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i. ASSUMPTIONS AND OBJECTIVES 

(a) Introduction 

These lectures will describe methods for optimization under 

constraints. The methods will be illustrated by applications to col- 

lision amplitudes, both at asymptotic energies and at finite energies. 

The applications will include the use of integral constraints. 

Starting from the Mandelstam representation, Froissart (1961) 

deduced that the total cross section O-tot(S)~ for the collision of two 

particles having c.m. energy s ~ 

s ---~oo , 

(~tot (s) 

where s is a constant. 
o 

must obey the following bound as 

constant [~n(S/So) ~_2 (i.i) 

Since 1961 there have been many extensions of the idea of obtaining 

bounds on physical quantities from basic assumptions without any use of 

special theoretical models. These developments have been dominated by 

the work of Martin and his many associates and collaborators. It has 

been extensively surveyed in the review articles by Martin (1969) and 

by others listed in the list of references. These reviews contain de- 

tailed references to most original papers in this area of research, so 

these lecture notes will contain only minimal references to original 

papers. 

Assumptions: The basic results of quantum field theory which are common- 

ly used are: 

(i) 

(ii) 

(iii) 

Unitarity 

Analyticity in the Lehmann-Martin ellipse 

Dispersion relations for collision amplitudes F (s,t) at 

fixed momentum transfer in a limited range of t. 
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In addition it is useful to make phenomenological assumptions 

about collision amplitudes, cross sections or scattering lengths. 

These lead to bounds or constraints between different physical (or 

analytically continued) quantities; examples will be given in later 

lectures. 

Notation: For equal mass particles with c.m. momentum k, 

~__ ~ C ~ +  ~?-) , -~ : - ~ k " ( , ~ - ~ , , ~ J .  
(i .2) 

We shall also be discussing unequal mass collisions but shall not give 

detailed formulae in those cases. The collision amplitude F (s,t) will 

be normalised so that 

o 

1.3) 

1.4) 

Within the Lehmann-Martin ellipse 

o 

1.5) 

Unitarity requires that partial waves satisfy 

1.6) 

Writing f~ = r£ ~ %~ , the unitarity constraint can be written 

Z (1.7) 
~, -%~ -/,~ .> o 

(b) Objectives of Optimization 

I shall indicate briefly some of the objectives that have been 

achieved and return later to a discussion of further results. 

Dispersion Relations. Using unitarity (1.6), the partial wave expansion 

(1.5) and the properties of Legendre polynomials, Jin and Martin have 

shown that the dispersion relation for F(s,t)at fixed t requires no 
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more than two subtractions, 

HiTh ener77 bounds. The Froissart bound (l.l)holds with the constant 

equal to 4~ /(t O -~) , where t o = 4m 2 and £ may be arbitrarily small. 

Integrated bounds have been obtained for averaged total cross 

sections by Common and Yndurain. These bounds will be discussed in 

section 4 of these lecture notes. Various bounds have been obtained 

on amplitudes and on differential cross-sections at fixed t. These 

bounds can be extended to inelastic reactions and to inclusive re- 

actions as described in the review by Roy (1972). 

Absorptive parts of elastic amplitudes 

MacDowell and Martin and later Singh and Roy obtained a variety of 

bounds on ImF(s,t) at high energies. In section 3 some of these bounds 

will be considered as well as related bounds at finite energies. 

Bounds on crossed-channel amplitudes 

The integrated bounds of Common and Yndurain mentioned above, 

lead naturally to restictions on amplitudes in the crossed channel. 

For example, knowing N scattering results one can deduce restrictions 

on NN--~TT amplitudes. These will be discussed in section 4 of 

these notes. 

Theorems on particle-antiparticle amplitudes 

The Pomeranchuk theorem has several variants; the following form 

is due to Martin. If F denotes a forward amplitude and 

---> o (1 .8 )  

and if the following limit exists, 

(i .9) 

then this limit (1.9) must be zero. 

Numerous related theorems arise if it is assumed that (1.9) is not zero 

as was indicated by the early results from Serpukhov on total cross 

sections. Some of these theorems are discussed in the reviews by 
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Eden (1971) and Roy (1972). 

