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Abstract: An extremely high-intensity laser interaction
with a nucleus that is undergoing spontaneous α-decay is
investigated in the framework of the time-dependent one-
body Schrödinger equation solved by a Crank-Nicolson
scheme associated with transparent boundary conditions.
The wave-packet dynamics are determined for various
laser intensities and frequencies for continuouswaves and
for sequences of few-cycle pulses. We show that pulse se-
quences containing an odd number of half-cycles deter-
mine an enhancement of the tunneling probability and
therefore a drastic decrease of alpha half-lives compared
to the field-free case and the continuous wave case.
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1 Introduction
The advent of chirped pulse amplification techniques
opens up the possibility of producing electromagnetic
field intensities as high as 1026W/cm2 [1]. Under such con-
ditions, a new era is beginning, where the laser control of
variousnuclear processes couldbecomean invaluable tool
for fundamental and applied research at the sub-atomic
level [2, 3].

The influence of laser radiation on nuclei is, however,
confronted by the problem that on, one hand many low-
energy nuclear excitations involve energies in the range
10−3-10 MeV, whereas laser photon energies, such as those
produced with the Ti:sapphire laser (λ=800 nm), do not
currently exceed 1 eV. On the other hand state-of-the-art
facilities that employ X-ray free-electron lasers (XFEL) are
already able to produce pulses with wavelengths as low as
0.634 Å and durations of 10−14 s [4].
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Due to the steady progress towards laser sources with
higher intensities and frequencies, in recent years, there
has been an increasing focus on direct laser-nucleus reac-
tions (see [5] and references therein). These reactions can
be resonant or non-resonant. The latter can occur in parti-
cle (β, proton) or heavy-ion (α, cluster) radioactivity. Very
recently, we discussed how the dynamics of α-decay in a
spherical nucleus is modified by a linearly polarized ultra-
intense laser field, using a quantum time-dependent for-
malism [6]. In the present paper we summarize the main
results reported earlier, and discuss new, related aspects
such as the electron-positron pair production that may ac-
company the decay process.

2 α-decay in a periodic field
Our approach to α-decay of a nucleus subjected to a short
pulse of a linearly polarized, ultra-intense laser consists
of a non-perturbative formalism. In this we solve the time-
dependent Schrödinger equation describing the relative
alpha cluster-daughter nucleus motion under the effect of
a continuous wave (cw) or a sequence of very short pulses
of duration no longer than 1 attosecond (as). Our primary
goal is to determine how the interaction of radiation with
a decaying nucleus could accelerate the tunneling dynam-
ics.

A well-known phenomenon at the atomic level, anal-
ogous to the one studied in this article, is the ionization of
an electron moving in a static Coulomb potential and in-
teracting with an intense laser field [7, 8].

We commence our considerations by stating the
Schrödinger equation for two charged nuclei, located in
the laboratory frame at positions r1 and r2, and subject
to a time-dependent external field:

i~∂ψ(r1, r2, t)∂t = H(t)ψ(r1, r2, t) (1)

For an α cluster ofmassm1 and charge Z1 = 2andadaugh-
ter nucleus of mass m2 and charge Z2 = Z − 2 coupled to
an external electromagnetic field, described by the trans-
verse vector potential A, the Hamiltonian in the Coulomb
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gauge reads as [9] :

H(t) =
2∑︁
i=1

1
2mi

[︀
pi − eZiA(r1,2, t)

]︀2 + V(|r1 − r2|) (2)

where p1 and p2 are the momenta of the two nuclei. In
order to separate the center-of-mass motion (C.M.), the
center-of-mass variables (R, P) and the relative variables
(r, p) are introduced :

R = m1r1 + m2r2
m1 + m2

, P = p1 + p2 (3)

r = r1 − r2, p = m2p1 + m1p2
m1 + m2

(4)

