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Abstract

We study a mixed tensor product 3bm b 3
bn

of the three-dimensional fundamental representations of 
the Hopf algebra Uqs�p2|1q, whenever q is not a root of unity. Formulas for the decomposition of tensor 
products of any simple and projective Uqs�p2|1q-module with the generating modules 3 and 3 are obtained. 
The centralizer of Uqs�p2|1q on the mixed tensor product is calculated. It is shown to be the quotient Xm,n

of the quantum walled Brauer algebra qwBm,n. The structure of projective modules over Xm,n is written 
down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated 
the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a 
crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n b Uqs�p2|1q. We give 
an explicit bimodule structure for all m, n.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the course of the last twenty years Logarithmic conformal field theory (LCFT) has es-
tablished itself as an area of extensive interaction between models of statistical physics such as 
percolation, the sand pile model, dense polymers as well as other models with nonlocal observ-
ables on the one hand, and modern topics in mathematics such as Nichols algebras, quantum 
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groups, braided categories, VOA theory and diagram algebras on the other. One of the most 
developed approaches [1–3] to constructing LCFT is based on the intersection of screening oper-
ator kernels. In this approach one chooses a lattice vertex operator algebra (VOA) and fixes a set 
of fields vi , which correspond to representations of VOA and are called screening currents. The 
zero modes of these currents si “

ű

vi are called screenings. Under certain integer valuedness 
conditions on scalar products of the screening currents momenta, the screenings form a finite-
dimensional Nichols algebra (see examples in [4,5]). Under these conditions the intersection of 
the screening kernels is a vacuum module of a rational LCFT: Vac “

Ş

i Ker si . In this case, 
LCFT is a representation space of the rational W -algebra W “ Vac.

The algebra W has only a finite number of irreducible representations. The set of simple and 
projective W-modules is closed under fusion and the characters of the W-irreducible modules 
generate a finite-dimensional representation of the modular group.

Another source of LCFT is given by various lattice models [6–12]. CFT appears naturally as a 
scaling limit of lattice models in the critical point, see e.g. [13]. Then, a mathematically rigorous 
program on algebraic construction of the scaling limits was initiated in [14]. If one considers 
nonlocal observables (for example, the cluster probability in percolation theory [15–18]) in the 
lattice model, then in the scaling limit an LCFT is in general expected to appear, and in several 
models [19,20,11,21] its appearance is shown explicitly.

The standard approach to studying the lattice models is the transfer-matrix method [22,23]. 
In this approach a connection with a spin chain is established by the Hamiltonian limit. Another 
feature of lattice models with nonlocal observables is that in the Hamiltonian limit there exist 
nontrivial Jordan blocks in the Hamiltonian [24–28] (see discussion on the Jordan blocks problem 
in the algebraic Bethe ansatz approach in [29]). From the side of LCFT the existence of nontrivial 
Jordan blocks in the Hamiltonian is expressed in the fact that the conformal dimension operator 
L0 becomes non-diagonalizable and conformal blocks admit logarithmic terms.

In both approaches a quantum group plays a crucial role [30,31,8,12]. In the first case quantum 
group appears as a double bosonization of the algebra generated by screenings [32]. In the second 
case the spin-chain can be constructed as tensor product of fundamental representations of the 
quantum group.

For the simplest case of p1, pq LCFT models [33–36], the corresponding spin-chain TN is a 
tensor product of two-dimensional representations of the quantum group Uqs�p2q, [37], and the 
TN is called the Heisenberg spin-chain.

An interesting generalization of the Heisenberg spin-chain is a spin-chain based on the algebra 
Uqs�pM|Nq [38]. Such spin-chains describe interaction between spin and other degrees of free-
dom. For instance, Uqs�p2|1q-spin-chain is related with (integrable) t–J model which includes 
the interaction between spin and charge degrees of freedom, [39–41].

On the side of LCFT, models related with the quantum group Uqs�p2|1q are constructed 
in [32] by the approach based on intersection of kernels of the screening operators. Rational 
W -algebras W containing as a subalgebra ŝlp2qk at a rational level k naturally occur in these 
models. At the same time models over ŝlp2qk are not rational. In this case ŝlp2qk is an analog of 
the Virasoro algebra in p1, pq-models. More on LCFT with ŝlp2qk see in [42–44].

In order to investigate how LCFT with quantum group Uqs�p2|1q appears in the scaling limit 
of the spin-chain, it is natural to follow the approach proposed in [37]. In the present paper 
we study Uqs�p2|1q mixed tensor product which is the space of states for the spin-chains with 
Uqs�p2|1q symmetry. But the case when q is a root of unity q “ eiπ{p , is more complicated and 
we leave it for a separate work. Therefore in the present paper we consider only the algebra with 
a generic value of the parameter q.
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It is useful to make an analogy with the Heisenberg Uqs�p2q-spin-chain with generic q. Its 
centralizer CpUqs�p2qq on the chain is the Temperley–Lieb algebra CpUqs�p2qq “ T LN with 
the same value of the parameter q. Thus, the spin-chain space of states can be expressed as a 
bimodule TN “

À

i Vi b Mi , where Vi and Mi are some simple Uqs�p2q- and T LN -modules. 
When N Ñ 8, the algebra T LN conjecturally converges to the Virasoro algebra. When q is a 
root of unity the centralizer of the Temperley–Lieb algebra T LN is the Lusztig limit LUqs�p2q

of Uqs�p2q. In this case the bimodule decomposition of the spin chain contains non-semisimple
summands [12].

When q is a root of unity, the algebra LUqs�p2q contains the restricted quantum group 
Uqs�p2q as a subalgebra, see details in [45]. In [37] it is shown that the centralizer of Uqs�p2q

on the spin-chain TN is the algebra WN , which contains the algebra T LN . In the limit N Ñ 8

the algebra WN gives the triplet algebra W built by the lattice VOA construction.
In case of Uqs�p2|1q we take its (mutually dual) fundamental representations which are three-

dimensional and denote them by 3 and 3. We study the mixed tensor product

Tm,n “ 3bm
b 3

bn
. (1.1)

The tensor product Tm,n is the space of states of different integrable spin-chains with Uqs�p2|1q

symmetric hamiltonians, examples of which are considered in [46,7,47,48]. We let Xm,n denote 
the centralizer of Uqs�p2|1q on Tm,n, CpUqs�p2|1qq “ Xm,n. It is shown in [49–52] that Xm,n is 
isomorphic to some quotient of the quantum walled Brauer algebra qwBm,n. In this paper we do 
not give an explicit description of Xm,n itself, but describe simple and projective modules over 
Xm,n. We find the decomposition of the chain Tm,n as a bimodule over Uqs�p2|1q and Xm,n. Even 
for generic values of q, the bimodule is not semisimple. We give the bimodule in an explicit form 
in Theorem 5.3.

The quantum walled Brauer algebra qwBm,n was introduced in [53–55]. The two-parametric 
algebra qwBm,n was introduced in [56] and the structure of the simple modules was described 
implicitly. Modules over qwBm,n and its classical analogue w Bm,n were investigated in [57,58,
61–63]. Some useful facts about w Bm,n-projective modules can be obtained from [76].

For arbitrary values M, N the algebra Uqs�pM|Nq on the appropriate mixed tensor product 
(which is the tensor product of its fundamental representations) is centralized by some quotient 
of qwBm,n, see also [52,64]. If N “ 0 the bimodule is semisimple. We study the simplest non-
semisimple case N “ 1.

The outline of the article is as follows. In Sec. 2 we define the algebra Uqs�p2|1q and classify 
its finite-dimensional simple and projective modules. In Sec. 3 we describe the mixed tensor 
product and introduce the centralizer Xm,n. First, we prove the formulas for the tensor products 
of modules needed to the mixed tensor product decomposition. Next, we show that the centralizer 
is a quotient of the algebra qwBm,n. In Sec. 4 we describe simple and projective modules over 
Xm,n and the restriction functors on them. In the last Sec. 5 we describe the bimodule structure 
and give a sketch of a proof for the bimodule decomposition formula.

2. The Hopf algebra Uqs�p2|1q

2.1. Definition of Uqs�p2|1q

Quantum analogues of superalgebras s�p2|1q and g�p2|1q was studied intensively in [65–68]. 
We describe the Hopf algebra Uqs�p2|1q by a system of generators and relations. In this section 
and in the entire paper we assume that the parameter q is not a root of unity. We choose the 
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generators adapted to the Hopf subalgebra structure Uqs�p2|1q Ą Uqg�p2q Ą Uqs�p2q (such that 
the embeddings act by identification of corresponding generators); we extensively use these sub-
algebras while working with Uqs�p2|1q modules in the sequel. The Hopf subalgebra Uqs�p2q in 
Uqs�p2|1q is generated as an associative algebra by E, K , and F with the relations

KF “ q´2FK, EF ´ FE “
K ´ K´1

q ´ q´1 , KE “ q2EK. (2.1)

The larger algebra Uqg�p2q contains an additional generator k satisfying the relations

kF “ qFk, kE “ q´1Ek, kK “ Kk. (2.2)

We call the generators E, F , K and k bosonic. There are two additional generators B and C, 
which extend Uqg�p2q to Uqs�p2|1q, and which we call fermionic, or simply fermions. The 
relations that involve the fermions B and C are

kB “ ´Bk, KB “ qBK, kC “ ´Ck, KC “ q´1CK,

B2
“ 0, BC ´ CB “

k ´ k´1

q ´ q´1 , C2
“ 0,

FC ´ CF “ 0, BE ´ EB “ 0,

FFB ´ r2sFBF ` BFF “ 0, EEC ´ r2sECE ` CEE “ 0,

(2.3)

where we use q-integers defined as

rns “
qn ´ q´n

q ´ q´1 .

The Hopf-algebra structure of Uqs�p2|1q (the coproduct, the antipode, and the counit) is given 
by

�pF q “ F b 1 ` K´1
b F, �pEq “ E b K ` 1 b E,

�pBq “ B b 1 ` k´1
b B, �pCq “ C b k ` 1 b C,

(2.4)

SpBq “ ´kB, SpF q “ ´KF, SpCq “ ´Ck´1, SpEq “ ´EK´1, (2.5)

εpBq “ 0, εpF q “ 0, εpCq “ 0, εpEq “ 0, (2.6)

with k and K being group-like.

2.2. Simple Uqs�p2|1q modules

Here and below we use the same notations as in [70]. We consider a subcategory of 
Uqs�p2|1q-modules with k eigenvalues of the form q´n for n P Z. The subcategory is closed 
under tensor products.

