OPTIMIZATION OF COLLISION AMPLITUDES UNDER CONSTRAINTS

R.J. Eden

- Cavendish Laboratory, Cambridce, England

1. ASSUMPTIONS AND OBJECTIVES

(a) Introduction

These lectures will describe methods for optimization under
constraints. The methods will be illustrated by applications to col-
lision amplitudes, both at asymptotic energies and at finite energies.

The applications will include the use of integral constraints.

Starting from the Mandelstam representation, Froissart (1961)

deduced that the total cross section (s) for the collision of two
4

tot
particles having c.m. energy s * must obey the following bound as

s —>00,

e (s) £ constant [zm(s/so)jz (1.1)

tot

where sO is a constant.

Since 1961 there have been many extensions of the idea of obtaining
bounds on physical quantities from basic assumptions without any use of
special theoretical models. These developments have been dominated by
the work of Martin and his many associates and collaborators. It has
been extensively surveyed in the review articles by Martin (1969) and
by others listed in the list of references. These reviews contain de-
tailed references to most original papers in this area of research, so
these lecture notes will contain only minimal references to original

papers.,

Assumptions: The basic results of quantum field theory which are common-
ly used are:
(i) Unitarity
(ii) Analyticity in the Lehmann-Martin ellipse
(iii) Dispersion relations for collision amplitudes F (s,t) at

fixed momentum transfer in a limited range of t.
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In addition it is useful to make phenomenclogical assumptions
about collision amplitudes, cross sections or scattering lengths.
These lead to bounds or constraints between different physical (or
analytically continued) quantities; examples will be given in later

lectures.

Notation: For equal mass particles with c.m. momentum k,

2
1 1 = — -

= 4 (m+ k7)) t = 2k (4 50419).
(1.2)
We shall also be discussing unequal mass collisions but shall not give
detailed formulae in those cases. The collision amplitude F (s,t) will

be normalised so that
KR
e A F))
————/

At A (A= 4md)

(1.3)

o0
6 (8) = 4T ) (22+4) j/w\é(,o) = Izﬁi(’ I F (2.9 (1.4)
0 23

Within the Lehmann-Martin ellipse

f o
F(at) = %— ) (2€+4)/£(4)”Dg_ (c=B) (1.5)

Unitarity requires that pértial waves satisfy
A
.6
Ll (D" & Ml (a) ¢ 4 (1.6)

Writing fz =r, + {az , the unitarity constraint can be written

_ 2 2 (1.7)
4, Q@ —fp 20

(b) Objectives of Optimization

I shall indicate briefly some of the objectives that have been
achieved and return later to a discussion of further results.

Dispersion Relations. Using unitarity (1.6), the partial wave expansion

(1.5) and the properties of Legendre polynomials, Jin and Martin have
shown that the dispersion relation for F(s,t)at fixed t reguires no
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more than two subtractions,
z 2
(Fat) | & (A/a0) ", (2 <4m?). (1.8)

High energy bounds. The Froissart bound (1.1)holds with the constant

equal to 47 //(to -£), where t, = 4m2 and & may be arbitrarily small.
Integrated bounds have been obtained for averaged total cross

sections by Common and Yndurain. These bounds will be discussed in

section 4 of these lecture notes. Various bounds have been obtained

on amplitudes and on differential cross-sections at fixed t. These

bounds can be extended to inelastic reactions and to inclusive re-

actions as described in the review by Roy (1972).

Absorptive parts of elastic amplitudes

MacDowell and Martin and later Singh and Roy obtained a variety of
bounds on ImF(s,t) at high energies. 1In section 3 some of these bounds

will be considered as well as related bounds at finite energies.

Bounds on crossed-channel amplitudes

The integrated bounds of Common and Yndurain mentioned above,
lead naturally to restictions on amplitudes in the crossed channel.
For example, knowing N scattering results one can deduce restrictions

on NN —> T W amplitudes. These will be discussed in section 4 of

these notes.