The two charges are assumed to form a quasi-bound state
whose dimensions, RN ∼ r0(A1/31 + A1/32 ), are small
compared to the radiation wavelength λ = 2πc/ω. Pro-
ceeding in full analogy to the atomic case, we adopt the
long-wavelength approximation [10], i.e. we assume that
2πRN ≪ λ. Then to order 0 in RN /λ, A(r1) and A(r2) are
replaced by A(0) since the vector potential varies over dis-
tances of the order of λ [9]. Consequently the center-of-
mass part of the Hamiltonian decouples from the relative
component, the latter taking the form

Hrel =
1
2µ

[︀
p − eZe�A(t)

]︀2 + V(r) (5)

where
Ze� =

Z1A2 − Z2A1
A1 + A2

, µ = m1m2
m1 + m2

.
The dynamics of the C.M. are described by Volkov

states [11]; in what follows we neglect this effect on the α-
daughter relative quantummotion.

When the wave-function of the relative motion
is denoted by ϕ, the corresponding time-dependent
Schrödinger equation (TDSE) reads

i~∂ϕ(r, t)∂t = Hrelϕ(r, t) (6)

Since our intent is to grasp the salient features of the
α-decay process in a ultra-high intense laser fieldwe intro-
duce a transverse electric field

E(t) = −∂A∂t (7)

that we assume to be represented by a modulated
linearly-polarized and monochromatic plane wavefunc-
tion (single-mode field) of frequency ω

E(t) = E0F(t) sinωt (8)

where E0 is the electric field strength, F(t) is the pulse
shape function (envelope) and ω = 2π/T is the frequency

of the radiation pulse. In this study we use an envelope
function of the type

F(t) =
N∑︁
p=0

(−)pθ(t − τp) (9)

such that the laser pulses act in the time intervals [τ0 =
0, τ1], [τ2, τ3], etc. We recover the cw case, when τ1 −→
tpulse, where tpulse is the total laser pulse duration. In the
general casewe consider short pulseswith constant ampli-
tude, of length equal to an integer number of half-cycles,
and separated by intervals of similar length; i.e. if at the
time τ2i the field is again turned on and then at τ2i+1 is
again turned off, then the duration of the (i + 1)th short
pulse is

τ2i+1 − τ2i = ni+1
T
2 (10)

where ni+1 is the number of half-cycles. Along with the as-
sumption made above that the electric field is linearly po-
larized we assume also that the direction E(t) is parallel to
the relative-coordinate vector r, i.e. we select a fixed orien-
tation (x-axis) of the decaying systemanddiscard from fur-
ther consideration all possible non-axial configurations
with respect to the field. We postpone for future study the
two-dimensional approach to this problem. In the present
paper, we adopt a one-dimensional geometry. In this ap-
proximation the TDSE (6) describing the tunneling process
is recast as follows:

i~∂ϕ∂t = 1
2µ

(︂
~
i
∂
∂x − eZe�A(t)

)︂2
ϕ + V(x)ϕ (11)

The above equation describes the α-particle one-
dimensional quantum motion, initially found in a
metastable state, inside a static potential V(x). During
the tunnelling process, this motion is perturbed by a pe-
riodic time-dependent interaction with an external field.
The static α-daughter V(x) potential comprises a long-
range Coulomb potential, and the nuclear potential in the
Woods-Saxon (WS) form

Vnucl = −V0
[︂
1 + exp

(︂
|x| − Rn
a

)︂]︂−1
(12)

where V0 is the depth, Rn = r0 × A1/32 and a the potential
diffuseness.

Note that instead of equation (11) we could have used
the length-gauge [9], where coupling of the nuclear system
to the laser would be transferred from the kinetic part to a
time-dependent potential that would be linear in the coor-
dinate x. It was shown in [12] that such a dipole interaction
may lead to numerical instabilities at the computational
boundaries. This is the price paid for it being a numerical
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scheme containing a first-order derivative with respect to
x, in addition to the second-order derivative used in the
field-free case. Despite this disadvantageous feature, Eq.
(11) is preferable for practical calculations.