Each simple finite dimensional Uqs�p2|1q module contains a highest weight vector satisfying 
the conditions:

E|α, s,β, ry
Ð
0 “ 0, C|α, s,β, ry

Ð
0 “ 0, (2.7)

where the labeling corresponds to the eigenvalues of K and k:

K|α, s,β, ryÐ0 “ αqs´1|α, s,β, ryÐ0 ,

k|α, s,β, ryÐ “ βq´r |α, s,β, ryÐ,
α,β “ ˘1, s, r P Z, s ě 1. (2.8)
0 0
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We choose such a parametrization because the dimension and structure of the modules are in-
dependent of α and β . We note that there are four nonisomorphic modules in each dimension, 
which differ in the sign of the Cartan eigenvalues.

The set of the simple finite-dimensional Uqs�p2|1q-modules is

Zα,β
s,r , α,β “ ˘1, s, r P Z, s ě 1. (2.9)

The structure of the modules will be explained in more detail in the next subsection. For a picto-
rial explanation of the notations for vectors in the module see Fig. 1.

The modules have dimensions

dimZα,β
s,r “

$

’

’

&

’

’

%

2s ´ 1, r “ 0,

2s ` 1, r “ s,

4s, r ‰ 0, s.

(2.10)

The modules with r “ 0 and r “ s are atypical, and others are typical. In [65] it was shown that 
every finite-dimensional irreducible module over the general linear Lie superalgebra g�pn|1q

can be deformed into an irreducible module over Uqg�pn|1q. Notations “typical” and “atypical” 
for modules in the present work are inherited from the theory of Lie superalgebras (see, for 
example [69]).

The trivial module corresponds to Z`1,`1
1,0 , see (2.9). We note that there are four one-

dimensional modules and only one of them is trivial.

2.2.1. Uqs�p2|1q-action on simple modules

Each Uqs�p2|1q-module decomposes into a direct sum of simple Uqg�p2q-modules Xα,β
s,r , 

where α, β “ ˘1, s ě 1, r P Z. Their dimensions are dimX
α,β
s,r “ s. Eigenvalues of generators 

K and k on the highest weight vector in the module Xα,β
s,r are αqs´1 and βq´r correspondingly.

We describe (following [70]) the action of Uqs�p2|1q on its simple modules explicitly, using 
the basis adapted to the decomposition into Uqg�p2q-modules. The examples of each type of 
modules are shown in Fig. 1.

Atypical modules with r “ 0, Z
α,β
s,0r “ 0, Z
α,β
s,0r “ 0, Z
α,β
s,0 : As Uqg�p2q-modules, these modules decompose as

Z
α,β
s,0 “ X

α,β
s,0 ‘ X

α,´β
s´1,´1, (2.11)

and we choose a basis in Zα,β
s,0 in accordance with this decomposition, as

´

|α, s,β,0y
Ð
n P X

α,β
s,0

¯

0ďnďs´1
,

´

|α, s,β,0y
Ñ
m P X

α,β
s´1,´1

¯

0ďmďs´2
.

The fermionic generators relate these two types of vectors as

B|α, s,β,0y
Ð
n “ ´rns|α, s,β,0y

Ñ
n´1, C|α, s,β,0y

Ñ
m “ β|α, s,β,0y

Ð
m`1.

Atypical modules with s “ r, Z
α,β
s,ss “ r, Z
α,β
s,ss “ r, Z
α,β
s,s : The modules decompose as

Zα,β
s,s “ Xα,β

s,s ‘ X
α,´β
s`1,s , (2.12)

and we choose a basis in Zα,β
s,s accordingly, as

`

|α, s,β, sy
Ð
n P Xα,β

s,s

˘

0ďnďs´1 ,

´

|α, s,β, sy
Ñ
m P X

α,´β
s`1,s

¯

.

0ďmďs
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Fig. 1. Left: An atypical module Zα,β
s,0 (with s “ 5). Each vertical column is a Uqg�p2q module in (2.11). The top state 

is |α, s;β,0yÐ0 and the bottom, |α, s;β,0yÐ
s´1. MIDDLE: An atypical module Zα,β

s,s (with s “ 4). Each vertical column 
is a Uqg�p2q module in (2.12). The top state is |α, s;β, syÑ

0 and the bottom, |α, s;β, syÑ
s . Right: The typical module 

Z
α,β
s,r (s “ 4). Each column is a Uqg�p2q-module in (2.13). The directions in which the generators map are common for 

all modules.

The fermions act between these two sets of basis vectors as

B|α, s,β, sy
Ð
n “ rs ´ ns|α, s,β, sy

Ñ
n , C|α, s,β, sy

Ñ
m “ β|α, s,β, sy

Ð
m .

Typical modules pr ‰ 0, sqpr ‰ 0, sqpr ‰ 0, sq: The modules decompose as

Zα,β
s,r “ Xα,β

s,r ‘ X
α,´β
s`1,r ‘ X

α,´β
s´1,r´1 ‘ X

α,β
s,r´1, (2.13)

and we choose the basis in Zα,β
s,r as

`

|α, s,β, ry
Ð
j

˘

0ďjďs´1,
`

|α, s,β, ry
Ò
m

˘

0ďmďs
,

`

|α, s,β, ry
Ó
n

˘

0ďnďs´2,
`

|α, s,β, ry
Ñ
j

˘

0ďjďs´1.

The fermions act on these vectors as

B|α, s,β, ry
Ð
j “

rj s

rss
|α, s,β, ry

Ó

j´1 ` β
rrsrs ´ j s

rss
|α, s,β, ry

Ò

j ,

B|α, s,β, ry
Ò
m “ rms|α, s,β, ry

Ñ
m´1, C|α, s,β, ry

Ò
m “ |α, s,β, ry

Ð
m ,

B|α, s,β, ry
Ó
n “ βrrsrn`1´ss|α, s,β, ry

Ñ
n , C|α, s,β, ry

Ó
n “ βrr´ss|α, s,β, ry

Ð
n`1,

C|α, s,β, ry
Ñ
j “

1

rss
|α, s,β, ry

Ó

j ` β
rs ´ rs

rss
|α, s,β, ry

Ò

j`1.

In this paper we are mainly interested in two three-dimensional simple Uqs�p2|1q-modules 
3 “ Z

1,´1 and 3 “ Z
1,1. They have the structure
1,1 2,0
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|yÑ
0

3 “ |yÐ0

|yÑ
1

, |yÐ0

3 “ |yÑ
0

|yÐ1

(2.14)

2.3. Ext1 spaces for atypical modules

For two modules Z1 and Z2, we define Ext1pZ2, Z1q as a linear space with basis identified 
with nontrivial short exact sequences

0 Ñ Z1 Ñ Z1 i Z2 Ñ Z2 Ñ 0

modulo a certain equivalence relation [71].
The groups Ext1 vanish for the typical Uqs�p2|1q modules. For the atypical modules, the 

Ext1pZ1, Z2q group is at most 1-dimensional. Whenever Ext1pZ1, Z2q is nontrivial, we describe 
the algebra action in terms of generators: the action of a Uqs�p2|1q-generator A on Z1 i Z2 is 
given by

ρA “ ρ
p0q

A ` ξA,

where ρp0q

A is the direct sum of actions of Uqs�p2|1q-generators on the simple modules and 

ξA “ ξ
Z1,Z2
A : Z1 Ñ Z2 are linear maps.

We list the ξA maps in terms of the bases introduced above. The formulas can be somewhat 
uniformized by adopting the following convention for the 1-dimensional modules Zα,´β

1,0 : we de-

note this module also by Zα,β
0,0 , with a basis vector |α,0, β,0yÑ

0 “ |α,1,´β,0yÐ0 (and, formally, 
with |α,0, β,0yÐm “ 0, m ‰ 0). We then have

Ext1pZ
α,β
s,0 ,Z

α,´β
s`1,0q “ tbs`1u,

ps ě 1q

ξB : |α, s,β,0y
Ð
m ÞÑ ´rs ´ ms|α, s ` 1,´β,0y

Ð
m ,

ξB : |α, s,β,0y
Ñ
m ÞÑ rs ´ m ´ 1s|α, s ` 1,´β,0y

Ñ
m ,

Ext1pZ
α,β
s,0 ,Z

α,´β
s´1,0q “ tcs´1u,

ps ě 2q

ξC : |α, s,β,0y
Ð
m ÞÑ |α, s ´ 1,´β,0y

Ð
m ,

ξC : |α, s,β,0y
Ñ
m ÞÑ |α, s ´ 1,´β,0y

Ñ
m ,

Ext1pZ
α,β
s,s ,Z

α,´β
s´1,s´1q “ tb̄s´1u,

ps ě 1q

ξB : |α, s,β, sy
Ð
m ÞÑ ´rms|α, s ´ 1,´β, s ´ 1y

Ð
m´1,

ξB : |α, s,β, sy
Ñ
m ÞÑ rms|α, s ´ 1,´β, s ´ 1y

Ñ
m´1,

Ext1pZ
α,β
s,s ,Z

α,´β
s`1,s`1q “ tc̄s`1u,

ps ě 0q

ξC : |α, s,β, sy
Ð
m ÞÑ |α, s ` 1,´β, s ` 1y

Ð
m`1,

ξC : |α, s,β, sy
Ñ
m ÞÑ |α, s ` 1,´β, s ` 1y

Ñ
m`1.

2.4. Projective Uqs�p2|1q-modules

There are two types of projective Uqs�p2|1q-modules.

2.4.1. Simple projective modules
All simple typical modules described in 2.2.1 are projective.
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2.4.2. Projective covers of atypical modules
We use the notation Rα,β

s,0 and Rα,β
s,s for projective covers of Zα,β

s,0 and Zα,β
s,s (where, as before, 

α, β “ ˘1 and s ě 1). We describe the projective covers in terms of Loewy graphs (see definition 
in [77]). The reconstruction of the Uqs�p2|1q-action on a projective module from its Loewy graph 
is described in detail in [70, Sec. 6]. The action ρApνq of a generator A on a vector ν has three 
parts:

ρApνq “ ρ
p0q

A pνq ` cpνqξApνq ` ηApνq,

where ρp0q

A pνq is the action of A in the irreducible subquotient, ξA is determined in 2.3, and for 
the map ηA we give explicit formulas after each Loewy graph (whenever ηA is nonzero). Here 
cpνq are some coefficients depending on a pair of simple subquotients in the projective module 
in question. We write them on edges in Loewy graphs (see [70] for a detailed explanation).

It is convenient to distinguish between two series and two exceptional cases of projective 
covers. The first series is Rα,β

s,0 , s ě 2, with the Loewy graph

Z
α,β
s,0

´rs´1s ´rss

Z
α,´β
s`1,0

1

Z
α,´β
s´1,0

1

Z
α,β
s,0

(2.15)

where

ηB : |α, s,β,0y
Ð
n

�
ÞÑ ´βrns|α, s,β,0y

Ñ
n´1�.

Here v� denotes the vector v from the top subquotient, and v� denotes vector v from the bottom 
subquotient.