Theorems on particle-antiparticle amplitudes

The Pomeranchuk theorem has several variants; the following form

is due to Martin. If F denotes a forward amplitude and

F(aboab) -F(h>ab)

) (1.8)
A= oo A L (8/8,)
and if the following limit exists,
lime [ &, @0 - (0] (1.9)

then this limit (1.9) must be zero.

Numerous related theorems arise if it is assumed that (1.9) is not zero
as was indicated by the early results from Serpukhov on total cross

sections. Some of these theorems are discussed in the reviews by
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Eden (1971) and Roy (1972).

2. Optimization under Constraints
References: M. Aoki (1971), M.R. Hestenes (1966) and M.B. Einhorn
and R. Blankenbecler (1971).

(a) Formulation and terminology

Objective function: The function that we wish to optimize is

called the objective function. Other names used include Lagrangian,
criterion function, utility, cost or penalty functions. To be definite
we will describe conditions required to minimise the objective function.
This function depends on a set of real variables Xyr Xor eee Xy and

it will be denoted by

f(x) = f(xl,x2 ces xn) (2.1)

Constraints: We consider equality constraints and inequality constraints.

The equality constraints will be written

£ (x) = 0, q = 1,2, ... p. (2.2)

g (x) 2 o0, ﬁ= 1,2, «.. d. (2.3)

Any point x = (xl,x e xn) that satisfies the constraints is called

2!
a feasible point and the set of such points is called the feasible set
S.

Tangent cone: the set of all (unit length) half lines h, originating

at a point X in S and tangent to a curve in S is called the tangent
cone to S at %5

Increments: the increment of f along a small vector v through a feasible

point Xg is called the first differential of f and is denoted by

| .
£(=£'(Xo,v)= (fxe), ¥) = ) gf v (2.4)

The second differential is defined by
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0 — ¥
Fltre,?) = L 5050 %%

Regular peints of S (equality constraints only):

Let Xq be a feasible point and let k be a unit vector satisfying

(£’

' (XO),k) = 0, for all (2.6)

If every k satisfying (2.8) lies in the tangent cone C at Xy then

X is a regular point of S.

Normal points of S: If the gradients f'(xo) are linearly independent,

Xq is a normal point. Every normal point is a regular point (Hestenes

1966) .

Inequality constraints: The definitions of normal points and regular

points extend to inequality constraints if we divide these into in-
effective or interior constraints ﬁ in T (xo), and effective or

boundary constraints ﬁ in B(xo), defined by

{p)guxe) >0} (2.7)

I(xo)

B(xo)

{/513/5@(,)=u} (2.8)

(b) Minimization with Equality Constraints

The standard method of Lagrange multipliers determines all
local minima that are regular points. It is summarised by the following
two theorems:
Theorem 1
Let Xq be a regular point of S and let X be a local minimum of f(x)
on S.
Then:

(i) there exist multipliers 1“ such that

L'(xo) = —— = 0, 1=1,2, ... n (2.9)
where the auxiliary function L is defined by

Lx) = £+ J Ayl - (2.10)
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(ii) for a minimum
L" (x,h) } 0 (2.11)
for all h in the tangent cone at X0
(1ii) if x_ is normal, the multipliers Ao( are unique.
Theorem 2
If (2.9) is satisfied and if L“(xo,h) is strictly positive for

all h in the tangent cone at xo,then X, is a local minimum of £(x).

(c) Interpretation of the Lagrange Multipliers

The Lagrange multipliers can be interpreted as sensitivity
coefficients with respect to small changes in the constraints. Thus if

x¥ denotes a local minimum of f(x), with eguality constraints,

bo( — f’( (x) = o . X = /(‘Z‘... 10 (2.12)
Then
7f T 2w

From (2.12) and (2.13) one finds

€ (%)

95—7._

Thus A, is the rate of change in the stationary value f(x*) with
J

Agp (2.14)

respect to small changes in the parameter b in the constraints(2.12).
In practice the sign of Zq.may be intuitively obvious from this

interpretation.

(d) Linear Programming

Linear Programming problems are thosein which both the objective

function and the constraints are linear in the variables.