From the various schemes to integrate TDSE proposed
in the literature, we chose a method of the Crank-Nicolson
(CN) type, which includes the first derivative with respect
to t of H(x, t), the one-dimensional variant of the relative-
motion Hamiltonian (5). Accordingly we consider the for-
mal solution of the above equation:

ϕ(x, t + ∆t) = e−
i∆t
~ H(x,t)ϕ(x, t) (13)

where ∆t is the time step. Performing a Taylor series ex-
pansion of H up to the second-order in t and using the ap-
proximation ez ≈ 1+z/2

1−z/2 (Padé approximant of order [1, 1])
we arrive at the following propagation scheme:(︂

1 + i∆t2~ H + i∆t
2

4~ Ḣ
)︂
ϕn+1

=
(︂
1 − i∆t2~ H −

i∆t2
4~ Ḣ

)︂
ϕn (14)

Here ϕn is the solution at the moment t, ϕn+1 is the solu-
tion at thenextmoment t+∆t and Ḣ = ∂H

∂t . The error in time
is proportional to ∆t3. In practice, the derivatives with re-
spect to x appearing inH and Ḣ are approximated by finite
differences on spatialmesh points and the solution at each
time step is obtained by solving a linear system.

Among the advantages of the CN method are the ne-
cessity of defining the initial wave function only at the
starting value of time, and that it must be uncondition-
ally stable, unitary, and conserve the norm [13]. Also, if the
derivativeswith respect to x are approximated by the usual
3-point formulas, at each time step a tridiagonal linear sys-
tem should be solved, which can be done quickly and ac-
curately up to the machine’s precision.

In the numerical calculations we use a spatial mesh
size ∆x of 1/8 fm and time step ∆t, depending on the prac-
tical conditions imposed by the initial wave function or
the laser field parameters. The value ∆t = 1/8 in units
of 10−22s was satisfactory for most calculations. For test-
ing purposes we used smaller spatial and temporal steps,
obtaining the same behavior and very close results. The
maximum time limit we achieved was ∼ 10−15s which is
roughly 4 orders of magnitude higher than the limit at-
tained previously by us [14].

Reflections of the propagated wave-function at the
grid frontiers can cause errors in the calculation of phys-
ical quantites. To avoid these errors, we use a special
boundary condition algorithm, namely the Transparent
Boundary Conditions (TBC) as suggested in [15]. Since the

treatment of the two boundaries is identical we are focus-
ing only on the right boundary (corresponding to the grid
point xM). The idea is to assume near the boundary the fol-
lowing form of the solution: ϕ = A exp(ikx · x), where A
and kx are complex constants. When the Crank-Nicolson
scheme is applied, linear relations between ϕn+1M+1, ϕnM+1,
the values beyond the numerical boundary, and respec-
tively ϕn+1M , ϕnM result. They are subsequently used in the
finite difference formulas for the derivatives at xM.

To solve the TDSE an initial wavefunction has to be
selected at t = 0. Like in our previous paper on bremm-
strahlung in α-decay [14] we use a recipe [16] that provides
this initial wavefunction, ϕ(x, 0), as a bound state with
energy Eα - the eigenvalue of the stationary Schrödinger
equation in themodified static potential. Note that the po-
tential V(x) has a constant value V(±xmod) > Eα for a dis-
tance |x| > |xmod| beyond the top of the barrier.

