ
+ ln(1− λ)

)

ln
µ2Q
µ2R

,

(5.32)

and

g3(λ) =
A(3)

2π2 β20

λ2

(1− λ)2
+
B(2)

π β0

λ

1− λ

− A(2) β1
π β30

(
λ (3λ− 2)

2 (1− λ)2
− (1− 2λ) ln(1− λ)

(1− λ)2

)

− A(1)

β40

(
β21
2

1− 2λ

(1− λ)2
ln2(1− λ) +

ln(1− λ)

1− λ
(β0 β2 (1− λ) + β21 λ)

+
λ

2 (1− λ)2
(β0 β2 (2− 3λ) + β21 λ)

)

− B(1) β1
β20

(
λ

1− λ
+ ln(1− λ)

)

+
A(1)

2

λ2

(1− λ)2
ln2

µ2Q
µ2R

−
[

B(1) λ

1− λ
+
A(2)

π β0

λ2

(1− λ)2

+A(1) β1
β20

(
λ

1− λ
+

1− 2λ

(1− λ)2
ln(1− λ)

)]

ln
µ2Q
µ2R

,

(5.33)

where

λ = αs(µR)β0 ln(b̄2 µ2Q) . (5.34)

The coefficients appearing in these expressions are given by

A(1) = CF , (5.35)

A(2) =
CF

2

[

CA

(
67

18
− π2

6

)

− 5

9
NF

]

, (5.36)
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A(3) =
CF

16

[

C2
A

(
245

6
− 134

27
π2 +

11

45
π4 +

22

3
ζ(3)

)

+
1

2
CANF

(

−418

27
+

40

27
π2 − 56

3
ζ(3)

)

+
1

2
CFNF

(

−55

3
+ 16 ζ(3)

)

− 4

27
N2

F

]

+
1

8
πβ0d2 ,

(5.37)

(for which, see [26])

B(1) = −3

2
CF +A(1) ln

M2

µ2Q
, (5.38)

and [12]

B(2) =
1

4

[

C2
F

(

π2 − 3

4
− 12ζ(3)

)

+ CFCA

(
11

9
π2 − 193

12
+ 6ζ(3)

)

+
1

2
CFNF

(

−4

9
π2 +

17

3

)]

+A(2) ln
M2

µ2Q
.

(5.39)

The coefficient d2 is given by [26]

d2 = CFCA

(
808

27
− 28 ζ(3)

)

− 112

27
CFNF . (5.40)

Finally, the coefficients of the β-function for QCD, in the convention we use, are given in

Eqs. 2.44, 2.45 and 2.46.

5.3. Comparison of results to DØ data

In this section I present the results of our resummed calculation with DØ kinematic

cuts in place, and comparisons to DØ data. The DØ data are from proton–antiproton

collisions at an energy
√
s = 1.96TeV, and correspond to an integrated luminosity of

7.3 fb−1. The data are divided into two channels, corresponding to final states consisting

of either e+e− pairs or µ+µ− pairs, known as the electron and muon channels respectively.

In the electron channel, the data are divided into three boson rapidity (y) bins: |y| < 1,

1 < |y| < 2 and |y| > 2. The muon-channel data are binned in |y| < 1 and 1 < |y| < 2 only.

The invariant mass of the lepton pair is restricted to the range 70GeV < M < 110GeV

for both channels. However, cuts on lepton transverse momenta (piT) and pseudorapidity

(ηi) of the ith lepton differ between the two channels. For the muon channel, one has

p1,2T > 15GeV and |η1,2| < 2. For the electron channel, one has p1,2T > 20GeV. The

pseudorapidity cut is more complicated in the electron channel, and allows leptons with

either |η1,2| < 1.1 or 1.5 < |η1,2| < 3. The resummed calculations presented in this section

reflect these experimental cuts. In addition, the CTEQ6M [77] PDFs are used, where the

value of the strong coupling (evaluated at the Z boson mass) is αs(MZ) = 0.1179.

Additionally, it is important to test the numerical cancellation of the large logarithms

that appear in the fixed-order component of Eq. 5.1 at low φ∗ against the large logarithms

that appear in the expansion of the resummed component. For small values of φ∗, the

resummation of soft and collinear gluon emission in this quasi-back-to-back region of the

two leptons should dominate. The additional contribution from the fixed-order component

in this region should be exactly cancelled by the expansion of the resummed component
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to the same perturbative order. We therefore want to check that, indeed,

lim
φ∗→0

[(
dσ

dφ∗

)

fixed-order

−
(
dσ

dφ∗

)

expansion

]

→ 0, (5.41)

a quantity which we call the remainder. Figures 5.3 demonstrate this cancellation across

the five rapidity bins for Z → e e and Z → µµ, for the scale choice µQ = µR = µF = M .

The rapidity range |y| > 2 for the electron channel remains the only exception, where

will employ a LO matching and therefore only the cancellation at O(αs) is shown. The

equivalent plots for other scale choices considered are summarized in Appendix C.1, in

Figs. C.1 to C.15.

The results of our calculations in comparison with DØ data are shown in Figs. 5.4 and

5.5 for electrons and muons, respectively. The yellow band represents the estimate of the

theoretical uncertainty. It is determined by varying the three perturbative scales (µQ, µR

and µF) about their nominal value ofM . The actual variations are discrete and are subject

to the constraintM/2 ≤ µQ, µR, µF ≤ 2M . Furthermore, the ratio between any two scales

may not exceed the range 1
2 to 2; i.e. 1/2 ≤ µi/µj ≤ 2 ∀ i, j ∈ {R,F,Q}. The data

show good agreement with our NNLL+NLO matched calculation for the φ∗ distribution

in Drell–Yan events at
√
s = 1.96GeV, taking into account experimental errors and the

theoretical uncertainty due to the arbitrariness in perturbative scale choices.

It is crucial to consider a variety of combinations of the scale choice, as opposed to

varying only one at a time whilst keeping the remaining scales fixed at their nominal

values. This is exemplified in Fig. 5.6 which shows, for the muon channel in the |y| < 1

rapidity bin, the theoretical uncertainty band produced by varying

• only the resummation scale (µQ),

• only the factorization and renormalization scales (µF and µR) and

• all scales.

One observes that indeed the band widens and becomes more symmetric about the central

scale choice (µQ = µR = µF = M) when all variations are considered. A comparison of

the estimated size of these bands for a NLL and a NNLL calculation is shown in Fig. 5.7.

Uncertainties associated with the PDF set used have been omitted in the evaluation

of the theoretical uncertainties quoted here, owing to their relative insignificance. I have

studied the propagation of PDF uncertainties onto the resummed component of the nor-

malized φ∗ distribution, demonstrating them to be at the level of ∼ 1% for values of

φ∗ . 0.1. Moreover, differences between two distributions evaluated using CTEQ6M [77]

and MSTW 2008 [78] PDF sets is significantly smaller than the per mill level across most

of the φ∗ range.
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Figure 5.3. Remainder plots showing the cancellation of large logarithms
between the fixed-order component and the expansion of the resummed
component, order by order, for small values of φ∗. The plots show the
various rapidity ranges for the muon and electron channels in DØ data.
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Figure 5.4. Our matched calculation for DØ data in the electrons chan-
nel, for the three boson rapidity regions |y| < 1, 1 < |y| < 2 and |y| > 2.



96 5. PHENOMENOLOGY OF φ∗ AT TEVATRON AND THE LHC

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.01  0.1  1

1/
σ 

dσ
/d

φ*

µ+µ-, |y|<1

All scales
µQ=M
Data

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.01  0.1  1

D
at

a/
th

eo
ry

φ*

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.01  0.1  1

1/
σ 

dσ
/d

φ*

µ+µ-, 1<|y|<2

All scales
µQ=M
Data

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.01  0.1  1

D
at

a/
th

eo
ry

φ*

Figure 5.5. Our matched calculation for DØ data in the muons channel,
for the two boson rapidity regions |y| < 1 and 1 < |y| < 2.
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I have additionally used our resummed calculation to produce predictions for low-mass

Drell–Yan data from DØ. At the time of writing, data are not yet publicly available. The

predictions for the φ∗ distribution with the kinematic selection

• p
(1)
T ≥ 15 GeV (transverse momentum of leading lepton)

• p
(2)
T ≥ 10 GeV (transverse momentum of second lepton)

• 30 GeV < M < 60 GeV (invariant mass)

• |η| ≤ 2 (pseudorapidities of both leptons)

in the two rapidity regions |y| < 1 and 1 < |y| < 2, are show in Fig. 5.8. The corresponding

remainder plots for the scale choice µQ = µR = µF = M are shown, for illustration, in

Fig 5.9. Due to large statistical uncertainties in the fixed-order component at O(α2
s ),

the numerical cancellation of large logarithms is only guaranteed at O(αs). Remainder

plots corresponding to other scale choices considered are summarized in Appendix C.1, in

Figs. C.16 to C.21.
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two rapidity regions |y| < 1 and 1 < |y| < 2.



98 5. PHENOMENOLOGY OF φ∗ AT TEVATRON AND THE LHC
F

ix
ed

-o
rd

er
 -

 e
xp

an
si

on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M, µF = M

|y| < 1, 30 < M < 60

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M, µF = M

|y| < 1, 30 < M < 60

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M, µF = M

1 < |y| < 2, 30 < M < 60

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M, µF = M

1 < |y| < 2, 30 < M < 60

O(αs
2)

Figure 5.9. Remainder plots for the predicted low-mass φ∗ distributions
at DØ. in the two rapidity regions |y| < 1 and 1 < |y| < 2. The scales
correspond to µQ = µR = µF =M .

5.4. Predictions for the ATLAS experiment

In this section I present predictions for the φ∗ distribution with the kinematics appro-

priate for the ATLAS experiment. At the time these predictions were made, ATLAS data

on φ∗ were not available. However, at the end of this section I will present a compari-

son to ATLAS data that were subsequently made public in 2012 [20]. In addition to φ∗

predictions, the QT observable is also shown in comparison to ATLAS data as a way of

validating our resummed calculation.

The following predictions are for proton–proton collisions at an energy of
√
s = 7TeV.

For each lepton i = 1, 2, a cut is placed on its transverse momentum and pseudorapidity,

of p1,2T > 20GeV and |η1,2| < 2.4 respectively. The invariant mass of the lepton pair

is also constrained to be within the range 66GeV < Mℓℓ < 116GeV. Initially, results

are presented across the entire range of boson rapidities, i.e. |y| < 2.4. At the end of

this section, however, I present our results binned in the three rapidity regions |y| < 0.8,

0.8 < |y| < 1.6 and 1.6 < |y| < 2.4.

Our predictions were also generated for a variety of scale choices. We allowed each

scale, µR, µF and µQ, to vary independently between M/2 and 2M , with the additional

constraint that the ratio of any two scales must be between 1/2 and 2. To summarize,

we allow M/2 ≤ µi ≤ 2M provided that 1/2 ≤ µi/µj ≤ 2 ∀ i, j, where i, j ∈ {R,F,Q}.
Figures C.22–C.27 in Appendix C.2 show the remainders (dσ/dφ∗fixed-order−dσ/dφ∗expansion,
and similarly for QT) for our ATLAS predictions in the full rapidity region |y| < 2.4, for

all discrete scale choices we considered. Below, the corresponding plots for the case of

µQ = µR = µF =M are shown (Fig. 5.10). The left plot shows the case of φ∗ and the right

plot shows the case of QT. The top plots show the cancellation of the remainder at O(αs),

while the bottom plots show this cancellation at O(α2
s ). The objective here is to determine

if the large logs cancel numerically between the fixed-order component and the expansion of

the resummed component, as they should. In practice, one becomes statistically limited
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Figure 5.10. The remainder plots for our ATLAS φ∗ and QT (pT) pre-
dictions, where µR = µF = µQ = M . These plots show the numerical
cancellation of the large logarithms between the fixed-order calculation
and the expansion of the resummation.

for small values of either φ∗ or QT, particularly for the O(α2
s ) contribution. For this

reason, one attempts to determine if the logs show a trend towards cancellation for small

values of the observable. If this is the case, one can neglect the contribution from the

fixed-order (which is statistically limited in this region, along with the remainder) below

a certain value of the observable. Thus, below this cut value, the only contribution to

the distribution is from the resummed component. Since the Born weights which enter

the resummed component are just O(α)—i.e. not even an O(αs) contribution—one is not

statistically limited.

There is no reason to use the same cut value for both theO(α) andO(α2) contributions.

In the case of φ∗ we choose φ∗ = 0.0035 for the O(α) cut and φ∗ = 0.03 for the O(α2) cut.

In reference to Fig. 5.10, this is the point at which one is confident about the numerical

large-logarithmic cancellation, yet at which one does not experience large statistical errors.

In this light, the cut parameter is tuned.

There is also a cut which we apply for higher values of φ∗. This time, however,

we observe that the resummation becomes unnecessary and the fixed-order component

describes the data well. For this reason we adopt a cut in φ∗ beyond which the resummation

(and its expansion) is manually set to zero. This is in effort to suppress spurious O(α3)

terms (and beyond) for high values of φ∗, which lie beyond the jurisdiction of resummation.

The position we choose for this cut is at φ∗ = 0.5. Thus, for values of φ∗ > 0.5 only the

fixed-order component is used.

The corresponding low-QT cuts, below which only the resummed component is used,

are set to QT = 0.2GeV and QT = 4.5GeV for the O(α) and O(α2) contributions,

respectively. For values of QT > 50GeV, only the fixed-order component is used. As in

the case of φ∗, this high-QT cut is at a point where the resummation is deemed unnecessary,

since the argument of the resummed logarithms is 50GeV/M , with M ∼ MZ. Not only

is resummation unnecessary in this region, where the logs in QT/M are not large, but we
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Figure 5.11. Our NNLL+NLO prediction for the φ∗ observable (left) for
ATLAS at

√
s = 7 TeV. On the right, our corresponding calculation for

QT is shown in comparison to existing ATLAS data [79], for the purpose
of validating our calculation.

again want to suppress spurious O(α3) contributions (and beyond) where the resummation

has no jurisdiction.

With these considerations in place, the φ∗ prediction and QT comparison to existing

ATLAS data [79] are shown in Fig. 5.11. The plot on the left shows our φ∗ prediction while

the plot on the right shows our calculation of QT in comparison with existing ATLAS data.

The black line is the curve determined by setting all scales equal to the invariant mass of

the lepton pair, i.e. µQ = µR = µF =M . The yellow band extends to the extreme points

on any curve, each of which comes from considering the scale variations already discussed.

For each value of φ∗, the yellow band extends from the minimum value of dσ/dφ∗ to the

maximum value, generated by any of the scale choices under consideration.

In March 2013, the ATLAS measurement of the differential φ∗ cross-section measure-

ment at
√
s = 7TeV was published [20]. Figure 5.12, below, shows a comparison between

our resummed prediction and the ATLAS data. These data correspond to an integrated

luminosity of 4.6 fb−1, and have the same kinematic cuts applied to the final-state leptons

as described above.
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Finally, I present our φ∗ predictions for ATLAS in the three rapidity ranges |y| < 0.8,

0.8 < |y| < 1.6 and 1.6 < |y| < 2.4, as shown in Fig. 5.13. Figure 5.14 shows a ratio

of these distributions for easy comparison, in which a significant amount of theoretical

perturbative uncertainty cancels.
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Figure 5.14. Here I show the ratios of different rapidity bins for our
ATLAS φ∗ predictions, to supplement Fig. 5.13.

5.5. Probing the small-x régime

In our DØ studies corresponding to Tevatron energies of
√
s = 1.96GeV, we chose to

freeze the PDF evolution below values of Q = Q0, i.e.

φi(x,Q) → φ̄i(x,Q) =

{

φi(x,Q) for Q > Q0

φi(x,Q0) for Q ≤ Q0
(5.42)

In this case, the freezing point was chosen at Q0 = 1GeV. Since the PDFs are evaluated

using DGLAP evolution at Q = µF/(µQ b̄), low values of Q correspond to high values of

b in the argument, and vice versa. I have varied the value of Q0 about this nominal value

to ensure that this non-perturbative prescription results in an uncertainty much less than

our perturbative uncertainty.

Owing to the increase in
√
s at the LHC relative to Tevatron, the momentum fractions

x1 and x2 of the partons at the LHC entering the hard scattering process are conversely

typically much smaller than those at Tevatron. The Q-dependence of φi(x,Q) in this

small-x régime is steeper and a fixed cutoff in the PDF evolution below Q = Q0 is not

appropriate. In fact, in the b-space formalism (in which one works in the space Fourier

conjugate to QT) the discontinuity that arises because of the piecewise construction of

the PDFs, Eq. 5.42, results in oscillatory behaviour of the φ∗ and QT spectra. We thus

employ an exponential extrapolation of φi(x,Q) below Q = Q0, mitigating this behaviour.
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The extrapolation in fact rather concerns the actual Drell–Yan weight Σ̄ given in

Eq. 4.138, which itself contains the PDFs. We consider the piecewise construction

Σ̄(Q) =

{

Σ̄(Q) for Q > Q0

Ae−BQ for Q ≤ Q0
(5.43)

where

A = Σ̄(Q1) e
−BQ1

and B =
log
(
Σ̄(Q1)/Σ̄(Q2)

)

Q2 −Q1
.

(5.44)

The transition scale Q0 is now taken to be 1.5 GeV. While still not a mathematically

continuous construction, the extrapolation is sufficiently continuous numerically in its

first derivative so as to mitigate former modulations in the resummed distribution, owing

to a local deficiency of Fourier modes around Q = Q0, without introducing new ones. The

two scales Q1 and Q2 are taken to be 1.4 and 2.0 GeV respectively1, and the weight Σ̄

is evaluated at these two scales in order to deduce the constants A and B used in the

extrapolation.

Certain combinations of perturbative scale choices which result in lower values of

µF/µQ, however, serve to enhance the inversely proportional relationship between Q and b

in the argument of the PDFs. Whilst the oscillations are no longer present after employing

the exponential extrapolation of the PDFs, these combinations of scale choices still result

in significantly outlying curves for the φ∗ and QT spectra. Considering that PDF evolution

based on the DGLAP framework of collinear factorization may become invalid for Q <

1GeV, we simply choose to ignore these scale choices in our uncertainty band. Thus,

we impose the additional restriction that scale combinations which enter our theoretical

uncertainty band must also yield µF/µQ ≥ 1. Such manifestations may be indicative of

the need of transverse-momentum-dependent PDFs (or ‘TMDs’). For further information

regarding TMDs, collinear factorization and the small-x régime, the reader is encouraged

to consult [80, 81, 82].

5.6. Predictions for the CMS experiment

At the time of writing, CMS public results for the differential Drell-Yan cross-section in

φ∗ are not available for
√
s = 7TeV. Notwithstanding, adopting the same kinematic cuts

as applied in the CMS measurement of the QT observable for Drell-Yan, we have generated

a prediction for φ∗. This prediction is shown in Fig. 5.15, along with our computed QT

observable compared with existing CMS data [83]. The kinematic cuts applied in each case

are as follows: For each lepton i = 1, 2, a minimum transverse momentum p1,2T > 20GeV is

required, along with a constraint on its pseudorapidity |η1,2| < 2.1. Finally, the invariant

mass of the lepton pair is required to fall within the window 60GeV < Mℓℓ < 120GeV. In

comparison with the event selection performed by ATLAS, this corresponds to a slightly

tighter η cut and a slightly looser M cut. The corresponding remainder plots for all scale

variations may be found in Appendix C.3.

1In principle, Q1 should equal Q0 to ensure the continuity of the construction.
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Figure 5.15. Our NNLL+NLO prediction for the φ∗ observable (left)
for CMS at

√
s = 7 TeV. On the right, our corresponding calculation for

QT is shown in comparison to existing CMS data [83], for the purpose of
validating our calculation.

5.7. Non-perturbative prescriptions in the b-space formalism

The coefficients gi in the resummed exponent R(b̄ µQ), Eq. 5.30, depend on the dimen-

sionless parameter

λ = β0 αs(µR) ln(b̄
2 µ2Q) , (5.45)

with αs(µR) defined in the MS scheme. Substituting the one-loop expression for αs(µR),

written in terms of the dimensionful quantity ΛQCD, i.e.

αs(µR) =
1

β0 ln(µ2R/Λ
2
QCD)

, (5.46)

one obtains

λ =
ln(b̄ µQ)

ln(µR/ΛQCD)
(5.47)

As λ → 1, this implies b̄ → (µR/µQ) Λ
−1
QCD. In this limit one approaches the Landau

pole of QCD, where the notion of a perturbative expansion breaks down. In order to

safeguard against this, we introduce an upper limit of bmax on the b integration such that

b̄max < Λ−1
QCD. In principle, the upper limit on the b-space integration (set by λmax = 1) is

bmax = 2µ−1
Q e−γE exp[1/(2β0 αs(µR))] , (5.48)

having used b̄ ≡ b eγE/2.

The cutoff at bmax is an intrinsically non-perturbative prescription which is arbitrary,

along with the actual choice of bmax. For this reason we have varied bmax about the value

we choose (which is typically ∼ (3ΛQCD)
−1) in order to verify that it has negligible impact

on the theoretical prediction, which is indeed the case. From a practical point of view,
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setting bmax no higher than necessary to achieve our desired accuracy also increases the

performance of the numerical integration over b.

There is also a lower limit of λ at λmin = 0. This limit requires ln(b̄2 µ2Q) → 0, and so

b̄→ µ−1
Q . As such, we have a lower limit on the b integration, set by

bmin = 2µ−1
Q e−γE , (5.49)

beneath which one is outside the jurisdiction of the resummation. At precisely b = bmin,

the resummed exponent R(b̄min µQ) = 0. At values of b < bmin, we adopt the prescrip-

tion of freezing the radiator R(b̄ µQ) at zero. The b-integral is thus separated into two

contributions, as in
∫ ∞

0
dbM cos(bM φ∗) e−R(b̄,M,µQ,µR)

→
∫ bmin

0
dbM cos(bM φ∗) +

∫ bmax

bmin

dbM cos(bM φ∗) e−R(b̄,M,µQ,µR)

=
sin(bminM φ∗)

φ∗
+

∫ bmax

bmin

dbM cos(bM φ∗) e−R(b̄,M,µQ,µR) ,

(5.50)

of which the remaining integral from bmin to bmax is performed numerically. In the case of

the QT observable, the separation is
∫ ∞

0
db b J0(bQT) e

−R(b̄,M,µQ,µR)

→
∫ bmin

0
db b J0(bQT) +

∫ bmax

bmin

db b J0(bQT) e
−R(b̄,M,µQ,µR)

=
bmin J1(bminQT)

QT
+

∫ bmax

bmin

db b J0(bQT) e
−R(b̄,M,µQ,µR) .

(5.51)

The numerical evaluation of the remaining integrals in b-space is performed for both ob-

servables using a lightweight implementation of a 32-point Gaussian quadrature rule. A

fast numerical implementation of b-space integration is of course critical for our purposes

of obtaining precise resummed predictions which require high statistics. This bespoke im-

plementation is very competitive in terms of performance, with computation times similar

to other free implementations, owing to its lightweight nature.

5.8. A non-perturbative study

In addition to the purely perturbative computations which were compared to DØ

data, with the caveat of the aforementioned prescriptions in b-space, I also studied a

non-perturbative (NP) model designed to mimic the effect of intrinsic parton transverse

momenta within the hadrons. NP models have previously been studied in the context of

Drell–Yan QT [84] and also the energy-energy correlation in e+e− annihilation [85]. The

model we utilize in our phenomenological approach adds a Gaussian smearing term to the

radiator, such that

R(b̄M) → RNP(b̄M) = R(b̄M) + gNP b
2 , (5.52)

where the parameter gNP characterizes the smearing and has units (GeV)2. In the context

of the resummed expression, this amounts to an overall multiplication by a Gaussian in b
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Figure 5.16. The inclusion of a non-perturbative Gaussian form factor in
our NNLL+NLO calculations for DØ at

√
s = 1.96 TeV. The curves shown

correspond to different values of the associated parameter, gNP. The two
rapidity bins for the muons channel are shown.

with a width σ = 1/
√
2 gNP. Since b is the Fourier conjugate to QT, this translates into a

Gaussian smearing of QT by
√
2 gNP.

Indeed, the Gaussian ansatz of our model is consistent with the exponentiation of the

model employed in [84] (which is quadratic in b near b = 0) where further discussion of its

motivation may be found. Further parameterizations of a NP form factor on the Drell–

Yan QT spectrum may be found in the literature, including the BLNY parameterization

of Brock, Landry, Nadolsky & Yuan [86], which is also of the Gaussian form.

Figures 5.16 and 5.17 show the impact of this NP model on the calculation correspond-

ing to the ‘central’ scale choice (i.e. with µQ = µR = µF = M) for different values of the

NP parameter gNP.

Ostensibly, given the size of the theoretical uncertainties on the perturbative calcula-

tions for DØ kinematics, estimated by varying the perturbative scales about their nominal

values, one cannot make a conclusive statement regarding the need for NP effects to suc-

cessfully describe the data. The essential point is that one should be careful not to falsely

ascribe any discrepancy between data and theory to the need for NP input, which may

be mitigated using purely perturbative techniques. To this end it is of crucial importance

that one has a sound perturbative prediction and understanding of theoretical uncertainty.

Recent work has shown, however, that even in light of a theoretical uncertainty band seem-

ingly concluding an agreement with data in the absence of explicit NP input, the data do

indeed prefer a non-zero value of gNP [87]. This conclusion is reached by treating scales

related to µQ, µR and µF as nuisance parameters in a χ2 minimization attempting to fit

gNP.
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Figure 5.17. The inclusion of a non-perturbative Gaussian form factor in
our NNLL+NLO calculations for DØ at

√
s = 1.96 TeV. The curves shown

correspond to different values of the associated parameter, gNP. The three
rapidity bins for the electrons channel are shown.

In this work, M. Guzzi, P. M. Nadolsky and B. Wang (GNW) pursue two approaches

in the determination of a parameter labelled aZ (equivalent to gNP; i.e. the coefficient of

b2 in an exponentiated NP form factor) associated with the NP model in ResBos. It is

important to note that the studies therein are carried out in the CSS formalism [14], and

so a different and non-trivially related set of perturbative scales are considered, namely

C1, C2, C3 and C4. The first approach assumes these scales to be fixed at some values,
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while the χ2 is minimized by discretely varying the parameter aZ to find the best fit. The

χ2 definition adopted for this specific case is given by

χ2(aZ) =
N∑

i=1

(
Di − T̄i(aZ)

si

)2

, (5.53)

which is minimized with respect to aZ, yielding the preferred value. In this definition,

N data points {Di} are considered, with corresponding uncorrelated uncertainties {si}.
Theoretical predictions are computed for each data point i using fixed scales and distinct

values of aZ, and are denoted T̄i(aZ).

The second approach extends this method by allowing the scales to effectively float in

the fit. The scales themselves are treated by defining corresponding nuisance parameters

λα ≡ log2(Cα/C̄α), where the bar denotes a specific nominal configuration for these values.

It is assumed that the scale variations should be small. As such, the theoretical prediction

for the ith point is written as a Taylor expansion

Ti(aZ, {λα}) = Ti(aZ, {λ̄α}) +
3∑

α=1

[
∂

∂λα
Ti(aZ, {λα})

]

{λα}={λ̄α}
(λα − λ̄α) , (5.54)

where the expansion is truncated beyond the first derivative. Here, {λα} is shorthand for

λ1, λ2, λ3, and the bar denotes those nuisance parameters corresponding to the nominal

values of the scales. By definition of the nuisance parameter, however, λ̄α = 0. The partial

derivative is then estimated by a finite-difference derivative:

∂

∂λα
Ti(aZ, {λα}) ≈

Ti(aZ, λ
+
α , {λ̄β 6=α})− Ti(aZ, λ

−
α , {λ̄β 6=α})

∆λα
≡ βiα(aZ, {λ̄α}) (5.55)

Here, ∆λα = λ+α − λ−α , the difference between positive and negative variations of the

nuisance parameter λα. The variations actually used are λ±α = ±1, corresponding to scale

variations ranging from 1
2 to 2 times their nominal values. The theoretical prediction for

the ith point is now written simply

Ti(aZ, {λα}) = Ti(aZ, {λ̄α}) +
3∑

α=1

βiα λα , (5.56)

incorporating this linearized model of scale variations.

As in the first approach, the goodness of fit is measured using a χ2 expression which

accounts for the nuisance parameters:

χ2(aZ) =

N∑

i=1

(

Di − T̄i(aZ)−
∑3

α=1 βiα λα
si

)2

+

3∑

α=1

λ2α
σ2λ

. (5.57)

The final term effectively restricts scale variations by penalizing those which are considered

beyond reasonable. This second method considers the fit without this additional term,

but also with the value σ−1
λ = 1. The reader is encouraged to consult [87] for the values

of aZ determined in specific cases. However, I note here the value aZ = 0.82+0.22
−0.11GeV2

determined from the fit to 60 DØ data points, covering all rapidity bins with φ∗ ≤ 0.1.

The reduced χ2 for this fit is 1.31.
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Figure 5.18. A comparison between our NNLL+NLO prediction and that
of ResBos is shown, for the DØ electrons channel in the two rapidity bins
|y| < 1 (central) and |y| > 2 (forward).

5.9. Comparison with ResBos

In this section I present the comparison of our calculations for the DØ experiment with

those computed using ResBos [73], another program widely used within the community to

performed resummed calculations of processes involving vector bosons. The comparisons

for both a central and forward boson rapidity are shown in Fig. 5.18. In this comparison,

the ResBos calculation also includes a non-perturbative model, very similar to the one

studied in Sec. 5.8, with an associated parameter g2 = 0.6, which essentially plays the

rôle of gNP in our calculation. More specifically, the ResBos program employs a non-

perturbative model using the BLNY (Brock–Landry–Nadolsky–Yuan) parameterization

[86].

In addition to this non-perturbative contribution, there exist other differences between

ResBos (or rather the back-end software named ‘Legacy’ [73, 86, 88]) and our prediction.

The formal accuracy of the two calculations is essentially the same, namely a NNLL

resummation matched to a fixed-order calculation at O(α2
s ). ResBos, however, is an

implementation of the CSS formalism [14] while our formalism is more closely related to

that of G. Bozzi, S. Catani, D. de Florian, M. Grazzini (e.g. [25]). A notable consequence

of employing the two different formalisms is that the perturbative scales defined in each

are not in a simple one-to-one correspondence.

A further difference between our predictions and those of ResBos is that we use coef-

ficient functions (Wilson coefficients) computed exactly to O(αs), as in Eq. 4.146, while

ResBos uses approximate Wilson coefficients which extend this accuracy to O(α2
s ), em-

ploying a mixture of K-factors and exact computation, such that the scale dependence is

indeed exact at O(α2
s ).

Furthermore, the prescription for curtailing the b integral as one approaches the non-

perturbative régime is also different. Our calculation simply employs a hard upper limit

of bmax while ResBos rather defines the quantity [14]

b∗(b, bmax) :=
b

√

1 + (b/bmax)2
. (5.58)
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This is then used to redefine the perturbative scales in the Sudakov exponential, and to

avoid evaluating PDFs below some minimum scale ∼ 1 GeV [87].

The final major difference concerns the fixed-order component used in the matching of

our formalism, which is computed to O(α2
s ) accuracy by MCFM. The ResBos formalism

prefers to consider as a single entity the the non-singular remainder (‘fixed-order minus

expansion’) labelled Y . The fixed-order component of Y is computed exactly to O(α2
s ) in

the large-QT limit according to [89].

The figure on the left in Fig. 5.18 compares the ResBos prediction for the |y| < 1

rapidity bin of the electrons channel to our prediction. The yellow theory band on our

prediction includes the full perturbative scale dependence (i.e. µQ, µR and µF) whilst the

red theory band on the ResBos prediction only includes the factorization and renormal-

ization scale dependence and is hence narrower. The figure on the right makes the same

comparison but for the |y| > 2 bin, again in the electrons channel. This time, the ResBos

result which also includes a non-perturbative small-x broadening model is also shown, as

the blue dashed curve.
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CHAPTER 6

Conclusions

The technology of all-orders resummation, in the context of the transverse momentum

distribution of massive lepton pairs produced in hadron collisions, has existed since the late

’70s [9]: the DDT formula in the LLA (leading-logarithmic approximation). Resummation

is based on factorization principles that persist to the level of the squared amplitude. These

were first demonstrated in the case of Abelian theories and were subsequently borrowed for

QCD [11]. The logarithmic accuracy of resummation has increased since its conception,

such that NNLL accuracy is now the state of the art in the cases of the φ∗ and QT

distributions for Drell–Yan, but also for the Higgs QT spectrum [25]. This has important

implications for phenomenology, but it seems that experimental results are ahead of theory

in terms of uncertainty [20], as we will soon see first-hand in Part 2.

From a technical point of view, we have seen that resummation presents the issue of

b-space integration. The utility of b-space rests in the convenient factorization of phase

space it provides, but we find that we must introduce various prescriptions for handling

the integration. First we consider prescriptions which are intimately related to the non-

perturbative domain. In our case, for example, we use a cutoff for the upper limit of

integration, bmax. Other authors use a prescription in which the contour of integration

is modified so as to skirt the Landau pole, examples of which are given by [90, 91].

At the other end of the spectrum, we consider the lower limit of integration, bmin. In

our formalism we freeze the radiator at R(b) = 0 for values of b < bmin; the high-φ∗

region in which resummation has no jurisdiction, and which is controlled by fixed-order

calculations. The Florence group (e.g. [25]) adopt an alternative prescription, in which

the b-space logarithm is replaced as follows: L ≡ log(b̄2M2) → log(1+ b̄2M2). For values

of b̄2M2 < 1, the logarithm and, hence, the resummed exponent go smoothly to zero.

For b̄M ≫ 1, the logarithm may be written log(1 + b̄2M2) = log(b̄2M2) + O
(
1/(b̄M)2

)

and thus the formal perturbative accuracy is preserved in the kinematic region where

resummation is important.

Non-perturbative (NP) effects have played a particularly important rôle in the studies

presented herein. The mantra we have followed is to ensure we have a sound perturba-

tive calculation of the φ∗ observable, using a resummation formalism based on collinear

factorization. We then allow ourselves, within our established perturbative uncertainties,

to ascribe any discrepancies with collision data to the apparent need for NP physics. I

have therefore presented studies of a phenomenologically driven NP model, based on a

simple Gaussian form factor, driven by a single parameter gNP. Ostensibly, within our

well-established perturbative uncertainties, it is not possible to make absolute claims re-

garding the rôle of NP physics on the φ∗ distribution. However, more recent work by
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M. Guzzi, P. M. Nadolsky and B. Wang [87], in which perturbative scales are treated as

nuisance parameters, has shown that data unambiguously favour a NP contribution. It is

noteworthy that the work presented in this thesis, culminating in [17] and [18] for φ∗, has

been a driving factor in the importance placed on precisely understanding perturbative

scale uncertainties and their rôle in the precise determination of NP contributions. It is

also noteworthy that an experimentally driven definition of a collider observable has paved

the way in making such studies possible. Even after decades of study using the classic QT

observable for the Drell–Yan process, this was unprecedented; experimental insight and

theoretical collaboration have provided a unique opportunity to pin down a long-standing

issue.

It could now be said that the focus of future theoretical work should be to match the

unprecedented experimental precision, which now resides around the ∼ 1% level or better,

of Drell–Yan φ∗ data. The state of the art from the theoretical side, depending on the
√
s

energy, remains at the 5-10% level. This does have implications for future work, which

might involve extending the formal accuracy of theoretical calculations to N3LL.

During the course of this thesis there has been a revolution in our understanding of

the Standard Model: the discovery, in 2012, of a new particle consistent with the Higgs

boson, proposed nearly fifty years earlier [92]. Presumably, with the estimated 3, 000 fb−1

of collision data that the LHC will have delivered by the end of its third run, we will

be endowed with a high number of Higgs events sufficient for precision phenomenology.

An important mechanism for Higgs production at the LHC is via gluon fusion, for which

the QCD transverse-momentum resummation is carried out in [93]. High-statistics data

samples of H → γγ would then permit a precise phenomenological study of soft-collinear

gluon radiation (employing a φ∗ definition applied to the photons) from a gluon-gluon-

initiated process. One would expect in this case to observe a broader spectrum, and this

would provide an ideal paradigm in which to test the predictions of a richer structure

inherent in such a resummation. Indeed such studies are already underway within ATLAS

[94].

Until this point I have not begun to mention a wealth on literature dedicated to effec-

tive theories in which the infrared divergences inherent in soft/collinear QCD amplitudes

are consistently treated in a reformulation of QCD theory, which provides an alternative

to traditional resummation techniques. One such theory, known as soft-collinear effective

theory (or ‘SCET’) has itself received significant attention (as applied to Drell–Yan QT

[95, 96], for example) although an in-depth discussion would be far beyond the scope of

this thesis.

The phenomenological study of NP effects motivates a new experimental measurement

of φ∗ using high-statistics Run I LHC data: we have witnessed a mild rapidity dependence

of the gNP parameter in our rudimentary NP model vis-á-vis DØ data. In particular, it

is desirable to have high-statistics experimental data, both in narrow |y| (absolute boson

rapidity) bins and in mass bins away from the Z resonance peak, with which to make

precise comparisons, in order to elucidate the functional dependence of NP physics. Part

2 of this thesis is concerned with an experimental measurement of φ∗ in Z → µµ events

that I performed at
√
s = 8TeV, using 20.1 fb−1 of ATLAS collision data.



Part 2

Experimental analysis of φ∗ in Drell–Yan

events at ATLAS
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CHAPTER 7

Introduction

The present part of this thesis details and discusses an analysis of the φ∗ observable I

have performed, as applied to Drell–Yan events at
√
s = 8 TeV, using the ATLAS detector.

It is an analysis that is currently in progress, and a fully corrected measurement of this

observable in Z → µµ events is presented herein. This analysis has formed the latter stage

of my PhD research topic, but forms Part 2 of this thesis for continuity with Part 1, which

discusses the relevant theory in detail.

We begin with an overview of the ATLAS experiment in Chapter 8, emphasizing the

detector systems that are relevant to the current analysis. (A discussion of the principal

detectors relevant to my luminosity studies is postponed until Part 3.) Chapter 9 then

discusses precisely the measurement definition and the strategy I follow, along with the

collision and simulated data samples used as input. A discussion of the various corrections

applied to simulated data samples then follows in Chapter 10. In Chapter 11 I document

the criteria used to select candidate muon objects and Drell–Yan signal events from data.