Standard form: Minimise the objective function

¢ ) = Z cox; +d (2.15)
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subject to

Ax-——b IXZD (2.16)

where A is an (m,n) matrix of rank m, (m¢n) and

T e (ke %) BT (b b)) 27

Extreme points: The feasible set S is the inside of a convex polyhedron

(possibly extending to infinity). The extreme points of the linear

objective function

$ = )eox + d (2.18)
occur at the vertices of the polyhedron. Thus they are members of the
set of vectors x in which (n-m) of the X are zero. Thus with m

constraints only m of the X, are non-zero.

Lagrangian method: The Lagrangian associated with the standard linear

programming problem is

L(x,a) = Leaox +a + LA, [, ~Axk] (2.19)

subject to x 2 O.

(e) Minimisation with Inequality Constraints

Consider the minimisation of f(x) subject to the constraints

é(x):(? , X =42, ., (2.20)

Ga) 20 | B =12, - q. (2.21)

For any feasible X0 let I(xo) be the set of indiceslﬂ for which
9pix,) > 0 and B(xo) be those /3 for which g/e(xo) = O.
Theorem 3
Let X, be a regular point and a local minimum in the feasible set S.
Then,

(1) There exist multipliers A&’ and /ﬂa £ O such that

L'(Xo) = 0 (2.22)
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where

Lix) = £+ LA, fu + 2 Fe9p (2.23)

(ii) 1If /5 is in I(x,) we may choose f,4 = O.
(iii) Let S, be the subset of S for which g/d(x) = 0 for all
ﬁ in B(x,).
Then
L"(x,,h) » O (2.24)

for all h in the tangent cone of 5, at Xy
(iv) If X is a normal point, the multipliers are unique.

Theorem 4
If (2.22) is satisfied and if (instead of (2.24))

L"(xo,h) > O (2.25)

for all h in the tangent cone S1 at Xy then X, is a local minimum
of f£(x).
Sometimes when L is linear in a coordinate, theorem 4 may not apply.

Then one could use the following obvious theorem.
Theorem 5

If f'(xo,h) > O for all h in the tangent cone at X0 then X, is a
local minimum of £ (x).

3. Collision Amplitudes under Constraints

(a) Linear Constraints at High Energies

For our first example to illustrate the general method we
consider the problem discussed by Singh (1971b), but using the Lag-
rangian method as suggested by Hodgkinson (unpublished). Let A(s,t) =
ImF be the imaginary part of a scattering amplitude. Consider its

maximum value in

0 < * £ 4m* = <, (3.1)

Define w = 1 + 2t/ (s-4), Wy = 1+ 2tl/(s—4). Then we have to maximise
g

Afs,t) = 2 (2€+1) a,B (W) (3.2)

(4
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subject to the constraints

ac 2 O, for £=0,1,2, .. (3.3)
oo 7.
> @e+) Q, T )= (k/s YA(st,) = (3.4)
(where Al <, (s/so)2 follows from the Jin-Martin bound),
o) ? 1
> e, - k_C[Pﬁ-i:l =(k/s?)A(s,0) = 2_.(3.5)
o) die

The method of linear programming tells us that the maximum of A(s,t)
will occur when all ap are zero except for two, ap and a_ say. It
does not at once inform us that p+l = g. This can be seen from the
Lagrangian for the constrained problem.

L= D () a, B ) + LA~ S @esa, )
+P A= > (2e4) qﬂCwa)]

+ 5 (2e+1) N, Q, (3.6)

It is obvious that max A(s,t) will increase if either AO or Al is
increased, hence X> O and /5 > 0. Also since ’ke are inequality
multipliers )Y;; 0 for a maximum(from theorem 3). The differential

of L is zero at a maximum,

1 oL
e pa,
Let I denote the interior subset and BO the boundary subset of solutions
of (3.7),

I :a, > 0, lfo,P

=0 =P, (W -u—[ﬁpz(wl) + A, (3.7)

(W) =0 +f3P, (W) (3.8)

e 1

B, : ap, = 0, 'Ae=o<+/51>¢ (W) = Py(w) >0 (3.9)