Any solution of the TDSE (11) satisfies the continuity
equation for the probability density

∂ρ
∂t +

∂
∂x J = 0 (15)

where ρ is the probability density

ρ(x, t) = |ϕ(x, t)|2 (16)

and J is the one-dimensional probability current density
or flux

J(x, t) = − i~2µ

[︂
ϕ*(x, t) ∂∂x ϕ(x, t) − ϕ(x, t)

∂
∂x ϕ

*(x, t)
]︂

− eZe�µ A(t)ρ(x, t) (17)

as can be checked by direct calculation.
The time-dependent tunneling probability measur-

ing the escape likelihood of the α-particle from the nu-
clear+Coulomb potential well is defined by

Ptun(t) =

⎛⎝ ∞∫︁
xb

+
−xb∫︁
−∞

⎞⎠ ρ(x, t)dx = 1 −
xb∫︁

−xb

ρ(x, t)dx (18)

where ±xb are the static barrier positions. If we take the
derivative with respect to t of the above equation, and use
the continuity equation, we obtain a relation between the
tunneling rate and the flux across the nuclear surface.

Ṗtun(t) = J(xb , t) − J(−xb , t) (19)

On the other hand we introduce the total norm inside the
numerical grid, i.e. we integrate the probability density be-
tween the left, xle�, and right, xright, boundaries:

Pint(t) =
xright∫︁
xle�

ρ(x, t)dx (20)
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we obtain the flux across the numerical grid

Ṗint(t) = J(xle�, t) − J(xright, t) (21)

With the TBCassumption, the flux leaving the right bound-
ary xright is given by :

J(xright, t) =
1
µ
[︀
Real (~kx) − eZe�A(t)

]︀
|ϕ(xright, t)|2 (22)

Formula (22) shows that an outgoing or ingoing flux
develops across the boundary depending on the sign
of Real (~kx) − eZe�A(t). Due to the action of the time-
dependent field, the real part of kx is no longer constrained
to be always positive, as happens for α-decay in the ab-
sence of an external perturbation [14]. Note that in this
latter process the overall change in energy from the right
boundary is always negative, and thus the wave function
flows out of the grid region. In the present case, back-flow
of the wave-function inside the numerical domain is ex-
pected to occur due to the reversal of the electric field po-
larity. In practice we can compute the outgoing flux and
add it to the norm if a part of the wave function goes out
of the domain. We therefore have full control on the norm
used in the calculation of tunneling probability and decay
rate. Employing the TBC procedure, one can obtain values
for the physical quantities with a much smaller extension
of the spatial grid than is necessary without the TBC pro-
cedure.

Wedefined inEq.(18) theprobability that the α particle
is found beyond the Coulomb barrier |xb| which by refer-
ence separates the zone inside the barrier from the exter-
nal one. Then the α-decay rate for large times (remember
that for early times the decay is not exponential !) is pro-
vided by the formula

λ(t) = − Ṗint(t)Pint(t)
(23)

The relation between the electric field strength E0 and
the laser intensity I = 1

2 cϵ0E
2
0 [3] can be recast for prac-

tical purposes as E0[V/cm]= 27.44
{︀
I[W/cm2]

}︀1/2. This
shows that at the maximum intensity foreseen at ELI [2],
i.e. I0 ≈ 1025W/cm2 , the electric field is E0 ≈ 8.64 ×
1013V/cmor, innuclear units, eE0=8.64×10−6MeV/fm. For
such a value the time-dependent part of the potential af-
fects the barrier only negligibly. For this reason, in this pa-
per, we explore laser intensities up to I0 ≈ 1033W/cm2,
thus E0 ≈ 1018V/cm or eE0 ≈ 10−2MeV/fm. We find con-
venient to express the frequency in nuclear units as ~ω =
1240[MeV · fm]/λ[fm]. Thus for a wavelength of λ = 1 Å,
~ω=12.4 keV and T = 2π/ω = 3.33 · 10−20 = 0.0333 as.

We should also mention that the laser intensities and
frequencies used in this paper are far to meet the relativis-
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Figure 1: Tunneling probabilities in the logarithmic scale for three
different field E0 amplitudes and the same frequency ω of the cw
are compared to the tunneling probability without laser field.

tic onset conditions. The square of the dimensionless pa-
rameter η = v/c = Ze�eE0/(µωc), represents the ratio of
the maximum quiver velocity v of the decaying system in
the laser field to the velocity of light. This parameter in-
dicates the role of relativistic effects, provided η2 ≥1; for
the above choice of electric strength, this condition is not
fulfilled since η ≈ 1.7 · 10−3.

