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Abstract

We study a mixed tensor product 3®m @ 3" of the three-dimensional fundamental representations of

the Hopf algebra Ugs¢(2|1), whenever g is not a root of unity. Formulas for the decomposition of tensor
products of any simple and projective Ugs£(2|1)-module with the generating modules 3 and 3 are obtained.
The centralizer of Ugs£(2|1) on the mixed tensor product is calculated. It is shown to be the quotient X,
of the quantum walled Brauer algebra qwB,, ,. The structure of projective modules over X, , is written
down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated
the corresponding restriction functors on simple and projective modules over X;; ,. This result forms a
crucial step in decomposition of the mixed tensor product as a bimodule over Xy, , X Ugs€(2|1). We give
an explicit bimodule structure for all m, n.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the course of the last twenty years Logarithmic conformal field theory (LCFT) has es-
tablished itself as an area of extensive interaction between models of statistical physics such as
percolation, the sand pile model, dense polymers as well as other models with nonlocal observ-
ables on the one hand, and modern topics in mathematics such as Nichols algebras, quantum
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groups, braided categories, VOA theory and diagram algebras on the other. One of the most
developed approaches [1-3] to constructing LCFT is based on the intersection of screening oper-
ator kernels. In this approach one chooses a lattice vertex operator algebra (VOA) and fixes a set
of fields v;, which correspond to representations of VOA and are called screening currents. The
zero modes of these currents s; = §v; are called screenings. Under certain integer valuedness
conditions on scalar products of the screening currents momenta, the screenings form a finite-
dimensional Nichols algebra (see examples in [4,5]). Under these conditions the intersection of
the screening kernels is a vacuum module of a rational LCFT: Vac = (), Kers;. In this case,
LCFT is a representation space of the rational W-algebra W = Vac.

The algebra W has only a finite number of irreducible representations. The set of simple and
projective W-modules is closed under fusion and the characters of the W-irreducible modules
generate a finite-dimensional representation of the modular group.

Another source of LCFT is given by various lattice models [6—12]. CFT appears naturally as a
scaling limit of lattice models in the critical point, see e.g. [13]. Then, a mathematically rigorous
program on algebraic construction of the scaling limits was initiated in [14]. If one considers
nonlocal observables (for example, the cluster probability in percolation theory [15-18]) in the
lattice model, then in the scaling limit an LCFT is in general expected to appear, and in several
models [19,20,11,21] its appearance is shown explicitly.

The standard approach to studying the lattice models is the transfer-matrix method [22,23].
In this approach a connection with a spin chain is established by the Hamiltonian limit. Another
feature of lattice models with nonlocal observables is that in the Hamiltonian limit there exist
nontrivial Jordan blocks in the Hamiltonian [24-28] (see discussion on the Jordan blocks problem
in the algebraic Bethe ansatz approach in [29]). From the side of LCFT the existence of nontrivial
Jordan blocks in the Hamiltonian is expressed in the fact that the conformal dimension operator
Lo becomes non-diagonalizable and conformal blocks admit logarithmic terms.

In both approaches a quantum group plays a crucial role [30,31,8,12]. In the first case quantum
group appears as a double bosonization of the algebra generated by screenings [32]. In the second
case the spin-chain can be constructed as tensor product of fundamental representations of the
quantum group.

For the simplest case of (1, p) LCFT models [33-36], the corresponding spin-chain Ty is a
tensor product of two-dimensional representations of the quantum group Ugs€(2), [37], and the
Ty is called the Heisenberg spin-chain.

An interesting generalization of the Heisenberg spin-chain is a spin-chain based on the algebra
Ugs€(M|N) [38]. Such spin-chains describe interaction between spin and other degrees of free-
dom. For instance, Ugys£(2|1)-spin-chain is related with (integrable) t-J model which includes
the interaction between spin and charge degrees of freedom, [39—41].

On the side of LCFT, models related with the quantum group Ugs¢(2|1) are constructed
in [32] by the approach based on intersection of kernels of the screening operators. Rational
W -algebras W containing as a subalgebra §l(2)k at a rational level k naturally occur in these
models. At the same time models over s/(2); are not rational. In this case s/(2); is an analog of
the Virasoro algebra in (1, p)-models. More on LCFT with s/(2); see in [42-44].

In order to investigate how LCFT with quantum group Ugs¢(2|1) appears in the scaling limit
of the spin-chain, it is natural to follow the approach proposed in [37]. In the present paper
we study Ugs€(2|1) mixed tensor product which is the space of states for the spin-chains with
Ugs€(2[1) symmetry. But the case when g is a root of unity g = ¢'7/Pis more complicated and
we leave it for a separate work. Therefore in the present paper we consider only the algebra with
a generic value of the parameter q.
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It is useful to make an analogy with the Heisenberg Ugs¢(2)-spin-chain with generic g. Its
centralizer C(Ugs€(2)) on the chain is the Temperley-Lieb algebra C(Ugs€(2)) = T Ly with
the same value of the parameter g. Thus, the spin-chain space of states can be expressed as a
bimodule Ty = @; V; [XI M;, where V; and M; are some simple Ugys€(2)- and 7 L y-modules.
When N — oo, the algebra T Ly conjecturally converges to the Virasoro algebra. When q is a
root of unity the centralizer of the Temperley—Lieb algebra 7Ly is the Lusztig limit £LUgs£(2)
of Ugs€(2). In this case the bimodule decomposition of the spin chain contains non-semisimple
summands [12].

When q is a root of unity, the algebra LUgs€(2) contains the restricted quantum group
ﬂqu(Z) as a subalgebra, see details in [45]. In [37] it is shown that the centralizer of ﬂqu(Z)
on the spin-chain Ty is the algebra Wy, which contains the algebra T Ly. In the limit N — o
the algebra Wy gives the triplet algebra W built by the lattice VOA construction.

In case of Ugs€(2|1) we take its (mutually dual) fundamental representations which are three-
dimensional and denote them by 3 and 3. We study the mixed tensor product

T = 35" @3°". (1.1)

The tensor product T, , is the space of states of different integrable spin-chains with Ugs€(2|1)
symmetric hamiltonians, examples of which are considered in [46,7.47,48]. We let X, , denote
the centralizer of Ugs€(2|1) on Ty n, C(Ugs€(2|1)) = X 5. It is shown in [49-52] that X, , is
isomorphic to some quotient of the quantum walled Brauer algebra qwB,, ,,. In this paper we do
not give an explicit description of X, , itself, but describe simple and projective modules over
Xin.n- We find the decomposition of the chain T}, , as a bimodule over qu€(2| 1) and X, ,,. Even
for generic values of g, the bimodule is not semisimple. We give the bimodule in an explicit form
in Theorem 5.3.

The quantum walled Brauer algebra qwB,, , was introduced in [53-55]. The two-parametric
algebra qwB,, , was introduced in [56] and the structure of the simple modules was described
implicitly. Modules over qwB,, , and its classical analogue WB,, , were investigated in [57,58,
61-63]. Some useful facts about wWB,, ,-projective modules can be obtained from [76].

For arbitrary values M, N the algebra Ugs¢(M|N) on the appropriate mixed tensor product
(which is the tensor product of its fundamental representations) is centralized by some quotient
of qwB,, ,, see also [52,64]. If N = 0 the bimodule is semisimple. We study the simplest non-
semisimple case N = 1.

The outline of the article is as follows. In Sec. 2 we define the algebra Ugs£(2|1) and classify
its finite-dimensional simple and projective modules. In Sec. 3 we describe the mixed tensor
product and introduce the centralizer X, ,. First, we prove the formulas for the tensor products
of modules needed to the mixed tensor product decomposition. Next, we show that the centralizer
is a quotient of the algebra qwB,, ,. In Sec. 4 we describe simple and projective modules over
X, and the restriction functors on them. In the last Sec. 5 we describe the bimodule structure
and give a sketch of a proof for the bimodule decomposition formula.

2. The Hopf algebra Ugs¢(2(1)
2.1. Definition of Ugs€(2|1)
Quantum analogues of superalgebras s£(2|1) and g£(2|1) was studied intensively in [65-68].