Chapter 12 then presents various studies which are aimed at estimating the background

contamination of data events selected in this manner. The final results of this analysis,

namely the normalized, detector-corrected and background-subtracted distributions for

the φ∗ observable, are presented along with their corresponding uncertainties in Chap-

ter 13, in comparison with theoretical predictions. I close this part with a discussion of

future prospects for this measurement.
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CHAPTER 8

The ATLAS experiment

8.1. Detector components

The ATLAS experiment, Fig. 8.1, derives its name from the highly descriptive1 acronym

A Toroidal LHC ApparatuS. Measuring 25 m in diameter and 44 m in length, and weigh-

ing 7 kilotons, its constituent detectors and systems can be roughly categorized into four

essential components: the inner detector, the calorimeters, the muon spectrometer and

the magnet systems. For the analysis presented in this thesis, the muon spectrometer and

other detectors and systems related to muon tracking, identification and reconstruction

are the most important and, as such, emphasis will be placed on these. A recent and

comprehensive survey of the ATLAS detector may be found in [97].

The inner detector, shown in Fig. 8.2, is surrounded by a solenoidal magnet produc-

ing a magnetic field of ∼ 2 T. Extending from a radius of several centimetres from the

beam line to 1.15 m, and covering a longitudinal distance of ∼ 7 m in total, the primary

purpose of the inner detector is to track charged particles that interact with material in

its constituent components: the pixel detector, the SCT (semiconductor tracker) and the

TRT (transition radiation tracker). The pixel detector comprises silicon (Si) pixel sensors

in three concentric layers and three discs on each end, and its proximity to the interaction

point (IP) affords precise tracking in this region. The minimum size of a pixel, expressed

1The magnet systems employed in the ATLAS detector significantly dictated the R&D of other constituent
parts of ATLAS.

Figure 8.1. A cutaway drawing of the ATLAS detector, revealing all its
detector systems [97].
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Figure 8.2. The ATLAS inner detector, often shortened to ‘ID’ [97].

as (r φ) × z, is 50µm × 400µm. The SCT further provides tracking beyond the radial

extent of the pixel detector. The SCT is comprised of silicon detectors arranged in a

configuration of four concentric double layers in the central (‘barrel’) region and nine discs

on each side. In the barrel region, each detector contains 780 6.4 cm-long readout strips

with an 80µm pitch. The barrel SCT is used to provide tracking in the transverse plane,

although a relative rotation between pairs of corresponding strips by 40 mrad in a stereo

configuration also provides longitudinal tracking capabilities. Finally, the outermost TRT

is composed of drift tubes known as ‘straws’, which are 4 mm in diameter. Each straw in

the barrel region contains a 114 cm-long, 30 µm-diameter gold-plated tungsten-rhenium

(W-Re) wire held at a potential of −1.5 kV and is filled with Xe (xenon), CO2 and O2

gases in the ratio 70:27:3, respectively. The passage of charged particles causes ionization

of the gaseous mixture, the ions of which are collected by the wires and manifest as pulses

of current which can be measured. In terms of pseudorapidity, the geometrical acceptances

of the components of the ID are: |η| < 2.5 for the pixel detector and the SCT, and |η| < 2

for the TRT.

The purpose of the calorimeters is to capture all the energy of a particle in order

to measure it. Components of the calorimeter system are categorized according to their

specialization in terms of electromagnetic (EM) or hadronic calorimetry. For present

purposes, we are most concerned with the EM part of the calorimetry system sharing a

common geometrical acceptance with the ID—approximately the region |η| < 2.5, which

is well-suited for precision physics. The EM calorimeter is made from lead (Pb) absorber

plates, corrugated in the fashion of an accordion, with liquid argon (LAr) as the sensing

element. It has a greater precision in its localization of particles than its hadronic cousin,

with an |η|-dependent granularity, ranging from 0.025 to 0.1 in both |η| and φ.
The muon spectrometer subjects particles to a local magnetic field of up to ∼ 4 T

depending on their location within the field produced by the superconducting toroids,

of which there are three sets, each arranged in an octant structure. The two smaller
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sets supply the magnetic field in the end-cap regions, while the largest set supplies the

barrel region. The purpose of the muon spectrometer is to measure the curvatures of the

tracks of muons in this field, and hence deduce their momenta. This part of the ATLAS

detector occupies the region radially outward from 4.25 m. The muon spectrometer itself

has triggering chambers (consisting of resistive plate chambers and thin gap chambers)

effective in the range |η| < 2.4. This is permitted since the time-of-flight of muons from

their typical interaction vertices out to these distances is comparable to the time scale of

bunch crossings (10s of ns), and not significantly greater. Muon data is also recorded on a

separate data stream, as compared with electrons and photons which are detected by the

EM calorimeter. The tracking of muons is provided largely by drift tubes known as the

MDT (monitored drift tubes). In addition, multi-wire proportional chambers known as the

CSC (cathode strip chambers) provide tracking at large pseudo-rapidity (1 < |η| < 2.7).

Various aspects of the candidate muon and electron selection criteria (to be presented

in Chap. 11), both in terms of kinematic selection and quality control cuts, will follow as

direct consequences of the nature of the components of the ATLAS detector described in

this section.

8.2. Muons and electrons

ATLAS defines several types of reconstructed muon candidates (or ‘muons’) according

to the detector system(s) in which they were identified. The three muons with which we

are concerned are known as ‘ID’ muons, which are reconstructed from tracks in the in-

ner detector, ‘MS’ muons, which are reconstructed from tracks in the muons spectrometer,

and ‘combined’ muons, which are reconstructed from tracks in both the inner detector and

the muon spectrometer. There are also ‘calo’ muons, which are identified using energy

depositions in the calorimeters, but these are of no real concern in this analysis—they are

typically only employed to recover efficiency losses in the |η| . 0.1 region, but this mea-

surement of the normalized differential cross-section will not be affected. We actually need

not consider stand-alone MS muons, since they extend muon acceptance from |η| = 2.5 up

to |η| = 2.7, which is outside the kinematic acceptance chosen for this analysis. Using φ∗

as a precision observable necessarily demands good azimuthal angular resolution, which

the ID is very effective at providing given its precision tracking capabilities. Since the

geometrical acceptance of the ID is curtailed for |η| > 2.5 and we demand ID tracking in-

formation as part of our muon reconstruction, we therefore restrict our kinematic selection

criteria accordingly.

Corresponding to the sub-detector in which a track may be reconstructed and identified

as a muon candidate, is an algorithm for performing the reconstruction. For ID and

MS muons, there are dedicated algorithms. The choice of algorithm used for combining

information in the inner detector and the muon spectrometer performs a full refit to

all track data, as opposed to a statistical combination, and is known as the third chain

algorithm. Reconstructed muon candidates are therefore known as third-chain muons.

This thesis presents a measurement of φ∗ in muonic Drell–Yan events. However, I have

used various data-driven techniques in order to validate simulated data, one in particular

which performs an e µ selection. I will therefore briefly describe here the measurement of
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electrons in ATLAS. There is presently only one algorithm for reconstructing the kine-

matics of an electron, which straightforwardly makes use of information regarding energy

depositions in the EM calorimeter and tracking information taken from the ID. In cer-

tain cases, more loosely defined electrons may use tracking information made available

directly by the EM calorimeter, although this will be of a diminished precision. It is the

properties of the manner in which the particle undergoes a showering of electromagnetic

bremsstrahlung, as it relinquishes its energy in the EM calorimeter, which enables one to

discern an electron from a photon.



CHAPTER 9

Measurement definition and strategy

9.1. Binning

The quantity we would like to determine is the normalized differential cross-section

1

σ

d3σ

dφ∗ dM dy
. (9.1)

To estimate this quantity, we measure a discrete distribution in the number of Drell–Yan

events that yield a value of φ∗, M (invariant mass of lepton pair) and y (boson rapidity)

within the specified ranges respectively: φ∗i to (φ∗i + ∆φ∗i ), Mi to (Mi + ∆Mi) and yi to

(yi+∆yi), with ∆φ∗i ∆Mi∆yi being the volume of the bin labelled i. Thus, the integrated

cross-section over this ‘ith’ bin is

σi =
Ni cand − τ Ni reco back

Ai L
. (9.2)

Here, Ni cand is the number of candidate events in data, τ Ni reco back is the estimated

number of background events in data, L =
∫
dtL is the integrated luminosity of the data

sample and Ai is the acceptance efficiency of this ith bin. The latter is determined using

a simulated model of the detector, as

Ai =
Ni reco

Ni gen
, (9.3)

where Ni gen is the number of events generated in bin i and Ni reco is the number of Drell–

Yan dimuon signal events reconstructed in bin i. The measurement further takes place

within a fiducial volume, defined by kinematic cuts on the final state: p
(1)
T > 20 GeV,

p
(2)
T > 20 GeV, |η(1)| < 2.4 and |η(2)| < 2.4, where the superscript in parentheses indexes

the lepton. The bins of M are 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and

116 GeV < M < 150 GeV. The binning in |y| will depend on the mass region under

consideration. The binning |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 is employed

for the low- and high-mass regions, while a finer binning of |y| < 0.4, 0.4 < |y| < 0.8,

0.8 < |y| < 1.2, 1.2 < |y| < 1.6, 1.6 < |y| < 2.0 and 2.0 < |y| < 2.4 is chosen for the

central mass region, exploiting the availability of a high-statistics data set.

In fact, it is actually rather the shape of the φ∗ distribution that provides the phe-

nomenological handle to the soft–collinear QCD we are most interested in. The overall

normalization 1/σ, in Eq. 9.1, ostensibly refers to the fiducial cross-section integrated

over all φ∗, M and y bins. This would seem to be a natural choice. It is experimentally

advantageous, however, to consider the one-dimensional φ∗ distribution (1/σ) dσ/dφ∗, in

individually-normalized bins ofM and y. In this way, each kinematic region inM and y is

experimentally independent and, e.g., the resonant (‘on-peak’) analysis remains immune

to systematic uncertainties and large backgrounds that would otherwise arise from the
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‘off-peak’ regions via a global normalization. For this reason, each of the (twelve) distri-

butions in φ∗—corresponding to the different coarse bins inM and y—will be individually

normalized.

Let us return now to the bin-by-bin detector correction factor. Since Ni reco may be

decomposed as

Ni reco = Ni gen +Ni faked −Nimissed +Nimig. in −Nimig. out , (9.4)

which may be verified by considering the sets of events

• generated in the ith bin,

• reconstructed in the ith bin from a lepton pair which does not correspond to the

two prompt leptons from Drell–Yan (faked),

• not reconstructed but generated in the ith bin (missed),

• reconstructed in the ith bin but generated in another bin (migrated in), and

• generated in the ith bin but reconstructed in another bin (migrated out),

we see that the definition of Ai in Eq. 9.3 not only accounts for the reconstruction effi-

ciency but also implicitly treats faked events and any bin-to-bin migration of events upon

reconstruction, owing to the limited resolution of the detector. If the bin purities are

sufficiently high, then bin-to-bin migration is significantly reduced in any case. The purity

(Pi) is defined, respectively along with stability (Si), using a simulated detector model,

for a given bin labelled i, as

Pi =
Ni reco & gen

Ni reco
and Si =

Ni reco & gen

Ni gen
, (9.5)

where Ni reco & gen is the number of events both generated and reconstructed in the same

bin i. The bin purities are indeed high, as shown in Fig. 9.2 for the on-peak analysis, and

Fig. 9.3 for the off-peak analysis.

The terminology of generated muon in the definition of purity remains ambiguous,

and several generation levels exist. Two notable definitions of a level relevant herein are

called Born and bare, corresponding to generator-level muons before and after the effects

of FSR (final-state radiation) respectively. In principle, it is the bare muon which is

most representative of the nature of an actual muon before the indelible effects of particle

detection have been imprinted on its kinematics. The Born muon hence differs from the

bare muon by a theory-dependent model of FSR. For this reason, it is crucial to keep

in mind that no additional physics content is introduced to the measurement by such a

correction, which is purely to facilitate the comparison with theoretical predictions that

do not inherent model FSR.

The φ∗ bin purities for all twelve kinematic regions of interest are shown in Figs. 9.2

and 9.3, where the definition of purity both in terms of Born and bare generator-level

muons is considered. As expected, the bin purity in terms of bare muons is significantly

higher than that for Born muons on account of the absence of any correction for FSR,

which would clearly otherwise result in an enhanced degree of bin-to-bin migration of

events due to the resulting changes to the momenta of the muons upon radiative emission.

Furthermore, Fig. 9.1 shows the extent to which mass bins become impure, owing to the
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Figure 9.1. The left plot probes the simulated mass resolution of the
detector, along with that of the combined FSR model and detector. The
reconstructed invariant mass is plotted for signal events in which: no event
vetoes are applied (black), vetoes are applied to impure events whose gen-
erator reference is bare level (red), and vetoes are applied to impure events
whose generator reference is Born level (blue). The right plot shows, in bins
of the reconstructed φ∗, the percentage of events reconstructed in the mass
range 46GeV < M < 66GeV, given they have a generated mass (bare or
Born) of > 75GeV.

migration of events due to FSR and particle reconstruction. In particular, the right pane

shows the percentage of events reconstructed in the mass range 46 GeV < M < 66 GeV,

given they were generated with a mass > 75 GeV, quantifying event migration into the low-

mass region. The two orders of magnitude between event yields of Born and bare muons

is not surprising, since for Born muons we must correct for FSR which is the principal

cause of this migration, while the migration is largely absent for bare muons. Given the

established bin purities in φ∗ andM , and the philosophical implications of making theory-

dependent corrections, the measurement presented in this thesis is corrected for detector

effects only—i.e. back to bare-level muons.

The cross-section and number of events summed over all bins are respectively given

as σ =
∑

i σi and N =
∑

iNi. Thus, the definition of my measurement to estimate

(1/σ) dσ/dφ∗ is

1

σ

(
dσ

dφ∗

)

i

≈ σi
σ (∆φ∗)i

= N Ni cand − τ Ni reco back

(∆φ∗)iAi
, (9.6)

where N remains a normalization constant (for the corresponding kinematic region) to be

determined.

The number of background events is typically estimated using simulated data, with

Ni reco back being the determined number of background events reconstructed in the ith

bin. τ corrects for the difference between the true luminosity of the data sample, L, and
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the effective luminosity of the simulated data sample:

τ =
σsim L

Ngen back
, (9.7)

where σsim is the simulated cross-section and Ngen back is the total number of generated

(simulated) background events.
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Figure 9.2. The purities of the φ∗ bins proposed for the on-peak measurement.



9.2. OBSERVABLE DEFINITION 127

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

|y| < 0.8
46 GeV < M < 66 GeV

bare Born

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

|y| < 0.8
116 GeV < M < 150 GeV

bare Born

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.8 < |y| < 1.6
46 GeV < M < 66 GeV

bare Born

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.8 < |y| < 1.6
116 GeV < M < 150 GeV

bare Born

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.6 < |y| < 2.4
46 GeV < M < 66 GeV

bare Born

*φ

-410 -310 -210 -110 1 10

B
in

 p
ur

ity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.6 < |y| < 2.4
116 GeV < M < 150 GeV

bare Born

Figure 9.3. The purities of the φ∗ bins proposed for the off-peak measurement.

9.2. Observable definition

As already mentioned, the φ∗ observable provides a measure of the azimuthal decor-

relation between two objects (see Part 1 for a detailed theoretical discussion). In this

analysis it is applied to the two leptons produced in Drell–Yan events in proton–proton

collisions at a centre-of-momentum energy of
√
s = 8TeV, and is measured using the AT-

LAS detector using ∼ 20 fb−1 of integrated luminosity. The formal definition of φ∗ used

in this analysis is [15]

φ∗η = tan

(
φacop
2

)

sin θ∗η , (9.8)
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with θ∗η given using

cos θ∗η = tanh

(
η− − η+

2

)

. (9.9)

The purpose and advantage of this definition of θ∗—as opposed to, for example, that

defined in the Collins–Soper frame—is that it does not rely on measurements of lepton

momenta, rendering θ∗η immune from lepton momenta mismeasurements due to limitations

imposed by detector resolutions and inefficiencies. The ability to precisely track muons

with the ATLAS detector makes a high-precision determination of φ∗ very feasible, partic-

ularly for the Z → µµ channel. My work on non-perturbative effects immediately suggests

phenomenological utility of a cross-section differential in |y|, and also in M .

In studying the quasi-back-to-back region of massive lepton pair production via the

Drell–Yan mechanism, one is in a position to probe the dynamics of gluon emission in the

soft–collinear régime, providing a test of perturbative calculations to adequately describe

these dynamics. Owing to the presence of large logarithms which appear in calculations

truncated at finite order in perturbation theory in the kinematical region of low φ∗, the-

oretical predictions must generally make use of resummation techniques, for example in

[16, 17, 18, 73, 86, 88]. For a detailed account of these techniques, the reader is referred

to Part 1 of this thesis.

9.3. Monte Carlo input, collision data and luminosity

In this analysis, extensive use is made of simulated data generated using Monte Carlo

methods. The simulated data-sets (or ‘Monte Carlo samples’) are generated using a va-

riety of computer tools—namely POWHEG [98, 99, 100, 101], PYTHIA 8 [102, 103],

MC@NLO [104], JIMMY [105], SHERPA [106] and HERWIG [107]—in order to simu-

late the physical processes, before being further processed in a GEANT 4-based simulation

[108, 109] in order to model the effects of the ATLAS detector. The principal purposes

of these Monte Carlo samples are to model the contamination of the ‘signal’ process with

other ‘background’ processes, and also to understand the detector and its potential ef-

fects on the measured observable distribution. Such modelling of signal and background

processes is invaluable, as it allows us to better understand and discern differences in

their experimental signatures, and to optimize discrimination between them where such

signatures may potentially be very similar. With the exception of HERWIG-generated

processes, which uses CTEQ6L1 PDFs [77], all physics simulations make use of the newer

CT10 PDF sets [110].

In addition to containing simulated data after the effects of the ATLAS detector have

been modelled (the ‘detector-level’ simulation), the Monte Carlo samples also retain the

corresponding simulation of the underlying physical processes only (the ‘generator-’ or

‘truth-level’ simulation). This is how the Monte Carlo samples are used to correct the

measured data for the effects of the detector, such that as-close-as-possible a comparison

may be made with theoretical predictions.

The Monte Carlo samples used in this analysis for the various signal and background

contributions are listed in Table 9.1. The total numbers of events in each sample, along

with the corresponding cross-sections of these samples, are also shown. The 2012 data
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Figure 9.4. The total integrated luminosity delivered by the LHC,
recorded by ATLAS and good for physics during the year 2012 [112].

used in this analysis are spread over 10 ‘periods’. Within these periods, only those runs

during which all the relevant detectors within ATLAS were fully operational and perform-

ing properly, corresponding to an integrated luminosity
∫
L dt = (20.3 ± 0.6) fb−1 [111],

are included. Figure 9.4 shows the relevant integrated luminosities throughout the year.

The luminosity for 2012 data is determined using the same method outlined in the 2011

luminosity measurement paper [113], which is described in Part 3 of this thesis.
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Nomenclature Description
Number of events
(before selection)

Theoretical
cross-section [fb]

PowhegPythia8 AU2CT10 Zmumu Z → µµ (M > 60 GeV) 21,108,857 6.28 · 105
PowhegPythia8 AU2CT10 DYmumu 20M60 Z → µµ (20 GeV < M < 60 GeV) 4,998,191 7.89 · 105

PowhegPythia8 AU2CT10 Ztautau Z → ττ 4,999,692 1.15 · 106
McAtNloJimmy CT10 ttbar LeptonFilter tt̄ 14,993,322 1.29 · 105

Sherpa CT10 Wmunu W → µν 39,996,634 1.22 · 107
Sherpa CT10 Wtaunu W → τν 6,998,385 1.22 · 107

Herwig AUET2CTEQ6L1 WW WW 2,494,694 1.24 · 104
Herwig AUET2CTEQ6L1 ZZ ZZ 249,999 9.93 · 102
Herwig AUET2CTEQ6L1 WZ WZ 999,797 3.67 · 103



CHAPTER 10

Monte Carlo corrections

10.1. Pileup re-weighting

The average number of interactions per bunch crossing—aka the average pileup—

is defined over a short interval of collision data-taking (typically 60 secs) known as a

lumiblock, and is labelled 〈µ〉. The pileup distributions in collision and simulated data differ

somewhat and may be corrected for by re-weighting each simulated event such that the

distributions before event cuts agree by construction. This is known as pileup re-weighting.

Pileup re-weighting has been applied to all simulated data in this analysis, and the final

comparison between simulated and collision data is shown in Fig. 10.1. There remain some

very severe discrepancies outside the bulk of events, although discrepancies of any kind

are taken into account in the study of systematic uncertainties and are demonstrated to

be inconsequential with respect to the final measurement.
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Figure 10.1. A comparison of the distributions of the average number of
interactions per bunch crossing in simulated and collision data
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10.2. Efficiencies

Muons are not reconstructed with 100% efficiency by the ATLAS detector. Similarly,

the triggering, e.g. of events containing muons, is also not 100% efficient. Instead of cor-

recting data for such inefficiencies, the simulated (Monte Carlo) data are rather corrected

such that the simulated efficiencies are representative of real data. Small corrections to

event weights (known as scale factors) are therefore applied to Monte Carlo events such

that various efficiencies are well-modelled. It is important to note that Monte Carlo sam-

ples are already generated with such simulated inefficiencies, and the purpose of these

corrections is fine-tuning a posteriori. The precise corrections are typically determined

using so-called tag and probe methods. In this analysis, corrections are applied to improve

simulated reconstruction and trigger efficiencies for muons.

The tag and probe method is a data-driven technique by which one determines the

efficiency of an algorithm or selection criterion (e.g. object triggering and reconstruction,

object isolation, etc.) by means of exploiting a ‘standard candle’1 process. This process

should result in two objects being correlated, in the sense of being directly entangled via

the process dynamics, and a kinematic selection on the two objects can be used to ensure

this—e.g. as a suitably restrictive mass window cut might be applied to a pair of particles

in order to ensure they are the decay products of a common unstable particle. One of the

objects will have been known a priori, and is identified (or ‘tagged’) as such. The other

object is then ‘probed’, using the selection for the standard candle process, to determine

its correlation with the tagged object. Once this correlation has been established and the

probe is thus identified, one can compute the efficiency of the algorithm (e.g. to identify

a high-pT track as a muon) by observing if this identification had been made in reality.

To flesh out this description, its instructive to follow with the example of muon iden-

tification efficiency. One begins, for instance, by confidently tagging a high-pT isolated

muon. One then identifies tracks compatible with a second high-pT muon, and determines

the invariant mass of the two-particle system formed by this putative muon and the for-

mer tagged muon. If this invariant mass is sufficiently close to MZ, one can reasonably

conclude the high-pT track under consideration is indeed that of a muon, resulting from

the standard candle process Z → µ+µ−. One might also ensure the curvature of the

probed high-pT track is also compatible with a muon of opposite charge to the tagged

muon. In reality, the probed track either will or will not have been reconstructed as a

muon candidate, and so for many tag and probe ‘experiments’ a statistical efficiency can

be ascertained. As mentioned, the modelling of such efficiencies is already present, to an

extent, in simulated data. The tag and probe method is applied to both data and Monte

Carlo, and the relevant factors by which the weights of Monte Carlo events must be scaled

can thus be determined.

1An adjective I have appropriated from astronomy.
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10.3. Muon momenta corrections

Muon momenta are of course not measured in data without some degree of uncertainty.

The detector simulation itself attempts to model this uncertainty to an extent, although

this alone is insufficient for our needs. The simulated muon momenta are therefore ap-

propriately smeared a posteriori to better model this imprecision. In order to determine

the amount by which muon momenta should be smeared, the Z and Υ resonance peaks in

the invariant mass distribution of the lepton pair for Drell–Yan events are used, while the

J/Ψ resonance provides a low-mass cross-check. The level of random momenta smearing

is optimized in order to maximize the agreement between data and simulation in this

distribution. Muon momenta in simulated data are accordingly smeared in this analysis,

using the results of dedicated studies.

10.4. Z line-shape re-weighting

The comparison of two distributions is particularly troublesome if the distributions

contain strong peaks, since a misalignment in the position of the peaks will dominate the

discrepancies observed and mask any finer details of discrepancy that one might try to

deduce. This is particularly true of the invariant mass distribution of lepton pairs in Drell–

Yan events, should the Z mass be insufficiently modelled when comparing simulation with

data. In order to mitigate such a gross discrepancy, events generated using the POWHEG

generator have been re-weighted, since an insufficiency in the modelling of the Z propagator

and electroweak coupling is well-identified and understood.
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CHAPTER 11

Object and event selection

11.1. Muon selection

The φ∗ analysis described in this thesis employs various criteria to identify and select

candidate muon signatures (‘muons’) in the detector to be treated as genuine physical

objects. The algorithm used for identifying muons uses the following components of the

ATLAS detector:

• The muon spectrometer (MS)

• The inner detector (ID)

• The electromagnetic calorimeter

Muon momenta are determined by performing a full fit to all tracking information made

available by these components. The muons must first pass selection criteria which ensure

a good-quality track, i.e. the reconstruction of an actual trajectory, is correspondingly

recorded in the inner detector. Before reviewing these criteria, I shall expound some

terminology. Given the properties of a track in the ID (e.g. direction) one expects a priori

a certain number of hits in each of the constituent parts of the ID, based on the number of

sensory layers the particle would necessarily traverse. The absence of a hit when one would

otherwise be expected is termed a ‘hole’. A muon in the barrel region would be expected

to leave three hits in the pixel detector along its trajectory, for example, owing to the three

concentric sensory layers of which the pixel detector is comprised. A sensor along a track

which is known not to be operational is termed ‘dead’, and a certain clemency is granted

to a track which is devoid (to varying degrees depending on the actual detector part) of

the expected number of hits, should the culpability lie with a dead sensor. In the case of

the TRT, the term ‘outlier’ refers to a hit whose fit to the track yields a χ2 above a given

threshold, and which is therefore excluded in the determination of track parameters. The

following requirements are then made (where nsomething indicates ‘number of something’):

• Require npixel hits + ndead pixel sensors > 0

• Require nSCT hits + ndead SCT sensors > 4

• Require npixel holes + nSCT holes < 3

• Defining n = nTRT hits + nTRT outliers, if 0.1 < |η| < 1.9 then require n > 5 and

nTRT outliers < 0.9n

The muon candidate is then required to satisfy the criterion of being combined, having

good-quality tracks established in both the ID and the MS, with a momentum imbalance

(MI) significance MI/σMI < 4. A large discrepancy between the track momenta of a

candidate muon in the ID and the MS (i.e. an ‘imbalance’, of which MI is a quantitative

measure) is indicative of a muon produced during the in-flight decay of a pion or kaon,
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where the ID track is actually that of the heavier meson. Requirements on the ID track fit

quality and the momentum imbalance significance therefore strongly favour the acceptance

of direct muons, whilst simultaneously rejecting the partially irreducible backgrounds due

to in-flight decays of mesons.

Finally the muon candidate is required to satisfy certain kinematical conditions and

isolation requirements, namely:

• |η| < 2.4

• I < 0.1

• pT > 20GeV

• |z0 sin θ| < 0.5mm

• |d0/σd0 | < 3

Here, the isolation, I, is defined to be the scalar sum over the transverse momenta of tracks

within a ‘cone’ of radius ∆R =
√

∆η2 +∆φ2 = 0.2, divided by the transverse momentum

(magnitude) of the muon itself:

I =

∑

i pTi
pT

, (11.1)

where the sum runs over all objects (indexed i) within the cone.

In a single bunch-crossing, there is an average of 〈µ〉 proton–proton (p p) interactions,

each of which may result in detector tracks corresponding to the detected particulate

products of the reaction. Algorithmic methods are then used to deduce the approximate

locations, known as vertices, of each p p interaction based on this track information. The

vertex corresponding to the largest scalar sum of associated track transverse momenta is

labelled the primary vertex. Respectively, z0 and d0 are the longitudinal and transverse

displacements of the reconstructed track of the muon under consideration with respect

to the primary vertex, at the point of closest approach to the z axis, and θ is the angle

between this track and the z axis at the same point. Such cuts reject, for example, cosmic

ray muons and muons produced in other p p collisions within the same bunch crossing. If

all the aforementioned conditions are met, then the muon candidate is considered to be a

‘good’ muon.

11.2. Electron selection

A putative electron object, whose identity is to be confirmed according to a standard

clustering algorithm, must be found within the electromagnetic calorimeter. This may

additionally be accompanied by a corresponding track in the ID. In the case of electron

selection, we consider a quantity called the transverse energy defined as

ET =

{

E cosh ηtrack if npixel hits + nSCT hits ≥ 4 , or

E cosh ηcalo otherwise.
(11.2)

Again, npixel hits and SCT hits are the numbers of hits in the pixel detector and SCT re-

spectively. This definition ensures that tracking information from these components of the

ID is used if and only if the track quality exceeds a certain threshold defined in terms of

these numbers of hits, in order to provide a measure of the pseudorapidity as ηtrack. In the

absence of a track quality established according to this criterion, calorimetry information
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is used to establish the pseudorapidity instead, i.e. as ηcalo. The electron energy itself, E,

is of course taken from clusters in the electromagnetic calorimeter.

In order to select electrons, for use in the data-driven t t̄, WW and Z → ττ event

selections, I define a ‘good’ electron to be one for which

• |η| < 1.37 or 1.52 < |η| < 2.47

• ET > 20 GeV, where ET = E/ cosh η is its transverse energy

• |z0 sin θ| < 0.5 mm

• |d0/σd0 | < 3

• I < 0.1

where η here is obtained from ID tracking information, and I is defined in precisely the

same way as for the corresponding criterion in the muon selection.

11.3. Event selection

For an event to be considered a genuine Drell-Yan candidate event, it must also fulfil

various selection criteria:

• The number of tracks, ntracks, associated with the primary vertex must be > 2

• The EF mu18 tight mu8 EFFS trigger must have fired (Z → µµ selection)

– This dimuon trigger requires at least two muons with transverse momenta

> 8 GeV and > 18 GeV. This trigger is unprescaled ; i.e. all triggered events

are retained.

• The EF mu18 tight e7 medium1 trigger must have fired (e µ selection)

– This dilepton trigger requires at least one electron and one muon with trans-

verse momenta > 8 GeV and > 18 GeV respectively. This trigger is also

unprescaled.

• The event must contain exactly two ‘good’ muons (events with more are vetoed)

– The e µ selection requires exactly one ‘good’ electron and one ‘good’ muon

(events with more of either are vetoed)

• The two ‘good’ leptons must be oppositely charged

• The two ‘good’ leptons together must have an invariant mass M that lies within

a prescribed range, depending on the bin under consideration:

– 46 GeV < M < 66 GeV (‘low mass’) or

– 66 GeV < M < 116 GeV (‘on peak’) or

– 116 GeV < M < 150 GeV (‘high mass’)

Control plots and the multi-jet background fits include events with 20 GeV< M <600 GeV,

unless otherwise specified.
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CHAPTER 12

Backgrounds

In this chapter I analyse and discuss the backgrounds which contaminate the Drell–

Yan signal selection. In the majority of cases, such backgrounds are modelled using Monte

Carlo methods, and appropriate data-driven methods have been used to ensure these

models produce reliable predictions, which are explained in Secs. 12.1 and 12.2. For

the estimation of the contamination due to events which predominantly contain jets (the

‘multi-jet’ events) I make exclusive use of data-driven methods, which are presented in

Sec. 12.3. A compendium of the relative background fractions expected for the various φ∗

distributions is presented in Sec. 12.4, after which I conclude this chapter by presenting a

discussion of control distributions in which all such backgrounds are explicitly considered,

in Sec. 12.5.

12.1. Electroweak and top backgrounds

Particularly in the low and high mass bins of the lepton pair, common electroweak

backgrounds include t t̄, WW and Z → ττ events, which pass the selection criteria for the

signal Drell–Yan events. The principal reason for this contamination is the presence of two

W bosons in each of these three processes which decay leptonically, yielding two muons

which mimic the signature of genuine (muonic) Drell–Yan. Examples of such processes

are shown in Fig. 12.1, below.

In addition to the t t̄ production mechanism shown, there also exist two other tree-

level processes: that induced by quark annihilation (q q̄ → g → t t̄) which is relatively

suppressed in p p collisions, and the gluon-induced ‘t-channel’ process without the triple-

gluon coupling (i.e. two gluons coupling to the top quark current). Furthermore, WW

production may also occur via sequential emission of two oppositely charged bosons during

the scattering of quarks, again in a t-channel process. Other possibilities for these processes

become available at higher orders. In all cases, since the muons are produced in W decays,

there is missing transverse energy (Emiss
T ) associated with the event, due to the absence

of any interaction between neutrinos and the detector. Unfortunately, the requirement

of Emiss
T ≈ 0 is not an efficient discriminator between these background events and the

signal Drell–Yan events, because it is often the case that missing transverse energy will

be recorded in the case of genuine Drell–Yan, should a physics object not be properly

reconstructed within the geometrical acceptance of ATLAS.

A feature of these processes which may be exploited is that such events may be effi-

ciently selected by requiring the presence of two isolated and oppositely charged high-pT

leptons in the final state, where the leptons are of different flavour; i.e. e+ µ− or µ+ e−.
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Figure 12.1. Examples of the most common types of electroweak pro-
cesses that form a background to the Drell–Yan signal selection. Top-left,
top-right and bottom, respectively, show examples of the Z → ττ , t t̄ and
WW background processes that are encountered in this analysis. In addi-
tion to the processes shown here, other tree-level mechanisms for t t̄ and
WW processes also exist, as explained in the text.

Lepton universality in weak decays implies the probability for these two final states to oc-

cur is precisely twice that for the µ+ µ− final state, which may contaminate the Drell–Yan

signal. Thus, a reasonable data-driven estimate of the t t̄, WW and Z → ττ background

event numbers may be obtained by simply replacing the lepton flavour requirements in the

signal event selection, and dividing by two (while accounting for the difference between

electron and muon acceptance efficiencies).

An e± µ∓ selection has indeed been performed, and the level of agreement with simu-

lated Monte Carlo events is shown, for various control distributions, in Figs. 12.2—12.9.

The purpose of this data-driven estimate is to validate the simulated t t̄ and electroweak

backgrounds, particularly in the low and high mass bins, where these backgrounds can

represent as many as half of the collision events in high-φ∗ bins. It should be noted that in

all cases the kinematic selection is 20 GeV < M < 600 GeV and |y| < 2.4, unless otherwise

specified on the plot. At this point, corrections to the modelled electron efficiencies have

not been applied, although corrections to the modelled muon efficiencies are applied, as
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described in Chap. 10. Furthermore, all control distributions for this e± µ∓ selection in-

clude the multi-jet backgrounds, as estimated according to the principal method explained

in Sec. 12.3.1. The normalization of the simulated events in Figs. 12.2—12.9 is intimately

linked to that of data, on account of the fit used in this multi-jet background estimate.

Figure 12.2 shows the Emiss
T distribution in different mass bins, for the e µ event selec-

tion. This is a particularly important distribution in which to validate the Monte Carlo

estimates for t t̄, WW and Z → ττ , since all involve leptonic weak decays in this analy-

sis, nominally resulting in two undetected neutrinos. The agreement between simulated

and collision data is particularly good for Emiss
T > 40 GeV. The agreement is also fair

in the invariant mass distributions for M > 66 GeV, shown in Fig. 12.3. Troublesome

distributions, include the invariant mass distribution of the boson in the low-mass region

(Fig. 12.3, left) along with the transverse momentum distributions of both the boson itself

(Fig. 12.4) and the leptons (Fig. 12.5, bottom). It appears as though the Monte Carlo

predictions consistently overestimate the number of Z → ττ events.
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Figure 12.2. Missing transverse energy distributions of e+µ−/µ+e− events for the mass bins 46 GeV < M < 66 GeV,
66 GeV < M < 116 GeV and 116 GeV < M < 150 GeV, from left to right respectively.
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Figure 12.3. Invariant mass distributions of lepton pairs in e+µ−/µ+e− events for the mass bins 46 GeV < M < 66 GeV,
66 GeV < M < 116 GeV and 116 GeV < M < 600 GeV, from left to right respectively.
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Figure 12.4. Transverse momentum and rapidity distributions of the lep-
ton pairs in e+µ−/µ+e− events.
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Figure 12.5. Pseudorapidity (top) and transverse momentum (bottom)
distributions of the highest-pT (left) and next-highest-pT (right) leptons in
events passing the e µ selection criteria.
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Figure 12.6. The φ∗ distributions of events passing the e+ µ−/e− µ+ final-state selection criteria. Left to right, respectively,
show the |y| < 0.4, 0.4 < |y| < 0.8 and 0.8 < |y| < 1.2 rapidity bins in the 66GeV < M < 116GeV region.
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Figure 12.7. The φ∗ distributions of events passing the e+ µ−/e− µ+ final-state selection criteria. Left to right, respectively,
show the 1.2 < |y| < 1.6, 1.6 < |y| < 2.0 and 2.0 < |y| < 2.4 rapidity bins in the 66GeV < M < 116GeV region.
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Figure 12.8. The φ∗ distributions of events passing the e+ µ−/e− µ+ final-state selection criteria. Left to right, respectively,
show the |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 rapidity bins in the 46GeV < M < 66GeV region.
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Figure 12.9. The φ∗ distributions of events passing the e+ µ−/e− µ+ final-state selection criteria. Left to right, respectively,
show the |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 rapidity bins in the 116GeV < M < 150GeV region.
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12.2. W+jets backgrounds

In addition to the multi-jet background (to be discussed in Sec. 12.3) and the three

main electroweak backgrounds discussed in Sec. 12.1, there are also potential backgrounds

from events containing W bosons and other hadronic activity (‘W+jets’) which are not

classifiable as strictly multi-jet or electroweak. Such events are expected to contain one

high-pT muon which arises directly in the leptonic decay of the W boson, along with other

possible muon candidates. These other muons, however, are expected to originate ‘within’

jets (perhaps via the decay of a charged ‘pion’, π±, buried within the hadronic jet).

A simple discriminator which should distinguish such events from genuine Drell–Yan

signal and the aforementioned electroweak backgrounds is the isolation of the muons.

One expects, in principle, one isolated muon and other possible muons which are not

isolated—i.e. they are accompanied by substantial hadronic activity. Since the signal

selection criteria stipulates exactly two muons, we consider W+jets events with precisely

one isolated and one ‘anti-isolated’ muon. Specifically, the relatively small W+jets back-

grounds, as estimated using Monte Carlo methods, are therefore validated by considering

data–MC comparisons for distributions of events which pass the signal event selection,

but with one of the muons failing the isolation cut—i.e. simultaneously having I1(2) < 0.1

and I2(1) > 0.1, where 1, 2 labels the muon candidate.