2. Optimization under Constraints 

References: M. Aoki (1971), M.R. Hestenes (1966) and M.B. Einhorn 

and R. Blankenbecler (1971). 

(a) Formulation and terminolo~[ 

Objective function: The function that we wish to optimize is 

called the objective function. Other names used include Lagrangian, 

criterion function, utility, cost or penalty functions. To be definite 

we will describe conditions required to minimise the objective function. 

This function depends on a set of real variables Xl, x2, ... Xn, and 

it will be denoted by 

f(x) = f (Xl,X 2 ... Xn) (2.1) 

Constraints: We consider equality constraints and inequality constraints. 

The equality constraints will be written 

f (x) = O, c( = 1,2 .... p. (2.2) 

The inequality constraints will be written 

g~ (x) ~ O, ~ = 1,2 .... q. (2.3) 

Any point x = (Xl,X2, ... x n) that satisfies the constraints is called 

a feasible point and the set of such points is called the feasible set 

S. 

Tan@ent cone: the set of all (unit length) half lines h, originating 

at a point x ° in S and tangent to a curve in S is called the tangent 

cone to S at x . 
O 

Increments: the increment of f along a small vector v through a feasible 

point x ° is called the first differential of f and is denoted by 

The second differential is defined by 
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- y{ 
(2.5) 

Regular points of S (equality constraints only): 

Let x ° be a feasible point and let k be a unit vector satisfying 

(f'~ (x o) ,k) = O, for all (2.6) 

If every k satisfying (2.8) lies in the tangent cone 

x o is a regular point of S. 

C at Xo, then 

Normal points of S: If the gradients f' (x o) are linearly independent, 

x o is a normal point. Every normal point is a regular point (Hestenes 

1966). 

Inequality constraints: The definitions of normal points and regular 

points extend to inequality constraints if we divide these into in- 

effective or interior constraints ~ in I (Xo) , and effective or 

boundary constraints ~ in B(Xo) , defined by 

I (Xo) 

B (x o) 

(2.7) 

(2.8) 

(b) Minimization with Equality Constraints 

The standard method of Lagrange multipliers determines all 

local minima that are regular points. It is summarised by the following 

two theorems: 

Theorem 1 

Let x ° be a regular point of S and let x o be a local minimum of f(x) 

on S. 

Then: 

(i) there exist multipliers A~ such that 

~L 
= "" = O, i = 1,2, ... n L' (Xo) ~ ~," 

where the auxiliary function L is defined by 

2.9) 

T,(x) = f + 5" ~ ~ (2.1o) 
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(ii) for a minimum 

L"(Xo,h) ~ 0 

for all h in the tangent cone at Xo, 

(iii) if x o is normal, the multipliers are unique. 

(2.11) 

Theorem 2 

If (2.9) is satisfied and if L"(Xo,h) is strictly positive for 

all h in the tangent cone at Xo,then x ° is a local minimum of f(x) . 

(c) Interpretation of the La~ran~e Multipliers 

The Lagrange multipliers can be interpreted as sensitivity 

coefficients with respect to small changes in the constraints. Thus if 

x ~ denotes a local minimum of f(x), with equality constraints, 

b~ - [~ c~ = ~ , ~ ~ ~,z, ... ~ (2.12) 

Then 

(2.13) 

From (2.12) and (2.13) one finds 

~ C~ ~) 
= ~k~ (2.14) 

Thus ~ is the rate of change in the stationary value f(x W) with 

respect to small changes in the parameter by in the constraints(2.12). 

In practice the sign of ~. may be intuitively obvious from this 

interpretation. 

(d) Linear Pro~rammin~ 

Linear Programming problems are those in which both the objective 

function and the constraints are linear in the variables. 