We describe the Hopf algebra Ugs£(2]1) by a system of generators and relations. In this section
and in the entire paper we assume that the parameter g is not a root of unity. We choose the
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generators adapted to the Hopf subalgebra structure Ugs£(2|1) > U, g€(2) D Ugs£(2) (such that
the embeddings act by identification of corresponding generators); we extensively use these sub-
algebras while working with Ugs€(2|1) modules in the sequel. The Hopf subalgebra Ugs€(2) in
Ugs€(2|1) is generated as an associative algebra by E, K, and F with the relations

K—K~1
KF =q *FK, EF—FE:ﬁ, KE = ¢’EK. 2.1

The larger algebra U, g¢(2) contains an additional generator k satisfying the relations
kF =qFk, kE=q 'Ek, kK =Kk. (2.2)

We call the generators E, F, K and k bosonic. There are two additional generators B and C,
which extend U, g¢(2) to Ugs€(2[1), and which we call fermionic, or simply fermions. The
relations that involve the fermions B and C are

kB=—-Bk, KB=qBK, kC=-Ck, KC=q 'CK,

2 k—k~! 2
B*=0. BC-CB= _— . C’=0.
FC—-CF =0, BE — EB =0,

FFB—[2]FBF + BFF =0, EEC —[2]ECE +CEE =0,

(2.3)

where we use g-integers defined as

q'—q "
n|= .
[} g—q~!

The Hopf-algebra structure of Ugs€(2|1) (the coproduct, the antipode, and the counit) is given
by

AF)=F®1+K'®F, A(E)=EQK +1®E, 4
AB)=B®1+k ' ®B, A(C)=CRk+1®C, '
S(B)=—kB, S(F)=—KF, S(C)=-Ck~', S(E)=—-EK™', (2.5)
€(B)=0, €(F)=0, €(C)=0, €(E)=0, (2.6)

with k and K being group-like.
2.2. Simple Ugs€(2|1) modules

Here and below we use the same notations as in [70]. We consider a subcategory of
Ugs€(2|1)-modules with k eigenvalues of the form g~ for n € Z. The subcategory is closed
under tensor products.

Each simple finite dimensional Ugs£(2|1) module contains a highest weight vector satisfying
the conditions:

Ela,s,B,r)y =0, Cla,s,B,ryy =0, (2.7)
where the labeling corresponds to the eigenvalues of K and k:
Kla,s, B.rYy =aq” e, s, B, 1)y,

- - - o,B==+1, s,re’z,
kla, s, B,ry = Ba"la,s, B, 1)y s

©
\%

(2.8)
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We choose such a parametrization because the dimension and structure of the modules are in-
dependent of o and 8. We note that there are four nonisomorphic modules in each dimension,
which differ in the sign of the Cartan eigenvalues.

The set of the simple finite-dimensional Ugs£(2|1)-modules is

%8 a,p=+1, s,reZ, s=1. (2.9)

S,r
The structure of the modules will be explained in more detail in the next subsection. For a picto-

rial explanation of the notations for vectors in the module see Fig. 1.
The modules have dimensions

2s —1, r=0,
dim2%f =325 +1, r=s, (2.10)
4s, r#0,s.

The modules with » = 0 and r = s are atypical, and others are typical. In [65] it was shown that
every finite-dimensional irreducible module over the general linear Lie superalgebra g€(n|1)
can be deformed into an irreducible module over U, g£(n|1). Notations “typical” and “atypical”
for modules in the present work are inherited from the theory of Lie superalgebras (see, for
example [69]).

The trivial module corresponds to , see (2.9). We note that there are four one-
dimensional modules and only one of them is trivial.

+1,+1
Z’1 0

2.2.1. Ugst(2|1)-action on simple modules
Each Ugs€(2[1)-module decomposes into a direct sum of simple U,g¢(2)-modules DC?}S ,
where o, B = *+1, s > 1, r € Z. Their dimensions are dim DC?rﬂ = s. Eigenvalues of generators

K and k on the highest weight vector in the module .')C‘?,’3 are «g® ! and Bg~" correspondingly.

We describe (following [70]) the action of Ugs£(2|1) on its simple modules explicitly, using
the basis adapted to the decomposition into U, g€(2)-modules. The examples of each type of
modules are shown in Fig. 1.

Atypical modules with r =0, Z';”g : As U, g£(2)-modules, these modules decompose as
e =iy exs P, @2.11)
and we choose a basis in Z‘f('f in accordance with this decomposition, as
<|(¥,S,,3,0>(n_€x(;f) (|“’S:5’O>;ex(sxf1,fl)
The fermionic generators relate these two types of vectors as

B‘(X,S,,B, 0>(r7 = *[I’l]|a,s, ﬂ70>r117 C|avs’ ﬂ70>; :ﬁ|a7s7 ﬂ70>(};+1‘

Atypical modules with s =r, Z‘;f : The modules decompose as

y .
o<n<s—1 o<m<s—2

B _ e —8
28l =Xl @ X (2.12)

and we choose a basis in ngsﬁ accordingly, as

(Jor s, B, s € X%P (|a,s,ﬁ,s>;ex“’*ﬁ

,S )ogngsfl ’ S+1"Y)O<m<s :
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Do 5 Do s

Do Do Do Do
DT Pl by Di Do

Dy DY DY Dr
Py D2 3 4

D2 Dy Iy 1y
Py s D

Dy s s by
Dy e M

Fig. 1. Left: An atypical module Z?’és (with s = 5). Each vertical column is a Ug g£(2) module in (2.11). The top state

is |a, s; B, 0>(T and the bottom, |, s; B, 0>T_1 . MIDDLE: An atypical module Z?Yﬂ (with s = 4). Each vertical column
is a Uy g€(2) module in (2.12). The top state is |a, 5; B, s>0_’ and the bottom, |e, 55 8, 5); . Right: The typical module

Z‘;’,ﬂ (s =4). Each column is a Uy g£(2)-module in (2.13). The directions in which the generators map are common for
all modules.

The fermions act between these two sets of basis vectors as

Bla, s, B, sy, =[s —nlle, s, B.s), Clo, s, B, s),, =Bla,s,B,s), -

Typical modules (r # 0, s): The modules decompose as
Z’ xaﬁ®xs+lr®x 1r71®x5r71’ (2.13)

and we choose the basis in Z‘sx,ﬂ as

(|°" s, B ”>7)0<./<s—1’ (‘“’ s, B r>’Tn)0$m$x’
(

The fermions act on these vectors as

B|a,s,/3,r>‘j_ = m|ot s, B, r>l_1 +p——

[s]
= [m] s =la,s, B, 1),
Bla,s,B.r)h =B []["Jrl*S]\a s, B C\a s, B. 1) = Blr—s]
C|ot,s,,3,r>j_’—ﬁ|a s, B, r>l —I—ﬁ[ ] ]|Ot s, B, r>/Jrl

In this paper we are mainly interested in two three-dimensional simple Ugs¢(2|1)-modules
3= Zi:fl and 3 = Zé:(l). They have the structure

l)OgnszZ’ (l. s, B, r>j_))0<j$s71'

[r]ls = j]

o, s, VT
[s] loe,s. B.r);

-
n+1°
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Do Do (2.14)
3=1v 3= Do’
D v

2.3. Ext! spaces for atypical modules

For two modules Z; and Z,, we define Ext! (Z2,21) as a linear space with basis identified
with nontrivial short exact sequences

021 —>210Z—2Zr—0

modulo a certain equivalence relation [71].

The groups Ext!' vanish for the typical Ugs€(2|1) modules. For the atypical modules, the
Ext! (21, Z,) group is at most 1-dimensional. Whenever Ext! (21, Z) is nontrivial, we describe
the algebra action in terms of generators: the action of a Ugs€(2|1)-generator A on Z1 ® Z; is
given by

pa= pE,O’ + &4,

(0)

where p, " is the direct sum of actions of Ugs€(2|1)-generators on the simple modules and
_ £%1.22 . ;
Ea=E&, : Z1 — Z are linear maps.
We list the £4 maps in terms of the bases introduced above. The formulas can be somewhat
uniformized by adopting the following convention for the 1-dimensional modules Z‘f’o_ P we de-

note this module also by Zg;g , with a basis vector |e, 0, B, 0>y = |, 1, =B, 055 (and, formally,

with |, 0, B, 0);, =0, m # 0). We then have
Ext! (227, 2500) = {bes1 ) £p :la, s, B.0Y5 — —[s —m]|a, s + 1, =B, 0%,
(s=1) Eg:la,s,B,0), — [s—m—1]la,s +1,—8,0),,
Ext! (200, 25700 = {es1}. Ectlans 0N, s — 1,—B,0),,
(s=2) Ec:la,s,B,0), —|a,s —1,—B,0),,

Ext' (2800, 2870 ) = {bm1}. Epilons Bos)y — —[mllos — 1, —B.s — 1, ).

(521) SB:‘aasvﬂas>};}’—>[m]|avsi1»7ﬂ’si1>r;)—17

o, s+ 1, =B, s+ 15,1
a,s+1, =B, s +1),7 .