The second series is Rα,β
s,s , s ě 2, with the Loewy graph

Z
α,β
s,s

´rss ´rs`1s

Z
α,´β
s`1,s`1

1

Z
α,´β
s´1,s´1

1

Z
α,β
s,s

(2.16)

and with

ηC : |α, s,β, sy
Ñ
n

�
ÞÑ |α, s,β, sy

Ð
n �.
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The two exceptional cases are Rα,β
1,0 and Rα,β

1,1 , with the respective Loewy graphs

Z
α,β
1,0

1 ´1

Z
α,´β
2,0

1

Z
α,β
1,1

1

Z
α,β
1,0

Z
α,β
1,1

´r1s ´r2s

Z
α,´β
2,2

1

Z
α,β
1,0

1

Z
α,β
1,1

(2.17)

These modules have dimensions

dimR
α,β
s,0 “ 8s ´ 4, s ą 1,

dimRα,β
s,s “ 8s ` 4, s ě 1,

dimR
α,β
1,0 “ 8.

3. The mixed tensor product

We study the mixed tensor product (“spin-chain”) (1.1), where 3 “ Z
1,´1
1,1 and 3 “ Z

1,1
2,0 are 

the two three-dimensional simple Uqs�p2|1q-modules, see (2.14). We are interested in decom-
posing Tm,n as a bimodule over Uqs�p2|1q and its centralizer Xm,n. As a necessary first step, we 
decompose tensor products of relevant Uqs�p2|1q-modules with the fundamental modules Zα,β

1,1

and Zα,β
2,0 .

Theorem 3.1. Tensor products Z bZ
α,β
1,1 , where Z ranges the atypical and typical simple modules 

and their projective covers, decompose as follows:

Z
α1,β1
s,0 b Z

α2,β2
1,1 “ Z

α12,´β12
s´1,0 ` Z

α12,β12
s,1 , s ě 2,

Zα1,β1
s,s b Z

α2,β2
1,1 “ Z

α12,´β12
s`1,s`1 ` Z

α12,β12
s,s`1 , s ě 1,

Z
α1,β1
s,r b Z

α2,β2
1,1 “

$

’

&

’

%

R
α12,´β12
s`1,0 ` Z

α12,´β12
s´1,´1 , r “ ´1,

R
α12,´β12
s´1,s´1 ` Z

α12,´β12
s`1,s , r “ s ´ 1,

Z
α12,β12
s,r`1 ` Z

α12,´β12
s`1,r`1 ` Z

α12,´β12
s´1,r otherwise,

,

/

.

/

-

s ě 2

and

R
α1,β1
s,0 b Z

α2,β2
1,1 “ R

α12,´β12
s´1,0 ` 2Zα12,β12

s,1 ` Z
α12,´β12
s´1,1 ` Z

α12,´β12
s`1,1 , s ě 3,

Rα1,β1
s,s b Z

α2,β2
1,1 “ R

α12,´β12
s`1,s`1 ` 2Zα12,β12

s,s`1 ` Z
α12,´β12
s´1,s ` Z

α12,´β12
s`1,s`2 , s ě 2,

where we write α12 “ α1α2 and β12 “ β1β2.
The exceptional cases are listed below:

Z
α1,β1
1,0 b Z

α2,β2
1,1 “ Z

α12,β12
1,1 ,

Z
α1,β1

b Z
α2,β2

“ R
α12,´β12 ,
1,´1 1,1 2,0
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Z
α1,β1
1,r b Z

α2,β2
1,1 “ Z

α12,β12
1,r`1 ` Z

α12,´β12
2,r`1 , r ‰ ´1,0,1,

R
α1,β1
2,0 b Z

α2,β2
1,1 “ R

α12,´β12
1,0 ` 2Zα12,β12

2,1 ` Z
α12,´β12
3,1 ,

R
α1,β1
1,0 b Z

α2,β2
1,1 “ R

α12,β12
1,1 ` Z

α12,β12
1,2 ` Z

α12,´β12
2,1 ,

R
α1,β1
1,1 b Z

α2,β2
1,1 “ R

α12,´β12
2,2 ` 2Zα12,β12

1,2 ` Z
α12,´β12
2,3 .

The tensor products Z bZ
α,β
2,0 decompose as:

Z
α1,β1
s,0 b Z

α2,β2
2,0 “ Z

α12,β12
s`1,0 ` Z

α12,β12
s´1,´1,

Z
α1,β1
s,s b Z

α2,β2
2,0 “ Z

α12,β12
s´1,s´1 ` Z

α12,β12
s`1,s ,

Z
α1,β1
s,r b Z

α2,β2
2,0 “

$

’

&

’

%

R
α12,´β12
s,0 ` Z

α12,β12
s`1,1 , r “ 1,

R
α12,´β12
s,s ` Z

α12,β12
s´1,s , r “ s ` 1,

Z
α12,β12
s`1,r ` Z

α12,´β12
s,r´1 ` Z

α12,β12
s´1,r´1, otherwise,

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

s ě 2

and

R
α1,β1
s,0 b Z

α2,β2
2,0 “ R

α12,β12
s`1,0 ` 2Zα12,β12

s´1,´1 ` Z
α12,´β12
s,´1 ` Z

α12,´β12
s´2,´1 , s ě 3,

Rα1,β1
s,s b Z

α2,β2
2,0 “ R

α12,β12
s´1,s´1 ` 2Zα12,β12

s`1,s ` Z
α12,´β12
s`2,s`1 ` Z

α12,´β12
s,s´1 , s ě 2.

The exceptional cases are:

Z
α1,β1
1,0 b Z

α2,β2
2,0 “ Z

α12,β12
2,0 ,

Z
α1,β1
1,1 b Z

α2,β2
2,0 “ Z

α12,´β12
1,0 ` Z

α12,β12
2,1 ,

Z
α1,β1
1,2 b Z

α2,β2
2,0 “ R

α12,´β12
1,1 ,

Z
α1,β1
1,r b Z

α2,β2
2,0 “ Z

α12,´β12
1,r´1 ` Z

α12,β12
2,r , r ‰ 0,1,2,

R
α1,β1
2,0 b Z

α2,β2
2,0 “ R

α12,β12
3,0 ` 2Zα12,β12

1,´1 ` Z
α12,´β12
2,´1 ,

R
α1,β1
1,0 b Z

α2,β2
2,0 “ R

α12,β12
2,0 ` Z

α12,´β12
1,´1 ` Z

α12,β12
2,1 ,

R
α1,β1
1,1 b Z

α2,β2
2,0 “ R

α12,´β12
1,0 ` 2Zα12,β12

2,1 ` Z
α12,´β12
3,2 .

3.1.1. It follows, in particular, that the set of simple modules and their projective covers is 
closed under tensor product decompositions.

Proof. We discuss two cases: Zα1,β1
s,s b Z

α2,β2
1,1 and Zα1,β1

s,s´1 b Z
α2,β2
1,1 . Other cases are similar.

We consider the Uqs�p2|1q-modules in the left-hand side of the tensor product as Uqg�p2q-
modules (as explained in 2.2.1) and calculate their tensor product using the results in [45]. For 
the tensor product Zα1,β1

s,s b Z
α2,β2
1,1 , we have

Zα1,β1
s,s b Z

α2,β2
1,1 “

´

Xα1,β1
s,s ‘ X

α1,´β1
s`1,s

¯

b

´

X
α2,β2
1,1 ‘ X

α2,´β2
2,1

¯

(3.1)

“ X
α12β12
s,s`1 ‘ X

α12,´β12
s`1,s`1 ‘ X

α12,´β12
s´1,s ‘ X

α12,´β12
s`1,s`1 ‘ X

α12,β12
s`2,s`1 ‘ Xα12,β12

s,s .

Decomposition (3.1) contains six Uqg�p2q-modules. Taking into account that a typical module 
contains four Uqg�p2q-summands and an atypical one contains two, the module in (3.1) can 
be the direct sum of either three atypical Uqs�p2|1q-modules or one typical and one atypical 
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module. Explicitly writing the decompositions of possible Uqs�p2|1q-modules shows that there 
exists only one Uqs�p2|1q-module that has the decomposition (3.1). The second and the fifth 
summands can be combined into Zα12,´β12

s`1,s`1 and the other four summands give Zα12,β12
s,s`1 . Thus, we 

have

Zα1,β1
s,s b Z

α2,β2
1,1 “ Z

α12,´β12
s`1,s`1 ‘ Z

α12,β12
s,s`1 .

We next consider the product Zα1,β1
s,s´1 b Z

α2,β2
1,1 . The Uqg�p2q-decomposition is

Z
α1,β1
s,s´1 b Z

α2,β2
1,1 “

´

X
α,β
s,s´1 ‘ X

α1,´β1
s`1,s´1 ‘ X

α1,´β1
s´1,s´2 ‘ X

α1,β1
s,s´2

¯

(3.2)

b

´

X
α2,β2
1,1 ‘ X

α2,´β2
2,1

¯

“ Xα12,β12
s,s ‘ X

α12,´β12
s`1,s ‘ X

α12,´β12
s´1,s´1 ‘ X

α12,β12
s,s´1 ‘ X

α12,´β12
s`1,s ‘ X

α12,β12
s`2,s

‘ X
α12,β12
s,s´1 ‘ X

α12,´β12
s`1,s´1 ‘ X

α,´β
s´1,s´1 ‘ X

α12,β12
s,s´1 ‘ X

α12,β12
s´2,s´2

‘ X
α12,´β12
s´1,s´2 .

Because Zα1,β1
s,s´1 is a projective simple module (see 2.4.1), the decomposition of Zα1,β1

s,s´1 b Z
α2,β2
1,1

involves only projective modules, which, as we recall from 2.4.2, consist of all typical simple 
modules and the Rα,β

s,r . There are several Uqs�p2|1q-modules that have the Uqg�p2q-decomposi-
tion (3.2), but only one of them is projective.1 Thus, we have

Z
α1,β1
s,s´1 b Z

α2,β2
1,1 “ R

α12,´β12
s´1,s´1 ‘ Z

α12,´β12
s`1,s .

The cases Rα1,β1
s,0 b Z

α2,β2
1,1 and Rα1,β1

s,s b Z
α2,β2
1,1 are worked out similarly. We consider 

Uqg�p2q-decompositions of both tensorands and calculate tensor products of Uqg�p2q-modules. 
This gives a long direct sum of simple and projective Uqg�p2q-modules that each time are com-
bined uniquely into a sum of projective Uqs�p2|1q-modules. l

Remark 3.1.2. Decomposition of all tensor products of finite dimensional s�p2|1q-representa-
tions into their indecomposable building blocks was found in [72].

3.1.3. We calculate decomposition of Tm,n iteratively using Theorem 3.1. The multiplici-
ties of Uqs�p2|1q-indecomposable modules are dimensions of Xm,n-modules, which we discuss 
below.

3.2. The centralizer of Uqs�p2|1q on the mixed tensor product

We fix bases in the 3 and 3 modules in accordance with 2.2.1 and introduce a shorthand 
notation for them:

f1 “ |1,1;´1,1yÐ0 , f2 “ |1,1;´1,1yÑ
0 , f3 “ |1,1;´1,1yÑ

1 ,

v1 “ |1,2;1,0yÑ
0 , v2 “ |1,2;1,0yÐ1 , v3 “ |1,2;1,0yÐ0 .