Standard form: Minimise the objective function 

C~) ~ Zc~x, ÷~ (2.15) 
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subject to 

A k = ~ X ~> P ( 2 . 1 6 )  / 

where A is an (m,n) matrix of rank m, (re<n) and 

× :C~co . . . .  ~ ) ,  . . . .  (2.17) 

Extreme points: The feasible set S is the inside of a convex polyhedron 

(possibly extending to infinity). The extreme points of the linear 

objective function 

4 = Z c . , , .  - , . .~  (2.18) 

• t . _ e  o c c u r  a t  t h e  v e r t i c e s  o f  t h e  p o l y h e d r o n  T h u s  t h e y  a r e  m e m b e r s  o f  'n 

s e t  o f  v e c t o r s  x i n  w h i c h  ( n - m )  o f  t h e  x c a r e  z e r o ,  T h u s  w i t h  m 

c o n s t r a i n t s  o n l y  m o f  t h e  x .  a r e  n o n - z e r o .  

Lagrangian method: The Lagrangian associated with the standard linear 

programming problem is 

z ¢~,~ = f ~ , ~  ~ ~ ~ Z ~ [ ~ -ca ×;~ 2 ~21~) 

subject tO x ~ O. 

(e) Minimisation with Inequality Constraints 

Consider the minimisation of f(x) subject to the constraints 

J9 
,o,,~" ()~ ] = 0 ~ ~ 4 2 . . . .  ' ~  (2  2 0 )  I t ! 1 

~(×] >. 0 , /~ =4, z, .... £ (2.21) 

For any feasible Xo, let I(x o) be the set of indices ~ for which 

g~(Xo } > O and B(x O) be those ~ for which g~ (x O) = O. 

Theorem 3 

Let x be a regular point and a local minimum in the feasible set S. 
o 

Then, 

(i) There exist multipliers ~, and ~ ~ 0 such that 

L' (Xo) = O (2.22) 
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where 

(2.23) 

(ii) If ~ is in I(x O) we may choose ~ = O. 

(iii) Let S~ be the subset of S for which g~ (x) = 0 for all 

in B(Xo). 

Then 

n" (Xo,h) ~ 0 (2.24) 

for all h in the tangent cone of S~ at x O. 

(iv) If x ° is a normal point, the multipliers are unique. 

Theorem 4 

If (2.22) is satisfied and if (instead of (2.24)) 

L" h) > 0 (X O , 
2.25) 

for all h in the tangent cone S 1 at Xo, then x ° is a local minlmum 

of f (x) . 

Sometimes when L is linear in a coordinate, theorem 4 may not apply. 

Then one could use the following obvious theorem. 

Theorem 5 

If f' (Xo,h) > O for all h in the tangent cone at x o, then x O is a 

local minimum of f(x) . 

3. Collision Amplitudes under Constraints 

(a) Linear Constraints at High Energies 

For our first example to illustrate the general method we 

consider the problem discussed by Singh (1971b) , but using the Lag- 

rangian method as suggested by Hodgkinson (unpublished). Let A(s,t) = 

ImF be the imaginary part of a scattering amplitude. Consider its 

maximum value in 

0 ~ ~ { ~k% = ~4 (3.1) 

Define w = 1 + 2t/(s-4), w I = 1 + 2tl/(S-4) . 

A(s,t) = ~ (2e+l) a~ (w) 
O 

Then we have to maximise 

(3 .2)  
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subject to the constraints 

a ~ O, for ~= 0,1,2, .. 
6 
oo 

2 
(where A 1 ~ (s/s O ) follows from the Jin-Martin bound), 

,:,o ~.% o"  (+_or)  ~- 

o ~-'~" 

(3.3) 

(3.4) 

=(k/s2)A(s,O) = A . (3.5) 
o 

The method of linear programming tells us that the maximum of A(s,t) 

will occur when all a~ are zero except for two, ap and a say. It 
q 

does not at once inform us that p+l = q. This can be seen from the 

Lagrangian for the constrained problem. 