Ext (250,250 L) = e}, Ectlons. Bsyy —
(s>0) ctlas. B.s),’ —

2.4. Projective Ugst(2|1)-modules
There are two types of projective Ugs£(2|1)-modules.

2.4.1. Simple projective modules
All simple typical modules described in 2.2.1 are projective.
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2.4.2. Projective covers of atypical modules

We use the notation iR é} and Ry b for projective covers of Z 0 F and 2 (where as before,
o,B=xlands > 1). We describe the projective covers in terms of Loewy graphs (see definition
in [77]). The reconstruction of the Ugs¢(2|1)-action on a projective module from its Loewy graph
is described in detail in [70, Sec. 6]. The action p4(v) of a generator A on a vector v has three
parts:

pa(v) = 0V () + c(W)EA (V) +na V),
(0)

where p, "’ (v) is the action of A in the irreducible subquotient, £, is determined in 2.3, and for
the map n4 we give explicit formulas after each Loewy graph (whenever n4 is nonzero). Here
¢(v) are some coefficients depending on a pair of simple subquotients in the projective module
in question. We write them on edges in Loewy graphs (see [70] for a detailed explanation).

It is convenient to distinguish between two series and two exceptional cases of projective

covers. The first series is IR‘;’(SS , § = 2, with the Loewy graph

o\
Z’?L_lﬁo
s

(2.15)

s+1 0

\
228

—Bln]

Here v* denotes the vector v from the top subquotient, and v, denotes vector v from the bottom
subquotient.

The second series is fR‘fsﬁ , s =2, with the Loewy graph

/\

s+1 s+1 s—l s—1

N

ne e, s, Bosy, ey s, BysYy o

where

nB

(2.16)

and with
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The two exceptional cases are R’ 1.0 5 and iRl 1 » with the respective Loewy graphs

—B .B —B B
Z’OlO Z"f,l Z’a Z’?,O
B
2

These modules have dimensions
dimR;y =85 —4, s>1,
dimREP =85 +4, s>1,
dimR{’) =8.

3. The mixed tensor product

We study the mixed tensor product (“spin-chain”) (1.1), where 3 = Z}l_ and 3 = Zz o are
the two three-dimensional simple Ugs€(2|1)-modules, see (2.14). We are interested in decom-
posing T}, » as a bimodule over Ugs£(2|1) and its centralizer X, ,. As a necessary first step, we

decompose tensor products of relevant Ugs¢(2|1)-modules with the fundamental modules fof
and Zg”g
Theorem 3.1. Tensor products Z®Z] 1 » where Z ranges the atypical and typical simple modules
and their projective covers, decompose as follows:
Otl Bi ® Zotz B2 Zalz —/312 + Zalz /312’ §>2.
Zal ﬁl ®Z¢¥2 B2 _ qan. /312 + ZWIZJSIZ s> 1

s+1,s+1 s,s+1 2
ai2,—B12 0!12 —B12 _
¥ 5 Rvﬂoﬁ + Zy Lol r=-1,
0!1 1 a2.fy _ a12,— P12 0t1z —B12 e
®Z fRs—l,s—l +Z’s+1,s , r=s—1, s=2
Z‘;lrszz + Z‘;jfl:ilf + Zalz ﬁlz otherwise,
and

0!1 Bi a2,B ai2,— B2 a12,B12 a2, — P12 a2, —p2
®Z CRS_]’O +ZZ +Zs_1)1 +Z’s+l,l , §=3,

al,ﬂl azqﬂz _ pa12,—B12 ai12,B12 a12,—B12 a12,— P12
ReT @2y = RS 1 +28 0 + 2,000+ 200 L, 522,

where we write a1y = ayap and B12 = B1Ba.
The exceptional cases are listed below:
061 B1 0!2 B2 _ ~an,Bfi2
@217 =217,

061 /31 ® Z_az /32 _ :Rglé,*ﬂn,
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Zalvﬂl ®Zazsl32 _ Z’(ilrzfllz + Zg}rz;—lﬂlz’ r#—1,0,1,

al,ﬂl ® Zaz B2 R‘f}é’_ﬁlz + 22’3’112,512 + Zgl,llz’_ﬁlza
al,ﬂl 012,/32 _ po12.pi2 a12,P12 a12,— P12
fR ®Z —321’1 +Z’1.2 +Z’2,1 ,
al,ﬂl 0!2 B2 a12,— P12 a12,P12 a12,— P12
® Z 312’2 + 22’1,2 + 2,273 .

The tensor products Z & Zg:g decompose as:

061 Bi a2,f2 a12,B12 a12,B12
®220 =210 F 01
0!1 /31 ay, /32 12,12 12,12
®Z’ Z’sfl,sfl + Z’erl,s ’
a12,— B2 a12,B812 _ s=2
¥ 5 R0 T2 r=1,
(x o —
I 1®Z2 2 _ :Rdlz /312_’_2’0!121/3;2, r=s+1,
Z.f_flﬂr'z + Z(m’ Pro + 27 ﬁ” >, otherwise,
and
0!1,}31 2,2 _ pe12,P12 a2, ,312 0112, B2 0!12, B2
®Z —RSJrlO —|—ZZ l—i—Z —I—Z 5 s =3,
o ,,3 Otz,ﬂz _ pUI12, /312 0!12,/312 a2, —P12 a2, — P12
:Rs,ls '@ 2y = R 22+ 2 L Z’s,sfl . os=22

The exceptional cases are:
0!1 B ®Za2 B _ Zg’lé,ﬂn’
011 ﬂl ® Zaz B _ Z‘ilés_ﬂlz + Zg’lf»ﬂlz’
Zal‘ﬂl ® Zaz,ﬂz _ Ralb_ﬂlz

0!1 ﬁl ®Za2 B _ Ztillrz,_lﬂlz + Z;‘l}?»,ﬁlz’ r#0,1,2,

Otl ﬁl ® Zaz B2 Rgﬂé,ﬁlz + 22’712_4?12 + Zglz_»l—ﬁlz’
al,ﬂl azyﬂz _ pe1.pi2 a12,— P2 12,12
fR ®Z —Rz’o +ZL_1 +Z’2,1 )

al,ﬂl ® Zaz B R‘f%’_ﬁlz + 2Zgllz,ﬂ12 + Zglli,—ﬂlz_

3.1.1. It follows, in particular, that the set of simple modules and their projective covers is
closed under tensor product decompositions.

Proof. We discuss two cases: 257! ® 7% 2 and 2y A L\ ®Z1% %2 Other cases are similar.

We consider the Ugs€(2|1)- modules in the left-hand 51de of the tensor product as U, g¢(2)-
modules (as explained in 2.2.1) and calculate their tensor product using the results in [45]. For
the tensor product fo,'s”g '® Z‘fﬁ’ P2 Wwe have

2t o2 = (1t e X ) @ (0 93 ) o
= 0P @ X R @0 P @ xS @ I e a,

Decomposition (3.1) contains six U, gf(2)-modules. Taking into account that a typical module
contains four U,g¢(2)-summands and an atypical one contains two, the module in (3.1) can
be the direct sum of either three atypical Ugs€(2|1)-modules or one typical and one atypical
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module. Explicitly writing the decompositions of possible Ugs¢(2|1)-modules shows that there
exists only one Ugs£(2|1)-module that has the decomposition (3.1). The second and the fifth

summands can be combined into Z?flfv’ilf and the other four summands give Z*'22. Thus, we

s,5+1
have

061,/31 2,82 _ sa12,—Bi2 a12,P12
Z’ ®Z’ _Z’s-l-l s+l®z's s+1

We next consider the product 27" P @2 P2 The Uq g£(2)-decomposition is
zo1:h1 ®ZO¢2/32: ( @ X @ x™ @xal,ﬁl) (3.2)
s s—1 —1 s+1 s— l s— 1 s— 2 — .

s,5—2
®( 062/32@3(:0!2 )

a12,— P12 a12,—B12 a12,B12 a12,— P12 a12,B12
xalzﬁn@xv 1,5 ®xv 1,5— 1®‘rxvlv 1 (—va—&-lv : ®xv+2,s

o) w12 ,B12 @ xilfl:ﬂllz @ DC? *1 - @xalz ,B12 @ xillzzﬂsz 5

s,s—1 s,s—1
XS,
Because 2\ p Pl is a projective simple module (see 2.4.1), the decomposition of Z; P L ® Zazl P
involves only prOJectlve modules, which, as we recall from 2.4.2, consist of all typ1ca1 simple
modules and the iRH . There are several Ugs¢(2|1)-modules that have the U, g¢(2)-decomposi-
tion (3.2), but only one of them is projective.' Thus, we have

o Bi ® zaz B2 _ R‘le_ﬂlZ ® Z“lZs_ﬂn'

ss—l s—1,s—1 s+1,s

The cases JQ 5 B ® Zaz B2 and R B ® Zy 2 P2 are worked out similarly. We consider
Uy g€(2)- decomposmons of both tensorands and calculate tensor products of U, g¢(2)-modules.
This gives a long direct sum of simple and projective U, g¢(2)-modules that each time are com-
bined uniquely into a sum of projective Ugs€(2|1)-modules. []J

Remark 3.1.2. Decomposition of all tensor products of finite dimensional s£(2|1)-representa-
tions into their indecomposable building blocks was found in [72].