Figures 12.10 to 12.17 show the main control distributions of events passing these

selection criteria, where the estimation of the multi-jet background component is obtained

using the data-driven method to be explained in Sec. 12.3. Once again, since these W+jets

events involve leptonic decays of W bosons, the distributions of events according to the

missing transverse energy Emiss
T are of immediate interest, and are shown in Fig. 12.10. The

agreement is generally rather good, as is the case for most other distributions, although

there is a noticeable discrepancy associated with events around the Z peak in the signal

Z → µµ process, as is evident from the invariant mass distribution in the peak region

(Fig. 12.11). This discrepancy is also observed in the two lepton transverse momentum

distributions (Fig. 12.13, bottom) around MZ/2 ≈ 46 GeV. Since these discrepancies are

associated with the signal process, they are taken into account with the inclusion of a

general systematic uncertainty associated with the correction factor Ai; the modelling of

the signal process is also used in the determination of Ai, and a re-weighting of events

to account for such physics modelling insufficiencies is employed, as explained in detail in

Sec. 13.2.

There are also discrepancies at the very low end (∼ 20 GeV) of the lepton transverse

momentum distributions (Fig. 12.13, bottom) along with the QT < 10 GeV bins of the

boson transverse momentum distribution (Fig. 12.12). These discrepancies are due to a

very general difficulty associated with the modelling of low-QT Drell–Yan pairs.

The W+jets selection we consider here does indeed enhance the acceptance of W+jets

events. This can be seen in absolute terms by comparing the event yields for W+jets in

this selection with those of the Drell–Yan signal selection, for instance by studying the

relatively flat invariant mass distributions for 46 GeV < M < 116 GeV in Fig. 12.11 and

Fig. 12.28 (of Sec. 12.5). Even with the enhanced W+jets acceptance however, the absolute
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numbers of these events remain small in most of our control distributions. The W+jets

selection we consider here in fact simultaneously enhances the acceptance of multi-jet

background events, owing to the allowance of a single muon which is strictly not isolated.

An overall conclusion we may deduce is that, away from those regions associated with the

Z resonance and low-QT objects, both the W+jets and multi-jet backgrounds appear to

be well-modelled in our control distributions. Moreover, this study then demonstrates we

can be confident regarding the predicted very low W+jets background event yields across

all φ∗ bins.
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Figure 12.10. Missing transverse energy distributions of events selected in which one muon is isolated and the other is anti -
isolated, for the mass bins 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and 116 GeV < M < 150 GeV, from left to right
respectively.
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Figure 12.11. Invariant mass distributions of lepton pairs for events selected in which one muon is isolated and the other is
anti -isolated, for the mass bins 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and 116 GeV < M < 600 GeV, from left to
right respectively.
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Figure 12.12. Transverse momentum and rapidity distributions of the
lepton pairs for events selected in which one muon is isolated and the other
is anti -isolated.
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Figure 12.13. Pseudorapidity (top) and transverse momentum (bottom)
distributions of the highest-pT (left) and next-highest-pT (right) leptons,
for events selected in which one muon is isolated and the other is anti -
isolated.
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Figure 12.14. The φ∗ distributions of events selected in which one muon is isolated and the other is anti -isolated. Left to
right, respectively, show the |y| < 0.4, 0.4 < |y| < 0.8 and 0.8 < |y| < 1.2 rapidity bins in the 66GeV < M < 116GeV region.
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Figure 12.15. The φ∗ distributions of events selected in which one muon is isolated and the other is anti -isolated. Left to
right, respectively, show the 1.2 < |y| < 1.6, 1.6 < |y| < 2.0 and 2.0 < |y| < 2.4 rapidity bins in the 66GeV < M < 116GeV
region.
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Figure 12.16. The φ∗ distributions of events selected in which one muon is isolated and the other is anti -isolated. Left to
right, respectively, show the |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 rapidity bins in the 46GeV < M < 66GeV region.
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Figure 12.17. The φ∗ distributions of events selected in which one muon is isolated and the other is anti -isolated. Left to
right, respectively, show the |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 rapidity bins in the 116GeV < M < 150GeV region.
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12.3. Multi-jet background

In principle, multi-jet events are those events which produce multiple instances of col-

limated hadronic activity, owing to the showering and hadronization of partons produced

in hard scatterings. The decay of short-lived hadrons via the weak interaction can give

rise to the production of secondary leptons in this picture. Particularly troublesome is

the case in which two secondary muons are produced via such decays, which might mimic

the signature of a genuine Drell–Yan event. The event selection attempts to safeguard

against this largely by applying isolation cuts to the muons, which severely restrict the

amount of hadronic activity by which these muons may be accompanied, in an attempt

to ensure they are themselves produced as a direct result of the hard scattering. In prac-

tice, the multi-jet events are defined by exclusion, according to this isolation parameter:

multi-jet events are those events in which muons are typically not isolated, but which are

also not the diboson, t t̄, W+jets, etc. events already explicitly considered using Monte

Carlo methods. The fact that a small fraction of multi-jet events will nonetheless pass the

isolation criterion is what gives rise to a background, the data-driven estimation of which

is presented in this section.

12.3.1. Principal multi-jet background estimate. The multi-jet background is

estimated using a data-driven method, in which the isolation requirement on the muons

in the event is inverted; i.e. the only change in the event selection becomes I > 0.1 for

both muons. The reason for this is that such an ‘anti-isolation’ cut strongly suppresses

genuine Drell–Yan signal processes, whose muons are produced in absence of accompanying

hadronic activity in the geometrical vicinity. Contrarily, muons as a result of mesonic

decays, for instance b b̄ and c c̄ would, by expectation, be accompanied by substantial

hadronic activity within the detector. Whilst strongly suppressing signal, the anti-isolation

cut therefore enhances the multi-jet background contribution. The anti-isolation cut is

applied directly to events in collision data. Further subtracting Drell–Yan signal and

non-multi-jet backgrounds according to the same selection (modelled using Monte Carlo

simulated data) from this result then yields an estimation of the shape of the multi-jet

background in the distribution of a given observable.

The overall scale of the multi-jet background contribution is then estimated by per-

forming a χ2 fit in the invariant mass distribution of collision events in the signal region.

The χ2 function is defined as

χ2 =
∑

i

(

N cand
i −ANEW

i −BNQCD
i

σi

)2

, (12.1)

where N cand
i is the number of candidate events in data in the ith bin, NEW

i is the estimated

number of ‘physics’ (signal and non-multi-jet background) events (established using Monte

Carlo) in the ith bin, BNQCD
i is the estimated number of multi-jet background events

in the ith bin, determined from the aforementioned procedure—with A and B left as

constants to be fitted—and σi is the appropriate statistical error for the ith bin. The

values chosen for A and B are those which minimize χ2. Since χ2 is quadratic and bilinear

in A and B, this minimization is trivially performed to yield Amin and Bmin. This overall
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is performed over the range 20 GeV < M < Mmax. The plot on the right
shows the binning of the invariant mass distribution used to perform the
fit.

scale factor is then applied to the multi-jet background event shape determined for the

distribution of a given observable, in order to provide the estimate of the number of multi-

jet events. The overall scale factor for the signal and non-multi-jet backgrounds (A in

Eq. 12.1) is allowed to float, since such freedom would be permitted by the theoretical

cross-section uncertainty in any case, provided a value of A ≈ 1 is preferred by the fit.

This is indeed the case, and the fit results show Amin = 1.00044 ± 0.00045 (stat) and

Bmin = 0.068±0.026 (stat). In order to mitigate the effects of small discrepancies between

the precise shape and position of the Z peak in data and Monte Carlo, which would

otherwise have a devastatingly adverse effect on the quality of the fit, the invariant mass

distribution used not only has wider 5 GeV bins, but also a single 40 GeV bin which spans

the entire Z resonance.

The determination of Amin and Bmin is performed over the bins of the invariant mass

distribution, from 20 GeV < M < 600 GeV, and the fit results in a reduced χ2 = 181/109.

Other ranges have been considered, specifically 20 GeV < M < Mmax where Mmax varies

between 40 GeV and 600 GeV. Figure 12.18 shows the quality of these fits and the scale

factors determined. The purpose of including lower values of M in this fit is because it

is expected that more multi-jet background events will contribute at this low end of the

spectrum, owing to the soft spectrum in pT of muons from b and c decay. It should be

noted that, since the scale of the non-multi-jet event weights A is also allowed to float, the

correction factor for the effective luminosity is effectively replaced according to τ → Aτ ,

thus rendering this formerly absolute normalization now relative to data.

The various φ∗ distributions of collision and simulated events selected using anti-

isolation cuts on both muons are shown in Figs. 12.19 and 12.20. The discrepancy between
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Table 12.1. Results of the multi-jet background fits

Selection Amin Bmin χ2/DOF

Signal 1.00044± 0.00045 (stat) 0.068± 0.026 (stat) 181/109
W+jets 1.0368± 0.0039 (stat) 0.3203± 0.0057 (stat) 237/93

e µ (t t̄, WW & Z → ττ) 0.9852± 0.0075 (stat) 0.0449± 0.0022 (stat) 436/115

data and simulation is then ascribed to the multi-jet background not included in Monte

Carlo simulations. Directly adopting this discrepancy as our data-driven multi-jet estimate

in each of the distributions for this event selection, these data–MC comparisons therefore

agree by construction. The fundamental assumption of this prescription is that the multi-

jet distributions are the same in both the anti-isolated and signal regions. The reason

for employing a data-driven method instead of Monte Carlo is simply that one cannot

guarantee a dedicated simulation would faithfully model the multi-jet processes.

Since an event-selection in which one muon is isolated and the other is anti -isolated is

also statistically independent of the events in which the multi-jet shape is determined, one

can also use this method to estimate the multi-jet background for such a selection, where

the overall normalization is again fitted in the corresponding invariant mass distribution.

This has indeed been done, and is used in the validation of W+jets events in Sec. 12.2.

Moreover, a similar anti-isolation requirement has additionally been employed for the

electron when estimating the multi-jet backgrounds in e µ events. These fits for these

estimates are again performed over the range 20 GeV < M < 600 GeV, and all fit results

for the scales of the multi-jet backgrounds (Bmin) and the non-multi-jet processes (Amin)

are collected in Table 12.1. The interpretation of Bmin is essentially the number of multi-

jet events which pass a given selection, expressed as a fraction of the number of events

which pass the same selection but with an anti-isolation requirement on both leptons.

Since the W+jets selection requires one isolated lepton, where both the signal and e µ

selections require two, Bsignal
min ≈ Be µ

min ≈
(
BW+jets

min

)2
.

The fit results we have considered for the signal region and the selections designed

to enhance the acceptance of W+jets, t t̄ and electroweak events are inconsistent with

one another if we consider statistical uncertainties alone. The discrepancies between the

various fitted values are accounted for by the inclusion of appropriate systematic uncer-

tainties. For the multi-jet background, a systematic uncertainty is included on the final

result, which is presently taken to be 100% of the event yields determined in the signal

region. The discrepancies between values of Amin determined for the different selections is

well within the systematic uncertainties associated with the theoretically computed cross-

sections for the non-multi-jet processes. These cross-sections are known approximately

to within 5% for the Drell–Yan and electroweak processes, and within 7% for the t t̄ and

W+jets processes.

The overall determinations of the multi-jet backgrounds for the φ∗ distributions, ex-

pressed as a fraction of the total event yields along with all other backgrounds considered,

are presented in Sec. 12.4. It will be clear from Figs. 12.24 and 12.25 that the multi-jet

background contribution determined using this method is small. Consequently, in light of
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other systematic uncertainties that will be considered in Sec. 13.2, a precise determination

of that due to the multi-jet background estimation will be far from paramount. The fol-

lowing subsection explores an alternative data-driven technique to determine the multi-jet

background contribution in the hope of corroborating this principal estimate.
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Figure 12.19. Plots showing the φ∗ distributions of events in which
both muons are anti -isolated. Upon subtraction of the Drell–Yan signal
and non-multi-jet background events which contaminate in this selection,
and following appropriate scaling, these distributions become the multi-
jet background estimates. The plots here correspond to off-peak regions:
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right).
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Figure 12.20. Plots showing the φ∗ distributions of events in which
both muons are anti -isolated. Upon subtraction of the Drell–Yan signal
and non-multi-jet background events which contaminate in this selection,
and following appropriate scaling, these distributions become the multi-jet
background estimates. The plots here correspond to the on-peak region:
66 GeV < M < 116 GeV.
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12.3.2. Alternative multi-jet background estimate. In order to provide an al-

ternative estimate of the multi-jet background, I have used a second technique. This

involves dividing the data into statistically independent samples, based on the likeness of

the muon charges and a combined measure of their isolations. Put concretely, I consider an

event to be isolated if and only if I < 0.1 for both muons. Similarly, an event is considered

to be anti-isolated if and only if I > 0.1 again for both muons. Once again, this method is

data-driven.

Consider the candidate signal event selection criteria, lifting the restriction of the

opposite charge requirement on the two muons. Denoting the number of events by N =

Nos + Nls, where ‘os’ and ‘ls’ denote opposite-sign and like-sign categories respectively,

one can further categorize these events as ‘physics’ and ‘QCD’. For our purposes, the

‘physics’ category encompasses all events which are not strictly multi-jet events, which we

call ‘QCD’ for convenience. Thus one can write

Nos = Nphys
os +NQCD

os = ǫNphys + f NQCD (12.2)

and N = Nphys +NQCD . (12.3)

Here, ǫ = Nphys
os /Nphys is the efficiency with which the charge-relaxed event selection yields

an opposite-sign event (given that the event is physics in nature), and f = NQCD
os /NQCD

is the corresponding efficiency for multi-jet events. One can solve these four equations to

obtain four new equations, the subjects of which are the quantities Nphys
os , NQCD

os , Nphys

and NQCD. The relevant quantity we seek is, expressed in terms of directly accessible

quantities,

NQCD
os =

f (Nos − ǫN)

f − ǫ
. (12.4)

The object now is to determine ǫ and f independently, such that one may use the event

yields Nos and N in collision data (the latter according to the charge-relaxed candidate sig-

nal selection) to obtain a data-driven estimate of the multi-jet background contamination,

NQCD
os , in the signal region.

The efficiency ǫ may be determined directly from simulated events generated using

Monte Carlo techniques. The efficiency f , however, may in fact be obtained using collision

data, in a statistically independent manner. As already discussed, the candidate event

selection may be reasonably optimized for multi-jet event acceptance and physics event

rejection, simply by reversing the isolation requirement on both muons, thus defining a

‘loose’ event selection. Further subtracting physics events from the resulting samples,

using simulated data events, one can determine f : the ratio of opposite-sign to any-sign

multi-jet events.

Unlike the template-fit method, which determines the overall normalization of the

multi-jet background by appealing to the invariant mass distribution, this alternative

method is performed individually for each distribution of interest. The efficiencies de-

termined for the φ∗ distribution, in the kinematic region 66GeV < M < 116GeV and

|y| < 2.4, are shown in Fig. 12.21 to provide an example. The loosely isolated event dis-

tributions (with I > 0.1 for both muons, selected in order to determine the efficiency f in

this example) in the cases of opposite-sign and like-sign, are shown in Fig. 12.22.
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Figure 12.21. The efficiencies for selecting opposite-sign events from any-
sign samples, for physics (left) and multi-jet (right) events.
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Figure 12.22. The φ∗ distributions, in the on-peak region integrated over
all boson rapidities, for events selected in which the isolation requirement
on both muons is inverted. Furthermore, the events are separated into
opposite-sign (left) and like-sign (right) categories. Simulated ‘physics’
events are subtracted from this collision data selection to yield the multi-
jet estimate in each case. These estimates are then used to determine f .

An unfortunate shortcoming of this method is the instability of the expression in

Eq. 12.4. The number of candidate signal events having suppressed the opposite-charge

requirement, N , is surely greater thanNos, the number of candidate signal events according

to the usual event selection criteria. The efficiency ǫ is approximately unity, while the

efficiency for faked events f is much lower. The denominator is therefore negative and

robustly determined, given available event statistics. The remaining problem exists owing

to the fact that the numerator is not necessarily negative, on account of limited available

event statistics across the distribution. While such a high-statistics sample of candidate

Drell–Yan events exists in order to perform a precision measurement, the sample of like-

sign events is small and Eq. 12.4 is unstable. In order to mitigate this issue, I have produced

an estimate of the multi-jet background according to this method for the rapidity-inclusive
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Figure 12.23. Estimated percentage background contamination of signal
events as a function of φ∗, for the kinematic region 66 GeV < M < 116 GeV
and |y| < 2.4. The multi-jet background event distribution is computed for
the left plot using the alternative method described in this section. The
right plot uses the default template fit method.

peak mass bin, i.e. 66GeV < M < 116GeV and |y| < 2.4. The final result is shown in

Fig. 12.23 (left), in comparison to the corresponding result of the template fit method

(right).

It is clear that this method furthermore yields a strikingly different conclusion regard-

ing the azimuthal correlation of muons produced in multi-jet events, compared with the

default method (Fig. 12.23, right). According to this alternative estimate there are fewer

events populating the low-φ∗ bins, and a large degree of decorrelation causes a peak in

the high-φ∗ region. The prediction at low-φ∗ here is consistent with the former prediction

of the template fit method, if one assumes the conservative 100% systematic uncertainty

on the former result. The high-φ∗ prediction here is apparently somewhat statistically

significant in this rapidity-integrated distribution.

Notwithstanding, given the relative robustness of the principal method with respect

to this alternative method, I have elected to take the result of the former estimate at face

value. This is taken along with a conservative systematic uncertainty, which is nonetheless

very small, given the smallness of the estimated fraction of multi-jet background events de-

termined according to both methods (albeit with significant differences in the determined

shapes).

12.4. Total background contamination

A compendium of all backgrounds to the φ∗ distributions of events passing the Drell–

Yan signal selection criteria are shown, expressed as percentages of the total event yields, in

Figs. 12.24 and 12.25. These plots take the principal estimates for the multi-jet background

contaminations, using the template fit method described in Sec. 12.3.1. The salient feature

of all these plots is that many of the backgrounds are peaked around the high-φ∗ region.
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Interpreting φ∗ as the degree to which the two final-state muons become azimuthally

uncorrelated with one another (i.e. high-φ∗ implies low correlation) we see this is the

result we would have expected. The notable exceptions include the multi-jet background

events, which are roughly uniformly distributed in φ∗, and the Z → ττ events, which are

distributed favouring the low-φ∗ region.

To better understand these differences, take for example the Z → ττ and t t̄ processes.

We note the high mass of the top quark in comparison to that of the tau lepton will

result in different kinematics and therefore different distributions of momenta among the

final-state particles. For the Z → ττ process, the tau leptons with masses of ∼ 1.8 GeV

are produced highly boosted with respect to Z rest frame. The subsequent weak decays

produce muons which are therefore also boosted in the same directions, and thus the di-

rections of the muons are representative of the directions of the tau leptons, which are

themselves azimuthally correlated in the lab frame in the absence of recoil against the

emission of one or more hard jets in the initial state. In contrast, the much heavier top

quarks will likely not be produced with any significant boost at ‘moderate’ partonic col-

lision energies. The subsequent weak decays produce muons, missing energy and bottom

quarks which recoil strongly against one another, but any correlation between the direc-

tions of the muons becomes washed out. It has here been tacitly assumed that effects due

to spin correlations do not play a significant rôle.



170 12. BACKGROUNDS

*φ

-410 -310 -210 -110 1 10

B
ac

kg
ro

un
d 

co
nt

am
in

at
io

n 
[%

]

0

0.5

1

1.5

2

2.5

3

3.5

4

|y| < 0.4
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

*φ

-410 -310 -210 -110 1 10
B

ac
kg

ro
un

d 
co

nt
am

in
at

io
n 

[%
]

0

0.5

1

1.5

2

2.5

3

3.5

0.4 < |y| < 0.8
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

*φ

-410 -310 -210 -110 1 10

B
ac

kg
ro

un
d 

co
nt

am
in

at
io

n 
[%

]

0

0.5

1

1.5

2

2.5

3

3.5

0.8 < |y| < 1.2
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

*φ

-410 -310 -210 -110 1 10

B
ac

kg
ro

un
d 

co
nt

am
in

at
io

n 
[%

]

0

0.5

1

1.5

2

2.5

3

1.2 < |y| < 1.6
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

*φ

-410 -310 -210 -110 1 10

B
ac

kg
ro

un
d 

co
nt

am
in

at
io

n 
[%

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1.6 < |y| < 2.0
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

*φ

-410 -310 -210 -110 1 10

B
ac

kg
ro

un
d 

co
nt

am
in

at
io

n 
[%

]

0

1

2

3

4

5

6

2.0 < |y| < 2.4
66 GeV < M < 116 GeV

 M > 60 GeVττZ tt

Multi-jet (data-driven) WW
WZ ZZ

νµW ντW

Stat. err

Figure 12.24. Distributions of background events, expressed as a per-
centage of the total event yield, for φ∗. The template fit method is used
here to estimate the multi-jet background contribution. Statistical uncer-
tainties are shown. These plots correspond to measurements made on peak:
66 GeV < M < 116 GeV.
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Figure 12.25. Distributions of background events, expressed as a per-
centage of the total event yield, for φ∗. The template fit method is used
here to estimate the multi-jet background contribution. Statistical uncer-
tainties are shown. These plots correspond to measurements made off peak:
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right).
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12.5. Control distributions

This section is a compilation of plots showing comparisons between collision data

and simulated data events in various control distributions. In summary, the agreement

is impressive in the majority of cases, which is a testament to the quality of physics

modelling in the various Monte Carlo generators available today. Certainly in all aspects

consequential to this particular analysis, the agreement is highly satisfactory, and one

is inclined to trust the background event yields are faithfully estimated. Appropriate

systematic errors, assigned to various inadequacies of the simulations in terms of either

their physics or detector modelling, are considered in Sec. 13.2.

The reader will nonetheless observe that for certain observables, in which good agree-

ment between collision and simulated data would presumably be critical, there are some

striking discrepancies. I will take this opportunity to indicate such instances, and explain

how they are mitigated or indeed inconsequential. The first major discrepancy observed

in a seemingly critical observable concerns the peak mass region of the invariant mass

distribution, shown in Fig. 12.28. Small differences between the peak observed in the

distribution of collision events and the peak modelled in simulated data are exacerbated

in the comparison, which Z line shape re-weighting attempts to mitigate. While there

are indeed many instances of statistically significant discrepancies in bins surrounding the

peak mass region, the on-peak analysis is integrated over this entire region. It has already

been demonstrated that, at least in the case of muons corrected back to the bare level, the

migration of events between coarse mass bins is negligible, as demonstrated in Fig. 9.1.

Precisely the same phenomenon is observed in the transverse momentum distributions of

the individual muons (Fig. 12.30, bottom) where the discrepancies are observed around

∼ 46 GeV.

Another critical concern is the transverse momentum distribution of the lepton pairs,

as shown in Fig. 12.29. There is a high degree of correlation between QT and φ∗ in

the low-QT region in particular, as shown in Fig. 12.26. It is this low-Q∗
T region where

another striking discrepancy is observed. Therefore, let us also consider the actual φ∗

distributions shown in Figs. 12.31 to 12.34, where again there are many instances of

statistically significant discrepancies at the level of many standard deviations in the low-

φ∗ region. In order to account for these discrepancies in the final result, I have introduced

a corresponding systematic uncertainty. The discrepancies are typically at the level of no

more than 10% in relative terms, so for the background subtraction this should introduce

a negligible uncertainty in the peak region, for the backgrounds themselves are typically

< 3% at most, and indeed ≪ 1% across several orders of magnitude of φ∗. The issue is

instead pertinent to the computed bin-by-bin correction factors, which themselves make

use of simulated signal events. The method used to obtain an appropriate systematic

uncertainty is described in Sec. 13.2. Given the high degree of correlation between φ∗ and

QT, we thus consider the discrepancies observed in both distributions as being one and

the same, and moreover accounted for by the same systematic.
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Figure 12.26. The correlation between φ∗ and QT in Powheg+Pythia8
(left) and Sherpa (right). Sherpa events are re-weighted such that the
invariant mass distribution is the same as that of Powheg+Pythia8 events
by construction.

Ultimately, the principal use of simulated signal data here is to model detector effects,

and thus implement appropriate corrections of distributions in collision data. The mod-

elling of the strongly peaked Emiss
T distributions (shown in Fig. 12.27 for the three mass

regions) of simulated signal events is not precisely representative of the distributions in

collision data. The culpability again lies with the signal process, and the discrepancies

are likely due to mismodelling of the muon momentum resolution in simulation, since

nominally of course there is no missing energy in muonic Drell–Yan signal events, lest an

object fall outside the geometrical acceptance of ATLAS or be improperly measured. The

discrepancy is inconsequential for this measurement of φ∗ however, whose advantage over

QT lies in its immunity to such momenta mismeasurements.

Given the ostensible eight-fold symmetry of the ATLAS detector about the central axis,

owing itself to the structure of the toroidal magnet system and muon detection system,

a priori one would expect a regular modulation in the muon reconstruction efficiency.

This has important implications for φ∗, which is driven by the so-called acoplanarity angle

between the leptons, since this could introduce a potential bias if not properly corrected

for.

To elucidate this point a little more, consider an ensemble of events in which the

first muon so happens to have been reconstructed in a particularly efficient region of

the detector. Given the known symmetry of the detector about the central axis, the

supposition that a second muon produced back-to-back with respect to the first muon

would therefore be reconstructed more efficiently, yields concern over the potential for

lower values of φ∗ to be favoured. A similar but reverse argument may be applied to cases

in which the first muon is reconstructed in an inefficient region of the detector. Now

the reconstruction of the back-to-back configuration is disfavoured, owing to the supposed

similar inefficiency with which a second muon would be reconstructed to yield such a

configuration.

Plots in Figs. D.1—D.8 of Appendix D show the finely binned distributions of events in

the azimuthal angle for the leading and sub-leading muons, in data and Monte Carlo. This
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confirms that, within statistical uncertainties, any modulations in efficiency, or indeed any

isolated regions of inefficiency, are correctly modelled by the detector simulation. Thus

one expects to be able to reliably correct for detector effects, in order to recover the physics

φ∗ distribution. This is what is done in Sec. 13.1.



1
2
.5
.
C
O
N
T
R
O
L

D
IS
T
R
IB

U
T
IO

N
S

1
7
5

σ
(d

at
a-

M
C

)/

-4
-2
0
2
4

-910

-810

-710

-610

-510

-410

-310

-210

-110
1

10

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

46 GeV < M < 66 GeV

Missing transverse energy [GeV]

0 20 40 60 80 100 120 140

da
ta

/M
C

0.8
1

1.2
1.4
1.6

σ
(d

at
a-

M
C

)/

-20

-10

0

10

-710

-610

-510

-410

-310

-210

-110
1

10

210

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

66 GeV < M < 116 GeV

Missing transverse energy [GeV]

0 20 40 60 80 100 120 140da
ta

/M
C

-1
 [%

]

-40

-20

0

σ
(d

at
a-

M
C

)/

-4
-2
0
2
4

-910

-810

-710

-610

-510

-410

-310

-210

-110
1

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

ντW νµW
WW  M > 60 GeVττZ
WZ ZZ
tt Multi-jet (data-driven)

 M > 60 GeVµµZ  20 GeV < M < 60 GeVµµZ

116 GeV < M < 150 GeV

Missing transverse energy [GeV]

0 20 40 60 80 100 120 140

da
ta

/M
C

0.8

1

1.2

Figure 12.27. The missing transverse energy (Emiss
T ) distributions of candidate events, with estimated backgrounds shown,

for the mass regions 46 GeV < M < 66 GeV, 66 GeV < M < 116 GeV and 116 GeV < M < 150 GeV and the inclusive
rapidity region |y| < 2.4.
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Figure 12.28. The invariant mass (M) distributions of candidate events, with estimated backgrounds shown, for the inclusive
rapidity region |y| < 2.4.
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Figure 12.29. The boson transverse momentum (QT) and boson rapidity
(y) distributions of candidate events, with estimated backgrounds shown.
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Figure 12.30. The transverse momenta (pT) and pseudorapidity (η) dis-
tributions of candidate events for leading and sub-leading muons, with
estimated backgrounds shown.
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Figure 12.31. The φ∗ distributions of collision and simulated events selected in the signal region, for the mass range 66 GeV <
M < 116 GeV. Rapidity ranges |y| < 0.4, 0.4 < |y| < 0.8 and 0.8 < |y| < 1.2 are shown.
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Figure 12.32. The φ∗ distributions of collision and simulated events selected in the signal region, for the mass range 66 GeV <
M < 116 GeV. Rapidity ranges 1.2 < |y| < 1.6, 1.6 < |y| < 2.0 and 2.0 < |y| < 2.4 are shown.
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Figure 12.33. The φ∗ distributions of collision and simulated events selected in the signal region, for the mass range 46 GeV <
M < 66 GeV. Rapidity ranges |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 are shown.
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Figure 12.34. The φ∗ distributions of collision and simulated events selected in the signal region, for the mass range 116 GeV<
M < 150 GeV. Rapidity ranges |y| < 0.8, 0.8 < |y| < 1.6 and 1.6 < |y| < 2.4 are shown.



CHAPTER 13

Final results

13.1. Bin-by-bin corrections

Bin-by-bin correction factors (see Eq. 9.3 in the context of Eq. 9.6) are applied to

background-subtracted φ∗ distributions populated by collision data events, before nor-

malizing to obtain the final results. The purpose of these correction factors, plotted in

Figs. 13.1 and 13.2, is to account for the effect of particle detection and reconstruction,

which are peculiar to the experiment, thus recovering the underlying physics distributions

in φ∗.

In principle, since generator-level particle information is available, contingent on the

nature of the given Monte Carlo generator, one can also correct to various physics gen-

erator levels beyond a simple detector correction. One can correct, for instance, to the

bare level distribution but equally to the Born level distribution. This certainly raises

some philosophical issues however, and it is my opinion that an experimental measure-

ment should minimally depend on any specific theoretical assumptions. For that reason,

I present the φ∗ distribution correction factors applicable to obtain the bare level distri-

butions, and so the content of the measurement is experimentally driven. A theoretical

prediction should therefore include the effects of, e.g., final-state radiation (FSR) before

a comparison is made to these results. Any residual theoretical dependence is accounted

for by the inclusion of an appropriate systematic uncertainty on the final measurement,

as in Sec. 13.2.
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Figure 13.1. Bin-by-bin correction factors for the φ∗ distributions in the
66 GeV < M < 116 GeV region, in different |y| bins. These factors are
to be applied to the background-subtracted distributions of the number of
candidate events in data.
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Figure 13.2. Bin-by-bin correction factors for the φ∗ distributions in the
46 GeV < M < 66 GeV (left) and 116 GeV < M < 150 GeV (right) regions,
in different |y| bins. These factors are to be applied to the background-
subtracted distributions of the number of candidate events in data.
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13.2. Systematic uncertainties

The final background-subtracted and normalized distributions of events in bins of φ∗,

corrected for detector effects, are to be presented in Sec. 13.3 for the on-peak and off-peak

analyses. A compendium of established uncertainties on these distributions, expressed in

terms of percentages of the event yields in each bin, are shown in Figs. 13.3 to 13.6. The

bin uncertainties that are considered here on 1/σ (dσ/dφ∗)i (for which, see Eq. 9.6) arise

from the uncertainties on Ni cand, Ni reco back and Ai. The normalization factor N then

introduces a bin-to-bin correlation on these uncertainties. In principle the factor τ is also

a source of uncertainty. The multi-jet background estimation employed in this analysis,

however, allows the overall scale of simulated signal and non-multi-jet background data

to float in the fit. This therefore inhibits the propagation of the luminosity uncertainty

into our final distribution, since the effective luminosity of the simulated data sample is

now tethered to that of collision data. The uncertainty on Ni cand is purely statistical in

nature. It is therefore the quantities Ni reco back and Ai which contribute to the systematic

uncertainties. In this section I will describe the methodology behind ascertaining these

uncertainties.

A significant systematic uncertainty on the distributions owes itself to the modelling

of final-state QED radiation. This uncertainty, labelled ‘FSR’, is currently estimated in

a very conservative fashion, by simply correcting background-subtracted distributions of

candidate signal events to both the bare and Born levels, and examining the difference

between the resulting distributions. The percentage difference between corresponding bins

in the two distributions is taken to be the uncertainty on that bin in the final distribution,

which is corrected to the bare level. It may be argued that this is indeed too conservative.

The typical fashion in which such uncertainties are computed is to take two models of

FSR and examine the differences between the resulting final distributions.

As mentioned in Sec. 12.5, our estimate of the normalized differential cross-section in φ∗

(Eq. 9.6) relies heavily on simulated data via the correction factor Ai. For a correction back

to the bare level, this dependence is rather more largely via the modelling of the detector

in simulated data than on the modelling of physics. Ideally, this correction factor should

indeed depend as minimally as possible on the modelling of the actual physical process,

and any residual dependence on this modelling must be accounted for via the inclusion

of an appropriate systematic uncertainty. Here I demonstrate how this uncertainty is

computed.

If we keep under consideration the measured distribution corrected for detector effects—

so precisely our estimate according to Eq. 9.6—then the appropriate comparison to theory

is made at the level of generated signal event distributions. We can therefore define an

event weight which depends on the φ∗ bin in which the event was generated, as

wi ≡
Mi

Ti
, (13.1)

where Mi = (dσ/dφ∗)i as estimated in Eq. 9.6 and

Ti = Ñ Ni gen

(∆φ∗)i
(13.2)
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is simply our theoretical physics distribution. Here Ni gen is the number of generated

events in the ith φ∗ bin and Ñ is an independent normalization factor for the generated

distribution. We thus have a set of weights which may be applied directly to generated

events such that the generated and estimated distributions agree by construction. Adopt-

ing the notation Ni reco,j gen for the number of events reconstructed in the ith φ∗ bin having

been generated in the jth bin, and assuming a negligible number of faked events, we may

explicitly write

Ni reco =
∑

j

Ni reco,j gen . (13.3)

Now we define a new correction factor

A′
i =

∑

j wjNi reco,j gen

wiNi gen
, (13.4)

which differs from Ai simply by the inclusion of the weights, which themselves depend on

the bin in which the event was generated. We see of course that, in the absence of bin-to-

bin migration of events, we simply obtain the same weight Ai as computed initially, since

then Ni reco,j gen ≈ Ni reco,j gen δij = Ni reco&gen and the weight wi cancels in the numerator

and the denominator. This is as we would expect, for then the underlying physics would

have no impact on a correction factor contrived to solely correct for detector effects. Using

the new correction factor A′
i instead, we now re-evaluate our estimation of the differential

cross-section as

1

σ′

(
dσ

dφ∗

)′

i

≈ σ′i
σ′ (∆φ∗)i

= N ′ Ni cand − τ Ni reco back

(∆φ∗)iA′
i

. (13.5)

In principle we have re-weighted the generated event distribution, in order that the physics

modelling is as perfectly representative of that in nature as possible, and assessed the

extent to which our detector correction depends upon this change in underlying physics.

The systematic we have computed here is labelled ‘correction factor’.

A far-less-significant source of systematic uncertainty is the multi-jet background es-

timation, labelled ‘QCD’. The uncertainty on the final distributions associated with the

determination of the multi-jet background event yields is conservatively ascertained by

simply computing the final distributions both with and without multi-jet background sub-

traction, and examining the differences.

Additional sources of systematic uncertainty that are similarly far less significant in-

clude those due to muon momenta modelling in simulated data (‘muon momenta’), the

theoretical cross-sections computed for all physical processes considered (‘cross-section’),

the average number of interactions per bunch crossing (‘pileup’), the ‘Z line shape’, the

modelling of the efficiencies with which muons are reconstructed in simulated data (‘muon

reco. efficiency’) and the modelling of the trigger efficiency in simulated data (‘trigger

efficiency’). For all sources, the final distributions have again been recomputed assuming

the appropriate variations in the applied event weights, or simply in the absence of such

corrections, and comparing to the final distribution with all appropriate corrections in

place, to yield a percentage uncertainty. Such variations have been applied independently

to obtain each uncertainty.
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For these uncertainties, I have considered a total weight for each simulated event j,

expressed as the product of component weights:

Wj =WMC ·Wline ·Wpileup ·Wtrig. ·Wmu 1 ·Wmu 2 ·Wxsct (13.6)

It is important to note here that there is one such weight for each event, although for

notational simplicity I have dropped the event index j on the RHS. The remaining weights,

read from left to right respectively, account for the Z line shape (mass distribution), the

average number of interactions per bunch crossing (pileup), the trigger efficiency, the

reconstruction efficiencies of the two muons, and finally the theoretical cross-section of the

process considered.

Systematic uncertainties corresponding to the Z line shape and the event pileup are

obtained simply by independently setting Wline = 1 and Wpileup = 1, and examining the

differences with respect to the final distribution computed using the nominal weights.

Systematic uncertainties corresponding to the simulated trigger efficiency and muon re-

construction efficiencies are obtained by independently setting

Wtrig. →Wtrig. + δWtrig.

and Wmu 1 ·Wmu 2 →Wmu 1 ·Wmu 2 +
√

W 2
mu 1 + (δWmu 1)2 +

√

W 2
mu 2 + (δWmu 2)2 ,

(13.7)

where δW is the uncertainty computed for a particular weight W , and again examining

the differences with respect to the final distribution computed using the nominal weights.

An uncertainty on the theoretically computed cross-section for background processes in

simulated data is obtained by varying Wxsct for all events simultaneously. For t t̄ and

diboson (WW, WZ and ZZ) processes, the variation is 7%. For W+jets (W+τν and

W+µν) and Z → ττ processes, the variation is 5%. Finally, the systematic associated

with the modelling of muon momenta in simulated data is obtained simply by examining

the differences between the final distributions in which muon momenta smearing is either

applied or absent.

The total systematic uncertainty, on a given bin in a distribution, is taken to be the

quadrature sum of all systematic uncertainties considered, along with the Monte Carlo

statistical uncertainty (labelled ‘MC stat.’) due to the bin-by-bin correction factor. In-

deed, all sources of systematic uncertainty are assumed to be uncorrelated with respect

to one another in this analysis. Uncertainties due to FSR tend to dominate, typically

across most of the φ∗ range. The total statistical uncertainties (for collision data) are

also shown in Figs. 13.3 to 13.6, and afford a direct comparison with the total systematic

uncertainties. For the on-peak analysis, the statistical and systematic uncertainties are of

a similar magnitude. This is also true for the high-mass analysis, while for the low-mass

analysis the systematic uncertainties dominate.



13.2. SYSTEMATIC UNCERTAINTIES 189

* [rad]φ

-410 -310 -210 -110 1 10

U
nc

er
ta

in
ty

 [%
]

-210

-110

1

10

210

310

410
Muon momenta Z line shape

Cross-section Muon reco. efficiency

Multi-jet background Correction factor

FSR Pileup

Trigger efficiency Total systematic

Statistical MC stat.

* [rad]φ

-410 -310 -210 -110 1 10

66 GeV < M < 116 GeV, |y| < 0.4

* [rad]φ

-410 -310 -210 -110 1 10

U
nc

er
ta

in
ty

 [%
]

-210

-110

1

10

210

310

410
Muon momenta Z line shape

Cross-section Muon reco. efficiency

Multi-jet background Correction factor

FSR Pileup

Trigger efficiency Total systematic

Statistical MC stat.