In the tensor products of two Uqs�p2|1q modules, we then have the operators

1 For example, the direct sum of simple Uqs�p2|1q-modules 2Zα12,´β12
s´1,s´1 ‘ Z

α12,β12
s,s ‘ Z

α12,β12
s´2,s´2 ‘ Z

α12,´β12
s`1,s

is 
compatible with the Uqg�p2q-decomposition (3.2), but is not a projective Uqs�p2|1q-module.
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g : 3 b 3 ÞÑ 3 b 3, E : 3 b 3 ÞÑ 3 b 3, h : 3 b 3 ÞÑ 3 b 3,

that commute with Uqs�p2|1q and are explicitly given by

g :
¨

˝

f1 b f1 f1 b f2 f1 b f3
f2 b f1 f2 b f2 f2 b f3
f3 b f1 f3 b f2 f3 b f3

˛

‚ ÞÑ

¨

˚

˝

q´2f1 b f1 ´q´1f2 b f1 ´q´1f3 b f1

pq´2´1qf2 b f1 ´ q´1f1 b f2 ´f2 b f2 ´q´1f3 b f2

pq´2´1qf3 b f1 ´ q´1f1 b f3 pq´2´1qf3 b f2 ´ q´1f2 b f3 ´f3 b f3

˛

‹

‚

,

E :

¨

˚

˝

f1 b v1 f1 b v2 f1 b v3

f2 b v1 f2 b v2 f2 b v3

f3 b v1 f3 b v2 f3 b v3

˛

‹

‚
ÞÑ

¨

˝

1 0 0
0 ´q 0
0 0 1

˛

‚ ¨ pq2f1 b v1 ` qf2 b v2 ´ f3 b v3q,

and

h :
¨

˝

v1 b v1 v1 b v2 v1 b v3
v2 b v1 v2 b v2 v2 b v3
v3 b v1 v3 b v2 v3 b v3

˛

‚ ÞÑ

¨

˝

q´2v1 b v1 pq´2´1qv1 b v2 ´ q´1v2 b v1 pq´2´1qv1 b v3 ´ q´1v3 b v1

´q´1v1 b v2 ´v2 b v2 pq´2´1qv2 b v3 ´ q´1v3 b v2

´q´1v1 b v3 ´q´1v2 b v3 ´v3 b v3

˛

‚ .

On Tm,n, we define the operators

gj “ 1 b . . . b 1
m´j´1

bg b 1 b . . . b 1
n`j´1

,

hi “ 1 b . . . b 1
m`i´1

bh b 1 b . . . b 1
n´i´1

,

E “ 1 b . . . b 1
m´1

bE b 1 b . . . b 1
n´1

.

These are the generators of a quantum walled Brauer algebra, which we discuss in the next 
subsection.

3.3. The quantum walled Brauer algebra

3.3.1. The algebra qwBm,n is the associative unital algebra generated by gi , E, hj , where 
1 ď i ď m ́ 1 and 1 ď j ď n ́ 1, with relations (see [53–55])

gihj “ hjgi,

pgi ´ γ qpgi ´ δq “ 0, phj ´ γ qphj ´ δq “ 0,

gigj “ gjgi, |i ´ j | ą 1, hihj “ hjhi, |i ´ j | ą 1,

g g g “ g g g , h h h “ h h h ,
i i`1 i i`1 i i`1 j j`1 j j`1 j j`1
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EE “
θ ` 1

γ ` δ
E,

Eg1E “ E, Eh1E “ E,

Egi “ giE, 2 ď i ď m ´ 1, Ehj “ hjE, 2 ď j ď n ´ 1,

Eg1h
´1
1 Epg1 ´ h1q “ 0, pg1 ´ h1qEg1h

´1
1 E “ 0.

These relations involve complex parameters γ , δ, and θ , and we sometimes use the notation 
qwBm,npγ, δ, θq for the algebra, although one parameter can be eliminated from the relations 
by renormalizing the generators. We write the relations in the present form for more convenient 
comparison with different choices in literature.

Remark 3.3.2. The algebra qwBm,n has a presentation by tangle diagrams, see [63].

Remark 3.3.3. In [52,57,58] the one-parameter walled Brauer algebra is discussed. It can be 
considered as a classical limit of quantum walled Brauer algebra qwBm,n. To get this limit from 
the algebra with relations 3.3.1 we can do the following. By renormalization of the generators, 
parameter γ can be set to γ “ ´1. We introduce a complex parameter r :

θ “ ´δr

so that the relation reads EE “ ´
δr ´ 1

δ ´ 1
E. Then we consider the limit δ Ñ 1. The dependent on 

parameters algebra relations become

g2
i “ h2

i “ 1,

EE “ ´rE.

Such an algebra is called the (classical) walled Brauer algebra with (only one) parameter r . We 
use the notation w Bm,np´rq for it.

Theorem 3.3.4. The generators defined in 3.2 satisfy the qwBm,n relations with the parameters

γ “ ´1,

δ “ q´2, (3.3)

θ “ ´q´2.

Remark 3.3.5. By choice of normalization in matrices, the parameters γ and δ can be changed, 
however the relation

θ “
δ

γ
(3.4)

remains invariant. This relation means that we consider a degenerate case in which the algebra 
becomes non-semisimple as we discuss below.

Corollary 3.3.6. The endomorphism algebra of Uqs�p2|1q-module Tm,n is isomorphic to the 
quotient of the algebra qwBm,n with special parameters (3.3).

One can consider an algebra Uqs�pM|Nq for arbitrary positive integers M and N . Let V and 
V ‹ be fundamental representation of Uqs�pM|Nq and its dual. We let XM,N

m,n denote the algebra 
of endomorphisms of Uqs�pM|Nq on mixed tensor product V ‹bm

bV bn. As was shown in [73]
(see also [50,51,49,52]) there is a surjective homomorphism
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�M,N
m,n : qwBm,npγ “ ´1, δ “ q´2, θ “ ´q´2pM´Nq

q Ñ XM,N
m,n . (3.5)

Here the parameter q is the same as in the algebra Uqs�pM|Nq. In the classical limit we conclude 
that the algebra of endomorphisms of s�pM|Nq on mixed tensor product of its fundamental 
representations is a quotient of the algebra w Bm,nprq with r “ N ´ M . This is consistent with 
the results of [49,52] because classical algebras w Bm,nprq and w Bm,np´rq are isomorphic to each 
other. Indeed, the isomorphism is given by the formulas g1

i “ ´gi , h1
j “ ´hj and E1 “ ´E.

We note that for N “ 0 the algebra XM,0
m,n is semisimple and ker�M,0

m,n contains the whole 
radical of qwBm,n, see [54].

At the end of this section we formulate two statements important for the sequel.

Conjecture 3.4. Representation categories of the algebra qwBm,n with generic values of param-

eter 
δ

γ
and of the (classical) walled Brauer algebra are equivalent as abelian categories.

The walled Brauer algebra has quasi-hereditary structure, see [58]. According to our first 

conjecture (Conjecture 3.4) we suppose qwBm,n with generic values of the parameter 
δ

γ
to be 

also quasi-hereditary.
In the following sections we consider only the case M “ 2, N “ 1 and use the notation Xm,n

for X2,1
m,n. The second important statement is (see also [74])

Conjecture 3.5. The algebra Xm,n is quasi-hereditary.2

4. Modules over qwBm,n and Xm,n

In this section we give the description of the Xm,n-modules. We rely on the quasi-hereditary 
hypothesis 3.5 and borrow definitions from [58–60]. From these papers we use the notions of 
Specht module, simple head, projective cover and multiplicity.

In this section we describe Specht and simple modules for qwBm,n and simple and projective 
modules for algebra Xm,n.

4.1. qwBm,n Specht modules

4.1.1. A finite integer sequence μ “ pμ1, μ2, . . .μrq is called a partition, if μ1 ě μ2 ě

. . .μr ą 0.
A bipartition is a pair of partitions λ “ pλL, λRq. Let � be the set of all bipartitions. For each 

integer 0 ď f ď minpm, nq, we set

�m,npf q “ tλ P � | m ´ |λL
| “ n ´ |λR

| “ f u, (4.1)

where |λ| is the sum of elements of a partition, and

�m,n “

minpm,nq
ď

f “0

�m,npf q. (4.2)

2 The conjecture about quasi-hereditary structure in the general case XM,N
m,n can apparently be formulated but is beyond 

the scope of this paper.
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The set �m,n is in bijective correspondence with the set of qwBm,n Specht modules [56]. We 
let Spλq denote the qwBm,n-Specht module corresponding to the bipartition λ.

The following Theorem is given in [52].

Theorem 4.1.2. For generic values of the qwBm,n parameters, each Specht module is simple, and 
the sets of Specht and simple modules coincide.

4.2. Modules over qwBm,n with special parameters

We now consider the category of qwBm,n modules with the parameters related as in (3.4). The 
algebra is then nonsemisimple, and some of the Specht modules Spλq become reducible.

Let Dpλq and Kpλq be the simple head and the projective cover for Spλq. Below we also use 
the notation D

“

λL, λR
‰

and K
“

λL, λR
‰

for DppλL, λRqq and KppλL, λRqq respectively.
In [57, Theorem 2.7] the full classification of simple modules over the walled Brauer algebra 

is given. Thus, assuming Conjecture 3.4 (but see also [56, Theorem 8.1]) we have the following

Lemma 4.2.1. If EE ‰ 0, the modules Dpλq, λ P �m,n give a complete set of simple modules for 
the algebra qwBm,n.

The decomposition multiplicities dλ,μ “
“

Spμq : Dpλq
‰

for the Spλq-modules in terms of their 
simple subquotients are determined in [58]. Because of the quasi-hereditary structure of qwBm,n

each projective module Kpλq has a filtration by Specht modules. Let d̃λμ “
“

Kpλq : Spμq
‰

be 
the multiplicity of a given Specht module Spλq in the filtration; then, by the Brauer–Humphreys 
reciprocity (see [58] and references therein)

d̃λμ “ dλμ. (4.3)

We use this statement to construct projective modules for Xm,n in the next subsection.

4.3. Modules in the decomposition of the mixed tensor product

As a Xm,n b Uqs�p2|1q-bimodule, the mixed tensor product Tm,n decomposes into a direct 
sum of indecomposable bimodules.

Definition 4.3.1. For non-negative integers p, q , a partition μ is called a pp, qq-hook partition if 
it doesn’t contain a box in the pp ` 1, q ` 1q-position, i.e. μp`1 ă q ` 1.