3.1.3.  'We calculate decomposition of T, , iteratively using Theorem 3.1. The multiplici-
ties of Ugs¢(2|1)-indecomposable modules are dimensions of X, ,-modules, which we discuss
below.

3.2. The centralizer of Ugs€(2|1) on the mixed tensor product

We fix bases in the 3 and 3 modules in accordance with 2.2.1 and introduce a shorthand
notation for them:

J1 = =1Ly, =Ly, fs =L 1L =1L 17,
v =11,2:1,0),, vy =11,2;1,0)7, v =1[1,2:1,05 .

In the tensor products of two Ugs€(2|1) modules, we then have the operators

1 For example, the direct sum of simple Ugs£(2|1)-modules 22,0”2 ’312 @ Zalz b2 &) Za'z /312 , ® Zaf]’;ﬁlz is

compatible with the U, g£(2)-decomposition (3.2), but is not a prOJectlve qu€(2\ 1)-module.
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2:3®3-3®3, £:3®3-3®3, h:3®3—-3®3,
that commute with Ugs€(2|1) and are explicitly given by
0 fi®vfsr QS
g: | 2®f1 L2 LOfz ]
RN L )3
a2 N® f -9 ' L® fi -9 f3® fi
@2-DL - fi®f ~hH® -7 e h |,

@2-1)f0f-a A0k (@2-DAEQH-G HRA —HOf
fi®u fiQy fikuv
E:l OV LRV LRV | —
[V f3Rv: f3Qu3

1 0 0
0 —q 0] - (fi®u+9h®v— f@v3),
0 O 1

and

Vi ®U v ®Uv2 VI QU3
h:| Qv 1V 1LV |—
VIRV VIV V3R V3
g ev (@ 2-Du®u-—qg'meu (2-DHn®u—qg 'vi®u
g v ®u R (@2 Dn®vs—q vz
—q v ®vs gl ®u; -3 ® U3

On T, we define the operators

gi=18..01®:011...01,

m—j—1 n+j—1

h; = I1®...®1I ®h® ‘1®...®1|,
m—+i—1 n—i—1

& = |1®"'®1| ®RER® |1®"'®1|'
m—1 n—1

These are the generators of a quantum walled Brauer algebra, which we discuss in the next
subsection.

3.3. The quantum walled Brauer algebra

3.3.1. The algebra qwB,, , is the associative unital algebra generated by g;, €, h;, where
I1<i<m—1and1<j<n— 1, withrelations (see [53-55])

gihj=nhjgi,
(& —v)(gi—8)=0, (hj —y)(hj—38)=0,
gigi=8&, li—Jjl>1, hihj =hjh;, i —j|>1,

8i8i+18 = 8i+18i&i+1, hjhjiihj=hjiihjhj,
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ce—tle
y+34
eg1&=¢, Eh & =&,
Egi=g€ 2<i<m-—1, Ehj=h;E, 2<j<n-—1,
Egihy'€(g1 —h1)=0. (g1 —hi)Egih; '€ =0.

These relations involve complex parameters y, §, and 6, and we sometimes use the notation
qwB . (v, 8,0) for the algebra, although one parameter can be eliminated from the relations
by renormalizing the generators. We write the relations in the present form for more convenient
comparison with different choices in literature.

Remark 3.3.2. The algebra qwB,, , has a presentation by tangle diagrams, see [63].
Remark 3.3.3. In [52,57,58] the one-parameter walled Brauer algebra is discussed. It can be

considered as a classical limit of quantum walled Brauer algebra qwB,, ,,. To get this limit from
the algebra with relations 3.3.1 we can do the following. By renormalization of the generators,

parameter y can be set to y = —1. We introduce a complex parameter r:
0=-¢8"
. " —1 . ..
so that the relation reads £E = —asj €. Then we consider the limit § — 1. The dependent on
parameters algebra relations become
g =hi=1,
EE=—r&.

Such an algebra is called the (classical) walled Brauer algebra with (only one) parameter r. We
use the notation wWB,, ,(—r) for it.

Theorem 3.3.4. The generators defined in 3.2 satisfy the qQWB,, , relations with the parameters

7/:_17
§=q72 (3.3)
0=—q

Remark 3.3.5. By choice of normalization in matrices, the parameters y and § can be changed,
however the relation
8
0= 3.4
° (3.4)

remains invariant. This relation means that we consider a degenerate case in which the algebra
becomes non-semisimple as we discuss below.

Corollary 3.3.6. The endomorphism algebra of Ugst(2|1)-module Ty, , is isomorphic to the
quotient of the algebra qwB,, ,, with special parameters (3.3).

One can consider an algebra Ugs¢(M|N) for arbitrary positive integers M and N. Let V and
V* be fundamental representation of Ugs€(M|N) and its dual. We let Xj' " denote the algebra

of endomorphisms of Ugs€(M|N) on mixed tensor product V*®m @ V@ As was shown in [73]
(see also [50,51,49,52]) there is a surjective homomorphism
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YN quB, (= —1,8 =G 2,0 = —q 2Ny L XMV, (3.5)

m,n

Here the parameter q is the same as in the algebra Ugs€(M|N). In the classical limit we conclude
that the algebra of endomorphisms of s¢(M|N) on mixed tensor product of its fundamental
representations is a quotient of the algebra wB,, ,(r) with r = N — M. This is consistent with
the results of [49,52] because classical algebras WB,,, , (r) and WB,, ,,(—r) are isomorphic to each
other. Indeed, the isomorphism is given by the formulas g{ =—g, h’] =—hjand & =—&.

We note that for N =0 the algebra X,A,;I, ’,? is semisimple and ker \Iff,,/’,’,? contains the whole
radical of qwB,, ,, see [54].
At the end of this section we formulate two statements important for the sequel.

Conjecture 3.4. Representation categories of the algebra qwWB,, , with generic values of param-

) . . . .
eter " and of the (classical) walled Brauer algebra are equivalent as abelian categories.

The walled Brauer algebra has quasi-hereditary structure, see [58]. According to our first

. . . . )
conjecture (Conjecture 3.4) we suppose qwB,, , with generic values of the parameter " to be
also quasi-hereditary.

In the following sections we consider only the case M =2, N = 1 and use the notation X,, ,
for X%;,ln. The second important statement is (see also [74])

Conjecture 3.5. The algebra X, , is quasi-hereditary.”
4. Modules over qwB,, , and X, ,

In this section we give the description of the X, ,-modules. We rely on the quasi-hereditary
hypothesis 3.5 and borrow definitions from [58-60]. From these papers we use the notions of
Specht module, simple head, projective cover and multiplicity.

In this section we describe Specht and simple modules for qwB,, , and simple and projective
modules for algebra X, ,.

4.1. qwB,, , Specht modules

4.1.1. A finite integer sequence u = (i1, U2, ... M) is called a partition, if w; = up >
ooy >0,

A bipartition is a pair of partitions A = (AL, AR). Let A be the set of all bipartitions. For each
integer 0 < f < min(m, n), we set

Amn(f) = {re Afm =25 =n = 5| = £}, @.1)
where |A| is the sum of elements of a partition, and
min(m,n)
Am,n = U Am,n(f)- (42)
=0

2 The conjecture about quasi-hereditary structure in the general case X,I:,/I,,N can apparently be formulated but is beyond
the scope of this paper.
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The set A, , is in bijective correspondence with the set of qwB,, ,, Specht modules [56]. We
let S(A) denote the qwB,, ,-Specht module corresponding to the bipartition A.
The following Theorem is given in [52].

Theorem 4.1.2. For generic values of the qwWB,, ,, parameters, each Specht module is simple, and
the sets of Specht and simple modules coincide.

4.2. Modules over qWB,, , with special parameters

We now consider the category of qwB,, , modules with the parameters related as in (3.4). The
algebra is then nonsemisimple, and some of the Specht modules S(2) become reducible.

Let D(A) and K (1) be the simple head and the projective cover for S(1). Below we also use
the notation D[AX, AR] and K [AL, AR] for D((AF, A%)) and K ((AF, AR)) respectively.