* [rad]φ

-410 -310 -210 -110 1 10

66 GeV < M < 116 GeV, 0.4 < |y| < 0.8

* [rad]φ

-410 -310 -210 -110 1 10

U
nc

er
ta

in
ty

 [%
]

-210

-110

1

10

210

310

410
Muon momenta Z line shape

Cross-section Muon reco. efficiency

Multi-jet background Correction factor

FSR Pileup

Trigger efficiency Total systematic

Statistical MC stat.

* [rad]φ

-410 -310 -210 -110 1 10

66 GeV < M < 116 GeV, 0.8 < |y| < 1.2

Figure 13.3. Systematic uncertainties on the final on-peak φ∗ distribu-
tions (66 GeV < M < 116 GeV)
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Figure 13.4. Systematic uncertainties on the final on-peak φ∗ distribu-
tions (66 GeV < M < 116 GeV)
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Figure 13.5. Systematic uncertainties on the final low-mass φ∗ distribu-
tions (46 GeV < M < 66 GeV)
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Figure 13.6. Systematic uncertainties on the final high-mass φ∗ distribu-
tions (116 GeV < M < 150 GeV)
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13.3. Results

The results of this analysis are presented in this section. Figures 13.7 and 13.8 show the

normalized φ∗ distributions determined for this analysis, in the twelve kinematic regions

of interest; i.e. the twelve bins of boson invariant mass and rapidity. The normalized

distributions presented are of background-subtracted candidate data events, and these

distributions have then been corrected for the various detector effects, in order to present

a result that is representative of the underlying physical process, defined in terms of bare-

level muons. The figures include systematic and statistical uncertainties on each bin, the

computation of the former of which is presented in Sec. 13.2. These results are tabulated

in Tables 13.1 and 13.2. Figures 13.7 and 13.8 additionally present a comparison to

corresponding data simulated using Powheg and Pythia8.

The same collision data are reproduced in Figs. 13.9 to 13.11 for masses in the range

66 GeV < M < 150 GeV, this time in comparison to results of the NNLL+NLO calculation

presented in Part 1 of the thesis, evaluated at
√
s = 8 TeV and with the appropriate

experimental cuts. The yellow bands represent the perturbative theoretical uncertainties

on these results, determined as usual by discretely varying the three perturbative scales µQ,

µR and µF—the resummation, renormalization and factorization scales—within the range

M/2 to 2M . PDF uncertainties are not included in these uncertainty estimates, since

they have previously been shown to be small. The green lines indicate the predictions

corresponding to the particular configuration in which all scales are set to the nominal

value M .

The NNLL+NLO results presented in this section do not account for final-state radi-

ation (FSR). In principle, any comparisons to data should therefore be made at the Born

level, wherein collision data are corrected for this radiation instead. However, given the

conservative uncertainty assigned to FSR in this analysis (which is determined from the

differences between distributions corrected back to the bare and Born levels in any case)

the absence of explicit inclusion of FSR modelling in the NNLL+NLO results is essentially

already covered in the comparisons.

The reader will note that a comparison is only made for masses in the range 66 GeV <

M < 150 GeV, thereby excluding the low-mass region. Presumed idiosyncrasies have

presented themselves in this low-mass region at
√
s = 8 TeV, as compared with our

similar Tevatron study at
√
s = 1.96 TeV (Section 5.3), apparently owing to unprece-

dented low values of M/
√
ŝ being sampled. At the time of writing, an effort continues

to understand these newly presented features, which are inherent in the theoretical result

itself. Specifically, the cancellation of large logarithms between the fixed-order component

and the expansion of the resummed component is postponed to the significantly lower

value of φ∗ ≈ 10−4, as compared with other studies presented in this thesis. To a far

lesser degree, this effect is also present in some of the NNLL+NLO results in the range

66 GeV < M < 116 GeV, although the size of this effect is smaller than the quoted theo-

retical uncertainties. It is important for the reader to bear in mind that, for the fixed-order

component, we are using MCFM in a kinematic region beyond that intended, i.e at very

low φ∗, and there may be inherent features that are not understood in this extreme region.
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Figure 13.7. The results of the ATLAS φ∗ analysis in the Z → µµ chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass region shown is 66 GeV < M < 116 GeV, and each
distribution corresponds to one of the six equally-sized rapidity bins across
the total range |y| < 2.4.
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Figure 13.8. The results of the ATLAS φ∗ analysis in the Z → µµ chan-
nel. These distributions are background-subtracted and corrected for de-
tector effects to the bare-level distribution, before being individually nor-
malized. The mass regions shown are 46 GeV < M < 66 GeV (left) and
116 GeV < M < 150 GeV (right), and each left-right pair of distributions
corresponds to one of the three equally-sized rapidity bins across the total
range |y| < 2.4.
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Figure 13.9. ATLAS data compared with NNLL+NLO prediction at 8 TeV (66 GeV < M < 116 GeV, |y| < 1.2)
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Figure 13.10. ATLAS data compared with NNLL+NLO prediction at 8 TeV (66 GeV < M < 116 GeV, 1.2 < |y| < 2.4)
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Figure 13.11. ATLAS data compared with NNLL+NLO prediction at 8 TeV (116 GeV < M < 150 GeV)
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Table 13.1. Tabulation of φ∗ distributions, along with corresponding systematic and statistical uncertainties, for the on-peak
analysis: 66GeV < M < 116GeV. The relative dominance of the uncertainties for each bin are indicated using a red-blue
spectrum: red = more dominant, blue = less dominant.

|y| < 0.4 0.4 < |y| < 0.8 0.8 < |y| < 1.2 1.2 < |y| < 1.6 1.6 < |y| < 2.0 2.0 < |y| < 2.4
low high (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%]

0.0001 0.004 8.45 0.846 0.569 8.57 1.04 0.561 8.57 0.824 0.56 8.63 1.02 0.593 8.67 0.985 0.733 8.83 1.44 1.28
0.004 0.008 8.4 0.693 0.562 8.44 0.953 0.559 8.48 1.24 0.555 8.47 1.02 0.591 8.65 0.607 0.724 8.66 1.19 1.26
0.008 0.012 8.31 1.19 0.566 8.29 0.809 0.563 8.4 0.655 0.558 8.37 1.24 0.595 8.45 1.15 0.733 8.28 1.27 1.29
0.012 0.016 8.09 0.99 0.574 8.13 0.922 0.569 8.18 0.722 0.565 8.22 0.744 0.6 8.34 1.16 0.74 8.56 1.11 1.27
0.016 0.02 7.8 0.726 0.583 7.9 0.677 0.577 7.92 0.746 0.573 8.02 1 0.608 7.98 0.988 0.753 8.21 1.28 1.3
0.02 0.024 7.53 0.74 0.595 7.51 1.05 0.592 7.72 0.694 0.582 7.72 0.937 0.62 7.7 0.773 0.767 7.85 1.64 1.33
0.024 0.029 7.17 0.609 0.543 7.21 0.757 0.539 7.25 0.927 0.536 7.27 0.512 0.571 7.39 1.12 0.7 7.16 1.21 1.24
0.029 0.034 6.85 0.594 0.557 6.87 0.45 0.553 6.9 0.537 0.549 6.91 0.64 0.585 6.98 0.879 0.72 6.97 0.956 1.26
0.034 0.039 6.37 0.669 0.577 6.45 0.606 0.569 6.44 0.534 0.567 6.54 0.672 0.601 6.47 0.678 0.746 6.53 0.989 1.29
0.039 0.045 5.97 0.776 0.543 6.01 0.447 0.539 6.09 0.44 0.532 6.05 0.609 0.57 6.03 0.548 0.706 6.19 0.935 1.23
0.045 0.051 5.48 0.535 0.567 5.53 0.471 0.56 5.52 0.651 0.558 5.56 0.478 0.593 5.65 0.607 0.731 5.67 0.939 1.28
0.051 0.057 5.1 0.478 0.587 5.18 0.478 0.579 5.13 0.522 0.58 5.14 0.5 0.617 5.11 0.622 0.766 5.19 1.02 1.33
0.057 0.064 4.72 0.562 0.565 4.67 0.453 0.564 4.76 0.462 0.555 4.77 0.484 0.594 4.7 0.751 0.737 4.77 1.01 1.29
0.064 0.072 4.31 0.569 0.552 4.27 0.441 0.551 4.3 0.493 0.547 4.32 0.658 0.582 4.33 0.674 0.721 4.33 0.933 1.25
0.072 0.081 3.8 0.486 0.554 3.88 0.498 0.544 3.86 0.468 0.544 3.95 0.506 0.575 3.86 0.604 0.717 3.88 1.05 1.25
0.081 0.091 3.47 0.572 0.55 3.48 0.608 0.546 3.43 0.758 0.547 3.46 0.769 0.58 3.44 0.674 0.72 3.5 0.982 1.25
0.091 0.102 3.08 0.692 0.558 3.05 0.582 0.556 3.07 0.489 0.551 3.08 0.644 0.587 3.13 1.12 0.721 3.04 1.06 1.27
0.102 0.114 2.73 0.646 0.565 2.69 0.822 0.565 2.7 0.8 0.562 2.71 0.948 0.599 2.7 0.732 0.74 2.77 1.4 1.28
0.114 0.128 2.36 0.924 0.563 2.36 0.622 0.559 2.36 0.51 0.555 2.38 0.853 0.59 2.38 0.653 0.73 2.44 0.958 1.25
0.128 0.145 2.03 0.785 0.55 2.04 0.691 0.543 2.02 0.595 0.543 2.03 0.702 0.579 2.05 0.961 0.711 2.03 1.51 1.24
0.145 0.165 1.73 0.613 0.55 1.72 0.863 0.546 1.71 0.732 0.545 1.73 0.891 0.579 1.74 0.768 0.711 1.75 1.01 1.25
0.165 0.189 1.43 0.979 0.55 1.41 0.57 0.548 1.44 0.631 0.541 1.44 0.914 0.579 1.45 1.03 0.711 1.49 1.01 1.23
0.189 0.219 1.14 0.697 0.551 1.16 0.709 0.541 1.17 0.87 0.538 1.16 0.679 0.575 1.17 0.718 0.707 1.17 1.24 1.23
0.219 0.258 0.912 0.686 0.541 0.903 0.709 0.538 0.891 0.683 0.539 0.903 0.687 0.572 0.92 0.746 0.698 0.926 1.01 1.21
0.258 0.312 0.678 0.451 0.533 0.668 0.54 0.531 0.668 0.579 0.529 0.679 0.523 0.56 0.673 0.679 0.691 0.682 0.96 1.19
0.312 0.391 0.469 0.556 0.531 0.465 0.469 0.527 0.461 0.491 0.526 0.456 0.512 0.564 0.473 0.677 0.683 0.472 0.907 1.18
0.391 0.524 0.285 0.458 0.526 0.28 0.483 0.523 0.28 0.427 0.522 0.279 0.462 0.558 0.282 0.568 0.68 0.282 0.929 1.17
0.524 0.695 0.157 0.502 0.626 0.157 0.492 0.616 0.154 0.565 0.62 0.152 0.565 0.667 0.156 0.642 0.808 0.158 1.09 1.38
0.695 0.918 0.085 0.613 0.747 0.0839 0.657 0.74 0.083 0.652 0.743 0.0812 0.665 0.804 0.0791 0.885 0.996 0.0772 1.33 1.74
0.918 1.15 0.0463 0.866 0.988 0.0468 0.898 0.972 0.0456 0.842 0.98 0.0439 0.888 1.08 0.0419 1.13 1.34 0.0383 2.11 2.41
1.15 1.5 0.026 0.896 1.09 0.0259 0.888 1.08 0.0251 1.01 1.1 0.0235 1.08 1.22 0.0216 1.35 1.56 0.018 2.26 2.92
1.5 1.95 0.0136 1.41 1.3 0.0135 1.28 1.31 0.0132 1.13 1.32 0.0118 1.33 1.51 0.00998 1.91 2 0.00739 3.16 4
1.95 2.52 0.00709 1.42 1.6 0.00702 1.36 1.6 0.00667 1.42 1.66 0.0059 1.85 1.91 0.00494 2.24 2.6 0.00283 6.14 6.24
2.52 3.28 0.00382 1.62 1.89 0.00383 1.68 1.91 0.00353 1.68 2.01 0.00303 1.94 2.35 0.00222 2.83 3.4 0.00115 7.54 9.05
3.28 5 0.00176 1.56 1.84 0.00173 1.81 1.87 0.00159 1.75 2 0.00142 1.96 2.29 0.00101 3.25 3.45 0.000504 8.58 10.3
5 10 0.000524 1.86 1.95 0.000533 1.64 1.99 0.000488 1.79 2.12 0.000389 2.12 2.57 0.000282 3.65 4 0.000121 12.4 13.8
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Table 13.2. Tabulation of φ∗ distributions, along with corresponding systematic and statistical uncertainties, for the off-peak
analyses: 46GeV < M < 66GeV and 116GeV < M < 150GeV. The relative dominance of the uncertainties for each bin are
indicated using a red-blue spectrum: red = more dominant, blue = less dominant.

46GeV < M < 66GeV 116GeV < M < 150GeV
|y| < 0.8 0.8 < |y| < 1.6 1.6 < |y| < 2.4 |y| < 0.8 0.8 < |y| < 1.6 1.6 < |y| < 2.4

low high (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%] (1/σ) dσ/dφ∗ δφ∗sys[%] δφ∗stat[%]

0.0001 0.004 6.43 7.91 2.77 6.27 12.3 2.65 5.7 9.57 3.82 11 2.32 2.45 11.1 2.81 2.55 11.6 4.58 4.08
0.004 0.008 6.3 9.67 2.82 6.11 7.34 2.65 6.27 7.02 3.44 10.5 2.85 2.46 10.5 2.42 2.57 11.1 3.33 4.06
0.008 0.012 5.85 12.5 2.95 6.12 5.39 2.68 6.82 10.4 3.4 9.73 3.15 2.54 9.75 3.51 2.7 10.4 4.73 4.25
0.012 0.016 5.48 6.17 2.97 5.72 10.6 2.71 6.72 6.65 3.43 9.83 2.73 2.55 10.4 2.74 2.65 10.1 3.62 4.12
0.016 0.02 6.07 7.27 2.8 5.75 6.82 2.78 6.21 9.11 3.67 8.75 3.61 2.64 9.45 2.45 2.74 9.77 4.03 4.32
0.02 0.024 5.81 5.9 2.93 5.76 8.95 2.78 5.29 10.7 3.83 8.33 3.06 2.74 9.05 2.83 2.8 9.64 3.74 4.41
0.024 0.029 5.35 9.85 2.67 5.2 7.7 2.57 5.73 6.28 3.31 7.94 3.46 2.55 8.11 2.46 2.62 9.29 5.01 4.07
0.029 0.034 5.23 8.75 2.82 4.9 12.3 2.68 5.67 7.35 3.48 8 2.65 2.53 7.3 2.46 2.78 7.86 7.33 4.3
0.034 0.039 4.86 11.5 2.95 5 9.21 2.65 5.1 7.36 3.59 7.17 2.68 2.63 6.81 3.43 2.86 6.87 5.47 4.5
0.039 0.045 4.78 5.14 2.69 4.94 9.38 2.45 4.97 7.8 3.14 6.18 3 2.6 6.46 3.72 2.68 5.97 4.53 4.36
0.045 0.051 4.47 6.05 2.72 4.73 10.2 2.51 4.6 11.1 3.34 5.72 2.51 2.71 5.54 2.61 2.9 5.66 5.06 4.69
0.051 0.057 4.02 9.5 2.84 4.68 6.16 2.51 4.66 7.77 3.34 5.47 4.2 2.77 5.29 2.72 2.95 5.35 3.82 4.59
0.057 0.064 3.82 6.42 2.6 4.14 6.89 2.45 4.29 8.12 3.17 4.91 2.34 2.72 4.83 2.6 2.95 4.65 4.12 4.61
0.064 0.072 3.43 7.68 2.61 3.94 6.77 2.39 4.01 6.38 3.05 4.15 2.23 2.77 4.17 2.89 2.91 4.14 4.82 4.67
0.072 0.081 3.54 9.98 2.47 3.69 8.62 2.23 3.63 6.91 3.04 3.74 2.69 2.76 3.57 4.07 2.95 4.02 4.52 4.43
0.081 0.091 3.33 6.57 2.4 3.41 5.51 2.26 3.34 6.6 3.01 3.17 2.65 2.81 3.31 2.36 2.89 3.23 3.79 4.62
0.091 0.102 2.91 5.44 2.44 2.89 4.46 2.3 2.81 6.45 3.2 3.02 2.48 2.76 2.93 3.63 2.93 2.94 5.91 4.84
0.102 0.114 2.73 6.12 2.44 2.6 5.89 2.33 2.75 6.66 3.04 2.57 2.93 2.91 2.35 4.58 3.11 2.35 4.8 4.93
0.114 0.128 2.45 4.03 2.36 2.42 4.08 2.24 2.5 7.49 2.91 2.15 2.77 2.91 2.1 4.04 3.12 2.3 4.6 4.8
0.128 0.145 2.14 4.24 2.32 2.06 3.8 2.16 2.05 5.54 2.91 1.69 2.83 2.99 1.86 2.46 3.01 1.9 5.27 5.03
0.145 0.165 1.73 3.92 2.33 1.85 3.83 2.12 1.65 6.65 2.97 1.52 4.85 2.94 1.65 2.61 2.9 1.58 5.66 4.63
0.165 0.189 1.5 4.35 2.29 1.5 3.87 2.11 1.59 5.21 2.77 1.26 2.8 3.02 1.24 4.23 3.12 1.47 5.02 4.63
0.189 0.219 1.25 5.51 2.24 1.34 7.91 2.12 1.14 5.97 2.97 0.972 2.96 3.04 1.05 2.97 2.99 1.01 3.61 4.97
0.219 0.258 1.09 5.89 2.16 0.987 5.49 2.04 1.05 8.14 2.81 0.854 4 2.86 0.849 3.89 2.96 0.826 4.16 4.77
0.258 0.312 0.793 10.6 2.1 0.758 9.06 2.04 0.798 10.1 2.56 0.589 3.49 2.96 0.659 3.08 2.94 0.604 4.46 4.74
0.312 0.391 0.571 8.73 2.08 0.575 13.2 1.92 0.603 10 2.47 0.398 2.87 3.11 0.377 3.67 3.28 0.38 4.23 4.95
0.391 0.524 0.388 14.9 1.99 0.391 12.4 1.82 0.376 10.9 2.42 0.25 3.29 3.2 0.245 4.6 3.23 0.236 5.43 4.91
0.524 0.695 0.246 14.6 2.18 0.229 11.6 2.12 0.21 8.94 2.87 0.144 4.91 3.8 0.129 4.55 4.06 0.108 6 6.33
0.695 0.918 0.151 8.83 2.54 0.136 13.2 2.44 0.133 7.85 3.19 0.076 5.2 4.72 0.0685 6.09 4.86 0.0531 9.33 7.46
0.918 1.15 0.0871 6.54 3.35 0.0912 7.35 2.95 0.0799 7.14 4.15 0.0381 5.99 6.24 0.0373 7.47 6.32 0.0299 11.1 10.3
1.15 1.5 0.0528 7.45 3.64 0.05 10.1 3.43 0.0469 9.15 4.64 0.0246 6.82 6.31 0.0182 8.69 7.54 0.0116 10.6 13.8
1.5 1.95 0.0277 8.59 4.49 0.0268 12.6 4.12 0.0233 14 6.25 0.0086 7.37 10.1 0.0121 6.88 8.46 0.0041 17 19.4
1.95 2.52 0.0174 10.2 4.92 0.0148 16.9 4.75 0.011 13.7 7.6 0.0056 10.2 10.2 0.0071 10.4 9.07 0.00228 24.7 26.4
2.52 3.28 0.00755 11.2 6.36 0.00834 14 5.51 0.00701 20.9 9.34 0.00454 12.3 9.87 0.00172 22.8 17.2 0.000397 59.8 79.3
3.28 5 0.00406 11.3 6.02 0.00385 11.9 5.61 0.002 21.6 10.3 0.0011 15.1 15.6 0.00103 11.7 14.3 0.000137 38.5 65.3
5 10 0.00116 23.5 6.51 0.000952 17.4 6.67 0.00194 54 10.5 0.000405 13.4 14.7 0.00029 10.9 16.6 0.000209 37.3 37
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13.4. Conclusions and future prospects

I have presented a measurement of the normalized differential φ∗ distribution, cor-

rected for detector effects back to the bare level, using 20.3 fb−1 of ATLAS collision data

at
√
s = 8 TeV. Backgrounds which potentially contaminate the signal event selection

have been modelled using both Monte Carlo and data-driven techniques, as appropriate,

and have been subtracted from the distributions of candidate events in data in order to ac-

count for this contamination. Systematic uncertainties applicable to both the background

subtraction and the detector correction have been ascertained for the final distributions.

It is worth recapitulating all these considerations in light of what a precision mea-

surement of the φ∗ distribution in different kinematic régimes aims to achieve. The φ∗

observable, as it has been employed in this analysis, aims to quantify the azimuthal decor-

relation between the muons in Drell–Yan events in order to probe the infrared régime of

QCD, which amounts to studying the nature of the soft and collinear dynamics of gluon

radiation for the purposes of testing the perturbative approach and also quantifying any

discrepancies which might indicate the need for further non-perturbative treatment. It is

therefore vital that our measured φ∗ distribution of events remains unbiased, for such a

precision measurement. Biases induced both by the simulation of physical processes used

in this analysis and by the varying detector efficiencies have been taken into account by

assigning appropriate systematic uncertainties. It is certainly a testament to the precision

of the experimental apparatus and to the quality of simulated data in terms of physics and

detector modelling that, across a broad kinematic range for on-peak data, these systematic

uncertainties rival the statistical uncertainties.

The measurement has been performed in a variety of boson invariant mass and abso-

lute rapidity ranges, not only in order to provide an opportunity to further elucidate the

kinematical dependence of non-perturbative dynamics which was identified in earlier phe-

nomenological work (Chap. 5), but also to test the validity of the resummed approached

in the framework of collinear factorization to make theoretical predictions in a variety of

kinematic régimes. The off-peak analyses presented in this thesis have posed new chal-

lenges not present in the on-peak analysis. Most notable is the migration of events between

mass bins when one considers corrections back to the Born level. A measurement of the

φ∗ distribution corrected back to the Born level muons, particularly in the low-mass re-

gion, is the subject of continuing work. A possible avenue to be pursued might involve

the vetoing of additional photonic radiation in the final state, since it is such radiation

which distinguishes the two levels and which is also responsible for the aforementioned

migration. In particular, defining a fiducial measurement volume which included such a

veto will serve to increase the physical correspondence between the two levels.

Since t t̄ events form a significant background at high-φ∗, particularly in the high-mass

region, one might envisage applying a cut on the number of b-tagged jets. These are jets

nominally arising on account of the b-quarks produced in top decays, which may be tagged

with a fairly high efficiency owing to their peculiar properties. These properties include

namely the appreciable distances the b-quarks may travel (∼ 1mm) before hadronization
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effects take place, which typically result in a secondary vertices displaced somewhat with

respect to the primary vertex of the t t̄ interaction.

The final comparisons of the measured φ∗ distributions in all kinematic regions of inter-

est show agreement with the distribution of events simulated using the Powheg+Pythia8

Monte Carlo event generator at approximately the level of 10% we might have expected

from previous studies performed at
√
s = 7 TeV. Theoretical uncertainties are not shown

for the distributions predicted by Powheg+Pythia8 however. Comparisons to the results

of the calculation presented in Part 1 of this thesis have also been presented for masses

in the range 66 GeV < M < 116 GeV. The results of this calculation are in agreement

with corresponding collision data, within the both the quoted experimental and theoretical

uncertainties, across most of the φ∗ range, which itself spans five orders of magnitude.
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CHAPTER 14

Introduction

The following and final part of this thesis describes my luminosity work within the

ATLAS collaboration. This part is comprised of three single-authored notes [114, 115,

116] which I contributed to the collaboration. Chapter 15 describes my work with the

Beam Conditions Monitor (BCM) where I performed studies on the short- and long-

term drifts which were observed in the reported luminosity. I have then followed these

studies with an appropriate recalibration of the visible cross-section for proton–proton

collisions. This chapter also introduces the van der Meer (vdM) method for the absolute

luminosity calibration, along with other terminology and principles that are necessary

for the subsequent two chapters. The two chapters which follow—Chapters 16 and 17—

address the issue of transverse beam correlation and establish its effect on the absolute

luminosity calibration as determined using the vdM method. Specifically, Chapter 16

introduces the method I have developed to extract precise beam quantities by studying

properties of the luminous centroid during a typical vdM scan, and Chapter 17 extends

these studies to further vdM scans which occurred during Run I, this time explicitly taking

into account the possibility of non-zero crossing angles between the two colliding beams.

I present the combined results of these studies as applied to vdM scans in October 2010,

May 2011, March 2011, April 2012 and July 2012. The analyses presented herein became

an integral part of the 2011 ATLAS luminosity determination at
√
s = 7 TeV [113].

205



206



CHAPTER 15

Long- and short-term detector stabilities: A study on the

drift in the BCM-reported luminosity and the recalibration

of the visible cross-section

15.1. Introduction

During 2011, significant luminosity drifts over several periods were reported by the

diamond-based Beam Conditions Monitor (BCM) in ATLAS. In this chapter the use of

the BCM as a luminosity monitor is introduced, along with a review of the van der Meer

(vdM) method for the absolute luminosity calibration. The observation of significant

drifts in the reported luminosity over several periods is then presented, with an attempt

to quantify the nature of these drifts in terms of stabilization and relaxation times of

the BCM detector. It is found that, in order to achieve accurate luminosity reporting

from the diamond BCM detectors, they should be subjected to a recent radiation dose

corresponding to an integrated luminosity of L & 5 · 1036 cm−2. Thus, a vdM calibration

scan immediately following a long technical stop is not advised. This chapter concludes

with a recalibration of the BCM algorithm known as the ‘AND’ algorithm. New values

for the visible cross-section, σAND
vis , are finally presented for the BCM detectors, updating

the preliminary values reported in [117].

15.2. The Beam Conditions Monitor (BCM)

The BCM has been used as a event-counting luminosity monitor, with several algo-

rithms defined for what a signal should correspond to. The BCM consists of eight small

diamond detectors in total, four on each side, A and C, of the interaction point (IP) at

a distance of 184 cm. Each set of four, arranged as a cross, has two detectors on the

horizontal, or H, axis and two on the vertical, or V, axis. Collectively these pairs are

known as BCMH and BCMV, and are treated independently.

The algorithms, defined separately for BCMH and BCMV, concern the presence of at

least one recorded hit on each side, A and C. The (inclusive) OR algorithm is satisfied

when at least one hit on either side (or indeed both sides) is recorded. The (coincidence)

AND algorithm is satisfied when a coincidental hit is recorded by a detector pair of the

same orientation, i.e. at least one hit on each side simultaneously, where δt = 12.5 ns is

the interval defined for simultaneity. Finally, the inclusive single-sided algorithms ORA

and ORC are satisfied when at least one hit on that side is recorded.

The BCM detectors, originally designed to issue beam abort requests in the event

of a problem and whose electronics have a rise time of 2 ns, are capable of luminosity

monitoring on a bunch-by-bunch basis (whose separation is a minimum of 25 ns). The
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detectors themselves have limited acceptance at pseudo-rapidities of |η| = 4.2, where

η = − log[tan(θ/2)], and θ is the angle made with the z (beam) axis at z = 0. This small

acceptance means the algorithms at the luminosities encountered during 2011 worked

particularly well without the problem of saturation—the situation in which a particular

algorithm is satisfied on every bunch crossing.

In order to convert from a rate of a given algorithm being satisfied to a value for

the instantaneous luminosity, one applies the principle of zero counting. One makes the

assumption that the event rate, i.e. the expected fraction of bunch crossings satisfying the

algorithm, should be governed by Poisson’s law:

P (k;λ) =
λk e−λ

k!
(15.1)

gives the probability of k arrivals to occur, where λ is the expected number. For example,

the probability for the OR algorithm to be satisfied in a given interval is

NOR

NBC
=: POR

(
µOR
vis

)
= 1− POR

(
µOR
vis

)

= 1− exp
(
−µOR

vis

)
,

(15.2)

where the overline indicates the complement; i.e. POR is the probability that the OR

algorithm is not satisfied (k = 0). The parameter µOR
vis plays the rôle of λ in Eq. 15.1.

The subscript ‘vis’ indicates this is the visible, or measured, interaction rate (events per

bunch crossing) and not the total inelastic rate, simply written µ. Finally, NOR and NBC

are the number of times the OR algorithm is satisfied and the number of bunch crossings,

respectively, in a given time interval. Inverting this gives

µOR
vis = − log

(

1− NOR

NBC

)

. (15.3)

A similar argument is applied for the case of the AND algorithm, to obtain

NAND

NBC
=: PAND

(
µAND
vis

)

= 1− 2 exp

[

−
(

1 +
σOR
vis

σAND
vis

)
µAND
vis

2

]

+ exp

[

−
(
σOR
vis

σAND
vis

)

µAND
vis

]

,

(15.4)

whereNAND is the number of times the AND algorithm is satisfied in the same time interval

(over which NBC bunch crossings occur) and µAND
vis is the expected visible interaction rate,

according to the AND algorithm. Unfortunately, this expression cannot be analytically

inverted, so a numerically generated look-up table is used in practice. It should be noted

here that the limit in which µvis ≫ 1, the aforementioned saturation of the algorithms

begins to occur.

The notion of a single-sided inclusive algorithm may also be introduced, observing that

POR + PAND = PA + PC , (15.5)

which follows directly from considering two non-mutually-exclusive events in probability

theory, defining POR := P (A ∪ C), PAND := P (A ∩ C), and PF := P (F ). The event A

(C) occurs when the algorithm ORA (ORC)—requiring at least one hit on side A (C),

irrespective of what happens on side C (A)—is satisfied. The visible interaction rate for
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these two algorithms are derived in a similar way, assuming Poisson statistics and applying

the zero-counting principle, and one obtains

µORA
vis = − log (1− PA) and A→ C. (15.6)

The expression for the AND algorithm introduced two new quantities, known as the

visible cross-sections for the two algorithms, written σAND
vis and σOR

vis . To understand the

meaning of these, and further elucidate the ‘vis’ notation, it is instructive to write the

luminosity of the LHC (or indeed any storage ring) as

L =
∑

b

Lb =
∑

b

µb fr
σinel

=
∑

b

µb,vis fr
σvis

≈ µvis nb fr
σvis

, (15.7)

where b indexes the colliding bunch pair, fr = 11245.5 Hz is the revolution frequency of

the LHC and σinel is the total inelastic cross-section for a proton–proton collision. Since

the independent detectors (along with a choice of algorithm defined on each detector) will

operate with < 100 % efficiency, one defines

µvis = ǫ µ and σvis = ǫ σinel, (15.8)

where ǫ is the efficiency of that detector and algorithm combination. The AND and OR

algorithms for BCM may have different efficiencies. The visible cross-section ratios in Eq.

15.4 may then be understood as an efficiency conversion, allowing one to use µAND
vis in the

expression, the variable for which one would like to solve. In the final equality of Eq. 15.7,

the bunch-averaged values σvis = 〈σb,vis〉b and µvis = 〈µb,vis〉b have been used, introducing

the number of bunches nb, which is an approximation. In order to avoid excessive notation,

the b index is dropped where no confusion would arise.

The final ingredient in the process for writing the instantaneous luminosity in terms

of an event counting rate is the calibration of the detector and algorithm. This is typically

done by performing a van der Meer (vdM) scan, which involves recording the event rates

for each algorithm (simultaneously) as the beams are separated by a known distance, then

varying this distance, as described in the following section.

15.3. The van der Meer calibration method

The vdM calibration method [118], for our purposes, is a way of determining σvis in

the expression for the luminosity, Eq. 15.7, of a given detector and algorithm combination.

It is assumed herein that bunches of each beam collide with zero crossing angle, and that

the individual proton densities for each bunch may be factorized into a product of one-

dimensional densities.1 At no point, however, is any particular model for the beam profile

invoked.

One can therefore write an alternative expression for the luminosity of a given colliding

bunch pair b, as

Lb = fr n1 n2

∫

dx dy ρ̂1(x, y) ρ̂2(x, y), (15.9)

1One is not concerned with the proton density distribution in z here, since this plays an irrelevant rôle
because of the zero-crossing angle assumption.
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where n1 and n2 are the populations of the colliding bunches of beam 1 and 2, and

ρ̂j(x, y) is a normalized proton density for the colliding bunch in the jth beam, with

j ∈ {1, 2}. One should keep in mind that proton densities here are also strictly for

the bunch pair b under consideration, i.e. ρ ≡ ρb and similarly in what follows, al-

though not explicitly indicated. The assumption of factorization amounts to writing

ρ̂j(x, y) = ρxj (x) ρ
y
j (y), for bunches of each beam. One writes the beam overlap integral as

the functional

Ωxi [ρ1(xi), ρ2(xi)] :=

∫

dxi ρ1(xi) ρ2(xi), (i ∈ {1, 2}) (15.10)

where x1 = x and x2 = y, and ρj(xi) ≡ ρxij (xi) is understood. Then,

Lb = fr n1 n2Ωx[ρ1(x), ρ2(x)] Ωy[ρ1(y), ρ2(y)]. (15.11)

Now consider the luminosity as a function of beam separation, such that

Lb(hx, hy)
Lb(0, 0)

=
Ωx(hx) Ωy(hy)

Ωx(0)Ωy(0)
=:

Rx(hx)

Rx(0)

Ry(hy)

Ry(0)
, (15.12)

where a separation hxi , in either direction x or y, is introduced into the overlap integral

by writing

Ωxi(hxi) := Ωxi [ρ1(xi), ρ2(xi + hxi)] =

∫

dxi ρ1(xi) ρ2(xi + hxi). (15.13)

The counting rates Rxi(hxi), in arbitrary units, are introduced and are proportional to the

luminosity.

Dropping the explicit directionality, such that hxi → h and xi → x elsewhere, consider

the integral
∫
dhR(h)

R(0)
=

∫
dh
[∫
dx ρ1(x) ρ2(x+ h)

]

∫
dx ρ1(x) ρ2(x)

=

∫
dx ρ1(x)

∫
dz ρ2(z)

∫
dx ρ1(x) ρ2(x)

=
1

∫
dx ρ1(x) ρ2(x)

,

(15.14)

where the change of variables x+h→ z, such that dh→ dz, has been made in the second

line. Note, this requires the integration limits to be from −∞ to ∞ in principle. The scan

is assumed to be performed to a sufficiently high separation that the luminosity becomes

negligibly small, and the limits may be effectively taken to infinity. Normalization of the

proton densities is used in the final equality, and means we may write

Ωx[ρ1(x), ρ2(x)] =
R(0)

∫
dhR(h)

. (15.15)

This is the vdM calibration method: the separation scan provides the overlap integral

in terms of a peak counting rate and the integrated rate over a sufficiently large range

of beam separations, i.e. it gives the absolute luminosity when nothing of it, except

the independently determined bunch populations and revolution frequency, is known a

priori. It is precisely the validity of assuming factorization which my studies presented in

Chapters 16 and 17 aim to quantify.
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The convolved beam width is defined by

Σxi =
1√
2π

∫
dhRxi(hxi)

R(0)
, (15.16)

which becomes the standard deviation in the case of Gaussian beams in x, y. The lumi-

nosity of the colliding bunch pair is then written

Lb =
fr n1 n2
2πΣxΣy

, (15.17)

and, equating this with Eq. 15.7, the visible cross-section of the previous section is cali-

brated as the bunch-averaged value of

σb,vis = µMAX
b,vis

2πΣxΣy
n1 n2

, (15.18)

where ‘MAX’ indicates the peak value during the scan, which is in principle at zero nominal

separation, for symmetric beam profiles.

15.4. A study of drifts in BCM-reported luminosities
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Figure 15.1. These plots show the so-called ‘.7% problem’, namely a
fairly rapid drift in the ratio of the H and V components of the BCM
detector using the OR algorithm (BCMHOR and BCMVOR) since the de-
tectors were calibrated in the May 2011 vdM scan (left). Similar behaviour
is seen in the runs immediately following a technical stop (right) during
which the detectors received no radiation. The bottom plots show the cor-
responding integrated luminosity since the most recent technical stop. The
left plot shows runs 182013, 182032, 182034, 182161 and 182284, whilst the
right plot shows runs 185353, 185518, 185536 and 185644.

15.4.1. BCM and the ‘.7% problem’. After having reviewed the vdM scan cali-

bration method along with the BCM detector and its algorithms, the so-called ‘.7% prob-

lem’ is now introduced. A manifestation of the essential problem may be stated as a

relative excursion of approximately 0.7% of the BCM-reported luminosity ratio across two

independent detectors (BCMH and BCMV) after a period of several hours following the

vdM calibration scan of May 2011. Figure 15.1 shows this drift in the luminosity ratio,

over four consecutive runs immediately following the initial scan (left plot) and then four
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consecutive runs immediately following a technical stop that occurred in June/July 2011

(right plot).

To put these algorithms into a broader context, Fig. 15.2 shows the recorded 〈µ〉 val-
ues of all the ATLAS luminosity monitors in ratio to that of BCMH EventOR—the OR

algorithm defined on BCMH (BCMHOR). The BCM detectors are calibrated simultane-

ously at the point of the vdM scan, which took place on 16 May 2011. It is therefore clear

that a rapid relative drift between BCMH and BCMV occurred shortly after, as indicated

by the blue points in Fig. 15.2, situated at -0.5 % to -0.8 %. This is consistent with Fig.

15.1 which shows the drift occurring in the four runs immediately following the May 2011

vdM scan and then in runs following the June/July technical stop. A further comparison

is made with the luminosity reported by the tile calorimeter (Tile) in Fig. 15.3. The

equivalent plot, but showing the Event AND algorithms for BCM instead, is shown in

Fig. 15.4.

Clearly the drifts appear to stabilize, so one would like to understand the time scale

over which the stabilization takes place. It should also be noted in Fig. 15.2 that several

technical stops occurred during the year of running during which the BCM detectors

received no radiation: immediately prior to the vdM scan, then later in the year (as

mentioned) in June/July, late August/early September and finally late September/early

October. It was therefore suggested that the performances of the BCM diamond detectors

may be sensitive to the amount of radiation they had recently received, and the technical

stops provided ‘dry’ periods, during which the response would ‘relax’.

With this in mind, the integrated luminosities since the previous technical stop are

shown underneath the ratios in Fig. 15.1. It is clear that stabilization of the ratios appears

to occur after an integrated luminosity of L =
∫
dtL & 5 ·1036 cm−2, which is consistently

established from both plots (left and right).