(3.6) 

It is obvious that max A(s,t) will increase if either A ° or A 1 is 

increased, hence Or> O and ~ ~ O. Also since ~ are inequality 

multipliers ~6 ~ O for a maximum(from theorem 3). The differential 

of L is zero at a maximum, 

1 
= 0 = P (w) -O<-~P~(Wl) + z~Q. (3.7) (2 £+i) ~ 

Let I denote the interior subset and B the boundary subset of solutions 
o 

of (3.7) , 

I : a 6 ~ 0 , i~k~ = O, P~ (w) =0( +~P~_ (w I) (3.8) 

B O : a 6 = O, ~e=0~+~P£ (w I) - P ~(w) > O (3.9) 

From (3.8) and (3.9) it is obvious that a6 is zero except for ap, 

a 
P+I 

The value of p can be found from the constraints (3.4) and (3.5). For 

large values of s, p is also large and one can use 
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where Yl 

Pp (Wl) ~ Pp+l (Wl) ~ Io (Yl) 

= L(tl/k2) ~z . This gives 

p ~< 4 s ~z ~ [s/(s 2 0"tot) 3 . 

exp(y I ) 

% 
(2VY 1 ) 

(3.10) 

(3.11) 

Substituting in (3.2) one obtains Singh's result, namely 

A max A(s,t) ~ (s,t) ~ Io(Y) . 

A A 
o o 

(3.12) 

The above method extends readily to the use of non-linear unitarity 

2 a_ ~ - a£ > O instead of the linear form (3.3). 

(b) Phenomenolo~ical Constraints at Finite Energy 

Singh and Roy (1970) bounded A(s,t) given by (3.2) in the region 

t < O, using the partial wave series for ~(total) and for ~(e!astic) 

as constraints. In the region It I < 0.i (GeV/c) 2, they found 

I Acs 12 
max ~ ~ < dt J/ kdt/t=O (3.13) 

At high energies the Singh-Roy bound given by the left hand side of 

(3.13) exceeds the data by only about 10% in ~t[< O.i (GeV/c) 2, but 

for larger It [ it differs from the data by more than an order of 

magnitude. 

Savit, Einhorn and Blankenbecler (1971) imposed the additional 

constraint that partial waves decrease monotonically a~+ 2 ~ a~ . 

However, they found, only a slight improvement was obtained. 

Jacobs et al (1970) imposed instead, an additional constraint 

that fixed a phenomenological value of A(s,t) at a physical value of 

t ~ -0.I (GeV/c) 2 This was found to extend the region in which max 

A(s,t)was close to the data in the sense of (3.13). For the constraint 

at larger values of It[ oscillations are induced in max A(s,t) and its 

agreement with the data becomes poorer. 

Hahn and Hodgkinson (1971) impose an additional 

constraint at t > O instead of t < O. Thus they use (3.4) with 

Jin-Martin bound replaced by a phenomenological value of A 1 



53 

This value is obtained by extrapolating from experimental data in 

t < O to t = t I = 4m 2, using 

A(s,t) = A O exp[Ibt + ~ct23 (3.14) 

The resulting auxiliary objective function (or Lagrangian) is given by 

(3.2) and 

L = A(s,t) +~[A ° - I (2e+IIa~] 

+~[A 1 - I (2e+l)a~Pf (Wl) 7 

1 2 2 
+ - £ (2e+1) (ae+r 

2 2 
+ ~ (2~+i) ~ (a£-a£-r~) (3.15) 

For a maximum of A(s,t), r e = 0 and 

PE (z) - ~ - ~P£ (Wl) - (a(/a)+ ~(l-2a 

~ O, (l/a) + 2 A£ ~0. 

where -i ~ z < 1 and w I > 1. 

There are three 

equations, 

g ) = O, (3.16) 

classes of e values for the solutions of these 

(3.17) 

& I : A£ = O, (a~/a) = PK (z) - ~- (wl). 

£ e B 0 : a~ = O, ~=~+ /~P~ (W I) - Pg (z) >I 0 

e B 1 : a£ = l, ~= Pg (z) - (l/a) -oK-~pz (Wl) . (3.18) 

The parameters are evaluated from the equality constraints that cause 

each of the square brackets in (3.15) to be zero. The solutions for 

ag give a partial wave profile for Amax(s,t), that depends on both s 

and t. 