Some examples of p2, 1q-hook partitions are

, ,

Definition 4.3.2 (see [75]). For non-negative integers p, q a bipartition λ “ pλL, λRq is called 
a pp, qq-cross bipartition if there exist non-negative integers p1, p2, q1, q2 such that λL is a 
pp1, q1q-hook partition, λR is a pp2, q2q-hook partition and p1 ` p2 ď p, q1 ` q2 ď q .
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Some examples of p2, 1q-cross bipartitions are

p , q p , q p ,Hq

Let Crm,n be the subset of all p2, 1q-cross bipartitions in �m,n. Assuming Conjecture 3.4 and 
applying the statements from [52], [75] for M “ 2, N “ 1, we have

Proposition 4.3.3. If λ P Crm,n then ker�2,1
m,n acts as zero on Dpλq. The modules Dpλq, λ P Crm,n

give a complete set of simple Xm,n-modules.

Proposition 4.3.4. Each Xm,n-simple module Dpλq, λ P Crm,n occurs as a subquotient in the 
bimodule decomposition of Tm,n.

In the following we use notation a “ |m ́ n|. For bipartitions from Crm,n we introduce the 
notation

for m ě nm ě nm ě n:

Aa
s “ ppa,1s

q, psqq, a ą 0, 0 ď s ď n,

Ba
s “ ppa, sq, p1s

qq, a ą 0, 1 ď s ď minpa,nq,

Ca
s “ pps ` 1, a ` 1q, p1s`2

qq, a ď s ď n ´ 2, a ě 0,

for m ď nm ď nm ď n:

Âa
s “ ppsq, pa,1s

qq, a ą 0, 0 ď s ď m,

A0
0 “ Â0

0 “ pH,Hq,

B̂a
s “ pp1s

q, pa, sqq, a ą 0, 1 ď s ď minpa,mq,

Ĉa
s “ pp1s`2

q, ps ` 1, a ` 1qq, a ď s ď m ´ 2, a ě 0.

We note that Ba
1 “ Aa

1 and Ĉ0
0 “ C0

0 .
For given m, n we define a subset Atm,n of bipartitions in Crm,n as

Atm,n “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

tAa
s |0 ď s ď nu

Ť

tBa
s |2 ď s ď minpa,nqu

Ť

tCa
s |a ď s ď n ´ 2u,

m ą n,

tA0
0u

Ť

tC0
s |0 ď s ď n ´ 2u

Ť

tĈ0
s |1 ď s ď n ´ 2u,

m “ n,

tÂa
s |0 ď s ď mu

Ť

tB̂a
s |2 ď s ď minpa,mqu

Ť

tĈa
s |a ď s ď m ´ 2u,

m ă n.

(4.4)

We call these bipartitions atypical. If λ P Atm,n we call corresponding modules Spλq and Dpλq

atypical also.
We define the operation Ĝ from the set of qwBm,n-modules to the set of qwBn,m-modules. 

The operation Ĝ acts on the simple qwBm,n-module by the formula

Ĝ

´

D
“

λL,λR
‰

¯

“ D
“

λR,λL
‰

, (4.5)
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i.e. it changes left and right partitions in a bipartition. We note that ĜAa
s “ Âa

s , and similarly for 
Ba

s , Ca
s . When applied to projective modules, the operation Ĝ acts on each simple subquotient 

by the formula (4.5) and does not change the structure of the Loewy graph. It is obvious that

K
“

λR,λL
‰

“ Ĝ

´

K
“

λL,λR
‰

¯

. (4.6)

The action of the algebra Xm,n on an arbitrary qwBm,n-module is not defined in general. In 
particular, it is not defined on some qwBm,n-Specht modules, that contain Dpλ1q, λ1 R Crm,n as 
a subquotient. For λ P Crm,n we define a Specht module over Xm,n (abusing notation we use 
the same symbol Spλq for it) as a factor of corresponding qwBm,n-Specht module Spλq over all 
subquotients Dpλ1q with λ1 R Crm,n.

Similarly we let Kpλq denote the projective cover for Xm,n-module Spλq. This projective cover 
is a subquotient of qwBm,n projective module Kpλq.

Assuming the Conjecture 3.5, we have the equality of multiplicities d̃λ,μ “ dλ,μ for Xm,n in 
analogy with (4.3). Using [58] and Proposition 4.3.3, we have the following Theorem. We write 
down the structure of the Loewy graphs for Xm,n-projective modules (analogously to the formulas 
(2.15)–(2.17) for Uqs�p2|1q-projective modules). They are oriented graphs where arrows mean 
the action of the algebra Xm,n. States from the subquotient at the beginning of an arrow are 
mapped to the states in the subquotient at the end of an arrow and (possibly) in the subquotients 
further the arrows. Investigation of Ext1 spaces for the algebra Xm,n and the detailed action of 
all Xm,n-generators on projective modules are beyond the scope of this paper.

Theorem 4.3.5. For λ P Crm,n, λ R Atm,n, the projective module over Xm,n coincides with the 
simple module: Kpλq “ Dpλq. For λ P Atm,n, we have the following structure of projective mod-
ules over Xm,n

for m ą nm ą nm ą n:

DpAa
s q

KpAa
s q “ DpAa

s´1q DpAa
s`1q , 2 ď s ď n ´ 1, a ě 1,

DpAa
s q

DpAa
1q

KpAa
1q “ DpAa

2q DpAa
0q DpBa

2 q , a ě 2, n ě 2,

DpAaq
1



234 D.V. Bulgakova et al. / Nuclear Physics B 928 (2018) 217–257
DpA1
1q

KpA1
1q “ DpA1

2q DpA1
0q DpC1

1q , n ě 3,

DpA1
1q

DpAa
nq

KpAa
nq “ DpAa

n´1q , a ě 1, n ě 1,

DpAa
nq

KpAa
0q “ DpAa

0q , a ě 1, n ě 1,

DpAa
1q

DpBa
s q

KpBa
s q “ DpBa

s´1q DpBa
s`1q , 2 ď s ď minpa,nq ´ 1 ,

DpBa
s q

DpBa
a q

KpBa
a q “ DpBa

a´1q DpCa
a q , 2 ď a ď n ´ 2 ,

DpBa
a q

DpBa
a q

KpBa
a q “ DpBa

a´1q , a “ n ´ 1, n ě 3,

DpBaq
a
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DpBa
n q

KpBa
n q “ DpBa

n´1q , a ě n, n ě 2,

DpBa
n q

DpCa
s q

KpCa
s q “ DpCa

s´1q DpCa
s`1q , a ` 1 ď s ď n ´ 3, a ě 1,

DpCa
s q

DpCa
a q

KpCa
a q “ DpBa

a q DpCa
a`1q , 2 ď a ď n ´ 3,

DpCa
a q

DpC1
1q

KpC1
1 q “ DpA1

1q DpC1
2q , n ě 4,

DpC1
1q

DpCa
n´2q

KpCa
n´2q “ DpCa

n´3q , 1 ď a ď n ´ 3,

DpCa q
n´2
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DpC
n´2
n´2q

KpCn´2
n´2 q “ DpBn´2

n´2 q , n ě 3,

DpCn´2
n´2q

for m “ nm “ nm “ n:

KpA0
0q “ DpA0

0q , n ě 2,

DpC0
0 q

DpC0
0 q

KpC0
0 q “ DpĈ0

1 q DpA0
0q DpC0

1 q , n ě 3,

DpC0
0 q

DpC0
s q

KpC0
s q “ DpC0

s´1q DpC0
s`1q , 1 ď s ď n ´ 3,

DpC0
s q

DpC0
n´2q

KpC0
n´2q “ DpC0

n´3q , n ě 3.

DpCa
n´2q

Structure of projective modules KpĈ0
s q, 0 ď s ď n ́ 2 for m “ n and all projective modules for 

m ă n can be obtained from this using the formula (4.6).

We note that the Loewy length of the projective modules coincide with the Loewy length 
given in Corollary 4.2 in [76].
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4.4. The restriction functors

4.4.1. There are two natural embeddings between quantum walled Brauer algebras (see [57])

qwBm´1,n Ñ qwBm,n, qwBm,n´1 Ñ qwBm,n. (4.7)

The first embedding acts by identification of the corresponding generators E, g1, g2, . . . gm´2, 
h1, h2, . . . hn´1. The second embedding acts by identification of the generators E, g1, g2, . . . gm´1,
h1, h2, . . . hn´2. These two maps induce two restriction functors resm,n

m´1,n and resm,n
m,n´1 from the 

category of qwBm,n-modules to the categories of qwBm´1,n and qwBm,n´1-modules respectively.
Let addpμq be the set of boxes for a partition μ, which can be added singly to μ such that the 

result μ ̀ l is a partition. Let rempμq be a set of boxes which can be removed from μ such that 
μ{l is a partition.

In what follows the sign 
Ţ

denotes the non-direct sum of modules. Following [57], where the 
classical case q “ 1 is considered, we have for modules over qwBm,n.

Proposition 4.4.2. For λ P �m,npf q with n ě 1 we have

resm,n
m,n´1 Spλq “

ě

lPrempλRq

SpλL,λR
´ lq, for f “ 0,

resm,n
m,n´1 Spλq “

ě

l PaddpλLq

SpλL
` l, λR

q
ě ě

l PrempλRq

SpλL,λR
´ lq, for f ą 0.

This statement is valid for the algebra qwBm,n with either generic or special parameters. For 
qwBm,n with generic parameters all 

Ţ

become direct sums.
As a consequence of the previous statement and Proposition 4.3.3 we have for modules over 

Xm,n.

Proposition 4.4.3. For λ P �m,npf q 
Ş

Crm,n with n ě 1 we have

resm,n
m,n´1 Spλq “

à

lPrempλRq

SpλL,λR
´ lq, for f “ 0,

resm,n
m,n´1 Spλq “

ě

l PaddpλLq,pλL`l,λRqPCrm,n´1

SpλL
` l, λR

q
ě ě

l PrempλRq

SpλL,λR
´ lq,

for f ą 0.

We formulate an important Conjecture about restriction of the projective modules. The state-
ments 4.4.5 and 4.4.6 formulated as theorems are based on the Conjecture.

Conjecture 4.4.4. Restriction for projective module Kpλq over algebra Xm,n is a sum of projec-
tive modules.