In conclusion, there are apparently two time scales in the problem: a time during which

the BCM-reported luminosity stabilizes (τstab) whilst it is subject to ongoing radiation,

and a relaxation time (τrelax) during which there is no received radiation and the BCM-

reported luminosity reverts. The limit of the time constant τrelax associated with the

effect of any radiation dose wearing off is set by the duration shortest technical stop after

which an immediate drift was observed. The maximum value for this time constant is

therefore around 21 days, the duration of the technical stop immediately before the vdM

scan in May 2011. Since the BCM detectors should be accurately reporting luminosity

during all runs with beam in collision, it is clear that the vdM calibration scan is best not

performed immediately after a dry period, but rather after the BCM detectors have had

a recent radiation dose corresponding to an integrated luminosity of at least 5 · 1036 cm−2.

This way the detectors are calibrated in the same state as when they are required to give

accurate luminosity monitoring during normal high-luminosity physics running.
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15.5. Recalibration of the visible cross-section for the AND algorithm

15.5.1. Introduction and method. The following study begins by considering the

expressions for POR and PAND, given by Eqs. 15.2 and 15.4, in the limits of large and

small µvis ∈ {µOR
vis , µ

AND
vis }. In the limit of small µvis, one finds

PAND = µAND
vis and POR = µOR

vis , (15.19)

derived using e−x = 1 − x for x ≪ 1. In the limit of large µvis, the expression for POR

is the same as that in Eq. 15.2, but PAND becomes, making a Taylor expansion about

µAND
vis = ∞,

PAND = 1 + exp

(

−µ
AND
vis σOR

vis

σAND
vis

)

− 2 exp

(

−µ
AND
vis

(
σAND
vis + σOR

vis

)

2σAND
vis

)

=

[

1− exp

(

−µ
AND
vis σOR

vis

2σAND
vis

)]2

,

(15.20)

where the factorization in the second line is permitted when one assumes that σAND
vis ≪ σOR

vis

in the final exponential of the first line, which is valid for BCM. In the two limiting cases,

the expressions for both POR and PAND can now be analytically inverted, to obtain µOR
vis

and µAND
vis in terms of POR and PAND, respectively. This then allows us to write down an

expression for the ratio of the luminosities determined according to each algorithm:

LAND

LOR
=
µAND
vis

µOR
vis

σOR
vis

σAND
vis

=







2 log
(
1−√

PAND

)

log
(
1− POR

) for high µvis, and

PAND

POR

σOR
vis

σAND
vis

for low µvis.

(15.21)

It is clear from this expression that, in the limit of high µvis, the ratio is independent of

σAND
vis . Moreover, in the low-µvis domain, the ratio is directly proportional to µAND

vis , and

therefore any variation in the µAND
vis calibration would be expected to alter this luminosity

ratio only for low µvis values.

The ‘AND’ algorithm may be satisfied in two distinct ways: by a genuine coincidence,

whereby the ‘A’- and ‘C’-side detectors each record one or more hits from particles coming

from pp interactions in the same bunch crossing, or by an accidental coincidence, whereby

the algorithm is satisfied but not for the previous reason—e.g. particles from different

proton–proton collisions in the same bunch crossing, afterglow, etc. The accidental coin-

cidences thus form a background for the ‘AND’ algorithm. Given the relative unlikelihood

of satisfying the ‘AND’ algorithm compared with that of the ‘OR’ algorithm, this back-

ground is very small in all but the very-low-µ régimes, specifically µ . 1. Using the

previously derived result that the luminosity ratio (LAND/LOR) is independent of σAND
vis

in the high-µ régime, one can recalibrate σAND
vis to obtain better agreement for this ratio

at low µ.
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The initial calibration involved applying Eq. 15.4 directly in the vdM calibration

method, i.e. fitting the luminosity scan curve2 determined from this algorithm then ex-

tracting σAND
vis , as explained in Sec. 15.3. This recalibration differs from the way in which

σAND
vis was initially calibrated, since it does not rely on the Σx and Σy values determined

during the vdM scan for this algorithm.

The recalibration procedure, for each detector, was to vary the value of σAND
vis by

some small amounts (±1% and ±2%) about its nominal value in order to minimize the

discrepancy with the reported luminosity by the OR algorithm. The ratios of luminosities

according to each algorithm (minus one) were binned in µ—determined according to the

OR algorithm—and the minimization of the discrepancy precisely amounted to minimizing

the χ2 fit of these data with respect to the ‘model’ LAND/LOR − 1 = 0% over the entire

µ range. The resulting χ2 values, as a function of the variation in σAND
vis , are fitted

with a parabola, whose minimum point is the precise value of σAND
vis that minimizes the

discrepancy, with errors given by the variation in σAND
vis required in either direction to

increase the χ2 by one.

The effect of variations of σAND
vis on the ratio for May 2011 vdM scan data are shown

in Fig. 15.5. The corresponding parabolae to determine the best χ2 fit are shown in Fig.

15.6.
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Figure 15.5. The effect of variations of σAND
vis on the ratio for May 2011

vdM scan data. The nominal (starting) visible cross-sections are shown on
the plot; i.e. the values before the optimization took place. Multiplying
these nominal values by the determined percentage multipliers yields the
new σAND

vis values.

2The luminosity scan curve is obtained during the vdM scan by measuring a quantity proportional to the
luminosity as a function of beam separation.
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15.5.2. Background subtraction. In the lowest µ bins in Fig. 15.5, the back-

ground for the EventOR algorithm can be significant enough to have a > 1% effect on the

luminosity, and so appropriate background corrections should be in place. The analysis

above has been repeated but this time with background subtraction applied directly to µ

values determined from the OR algorithms, given that

µ = µraw + µbkg. (15.22)

Once the background subtraction is applied to the luminosities computed according to

the OR algorithm in the correct calibration scheme, the variation and fitting of the best

value of σAND
vis is repeated, now using background-subtracted OR data, as shown in Fig.

15.7 for the May 2011 vdM scan, for both BCMH and BCMV. The ratios are this time

binned for background-subtracted µ values, namely µCorrected
OR . The results, in addition to

results where bins in beam separation were used in place of µ, are summarized in Table

15.2. Furthermore, plots may be found in Fig. E.1 as an appendix, which show the effect

of these optimizations on the luminosity ratios.
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given in [117].
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Table 15.2. The values of σAND
vis determined for BCMH and BCMV using

background-corrected OR data (µCorrected
OR ) in the analysis. The values have

been determined for all scans both collectively and individually, and binned
in either µ or beam separation as indicated. The corresponding plots for
values determined using background-corrected µ bins are shown in Fig. E.1,
and those corresponding to binning in nominal separation (or equivalently
pseudo-lumiblocks) are shown in Fig. E.2.

Scan σAND
vis (BCMH) [mb] σAND

vis (BCMV) [mb]

VII & VIII (µ) 0.1372± 0.0003 0.1398± 0.0003
VII (µ) 0.1366± 0.0004 0.1394± 0.0004
VIII (µ) 0.1377± 0.0004 0.1402± 0.0004

VIIx (beam sep.) 0.1366± 0.0005 0.1401± 0.0005
VIIy (beam sep.) 0.1362± 0.0005 0.1393± 0.0005
VIIIx (beam sep.) 0.1372± 0.0005 0.1404± 0.0005
VIIIy (beam sep.) 0.1380± 0.0005 0.1403± 0.0005

15.6. Conclusions

The BCM detectors show a clear dependence on the recent integrated luminosity (ra-

diation dose) they have received. It has been observed in all instances that the associated

drifts in efficiency stabilize after some time. The recommendation is therefore that, be-

fore a vdM scan which is the crucial point at which all BCM detector calibrations are

performed, these diamond detectors should have been recently subjected to the amount of

radiation corresponding to L = 5 · 1036 cm−2 in order that the detectors have stabilized,

to prevent drifting of up to ∼ 0.7% after the calibration has already been performed, thus

mitigating a fairly severe systematic uncertainty.



CHAPTER 16

Transverse beam coupling part 1: The effect of linear

transverse coupling on the luminosity calibration by the van

der Meer method

We return now to the question of the validity of the assumed factorization of the x

and y components of the bunch densities in the vdM calibration method, which was raised

towards the end of Sec. 15.3. In this chapter, an analysis of the effect of beam correlation

on the measured luminosity is presented. A single-Gaussian model is used to parameterize

the individual beam densities, which includes the possibility of having a non-zero x-y

correlation within each beam. Using the approximation that any non-zero beam crossing

angle may be ignored, the internal parameters of the model are systematically constrained

using a set of analytically derived equations, in a method I have developed. The neglect

of crossing angle is reintroduced as a systematic error on those constraints where it is

deemed necessary. Finally, the implication of non-zero beam correlation on the measured

luminosity is considered explicitly for the results of van der Meer scans performed during

October 2010 and May 2011, namely scans IV, V, VII and VIII.

16.1. Introduction

The van der Meer (vdM) scan was first introduced in [118], and is summarized in

Sec. 15.3. It involves the displacement of two colliding beams by some amount ~h = (hx, hy),

in a direction transverse to the common1 axis of their respective motions, in order to

determine the convolved beam widths, Σx,y, which appear in the standard definition2 of

the luminosity:

L =

∫

d3~xL(~x) ∝ 1

2πΣxΣy
, (16.1)

where x and y are orthogonally chosen directions in the transverse plane. The vdM

method also holds for arbitrary beam directions and scan plane, as explained in [119]. In

addition, the beams may be centred or displaced in one direction whilst a scan takes place

in the orthogonal direction, giving rise to in-plane (centred) and out-of-plane (offset) scans

respectively.

The analysis presented here focuses on employing a single-Gaussian model for the

individual beam densities, which may be used to predict a certain class of linear movements

of the luminous centroid, to be soon defined formally, during a vdM scan. Confrontation

of the predictions of this model with data from vdM scans performed during October 2010

1The two beams may be collided with a small crossing angle, as considered shortly.
2This definition is derived from the assumption that the individual beams have no internal correlation; i.e.
no mixing of the x- and y-dependence

221



222 16. TRANSVERSE BEAM COUPLING PART 1

(scans IV and V) and May 2011 (scans VII and VIII)3 enable relatively tight constraints to

be placed on the internal parameters of such a model, of which there are six: the individual

x and y beam widths, and an x-y correlation coefficient for each beam.

Under an approximation made here, namely that any beam crossing angles4 are ig-

nored, it should be noted that luminous centroid movements in the z direction will not

arise but are, in any case, understood as a consequence of beam crossing at a non-zero

angle. The focus of this analysis will be to extract information about x-y beam correlation

using luminous centroid movements in the z = 0 plane, and to determine how the neglect

of this correlation will impact the final luminosity result. It is instructive to summarize, for

the single-Gaussian model, how certain observed phenomena should arise. If we use 〈~x〉,
with ~x = (x, y, z), to label the position of the luminous centroid, we expect the measured

quantities to be affected as summarized in Table 16.1.

Table 16.1. Observed phenomena related to the movement of the lumi-
nous centroid during vdM scans in the single-Gaussian model.

Observed phenomenon Cause

d〈z〉
dhx,y

Beam crossing angle in x-z or y-z plane;
αxz and αyz, respectively.

d〈x〉
dhx

6= d〈y〉
dhy

6= 0 Different beam sizes in transverse plane.

d〈y〉
dhx

∼ d〈x〉
dhy

6= 0 x-y correlation within each beam.

3Note that out-of-plane (offset) scans have not been included here, for reasons addressed towards the end.
4This has been examined numerically [120] for all scans, and deviations from this approximation will be
dealt with on a case-by-case basis.
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Figure 16.1. These plots show the position of the luminous centroid dur-
ing the first set of x and y scans in October 2010, collectively labelled ‘Scan
IV’. A linear fit has been made to the central scan data, namely where the
separation |h| ≤ 0.25mm. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d〈x〉/dhx, d〈y〉/dhx
and d〈z〉/dhx, as in Table 16.1.
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Figure 16.2. These plots show the position of the luminous centroid dur-
ing the second set of x and y scans in October 2010, collectively labelled
‘Scan V’. A linear fit has been made to the central scan data, namely
where the separation |h| ≤ 0.25mm. The linear fit gives the gradient of the
movement, and corresponds to the extraction of the observables d〈x〉/dhx,
d〈y〉/dhx and d〈z〉/dhx, as in Table 16.1.
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Figure 16.3. These plots show the position of the luminous centroid dur-
ing the first set of x and y scans in May 2011, collectively labelled ‘Scan
VII’. A linear fit has been made to the central scan data, namely where
the separation |h| ≤ 0.05mm—these data show far greater non-linearity
than scans IV and V. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d〈x〉/dhx, d〈y〉/dhx
and d〈z〉/dhx, as in Table 16.1.



226 16. TRANSVERSE BEAM COUPLING PART 1

-0.066

-0.064

-0.062

-0.06

-0.058

-0.056

-0.054

-0.052

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>
 (

m
m

)

Separation hx (mm)

Scan VIII

d<x>/dhx = -0.00170 ± 0.00172

(a)

-0.0595

-0.059

-0.0585

-0.058

-0.0575

-0.057

-0.0565

-0.056

-0.0555

-0.055

-0.0545

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>
 (

m
m

)

Separation hy (mm)

Scan VIII

d<x>/dhy = -0.00345 ± 0.00273

(b)

 1.178

 1.179

 1.18

 1.181

 1.182

 1.183

 1.184

 1.185

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>
 (

m
m

)

Separation hx (mm)

Scan VIII

d<y>/dhx = -0.00310 ± 0.00210

(c)

 1.174

 1.176

 1.178

 1.18

 1.182

 1.184

 1.186

 1.188

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>
 (

m
m

)

Separation hy (mm)

Scan VIII

d<y>/dhy = 0.02287 ± 0.00380

(d)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>
 (

m
m

)

Separation hx (mm)

Scan VIII

d<z>/dhx = -15.28312 ± 2.70341

(e)

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>
 (

m
m

)

Separation hy (mm)

Scan VIII

d<z>/dhy = -197.39808 ± 3.12395

(f)

Figure 16.4. These plots show the position of the luminous centroid dur-
ing the second set of x and y scans in May 2011, collectively labelled ‘Scan
VIII’. A linear fit has been made to the central scan data, namely where
the separation |h| ≤ 0.05mm—these data show far greater non-linearity
than scans IV and V. The linear fit gives the gradient of the movement,
and corresponds to the extraction of the observables d〈x〉/dhx, d〈y〉/dhx
and d〈z〉/dhx, as in Table 16.1.
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16.2. The single-Gaussian model

In the single-Gaussian model, the density of each individual bunch is parameterized

as a single Gaussian profile in three dimensions, as in Eq. 16.2,

ρi(x, y, z, t) =
exp

(
−1

2~x · σ−1
i · ~x

)

√

(2π)3|σi|
, (16.2)

with the so-called covariance matrix given by

σi =






σ2x,i κi σx,i σy,i 0

κi σx,i σy,i σ2y,i 0

0 0 σ2z,i




 with ~x =






x

y

z ± z0(t)




 (16.3)

and i ∈ {1, 2} labelling the beam. (See, for instance, [121].) This matrix describes the

linear x-y correlation of the proton density within a bunch by introducing the correlation

coefficient κi, in addition to specifying the overall individual beam widths σj,i in each

direction j ∈ {x, y}. The appropriate sign ± should be chosen for each beam according to

convention.

At this point, an approximation is made in which the two beams collide with a zero

crossing angle. A consequence of employing this approximation is the factorization of

the x- and y-dependence from the z- and t-dependence in Eq. 16.2, owing to the block-

diagonal form of the covariance matrix in Eq. 16.3. Up to factors of the collider revolution

frequency (fr) and the bunch populations (n1,2) the luminosity density may be written

L(x, y, z) ∝
∫

ρ1(x, y, z, t) ρ2(x, y, z, t) dt

= ρ1(x, y) ρ2(x, y)

∫

ρ1(z, t) ρ2(z, t) dt ,

(16.4)

where the factorization permitted by the zero-crossing-angle approximation is made ex-

plicit in the second line. The convolution integral may be evaluated in the z = 0 plane,

reducing the problem to two dimensions. The luminous centroid, 〈~x〉, is then defined to

be the vector ~xmax, such that the quantity L(~xmax) is maximized:

〈~x〉 := ~x such that L(~x) = max(L). (16.5)

This statement can become ill-defined for more sophisticated parameterizations of the

bunch densities that go beyond the single-Gaussian model (e.g. a double-Gaussian model),

but here it is given by the simple condition

dL(~x)
d~x

∣
∣
∣
∣
~x=〈~x〉

:= 0, (16.6)

which holds for all three components of ~x.

The remainder of this analysis will be concerned with the two-dimensional luminosity

density

L(x, y;hx, hy) = ρ1(x− hx/2, y − hy/2) ρ2(x+ hx/2, y + hy/2), (16.7)

where the possibility of a beam separation hx,y has been explicitly introduced in the x- and

y-directions respectively, which is symmetric about the origin. The bar is used to denote

the beam separation defined with respect to the ATLAS co-ordinate system. Furthermore,
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in the LHC coordinate system, the separation is defined to be the position of beam 2 minus

that of beam 1. The separations in the LHC co-ordinate system (used in the remainder

of this analysis) are given by

hx = −hx and hy = hy . (16.8)

It should be well-noted here that the model itself, along with all predicted and mea-

sured quantities, are defined with respect to the ATLAS coordinate system, where only

the beam separations are given in the LHC coordinate system.

16.3. Method

The principal aim of the method I have developed here is to exploit the measurable

movements of the luminous centroid during vdM scans in order to indirectly infer the

properties of the individual beams as precisely as possible. Specifically, I appeal to the

observable phenomena listed in Table 16.1 in order to attempt to extract the individual

beam parameters under the assumption of the single-Gaussian model for the bunches

within the two beams. The emphasis is on precisely quantifying the level of x-y correlation,

in order to establish an appropriate systematic uncertainty for the absolute luminosity

calibration by the vdM method, which assumes factorization.

It can be shown that the single-Gaussian model has the property that it predicts only

linear movements of the luminous centroid with respect to scan separation. That is, one

can write

〈~x〉 = hx
d〈~x〉
dhx

+ hy
d〈~x〉
dhy

, (16.9)

which is an exact expression for this model, and holds for both cases of an in-plane and

an out-of-plane scan. It should be borne in mind that the single-Gaussian model is one of

a limited set of models that actually possesses an analytical solution.

Adopting an analytical approach, my analysis of linear transverse correlation now

follows by writing d〈~x〉/dhj , where j ∈ {x, y}, as a formal power series in κ1,2, since it is

assumed that this correlation coefficient should be small5. It is physically justified that

any correlation coefficient as defined in Eq. 16.3 should indeed be small, i.e. κ1,2 ≪ 1,

since any larger coefficients would give rise to such highly deformed beams they are beyond

reasonable consideration for LHC optics. One can therefore derive a set of four equations

which govern the movement of the luminous centroid in the z = 0 plane, upon expanding

the exact results in powers of the individual beam correlations, κ1,2, and retaining only

up to linear terms:
d〈x〉
dhx

=
σ2x,1 − σ2x,2

2
(
σ2x,1 + σ2x,2

) + . . . (16.10)

d〈y〉
dhx

=
σy,1 σy,2

(
κ1 σx,1 σy,2 − κ2 σx,2 σy,1

)

(
σ2x,1 + σ2x,2

)(
σ2y,1 + σ2y,2

) + . . . (16.11)

d〈x〉
dhy

=
σx,1 σx,2

(
κ2 σx,1 σy,2 − κ1 σx,2 σy,1

)

(
σ2x,1 + σ2x,2

)(
σ2y,1 + σ2y,2

) + . . . (16.12)

5Mathematically speaking, it is defined only for the open interval (−1, 1) anyway, but the smallness is
required so that we may formally truncate the expansion after only one term in each expression.
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d〈y〉
dhy

=
σ2y,2 − σ2y,1

2
(
σ2y,1 + σ2y,2

) + . . . (16.13)

Here . . . refers to higher-order terms in κ1,2.

It is instructive at this point to observe the dependence of these analytical expressions

for the gradients of the (linear) luminous centroid movements on the individual beam

parameters. The x (y) movement during an x (y) scan is independent of the beam pa-

rameters in the orthogonal, y (x), direction and is, moreover, independent to first order of

the correlation coefficients κ1,2. Therefore it is formally consistent for one to immediately

use these gradients of the luminous centroid movements in the scan direction (Eqs. 16.10

and 16.13) in the extraction of the individual beam widths. The gradients themselves are

determined, within some error, via a linear fit to data.

In the case of a vdM scan in which the residual beam crossing angles are negligible,

the convolved beam widths can be shown to be

Σj =
√

σ2j,1 + σ2j,2 . (16.14)

We may supplement Eqs. 16.10–16.13 with this expression for the convolved beam widths

in x and y, along with an expression for the correlation of the convolved luminous region,

κL =
κ1 σx,2 σy,2 + κ2 σx,1 σy,1

ΣxΣy
, (16.15)

which is also a measured quantity. This way one has enough equations to solve for the six

‘unknowns’: σx1, σx2, σy1, σy2, κ1 and κ2. A redundant second handle on the individual

beam widths is provided by the width of the luminous region, which is related by
(
σLj
)−2

= σ−2
j,1 + σ−2

j,2 , (16.16)

where again j ∈ {x, y}.
The inclusion of individual x-y beam correlation affects the individual beam widths,

the convolved beam widths (Σx,y) and the width of the luminous region (σLx,y) only beyond

terms linear in either κ1,2—for proof in the case of Σx,y, the reader is referred to Section

16.7. It is therefore again formally consistent to extract the individual beam widths using

the gradients of the luminous centroid movements in the scan direction (Eqs. 16.10 and

16.13) supplemented with the measured Σx,y and σLx,y, while neglecting beam correlation.

The analysis then proceeds by substituting the determined widths back into the expressions

for the measured luminous centroid movements orthogonal to the scanning direction (i.e.

Eqs. 16.11 and 16.12) and the measured correlation of the luminous region (Eq. 16.15) in

order that we may then extract κ1,2.

This summarizes the prescription followed in this analysis. Since the standard lu-

minosity formula (Eq. 16.1) neglects beam correlation, this analysis concludes with a

determination of how much the constrained beam correlation would impact a luminosity

measurement that ignored this effect.

Eq. 16.9 has already demonstrated how the single-Gaussian model is insufficient to

describe non-linear phenomena which, in some instances, is seen in the data (see Figs.

16.3(a) and 16.4(a), for examples of this more general feature). It should be noted that
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the fits for the gradients are therefore often restricted somewhat to a limited range of

beam separation where the data appear more linear.

As a final remark, one should note that the standard formula relating the convolved

widths, the widths of the luminous region and the individual beam widths, i.e.

σ2x,y;1,2 =
Σ2
x,y

2
±

√

Σ4
x,y

4
− Σ2

x,y(σ
L
x,y)

2 , (16.17)

remains valid, since no terms linear in κ1,2 appear as corrections to this formula. Thus,

it is demonstrated how the measured σLx,y is used as a consistency check on the derived

constraints but, as one will observe, these constraints from the luminous region widths are

typically much less stringent. The solution of the widths for beams 1 and 2 corresponds to

the choice of sign in Eq. 16.17. The ambiguity in this choice will be addressed in Sec. 16.5.

16.4. Fitted slopes and errors

The gradients for the linear fit of the various luminous centroid movements with respect

to scan separation (h) are shown in Tables 16.2 and 16.3, below, and in Figs. 16.1 to 16.4.

Table 16.2. The fitted d〈{x, y, z}〉/dh{x,y} values for October 2010 vdM
scan data and fit errors.

Scan Observable Value Percentage error

IV d〈x〉/dhx (66.8± 2.4) · 10−3 4%
IV d〈x〉/dhy (47.1± 3.2) · 10−3 7%
V d〈x〉/dhx (60.3± 2.0) · 10−3 3%
V d〈x〉/dhy (47.2± 2.7) · 10−3 6%

IV d〈y〉/dhx (−80.6± 2.7) · 10−3 3%
IV d〈y〉/dhy (−7.7± 3.3) · 10−3 43%
V d〈y〉/dhx (−81.2± 2.3) · 10−3 3%
V d〈y〉/dhy (−7.8± 2.1) · 10−3 27%

Table 16.3. The fitted d〈{x, y, z}〉/dh{x,y} values for May 2011 vdM scan
data and fit errors.

Scan Observable Value Percentage error

VII d〈x〉/dhx (−0.7± 2.6) · 10−3 370%
VII d〈x〉/dhy (−2± 162) · 10−5 8100%
VIII d〈x〉/dhx (−1.7± 1.7) · 10−3 100%
VIII d〈x〉/dhy (−3.5± 2.7) · 10−3 77%

VII d〈y〉/dhx (−1.6± 3.6) · 10−3 220%
VII d〈y〉/dhy (18.7± 2.2) · 10−3 12%
VIII d〈y〉/dhx (−3.1± 2.1) · 10−3 68%
VIII d〈y〉/dhy (22.9± 3.8) · 10−3 17%
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16.5. Constraints on individual beam widths and correlation

In this section, the constraints on the six single-Gaussian model parameters implied

by the fitted quantities of Tables 16.2 and 16.3 are presented. The measured quantities

used to constrain the model are, for Figs. 16.5(a) to 16.6(b), the convolved beam widths,

Σx,y (orange), and the movements of the luminous centroid in the direction of the scan,

d〈{x, y}〉/dh{x,y} (blue and red, sometimes overlapping). For the determination of the x

widths (σx1,x2) the blue and red bands are due to d〈x〉/dhx, and for the determination of

the y widths (σy1,y2) the blue and red bands are due to d〈y〉/dhy, with blue corresponding

to scans IV and VII, and red corresponding to scans V and VIII. The widths of the

luminous region (σL), as measured by the beamspot fit, are taken to be σLx = 38.1µm and

σLy = 37.8µm for scans IV and V, and σLx = 25µm and σLy = 27µm for scans VII and

VIII.

(a) Constraints on the individual x beam
widths.

(b) Constraints on the individual y beam
widths.

Figure 16.5. Constraints from October 2010 scans. Blue indicates scan
IV and red indicates scan V. Orange is the constraint imposed by Σx,y,
and yellow & green are the constraints imposed by σLx,y, of which only one
must be satisfied, as explained in the text.
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(a) Constraints on the individual x beam
widths.

(b) Constraints on the individual y beam
widths.

Figure 16.6. Constraints from May 2011 scans. Blue indicates scan VII
and red indicates scan VIII. Orange is the constraint imposed by Σx,y, and
yellow & green are the constraints imposed by σLx,y, of which only one must
be satisfied, as explained in the text.

The consistency of the constraints is verified by overlaying a much weaker constraint

implied by the measured width of the luminous region, σLx,y (light yellow and green). In

the latter case, because of the ambiguity in choosing the sign in Eq. 16.17, only one of

the regions must overlap, not both.

The absence of a plotted region of constraint by σLx,y in Fig. 16.6(a) is due to the lack of

a consistent overlap of this constraint with the others that are shown. The overlap region

from the remaining constraints is much more stringent in any case, so the assumption is

made here that the individual beam widths may be determined from the plotted constraint

regions alone.

In order to determine the widths of the constraining bands, which themselves corre-

spond to 1σ uncertainties, errors from the corresponding measured quantities have been

taken into account. These are, namely, an absolute error6 of 1 µm on the determined

convolved beam widths, Σx,y, and the errors on the fitted d〈{x, y}〉/dh{x,y} values shown

in Tables 16.2 and 16.3. The error on the constraining regions imposed by the measured

σLx,y values is taken to be ∼ 2.5µm.

Figures 16.7(a)–16.7(e) show the constraints on the individual beam correlation, κ1,2,

implied by the measured quantities d〈{x, y}〉/dh{y,x} (note the reversal of x and y) and

the measured correlation of the luminous region, κL, which is related to beam parameters

as in Eq. 16.15. It may be instructive at this point to refer back to Eqs. 16.11 and Eqs.

16.12, observing again that they have linear terms in κ1,2.

The following colour correspondence is made for the constraining bands in Figs.

16.7(a)—16.7(e): blue and red are due to d〈x〉/dhy and d〈y〉/dhx, respectively and green

6This is a very conservative error, which has since been reduced. Nonetheless, it is sufficiently small to
provide a good constraint on the individual beam widths.
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is due to κL. All the constraints made here are summarized in Tables 16.4 and 16.6. The

convolved beam widths used in this analysis are tabulated in Table 16.5.

Figures. 16.7(a) and 16.7(b) certainly demonstrate an inconsistency with respect to

the constrained values of κ1 and κ2 for the October 2010 scans (IV and V). The scans

themselves are in fact rather scan pairs: an X scan and a Y scan. The red and blue slopes

were respectively determined individually from the X and Y scans within the scan pair.

One might therefore speculate as to the reproducibility of the results, since the X and Y

scans are necessarily performed at slightly different times, or indeed a model limitation.

Notwithstanding, the systematic uncertainty determined for the October 2010 scans is

conservatively determined by considering both points of overlap with the κL constraint

(green) and is still shown to be small (Sec. 16.7). In contrary, the consistency seen for

scan (pair) VII for May 2011 (Fig. 16.7(c)) is very noteworthy, and both κ1 and κ2 are

unambiguously determined to be very small.

The width of the blue band implied by the luminous centroid movement in Fig. 16.7(e)

includes an approximate systematic of having neglected the beam crossing angle, cf. Fig.

16.7(d), an effect giving rise to ∼ 75% error on the measured value, as determined numer-

ically. Nonetheless, these bands still provide a good constraint on κ1,2. The width of this

band is now the quadrature sum of this systematic and the previously determined error

neglecting beam crossing angles. (See Appendix E.2 for a description of the determination

and the particular values used.)

The following section describes how a beam crossing angle can masquerade as an

effective x-y beam correlation, and how these numerically determined systematics are

given theoretical footing.

Table 16.4. Constraints on individual beam widths. Errors are deter-
mined by taking the approximate widths of the corresponding overlap re-
gions in Figs. 16.5(a)–16.6(b).

Parameter October scan IV October scan V May scan VII May scan VIII

σx1 60.9±1.0 µm 60.6±1.0 µm 40.2±1.0 µm 40.2±1.0 µm
σx2 53.3±1.0 µm 53.8±1.0 µm 40.4±1.0 µm 40.4±1.0 µm
σy1 58.7±1.0 µm 58.7±1.0 µm 40.9±1.0 µm 40.9±1.0 µm
σy2 57.8±1.0 µm 57.8±1.0 µm 42.6±1.0 µm 42.6±1.0 µm

Table 16.5. Table of bunch-averaged convolved beam widths (Σ) mea-
sured during scans IV, V, VII and VIII.

Scan Σx (µm) Σy (µm)

Scan IV 81.0 82.3
Scan V 81.0 82.3
Scan VII 57 59
Scan VIII 57 59
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(a) Scans IV, with any non-zero cross-
ing angle neglected.

(b) Scans V, with any non-zero crossing
angle neglected.

(c) Scans VII, any non-zero crossing an-
gle neglected.

(d) Scans VIII, any non-zero crossing
angle neglected.

(e) Scans VIII, with crossing angle error
determined numerically then summed in
quadrature with the fit error, resulting
in a more consistent constraint.

Figure 16.7. Constraints on the correlation coefficient of each beam. In
the following cases, the beam crossing angle has been neglected: Figs.
16.7(a) and 16.7(b) show October 2010 scans IV and V respectively, where
16.7(c) and 16.7(d) show May 2011 scans VII and VIII respectively. Whilst
a good approximation for scans IV and V it may not be a valid approxima-
tion to neglect beam crossing angles in VIII. The inclusion of the crossing
angle is shown in Fig. 16.7(e), where the inclusion serves to widen one
band. In all of the above, the green bands are constraints implied by the
measured correlation of the luminous region, where the remaining bands
are due to the measured quantities d〈{x, y}〉/dh{y,x} of Eqs. 16.11 (blue)
and 16.12 (red).
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Table 16.6. Constraints on the x-y correlation coefficient, κ, for each
beam. Again, errors are approximate widths of the corresponding overlap
regions, this time in Figs. 16.7(a)—16.7(d).

Parameter October IV October V May scan VII May scan VIII

κ1 from d〈y〉/dhx (red) −0.08± 0.01 −0.09± 0.01 0.010± 0.005 0.015± 0.010
κ1 from d〈x〉/dhy (blue) −0.16± 0.01 −0.18± 0.01 0.005± 0.010 0± 0.005

κ2 from d〈y〉/dhx (red) 0.08± 0.01 0.09± 0.01 0.005± 0.005 0± 0.010
κ2 from d〈x〉/dhy (blue) 0.15± 0.01 0.17± 0.01 0.010± 0.010 0.015± 0.005

16.6. The effect of beam crossing angles

Realistically, the profile for each bunch should be transformed accordingly to mirror

any small crossing angle in the collider. The numerical impact of such half-crossing angles

of the order αyz/2 ∼ 100–120 µrad in a single plane, e.g. with αxz/2 ∼ 0 µrad, is

safely negligible for observables of scans IV and V under consideration in this analysis.

However, the introduction of a non-zero second crossing angle αxz/2 ∼ 20 µrad (which

may be determined by observing the z motion of the luminous centroid during a scan in

the x direction) for scan VIII gives rise to certain observables for which it may be argued

otherwise, and we will correspondingly introduce an appropriate systematic error, whose

effect will be to relax the constraints on κ1,2.

Generally it is seen that the aforementioned approximation of neglecting any beam

crossing angles is sufficient for the determination of κ1,2. It will be shown here, in ad-

dition, that the approximation is still valid insofar as determining the individual beam

widths. The effect of having neglected crossing angles in the determination of κ1,2 is then

reintroduced as a systematic on the measured d〈{x, y}〉/dh{y,x} values, which has the ef-

fect of relaxing one constraint and slightly improving the consistency of scan VIII, as in

Fig. 16.7(e).

16.6.1. Including crossing angles in the covariance matrix. Consider the co-

variance matrix for a single-Gaussian model which includes beam correlation but does not

account for any beam crossing angle, as in Eq. 16.3. In this special case, we have a neat

factorization of the x- and y-dependence from the z- and t-dependence, which is the basis

for the independent two-dimensional study of beam correlation.

Passively transforming the coordinate system (for the correlated model) in order to

additionally model a small crossing angle in either the x-z or y-z plane (or both7) and

retaining only linear, bilinear and quadratic terms in the corresponding rotation angles,

αxz and αyz respectively, one obtains

σ =






σ2x + α2
xz σ

2
z κσx σy − αxz αyz σ

2
z αxz σ

2
z

κσx σy − αxz αyz σ
2
z σ2y + α2

yzσ
2
z −αyz σ2z

αxz σ
2
z −αyz σ2z σ2z




 (16.18)

where the beam index i has been dropped.

7Commutation does not pose an issue here, since the angles in question are very small.
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One is at liberty to restrict attention only to the features of the two-dimensional

projection of the beam densities in the z = 0 plane, in which case is it not necessary to

consider terms in the final row or column of Eq. 16.18; such elements would be important

in the study of the z-movement of the luminous centroid, for instance. However, one may

study, as before, just the terms directly affecting the x- and y-dependence of the beam

profile.

It is now observed that beam crossing introduces corrections to the transverse beam

widths (due to extra terms on the diagonal) and a new effective beam correlation in the off-

diagonal terms κσx σy − αxz αyz σ
2
z . Quadratic and bilinear terms in the crossing angles

have been retained, since if they appear multiplying σ2z they may still be numerically

large. As usual, however, terms beyond the linear coupling, κ, have been ignored. Other

conservative approximations have been invoked in deriving this rotated covariance matrix,

such as σx,y ≪ σz, etc.

16.6.2. Numerical impact and discussion. The beam crossing angle can indeed

masquerade as x-y correlation, if the term αxz αyz σ
2
z is of a comparable magnitude to

κσx σy. However, one requires at least a small crossing angle in both planes, which did

not appear to be the case for scans IV–VI, for which the zero crossing angle was a good

approximation. Scans VII–IX indicate a crossing angle in both planes, where it may be

argued that this approximation begins to break down.

An approximate numerical evaluation reveals the extent to which this approximation

fails for scans VII and VIII. Taking σz ∼ 70mm, αxz ∼ 20µrad, αyz ∼ 120µrad and

σx ≈ σy ∼ 40µm (which are very reasonable for the May 2011 data) along with κ which

was found8 to be of order 0.01 yields:

αxz αyz σ
2
z ∼ 10−5mm2

κσx σy ∼ 10−5mm2

This justifies the choice of assigning a ∼ 50%–80% systematic to the determined κ values

for these scans. The specific uncertainties within this range may be determined by ap-

pealing to the actual values of αxz αyz σ
2
z and κσx σy on a case-by-case basis, e.g. as in

αxz αyz σ
2
z/(κσx σy).

Finally, the numerical impact on the determination of the beam widths is addressed.

Taking the same order-of-magnitude values reveals:

α2
xz σ

2
z ≈ 2 · 10−6mm2

α2
yzσ

2
z ≈ 7 · 10−5mm2

These are to be compared with the original widths used: σ2x ≈ σ2y ≈ 2 · 10−3mm2. In

conclusion, the May 2011 scan analysis (scans VII and VIII) is still perfectly valid, since

this error corresponds to ∼ 1.7% on the measured value of σy and is negligible on σx—

the estimated error on the current determination from luminous centroid movements and

luminous width constraints was already ∼ 3%, so taking the error from crossing angle in

quadrature means the error should be quoted slightly higher, at around ∼ 4%, but this

8See Tables 16.4 and 16.6 for details.
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does not affect the aim of the study: a determination of κ and its impact on the measure

luminosity.

Figure 16.7(e) shows how the inclusion of the systematic due to beam crossing some-

what improves the consistency of the overlap region for the extraction of κ1,2.

16.7. Error on luminosity

The standard formula for luminosity, L =
∫
L d~x over all space, may be derived from

the assumption of uncorrelated, single-Gaussian beams. It is given by Eq. 16.1, where

Σx,y are the so-called convolved beam widths,

Σ2
x,y = σ2x,y;1 + σ2x,y;2. (16.19)

For a model that includes beam correlation, these definitions must change accordingly.

If we are blind to correlation, and therefore ignore it in a näıve computation of the

luminosity, the ratio of the luminosity with the beams separated in the x-direction by

some amount h and the luminosity measured at zero separation is

L(h)

L(0)
= exp

[

− h2

2
(
σ2x1 + σ2x2

)

]

≡ exp

(

− h2

2Σ2
x

)

. (16.20)

The vdM analysis gives us direct access to this value, since it is simply related to the

width of the resulting Gaussian distribution. A similar equation holds for a y-scan, giving

Σy.