The normalised bound U is defined by 

U(s,t) = Amax (s, t)/Ao (3.19) 

One can similarly obtain a lower bound, 

L(s,t) = Amin (s, t)/Ao (3.20) 
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The resulting upper and lower bounds obtained by Hahn and Hodgkinson 

are compared with experiment in Fig. i, which also shows the Singh- 

Roy bound, in pion-nucleon scattering. It is remarkable how close 

U(s,t) comes to the data, when one recalls that it involves only one 

constraint (at t = 4m 2) additional to %ot and ~£~ " It will of course 

be noted that the use of the ratio (3.19) compensates partly for the 

fact U(s,t) involves only the imaginary part of the amplitude. 

4. Integral Constraints 

(a) Bounds on Averaged T~ Cross Sections 

Reference: Common and Yndurain (1971~ Roy (1972) and Steven 

[19721. 

We shall consider ;o ~o scattering, using units with m T = i. 

From the Froissart-Gribov formula for partial waves in the t channel, 

evaluated in the threshold limit t = 4, we obtain the scattering 

length ~ This gives 

~r ~ ~ __------A (~,~) 
a - ~ ~ = #~ ~ (4.1) 

In terms of s channel partial waves, 

A(s,t) = 2(s~/Z/k) Z (2~+i) a~ (s) P~ (z) (4.2) 

0--tot(S)= 2 (k~) ~ (2~+i) a e (4.3) 

where the'factor 2 in (4.2) and (4.3) comes from the identity of the 

pions. 
t 

We will assume that the scattering length ~2 is known, for 

example by considering the effect of ~ ~ scattering on ~N dispersion 

relations using experimental TN data (Morgan and Shaw 1969). 

We then maximise the averaged total cross-section ~tot defined by 

~tot (Sl ' s2) /~ ~J ~J 

T 32 f ~ 

where q(s) is a chosen weight function, and a~ (s) are subject to the 

constraint (4.1) with (4.2), and the unitarity constraint 

_ 2 2 
a a e - r >~ O. (4.5) 
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The auxiliary objective function is 

L=7 T +  (Sl'S2) [ a - ][<ks ID {w) ds] 

2 2 + ~_ (2e+1) ]4 ( 2kssl2j-1 ;Le (S'Sl'S2) (a£-a£-r~)ds (4.6) 

where w = 1 + 8/(s-4). 

From the general theory considered earlier, for a maximum, 

71 e (s ,s I ,s 2 ) >i 0 (4.7) 

~g = O if O < a¢ (s) < 1 (4.8) 

Taking functional derivatives of L, we obtain 

~L 
- 0 ~r~ 

-_ L) = 

= A~(S,Sl,S 2)r e (s) (4.9) 

- 4-. 

(4.10) 
9_ ~/~ ~i~. 

In general when ~g= 0 the solutions for a e and r 2 are indeterminate, 

but solutions exist to (4.10) only for discrete values of s. The con- 

tribution of the corresponding values of a~ can make no contribution 

to ~tot so they can be ignored. Exceptions to this general rule occur 

only for certain choices of weight function. For example, Roy (1972) 

considers 

q(s) = C(k/s 5/2) . (4.11) 

Then (4.10) can be satisfied for ~ = 0 for all s by choice of D. The 

problem reduces in this case to optimising ~tot when only ao(S) is 

t is not too large, non-zero. One finds that if the scattering length ~2 

one obtains the bound 

s 2 
15T . t 1 s) kds 

~2 > ~ ~ ~'tot ( s5/2 
s I 

(4.12) 
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Roy (1972) finds that bounds of this type are approached to within a 

factor 2 by currently accepted scattering lengths and cross-sections. 

The corresponding bounds for more general weight functions 

have been evaluated by Steven(1972) . The method follows from (4.10) 

ignoring the class I in which 0 < a6 < i, and considering only the 

classes B O : a £ = O, and B 1 : a £ = i. 

Blankenbecler and Savit (1972) have introduced a modification 

to the above method by assuming the ~, amplitude and its partial 

waves to be known for energies less than a known constant C. Above 

this energy they assume a particular functional form for Q-tot and they 
1 

take Gee -~ 2 ~tot for energy greater than C. These constraints lead 

to a lower bound on the scattering length. The requirement that this 

lower bound is less than the experimental value then sets a constraint 

on the assumed functional form for Q-tot" In the particular case where 

Q-tot is taken to be a constant equal to ~r(oo) above s = 25 m 2, they 

find that <~(oo) is less than about 40 mb, which compares well with the 

factorization estimate of 15-20 mb. 