From (3.8) and (3.9) it is obvious that ael is zero except for ap,

%p+1
The value of p can be found from the constraints (3.4) and (3.5). For

large values of s, p 1is also large and one can use
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exp(yl)
Polwy) Porrlwy) o~ Io(yl)’\'——-——-ll (3.10)
(3
(27y))
2 %
where Y, = L(tl/k )T . This gives
4% 2
£ 41 -
p £ 7 s Zw[s/(soﬁ‘tot):). (3.11)

Substituting in (3.2) one obtains Singh's result, namely

A(s,t) ¢ A'7%(s,t) ¢ I(Y). (3.12)

~
A A
@] o]

The above method extends readily to the use of non-linear unitarity

aC - af > O instead of the linear form (3.3).

(b) Phenomenological Constraints at Finite Energy

Singh and Roy (1970) bounded A(s,t) given by (3.2) in the region
t < o, using the partial wave series for O (total) and for ¢ (elastic)
as constraints. In the region [t]| < 0.1 (GeV/c)z, they found

2
A(s,t) ~ do do
nax | 1546} ‘ ~ (E{)/(zrt)t:o (3.13)

At high energies the Singh-Roy bound given by the left hand side of
(3.13) exceeds the data by only about 10% in {t{{ 0.1 (GeV/c)Z, but
for larger |t| it differs from the data by more than an order of
magnitude.

Savit, Einhorn and Blankenbecler (1971) imposed the additional
constraint that partial waves decrease monotonically ae+2 £ a, -
However, they found,only a slight improvement was obtained.

Jacobs et al (1970) imposed instead, an additional constraint
that fixed a phenomenological value of A(s,t) at a physical value of
t & -0.1 (Gev/c)z. This was found to extend the region in which max
A(s,t)was close to the data in the sense of (3.13). For the constraint
at larger values of |t| oscillations are induced in max A(s,t) and its
agreement with the data becomes poorer.

Hahn and Hodgkinson (1971) impose an additional
constraint at t > O instead of t <& O. Thus they use (3.4) with
Jin-Martin bound replaced by a phenomenological value of Al
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This value is obtained by extrapolating from experimental data in

t £ Otot=1¢t, = 4m?

1 , using

{ 2
A(s,t) = A_ exp[3bt + ot ] (3.14)

The resulting auxiliary objective function (or Lagrangian) is given by
(3.2) and
L = A(s,t) +«[A - i(2€+1)ae]

+/5[Al - X (2¢+1)a,F, (wl)]
+ =% - I (2e+1) @2+))]

4

+ 2 (2e+1) A, (ap-aj-x} ) (3.15)
For a maximum of A(s,t), rp = 0 and
Pg(z) = & - BB(w) - (a/a)+ A(1-2a,) = O, (3.16)
2,20, (1/a) + 22g 20. | (3.17)

where -1 ¢ z { 1 and Wy > 1.

There are three classes of € values for the solutions of these

equations,

ee I : 2 =0, (ap/a) =P, (2) - &~ AP, (w).
£ €B,:a, =0, A =%+ APy (w)) =P, (z) 20
¢eB a, =1, A= By (2) - (1/a) - % - AP, (w)).  (3.18)

The parameters are evaluated from the equality constraints that cause
each of the square brackets in (3.15) to be zero. The solutions for
ap give a partial wave profile for Amax(s,t), that depends on both s

and t.

The normalised bound U is defined by

U(s,t) = Amax(s,t)/Ao (3.19)

One can similarly obtain a lower bound,

L(s,t) = Amin(s,t)/Ao (3.20)
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The resulting upper and lower bounds obtained by Hahn and Hodgkinson
are compared with experiment in Fig. 1, which also shows the Singh-
Roy bound, in pion-nucleon scattering. It is remarkable how close
U(s,t) comes to the data, when one recalls that it involves only one
constraint (at t = 4m?) additional to O

tot
be noted that the use of the ratio (3.19) compensates partly for the

and 0&2 . It will of course
fact U(s,t) involves only the imaginary part of the amplitude.