Explicitly including beam correlation in our considerations, this becomes

L̃(h)

L̃(0)
= exp

{

− h2

2
[
Σ2
x − (κ1σx1σy1 + κ2σx2σy2)2/Σ2

y

]

}

≡ exp

(

− h2

2Σ
2
x

)

(16.21)

and, of course, a similar equation holds for the y-scan. The tilde is used to distinguish

this luminosity from that used in Eq. 16.20 above. Note: Σ2
x,y are the ones defined in Eq.

16.19. Here, one can then solve for the measured convolved beam widths in the correlated

model (denoted by a bar), to obtain

Σ
2
x = Σ2

x −
(κ1σx1σy1 + κ2σx2σy2)

2

Σ2
y

(16.22)

and similarly for Σ
2
y.

9 A binomial expansion reveals that Σx,y are independent of linear

terms in κ1,2:

Σx,y = Σx,y + bilinears + quadratics + h.o.t. (16.23)

explicitly demonstrating the formal validity of its constraint on the individual beam widths

(which were sought before attempting to constrain the correlation coefficients).

In the standard prescription, one would use the measured values of Σx,y to determine

the luminosity using Eq. 16.1. However, the actual (κ-corrected) luminosity, distinguished

with a tilde, in terms of the beam parameters is more complicated, and is given by L̃(0).

One may expand the two definitions of luminosity in powers of the correlation coefficients

9It should be noted here that, as always, the σx,y;1,2 quantities are the projected individual beam widths,
as defined via the covariance matrix in Eq. 16.3, i.e. not the widths in the basis where this matrix would
be diagonal.
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κ1,2:

L̃(0) ∝ 1

2πΣxΣy
+
κ21σ

2
x1σ

2
y1

4πΣ3
xΣ

3
y

+
κ22σ

2
x2σ

2
y2

4πΣ3
xΣ

3
y

+
κ1κ2σx1σx2σy2σy2

2πΣ3
xΣ

3
y

+ h.o.t. (16.24)

where ‘h.o.t.’ are higher-order terms, more than bilinear or quadratic in the κ1,2. Ex-

panding that one which would use in a näıve calculation of the luminosity that neglects

potential correlation, one obtains

L(0) ∝ 1

2πΣxΣy
=

1

2πΣxΣy
+
κ21σ

2
x1σ

2
y1

2πΣ3
xΣ

3
y

+
κ22σ

2
x2σ

2
y2

2πΣ3
xΣ

3
y

+
κ1κ2σx1σx2σy2σy2

πΣ3
xΣ

3
y

+h.o.t. (16.25)

The first term in each series is exactly that obtained from an uncorrelated model. The

bilinear and quadratic terms in each series differ by a factor of 2. Taking the fractional

difference between the two definitions of the luminosity therefore gives the error induced by

beam correlation on the measured luminosity. Using the results of the preceding analysis,

one obtains
L− L̃(0)

L̃(0)
. 0.1% and

L− L̃(0)

L̃(0)
. 0.02% (16.26)

for the October 2010 scan and the May 2011 scan respectively.

16.8. Concluding remarks

In principle, the preceding analysis should be performed on a per BCID basis. The

convolved beam widths are determined in this way, and only their average has been used in

this analysis. In practice, however, statistics may become a problem. It has, nonetheless,

been possible to constrain the model in a consistent fashion for scans VII and VIII, but

October scans IV and V are indicative of a model limitation, due to the lack of consistent

overlap for the κ1,2 constraints. A discussion of extensions to the single-Gaussian model

which have been considered is presented in Chap. 18. The preceding analytical analysis

has been corroborated using a completely numerical tool, confirming the determination

of the various parameters by reproducing the same movements with these parameters as

input.

In summary, it has been possible to determine the parameters of the single-Gaussian

model that give rise to the salient linear phenomena observed in distributions of the

luminous centroid position with respect to beam separation, with the aforementioned

October exception in mind. Even so, the results still indicate that one is dealing with

a small correction to the luminosity via the neglect of beam correlation. A systematic

method has been developed to constrain these parameters in a manner which is formally

consistent, by studying the dependence of these phenomena analytically on parameters

such as the beam correlation coefficient.

In addition, it would be interesting to see how one could make a minimal addition to

the single-Gaussian model to mitigate the problem of inconsistency of the κ determination

of scans IV and V.

The present study concerns October 2010 and May 2011 in-plane scan data. In addi-

tion, two out-of-plane scans were performed for each of the two months, namely scans VI

and IX, in which beams were offset in the orthogonal-to-scan direction. These additional
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scans should provide the ability to study the tails of the distributions of the luminous

centroid movement with separation. In fact, the out-of-plane scans performed in May

2011 (scan IX) had a fixed orthogonal displacement of several times the nominal Gaussian

width of the beams themselves, where the October scans (VI) were performed with a much

smaller constant offset, closer to a single Gaussian width. This makes the scan IX data

an ideal ground upon which to study non-linearities of the luminous centroid movement

observed in these tails.

A foreseeable extension to the model presented herein would be to that of a double-

Gaussian model, where each beam is modelled as the sum of two concentric Gaussians,

each with different widths and peak heights. In particular, one would wish to recover the

linear phenomena observed at small scan separations, so the model should consist of a tall

and narrow ‘primary’ Gaussian with a ‘secondary’ flat and broad Gaussian which would

begin to dominate the dynamics in the high-scan-separation régime. For sufficiently high

scan separations (or, equivalently, an out-of-plane scan at large offset as in scan IX) the

secondary Gaussian would dominate the dynamics of the luminous centroid movements,

even to the extent that a carbon-copy of the single-Gaussian model presented here might

be appropriate, neglecting the primary Gaussian, out of whose jurisdiction one becomes.

In principle, one could then constrain the parameters of the secondary Gaussian in this

régime, then proceed to construct the double-Gaussian model with all the parameters

determined thus far, with the aim of reproducing the non-linear tail data observed for the

in-plane scans.

One could further isolate the effect of the primary Gaussian by fitting only to high-

separation scan data for out-of-plane scans, in a way analogous to how the linear fits have

been made for in-plane scans neglecting the non-linear tail data in this analysis.

The following chapter aims to extend the analysis formalism presented here, in order

to explicitly account for the possibility of non-zero beam crossing angles.
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CHAPTER 17

Transverse beam coupling part 2: An analytical

determination of the parameters of the single-Gaussian

model of bunch densities and their impact on the

luminosity calibration by the van der Meer method

17.1. Introduction

In this chapter, the effect of linear transverse coupling on the luminosity calibration by

the van der Meer (vdM) method [118]—presented for the reader in Sec. 15.3—is studied

for additional vdM scans which took place in March 2011, April 2012 and July 2012. The

principal method is already described in Chap. 16 and [115], but this chapter presents

an extension of the formalism to include explicit beam crossing angles in either plane.

The new analysis is then followed with a compilation of all results obtained, for easy

comparison. Finally, I conclude this chapter with a discussion of the results.

Upon repeating the analysis of October 2010 and May 2011 on data from more recent

vdM scans, it has become unequivocally clear that the single-Gaussian model presented

herein is insufficient to describe the high-separation scan data, since in this region one

generally observes strong non-linear tails in the data. It was demonstrated in Eq. 16.9

the manner in which the single-Gaussian model may only describe linear movements of

the luminous centroid during a vdM scan. It is clear that a more sophisticated model is

required, but this necessarily requires the dimensionality of parameter space to more than

double in most cases, e.g. a double-Gaussian model. Furthermore, the single-Gaussian

model has the remarkable property that it is easily studied analytically, without recourse

to numerical methods, even in the case of arbitrary x-y coupling and a beam crossing

angle. For this reason, this analysis—as applied to central scan data which is usually very

linear—has formed the starting point for analyses using more sophisticated models, since

it may be used to provide a sensible starting point for a search within a large parameter

space. Maintaining the single-Gaussian as the principal model for this analysis, I begin

now by addressing the inclusion of explicit beam crossing angles.

17.2. Analysis method and formalism with beam crossing angles

An analysis of the characteristic length scales of this problem reveals a subtle incon-

sistency in the formalism of Chap. 16, when there exists a beam crossing angle in either

(or both) direction(s). The problem, as analysed in Sec. 16.6 and [115], stems from the

fact that, whilst the quantity α—the beam crossing angle in radians—may be the smallest

dimensionless scale of the model (typically ∼ 10 – 100µrad), if it appears multiplying the

large z width, σz, of either beam then the numerical impact may be significant. In fact,
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the numerical impact of such a term may be approximately that of the off-diagonal terms

in the covariance matrix (Eq. 16.3) and will thus manifest as an effective correlation. In

addition, a beam crossing angle gives rise to a new phenomenon: movement of the z po-

sition of the luminous centroid. Overall, it is identified to play a significant rôle in some

of the vdM scans considered in this chapter.

One includes a non-zero crossing angle into the single-Gaussian model by simultane-

ously making the following passive transformations of the coordinate system for each of

the two beams:

~x1 → ~x1 = R
(

±α
2

)

~x1 (17.1)

and

~x2 → ~x2 = R−1
(

±α
2

)

~x2, (17.2)

where the particular choice of + and − is chosen according to convention. Here, R is a

rotation matrix by an angle α/2 of the vector ~xi, given in Eq. 16.3, about the relevant

axis. Indeed, the rotations may be compounded to include a crossing angle in both planes.

This way,

L(x, y, z, t) ∝ ρ1(x, y, z, t) ρ2(x, y, z, t)

= exp

{

−1

2

[
~x1 ·

(
σ−1
1

)
· ~x1 + ~x2 ·

(
σ−1
2

)
· ~x2
]
}

→ exp

{

−1

2

[
~x1 ·R−1 ·

(
σ−1
1

)
·R · ~x1 + ~x2 ·R ·

(
σ−1
2

)
·R−1 · ~x2

]
}

.

(17.3)

The transformation may actually be absorbed into the definition of the covariance matrix,

which will result in at least some of the remaining zero elements in Eq. 16.3 becoming

non-zero. In this sense, beam crossing angle is mathematically equivalent to x-z and y-z

coupling. Revisiting the arguments presented at the start of this section, this coupling

may be numerically as large as transverse (x-y) coupling.

The mathematical difficulty that one encounters when trying to include a beam cross-

ing angle is that the expression in Eq. 16.4 for the luminosity no longer factorizes. How-

ever, as shown below, an analytical solution may still be obtained, and the corrections to

the previous model appear explicitly as new terms in a set of equations similar to Eqs.

16.10 – 16.13.

The solution to this problem begins by identifying that the terms in the exponent of

Eq. 17.3 are either bilinears or quadratics in the four space-time variables x, y, z and t.

Thus, we may write the expression for the luminosity in matrix form, as

L(x, y, z, t) = N exp



−1

2

4∑

i,j=1

xiKij xj +
4∑

i=1

Ji xi



 = N exp(E), (17.4)

where N is just a proportionality factor. In this expression, x1, x2 and x3 are x, y and

z, respectively, and x4 is t. One can always determine the components of the vector J or

the elements of the matrix K by differentiation of the exponent:

Ji =
dE
dxi

∣
∣
∣
∣
xk→0

∀k ∈ {1, 2, 3, 4} and Kij = − d2E
dxixj

. (17.5)
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One need not worry about any constant terms appearing, since these may be absorbed

into the overall factor N , which will remain unimportant in our analysis here.

In order to perform the temporal convolution that appears in the definition of the

luminosity in Eq. 16.4 we integrate Eq. 17.4 over x4 = t to obtain

L(x, y, z) =
∫ ∞

∞
dtL(x, y, z, t) = N e

J2t
2Ktt

√
2π√

Ktt
exp



−1

2

3∑

i,j=1

xiK
′
ij xj +

3∑

i=1

J ′
i xi



 ,

(17.6)

where xi are now components of the 3-tuple (x, y, z), since one variable has been integrated

out. K ′ and J ′ are a 3 × 3 matrix and a 3-tuple respectively. Written in terms of the

original components or elements of J and K, they are

K ′ =







−K2
xt

Ktt
+Kxx Kxy − KxtKyt

Ktt
Kxz − KxtKzt

Ktt

Kxy − KxtKyt
Ktt

−K2
yt

Ktt
+Kyy Kyz − KytKzt

Ktt

Kxz − KxtKzt
Ktt

Kyz − KytKzt
Ktt

−K2
zt

Ktt
+Kzz







(17.7)

and

J ′ =






Jx − JtKxt
Ktt

Jy − JtKyt
Ktt

Jz − JtKzt
Ktt




 . (17.8)

As before, one obtains the luminous centroid (the position of the peak of the luminosity

density) by maximizing L(~x). Thus

∂L
∂xk

= N ′ ∂

∂xk
exp



−1

2

3∑

i,j=1

xiK
′
ij xj +

3∑

i=1

J ′
i xi





= N ′
(

−
3∑

i=1

K ′
ki xi + J ′

k

)

exp



−1

2

3∑

i,j=1

xiK
′
ij xj +

3∑

i=1

J ′
i xi



 := 0.

(17.9)

The co-ordinates of the maximum, 〈~x〉, are then obtained by solving the three simultaneous

equations
3∑

i=1

K ′
ki xi = J ′

k. (17.10)

By differentiating the resulting expression for 〈~x〉 with respect to hx or hy (the beam

separations) and expanding the (six) results in κ1,2 and αx,y;z, one obtains a new set

of equations, performing the rôle of Eqs. 16.10 – 16.13. The new equations are rather

cumbersome, so only two particularly elucidating examples are included here, which have

αxz = 0 and α = αyz 6= 0:

d〈y〉
dhy

= −
σ2y1 − σ2y2

2Σ2
y

+ α2
σ2y1σ

2
z2 − σ2y2σ

2
z1

4Σ4
y

+ . . . (17.11)

d〈z〉
dhy

= −
α
(
Σ2
y − Σ2

z

)

4Σ2
y

+ . . . (17.12)

These are further simplified by setting σz1 = σz2 = σz, and noting that Σy ≪ Σz. The

reader is encouraged to compare Eq. 17.11 with Eq. 16.13, and note the fact that Eq.
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17.12 is now no longer identically zero. Furthermore, the symbol Σ is being used with

the same definition as Eq. 16.14, and it is stressed that this no longer corresponds to the

definition of the convolved beam width in the case of non-zero beam crossing angle. For

a compendium of all six equations, see Appendix E.3.

The actual convolved beam width one measures during a vdM scan, henceforth written

Σ̃, is given in terms of Σ and a single crossing angle α by the expression [122]

Σ̃ = ΣS−1 where S−1 =

√

1 +
2σ2z
Σ2

tan2
(α

2

)

, (17.13)

where σz is the z-width of the colliding bunches. Thus, when beam crossing angles are

present and significant, the above definition will be used when considering the constraint

implied on the individual beam widths.

17.3. Application to in-plane vdM scan data

In this section the fits of the luminous centroids, along with the constraints they imply

on the individual beam parameters, are presented for the in-plane vdM scans in March

2011, April 2012 and July 2012. Finally, a summary of all scans (including October 2010

and May 2011) is presented.

17.3.1. March 2011. Figures 17.1 and 17.2 show scan data for Scans I and II of

(March) 2011. Specifically, the position of the luminous centroid in (x, y, z) is shown,

for each scan, as a function of beam separation, h, in either the x- or the y-plane. A

linear fit to this data has been applied to the central scan data, since these data remain

largely linear. The non-linear tails are a clear sign that one requires a model more sophis-

ticated that the single-Gaussian model, which is incapable of reproducing such non-linear

phenomena. Nonetheless, a linear analysis continues, in order to find the parameters of a

single-Gaussian model that is expected to dominate the evolution of the luminous centroid

at small beam separation.

Scans I and II did not call for a beam crossing angle to be introduced into the model.

The justification for this can be seen by observing the final two plots in both Figs. 17.1

and 17.2, where the gradient of the luminous centroid movement in z with respect to scan

separation is very small. One can quantify this by saying if d〈z〉/dhxi ≪ σz/
√
2Σxi then

we may ignore the crossing angle in the (xi, z) plane. The justification for this limit is

given in Appendix E.4. This does indeed imply that a residual crossing angle was present

in reality, but at this level it has been learnt to be negligible. Since it has been chosen

to neglect beam crossing angle, no knowledge of the z profile of the proton densities is

required, since the factorization of Eq. 16.4 still holds.

The errors on the constraint plots shown in Figs. 17.3 and 17.4 (i.e. the widths of

the constraining bands) arise as follows: the bands of positive slope, which describe the

constraints due to either d〈x〉/dhx or d〈y〉/dhy, follow directly from the errors on the

fitted gradients of Figs. 17.1 and 17.2. The width of the band of negative slope directly

corresponds to the error on the convolved beam width for the given scan. Table 17.1

summarizes the convolved widths used. The quoted values are the BCID-averaged widths,
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and the quoted errors are the standard deviations of the values that go into these averages.

Table 17.2 shows the values used as input for the correlation of the luminous region.

Finally, Fig. 17.5 shows the constraint plots for the correlation coefficients κ1 and κ2.

The red and blue bands come from the requirement that the expressions for d〈x〉/dhy and

d〈y〉/dhx must satisfy the fitted quantities within the fit errors. In addition, the errors on

the constrained individual beam widths have been propagated through into these plots,

which is responsible for giving the bands their arched appearance. The orange bands

are constructed according to the requirement that κ1 and κ2 satisfy Eq. 16.15 for the

measured correlation of the luminous region, κL within errors. The value of κL is taken

to be the X-Y scan pair BCID-average, with the error quoted as the standard deviation

on the numbers that go into this average.

Table 17.1. Convolved widths used as input in the March 2011 analyses.
The quoted values are the BCID-averaged widths, and the quoted errors
are the standard deviations of the values that go into these averages.

Scan Σx (µm) Σy (µm)

I 229± 16 249± 19
II 200± 16 215± 18

Table 17.2. Luminous region x-y correlation coefficients. The quoted
values are the scan-point-averaged values from X-Y scan pairs, and the
quoted errors are the standard deviations of the values that go into these
averages.

Scan κL

I 0.014± 0.001
II 0.013± 0.001
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Figure 17.1. Luminous centroid movements during Scan I in (March)
2011. Given the appearance of clearly non-linear tails (which the single-
Gaussian model is not sufficient to reproduce) the fits are to central scan
data only, in the range [−0.3, 0.3] mm. The errors on the luminous centroid
positions are of statistical origin only.
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Figure 17.2. Luminous centroid movements during Scan II in (March)
2011. The continued presence of clearly non-linear tails again require that
the fits are to central scan data only, in the range [−0.3, 0.3] mm. The
errors on the luminous centroid positions are of statistical origin only.
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Figure 17.3. These plots show the constrained region of the (σx1, σx2) and
(σy1, σy2) parameter spaces for Scan I of March 2011. The constraints are
determined by a direct comparison between the fitted sloped of Figs. 17.1
and 17.2 with Eqs. 16.10 and 16.13 (producing the bands with positive
slope) in addition to supplementary information given by the measured
values of Σx and Σy, the convolved beam widths (bands with negative
slope). The errors directly represent either the fit errors for the gradients,
or the error on the convolved beam width, as explained in the text.

Figure 17.4. The results for Scan II of March 2011, shown here, are
determined in the same manner described in the caption of Fig. 17.3,
above.
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Figure 17.5. The constrained regions of (κ1,κ2) space, for scans I and II
of March 2011. The constraints are generally very consistent, especially in
scan II, and they are both strongly indicative of negligibly small correlation
coefficients from the standpoint of the luminosity calibration error. The
bands of negative slope come from a direct comparison of Eq. 16.15 with
the values of κL measured for the luminous region. The widths of the bands
directly reflect the errors on these measurements. The bands of positive
slope come from comparing the analytical expressions for d〈x〉/dhy (blue)
and d〈y〉/dhx (red) with the corresponding fitted slopes of Figs. 17.1 and
17.2. The widths come from the fit errors and the propagated errors from
the constrained individual beam widths.
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17.3.2. April 2012. It should be clear from Figs. 17.6 – 17.8 that much of the

April 2012 vdM scan data is almost pathologically non-linear, from the standpoint of the

single-Gaussian model. Whilst effort has been made to isolate a central, small-separation

region of data for which one can approximately justify a linear fit, this remains close to

impossible. The final extracted individual beam parameters should therefore be used with

caution, but give ballpark figures with corresponding errors nonetheless.

The reader is encouraged to keep in mind that this analysis aims to determine the

uncertainty induced by transverse beam correlation on the luminosity calibration by the

van der Meer method, which itself assumes factorization of the transverse proton densities

of the bunches in x and y. It does so by assuming a Gaussian form for these densities,

on account of the analytic solubility it offers. While there will therefore in principle be a

model uncertainty associated with this choice of Gaussian form on the determined degree of

correlation, this study does not intend to provide an estimate of the fit model uncertainty

associated with determining the luminosity calibration itself (by way of analysing the van

der Meer scan curves). A separate study has shown this distinct uncertainty to be at the

few percent level for these April 2012 scans [123].

Furthermore, the large gradients of the luminous centroid movement in z (with respect

to beam separation in y) are highly indicative of the necessity to include a beam crossing

angle into the model. Indeed, there is a nominal crossing angle in the y-z plane. For this

reason, we begin using the extended analysis described in Sec. 17.2 from the beginning. As

previously mentioned, the inclusion of a crossing angle necessarily introduces a correlation

between the bunch profiles in z, with those in x and y. Therefore, information about the

z profile will be required as input, and the width in z is taken from an independent source

known as the Beam Quality Monitor (BQM). The profile of the proton distribution in z is

relatively poorly known, compared with that of x or y. Nonetheless, the z width is used

in the sense of being an approximate measure of the width over which 68% of the protons

are contained, like a Gaussian width. Fundamentally in the analysis, this width sets the

scale for the dimensional parameters αxz and αyz, the crossing angles.

Table 17.3 shows the parameters assumed a priori. The value of σz is assumed to

be the same for all bunches of both beams. The crossing angles used are the nominal

crossing angles. The values for the correlation of the luminous region, κL, are determined

by averaging over all colliding BCIDs.

Once again, constraint plots are generated from the fitted slopes of the movements of

the luminous centroid, supplemented with the input data above, and the expressions for

the convolved beam width (in the presence of a non-zero crossing angle) and the correlation

of the luminous region.

It should be noted that modelling of the crossing angle is important here for a correct

determination of the widths (in y). Since one crossing angle is still small, it has limited

impact on the determination of κ1,2, however, which would require a large crossing angle

to be present in both planes. For more information, the reader is referred to the discussion

in Sec. 16.6 (also [115]).
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Figures 17.9 – 17.12 show the constrained parameters of the single-Gaussian model (in

the small-scan-separation limit) for the April 2012 scans. The widths of the constraining

bands are determined in exactly the same way as described for March 2011.

Table 17.3. Table of input parameters for the April 2012 analysis. Errors
on Σ values are standard deviations across all BCIDs, whilst the actual
value is taken to be the BCID-average. Errors on κL values are standard
deviations across all scan points with the actual value given by the average
across all scan points in a given X-Y scan pair.

Parameter Value

αxz/2 0 µrad
αyz/2 145 µrad

ΣI
x (24.9± 0.4)µm

ΣI
y (32.5± 0.3)µm

ΣII
x (25.2± 0.3)µm

ΣII
y (32.5± 0.3)µm

ΣIII
x (26.3± 0.3)µm

ΣIII
y (33.1± 0.3)µm

σz 90 mm

κLI −0.02± 0.04
κLII −0.03± 0.04
κLIII −0.03± 0.05
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Figure 17.6. April 2012 Scan I data. The linear fit is to the central
scan points corresponding to separations ≤ 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.



17.3. APPLICATION TO IN-PLANE VDM SCAN DATA 253

-0.302

-0.3015

-0.301

-0.3005

-0.3

-0.2995

-0.299

-0.2985

-0.298

-0.2975

-0.297

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>
 (

m
m

)

Separation hx (mm)

Scan II

d<x>/dhx = -0.0110 ± 0.0033

-0.303

-0.302

-0.301

-0.3

-0.299

-0.298

-0.297

-0.296

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>
 (

m
m

)

Separation hy (mm)

Scan II

d<x>/dhy = 0.0312 ± 0.0010

 0.765

 0.766

 0.767

 0.768

 0.769

 0.77

 0.771

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>
 (

m
m

)

Separation hx (mm)

Scan II

d<y>/dhx = -0.0068 ± 0.0029

 0.76

 0.762

 0.764

 0.766

 0.768

 0.77

 0.772

 0.774

 0.776

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>
 (

m
m

)

Separation hy (mm)

Scan II

d<y>/dhy = 0.0731 ± 0.0037

-4

-2

 0

 2

 4

 6

 8

 10

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>
 (

m
m

)

Separation hx (mm)

Scan II

d<z>/dhx = -44.9638 ± 2.3452

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

-0.1 -0.05  0  0.05  0.1

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>
 (

m
m

)

Separation hy (mm)

Scan II

d<z>/dhy = -948.2805 ± 13.4345

Figure 17.7. April 2012 Scan II data. The linear fit is to the central
scan points corresponding to separations ≤ 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.8. April 2012 Scan III data. The linear fit is to the central
scan points corresponding to separations ≤ 0.05 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.9. Individual beam widths for April 2012 scan I. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.6 with Eqs. E.3 and E.5 in the case of significant beam crossing
angle (producing the bands with positive slope) in addition to supplemen-
tary information given by the measured values of Σx and Σy, the convolved
beam widths (bands with negative slope). The errors directly represent ei-
ther the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.

Figure 17.10. Individual beam widths for April 2012 scan II. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.7 with Eqs. E.3 and E.5 (producing the bands with positive slope)
in the case of significant beam crossing angle in addition to supplementary
information given by the measured values of Σx and Σy, the convolved
beam widths (bands with negative slope). The errors directly represent
either the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.



256 17. TRANSVERSE BEAM COUPLING PART 2

Figure 17.11. Individual beam widths for April 2012 scan III. The con-
straints are determined by a direct comparison between the fitted slopes of
Fig. 17.8 with Eqs. E.3 and E.5 (producing the bands with positive slope)
in the case of significant beam crossing angle in addition to supplementary
information given by the measured values of Σx and Σy, the convolved
beam widths (bands with negative slope). The errors directly represent
either the fit errors for the gradients, or the error on the convolved beam
width, as explained in the text.
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Figure 17.12. Correlation coefficient constraints for April 2012 scans I, II
and III. The band of negative slope comes from a direct comparison of Eq.
16.15 with the values of κL measured for the luminous region. The width
of the band directly reflects the errors on this measurement. The bands of
positive slope come from comparing the analytical expressions for d〈x〉/dhy
and d〈y〉/dhx in the case of beam crossing angle (Eqs. E.4 and E.6) with
the corresponding fitted slopes of Figs. 17.6, 17.7 and 17.8. The widths
come from the fit errors, though the errors from the constrained individual
beam widths have also been propagated through. The consistency of these
constraints is rather poor, compared with March 2011 and July 2012. This
is likely to be attributable to the use of a linear model where the data
clearly have non-linear features, however, the constraints still point to very
small linear x-y coupling, which has negligible impact on the luminosity
error.
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17.3.3. July 2012. The residual crossing angles for July 2012 were inconsequential

again, as corroborated by the last two plots in Figs. 17.13 – 17.18. Indeed, the nominal

crossing angles for this set of scans were zero by design. Table 17.4 shows all the input data

used and required for the associated linear coupling analysis. One again, the quantities

are all BCID-averaged (over X-Y scan pairs in the case of κL) with the error quoted as

the standard deviation of the values that went into these averages.

There are distinct regions of linear behaviour in the central scan regions, as shown

in Figs. 17.13 – 17.18, which is perhaps the reason for good consistency of the finally

determined correlation coefficients in Fig. 17.21. The intermediate determination of the

individual beam widths is shown in Figs. 17.19 and 17.20. Once again, the errors deter-

mined from the individual width constraints are propagated into the plots constraining

the values of κ1,2 for each scan.

The plots are presented in the same way as for March 2011 and April 2012, so the

reader is referred to the text in Sec. 17.3.1 for a description. Furthermore, the widths of

the constraint bands are also determined in the same way.

Table 17.4. Table of input parameters for the July 2012 analysis. Errors
on Σ values are standard deviations across all BCIDs, whilst the actual
value is taken to be the BCID-average. Errors on κL values are standard
deviations across all scan points with the actual value given by the average
across all scan points in a given X-Y scan pair.

Parameter Value

ΣIV
x (120± 2)µm

ΣIV
y (125± 3)µm

ΣV
x (124± 2)µm

ΣV
y (128± 3)µm

ΣVI
x (123± 3)µm

ΣVI
y (128± 3)µm

ΣVII
x (144± 4)µm

ΣVII
y (163± 4)µm

ΣVIII
x (121± 3)µm

ΣVIII
y (127± 2)µm

ΣIX
x (153± 5)µm

ΣIX
y (180± 7)µm

κLIV −0.004± 0.010
κLV −0.002± 0.010
κLVI −0.003± 0.011
κLVII 0.02± 0.08
κLVIII −0.001± 0.012
κLIX 0.01± 0.12
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Figure 17.13. July 2012 Scan IV data. The linear fit is to the central
scan points corresponding to separations ≤ 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.14. July 2012 Scan V data. The linear fit is to the central scan
points corresponding to separations ≤ 0.1 mm. The errors on the luminous
centroid positions are of statistical origin only.



17.3. APPLICATION TO IN-PLANE VDM SCAN DATA 261

-0.185

-0.18

-0.175

-0.17

-0.165

-0.16

-0.155

-0.15

-0.145

-0.14

-0.135

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>

Beam separation hx (mm)

July 2012, Scan VI (6)

d<x>/dhx = 0.00909 ± 0.00103

-0.19

-0.185

-0.18

-0.175

-0.17

-0.165

-0.16

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

x>

Beam separation hy (mm)

July 2012, Scan VI (6)

d<x>/dhy = 0.00554 ± 0.00384

 0.76

 0.765

 0.77

 0.775

 0.78

 0.785

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>

Beam separation hx (mm)

July 2012, Scan VI (6)

d<y>/dhx = -0.00165 ± 0.00130

 0.73

 0.74

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

y>

Beam separation hy (mm)

July 2012, Scan VI (6)

d<y>/dhy = 0.00587 ± 0.00171

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>

Beam separation hx (mm)

July 2012, Scan VI (6)

d<z>/dhx = -1.85414 ± 1.97028

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

Lu
m

in
ou

s 
ce

nt
ro

id
 p

os
iti

on
 <

z>

Beam separation hy (mm)

July 2012, Scan VI (6)

d<z>/dhy = -4.20394 ± 0.77196

Figure 17.15. July 2012 Scan VI data. The linear fit is to the central
scan points corresponding to separations ≤ 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.16. July 2012 Scan VII data. The linear fit is to the central
scan points corresponding to separations ≤ 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.17. July 2012 Scan VIII data. The linear fit is to the central
scan points corresponding to separations ≤ 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.18. July 2012 Scan IX data. The linear fit is to the central
scan points corresponding to separations ≤ 0.1 mm. The errors on the
luminous centroid positions are of statistical origin only.
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Figure 17.19. Constrained individual beam widths for scans IV – VI,
performed in July 2012. The constraints are determined by a direct com-
parison between the fitted slopes of Figs. 17.13, 17.14 and 17.15 with Eqs.
16.10 and 16.13 (producing the bands with positive slope) in addition to
supplementary information given by the measured values of Σx and Σy,
the convolved beam widths (bands with negative slope). The errors di-
rectly represent either the fit errors for the gradients, or the error on the
convolved beam width, as explained in the text.
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Figure 17.20. Constrained individual beam widths for scans VII – IX,
performed in July 2012. The constraints are determined by a direct com-
parison between the fitted slopes of Fig. 17.16, 17.17 and 17.18 with Eqs.
16.10 and 16.13 (producing the bands with positive slope) in addition to
supplementary information given by the measured values of Σx and Σy,
the convolved beam widths (bands with negative slope). The errors di-
rectly represent either the fit errors for the gradients, or the error on the
convolved beam width, as explained in the text.
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Figure 17.21. Constrained individual linear x-y correlation coefficients
for scans IV – IX, performed in July 2012. The bands of negative slope
come from a direct comparison of Eq. 16.15 with the values of κL measured
for the luminous region. The widths of the bands directly reflect the errors
on these measurements. The bands of positive slope come from comparing
the analytical expressions for d〈x〉/dhy (blue) and d〈y〉/dhx (red) with the
corresponding fitted slopes of Figs. 17.13 — 17.18. The widths come from
the fit errors and the propagated errors from the constrained individual
beam widths.
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17.4. Compilation of all vdM scan results

The following tables collect all the results of beam width determinations across in-

plane scans from October 2010 to July 2012. Since κ1,2 values are often determined with

inconsistencies present in the relevant constraint plots, they are not tabulated here, and

the figures themselves may be used. That said, the values of κ1,2 have been shown to be

consistently negligible as far as the luminosity error is concerned.

Table 17.5. October 2010 widths (µm)

Scan IV V

σx1 60.9± 1.0 60.6± 1.0
σy1 58.7± 1.0 58.7± 1.0
σx2 53.3± 1.0 53.8± 1.0
σy2 57.8± 1.0 57.8± 1.0

Table 17.6. March 2011 widths (µm) and correlation coefficients

Scan I II

σx1 166± 12 143± 11
σy1 179± 14 155± 13
σx2 158± 11 140± 11
σy2 173± 13 149± 12
κ1 −0.03± 0.02 −0.03± 0.01
κ2 0.06± 0.02 0.05± 0.01

Table 17.7. May 2011 widths (µm)

Scan VII VIII

σx1 40.2± 1.0 40.2± 1.0
σy1 40.9± 1.0 40.9± 1.0
σx2 40.4± 1.0 40.4± 1.0
σy2 42.6± 1.0 42.6± 1.0

Table 17.8. April 2012 widths (µm)

Scan I II III

σx1 17.6± 0.3 17.6± 0.2 18.4± 0.2
σy1 16.2± 0.3 16.0± 0.3 16.4± 0.3
σx2 17.6± 0.3 18.0± 0.2 18.8± 0.2
σy2 21.3± 0.2 21.4± 0.2 22.0± 0.2
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Table 17.9. July 2012 widths (µm) and correlation coefficients

Scan IV V VI VII VIII IX

σx1 86.0± 1.4 88.0± 1.4 87.9± 2.0 99.9± 2.7 86.6± 2.2 107± 4
σy1 87.9± 1.9 89.9± 1.9 89.9± 2.1 115± 3 89.9± 1.3 121± 5
σx2 83.8± 1.4 87.4± 1.4 86.2± 2.1 104± 3 84.4± 2.2 109± 4
σy2 89.3± 2.1 91.4± 2.0 91.1± 2.1 116± 3 90.0± 1.3 133± 5
κ1 −0.01± 0.02 −0.01± 0.02 −0.01± 0.02 0.02± 0.05 0± 0.02 0± 0.02
κ2 0± 0.02 0± 0.02 0± 0.02 0.02± 0.05 0± 0.02 0± 0.02

The transverse size of a single beam may be written in terms of the normalized emit-

tance ǫN, the value of the interaction-point beta function β∗, and the Lorentz factor of the

beam particles γ, as

σb =

√

ǫN β∗

γ
, (17.14)

with γ determined simply from E = γmc2, taking m = mproton and E = Ebeam. It

should be noted that the individual beam widths determined in this manner are indeed

only very approximate, owing to the combination of instrumental systematics and beta

function uncertainties which together are at the ±20% level. Nonetheless, it is interesting

to compare the width results listed in Tables 17.5—17.9 above with the widths determined

from Eq. 17.14 taking the design emittance ǫN = 3.75µm · rad and the nominal beta

functions. The results are collected in Table 17.10 for comparison.

Table 17.10. Approximate individual beam widths determined from the
LHC design emittance and nominal beta functions.

Scan β∗ (m) [nominal] Ebeam (TeV) γ σb (µm) [approx.]

October 2010 3.5 3.5 3730 59
March 2011 11 3.5 3730 105
May 2011 1.5 3.5 3730 39
April 2012 0.6 4 4263 23
July 2012 11 4 4263 98

17.5. Discussion of results and conclusions

An obvious shortcoming of the analysis presented here is that it is BCID blind. Con-

current studies within ATLAS have shown that the corresponding plots showing the move-

ment of the luminous centroid during a scan vary from one colliding BCID to the next. A

more thorough analysis would repeat the procedure but on a BCID-specific level.

We can derive a rough estimate the uncertainty on the determination of the individual

beam widths, owing to this bunch-by-bunch averaging, by appealing to the variation in

the convolved beam widths Σ determined on a bunch-by-bunch basis from the vdM scans.

Making the approximation that beams 1 and 2 are of equal width σ (in either direction)

we have the relation Σ =
√
2σ. We consequently have δσ = δΣ/

√
2, where δ denotes the
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uncertainty on the given quantity. Considering, for example, the October 2010 scans, we

took δΣ = 1µm which implies δσ ≈ 0.7µm. A typical individual beam width determined

for these scans is σ ≈ (60 ± 1)µm, therefore implying an additional uncertainty at the

0.7/60 ≈ 1% level.

This study is indicative of negligibly small linear x-y correlations in all of the scans

considered, and therefore it is predicted that these correlations should have little impact on

the determination of the error of the respective luminosity calibrations, as shown explicitly

for October 2010 and May 2011 scans in Chap. 16 (also [115]). Non-linear effects do still

have a large impact.

It would be interesting to see if SMOG data from LHCb were consistent with the beam

asymmetry indicated in Table 17.8.

A general remark, regarding the error analysis, is that the errors on the luminous

centroid positions (e.g. in Fig. 17.18, but indeed for all such plots in this thesis) are

entirely statistical in nature, and systematics due to vertex resolution, for example, are

not included. Furthermore, the quoted errors on Σ values in all cases are the standard

deviations across all bunches in the fill, for a given scan, and therefore do not contain

systematics either. Furthermore, the distance scale error, . 1%, is also assumed to be

negligible throughout this analysis.

It has already been stated that the single-Gaussian model is incapable of describing

the non-linear data seen in many of the vdM scans, since this model generates only linear

predictions for the movement of the luminous centroid with respect to beam separation.

Nonetheless, the single-Gaussian formalism remains important, for several reasons:

• The analytic solubility of the model offers a lot of intuition about the expected

behaviour of the luminous centroid movements, in the presence of x-y correla-

tion, beam crossing angles, and asymmetric beam sizes. Furthermore, it provides

insight as to which parameters are important in describing the salient phenom-

ena, and especially where certain approximations are valid, allowing one to make

progress with extracting individual beam information from knowledge only of the

movement of the maximum of the convolved bunch densities.

• It offers a robust method for confining a region of parameter space that, when

substituted into the model, reproduce the central scan data in the large number

of cases where these data are linear.

• More sophisticated models may not offer the luxury of a fully analytical solution,

so numerical methods must be sought. Extensions to the single-Gaussian model

will in general have much larger parameter spaces (often at least double in di-

mensionality) and may thus require significant computing time. The results of

the single-Gaussian model may be used as a starting point in parameter space

for improvement and optimization in a more sophisticated numerical model.