3 Numerical results
We specify the parameters of the nuclear potential accord-
ing to the α-nucleus optical potential compilation from
[17]. For 106Te, the parameters of the WS potential are :
V0=-137.7 MeV, a=0.76 fm and r0=1.235 fm, and are consis-
tent with the energy Eα=4.15 MeV if one solves the station-
ary Schrödinger equation with the potential modified at
|xmod|=25 fm. The spatial border is specified by xright,le� =
±192 fm.

We first consider the interaction of a continuous sinu-
soidal laser wave with a dinuclear system. The compar-
ison of the tunneling probabilities for the field-free case
and for the case when a continuous wave laser of fixed fre-
quency,ω=0.46 as (~ω ≈0.3 KeV, or λ ≈4.13 nm), is imping-
ing on the decaying system at various intensities is pro-
vided in Figure 1. As expected, the oscillation amplitude
of Ptun(t) increases with the laser intensity, a feature that
from a classical electromagnetism standpoint is related to
the oscillation of the α nucleus in the periodically fluctu-
ating electric field.

It can also be inferred that, at the lowest applied field
intensity E0 = 1014V/cm (eE0 = 10 eV/fm ), which is very
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Figure 2: Tunneling probabilities of the α particle from 106Te for
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interrupted by three breaks of equal duration with characteristics
E0=1017 V/cm and ω=15.2 as−1. Note that the field-free Ptun(t) is
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small compared to the barrier (eE0 ≪ Vbarrier), the maxi-
mum of Ptun is bypassed by the field-free tunneling proba-
bility after∼ 10−16s. Similar to the case of atom ionization
by lasers [7], we conclude a quasi-stabilization of the de-
caying system induced by the laser field.

The tunneling probabilities for a 4-pulse laser signal
of length 3π/ω and for the field-free case are compared in
Figure 2. Note that the amplification of Ptun(t) when anodd
number of half-cycles is applied is∼850 after∼15 as.

In Figure 3 we show how the decay rates, defined by
eq.(23), increase in a step-like manner when the electric
field is turned off. This behavior is caused by the box-
like shape of the laser signal envelope. For an envelope
of Gaussian or sin2 type a smooth increase of λ(t) is ex-
pected. When comparing the case of a pulse with an odd
number of half-cycles to one with an even number of half-
cycles, we conclude that the jump of λ(t) in the latter case
is much less pronounced compared to the case when the
laser is turned off. From inspection of Figure 3, we con-
clude that T1/2 decreases by approximately 9 orders of
magnitude! Thus, the α-decay of 106Te is speeded up to
times of the order of femtoseconds, compared to the mi-
crosecond timescales in the field-free case.

In Figure 4 we explored the behavior of the total flux
leaving from, or returning inside, the nuclear surface (as
reference we take the Coulomb barrier position), with the
intent to explain the jump in the decay rates. After turn-
ing off the laser field, due to an imbalance between the left
border flux and the right border flux, the quantum flux for
a pulse with an odd number of half-cycles oscillates with
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a larger amplitude than a pulse with an even number of
half-cycles.

An issue that can play a role in the problem inves-
tigated in our study concerns electron-positron pair cre-
ation by a strong laser field in the presence of a heavy nu-
cleus (see [5] and references therein). The probability of
e−-e+ pair production on nuclei is controlled by two di-
mensionless parameters: ξ = eE0/mecω, which expresses
the energy of interaction of an electron of rest mass me
with the laser field, and ζ = E0/Ecrit, the ratio between
the strength of the laser’s electric field and the critical vac-
uum (Schwinger) field Ecrit = m2