(b) Pion-Nucleon Amplitudes 

Reference: Common and Yndurain (1971 and 1972) , 

Kolanowski and Lukaszuk (1972), Steven (1972). 

The above techniques for bounding averaged cross-sections have 

been extended by the above authors to pion-nucleon scattering. They 

also invert the argument to obtain bounds on the amplitudes in the 

crossed channel. Thus (4.12) provides a lower bound on the ~ scatter- 

ing length if the total cross-section is assumed to be known, for 

example by putting in phenomenological ~ resonances. 

In the case of ~N scattering the total cross-sections are 

known from experiment. 

crossed channel, namely 

Then the formalism leads to bounds in the 

~'~ ---> ~ (4.13) 

Common and Yndurain (1972) introduce the additional feature that the 

annihilation cross-section NN ~ ~ is constrained via unitarity 

by the ~ elastic amplitude, 

If 6 (NN --~ ) I 2~ Imf~ (~) -If ~(~ )I 2(4"14) 

This observation gives an immediate gain of a factor 4 in the analogue 

of the Froissart bound for the total annihilation cross-section 
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~(NN-~TT ). It can also be used in two further ways. One way 

is to obtain a local bound at finite energies on the annihilation 

cross-section when O-tot(~ ) is assumed to be known. The latter 

constrains the partial wave series involving Imf[(~) and via (4.14) 

it constrains the partial wave expansion of ~(NN-~). The local 

value Of~ot(TW) may be taken from a Regge model since the energy 

for NN annihilation exceeds 2 GeV. 

The constraint (4.14) is most relevant at low energies near the 

annihilation threshold. In this region (above 2 GeV) the bound may be 

used to test models for extrapolation of experimental values for 

(NN-~w~). These experimental values are obtained at energies of 

several GeV where the bounds are rather weak. At lower energies the 

bounds provide a cut-off to the region where a Regge model extra- 

polation for ~(NN-~ ~ ) might be applicable. The results of Common 

and Yndurain are summarised in Fig. 2 which is adapted from their (1972) 

paper. 

Finally Common and Yndurain use the Froissart-Gribov expression 

for the ~ scattering length to constrain the ~ amplitude as in 

(4.1) and (4.2). This then leads via (4.14) to constraints on the 

energy-averaged partial wave expansion of ~(NN--~T~ ). These energy 

averaged bounds are not very tight presumably because (4.14) is a weak 

constraint at most energies, since it is clear from experimental results 

and Regge models that f£(NN --~ ~) should tend to zero as the energy 

increases. 

(c) Other applications of optimization theory 

Within particle physics as further experimental evidence becomes 

available there will be more scope for studying more inequalities based 

on phenomenological constraints. This should apply particularly to 

inequalities involving spin parameters in two-body reactions and to 

inequalities involving multiparticle production and inclusive reactions. 

From a more theoretical viewpoint it is valuable to use 

inequalities to limit the effects on bootstrap calculations of unknown 

couplings to inelastic processes (Ciulli et al. (1972)). 

Outside particle physics optimization theory forms an important 

part of many studies of complex systems whether in operational research, 

systems analysis or control theory. One of the central problems in its 

use for environmental or social applications arises from the conflict 

between desirable objective functions. This conflict, coupled with 

the multitude of influences, the paucity of data and the varying time 

scales of observation of change, leads to problems of such magnitude 
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that the particle theorist may pause to reflect on the simplicity 

of his own problems of understanding the fundamental laws of physics. 
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Fig. 2 

The bounds of Common and Yndurain, 

compared with two extrapolations 

(A) and (B) of experimental values 

of (pp~). The broken lines de- 

note the extrapolations. The conti- 

uous lines denote the bounds using 

two different Regge parametrisations 

I and II for the ~ amplitude. The 

dotted line denotes the total in- 

elastic cross section for p~. The 

triangles denote integrated bounds 

using different scattering lengths, 

the top one being that normally 

accepted 