4. Integral Constraints

(a) Bounds on Averaged ¥ T Cross Sections

Reference: Common and ¥ndurain (1971), Roy (1972) and Steven
(1972).
We shall consider 7° 7° scattering, using units with m, = 1.
From the Froissart~Gribov formula for partial waves in the t channel,

evaluated in the threshold limit t = 4, we obtain the scattering

length a§ . This gives
€ = A(s,9)
a = BEgF o [ g (4.1)
8 2 y 24

In terms of s channel partial waves,

A(s,t) = 2(54/"/k) Z (2€+1) a, (s) P, (2) (4.2)
- 4T )
Teor ()= 2 () L (2e+1) a, (4.3)

where the factor 2 in (4.2) and (4.3) comes from the identity of the
pions.

We will assume that the scattering lengthtxg is known, for
example by considering the effect of ¥ F scattering on TN dispersion
relations using experimental 7N data (Morgan and Shaw 1969).

We then maximise the averaged total cross—section.EEot defined by
Tyop (5,089 Al (K)o
- 2 —
7 ot L2 = [ T (2e+4) e, 7 (4.4)
T (-4
32T Aa

where g(s) is a chosen weight function, and ae (s) are subject to the
constraint (4.1) with (4.2), and the unitarity constraint

- - 0. 4.5
a a t, > (4.5)
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The auxiliary objective function is
L 5/2y-1 5
L = IZT + D(sl,sz) [ a - 54(ks ) 2_(22+1)azPe(w)ds]
- 4
+ 7 es) [, (k%7 A, (s,8,,8,) (ap-ai-rf)ds  (4.6)

where w = 1 + 8/(s-4).

From the general theory considered earlier, for a maximum,
72(5,31,52) 2 o0 (4.7)
e

A, =0 if 0 ( ae(s) < 1 (4.8)

Taking functional derivatives of L, we obtain

)
B

= 0 = zh(s’sl'SZ)re (s) (4.9)

L 3
NH

6(5-4,) 6 (8,-4) § W
(a-4)
Da,, 4.) R ()
ﬁbf/g_
Ag (A ) 8, V(A= 2ay)

2% p572
In general when Kz= 0O the solutions for a ¢ and r, are indeterminate,

o
~

(

(v
pS'
1

(4.10)

but solutions exist to (4.10) only for discrete values of s. The con-
tribution of the corresponding values of a, can make no contribution
to ot SO they can be ignored. Exceptions to this general rule occur
only for certain choices of weight function. For example, Roy (1972)

considers

q(s) = C(k/ss/z): (4.11)

Then (4.10) can be satisfied for £ = 0 for all s by choice of D. The
problem reduces in this case to optimising EEot when only ao(s) is
non-zero, One finds that if the scattering lengthtxg is not too large,

one obtains the bound

]

157 , t 1 kds

—8—“2 > FI 0t0t(S) ;‘5‘72 (4.12)
S
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Roy (1972) finds that bounds of this type are approached to within a
factor 2 by currently accepted scattering lengths and cross~sections.
The corresponding bounds for more general weight functions
have been evaluated by Steven(1972). The method follows from (4,10)
ignoring the class I in which O € a, <« 1, and considering only the

1.

el

classes Bo :a e = 0, and B1 ta ¢

Blankenbecler and Savit (1972) have introduced a modification
to the above method by assuming the % amplitude and its partial
waves to be known for energies less than a known constant C. Above
this energy they assume a particular functional form for
take Gy, < %Gtot
to a lower bound on the scattering length. The requirement that this

G%ot and they

for energy greater than C. These constraints lead

lower bound is less than the experimental value then sets a constraint

on the assumed functional form for 0]: In the particular case where

ot*
crtot is taken to be a constant equal to O (00) above s = 25 m%, they
find that g(00) is less than about 40 mb, which compares well with the

factorization estimate of 15-20 mb.

(b) Pion-Nucleon Amplitudes
Reference: Common and ¥Yndurain (1971 and 1972),
Kolanowski and Lukaszuk (1972), Steven (1972).