ec3/e~=1.3·1016V/cm [18].
Note that the process of e−- e+ pair production shares com-
mon features with both the tunnelling ionization process
and the α-decay reaction studied in this work. These last
two processes can be described as the decay of the vac-
uum of a neutral gas of atoms and of a compound nucleus
under the influence of an external electric field. Produc-
tion of e−- e+ pairs in the vicinity of a heavy nucleus of
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charge Z was recently set under scrutiny in ref. [19]. Opti-
mal conditions for the e−- e+ pair production are expected
in the strong-field regime, i.e. for ξ ≫ 1. In the case of
subcritical fields (ζ ≪ 1), as is the case for optical or in-
frared lasers, the above quoted article provides the follow-
ing quasi-classical formula for the pair creation rate:

Ẇ = (Zα)2
2
√
π
me

(︂
ζ

2
√
3

)︂2.5
exp

(︂
−2

√
3
ζ

)︂
(24)

For eE0=10 eV/fm (I0 = 1.33·1025W/cm2) and λ=1240 nm,
we have ξ ≈ 38.6, ζ ≈ 0.077 and Ẇ ≪ 1. Instead, for super-
critical fields the recommended formula for this quantity
is

Ẇ = 13(Zα)2

6
√
3π

meζ
[︂
ln

(︂
ζ

2
√
3

)︂
− 2.0644

]︂
(25)

For the case eE0=10 keV/fm (I0 = 1.33 · 1031W/cm2),
ξ ≫ 1, ζ ≫ 1 and Ẇ ≫ 1. We estimated that in this
case around Ne− ,e+ ∼ 350 pairs are likely to be created in
the nuclear Coulomb + ultra-high laser field environment
for a very short pulse duration, tpulse= 1 as. Since for a lin-
early polarized laser the pairs are predicted to move colin-
early to the field, we expect a major alteration of the din-
uclear system dynamics. However in an earlier reference
[20], it was concluded that pair creation by a linearly po-
larized pulse in the vicinity of a nucleus is negligibly small
for all intensities, no matter how large they are, due to the
occurrence of a suppressing factor exp(−mec2/~ω) in W.
Clearly this issue deserves to be tackled in more depth in
the near future. A first improvement would be to go be-
yond the point-like nucleus approximation as happens in
the case of static strong fields [18].

Another effect induced by overcritical laser fields in
nuclei is related to the change in the proton density that
is conjectured to occur at intensities (I ≥ 1030W/cm2) due
to the ac Stark shifts of proton states [21]. However as we
can conclude from Figure 1 of that reference, the changes
in the proton root-mean-square radii are too small at the
highest intensity considered in this paper, i.e. 1033W/cm2,
and consequently we expect that the proton distributions
of the two nuclei are not distorted enough to influence the
tunnelling dynamics.

To conclude, in this paper we proposed a numerical
algorithm based on the CN method to solve the TDSE,
which allowed us to examine the detailed dynamics of the
α-decay process under the influence of an ultra-intense
monochromatic laser field. Our primary goal was to es-
tablish the characteristics of the laser pulse that cause a
major modification of the tunneling probabilities, decay
rates and thus of half-lives. The most important result of
our studywas that short pulses containing an odd number
of half-cycles affect this type of nuclear radioactivity more

than those with even numbers of half-cycles.Repeated ap-
plication of such pulses leads to faster decay of an α-
radioactive nucleus. We proved that, at sub-attosecond
timescales, it was possible to increase the decay rates by
several orders of magnitude. To substantiate this effect,
we used ultra-intense laser fields in our theoretical study;
production of such fields will require the next generations
of laser facilities. Laser control of nuclear decay processes
is a new facet of the emerging field of direct laser-nucleus
reactions. Better knowledge of the mechanism governing
this type of phenomenon could also find other applica-
tions, including the use of high-power lasers in disposal
of radioactive waste. All in all, this contribution draws at-
tention to the possibility of controlling spontaneous clus-
ter radioactive decays with super-strong electromagnetic
fields.
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