Theorem 4.4.5. Consider n ě 1. For λ P Atm,n the restrictions for projective modules Kpλq over 
the algebra Xm,n are

resm,n
m,n´1 KpAa

s q “ KpAa`1
s q ‘ Drpa,1s`1

q, psqs ‘ 2Drpa,1s
q, ps ´ 1qs

‘ Drpa,1s´1
q, ps ´ 2qs, 2 ď s ď n ´ 1, a ě 1,
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resm,n
m,n´1 KpAa

1q “ KpA
a`1
1 q ‘ Drpa,12

q, p1qs ‘ 2Drpa,1q,Hs ‘ Drpa,2q, p1qs,

a ě 2, n ě 2,

resm,n
m,n´1 KpA1

1q “ KpA2
1q ‘ Drp13

q, p1qs ‘ 2Drp12
q,Hs, n ě 2,

resm,n
m,n´1 KpAa

nq “ DpA
a`1
n´1q ‘ 2Drpa,1n

q, pn ´ 1qs ‘ Drpa,1n´1
q, pn ´ 2qs, n ě 2,

resm,n
m,n´1 KpAa

0q “ KpAa`1
0 q ‘ Drpa,1q,Hs, a ě 1, n ě 1,

resm,n
m,n´1 KpA0

0q “ KpA1
0q, n ě 1,

resm,n
m,n´1 KpBa

s q “ KpBa`1
s q ‘ Drpa, s ` 1q, p1s

qs ‘ 2Drpa, sq, p1s´1
qs

‘Drpa, s ´ 1q, p1s´2
qs, 2 ď s ď minpa,nq ´ 1,

resm,n
m,n´1 KpBa

a q “ KpBa`1
a q ‘ 2Drpa, aq, p1a´1

qs ‘ Drpa, a ´ 1q, p1a´2
qs,

2 ď a ď n ´ 1,

resm,n
m,n´1 KpBa

n q “ DpBa`1
n´1 q ‘ 2Drpa,nq, p1n´1

qs ‘ Drpa,n ´ 1q, p1n´2
qs, 2 ď n ď a,

resm,n
m,n´1 KpCa

s q “ KpCa`1
s q ‘ Drps ` 2, a ` 1q, p1s`2

qs ‘ 2Drps ` 1, a ` 1q, p1s`1
qs

‘Drps, a ` 1q, p1s
qs, a ` 2 ď s ď n ´ 3,

resm,n
m,n´1 KpCa

a q “ KpBa`1
a`1 q ‘ Drpa ` 2, a ` 1q, p1a`2

qs ‘ Drpa, aq, p1a´1
qs,

2 ď a ď n ´ 3,

resm,n
m,n´1 KpCa

a`1q “ KpC
a`1
a`1 q ‘ Drpa ` 3, a ` 1q, p1a`3

qs

‘2Drpa ` 2, a ` 1q, p1a`2
qs, a ď n ´ 4,

resm,n
m,n´1 KpCa

n´2q “ DpC
a`1
n´3q ‘ 2Drpn ´ 1, a ` 1q, p1n´1

qs

‘Drpn ´ 2, a ` 1q, p1n´2
qs, a ď n ´ 4,

resm,n
m,n´1 KpCn´3

n´2 q “ DpBn´2
n´2 q ‘ 2Drpn ´ 1, n ´ 2q, p1n´1

qs, n ě 3,

resm,n
m,n´1 KpC

n´2
n´2 q “ KpB

n´1
n´1 q ‘ Drpn ´ 2, n ´ 2q, p1n´3

qs, n ě 3,

resm,n
m,n´1 KpC1

1 q “ KpB2
2 q ‘ Drp3,2q, p13

qs ‘ Drp12
q,Hs, n ě 4,

resm,n
m,n´1 KpC0

0 q “ KpA1
1q ‘ Drp2,1q, p12

qs ‘ Drp13
q, p12

qs, n ě 3,

resm,n
m,n´1 KpÂa

s q “ KpÂa´1
s q ‘ Drps ` 1q, pa,1s

qs ‘ 2Drpsq, pa,1s´1
qs

‘Drps ´ 1q, pa,1s´2
qs, 2 ď s ď m ´ 1, a ě 2,

resm,n
m,n´1 KpÂa

1q “ KpÂ
a´1
1 q ‘ Drp2q, pa,1qs ‘ 2Drp1q, paqs ‘ Drp12

q, pa,1qs,

a ě 2, m ě 2,

resm,n
m,n´1 KpÂa

mq “ KpÂa´1
m q ‘ 2Drpmq, pa,1m´1

qs ‘ Drpm ´ 1q, pa,1m´2
qs,

m ě 2, a ě 2,

resm,n
m,n´1 KpÂ1

s q “ KpC0
s´1q ‘ Drps ` 1q, p1s`1

qs

‘2Drpsq, p1s
qs ‘ Drps ´ 1q, p1s´1

qs, 2 ď s ă m,

resm,n
m,n´1 KpÂ1

mq “ DpC0
m´2q ‘ 2Drpmq, p1m

qs ‘ Drpm ´ 1q, p1m´1
qs, m ě 2,

resm,n
m,n´1 KpÂ1

1q “ KpC0
0 q ‘ Drp2q, p12

qs ‘ 2Drp1q, p1qs, m ě 2,

resm,n
KpÂa

q “ KpÂ
a´1

q ‘ Drp1q, paqs, a ě 1, m ě 1,
m,n´1 0 0
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resm,n
m,n´1 KpB̂a

s q “ KpB̂a´1
s q ‘ Drp1s`1

q, pa, sqs ‘ 2Drp1s
q, pa, s ´ 1qs ‘ Drp1s´1

q,

pa, s ´ 2qs, 2 ď s ď minpa,mq ´ 1,

resm,n
m,n´1 KpB̂a

a q “ KpĈ
a´1
a´1 q ‘ 2Drp1a

q, pa, a ´ 1qs ‘ Drp1a´1
q,

pa, a ´ 2qs, 2 ď a ď m ´ 1,

resm,n
m,n´1 KpB̂a

mq “ KpB̂a´1
m q ‘ 2Drp1m

q, pa,m ´ 1qs ‘ Drp1m´1
q, pa,m ´ 2qs,

2 ď m ă a,

resm,n
m,n´1 KpB̂m

m q “ DpB̂
m´1
m´1 q ‘ 2Drp1m

q, pm,m ´ 1qs ‘ Drp1m´1
q, pm,m ´ 2qs,

m ě 2,

resm,n
m,n´1 KpĈa

s q “ KpĈa´1
s q ‘ Drp1s`3

q, ps ` 1, a ` 1qs ‘ 2Drp1s`2
q, ps, a ` 1qs

‘Drp1s`1
q, ps ´ 1, a ` 1qs, a ` 2 ď s ď m ´ 3, a ě 1,

resm,n
m,n´1 KpĈ0

s q “ KpA1
s`1q ‘ Drp1s`3

q, ps ` 1,1qs ‘ 2Drp1s`2
q, ps,1qs

‘Drp1s`1
q, ps ´ 1,1qs, 2 ď s ď m ´ 3,

resm,n
m,n´1 KpĈa

a q “ KpĈa´1
a q ‘ Drp1a`3

q, pa ` 1, a ` 1qs ‘ Drp1a
q, pa, a ´ 1qs,

1 ď a ď m ´ 3,

resm,n
m,n´1 KpĈa

a`1q “ KpĈ
a´1
a`1 q ‘ Drp1a`4

q, pa ` 2, a ` 1qs ‘ 2Drp1a`3
q,

pa ` 1, a ` 1qs, 1 ď a ď m ´ 4,

resm,n
m,n´1 KpĈa

m´2q “ KpĈa´1
m´2q ‘ 2Drp1m

q, pm ´ 2, a ` 1qs ‘ Drp1m´1
q,

pm ´ 3, a ` 1qs, 1 ď a ď m ´ 4,

resm,n
m,n´1 KpĈ0

1 q “ KpA1
2q ‘ Drp14

q, p2,1qs ‘ 2Drp13
q, p1,1qs, m ě 4,

resm,n
m,n´1 KpĈ0

m´2q “ KpA1
m´1q ‘ 2Drp1m

q, pm ´ 2,1qs ‘ Drp1m´1
q, pm ´ 3,1qs,

m ě 4,

resm,n
m,n´1 KpĈm´3

m´2 q “ KpĈm´4
m´2q ‘ 2Drp1m

q, pm ´ 2,m ´ 2qs, m ě 4,

resm,n
m,n´1 KpĈm´2

m´2 q “ KpĈm´3
m´2q ‘ Drp1m´2

q, pm ´ 2,m ´ 3qs, m ě 3.

where we imply p0q “ p10q “ H and ps, 0q “ psq,

Proof. We discuss the case KpAa
s q for 2 ď s ď n ́ 1, a ě 1. Other cases are similar. The pro-

jective module KpAa
s q has a filtration by two atypical Specht modules, so one can write it as a 

non-direct sum

KpAa
s q “ SpAa

s q
ě

SpAa
s´1q.

Applying Proposition 4.4.3 one obtains the sum of simple and atypical Specht modules:

resm,n
m,n´1 KpAa

s q “ resm,n
m,n´1

`

SpAa
s q

ě

SpAa
s´1q

˘

“ SpAa`1
s q

ě

Srpa,1s`1
q, psqs

ě

Srpa,1s
q, ps ´ 1qs

ě

SpA
a`1
s´1 q

ě

Srpa,1s
q, ps ´ 1qs

ě

Srpa,1s´1
q, ps ´ 2qs.

In this sum only two modules are atypical, other modules are simple
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resm,n
m,n´1 KpAa

s q “ SpAa`1
s q

ě

SpA
a`1
s´1 q

ě

Drpa,1s`1
q, psqs

ě

2Drpa,1s
q, ps ´ 1qs

ě

Drpa,1s´1
q, ps ´ 2qs.

These two atypical Specht modules are glued uniquely into a projective module, thus

resm,n
m,n´1 KpAa

s q “ KpAa`1
s q ‘ Drpa,1s`1

q, psqs ‘ 2Drpa,1s
q, ps ´ 1qs

‘ Drpa,1s´1
q, ps ´ 2qs. l

To formulate the next theorem we introduce notation a1 “ |m ́ n ̀ 1|.

Theorem 4.4.6. Consider λ P �m,npf q 
Ş

Crm,n for n ě 1. The restrictions for simple modules 
Dpλq over the algebra Xm,n are

For λ P Atm,n:

resm,n
m,n´1DpAa

s q “ DpAa`1
s q ‘ Drpa,1s

q, ps ´ 1qs, a ě 1, 1 ď s ď n ´ 1,

resm,n
m,n´1DpAa

nq “ Drpa,1n
q, pn ´ 1qs, a ě 1, n ě 1,

resm,n
m,n´1DpAa

0q “ DpA
a`1
0 q, a ě 0, n ě 0,

resm,n
m,n´1DpBa

s q “ DpBa`1
s q ‘ Drpa, sq, p1s´1

qs, 1 ď s ď n ´ 1, s ď a,

resm,n
m,n´1DpBa

n q “ Drpa,nq, p1n´1
qs, 1 ď n ď a,

resm,n
m,n´1DpCa

s q “ DpCa`1
s q ‘ Drps ` 1, a ` 1q, p1s`1

qs, a ` 1 ď s ď n ´ 3, a ě 0,

resm,n
m,n´1DpCa

n´2q “ Drpn ´ 1, a ` 1q, p1n´1
qs, 0 ď a ď n ´ 3,

resm,n
m,n´1DpCa

a q “ DpB
a`1
a`1 q, 0 ď a ď n ´ 2,

resm,n
m,n´1DpÂa

s q “ DpÂa´1
s q ‘ Drpsq, pa,1s´1

qs, 1 ď s ď m, a ě 2,

resm,n
m,n´1DpÂa

0q “ DpÂa´1
0 q, a ě 1, m ě 0,

resm,n
m,n´1DpÂ1

s q “ DpC0
s´1q ‘ Drpsq, p1s

qs, 1 ď s ď m ´ 1,

resm,n
m,n´1DpÂ1

mq “ Drpmq, p1m
qs, m ě 1,

resm,n
m,n´1DpB̂a

s q “ DpB̂a´1
s q ‘ Drp1s

q, pa, s ´ 1qs, 2 ď s ď m, s ă a,

resm,n
m,n´1DpB̂a

a q “ DpĈ
a´1
a´1q ‘ Drp1a

q, pa, a ´ 1qs, 2 ď a ď m ´ 1,

resm,n
m,n´1DpB̂m

m q “ Drp1m
q, pm,m ´ 1qs, 1 ď m,

resm,n
m,n´1DpĈa

s q “ DpĈa´1
s q ‘ Drp1s`2

q, ps, a ` 1qs, a ` 1 ď s ď m ´ 2, a ě 1,

resm,n
m,n´1DpĈa

a q “ DpĈa´1
a q, 1 ď a ď m ´ 2,

resm,n
m,n´1DpĈ0

s q “ DpA1
s`1q ‘ Drp1s`2

q, ps,1qs, 1 ď s ď m ´ 2.