In [57, Theorem 2.7] the full classification of simple modules over the walled Brauer algebra
is given. Thus, assuming Conjecture 3.4 (but see also [56, Theorem 8.1]) we have the following

Lemma 4.2.1. [f E€ # 0, the modules D()\), » € Ay, give a complete set of simple modules for
the algebra qwB,, ,.

The decomposition multiplicities d;.,, = [S(w) : D(A)] for the S(A)-modules in terms of their
simple subquotients are determined in [58]. Because of the quasi-hereditary structure of qwB,, ,
each projective module K () has a filtration by Specht modules. Let dy,, = [K(x):S(n)] be
the multiplicity of a given Specht module S(A) in the filtration; then, by the Brauer—-Humphreys
reciprocity (see [58] and references therein)

dy =dy. 4.3)

We use this statement to construct projective modules for X,, , in the next subsection.
4.3. Modules in the decomposition of the mixed tensor product

As a Xy n X Ugs€(2]|1)-bimodule, the mixed tensor product T;, , decomposes into a direct
sum of indecomposable bimodules.

Definition 4.3.1. For non-negative integers p, ¢, a partition y is called a (p, ¢)-hook partition if
it doesn’t contain a box in the (p + 1, g + 1)-position, i.e. p41 <g + 1.

Some examples of (2, 1)-hook partitions are

[ ]

g ’

Definition 4.3.2 (see [75]). For non-negative integers p, g a bipartition A = (Af, A) is called
a (p, q)-cross bipartition if there exist non-negative integers py, p2,q1,q2 such that AL is a
(p1,q1)-hook partition, AR is a (p2, g2)-hook partition and p; + p2 < p, q1 +q2 < q.
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Some examples of (2, 1)-cross bipartitions are

1T ]
( | — [T ( )

Let Cr,y, , be the subset of all (2, 1)-cross bipartitions in A, ,. Assuming Conjecture 3.4 and
applying the statements from [52] [75] for M =2, N =1, we have

Proposition 4.3.3. If 1. € Cry, ,, then ker \11,2,;,1,1 acts as zero on D()). The modules D()), A € Cry, p,
give a complete set of simple Xp n-modules.

Proposition 4.3.4. Each X, ,-simple module D()), A € Cry,., occurs as a subquotient in the
bimodule decomposition of Ty .

In the following we use notation a = |m — n|. For bipartitions from Cr,, , we introduce the
notation
form >n:

((a,1°),(s)), a>0, 0
((a,s),(1%)), a>0, 1
((s+1,a+1),(1572)),
n

form<
A% = ((s), (a, 1)), a>0, 0<s<m,
A =AY = (2. 9).
B =((1%),(a,s)), a>0, 1<s<min(a,m),
éf:((l‘y+2),(s+1,a+1)), a<s<m-2, a=0.
We note that B{ = A{ and 6’8:C8.
For given m, n we define a subset At , of bipartitions in Cry, , as
{A%0<s <n} | J{B¢2<s <min(a,n)} | J{C%a <s<n-—2},
m>n,
Al Cllo<s<n—2 Con<s<n—2
a,, - AU Jue) ) s
m=n,
{A%0 <s <m} |J{BY2<s<min(a,m)} |J{C%a <s <m—2},

m <n.

We call these bipartitions atypical. If A € At , we call corresponding modules S(1) and D (1)
atypical also.

We define the operation G from the set of gwB,, ,-modules to the set of qwB, ,-modules.
The operation G acts on the simple qwB,, ,-module by the formula

G (D[ 2R]) = D[AR, 31, 4.5)
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i.e. it changes left and right partitions in a bipartition. We note that GA? = A?, and similarly for
B¢, C¢. When applied to projective modules, the operation G acts on each simple subquotient
by the formula (4.5) and does not change the structure of the Loewy graph. It is obvious that

K[ 2F] = G (K[ 2R]). (4.6)

The action of the algebra X, , on an arbitrary qwB,, ,-module is not defined in general. In
particular, it is not defined on some qwB,, ,-Specht modules, that contain D(1), A’ ¢ Cr,, ,, as
a subquotient. For A € Cr;,, , we define a Specht module over X,, , (abusing notation we use
the same symbol S(A) for it) as a factor of corresponding qwB,, ,-Specht module S(A) over all
subquotients D (') with A/ ¢ Cry, .

Similarly we let K (1) denote the projective cover for X, ,-module S(2). This projective cover
is a subquotient of qwB,, , projective module K (A).

Assuming the Conjecture 3.5, we have the equality of multiplicities J;L, w = dy y, for X, 5 in
analogy with (4.3). Using [58] and Proposition 4.3.3, we have the following Theorem. We write
down the structure of the Loewy graphs for X, ,-projective modules (analogously to the formulas
(2.15)—(2.17) for Ugys£(2|1)-projective modules). They are oriented graphs where arrows mean
the action of the algebra X, ,. States from the subquotient at the beginning of an arrow are
mapped to the states in the subquotient at the end of an arrow and (possibly) in the subquotients
further the arrows. Investigation of Ext! spaces for the algebra Xm.n» and the detailed action of
all X;,, ,-generators on projective modules are beyond the scope of this paper.

Theorem 4.3.5. For X € Cry, ,, A & Aty ,, the projective module over X,,  coincides with the
simple module: K (1) = D(}). For A € Aty , we have the following structure of projective mod-
ules over Xy, »

for m > n:
D(4%)
K(Ag)_D(Agf)/ \(A;;Q, 2<s<n—1, a>1,
e
D(Af)
N
K(A9) = D(AS) D(A%) D(BS) a=2 n>2
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D(Ay)
K(Al)= D(A)) D(A}) D(C]), n =3,
D(A})
D(A7)
K(Ay)= D(A;_,), a=1, n>1I,
D(A7)
K(A%)= D(AZ), azl, n=l,
D(A})
D(BY)

(B 1) 2<s<min(a,n)—1,

D(Bf
D(B
K(B7)= D(B;_,) D(C7) . 2<a<n-2
D(Bg)
D(B7)
K(BY) = D(B" ), a=n—1, n>3,
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D(By)

|

K(Br?): D(B,(;_l)7 az=n, nx=2,

K(C?)zD(Cf_l) D(C§1+1), a+1<s<n-3, a=1,

K(C3) = D(B3) D(CY ) » 2<a<n-3,

K(Cl 5) = D(Ch3), l<a<n-—3,
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D(C)73)
K(Ci3) = D(B)33). n>3,
D(C)73)
form =n:
K(A)= D(A)), n=2,
D(CP)
D(CP)
K(C) = D(CY) D(A7) D(CY), nz=3,
D(CY)
D(CY)
K(CY = D(C ) D(C?.)), 1<s<n-3,
D(CY)
D(C)_,)
K(C) 5)= D(C)_3), n=3
D(C_,)

Structure of projective modules K(ég) 0<s <n—2form =n and all projective modules for
m < n can be obtained from this using the formula (4.6).

We note that the Loewy length of the projective modules coincide with the Loewy length
given in Corollary 4.2 in [76].
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4.4. The restriction functors

4.4.1. There are two natural embeddings between quantum walled Brauer algebras (see [57])
qWBm—l,n - qWBm,na qWBm,n—l - qV‘[Bm,m 4.7

The first embedding acts by identification of the corresponding generators &, g1, 2, ... &m—2,
hi, ha, ...h,—1. The second embedding acts by identification of the generators g, g1 gz, e 8m—1,
hi,ho,...h,—>. These two maps induce two restriction functors res 1 and res from the
category of qwB,, ,-modules to the categories of qwB,,_1 , and qWBm n— 1—m0dules respectlvely

Let add(w) be the set of boxes for a partition w4, which can be added singly to u such that the
result ;o + [ is a partition. Let rem(u) be a set of boxes which can be removed from g such that
w/11s a partition.

In what follows the sign [ denotes the non-direct sum of modules. Following [57], where the
classical case q = 1 is considered, we have for modules over qwB,, ,.

Proposition 4.4.2. For A € Ay, ,(f) withn = 1 we have

res,” | S(A) = L—_}—J SaE AR —), for f=0,

[Jerem(AR)
resn";:'l (S(A) = t}-J Looa®l+ U U S(AE AR —O),  for f>0.
DGadd(AL) Cerem(AR)

This statement is valid for the algebra qwB,, , with either generic or special parameters. For
qwB,, » with generic parameters all |+) become direct sums.