It is hoped that the compilation of results in Sec. 17.4 will prove to be useful for either

current or future analyses of the vdM scan data. The current issue for the luminosity

error may now be restated: κ1,2 values tend to be inconsequential, but the non-linear

tails present in the data give rise to new problems. The principal aim of this analysis
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has therefore changed from just determining the linear correlation coefficients. Now it is

hoped that the analytical formalism itself may be used in finding good starting points for

future vdM scans in experiments across the LHC.

During the writing of the original note for this analysis, a note has become available

which the reader here may wish to consult [124].
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CHAPTER 18

Concluding remarks

I have approached my studies within the ATLAS luminosity measurement task force

from an analytical perspective, in order to complement numerical studies also performed

within the group. It is quite clear that, while an analytical approach can only take us

so far in terms of yielding a solution to a given model, it certainly offers much insight

for such soluble models, beyond that of a purely numerical analysis. Contrarily, while

a purely numerical approach may not rigorously expound the interplay between various

properties of the beams and its manifestation as salient beamspot phenomena, it certainly

allows us to obtain results for models of far greater complexity than the single-Gaussian

model studied in this thesis would permit. It is my hope that the analytical methods I

have developed will continue to complement future numerical studies and provide insight

for the study of more complicated models, which the data clearly demand.

The single-Gaussian model is a linear model, in that it is capable of describing only

those phenomena pertaining to the movements of the luminous centroid which are linear

functions of beam separation. The data clearly display non-linear ‘tails’ however. A

particularly beautiful example of this is the horizontal luminous centroid position vs.

horizontal beam separation, for Scan 2 data of March 2011 (see Fig. 18.1).
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Figure 18.1. An example of non-linear tails in beamspot data: The hor-
izontal luminous centroid position vs. horizontal beam separation for Scan
2 of March 2011

Fitting exclusively to the tails of these data, as opposed to the central scan region, it

is clear we would determine different values for the individual beam parameters. A model

that has received much numerical scrutiny is the so-called ‘double-Gaussian’ model, in
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Figure 18.2. Data calling for a model beyond Gaussians: The horizontal
luminous width vs. horizontal beam separation for Scan 14 of November
2012 [112]

which the individual beams are modelled according to the weighted sum of two Gaussians,

as

ρ(x;σ1, σ2, w) = w ρ1(x;σ1) + (1− w) ρ(x;σ2) , (18.1)

where ρi(x;σi) is a Gaussian function of width σi—for the three dimensional case, we

consider a position vector ~x and a covariance matrix σi. Typically one Gaussian is taken

to be ‘wide’ while the other is taken to be ‘narrow’. In this case, the narrow Gaussian

then controls the dynamics of the beamspot phenomena at small scan separations, and is

therefore analogous to the single-Gaussian, while the wide Gaussian has different param-

eters and controls the dynamics of the beamspot phenomena in the tails of the scan data.

In principle, the transition between the two régimes is therefore smooth, as is observed in

the data.

A significant shortcoming of the double-Gaussian model is the multiplicity of the pa-

rameter space, which more-than-doubles: we require an additional set of parameters de-

scribing the second Gaussian, along with a weight, for each beam. I have described ways in

which the parameters may be decoupled from one-another, namely by focusing exclusively

on central scan data and high-separation scan data separately which, one might hope,

would mitigate this complication to a significant extent. Arbitrarily many Gaussians may

be added together in this manner, but it is far from clear that this would be a sensible

approach, given the aforementioned considerations. Already, the double-Gaussian model

places us in a situation where an analytical approach has not yet offered exact solutions for

the various beamspot phenomena—although I have studied the double-Gaussian model to

quite some extent in this manner in order to identify the specific problems—so the bulk

of study has been largely numerically driven.

A particularly interesting phenomenon is presented in Scan 14 data of November 2012

although it is by no means exclusive to these data. The grey curves in Fig. 18.2 are

produced within the framework of the double-Gaussian model, and are various attempts

to model all data points simultaneously by hand. The take-home point is that the double-

Gaussian is incapable of modelling a significant feature of the data: the width of the

luminous region decreases as the beams become separated. The kurtosis of a distribution is
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a measure of how it bulges1, with a Gaussian having a kurtosis of precisely zero. Gaussians

have the remarkable property that the width of a product of two Gaussians is independent

of their relative separation.

The product of two double-Gaussians may have a width which varies as the relative

separation of the double-Gaussians varies, owing to the non-zero kurtosis of the double-

Gaussian. However, this width may only ever increase with increasing separation, since

the sum of two (different) Gaussians is platykurtic; i.e. broader than a Gaussian. In

order for the width of the product of two functions to decrease with increasing relative

separation, we require they be leptokurtic; i.e. narrower than a Gaussian. For this reason I

have proposed a modification to the single-Gaussian model, introducing a new parameter

ǫ, which directly modifies the kurtosis of the original Gaussian:

ρ(x;σ, ǫ) = N exp

[

−1

2

( |x|
σ

)2+ǫ
]

(18.2)

This function apparently carries the name ‘super-Gaussian’ [125]. For ǫ > 0 the function

becomes leptokurtic, and for ǫ < 0 it becomes platykurtic. It is interesting to note the

limit ǫ→ ∞ yields the top-hat function, with the piecewise definition

ρ(x;σ, ǫ) =

{

1 for |x| < σ

0 for |x| > σ
(18.3)

The function has since been used as a candidate model of beam profiles in numerical

simulations, and the red curve in Fig. 18.2 shows the striking agreement with data that may

be achieved for a suitable choice of ǫ. It would appear that certain non-linear phenomena

may be adequately described with the introduction of only a single new parameter. It

would undoubtedly be very interesting to learn of a potential reason, rooted in accelerator

physics, as to why this functional form for the beam profiles might be anticipated.

1Etymology: modern Latin, < Greek κύρτωσις a bulging, convexity, < κυρτός bulging, convex. Source:
Oxford English Dictionary
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APPENDIX A

Explicit calculations

The calculations presented in this appendix follow those given in [35, 60, 126], and

are reproduced here for the benefit of the reader.

A.1. Drell–Yan in the Born approximation

The incoming partons have momenta p1 = (E,p) and p2 = (E,−p) since the collision

is collinear and the scattering is considered in a frame where the incoming partons have

equal energies. Finally, the scattering energy is defined by s := (p1+p2)
2 and so we deduce

2E =
√
s.

γ∗

p2, s2, j

p1, s1, i

p4, s4

p3, s3

Figure A.1. The partonic amplitude for the Drell-Yan process in the
Born approximation. Only the process in which a virtual photon, γ∗, is
exchanged is considered for the sake of simplicity.

Figure A.1 shows the partonic Feynman diagram for the Drell-Yan process at O
(
α2
)
,

corresponding to the Born approximation. The amplitude corresponding to this diagram

may be written down using the tree-level Feynman rules, Fig. 2.1, and one obtains

M0 = iQf (e µ
ǫ)2 δij

1

q2
ū3 γ

α v4 v̄2 γα u1, (A.1)

where q = p1 + p2 = p3 + p4, and u1, v̄2, ū3 and v4 are shorthand for the Dirac spinors

u1(p1, s1), v̄2(p2, s2), ū3(p3, s3) and v4(p4, s4) respectively, where p1,...,4 are momenta, s1,...,4

label spin quantum numbers and the Roman indices label quark and anti-quark colours.

The arbitrary mass scale µ has been introduced to retain a dimensionless coupling e. It

is possible to drop the iǫ prescription in the photon propagator, given that q2 6= 0, ever.

Furthermore, the calculation proceeds in d = 4 − 2ǫ space-time dimensions, in order to

provide a regularization scheme for divergent integrals that we anticipate will appear when

277



278 A. EXPLICIT CALCULATIONS

one considers O (αs) corrections. The complex conjugate amplitude, relabelling dummy

indices so as to avoid ambiguity, is therefore

M†
0 = −iQf (e µǫ)2 δij

1

q2
v̄4 γ

β u3 ū1 γβ v2, (A.2)

where an obvious extension of the aforementioned spinor shorthand has been used. The

squared amplitude for the partonic process depicted in Fig. A.1 therefore becomes

|M0|2 = Q2
f (e µ

ǫ)4 δ2ij
1

q4

×Tr
[
u1 ū1 γβ v2 v̄2 γα

]
Tr
[
u3 ū3 γ

α v4 v̄4 γ
β
]
,

(no summation on i, j) (A.3)

after writing the spinor–matrix products inside traces then exploiting the freedom of cyclic

permutation permitted by traces. Since the goal is to obtain the inclusive and unpolarized

cross-section, one now averages initial spins and colours, and sums over final spins, as

such:

|M0|2 =
(

1

2

∑

s1

1

2

∑

s2

)(
∑

s3

∑

s4

)


1

Nc

Nc∑

i=1

1

Nc

Nc∑

j=1



 |M0|2

=
1

Nc

Q2
f (e µ

ǫ)4

4 q4
Tr
[

/p1 γβ /p2 γα
]
Tr
[

/p3 γ
α
/p4 γ

β
]

=
1

Nc

Q2
f (e µ

ǫ)4

4 q4
Qαβ L

αβ .

(A.4)

In the second line, the completeness relations for spinors (in the massless limit) have been

used:
∑

s

u(p, s) ū(p, s) = /p+m and
∑

s

v(p, s) v̄(p, s) = /p−m. (A.5)

Using standard techniques, the traces are evaluated and become

Qαβ = 4
[
p1α p2β + p1β p2α − p1 · p2 gαβ

]
(A.6)

and

Lαβ = 4
[
pα3 p

β
4 + pβ3 p

α
4 − p3 · p4 gαβ

]
. (A.7)

Our aim for this calculation is to compute the total cross-section and, for that, we will

make a simplifying assumption. We assume that the lepton tensor may be decomposed as

follows:

Lαβ = (Aq2 gαβ +B qα qβ)L(q2); (A.8)

i.e. it depends only on the momentum q = p3 + p4. We will discuss the validity of this

decomposition further, below. We will not be differential in the individual directions of the

outgoing leptons this way, but this is not necessary if we are seeking the total cross-section

anyway. To conserve current,

qα L
αβ = qβ L

αβ = 0, (A.9)

we require B = −A and we pick A = 1 and B = −1. Furthermore, since the quark

traces must themselves obey current conservation, qαQαβ = qβ Qαβ = 0, only the term
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proportional to gαβ in Lαβ contributes to

Lαβ Qαβ = q2 gαβ Qαβ L(q
2) (A.10)

and, therefore, it is only necessary to compute the trace, Qαα. This will significantly simplify

the algebra when we come to computing traces for the real and virtual corrections. The

traces of these tensors are, using Eqs. A.6 and A.7,

gαβ L
αβ = 2 (2− d) q2

= gαβ (q
2 gαβ − qα qβ)L(q2) = q2 (d− 1)L(q2)

⇒ q2 L(q2) =
2 (2− d) q2

d− 1

(A.11)

and

Qαα = 2 (2− d) q2, (A.12)

and therefore

Lαβ Qαβ =
4 (2− d)2 q4

d− 1
. (A.13)

It is now time to consider the two-body phase-space in d dimensions. It is a direct

generalization of the usual two-body phase-space in 4D and is written, using q = p3 + p4,

dPS2 =

∫

(2π)d δd(p3 + p4 − q)
dd−1p3

(2π)d−12E3

dd−1p4

(2π)d−12E4
. (A.14)

d of the integrals are somewhat trivial because, in collaboration with the d-dimensional δ

function, they amount to overall energy and momentum conservation. However, it is good

to perform these integrals in a manifestly covariant manner using the identity
∫

dp0 δ(p
2 −m2) θ(p0) =

1

2E(p)
, (A.15)

where θ(p0) is the Heaviside step function. The two-body phase-space may now be written

dPS2 = 2π

∫

δd(p3 + p4 − q)
dd−1p3

(2π)d−12E3
ddp4 δ(p

2
4) θ(p4,0)

= 2π
dd−1p3

(2π)d−12E3
δ
(
(q − p3)

2
)
,

(A.16)

after integrating over p4. Since the quantity (q−p3)2 is Lorentz-invariant, we may evaluate

it in any frame. The frame in which q = (M,0) is particularly useful, so (q − p3)
2 =

M2 − 2ME3. Now δ
(
(q − p3)

2
)
= δ(E3 − M/2)/2M . Further rewriting the integral

measure for p3 in terms of polar coordinates in d dimensions, i.e.

dd−1p3 = |p3|d−2 d|p3| dΩd−2 = Ed−2
3 dE3 dΩd−2, (A.17)

we obtain

dPS2 =
Md−2 dΩd−2

(4π)d−2 2M2
, (A.18)

after integrating over E3. Finally, introducing the flux factor for collinear particle scatter-

ing
1

F
=

1

2s
, (A.19)
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where s = (p1 + p2)
2, we have all the pieces we need to write down the inclusive partonic

cross-section:

dσ̂0 =
1

F
|M|2 dPS2 . (A.20)

The phase-space integral over the surface of the (d− 2)-sphere1 may be evaluated imme-

diately, and is a standard result:
∫

dΩd−2 =
2π(d−1)/2

Γ
(
d−1
2

) , (A.21)

since the matrix element does not depend upon the angles of the outgoing leptons, ac-

cording to our simplification of the tensor product, and so
∫

dPS2 =
1

8π

(
4π

M2

)ǫ Γ(1− ǫ)

Γ(2− 2ǫ)
, (A.22)

where the duplication formula

Γ(z) Γ

(

z +
1

2

)

= 21−2z√π Γ(2z) (A.23)

with z = 1− ǫ has been used. The final partonic cross-section, in d = 4− 2ǫ dimensions,

is then

Q2
f σ̂0(s) =

1

2s

Q2
f (e µ

ǫ)4

Nc

(2− d)2

d− 1

∫

dPS2

=
1

2s

Q2
f (e µ

ǫ)4

Nc

(2− d)2

d− 1

1

8π

(
4π

M2

)ǫ Γ(1− ǫ)

Γ(2− 2ǫ)

=

(
4π

M2

)ǫ 4πQ2
f α

2 µ4ǫ

Nc s

(1− ǫ)2

(3− 2ǫ)

Γ(1− ǫ)

Γ(2− 2ǫ)

(A.24)

using α = e2/4π, and factoring out the only flavour-dependent quantity, Q2
f , for later

convenience. Using the identity
∫
dM2 δ(s−M2) = 1, we can make our result differential

in the mass of the lepton pair, M2:

dσ̂0
dM2

=
σ̂0
s
δ

(

1− M2

s

)

. (A.25)

This form will be useful later.

θp1 p2

p3

p4

Figure A.2. The scattering angle used in the 2 → 2 scattering process.

1I use ‘n-sphere’ in the topologists’ sense. For example, a 2-sphere is the familiar object embedded in 3D
space.
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We now discuss the validity of the decomposition assumed for the lepton tensor in Eq.

A.10, when computing the total cross-section. At the Born level I would like to prove

the equivalence of this simplification for the total cross-section. For this discussion we

temporarily revert back to d = 4 dimensions, and note that Eq. A.24 becomes

σ̂0 =
4πQ2

f α
2

3Nc s
. (A.26)

Now, without the simplification, the tensor contraction in Eq. A.10 is, in d = 4 dimensions,

Qαβ L
αβ = 16 [2p1 · p4 p2 · p3 + 2p1 · p3 p2 · p4]

= 32E4
[
(1 + cos θ)2 + (1− cos θ)2

]

= 64E4
[
1 + cos2 θ

]
,

(A.27)

where θ is the angle between p1 and p3 or, equivalently, between p2 and p4, as shown in

Fig. A.2. Given this definition, p1 · p3 = p2 · p4 = E2(1 − cos θ) and p1 · p4 = p2 · p3 =

E2(1+ cos θ), where E is the energy of each particle in the frame for which the collision is

symmetric. Since the particles collide head-on, and the leptons are produced back-to-back,

we also have p1 ·p2 = p3 ·p4 = 2E2. Once again, all particles participating in the scattering

process are assumed to be massless.

Finally, we again write the cross-section according to Eq. A.20, but this time using

Eq. A.18, in the limit d→ 4, and using Eq. A.4 for the matrix element, but with Lαβ Qαβ

given in Eq. A.27. Putting this together, we have

σ̂0 =
Q2
f e

4

2sNc 4q4
64E4

∫

(1 + cos2 θ)
d(cos θ) dφ

8(2π)2

=
4πQ2

f α
2

3Nc s
,

(A.28)

which is the same as Eq. A.24.
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A.2. Real corrections to Drell–Yan

We now consider the emission of a single gluon during the Drell-Yan annihilation

process. The kinematics of the 2 → 3 scattering process q q̄ → g ℓ+ ℓ− is shown in Fig.

A.3. The emitted gluon momentum is k, and the gluon makes an angle θ with respect to

the beam axis, defined by the direction of p1. The lepton pair recoils against the gluon

with total time-like momentum q, such that p1 + p2 = k + q, and q2 = M2, where M is

the invariant mass of the lepton pair.

θp1 p2

k

q

p3

p4

Figure A.3. Kinematics of the 2 → 3 scattering process for real emission.
The momentum of the lepton pair is the time-like q = p3 + p4, where
q2 =M2. The lepton pair recoils against gluon emission, whose momentum
is k, and which makes an angle θ with respect to the beam-line.

γ∗

p2, s2, j

p1, s1, i

p4, s4

p3, s3k, λ, a

γ∗

p2, s2, j

p1, s1, i

p4, s4

p3, s3

k, λ, a

Figure A.4. The two real diagrams contributing to the Drell–Yan annihi-
lation process at O(αs). External particle momenta and quantum numbers
have been labelled.

The amplitudes for the two real processes shown in Fig. A.4 are

M1 = −iQf (e µǫ)2 gs µǫ T aji ū3 γα v4
1

q2
v̄2 γα (/p1 − /k) γµ u1

[(p1 − k)2 + iǫ]
ǫ∗aµ (A.29)

and

M2 = −iQf (e µǫ)2 gs µǫ T aji ū3 γα v4
1

q2
v̄2 γ

µ (−/p2 + /k) γα u1

[(p2 − k)2 + iǫ]
ǫ∗aµ . (A.30)

Additional shorthand for the gluon polarization has been introduced: ǫ∗aµ ≡ ǫ∗aµ (k, λ),

where λ is the quantum number specifying its polarization, a indexes its colour, and k

is its momentum. Again, the squared amplitude that appears in the definition of the
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inclusive unpolarized cross-section is obtained by averaging over quantum numbers of the

initial state and summing those of the final state. In the case of real emission, one has the

additional sums over the polarizations and colours of the gluon. Therefore

|M|2 =
(

1

2

∑

s1

1

2

∑

s2

)(
∑

s3

∑

s3

)


1

Nc

Nc∑

i=1

1

Nc

Nc∑

j=1








∑

a,b

∑

λ



 |M|2. (A.31)

The square of the sum of amplitudes is

|M1 +M2|2 = Q2
f (e µ

ǫ)4 (gs µ
ǫ)2 T bij T

a
jiTr

[

u3 ū3 γ
α v4 v̄4 γ

β
] 1

q4
ǫ∗aµ ǫbν

×
{

Tr
[
u1 ū1 γ

ν (/p1 − /k) γβ v2 v̄2 γα (/p1 − /k) γµ
]

[(p1 − k)2 + iǫ]2

+
Tr
[
u1 ū1 γβ (−/p2 + /k) γν v2 v̄2 γ

µ (−/p2 + /k) γα
]

[(p2 − k)2 + iǫ]2

+2Re

[

Tr
[
u1 ū1 γβ (−/p2 + /k) γν v2 v̄2 γα (/p1 − /k) γµ

]

[(p1 − k)2 + iǫ][(p2 − k)2 + iǫ]

]}

,

(A.32)

where new dummy indices have been introduced for the complex conjugate amplitudes, as

before, and the interference term has been written M∗
1M2 +M1M∗

2 = 2Re [M∗
2M1]. A

summation over repeated Greek (Lorentz) indices is implicit, but I will explicitly show the

summation over Roman (colour) indices. The sum over gluon polarization states amounts

to the replacement
∑

λ

ǫ∗aµ ǫbν → −δab gµν , (A.33)

implicitly assuming the Feynman gauge choice. Then, the averaging over initial quark

colours and summing over gluon colours results in



1

Nc

Nc∑

i=1

1

Nc

Nc∑

j=1








∑

a,b



 T bij T
a
ji δ

ab =
1

N2
c

Nc∑

i=1




∑

a

Nc∑

j=1

T aij T
a
ji





=
1

N2
c

Nc∑

i=1

CF δii =
1

Nc
CF .

(A.34)

Finally, as always, the completeness relations for massless Dirac spinors allow the spin

sums to be replaced by u1 ū1 → /p1, v2 v̄2 → /p2, u3 ū3 → /p3 and v4 v̄4 → /p4 in the traces.

Now, we may write the square of the sum of amplitudes as

|M1 +M2|2 = Q2
f (e µ

ǫ)4 (gs µ
ǫ)2

1

Nc
CF

(−1)

4 q4
Lαβ

{
Q1
αβ +Q2

αβ + 2Re
[
Q3
αβ

]}
, (A.35)

where

Q1
αβ =

Tr
[

/p1 γµ (/p1 − /k) γβ /p2 γα (/p1 − /k) γµ
]

[(p1 − k)2 + iǫ]2
, (A.36)

Q2
αβ =

Tr
[

/p1 γβ (−/p2 + /k) γµ /p2 γ
µ (−/p2 + /k) γα

]

[(p2 − k)2 + iǫ]2
(A.37)

and

Q3
αβ =

Tr
[

/p1 γβ (−/p2 + /k) γµ /p2 γα (/p1 − /k) γµ
]

[(p1 − k)2 + iǫ][(p2 − k)2 + iǫ]
. (A.38)
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As before, we are interested in the inclusive cross-section integrated over all directions

of the outgoing leptons, which permits the decomposition of the lepton trace, as in Eq.

A.8. Again, this requires one to compute only the traces of the tensors in Eq. A.36 to

A.38, which are reported below, in d = 4− 2ǫ space-time dimensions:

Q1 α
α =

8u (1− ǫ)2

t
, (A.39)

Q2 α
α =

8 t (1− ǫ)2

u
(A.40)

and

Q3 α
α =

8 (1− ǫ) (M2 s− t u ǫ)

t u
, (A.41)

in terms of the Mandelstam variables s = (p1+p2)
2, t = (p1−k)2 and u = (p2−k)2. Note

that k2 = 0 since the gluon is real. Their sum, as in Eq. A.35, is then

Q1 α
α + Q2 α

α + 2Re
[
Q3 α

α

]
= 8 (1− ǫ)

[
2M2 s

t u
+

(
t

u
+
u

t

)

(1− ǫ)− 2 ǫ

]

. (A.42)

It is now time to consider the phase-space. The challenge this time will be in handling

the three-body phase space

dPS3 =
dd−1p3

(2π)d−12E3

dd−1p4

(2π)d−12E4

dd−1k

(2π)d−12Ek
(2π)d δd(p3 + p4 + k − p1 − p2), (A.43)

where k = (Ek,k) is the four-momentum of the gluon. The phase-space for the two leptons

can be decoupled by introducing the momentum q, as in

dPS3 =
dd−1p3

(2π)d−12E3

dd−1p4

(2π)d−12E4

dd−1k

(2π)d−12Ek
ddq (2π)d δd(p3 + p4 − q) δd(q + k − p1 − p2).

(A.44)

Now the identity ∫

dM2 δ(q2 −M2) θ(q0) = 1 (A.45)

is inserted into Eq. A.44. The Heaviside function is trivially satisfied since, from q =

p3 + p4, we see that q0 = E3 + E4 > 0. Furthermore, q is time-like: q2 = 2 p3 · p4 > 0, so

the argument of the δ-function can always be satisfied for a particular choice of M . We

can now write

dPS3 = dPSℓ2 dM
2 ddq δ(q2 −M2)

dd−1k

(2π)d−12Ek
δd(q + k − p1 − p2)

=: dPSℓ2
dM2

2π
dPS2,

(A.46)

thereby defining dPS2, where the lepton phase-space, denoted by ℓ,

dPSℓ2 =
dd−1p3

(2π)d−12E3

dd−1p4

(2π)d−12E4
(2π)d δd(p3 + p4 − q) (A.47)

is just the usual two-body phase-space. We have thus succeeding in factorizing the three-

body phase-space, necessarily making us differential in the squared invariant mass, M2,

of the lepton pair. Since we have been utilizing a decomposition of the lepton tensor that

produces no angular dependence of the final-state leptons, we may completely integrate
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dPS2 as before. In addition, the reader is reminded that

Lαβ Qiαβ =
2 (2− d) q2

d− 1
Qi

α
α , (A.48)

as before.

The differential partonic cross-section for real emission may now be written

dσ̂Rqq̄ = σ̂0 (gs µ
ǫ)2 (−1)CF

dM2

2π
dPS2

{
Q1 α

α + Q2 α
α + 2Re

[
Q3 α

α

]}

2 (2− d) q2

= σ̂0 (4αs)µ
2ǫCF

dM2

M2
dPS2

[
2M2 s

t u
+

(
t

u
+
u

t

)

(1− ǫ)− 2 ǫ

]

,

(A.49)

where the definition of σ̂0 in Eq. A.24 has been used, along with αs = gs/4π and d = 4−2ǫ.

The angular integration for the remaining phase space will not be trivial, since both the

gluon and lepton pair have a particular direction. Using p1 + p2 = (2E,0) = (
√
s,0), we

write

dPS2 =
dd−1k

(2π)d−12Ek
(2π) ddq δ(q2 −M2) δd(q + k − p1 − p2)

=
Ed−3
k dEk dΩd−2

2 (2π)d−2
δ
(
s− 2Ek

√
s−M2

)
.

(A.50)

Now we set d = 4− 2ǫ and define the fraction z :=M2/s, to obtain

dPS2 =
1

32π2

[
(4π)2

M2

]ǫ

zǫ (1− z)1−2ǫ dΩd−2, (A.51)

where the identity δ(a x) = δ(x)/|a| has also been used. The differential angular measure,

extended to arbitrarily higher dimension, is written iteratively as

dΩd−2 = dθd−3 (sin θd−3)
d−3 dΩd−3, (c.f. dΩ2 = sin θ dθ dφ) (A.52)

and so ∫

dΩd−2 =
2π1−ǫ

Γ(1− ǫ)

∫ π

0
dθ (sin θ)1−2ǫ, (A.53)

after integrating over all but one polar angle using
∫

dΩd−3 =
2π(d−2)/2

Γ
(
d−2
2

) (A.54)

and relabelling θd−3 → θ. In anticipation that the integral representation of the Beta

function will be of use, this is further re-expressed by introducing y = 1
2(1 + cos θ), such

that ∫ π

0
dθ (sin θ)1−2ǫ =

2

4ǫ

∫ 1

0
dy [y(1− y)]−ǫ, (A.55)

and the phase-space becomes

dPS2 =
1

8π

(
4π

M2

)ǫ zǫ (1− z)1−2ǫ

Γ(1− ǫ)

∫ 1

0
[y (1− y)]−ǫ dy. (A.56)
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The Mandelstam variables t and u must also be written in terms of M2, y and z. We

may start with

t = (p1 − k)2 = −2E Ek (1 + cos θ) = −2
√
s

(
s−M2

2
√
s

)

y, (A.57)

using Ek = (s −M2)/2
√
s, which has already been constrained by the δ-function in Eq.

A.50. Substituting s→M2/z gives

t = −M
2 y (1− z)

z
, (A.58)

and a similar exercise gives

u = −M
2 (1− y) (1− z)

z
. (A.59)

Finally, one obtains

dσ̂Rqq̄ = σ̂0
αs

2π
CF

dM2

M2

(
4π µ2

M2

)ǫ
zǫ (1− z)1−2ǫ

Γ(1− ǫ)

×
∫ 1

0
dy [y(1− y)]−ǫ

[
2z

y (1− y) (1− z)2
+

(
y

1− y
+

1− y

y

)

(1− ǫ)− 2 ǫ

]

(A.60)

for the real contribution to the annihilation Drell-Yan process. The integrals over y may be

performed immediately by using the integral representation of the Beta function, expressed

further in terms of Gamma functions:

B(m,n) :=

∫ 1

0
ym−1 (1− y)n−1 dy =

Γ(m) Γ(n)

Γ(m+ n)
, (A.61)

for Re(m),Re(n) > 0. Four integrals one has to perform are

I1 =

∫ 1

0
dy y−(1+ǫ)(1− y)−(1+ǫ) =

[Γ(−ǫ)]2
Γ(−2ǫ)

= −2

ǫ

[Γ(1− ǫ)]2

Γ(1− 2ǫ)
, (A.62)

I2 =

∫ 1

0
dy y1−ǫ (1− y)−(1+ǫ) =

Γ(2− ǫ) Γ(−ǫ)
Γ(2− 2ǫ)

= −1

ǫ

(1− ǫ)

(1− 2ǫ)

[Γ(1− ǫ)]2

Γ(1− 2ǫ)
, (A.63)

I3 =

∫ 1

0
dy y−(1+ǫ) (1− y)1−ǫ =

Γ(−ǫ) Γ(2− ǫ)

Γ(2− 2ǫ)
= I2 (A.64)

and

I4 =

∫ 1

0
dy y−ǫ (1− y)−ǫ =

[Γ(1− ǫ)]2

Γ(2− 2ǫ)
=

1

(1− 2ǫ)

[Γ(1− ǫ)]2

Γ(1− 2ǫ)
, (A.65)

where the identity z Γ(z) ≡ Γ(1+z) has been extensively used to obtain the final equalities.

Introducing the notation

D(ǫ) :=

(
4π µ2

M2

)ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)
, (A.66)

we may write

dσ̂Rqq̄ = σ̂0
αs

2π
CF

dM2

M2
D(ǫ) zǫ (1− z)1−2ǫ

(

−2

ǫ

) [
2z

(1− z)2
+ 1

]

= σ̂0
αs

2π
CF

dM2

M2
D(ǫ) zǫ

(

−2

ǫ

)
1 + z2

(1− z)1+2ǫ
.

(A.67)
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In order to obtain the total cross-section, one would have to integrate this real contri-

bution over all M2 or, equivalently, over z from z = 0 to z = 1. Clearly, the integral is

not convergent on this closed interval, because the integrand diverges for z → 1. We will

see that the virtual contribution is divergent, containing poles in ǫ, but this contributes

only for z = 1 since, without real emission, the invariant mass of the lepton pair M2 = s.

We therefore proceed to isolate the divergence in the real contribution at z = 1, by use of

the ‘plus prescription’, which I present below.

Consider the integral

I =

∫ 1

0
dz

f(z)

(1− z)1+2ǫ
, (A.68)

where ǫ is small and positive. The integrand is divergent as z → 1, so we isolate this

divergence by writing f(z) = [f(z)− f(1)] + f(1), to obtain

I =

∫ 1

0
dz

[f(z)− f(1)]

(1− z)1+2ǫ
+ f(1)

∫ 1

0
dz (1− z)−(1+2ǫ)

=

{∫ 1

0
dz

[f(z)− f(1)]

(1− z)1+2ǫ

}

− 1

2ǫ
f(1)

=

∫ 1

0
dz

{
f(z)

[(1− z)1+2ǫ]+
− 1

2ǫ
f(z) δ(1− z)

}

,

(A.69)

where the ‘plus prescription’ notation f(z)/g(x)+ ≡ [f(z) − f(1)]/g(x) has been intro-

duced. I have also introduced the δ-function, to maintain a single integral over z. One

expands (1− z)−(1+2ǫ) about ǫ = 0, namely

(1− z)−(1+2ǫ) = (1− z)−1 [1− 2ǫ log(1− z) + . . . ] . (A.70)

Therefore an identification can be made, which is understood to be valid only under

integration:

1

(1− z)1+2ǫ
≡ 1

(1− z)+
− 2ǫ

[
log(1− z)

1− z

]

+

− 1

2ǫ
δ(1− z). (A.71)

We note that D(ǫ) has no poles in ǫ, for

D(ǫ) = 1 + ǫ

[

log(4π)− γE + log

(
µ2

M2

)]

+O(ǫ2). (A.72)

Neither does zǫ = 1 + ǫ log(z) + . . . , and therefore we are left to expand

−2

ǫ

1 + z2

(1− z)1+2ǫ
, (A.73)

dropping all terms proportional to ǫn, for n ≥ 1. Upon doing so, one at last obtains the

textbook expression for the real contribution to the Drell-Yan annihilation process:

dσ̂Rqq̄ = σ̂0
αs

2π
CF

dM2

M2
D(ǫ)Fqq̄(z), (A.74)

with

Fqq̄(z) =
2

ǫ2
δ(1− z)− 2

ǫ

1 + z2

(1− z)+
+ 4 (1 + z2)

[
log(1− z)

1− z

]

+

− 2 log(z)
1 + z2

1− z
. (A.75)

The plus prescription is dropped on the final term, since log(1) = 0.
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A.3. Virtual corrections to Drell–Yan

γ∗k ց

p2, s2, j

p1, s1, i

p4, s4

p3, s3

γ∗

k ր

p2, s2, j

p1, s1, i

p4, s4

p3, s3

γ∗
k ↓

p2, s2, j

p1, s1, i

p4, s4

p3, s3

Figure A.5. The three virtual diagrams contributing to the Drell–Yan
process at O(αs). External particle momenta and quantum numbers have
been labelled.

In this section I compute the one-loop virtual QCD contributions to the annihilation

Drell-Yan process qq̄ → γ∗ℓ+ℓ−. The relevant diagrams are shown in Fig. A.5. The

amplitudes for these diagrams are, with a summation over the gluon and quark colour

indices a and k implied,

MV
1 = Qf (e µ

ǫ)2 (gs µ
ǫ)2 T ajk T

a
ki ū3 γ

α v4

× 1

q2

∫
ddk

(2π)d
v̄2 γα SF(p1) γ

ν SF(p1 − k) γµ u1DFµν(k),
(A.76)

MV
2 = Qf (e µ

ǫ)2 (gs µ
ǫ)2 T ajk T

a
ki ū3 γ

α v4

× 1

q2

∫
ddk

(2π)d
v̄2 γ

ν SF(−(p2 − k)) γµ SF(−p2) γα u1DFµν(k)

(A.77)

and

MV
3 = Qf (e µ

ǫ)2 (gs µ
ǫ)2 T ajk T

a
ki ū3 γ

α v4

× 1

q2

∫
ddk

(2π)d
v̄2 γ

ν SF(−(p2 + k)) γα SF(p1 − k) γµ u1DFµν(k),

(A.78)
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where DFµν(k) comes from the gluon propagator in a general covariant gauge, and is given

by

DFµν(k) =
1

k2 + iǫ

(

gµν − (1− η)
kµ kν
k2 + iǫ

)

. (A.79)

Introducing the quark self-energy insertion, we may write MV
1 , for instance, as

MV
1 = Qf (e µ

ǫ)2 δij ū3 γ
α v4

1

q2
v̄2 γα SF(p1) Σ(p1)u1, (A.80)

where the insertion is

Σ(p) = (gs µ
ǫ)2CF

{∫
ddk

(2π)d
γµ(/p− /k)γµ

[(p− k)2 + iǫ][k2 + iǫ]

− (1− η)

∫
ddk

(2π)d
/k(/p− /k)/k

[(p− k)2 + iǫ][k2 + iǫ]2

}

= (gs µ
ǫ)2CF (I1 + I2).

(A.81)

We focus initially on the first integral in this expression, where the numerator of the

integrand is

γµ(/p− /k)γµ = (2− d)(/p− /k) . (A.82)

Using Feynman’s parameterization, the denominator can be first re-expressed:

1

[(p− k)2 + iǫ][k2 + iǫ]
=

∫ 1

0

dz
[
z[(p− k)2 + iǫ] + (1− z)[k2 + iǫ]

]2

=

∫ 1

0

dz

[(k − z p)2 + iǫ]2
,

(A.83)

where, to obtain the last equality, one completes the square and uses p2 = 0. This suggests

we introduce the momentum ℓ = k−z p and apply the shift k → ℓ+z p in the numerator of

the integrand, Eq. A.82. The integral measure is invariant under this shift, i.e. ddk = ddℓ,

and so the integral becomes

I1 = (2− d)

∫ 1

0
dz

∫
ddℓ

(2π)d
(1− z)/p− /ℓ

[ℓ2 + iǫ]2
= 0 . (A.84)

The integral is over symmetric limits, so the contribution associated with the odd term

/ℓ in the numerator evaluates to zero, and this term may be immediately dropped. The

remainder of the integral also evaluates to zero because there is no explicit mass scale in

the integrand. To see this more clearly, the integral over ℓ is re-written as the sum of two

parts, introducing an arbitrary mass scale Λ:
∫

ddℓ

(2π)d
1

[ℓ2 + iǫ]
=

∫
ddℓ

(2π)d

(
1

[ℓ2 + iǫ]
− 1

[ℓ2 − Λ2]2

)

+

∫
ddℓ

(2π)d
1

[ℓ2 − Λ2]2

=
i

16π2

(
1

ǫUV
− γE + log 4π − log Λ2

)

+
i

16π2

(
1

ǫIR
+ γE − log 4π + logΛ2

)

= 0,

(A.85)

where the second line may be verified by explicit computation. Since we are working

in d = 4 − 2ǫ dimensions, the quantity ǫUV = ǫ regulates the ultraviolet divergences
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whilst ǫIR = −ǫ (such that d = 4 + 2ǫIR) regulates the infrared divergences. This can be

seen by considering which integration limit is responsible for the divergence in each case.

Dimensional regularization has systematically regulated both divergences simultaneously

and clearly the two divergences cancel. The physical content of this result is that the

masslessness of the theory is a feature that is not destroyed under quantum corrections.

Moving now to the second integral term in Eq. A.81, we consider the numerator

/k(/p− /k)/k = (/k /p− k2)/k = (2k · p− /p /k − k2)/k, (A.86)

which reduces to

(2k · p− k2)/k = −(p− k)2/k (A.87)

when multiplied from the left by /p, as in Eq. A.80, where the /p comes from SF(p), and

using p2 = 0. In the limit ǫ → 0, part of the numerator cancels part of the denominator,

and one is left with

I2 = (1− η)

∫
ddk

(2π)d
(p− k)2/k

[(p− k)2 + iǫ][k2 + iǫ]2
→ (1− η)

∫
ddk

(2π)d
/k

[k2 + iǫ]2
. (A.88)

Since the integrand is purely odd, and the range of integration is between symmetric

limits, this evaluates to exactly zero. Since the quark self-energy insertion is universal, the

same steps to eliminate this contribution in the massless theory from the second diagram

of Fig. A.5 follow immediately, and thus the only diagram left to consider is the QCD

vertex correction of Fig. A.5.