For λ R Atm,n first we list all exceptional cases (the generic rule will be given below):

resm,n
m,n´1Drpa1,1s´1

q, psqs “ KpAa1

s q ‘ Drpa1
` 1,1s´1

q, psqs, 1 ď s ď n ´ 1,

a1
ě 1,

resm,n
m,n´1Drpa1, sq, p1s`1

qs “ KpBa1

s`1q ‘ Drpa1
` 1, sq, p1s`1

qs, 1 ď s ď a1
´ 1,

s ď n ´ 2,
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resm,n
m,n´1Drps, a1

` 1q, p1s`2
qs “ KpCa1

s q ‘ Drps, a1
` 2q, p1s`2

qs,

a1
` 2 ď s ď n ´ 3,

resm,n
m,n´1Drpa1

` 1, a1
` 1q, p1a1`3

qs “ KpCa1

a1`1q, a1
ď n ´ 4,

resm,n
m,n´1Drpsq, pa1,1s`1

qs “ KpÂa1

s`1q ‘ Drpsq, pa1
´ 1,1s`1

qs, 0 ď s ď m ´ 1,

a1
ě 2,

resm,n
m,n´1Drpsq, p1s`2

qs “ KpÂ1
s`1q ‘ Drps,1q, p1s`2

qs, 1 ď s ď m ´ 1,

resm,n
m,n´1Drp1s´1

q, pa1, sqs “ KpB̂a1

s q ‘ Drp1s´1
q, pa1

´ 1, sqs, 2 ď s ď a1
´ 1,

s ď m,

resm,n
m,n´1Drp1a1´1

q, pa1, a1
qs “ KpB̂a1

a1 q, 1 ď a1
ď m,

resm,n
m,n´1Drp1s

q, ps, a1
` 1qs “ KpĈa1

s´1q ‘ Drp1s
q, ps, a1

qs, a1
` 1 ď s ď m ´ 1,

where we imply p0q “ p10q “ H and ps, 0q “ psq.
For λ R Atm,n the generic rule is:

for f “ 0

resm,n
m,n´1 Dpλq “

ÿ

lPrempλRq

DpλL,λR
´ lq,

for f ą 0

resm,n
m,n´1 Dpλq “

à

l PaddpλLq,pλL`l,λRqPCrm,n´1

DpλL
` l, λR

q ‘
à

l PrempλRq

DpλL,λR
´ lq.

Proof. If λ R Atm,n then Dpλq “ Spλq, and the proof follows from 4.4.3 similarly to the proof 
of Theorem 4.4.5.

Now we consider λ P Atm,n. We discuss only DpAa
s q for a ě 1, 1 ď s ď n ́ 1, other cases are 

similar. We prove that

resm,n
m,n´1DpAa

s q “ DpAa`1
s q ‘ D

“

pa,1s
q, ps ´ 1q

‰

, a ě 1, s ď n ´ 1,

by induction on s. First, we prove the induction base for s “ n ́ 1, then we check the induction 
step from s to s ´ 1. The Xm,n-module SpAa

nq is simple: SpAa
nq “ DpAa

nq, so we have from 4.4.3

resm,n
m,n´1 DpAa

nq “ resm,n
m,n´1 SpAa

nq “ S
“

pa,1n
q, pn ´ 1q

‰

“ D
“

pa,1n
q, pn ´ 1q

‰

. (4.8)

According to 4.4.3 we have for s ă n

resm,n
m,n´1 SpAa

s q “ SpAa`1
s q ‘ D

“

pa,1s`1
q, psq

‰

‘ D
“

pa,1s
q, ps ´ 1q

‰

. (4.9)

We write Xm,n-Specht modules as a non-direct sum SpAa
s q “ DpAa

s q 
Ţ

DpAa
s`1q for s ă n. The 

Xm,n´1-module SpAa`1
n´1q “ DpAa`1

n´1q, so from (4.9) for s “ n ́ 1 we get

resm,n
m,n´1

´

DpAa
n´1q

ě

DpAa
nq

¯

“ DpA
a`1
n´1q

ě

D
“

pa,1n
q, pn ´ 1q

‰

ě

D
“

pa,1n´1
q, pn ´ 2q

‰

.

Now having in mind (4.8) we get the induction base
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resm,n
m,n´1 DpAa

n´1q “ DpA
a`1
n´1q

ě

D
“

pa,1n´1
q, pn ´ 2q

‰

.

We also note that Xm,n´1 module SpAa`1
s q “ DpAa`1

s q 
Ţ

DpA
a`1
s`1 q for s ă n ́ 1, so from (4.9)

we get

resm,n
m,n´1

´

DpAa
s q

ě

DpAa
s`1q

¯

“ DpAa`1
s q

ě

DpA
a`1
s`1 q

ě

D
“

pa,1s
q, ps ´ 1q

‰

ě

D
“

pa,1s`1
q, psq

‰

,

and now the induction step is straightforward. l

Remark 4.4.7. The second restriction functor resm,n
m´1,n can be calculated from the first one. 

Actually

resm,n
m´1,nKpλq “ Ĝ resn,m

n,m´1ĜKpλq, (4.10)

resm,n
m´1,nDpλq “ Ĝ resn,m

n,m´1ĜDpλq. (4.11)

We can also make generalization to the qwBm,n modules.

Conjecture 4.4.8. Consider the algebra qwBm,n with special parameter θ “ ´p´
δ
γ

qM´N for 
M ‰ N . Let λ P �m,n be an pM, Nq-cross bipartition, then resm,n

m,n´1 Dpλq contains only sub-
quotients Dpλ1q for which λ1 P �m,n´1 is an pM, Nq-cross bipartition.

In other words, the restriction functor for qwBm,n with special parameters preserves the class 
of all pM, Nq-cross bipartitions. We note that the case M “ N requires additional investigation.

In particular we have the next important consequence for M “ 2, N “ 1.

Conjecture 4.4.9. For λ P Crm,n the restrictions resm,n
m,n´1Dpλq for simple modules over qwBm,n

with θ “
δ
γ

are explicitly given by the formulas from Theorem 4.4.6 without any changes.

This conjecture was directly checked for all qwBm,n-modules whenever m ̀ n ď 8.

5. The mixed tensor product as a bimodule

We introduce new notation in order to simplify the formula for the bimodule decomposition.

5.1. Notation

We introduce the notation sZp
t,r for simple Uqs�p2|1q modules:

sZ
p
t,r “ Z

1,p´1qp

t`r,r , r ‰ 0,

sZ
p

t,0 “ Z
1,p´1qp`1

t`1,0 , t ě 0.

We also introduce the notation sRp
t,r for projective covers of atypical modules sZp

t,r . Namely,

sR
p
0,r “ R

1,p´1qp

r,r , r ě 1,

sR
p

“ R
1,p´1qp`1

, t ě 0.
t,0 t`1,0
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Typical modules sZ
p
t,r coincide with their projective covers, so we do not introduce any new 

notation for them. We rewrite the formulas (2.15)–(2.17) in the new notation:

sZ
p

t,0

sR
p

t,0 “sZ
p`1
t`1,0

sZ
p´1
t´1,0,

sZ
p
t,0

sZ
p

0,t

sR
p

0,t “sZ
p`1
0,t`1

sZ
p´1
0,t´1, t ě 1,

sZ
p
0,t

(5.1)

and the exceptional case is

sZ
p

0,0

sR
p
0,0 “ sZ

p`1
1,0

sZ
p´1
0,1 .

sZ
p
0,0

(5.2)

Then the dimensions are:

dim sR
p
r,0 “ dim sR

p
0,r “ 8r ` 4, r ą 0,

dim sR
p
0,0 “ 8.

5.2. The bimodule is a direct sum of subbimodules

Tm,n “ T s
m,n ‘ T at

m,n, (5.3)

where the T s
m,n part is the direct sum of simple Xm,n b Uqs�p2|1q-bimodules, and T at

m,n is 
an indecomposable Xm,n b Uqs�p2|1q-bimodule. Each subquotient in T s

m,n contains a typical 
Uqs�p2|1q-module and a typical Xm,n-module, and each subquotient in T at

m,n contains an atypical 
Uqs�p2|1q-module and an atypical Xm,n-module. We call T s

m,n the semisimple part and T at
m,n the 

atypical part.

5.2.1. Examples
Before giving a general formula for the decomposition of Tm,n in 5.3, we illustrate the struc-

ture of the semisimple part T s
m,n with two examples. T s

m,n has the structure

T s
m,n “

à

t,r

Dpλm,npt, rqq b sZ
ppt,rq
t,r (5.4)

For given m, n, we represent the sum in (5.4) as a table of bipartitions λm,npt, rq in coordinates 
pt, rq. All parts of the sum outside the table vanish, and 0 in the table means that the correspond-
ing submodule in (5.4) vanishes.
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For m “ 5 and n “ 3, the table of bipartitions λ5,3pt, rq reads

r “ 5 0 p , q 0 p , q p , q p , q

r “ 4 p , q p , q 0 p , q p , q p , q

r “ 3 p , q p , q 0 p , q p , q p , q

r “ 2 0 p ,Hq 0 p , q p , q 0

r “ 1 0 0 0 p , q 0 0

t “ ´2 t “ ´1 t “ 0 t “ 1 t “ 2 t “ 3

For m “ 4 and n “ 4, the table of bipartitions λ4,4pt, rq reads

r “ 4 0 0 p , q p , q p , q p , q

r “ 3 0 0 p , q p , q p , q p , q

r “ 2 p , q 0 p , q p , q p , q p , q

r “ 1 0 0 p , q p , q p , q p , q

r “ 0 0 0 0 0 0 0

r “ ´1 0 0 0 p , q 0 0

t “ ´1 t “ 0 t “ 1 t “ 2 t “ 3 t “ 4

5.2.2. In the next Theorem, we give explicit formulas for the decomposition of Tm,n for 
m ě n; the case m ă n can be easily recovered from m ą n using operation Ĝ interchanging m
with n

Tn,m “ ĜTm,n.