As a consequence of the previous statement and Proposition 4.3.3 we have for modules over
Xmon-

Proposition 4.4.3. For A € Ay, () (\Crim.n withn = 1 we have
resﬁz (S(A) = (—B S(AL,AR—D), for f =0,
Cerem(AR)

w1 S(A) = 4 sakb+oahl o sekaf-D),
Deudd()‘L)’()‘L'H:L)“R)eerm.nfl DEV(?WL(}\R)

res

for f>0.

We formulate an important Conjecture about restriction of the projective modules. The state-
ments 4.4.5 and 4.4.6 formulated as theorems are based on the Conjecture.

Conjecture 4.4.4. Restriction for projective module K (A) over algebra X,, ,, is a sum of projec-
tive modules.

Theorem 4.4.5. Consider n = 1. For A € Aty, , the restrictions for projective modules K (1) over
the algebra X, ,, are
resh 1 K(AS) = K(A{™) @ D[(a, 1°71), (s)] ®2D[(a, 1°), (s — 1)]

®D[(a, 1’1, (s=2)], 2<s<n—1, ax>1,
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resi | K(A}) = K (AT @ D[(a.1%), (1)] ®2D[(a. 1), ] @ D[(a.2). (1)],

a=2,nz=2,

respn_y K(A}) = K(A}) @ D[(1°), (D]@2D[(1*),&]. n=2,

resy”_ K(A%) = D(AY"))@2D[(a,1"), (n = )] @ D[(a, 1"7"), (n =2)], n>2,
resZ:Z—lK(AS) K(Aa+l)®D[(a )., a=1, n=>1,

s K (43) = K(A), n>1,

res,_ K(B) = K(B ") @ D[(a.s + 1), (I')] @2D[(a,s), (1')]

m,n—1

®D[(a,s —1),(1°"%)], 2<s<min(a,n) -1,
res™" _ K(BY) =K(B*TY®2D[(a,a), (1] @ D[(a,a — 1), (17?)],

m,n—1 a
2<a<n-—1,

resp_| K(B) = D(Bi*)@2D[(a.n), (1" "] @®D[(a.n—1). (1" ?)], 2<n <a,

m,n—1

respn_y K(C) = K(CTY@D[(s +2.a+ 1), (1) @2D[(s + La + 1), (1'T1)]

m,n—1

®D[(s,a+1). (1), a+2<s<n-3,
res,, 1 K(Cq) = K(BTH@D[(a+2,a+1), (1)@ D[(a,a), (1°7)],
2<a<n-3,

m,n
res,, | K(C4

i) = K(CGID®D[(a+3,a+1),(177)]

(
@2D[(a+2,a+1),(1T?)], a<n-—4,
res,” K (Cy_y) = (Ca+1)®2D[(n—1,a+1),(1”_1)]

®D[(n—2,a+1),(1"2)], a<n-—4,
resn | K(Cl=3)=D(Bl3)®2D[(n—1,n—2),(1""")], n=>3,

mnl

S K(Ci ) =K(Bi-)®D[(n —2,n-2),(1"?)], n3>3,
mn 1K<C11) K(BZ)®D[(3’2) (]3)] [ 2)*@ i I’l>4,
ZZZ L K(CY) =K (A @D[(2.1), (1)@ D[(1%), (1%)], n=3,

res™™ | K(AY) = K(A“™) @ D[(s + 1), (a, 1")]@2D[(s)., (a, ']
®D[(s = 1), (@ ")), 2<s<m—1, a>2,

resp_y K(Af) = K(A{™") @ D[(2), (a, )] ®2D[(1), (a)] ® D[(1%), (a, 1)],
az2, mz=2,

resy K (A) = K(As™" ) @2D[(m), (a, 1" ") ]@ D[(m — 1), (a, 1" ?)],
m=2, a=2,

resy | K(A)) = K(C)_))@D[(s + 1), (1I'T1)]
@21)[(5),(15)] [(sfl) (7], 2<s<m,
Smin— IK(AE,»— (Co_p)®2D[(m), (1")]® D[(m — 1), 1" 1], m>2,
smn_1 K(A]) = K(C) @ D[(2), (17)]®2D[(1), (1)], m=>2,
smon_1 K(AG) = K(Ag"h@D[(1),(a)], a=1, m=>1,
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res'™" | K(BS) = KBS @ D[(1°*)), (a,5)] ®2D[(1*). (a.s — 1)] @ D[(1*7Y),
(a,s —2)], 2<s<min(a,m)—1,
resyn_1 K (BY) = K(Ca~|) ®2D[(1%), (a,a — )] @ D[(17"),

(

(a,a—=2)], 2<a<m-1,

respn_y K(BS) = K(BS™h) @2D[(1™), (a,m — 1)] @ D[(1"™"), (a,m - 2)],
2<m<a,

respn_ K(Bj) = D(Bp—1)@2D[(1™), (m,m — 1)] @ D[(1" "), (m,m —2)],

m,n—1
m=2,

resph_y K(C8) =K(C™@D[(1°), (s + La+ 1)]@2D[(1°F?), (s.a + 1)]
@D[(1*T), (s—1l,a+1)], a+2<s<m—3, a=>1,

TSy n1 (é?)=K( 1) @ D), (s + 1, D] @2D[(1°F2), (s, 1)]
®D[(I""), (s =1L, 1)], 2<s<m -3,

respn_y K (C4 ):K(C“ HeD[(197%), (a+1,a + 1)]® D[(19), (a,a — 1)],

1<a<m-3,

resp_ K (C2, 1) = K(CO ) @DI(19T4), (a +2,a + 1) @2D[(1°7),
(@a+1l,a+1)], 1<a<m-—4,

res™" K(C%_,)=K(C“L)y@2D[(1™), (m —2,a +1)] @ D[(1""),

m,n—1

(m—=3,a+1)], 1<a<m-—4,
s K(E9) = K(A) @ D[(1%), (2 D] @2D[(P), (L1)], m >4,

resyn _ K (Co_3) = K(A,,_) ®2D[(1"), (m —2, )] @ D[(1" "), (m — 3, 1)],
m =4,

respon_ K (Cn=3) = K(Cp=3) @2D[(1™), (m = 2,m = 2)], m >4,

resit_ K(CM73) = K(CIT3) @ D[(1"72), (m —2,m —3)], m=3.

where we imply (0) = (1°) = & and (s,0) = (s),

Proof. We discuss the case K (A%) for 2 <s <n — 1, a > 1. Other cases are similar. The pro-
jective module K (A¢) has a filtration by two atypical Specht modules, so one can write it as a
non-direct sum

K(A)) = S(A7) [ s(ay_y).
Applying Proposition 4.4.3 one obtains the sum of simple and atypical Specht modules:
resZ:Z_l K(A?) = resm r(S(A)) US ‘)
= S(AT [ S[(a, 1), ()] LﬂS[(a, %), (s = D]
W s(EhH Y sla, 19), (s = DI Sl(a, 171, (s = 2)].

In this sum only two modules are atypical, other modules are simple
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)| Dl(a

+1
-1

m,n
m,n—1

res K (AY) = S(A¢t) |4 s(A? a,l

L—l_—JZD[(a,l ), (s —1)] E—JD a,

28 (2018) 217-257

s+l

(s)]
15~ 1), (s —2)].

These two atypical Specht modules are glued uniquely into a projective module, thus

m,n
m,n—1

K(A{™) @ D[(a
@ D[(a, '), (s = 2)].

res K(AY) =

O

To formulate the next theorem we introduce notation a’ =

Theorem 4.4.6. Consider A € Ay n(
D(A) over the algebra X,, , are

YN Crmn forn =

) ()] @ 2D[(a, %), (s — 1))

|m —n+1|.

1. The restrictions for simple modules

For e Aty pn:
resy’n_ D(AY) = D(AST) @ D[(a, 1°), (s = 1)], a=1, I<s<n-—1,
res’rZ:ZilD(AZ)=D[(a,1”),(n—1)], a=>1, n>1,
resy_ D(AG) = D(AGT!), a=0, n>0,
resm:Z—lD(Bg):D(Bsaﬂ)@D[(a’S)’(ls D], 1<s<n—1, s<a,
res,” D(By) = D[(a,n), (1" Y], 1<n<a,
respt | D(C8) = D(CI@D[(s + La+1), ()], a+l<s<n—3, a>0,
re%jZle(CZ_z):D[(n—l,a+1),(1”‘1)], 0<a<n-3,
res, 1 D(Cg) = D(Bgill) 0<a<n-2,
resit_ D(A9) = D(AT ) @D[(s). (a. 1], 1<s<m, a>2,
resyu_D(AG) = D(AF™)), a=1 m=>0,
mﬁjﬁ_lD(ﬁi):D(C?,l)(@D[(s),(lS)], 1<s<m-—1,
res, 1 D(Ay) = D[(m). (1")]. m>1,
resz:Z—lD(éf)=D(1§§1_1)@D[(13),(a,s—1)], 2<s<m, s<a
’esm:Z—lD(éZ)=D(éZ:})®D[(1“),(a,a 1], 2<a<m—1
respn_D(By) = D[(1"™), (m,m —1)], 1<m,
resZ:Z_lD(C‘f):D( CoNeD[(1°1), (s,a+1)], a+l<s<m-2, a>1,
resZ:Z_lD(ég):D(éZﬂ)’ I<a<m-2,
resﬁ:ﬁle(é?): (s+1)@D[(1S+2)’(Sa1)], I<s<m-—2.