The above technigues for bounding averaged cross-sections have

been extended by the above authors to pion-nucleon scattering. They
also invert the argument to obtain bounds on the amplitudes in the
crossed channel. Thus (4.12) provides a lower bound on the Wn scatter-
ing length if the total cross-section is assumed to be known, for
example by putting in phenomenological 7% resonances.

In the case of IN scattering the total cross-sections are
known from experiment. Then the formalism leads to bounds in the

crossed channel, namely

% — NN (4.13)

Common and Yndurain (1972) introduce the additional feature that the

~

annihilation cross-section NN —=» ¥ i is constrained via unitarity
by the TN elastic amplitude,

]fa(Nﬁ%u

!

)} 2< mE . (ev) -1E, (v )] 2(a.14)

1

This observation gives an immediate gain of a factor 4 in the analogue

of the Froissart bound for the total annihilation cross-section
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G (NN -»¥¥ ). It can also be used in two further ways. One way

is to obtain a local bound at finite energies on the annihilation
cross-section when Gzot(r1r) is assumed to be known. The latter
constrains the partial wave series involving Imf,(TT) and via (4.14)
it constrains the partial wave expansion of &(NN —=»Ww). The local

value of 0 (¥ ¥) may be taken from a Regge model since the energy

for NN aigzhilation exceeds 2 GeV,

The constraint (4.14) is most relevant at low energies near the
annihilation threshold. In this region (above 2 GeV) the bound may be
used to test models for extrapolation of experimental values for
6" (NN->7ww). These experimental values are obtained at energies of
several GeV where the bounds are rather weak. At lower energies the
bounds provide a cut-off to the region where a Regge model extra-
polation for ¢~ (NN —» ¥ ) might be applicable. The results of Common
and Yndurain are summarised in Fig. 2 which is adapted from their (1972)
paper.

Finally Common and ¥Yndurain use the Froissart-Gribov expression
for the T T scattering length to constrain the W% amplitude as in
(4.1) and (4.2). This then leads via (4.14) to constraints on the
energy-averaged partial wave expansion of G (NN—>%% ), These energy
averaged bounds are not very tight presumably because (4.14) is a weak
constraint at most energies, since it 1is clear from experimental results
and Regge models that fe(Nﬁ —» TT) should tend to zero as the energy

increases.

(c) Other applications of optimization theory

Within particle physics as further experimental evidence becomes
available there will be more scope for studying more inequalities based
on phenomenological constraints. This should apply particularly to
inequalities involving spin parameters in two-body reactions and to
inequalities involving multiparticle production and inclusive reactions.
From a more theoretical viewpoint it is valuable to use
inequalities to limit the effects on bootstrap calculations of unknown
couplings to inelastic processes (Ciulli et al. (1972)).

Outside particle physics optimization theory forms an important
part of many studies of complex systems whether in operational research,
systems analysis or control theory. One of the central problems in its
use for environmental or social applications arises from the conflict
between desirable objective functions. This conflict, coupled with
the multitude of influences, the paucity of data and the varying time

scales of observation of change, leads to problems of such magnitude
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that the particle thecrist may pause to reflect on the simplicity

of his own problems of understanding the fundamental laws of physics.
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Comparison with experiments (for

7 p elastic at 2 GeV/c)of the Hahn-
Hodgkinson semi-phenomenological
bounds U = max ImF s,t), and

L = min ImF(s,t). The parameter

? is proportional to t, th; range
shown being about 1 (GeV/c)“.

Their fit to the data that led to
the constraint at 4m§ is also shown.
The Singh-Roy bound SR follows from

unitarity and Ty ’Gkot only

The bounds of Common and Yndurain,
compared with two extrapolations
(A) and (B) of experimental values
of (pp->TRX). The broken lines de-
note the extrapolations. The conti-
uous lines denote the bounds using
two different Regge parametrisations
I and II for the Y amplitude. The
dotted line denotes the total in-
elastic cross section for pp. The
triangles denote integrated bounds
using different scattering lengths,
the top one being that normally
accepted