The operation is involutive, Ĝ2 “ 1, and additive, ĜpX ‘ Y q “ ĜpXq ‘ ĜpY q. It acts on the 
indecomposable summands in the semisimple part T s

m,n by the formula

Ĝ

´

D
“

λL,λR
‰

b sZ
p
t,r

¯

“ Ĝ

´

D
“

λL,λR
‰

¯

b Ĝ

´

sZ
p
t,r

¯

, (5.5)

where the action Ĝ
´

D
“

λL, λR
‰

¯

is defined in (4.5) and

ĜsZ
p
t,r “ sZ

p
r,t . (5.6)
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When applied to the atypical part T at
m,n, the operation Ĝ acts on each simple subquotient by the 

formula (5.5) and does not change the structure of the Loewy graph.

Theorem 5.3. The Xm,n b Uqs�p2|1q-bimodule decomposition of Tm,n, m ě n, has the form 
Tm,n “ T s

m,n ‘ T at
m,n with the semisimple part

m ą nm ą nm ą n:

T s
m,n “

n
à

s“1

a`s
à

k“1,
k‰a

Drpk,1s´k`a
q, psqs b sZs`k`a`1

k´a,s`a ‘

m
à

s“a`2

s´a´1
à

k“1

Drpsq, pk,1s´k´a
qs b sZs`k`a`1

s´a,k`a ‘

n´1
à

s“1

minps, n´sq
à

k“1

Drp1s`k`a
q, ps, kqs b sZs`k`a

1´k´a,s`a ‘

m´1
à

s“a`1

minps, m´sq
à

k“1,
k‰a`1

Drps, kq, p1s`k´a
qs b sZs`k`a

s´a,1´k`a ‘

t a
2 u

à

k“1

a´k
à

s“k

Drps, k,1a´s´k
q, Hs b sZs`k`a

s´a,1´k`a ‘

a´1
à

s“t a
2 u`1

minps, m´sq
à

k“1´s`a

Drps, kq, p1s`k´a
qs b sZs`k`a

s´a,1´k`a,

m “ nm “ nm “ n:

T s
m,m “

m
à

s“1

s
à

k“1

Drpk,1s´k
q, psqs b sZs`k`1

k,s ‘

m
à

s“2

s´1
à

k“1

Drpsq, pk,1s´k
qs b sZs`k`1

s,k ‘

m´1
à

s“2

minps, m´sq
à

k“2

Drp1s`k
q, ps, kqs b sZs`k

1´k,s ‘

m´1
à

s“1

minps, m´sq
à

k“2

Drps, kq, p1s`k
qs b sZs`k

s,1´k,

and the atypical part T at
m,n is given by Figs. 2–6 in Appendix A.

5.4. Verification

To check the decomposition formula for the bimodule we make two powerful verifications 
using formulas for tensor product decompositions for Uqs�p2|1q modules and restrictions for 
Xm,n modules. We check that Tm,n b 3 coincides with resm,n`1

m,n Tm,n`1 as Uqs�p2|1q-module in 
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the first verification and as Xm,n-module in the second one. In order to do this we introduce two 
Grothendieck (forgetful) functors P and Q.

We define the Grothendieck functor P on the category of Uqs�p2|1q-modules which maps 
an indecomposable module into a direct sum of its simple subquotients. The functor P on any 
Uqs�p2|1q-module is known from 2.4. For example

PsR
p

t,0 “ 2sZ
p

t,0 ‘ sZ
p`1
t`1,0 ‘ sZ

p´1
t´1,0, t ě 1,

PsZ
p
t,r “ sZ

p
t,r , @p, t, r.

We define the other Grothendieck functor Q on the category of Xm,n modules which maps an 
indecomposable module into a direct sum of its simple subquotients. The functor Q on any 
Xm,n-module is known from 4.3.5. For example

QKpA1
1q “ 2DpA1

1q ‘ DpA1
2q ‘ DpA1

0q ‘ DpC1
1q, n ě 3,

QDpλq “ Dpλq, @m,n,λ.

The functors P and Q do not change semisimple part of the bimodule:

PT s
m,n “ QT s

m,n “ T s
m,n,

because semisimple part is a direct sum of simple bimodules.

5.4.1. As Uqs�p2|1q module
The action of Q on the atypical part T at

m,n has the form

m ą nm ą nm ą n:

QT at
m,n “

n
à

s“1

DpAa
s q b sRs

0,a`s´1 ‘

minpa, nq
à

s“2

DpBa
s q b sRs

0,a´s`1 ‘

n´2
à

s“a

DpCa
s q b sRs`1

s´a,0 ‘

DpAa
0q b sZ1

0,a,

m “ nm “ nm “ n:

QT at
m,m “

m´2
à

s“1

DpĈ0
s q b sRs´1

0,s ‘

m´2
à

s“0

DpC0
s q b sRs´1

s,0 ‘

DpA0
0q b sZ1

0,0.

We introduce the notation Tm,n “ QTm,n. The following relation must hold:

Tm,n b 3 “ Q resm,n`1
m,n Tm,n`1. (5.7)

Because Tm,n has the form Tm,n “
À

D b R 
À

D b Z, we can calculate Tm,n b 3 us-
ing formulas from 3.1. Because Tm,n`1 contains as subquotients only modules Dpλq for 
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λ P Crm,n`1, we can calculate resm,n`1
m,n Tm,n`1 using formulas from 4.4.6, and then ap-

ply the functor Q. We have checked the validity of relation 5.7 for all m, n whenever 
m ` n ď 25.

5.4.2. As Xm,n module
The action of P on the atypical part T at

m,n has the form

m ą nm ą nm ą n:

PT at
m,n “

n
à

s“1

KpAa
s q b sZs

0,a`s´1 ‘

minpa, nq
à

s“2

KpBa
s q b sZs

0,a´s`1 ‘

n´2
à

s“a

KpCa
s q b sZs`1

s´a,0

‘ DpAa
nq b sZn`1

0,m

‘ PT
right
m,n ,

where

PT
right
m,n “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, n “ 0,

DpBa
n q b sZn`1

0,m´2n, 1 ď n ď
m
2 ,

DpBa
a q b sZa`1

0,0 , n “
m`1

2 , n ě 2,

DpCa
n´2q b sZn

2n´m´1,0,
m
2 ` 1 ď n ď m ´ 1,

m “ n ě 2m “ n ě 2m “ n ě 2:

PT at
m,m “

m´2
à

s“1

KpĈ0
s q b sZs´1

0,s ‘

m´2
à

s“0

KpC0
s q b sZs´1

s,0

‘DpĈ0
m´2q b sZm´2

0,m´1

‘DpC0
m´2q b sZm´2

m´1,0,

m “ n “ 1m “ n “ 1m “ n “ 1:

PT at
1,1 “ DpA0

0q b sZ1
0,0.

We introduce the notation Tm,n “ PTm,n. The following relation must hold:

P pTm,n b 3q “ resm,n`1
m,n Tm,n`1. (5.8)

Because Tm,n has the form Tm,n “
À

K b Z 
À

D b Z, we can calculate Tm,n b 3 using 
formulas from 3.1. Because Tm,n`1 contains as subquotients only modules Kpλq and Dpλq

for λ P Crm,n`1, we can calculate resm,n`1
m,n Tm,n`1 using formulas from 4.4.6 and 4.4.5 and 
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then apply the functor P. We have checked the validity of relation 5.8 for all m, n whenever 
m ̀ n ď 25.

6. Conclusion

In the present work we have studied the Uqs�p2|1q mixed tensor product and found its de-
composition as a bimodule over Xm,n bUqs�p2|1q. These results are the basis for a further study 
of the Uqs�p2|1q-spin-chain and appropriate LCFT.

The next step is studying the mixed tensor product with parameter q at the root of unity. We 
expect the appearance of the Lusztig limit of algebra Uqs�p2|1q in that case. We anticipate that 
Xm,n will remain the centralizer of LUqs�p2|1q on the mixed tensor product and some triplet 
extension of Xm,n will be the centralizer of Uqs�p2|1q.

Natural ways for further developments of the results presented in this paper:

(1) Describe explicitly the algebra Xm,n and identify it with some quotient of qwBm,n. Similar 
problem is posed the algebras XM,N

m,n of Uqs�pM|Nq-endomorphisms.
(2) Describe the structure of Specht and projective XM,N

m,n -modules and perhaps qwBm,n-modules. 
This problem becomes significantly more complicated when parameter q is a root of 
unity.

(3) Figure out the restriction functor on all simple and projective modules of the algebra 
qwBm,n.

(4) Classify Ext1 spaces for modules over the algebra Xm,n and describe explicitly the 
action of Xm,n-generators on the basis of projective modules Kpλq. The solution to 
this problem will allow one to describe explicitly the Xm,n-action in the bimodule 
Tm,n.
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Appendix A. Atypical part of the bimodule

In this section we represent the structure of Loewy graph for the indecomposable bimodule 
T at

m,n, see 5.3. Detailed investigation of Xm,n action on these bimodules are beyond the scope 
of this paper. See paper [12], where the spin chain over Uqs�p2q is investigated for compari-
son.

In each vertex of the graph there is some subquotient Dpλq b sZ
p
t,r . The meaning of the arrows 

is the same as in 4.3.5. On the figures the action of algebra Uqs�p2|1q is denoted by solid lines, 
and the action of Xm,n is denoted by dash lines.
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The subquotients connected by dash lines have the same Uqs�p2|1q module as a tensor 
multiplier. The subquotients connected by solid lines have the same Xm,n module as a tensor 
multiplier.To simplify the figures we omit Xm,n multiplier where it does not cause inconsistency. 
We also do not write symbol D each time, and write only λ for simple module Dpλq.

For example, the bimodule for T at
3,2 is

(A.1)

We use shorthand notation for T at
3,2:

(A.2)

We mark in red the subquotient where the figure has irregular form. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

The structure of T at
m,n for the case 1 ď n ď m

2 is shown in Fig. 2.
The case m2 ` 1 ď n ď m ́ 2 is shown in Fig. 3.
The case n “ m`1

2 , n ě 2 is shown in Fig. 4.
The case n “ m ́ 1, n ě 1 is shown in Fig. 5.
The case n “ m, n ě 2 is shown in Fig. 6.
Two exceptional cases are:

T at
m,0 “ DpAm

0 q b sZ1
0,m,

T at
1,1 “ DpA0

0q b sZ1
0,0.
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