For A ¢ Aty p first we list all exceptional cases (the gener

resi_ D[(a’, 1°71), (s)] = K(AYY® D[(d +1,
a =1,
resi _ D[(a’,5), (1°T1)] = K (B, ) @ D[(a’ +

s<n-—2,

ic rule will be given below):

7, ()],

1<s<n-—1,

Ls), (ITh], 1<s<d -1,
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respn_ D[(s.a’ +1), (1'%)] = K(CY@® D[(s,a’ +2), (1°*?)],
a +2<s<n-3,

res™" _ D[(a' +1,a" +1), (1a+3)] K(CY, ), a'<n—4,

m,n—1
resm,ni D|(s), a,,lS—H @ D|[(s), (a _1,]s+1 . 0<s<m-—1,
m,n—1 [( ) ( A+1
a =2,
respn_ D[(s), (1T = K(AL, )@ D[(s, 1), (I'"?)], 1<s<m—1,
resin_ D[(1°71), (@, s)] = K(BY )@ D[(1°7"), (@’ = 1,s)], 2<s<d 1,
s<m,
Smn— ID[(la_ ) (a/va,)]:K(B\Z//), 1<al<m,
o DI(1), (s,a’ +1)] = K(EX ) @ D[(1), (s.a)], ' +1<s<m—1,

where we imply (0) = (1°) = & and (s, 0) = (s).
For A ¢ Aty, , the generic rule is:

for f=0
resyn_ D)= Y DAFAR D),
Cerem(AR)
for f >0
res, 1 D(&) = @ DOL+OAR® @ DREAR-D).
Oeadd(Al), A +O0R)€Cry n—1 erem(AR)

Proof. If A ¢ Aty , then D(A) = S(1), and the proof follows from 4.4.3 similarly to the proof
of Theorem 4.4.5.

Now we consider A € At,, ,. We discuss only D(A?) fora>1,1<s <n—1, other cases are
similar. We prove that

res,_ D(AY) = DAY @ D[(a, 1), (s = )], a=1ls<n—1,

m,n—1

by induction on s. First, we prove the induction base for s = n — 1, then we check the induction
step from s to s — 1. The X, ,-module S(A%) is simple: S(A%) = D(A%), so we have from 4.4.3

res; | D(Ay) =res; " S(Ay) =S[(a,1"), (n —1)] = D[(a,1"), (n = 1)].  (4.8)

m,n—1

According to 4.4.3 we have for s <n

resi | S(AY) = S(ASTHY @ D[(a, '), (s)] @ D[(a, 1), (s — 1)]. (4.9)

m,n—1
We write X, ,-Specht modules as a non-direct sum S(A§) = D(A{) [ D(AY, ) for s <n. The
Xm.n—1-module S(AZf}) = D(AZt}), so from (4.9) for s =n — 1 we get

st (oUaz_ o)

7DA“+1 ) D[(a,17), (n = D] D[(a,1"7"), (n —2)].

n—1

Now having in mind (4.8) we get the induction base
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res, | D(AG_}) = D(As )[4 D[(a, 1"7), (n —2)].

m,n—1

We also note that X, ,—1 module S(A9+1) = D(A%+!)|4) D(A%!]) for s <n — 1, so from (4.9)
we get

res,, ( D(AY) UD A+1)
DA DAL [ Dl (a.19). (s = DI P[(@. 1), ().

and now the induction step is straightforward. []

Remark 4.4.7. The second restriction functor resﬁ’f 1., can be calculated from the first one.
Actually

resﬁ’fl’nK()\) = (A?resZ:'rZ_léK(k), (4.10)
resZ’anD(k) = GresZ:ZﬁlGD()»). 4.11)

We can also make generalization to the qwB,, , modules.

Conjecture 4.4.8. Consider the algebra qwB,, , with special parameter 0= —(—%)M_N for
M # N. Let A € A, be an (M, N)-cross bipartition, then resm a1
quotients D(A\') for which A € Ay n—1 is an (M, N)-cross bipartition.

D(A) contains only sub-

In other words, the restriction functor for qwB,, , with special parameters preserves the class
of all (M, N)-cross bipartitions. We note that the case M = N requires additional investigation.
In particular we have the next important consequence for M =2, N = 1.

Conjecture 4.4.9. For A € Cry, p the restrictions res™ D(1) for simple modules over qwWB,, ,,

m,n—1
with 6 = 7 are explicitly given by the formulas from Theorem 4.4.6 without any changes.

This conjecture was directly checked for all qwB,, ,-modules whenever m + n < 8.
5. The mixed tensor product as a bimodule

We introduce new notation in order to simplify the formula for the bimodule decomposition.
5.1. Notation

We introduce the notation 2/, for simple Ugs¢(2|1) modules:

Zp = Z’[‘ér rl) ’ r 7& O’
( 1)p+1
Zo=2i . 120

We also introduce the notation ﬂ_Qf . for projective covers of atypical modules Zf - Namely,

1,(—1)? r> 1.

r = nr ) =

1
sz’o—az,( D" s,

+1,0 ’
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Typical modules Zf - coincide with their projective covers, so we do not introduce any new
notation for them. We rewrite the formulas (2.15)—(2.17) in the new notation:

2F 2, (5.1)
= 5p+1 5p—1 5 5p+1 5p—1
Ry o =211 277 o Ro s =201 +1 20— t=1,
5D 5D
Z10 20,1
and the exceptional case is
240 (5.2)
Rio= 275 21
2.0

Then the dimensions are:

dimR?) =dimRf, =8r+4, r>0,

. pP
dim Ro,o = 8.
5.2. The bimodule is a direct sum of subbimodules

r-Tm,n = Tns1,n @ Tnit,ns (53)

where the T, , part is the direct sum of simple X, , & Ugs€(2|1)-bimodules, and 73", is
an indecomposable Xy, , [X] Ugs€(2[1)-bimodule. Each subquotient in 7, , contains a typical
Ugs€(2|1)-module and a typical X, ,-module, and each subquotient in T,ﬁfn contains an atypical
Ugs£(2|1)-module and an atypical X, ,-module. We call 7, , the semisimple part and 7,3', the

atypical part.

5.2.1. Examples
Before giving a general formula for the decomposition of 7, , in 5.3, we illustrate the struc-
ture of the semisimple part 7, , with two examples. T, , has the structure

T3 0 = @ DO (t, 1)) RZLET (5.4)
t,r

For given m, n, we represent the sum in (5.4) as a table of bipartitions A, , (7, r) in coordinates
(¢, 7). All parts of the sum outside the table vanish, and 0 in the table means that the correspond-
ing submodule in (5.4) vanishes.
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For m =5 and n = 3, the table of bipartitions A5 3(¢, r) reads

] [ ]
e I (O (|
r=4| CH (EDD o | HHD | om | oo
=3l HH @D o | (DD | (I (DZDZIZL@)
< o @0 || 0B [ GTE]
r=1 0 0 0 (EEP,:) 0 0
=—2 r=—1_[1=0 =1 =2 =3
For m = 4 and n = 4, the table of bipartitions A4 4(¢, ) reads
=+ 0 |0 |HTTo (EIDZ\:D HH | oo
=3l o o oD | oo | aonoD | aroHD
2| HH e | D | aom | o <[Dj]@j>
=il 0 ol oD | aob @33@) 1o
=0 0 0 0 0 0 0o
r=—1 0 0 0 (Bﬂ,:) 0 0
f=—1 [1=0 =1 =2 =3 =4
5.2.2.  In the next Theorem, we give explicit formulas for the decomposition of T, , for
m = n; the case m < n can be easily recovered from m > n using operation G interchanging m
with n
Tom = GTmn.