It may be worth pausing for a moment. We have seen that the virtual corrections

corresponding to the quark self-energy play no rôle here. In summary, the quantum

loop corrections to the quark propagators do not generate quark masses in a theory that

was initially massless, and there is no gauge-dependent contribution from these diagrams

either. Since the gauge-dependence is only required to cancel out in the sum of all relevant

amplitudes, the final remaining amplitude for the vertex correction must be independent

of η to ensure this is the case. We now move to compute this final contribution.

In order to compute the inclusive unpolarized cross-section we must average over initial

spins and quark colours, and sum over final spins. Having done this, the interference of

these amplitudes with that of the Born approximation, M0, is an O(αs) contribution and

gives

MV
3 M†

0 =

(

1

2

∑

s1

1

2

∑

s2

)(
∑

s3

∑

s4

)


1

Nc

Nc∑

i=1

1

Nc

Nc∑

j=1



MV
3 M†

0

= −i 1

Nc

Q2
f (e µ

ǫ)4 (gs µ
ǫ)2CF

4 q4
QV
αβL

αβ ,

(A.89)

where T ajk T
a
ki = CF δij has been used, Lαβ is that given in Eq. A.7, and where

QV
αβ =

∫
ddk

(2π)d
Tr
[

/p1 γβ /p2 γ
ν (/p2 + /k) γα (/k − /p1) γ

µ
]

[(p2 + k)2 + iǫ][(p1 − k)2 + iǫ][k2 + iǫ]

(

gµν − (1− η)
kµ kν
k2 + iǫ

)

(A.90)

contains the integrals and traces one has to perform.
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According to Eq. A.10, one has only to compute QV α
α = gαβQV

αβ . After contracting

all Lorentz indices in Eq. A.90 and taking the trace, the quantity QV α
α becomes

QV α
α = 4(2− d)

∫
ddk

(2π)d
[(d− 4)k2 p1 · p2 + 4(k · p1 + p1 · p2)(k · p2 − p1 · p2)]

[(p2 + k)2 + iǫ][(p1 − k)2 + iǫ][k2 + iǫ]

− 4(2− d)(1− η)

∫
ddk

(2π)d
(k − p1)

2 (k + p2)
2 p1 · p2

[(p2 + k)2 + iǫ][(p1 − k)2 + iǫ][k2 + iǫ]2
.

(A.91)

Focusing for a moment on the second integral here, in the limit ǫ → 0 there is some

significant cancellation between terms in the numerator and the denominator, and this

term becomes

4 (d− 2) (1− η) p1 · p2
∫

ddk

(2π)d
1

[k2 + iǫ]2
= 0 , (A.92)

which we know by now is exactly zero due to the lack of any mass scale. Reassuringly, the

dependence of the calculation on the arbitrary gauge parameter η has disappeared in all

three diagrams of Fig. A.5, and we will be left with a gauge invariant expression for the

virtual QCD corrections at O(αs). All that remains is to compute the integral in the first

term in Eq. A.91, which is the only non-zero contribution to these one-loop virtual QCD

corrections.

As it stands, the integrand does not simplify any further. Therefore, in the usual

manner, one can use Feynman’s parameterization to re-express the denominator as follows:

1

[(p2 + k)2 + iǫ][(p1 − k)2 + iǫ][k2 + iǫ]
= 2!

∫ 1

0
dz1

∫ 1

0
dz2

∫ 1

0
dz3

δ(z1 + z2 + z3 − 1)

D3
,

(A.93)

where

D = z1[(p2 + k)2 + iǫ] + z2[(p1 − k)2 + iǫ] + z3[k
2 + iǫ]. (A.94)

Now, performing the integral over z3 amounts to the replacement z3 → 1− z1 − z2 in D,

by virtue of the δ-function. Note, however, that the remaining integration limits must be

adjusted accordingly in order to make this replacement with impunity. One can now write

D = k2 − 2(z2 p1 − z1 p2) · k + iǫ

= (k − z2 p1 + z1 p2)
2 + 2z1 z2 p1 · p2 + iǫ,

(A.95)

by completing the square. This suggests we shift the momentum k by introducing a new

momentum ℓ = k − z2 p1 + z1 p2. The first integral in Eq. A.91, making the change of

variables k → ℓ+ z2 p1 − z1 p2 and using d = 4− 2ǫ, becomes

QV α
α = −8 (1− ǫ) 2!

∫ 1

0
dz1

∫ 1−z1

0
dz2

∫
ddℓ

(2π)d
N

[ℓ2 + z1 z2 s+ i ǫ]3
, (A.96)

with the numerator given by

N = −2 ǫ ℓ2 p1 · p2 + 4 ℓ · p1 ℓ · p2 + 4 (p1 · p2)2 [ǫ z1 z2 − (z1 − 1) (z2 − 1)]

= −ǫ ℓ2 s+ 4 ℓ · p1 ℓ · p2 − s2 [(1− ǫ) z1 z2 + 1− z1 − z2],
(A.97)

where s = (p1+p2)
2 = 2 p1 ·p2 has been used and terms linear in ℓ have been dropped since

they integrate to zero over the symmetric limits of the integral. Exploiting the isotropy
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of the integral, one may also make the replacement

ℓµℓν → ℓ2 gµν

d
=
ℓ2 gµν

4− 2ǫ
, (A.98)

so we can now write

QV α
α = −8 (1− ǫ) 2! s

∫ 1

0
dz1

∫ 1−z1

0
dz2

{
(1− ǫ)2

2− ǫ
I4 − s[(1− ǫ)z1 z2 + 1− z1 − z2] I3

}

(A.99)

in terms of the standard integrals

I3 =

∫
ddℓ

(2π)d
1

[ℓ2 −∆2 + i ǫ]3
=

−i
(4π)2−ǫ

Γ(1 + ǫ)

2

1

(∆2)1+ǫ
(A.100)

and

I4 =

∫
ddℓ

(2π)d
ℓ2

[ℓ2 −∆2 + i ǫ]3
=

i

(4π)2−ǫ
(2− ǫ)

Γ(ǫ)

2

1

(∆2)ǫ
, (A.101)

where ∆2 = −z1 z2 s.
Putting everything together, we obtain

MV
3 M†

0 = |M0|2
αs µ

2ǫCF (4π)ǫ

4π q2

× 4 s

∫ 1

0
dz1

∫ 1−z1

0
dz2

{

(1− ǫ)2
Γ(ǫ)

2

1

(∆2)ǫ

+ s [(1− ǫ) z1 z2 + 1− z1 − z2]
Γ(1 + ǫ)

2

1

(∆2)1+ǫ

}

= |M0|2
αs

2π
CF

(
4π µ2

−s

)ǫ
s

q2

× Γ(1 + ǫ)

∫ 1

0
dz1

∫ 1−z1

0
dz2

1

(z1 z2)ǫ

{
(1− ǫ)2

ǫ
− [(1− ǫ) z1 z2 + 1− z1 − z2]

z1 z2

}

(A.102)

In the final equality I have used Γ(ǫ) = Γ(1 + ǫ)/ǫ.

One may now make the change of variables z2 → (1− z1)x, to render the integration

limits 0 and 1 on both integrals, preparing us for use of the integral representation of the

Beta function, Eq. A.61:
∫ 1

0
dz1

∫ 1−z1

0
dz2

1

(z1 z2)ǫ

{
(1− ǫ)2

ǫ
− [(1− ǫ) z1 z2 + 1− z1 − z2]

z1 z2

}

=

∫ 1

0
dz1

∫ 1

0
dx

{

(1− z1)
1−ǫ z−ǫ1 x−ǫ

[
(1− ǫ)2

ǫ
− (1− ǫ)

]

− (1− z1)
1−ǫ z−(1+ǫ)

1 x−(1+ǫ) (1− x)

}

=

[
(1− ǫ)2

ǫ
− (1− ǫ)

]

B(1− ǫ, 2− ǫ) B(1− ǫ, 1)− B(−ǫ, 2− ǫ) B(−ǫ, 2)

=
1

2

[

− 2

ǫ2
− 3

ǫ
− 8

1− 2ǫ

]
Γ2(1− ǫ)

Γ(1− 2ǫ)
.

(A.103)
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The phase space, dPS2 is exactly the same as in the Born calculation and, of course, the

flux factor is common to all three pieces. With the result above, it follows that

dσ̂V =
1

F
2Re

[

MVM†
0

]

dPS2

= σ̂0
αs

2π
CFRe

[(
4π µ2

−s

)ǫ]
Γ(1 + ǫ) Γ2(1− ǫ)

Γ(1− 2ǫ)

(

− 2

ǫ2
− 3

ǫ
− 8

1− 2ǫ

)
s

q2

= σ̂0
αs

2π
CF

dM2

M2
D(ǫ)

[

− 2

ǫ2
− 3

ǫ
+

(
2π2

3
− 8

)]

δ(1− z) ,

(A.104)

where I have used D(ǫ) given in Eq. A.66, inserted the identity in the form
∫
dM2 δ(s−

M2), with z =M2/s, and used the expansion

(−1)ǫ Γ(1 + ǫ) Γ(1− ǫ)

(

− 2

ǫ2
− 3

ǫ
− 8

1− 2ǫ

)

= − 2

ǫ2
− 3 + 2iπ

ǫ
− 8− 3iπ +

2π2

3
(A.105)

before finally taking the real part.
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A.4. The collinear splitting function

In this section I demonstrate the universality of the collinear q → q + g splitting

function, Pqq, that appeared in the calculation of Drell-Yan at NLO, multiplying the

simple pole 1/ǫ which had to be absorbed into a redefinition of the PDFs. This discussion

follows very closely that originally given in [35] for the case of d = 4 dimensions, and is

reproduced here for the benefit of the reader.

p− k, i
p, s, j

k, σ, a

Figure A.6. Initial-state gluon emission for an arbitrary hard process
Mn

i , which may contain n additional gluons but which may not interfere
with the gluon k. Momenta and quantum numbers have been labelled.

One begins by writing down the matrix element for the process shown in Fig. A.6,

where a collinear gluon is emitted from an initial state quark:

Mn+1
j =

∑

i

Mn
i i

/p− /k

(p− k)2 + iǫ
i gs µ

ǫ taij γ
µ u(p, s) ǫ∗µ(k, σ) . (A.106)

Averaging over the colours and polarization states of the incoming quark, and summing

over those of the gluon, the squared matrix element becomes

|Mn+1|2 =




1

Nc

∑

j

1

2

∑

s




∑

a,σ

∣
∣
∣Mn+1

j

∣
∣
∣

2

= g2s µ
2ǫ CF

Nc

∑

i,i′

δii′

× 1

2

∑

s

[

ū(p, s) γν
/p− /k

(p− k)2 + iǫ
Mn

i′
† Mn

i
/p− /k

(p− k)2 + iǫ
γµ u(p, s)

]

×
(

−gµν +
kµ nν + nµ kν

n · k

)

,

(A.107)

where
∑

j

∑

a

taij t
a
ji′ = CF δii′ (A.108)

and
∑

σ

ǫ∗µ(k, σ) ǫν(k, σ) → −gµν +
kµ nν + nµ kν

n · k (A.109)

has been used, taking n2 = 0. Taking the trace of the quantity in square brackets (since this

is just a number) one can permute the Dirac γ-matrices within and, using the completeness

relation for the u(p, s) spinor, one obtains

∣
∣
∣Mn+1

j

∣
∣
∣

2
= g2s µ

2ǫ CF

Nc

∑

i

Ti, (A.110)
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where, dropping the iǫ prescription,

Ti =
1

2
Tr

[

Mn
i

/p− /k

(p− k)2
γµ /p γ

ν /p− /k

(p− k)2
Mn

i
†
](

−gµν +
kµ nν + nµ kν

n · k

)

=
1

2

1

(2 p · k)2 Tr

[

Mn
i (/p− /k)

(

−γµ /p γµ +
/k /p /n+ /n /p /k

n · k

)

(/p− /k) Mn
i
†
]

=
1

2

1

(2 p · k)2 Tr

[

Mn
i

(

(d− 2) (/p− /k) /p (/p− /k)

+
1

n · k (/p− /k) (/k /p /n+ /n /p /k) (/p− /k)

)

Mn
i
†
]

.

(A.111)

In the last line I have used the Clifford algebra in d space-time dimensions. The following

identities may be shown, again using the Clifford algebra in d space-time dimensions, and

assuming p2 = k2 = 0:

(/p− /k) /p (/p− /k) = 2 (p · k) /k (A.112)

(/p− /k) (/k /p /n+ /n /p /k) (/p− /k) = 2 (p · k)
[
4 (n · p) /p− 2 (k · n) /p+ 2 (k · p) /n− 2 (n · p) /k

]

(A.113)

Therefore, Ti becomes

Ti =
1

2 (p · k) (n · k) Tr
[

Mn
i

(
n · (k − p) (/k − /p) + (n · p) /p+ (k · p) /n− ǫ (n · k) /k

)
Mn

i
†
]

,

(A.114)

in d = 4− 2ǫ space-time dimensions.

The task now is to evaluate this trace as far as possible. We will opt to retain only

those terms required to obtain the leading logarithmic dependence in the collinear limit.

In order to simplify the task of obtaining the collinear limit, the Sudakov decomposition

is introduced. The quark momentum after the emission is assumed to be some fraction z

of the initial quark momentum, plus a small amount transverse to its original direction.

qµ = pµ − kµ

= z pµ + β nµ − kµ⊥

⇒ kµ = pµ − qµ

= (1− z) pµ − β nµ + kµ⊥.

(A.115)

By definition, k⊥ · p = 0, and we may choose n to be the gauge vector and to also satisfy

k⊥ ·n = 0. Thus, the quantity β may be thought of as the appropriate scale factor required

to retain a massless gluon, which may be determined by insisting that k2 = 0:

k2 = (1− z)2 p2 + β2 n2 + k2⊥ − 2 (1− z)β p · n− 2β n · k⊥ + 2 (1− z) p · k⊥
= k2⊥ − 2 (1− z)β p · n = 0

(A.116)

on account of p2 = k2 = 0, and choosing the gauge vector such that n2 = 0, as we’ve done

already in the replacement for the gluon polarization sum, Eq. A.109. We may thus solve

for β, to obtain

β = − k2T
2 (1− z) p · n, (A.117)

where the parameterization k⊥ = (0,kT) has been adopted, and kT = |kT|.



296 A. EXPLICIT CALCULATIONS

Finally, using

n · k = (1− z)n · p, (A.118)

k · p = k2T/2 (1− z), (A.119)

n · (k − p) = −z (n · p) (A.120)

and /k − /p = −z /p− β /n+ /k⊥, (A.121)

which follow directly from Eq. A.115, the trace becomes

Ti =
1

k2T
Tr

[

Mn
i

(

(1 + z2) /p+
k2T

2 p · n /n− z /k⊥ − ǫ (1− z) /k

)

Mn
i
†
]

=
1

k2T

[
(1 + z2)− ǫ (1− z)2

]
2 |Mn

i (p− k)|2RF ,

(A.122)

where the final equality is obtained after using /k = (1 − z) /p + O(kT) and dropping all

O(kT) terms. The factor two is to account for spin averaging, and

|Mn
i (p− k)|2 = Tr

[

z /pMn
i (p− k) (Mn

i )
†(p− k)

]

. (A.123)

Furthermore, Mn
i (p − k) ≈ Mn

i (z p), up to O(kT) corrections. The ratio RF = 1/z is to

account for the change in flux factors.

The phase space for the additional gluon may be written

dPS =
dd−1k

(2π)d−12Ek
=

1

2 (2π)3−2ǫ

dEk
Ek

|k|2−2ǫ dΩd−2. (A.124)

In the collinear approximation, Eq. A.52 reads

dΩd−2 ≈ dθ θ1−2ǫ dΩd−3. (A.125)

Taking d = 4 − 2ǫ space-time dimensions,
∫
dΩd−3 = 2π1−ǫ/Γ(1 − ǫ), using Eq. A.54.

Noting that kT = |k| sin θ ≈ |k|θ, and writing the energy of the gluon as a fraction of the

initial quark’s energy, i.e. Ek = Ep (1− z), one finally obtains for the phase space

dPS =
1

16π2
(4π)ǫ

Γ(2− ǫ)

dz

(1− z)
dk2−2ǫ

T . (A.126)

Therefore, one has

∣
∣Mn+1

j

∣
∣2 =

αs

2π

(
4πµ2

k2T

)ǫ
dk2T
k2T

CF

[
1 + z2

1− z
− ǫ (1− z)

]

dz
1

Nc

∑

i

∣
∣Mn

i

∣
∣2 . (A.127)



APPENDIX B

Mathematical appendix

B.1. Integral representations of Heaviside step functions

It follows from the definition of the Dirac δ-function that
∫ A

−A
dp δ(p− a) f(p) =

{

f(a) if −A < a < A

0 otherwise

= f(a)Θ(A− |a|) .
(B.1)

Combining this with the integral representation of the Dirac δ-function in Fourier space,

i.e.

δ(p− a) =
1

2π

∫ ∞

−∞
ei x (p−a) dx , (B.2)

one establishes that, taking f(p) = 1,

Θ(A− |a|) = 1

2π

∫ ∞

−∞
dx

∫ A

−A
dp ei x (p−a)

=
1

π

∫ ∞

−∞

dx

x
sin (xA) e−i x a

=
2

π

∫ ∞

0

dx

x
sin (xA) ei x a +

2 i

π
ln

[
(a−A)2

(a+A)2

]

,

(B.3)

using ei θ = cos θ + i sin θ and exploiting the parity of the integrand. Upon making the

replacements A → φ∗M and a → ∑

i kTi sinφi, and implicitly taking the real part, one

obtains Eq. 4.105.
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B.2. Special functions

B.2.1. The Euler Gamma function. The Euler Gamma function may be defined

as

Γ(z) :=

∫ ∞

0
tz−1 e−t dt for Re z > 0 . (B.4)

Integrating by parts the corresponding integral form of Γ(z + 1) reveals

Γ(z + 1) = z Γ(z) . (B.5)

As such, it is related to the factorial as

Γ(n+ 1) = n! for n ∈ N . (B.6)

A common occurrence when dealing with d-dimensional spheres is Γ
(
1
2

)
. Letting t = r2

and using symmetric limits, permitted by the parity of the integrand, one obtains the

Gaussian integral

Γ

(
1

2

)

=

∫ ∞

∞
e−r

2
dr =

√
π . (B.7)

B.2.2. The Beta function. The Beta function may be defined as

B(m,n) :=
Γ(m) Γ(n)

Γ(m+ n)
, (B.8)

which is symmetric under the exchange m ↔ n. Taking the numerator in integral form

and changing variables through t = z α and u = z (1− α), one obtains

Γ(m) Γ(n) =

∫ ∞

0
tm−1 e−t dt

∫ ∞

0
un−1 e−u du

=

∫ ∞

0
zm+n−1 e−z dz

∫ 1

0
αm−1 (1− α)n−1 dα

= Γ(m+ n)

∫ 1

0
αm−1 (1− α)n−1 dα

(B.9)

and so

B(m,n) =

∫ 1

0
αm−1 (1− α)n−1 dα . (B.10)

It is often useful to identify such integrals as a form of the Beta function, writing them

subsequently in terms of Gamma functions.

B.2.3. The Euler–Mascheroni constant. The Euler–Mascheroni constant is de-

fined as

γE := lim
N→∞

[
N∑

n=1

− logN

]

, (B.11)

i.e. the limiting difference between the harmonic series and the natural logarithm. The

series expansion of Γ(ǫ) about ǫ = 0 involves this quantity and is

1

ǫ
− γE +

1

12

(
6 γ2E + π2

)
ǫ+O(ǫ2) . (B.12)
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B.3. Azimuthal integration of radiation function

Here it is shown that
∫
dφ

2π
W̃ k

[i]j ≡
∫
dφ

2π

[
(i, j)

(i, k) (k, j)
+

1

(i, k)
− 1

(j, k)

]

=
2

(i, k)
Θ[cos θik − cos θij ] ,

(B.13)

where (a, b) = 1−cos θab, by following the derivation which may be found in [48]. Energies

are assumed to have already been factored out, and so we have a = (1,a). The integration

is over the azimuth of k, about the direction of i. First, pick the directions of i, j and k

to be

i = (0, 0, 1) (B.14)

j = (sin θij , 0, cos θij) (B.15)

and k = (sin θik cosφ, sin θik sinφ, cos θik) . (B.16)

The angle between j and k is then j · k, so

(j, k) = 1− cos θjk = A−B cosφ , (B.17)

where

A = 1− cos θij cos θik (B.18)

and B = sin θij sin θik . (B.19)

Consider the integral

I =

∫ 2π

0

dφ

(j, k)
=

∫ 2π

0

dφ

A−B cosφ
. (B.20)

Introducing z = eiφ, this may be written

I =
2

i B

∮
dz

(z+ − z) (z − z−)
(B.21)

where z± = A/B ±
√

A2/B2 − 1, and the contour is the anticlockwise unit circle in the

complex plane. The only pole to reside within this contour is at z = z−. Therefore, by

Cauchy’s residue theorem,

I =
2

i B
2π i

1

(z+ − z−)
= 2π

1√
A2 −B2

. (B.22)

Using this result in Eq. B.13, and the fact that
√

A2 −B2 = | cos θij − cos θik| , (B.23)
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gives
∫
dφ

2π
W̃ k

[i]j =
(i, j)

(i, k)

∫
dφ

2π

1

(k, j)
+

1

(i, k)
−
∫
dφ

2π

1

(k, j)

=
1

(i, k)

[

1− cos θij − cos θik
| cos θij − cos θik|

]

=

{

0 if cos θij ≥ cos θik

2 if cos θij < cos θik

=
2

(i, k)
Θ[(i, j)− (i, k)] .

(B.24)
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B.4. NNLL approximation

Aspects of this calculation are a reproduction of that originally presented in [66]. My

hope is that the additional working presented herein will provide insight for the interested

reader.

The aim here is to show that, to the desired accuracy, one may replace
(

1− ei b x
)

→ Θ

(

|x| − 1

b̄

)

(B.25)

in

R(b) =

∫ M

Q0

dkT
kT

F

(

αs ln
kT
M

)(

1− ei b x
)

, (B.26)

where x = kT sinφ/M . Further discussion may also be found in [66]. We begin by

considering the more general integral

I =

∫ ∆max

∆min

d∆

∆
F (αs ln∆)

(

1− ei b v∆
)

. (B.27)

Given that one can generate the single logarithmic terms, of which F is a function, using

d∆ǫ

dǫ

∣
∣
∣
∣
ǫ=0

= ln∆ , (B.28)

we may write I as

I = F

(

αs
d

dǫ

) ∫ ∆max

∆min

d∆∆ǫ

∆

(

1− ei b v∆
)
∣
∣
∣
∣
ǫ=0

= F

(

αs
d

dǫ

)

(I1 − I2)

∣
∣
∣
∣
ǫ=0

, (B.29)

where

I1 =

∫ ∆max

∆min

d∆∆ǫ

∆
=

∆ǫ
max −∆ǫ

min

ǫ
(B.30)

and

I2 =

∫ ∆max

∆min

d∆∆ǫ

∆
ei b v∆ , (B.31)

the latter of which is the focus of our attention.

We consider I2 to be the ‘A’ leg of the integral around the closed contour, γ, shown

in Fig. B.1. Since this contour encloses no poles in the variable of integration, ∆,

Iγ =

∮

γ

d∆∆ǫ

∆
ei b v∆ = IA + IB + IC + ID + IR = 0 . (B.32)

Along this contour, Im∆ ≥ 0, so ei b v∆ = ei b v Re∆ e− b v Im∆ does not become large,

provided that b v ≥ 0. Furthermore, since 0 < ǫ≪ 1,

∆ǫ

∆
→ 0 as |∆| → ∞ . (B.33)

Thus, the contribution to the integral from the contour piece ‘R’ is IR = 0.

The contribution from the contour piece ‘C’,

IC =

∫ i∆min

i∞

d∆∆ǫ

∆
ei b v∆ , (B.34)
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Re(Δ)

Im(Δ)

∞

i∞

iΔmin

Δmin Δmax

A B

C

D

R

Figure B.1. A closed contour in the Re(∆)–Im(∆) plane, within which
the integrand of Eq. B.32 contains no poles.

may be brought into a more convenient form by changing the variable of integration to

t = −i b v∆. As such,

IC = −
(
i

b v

)ǫ ∫ ∞

b v∆min

dt tǫ−1 e−t = −
(
i

b v

)ǫ

Γ(ǫ, b v∆min) , (B.35)

where Γ(ǫ, b v∆min) is the incomplete Γ function. Performing a series expansion about

x = 0, we have

Γ(ǫ, x) = Γ(ǫ)− xǫ

ǫ
+ . . . , (B.36)

and so, in the limit ∆min → 0, we have

IC = −
(
i

b v

)ǫ

Γ(ǫ) +
(i∆min)

ǫ

ǫ
. (B.37)

The integration around the quarter circle ‘D’ may be evaluated by writing ∆ =

∆min e
i θ, and changing the variable of integration to θ. Thus

ID =

∫

D

d∆∆ǫ

∆
ei b v∆ =

∫ 0

π/2
i dθ∆ǫ

min e
i ǫ θ ei b v∆min cos θ e− b v∆min sin θ . (B.38)

Taking ∆min to be sufficiently small, this is simply

ID = i∆ǫ
min

∫ 0

π/2
dθ ei ǫ θ =

∆ǫ
min − (i∆min)

ǫ

ǫ
(B.39)

The final contribution is from the contour piece ‘B’. To the accuracy we desire, this

does not contribute. The logarithmic enhancements are in the ratio ∆max/∆min, and so

the contribution from IB is beyond our accuracy.

Taking all the contributions together, we have

I2 ≡ IA = −IC − ID = −∆ǫ
min

ǫ
+

(
i

b v

)ǫ

Γ(ǫ) . (B.40)
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Using, for small ǫ,

iǫ Γ(ǫ) =
1

ǫ
− γE +

i π

2
=

1− ǫ γE
ǫ

+
i π

2
≈ e−ǫ γE

ǫ
+
i π

2
, (B.41)

we have

Re(I2) = −∆ǫ
min

ǫ
+

1

ǫ

(
e−γE

b v

)ǫ

, (B.42)

and so

I = I1 − I2 =
∆ǫ

max − (b̄ v)−ǫ

ǫ
, (B.43)

where b̄ = b eγE . This is precisely I1, but with ∆min → 1/(b̄ v). Therefore, we may replace

1− ei b v∆ → Θ

(

∆− 1

b̄ v

)

(B.44)

up to NNLL accuracy in our expression for R(b), for v > 0. For general v, one obtains

Eq. B.25 where x = v∆.
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APPENDIX C

Control plots for resummed predictions

C.1. Cancellation of logs for DØ predictions

C.1.1. Predictions in peak region.
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Figure C.1. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| < 1. The scale µQ =M/2.

305



306 C. CONTROL PLOTS FOR RESUMMED PREDICTIONS
F

ix
ed

-o
rd

er
 -

 e
xp

an
si

on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M/2, µF = M/2

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M/2, µF = M/2

|y| < 1, electrons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M/2, µF = M

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M/2, µF = M

|y| < 1, electrons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M, µF = M/2

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M, µF = M/2

|y| < 1, electrons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = M, µF = 2M

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = M, µF = 2M

|y| < 1, electrons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = 2M, µF = M

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = 2M, µF = M

|y| < 1, electrons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M, µR = 2M, µF = 2M

|y| < 1, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M, µR = 2M, µF = 2M

|y| < 1, electrons

O(αs
2)

Figure C.2. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| < 1. The scale µQ =M .
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Figure C.3. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| < 1. The scale µQ = 2M .
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Figure C.4. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ =M/2.
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Figure C.5. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ =M .
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Figure C.6. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ = 2M .



C.1. CANCELLATION OF LOGS FOR DØ PREDICTIONS 311

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

φ*

µQ = M/2, µR = M/2, µF = M/2

|y| > 2, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

φ*

µQ = M/2, µR = M/2, µF = M

|y| > 2, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

φ*

µQ = M/2, µR = M, µF = M/2

|y| > 2, electrons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

φ*

µQ = M/2, µR = M, µF = M

|y| > 2, electrons

O(αs)

Figure C.7. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| > 2. The scale µQ =M/2.
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Figure C.8. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| > 2. The scale µQ =M .
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Figure C.9. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → ee channel around the resonance and the rapidity range
|y| > 2. The scale µQ = 2M .
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Figure C.10. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
|y| < 1. The scale µQ =M/2.
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Figure C.11. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
|y| < 1. The scale µQ =M .
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Figure C.12. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
|y| < 1. The scale µQ = 2M .



C.1. CANCELLATION OF LOGS FOR DØ PREDICTIONS 317

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M/2, µR = M/2, µF = M/2

1 < |y| < 2, muons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M/2, µR = M/2, µF = M/2

1 < |y| < 2, muons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M/2, µR = M/2, µF = M

1 < |y| < 2, muons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M/2, µR = M/2, µF = M

1 < |y| < 2, muons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M/2, µR = M, µF = M/2

1 < |y| < 2, muons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M/2, µR = M, µF = M/2

1 < |y| < 2, muons

O(αs
2)

F
ix

ed
-o

rd
er

 -
 e

xp
an

si
on

-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

µQ = M/2, µR = M, µF = M

1 < |y| < 2, muons

O(αs)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.001  0.01  0.1  1

φ*

µQ = M/2, µR = M, µF = M

1 < |y| < 2, muons

O(αs
2)

Figure C.13. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ =M/2.
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Figure C.14. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ =M .
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Figure C.15. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data in the Z → µµ channel around the resonance and the rapidity range
1 < |y| < 2. The scale µQ = 2M .
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C.1.2. Prediction at low mass.
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Figure C.16. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range |y| < 1. The scale
µQ =M/2.
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Figure C.17. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range |y| < 1. The scale
µQ =M .
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Figure C.18. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range |y| < 1. The scale
µQ = 2M .
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Figure C.19. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range 1 < |y| < 2. The scale
µQ =M/2.
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Figure C.20. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range 1 < |y| < 2. The scale
µQ =M .
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Figure C.21. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for DØ
data at low invariant mass and the rapidity range 1 < |y| < 2. The scale
µQ = 2M .
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Figure C.22. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS φ∗ distributions with µQ =M/2.
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Figure C.23. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS φ∗ distributions with µQ =M .
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Figure C.24. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted ATLAS φ∗ distributions with µQ = 2M .
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Figure C.25. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
ATLAS QT distributions with µQ =M/2.
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Figure C.26. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
ATLAS QT distributions with µQ =M .
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Figure C.27. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
ATLAS QT distributions with µQ = 2M .
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Figure C.28. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS φ∗ and QT distributions with the central scale choices.
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Figure C.29. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS φ∗ distributions with µQ =M/2.
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Figure C.30. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS φ∗ distributions with µQ =M .
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Figure C.31. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
predicted CMS φ∗ distributions with µQ = 2M .
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Figure C.32. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
CMS QT distributions with µQ =M/2.
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Figure C.33. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
CMS QT distributions with µQ =M .
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Figure C.34. Plots showing the cancellation of large logarithms between
the fixed-order component and the expansion of the resummation, for the
CMS QT distributions with µQ = 2M .



APPENDIX D

Azimuthal distribution of muons
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Figure D.1. The finely binned distributions of the azimuthal angle of the
leading muon, covering the range −π < θ < −π/2
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Figure D.2. The finely binned distributions of the azimuthal angle of the
leading muon, covering the range −π/2 < θ < 0
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Figure D.3. The finely binned distributions of the azimuthal angle of the
leading muon, covering the range 0 < θ < π/2
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Figure D.4. The finely binned distributions of the azimuthal angle of the
leading muon, covering the range π/2 < θ < π
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Figure D.5. The finely binned distributions of the azimuthal angle of the
sub-leading muon, covering the range −π < θ < −π/2
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Figure D.6. The finely binned distributions of the azimuthal angle of the
sub-leading muon, covering the range −π/2 < θ < 0
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Figure D.7. The finely binned distributions of the azimuthal angle of the
sub-leading muon, covering the range 0 < θ < π/2
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Figure D.8. The finely binned distributions of the azimuthal angle of the
sub-leading muon, covering the range π/2 < θ < π
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(f) Scans VII and VIII

Figure E.1. These plots show the effect of optimizing σAND
vis on the AND-

over-OR luminosity ratios, in bins of µ. In all instances, the µ values
quoted for the OR algorithm have been background-corrected. The values
determined from these optimization studies are summarized in Table 15.2.
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(h) Scan VIII y

Figure E.2. These plots show the effect of optimizing σAND
vis on the AND-

over-OR luminosity ratios, in bins corresponding to pseudo-lumiblocks
(PLBs), which is equivalent to bins in nominal beam separation, since each
scan point corresponds to a distinct PLB. In all instances, the luminosity
determined according to the OR algorithm has had a background correc-
tion applied. The values determined from these optimization studies are
summarized in Table 15.2.
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E.2. Systematics due to non-zero αxz

Table E.1 shows how the gradients of linear movement of the luminous centroid change

for various discrete crossing angles, αxz. The final two columns express the change as a

percentage difference to the value of the observable obtained for αxz = 0. Note, fitted

values of dz/dhx,y provide direct constraints on this crossing angle. All quantities are

calculated using a numerical model employing the single-Gaussian beam profiles described

in this note. Percentage changes found for αxz = 20µrad are used as the systematic in

determining the widths of the bands in Fig. 16.7(e), as explained in Sec. 16.5. In

particular, these Monte Carlo results were derived by assuming the values in the ‘May

scan VII’ column of Table 16.4, and the ‘May’ column of Table 16.6, where σz is taken to

be 69 mm for both beams, and αyz = 120µrad.

Table E.1. This table shows changes in Monte Carlo observables with
respect to discrete changes in the αxz crossing angle. Note well, that all
values quoted are the absolute value (i.e. the modulus) of those determined.

αxz (µrad) 0 20 40 20 (%) 40 (%)

|d〈x〉/dhx| 1.5 · 10−2 1.5 · 10−2 1.5 · 10−2 ∼ 0% ∼ 0%
|d〈y〉/dhx| 1.9 · 10−4 3.5 · 10−4 4.3 · 10−4 84% 130%
|d〈z〉/dhx| 1.6 2.7 · 101 4.1 · 101 1500% 2400%
|d〈x〉/dhy| 1.8 · 10−4 2.7 · 10−4 3.2 · 10−4 52% 78%
|d〈y〉/dhy| 2.3 · 10−2 2.3 · 10−2 2.3 · 10−2 ∼ 0% ∼ 0%
|d〈z〉/dhy| 1.6 · 102 1.6 · 102 1.6 · 102 ∼ 0% ∼ 0%
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E.3. Luminous centroid movements with non-zero beam crossing angle

The equations corresponding to Eqs. 16.10 – 16.13, but in the presence of a single

beam crossing angle (i.e. αxz = 0 and αyz 6= 0, for instance) may be derived according to

the method set out in Sec. 17.2. They are summarized for the benefit of the reader below.

The dots (. . .) are to remind the reader a series expansion has been performed, and higher

terms have been neglected.

To begin with, it is interesting to see how the z-position of the luminous centroid,

denoted 〈z〉, gains a dependence on hx and hy. The z-movement during a scan in the

crossing plane is the easiest to understand:

d〈z〉
dhy

=
αyz σ

2
z

2
(
σ2y,1 + σ2y,2

) + . . . (E.1)

It should be noted that d〈z〉/dhx, the z-movement during a scan out of the crossing plane,

gains this dependence via the linear x-y coupling:

d〈z〉
dhx

=
αyz σ

2
z

(
κ1 σx,1 σy,1 + κ2 σx,2 σy,2

)

2
(
σ2x,1 + σ2x,2

) (
σ2y,1 + σ2y,2

) + . . . (E.2)

In the following, the label ‘no xing’ indicates the corresponding quantity in Eqs. 16.10 –

16.13, where crossing angles were not included. The quantity d〈x〉/dhx remains unaffected,

since the assumed crossing plane is (y, z), not (x, z):

d〈x〉
dhx

=
σ2x,1 − σ2x,2

2
(
σ2x,1 + σ2x,2

) + . . . =
d〈x〉
dhx

∣
∣
∣
∣
no xing

(E.3)

The changes to the remaining movements are neatly summarized in terms of the quantity

d〈z〉/dhy, above:

d〈x〉
dhy

=
σx,1 σx,2

(
κ2 σx,1 σy,2 − κ1 σx,2 σy,1

)

(
σ2x,1 + σ2x,2

) (
σ2y,1 + σ2y,2

)

(

1−
α2
yz σ

2
z

2
(
σ2y,1 + σ2y,2

)

)

+ . . .

=

(

1− αyz
d〈z〉
dhy

)
d〈x〉
dhy

∣
∣
∣
∣
no xing

(E.4)

and

d〈y〉
dhy

=
σ2y,2 − σ2y,1

2
(
σ2y,1 + σ2y,2

)

(

1−
α2
yz σ

2
z

2
(
σ2y,1 + σ2y,2

)

)

+ . . . =

(

1− αyz
d〈z〉
dhy

)
d〈y〉
dhy

∣
∣
∣
∣
no xing

, (E.5)

except in
d〈y〉
dhx

=
[
1 +O

(
α2
yz

)] d〈y〉
dhx

∣
∣
∣
∣
no xing

, (E.6)

where one recognizes that the quantity
(
d〈y〉/dhx

)

no xing
already depends on κ1,2 to first

order, and so the (cumbersome) O
(
α2
yz

)
correction terms may be neglected if we work to

the same order as the (simple) O
(
α2
yz

)
correction term in Eq. E.5. One can indeed verify

this numerically, and in fact the same should be true of Eq. E.4, which is presented above

to O
(
α2
yz κ1,2

)
. Finally, it should be noted that this is consistent with the notion that one

requires a crossing angle in both planes in order to significantly impact the determination

of the linear x-y coupling coefficients.
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E.4. When does crossing angle become negligible?

It has been mentioned in the text that one can deduce whether or not one needs to

consider any beam crossing angle by observing the plots for d〈z〉/dhxi , where xi ∈ {x, y}.
To make this statement quantitative, the scale at which one should judge these plots is

derived below.

Observing Eqs. E.4 and E.5, above, we see that the effect of a single crossing angle

becomes important when α2
yz σ

2
z ∼ 2

(
σ2y,1 + σ2y,2

)
= 2Σ2

y. The converse statement is that

one can neglect the crossing angle when

αyz σz ≪
√
2Σy. (E.7)

Using the definition of d〈z〉/dhy in Eq. E.1, one can rewrite this expression as

d〈z〉
dhy

≪ σz√
2Σy

, (E.8)

and thus obtain a quantitative statement for when one can ignore the crossing angle, in

terms of quantities already known a priori. For example, the residual crossing angles may

be ignored in the July 2012 scans because σz ≈ 90 mm and Σy ≈ 150µm, thus d〈z〉/dhy
should be much smaller than ∼ 420. From the final plot in Fig. 17.13, for example, one

sees that |d〈z〉/dhy| ≈ 5, justifying the neglect of αyz in the analysis.
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