The operation is involutive, G2 = 1, and additive, G(X @ Y) = G(X) @ G(Y). It acts on the

indecomposable summands in the semisimple part 7, , by the formula

(D[ AR R2L,) =6 (D[ AR BG (27,),

where the action G <D[AL, AR]) is defined in (4.5) and

~5P _ P
Gz’t,r - Z’r,t‘

(5.5)

(5.6)
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. the operation G acts on each simple subquotient by the
formula (5.5) and does not change the structure of the Loewy graph.

When applied to the atypical part T3

Theorem 5.3. The X, , X] Ugst(2|1)-bimodule decomposition of Ty, n, m = n, has the form
Tmn = Ty, ®Ta', with the semisimple part

m>n:
n o a+s % +k+a+1
D[(k, 1'7), ()] B2, 50 @
s=1k=1,
k#a
m  s—a—1 k— +k+a+1
@ D ls a)].zé aka+a ®
s=a+2 k=1
n—1min(s, n—s)
k 5s+k+
D), (5, K2 0 10 @
s=1 k=1
m—1 min(s, m—s)
k— >s+k+
@ D[(s. k), ("2 @
s=a+1 k=
k#a+
[%J a—k x kot
D[(s, k, 17°7%), ZIRZE0 L, @
k=1s=k
a—1 min(s, m—s)
@ D[(S,k), (1S+kia)] .Z’;J’_lt;-iia k+a’
V:[% +1 k=1—s4a
m=n

T = @k@ D[(k, '7%), (R @
K 1

m

—1
@(_BD k 15— k)].Zs-i-k-H@
s=2k=1

m—1min(s, m—s)

D[(I"HH), (s, )] K2} L @
s=2
1m

(s, m— s) B
@ D[(s. k), ("R 23K,

1

o
I

and the atypical part Tn’f ,, IS given by Figs. 2—6 in Appendix A.
5.4. Verification

To check the decomposition formula for the bimodule we make two powerful verifications
using formulas for tensor product decompositions for Ugs€(2|1) modules and restrictions for

Xm.n modules. We check that T, , ® 3 coincides with resp ntl Tm.n+1 as Ugs€(2]1)-module in
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the first verification and as X, ,-module in the second one. In order to do this we introduce two
Grothendieck (forgetful) functors P and Q.

We define the Grothendieck functor P on the category of Ugs€(2[1)-modules which maps
an indecomposable module into a direct sum of its simple subquotients. The functor PP on any
Ugs€(2]1)-module is known from 2.4. For example

DP >p 5p+1 Fp—1
PRio =221 0@ % 410D %10 =1,

Pzl =20, Vp.tr.

We define the other Grothendieck functor Q@ on the category of X,, , modules which maps an
indecomposable module into a direct sum of its simple subquotients. The functor Q on any
X n-module is known from 4.3.5. For example

QK (A}) =2D(A}) ® D(A;) ® D(Ay) @ D(CY), n>3,
QD(x)=D()), Ym,n,A.

The functors P and QQ do not change semisimple part of the bimodule:

m,n’

PT3, QT3 =T,

because semisimple part is a direct sum of simple bimodules.

5.4.1. As Ugst(2|1) module
The action of Q on the atypical part T2 has the form

m,n

m>n:

QTrst, @DAa :ROa+v 1CJB
s=1

min(a, n)

@ DBa .ROa v+1®
s=2

n—2
@ Dp(c? -:R“fao@
S=a

D(A§) 52,4
m=n:
m—2 R o
Q7 = D DIE)RRG,' @
s=1
m—2

@ D(CHRR,' @
s=0
D(Ap) X Zg0-
We introduce the notation T}, ,, = QT ,,. The following relation must hold:

Tm,n ®§ @resm et Timon+1 5.7

Because T, has the form T,,, = @D X R @ D [X] Z, we can calculate T,,, ® 3 us-
ing formulas from 3.1. Because T, ,41 contains as subquotients only modules D(1) for
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A € Cry 1, We can calculate res%jﬁ"‘lﬂ'm,nﬂ using formulas from 4.4.6, and then ap-
ply the functor Q. We have checked the validity of relation 5.7 for all m,n whenever

m+n <25.
5.4.2. As Xy.n module
The action of P on the atypical part 7', has the form

m>n:

n
IPTat = @ K(Al;) Z’i'),aJrsfl S

m,n
s=1

min(a, n)

@D KBHRZ, o111 ®
s=2

n@z K(CHRZT
=
® D(A) K2y
@ PTHE",
where
0, n=0,
D(BY)® %, 0y 1
DBH®ZGH'. ="
D(Cy_,)HZ5, 1o 5+

<

VAN
3

m
2
n

~
=%
I
3
Vv

=2,

—

<n<m-—1,

m—2
PTo, = @ K(E) R, ®
s=1

m—2 B
D k(R
s=0

£0 5m—2
@D(CmfZ) Z’gl‘m—l
0 5m—2
®D(C,y—2) W Zy, 7 -
m=n=1:
PT{ = D(AQ) ®2q0-
We introduce the notation 7, , = PJ,, ,. The following relation must hold:
P(Tinn ®3) =resp ™ Ty gt (5.8)

Because Ty, , has the form T, , = P K XIZ @ D X Z, we can calculate Ty, , ® 3 using
formulas from 3.1. Because T, ,41 contains as subquotients only modules K (i) and D(A)

for A € Cry.n+1, We can calculate resﬁjZJrl Tm.n+1 using formulas from 4.4.6 and 4.4.5 and
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then apply the functor P. We have checked the validity of relation 5.8 for all m,n whenever
m+n < 25.

6. Conclusion

In the present work we have studied the Ugs¢(2|1) mixed tensor product and found its de-
composition as a bimodule over X, , [ Ugs€(2[1). These results are the basis for a further study
of the Ugs€(2|1)-spin-chain and appropriate LCFT.

The next step is studying the mixed tensor product with parameter g at the root of unity. We
expect the appearance of the Lusztig limit of algebra Ugs€(2|1) in that case. We anticipate that
Xm,n Will remain the centralizer of LUgs€(2|1) on the mixed tensor product and some triplet
extension of X, , will be the centralizer of Ugs€(2|1).

Natural ways for further developments of the results presented in this paper:

(1) Describe explicitly the algebra X, , and identify it with some quotient of qwB,, ,. Similar
problem is posed the algebras X,,A;I,fv of Ugs€(M|N )-endomorphisms.

(2) Describe the structure of Specht and projective X%’nN -modules and perhaps qwB,,, ,-modules.
This problem becomes significantly more complicated when parameter q is a root of
unity.

(3) Figure out the restriction functor on all simple and projective modules of the algebra
qwB .-

(4) Classify Ext' spaces for modules over the algebra X,,, and describe explicitly the
action of X, ,-generators on the basis of projective modules K (). The solution to

this problem will allow one to describe explicitly the X, ,-action in the bimodule
‘Tm,n-
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Appendix A. Atypical part of the bimodule

In this section we represent the structure of Loewy graph for the indecomposable bimodule
T,ﬁfn, see 5.3. Detailed investigation of X,, , action on these bimodules are beyond the scope
of this paper. See paper [12], where the spin chain over Ugs€(2) is investigated for compari-
son.

In each vertex of the graph there is some subquotient D () Zfi - The meaning of the arrows
is the same as in 4.3.5. On the figures the action of algebra Ugys£(2|1) is denoted by solid lines,

and the action of X,, , is denoted by dash lines.
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The subquotients connected by dash lines have the same Ugs€(2|1) module as a tensor
multiplier. The subquotients connected by solid lines have the same X, , module as a tensor
multiplier.To simplify the figures we omit X,, , multiplier where it does not cause inconsistency.
We also do not write symbol D each time, and write only A for simple module D ().

For example, the bimodule for T;‘2 is

D(A)RZ;, _D(A})RZy,
- _ - |
D(A3)HZ; 5 D(A)KZy, D(A)KZG, D(A)) M Z, D(A)KZE,
P |
\ / -7 T - k \ /
D(A;) K23, D(A)RZy,
(A1)
‘We use shorthand notation for T;‘fz:
A}22, AIXZ,
- / \1 A>< , »/1 ¥ \]\
ZO_S Zm\\ Z. » Ay .Z,
\ Q// \v /
72
0,2 (A2)

We mark in red the subquotient where the figure has irregular form. (For interpretation of the
colors in this figure, the reader is referred to the web version of this article.)

The structure of T2, for the case 1 <n < 7 is shown in Fig. 2.

The case 57 + 1 < n <m 2 is shown in Fig. 3.

The case n = mzrl n > 2 is shown in Fig. 4.

The case n =m — 1, n > 1 is shown in Fig. 5.

The case n = m,n > 2 is shown in Fig. 6.

Two exceptional cases are:

T2 = D(AG) K2 -
T, = D(A) K Zj .
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