
Prog. Theor. Exp. Phys. 2021, 103B05 (16 pages)
DOI: 10.1093/ptep/ptab108

Resolving the Hubble tension in a U(1)Lμ−Lτ

model with the Majoron

Takeshi Araki1, Kento Asai2, Kei Honda3, Ryuta Kasuya3, Joe Sato3, Takashi Shimomura4,
Masaki J. S. Yang3,∗
1Faculty of Dentistry, Ohu University, 31-1 Sankakudo,Tomita-machi, Koriyama, Fukushima 963–8611, Japan
2Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 133–0033, Japan
3Department of Physics, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338–8570, Japan
4Faculty of Education, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889–2192, Japan
∗E-mail: yang@krishna.th.phy.saitama-u.ac.jp

Received June 14, 2021; Revised August 6, 2021; Accepted August 6, 2021; Published August 20, 2021

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We explore the possibility of resolving the Hubble tension and (g −2)μ anomaly simultaneously
in a U(1)Lμ−Lτ model with Majoron. We only focus on the case where the Majoron φ does not
exist at the beginning of the universe and is created by neutrino inverse decay νν → φ after
electron–positron annihilation. In this case, the contributions of the new gauge boson Z ′ and
the Majoron φ to the effective number of neutrino species Neff can be calculated in separate
periods. These contributions are labelled N ′

eff for the U(1)Lμ−Lτ gauge boson and �N ′
eff for the

Majoron. The effective number Neff = N ′
eff + �N ′

eff is evaluated by the evolution equations of
the temperatures and the chemical potentials of light particles in each period. As a result, we
find that the heavier Z ′ mass mZ ′ results in a smaller N ′

eff and requires a larger �N ′
eff to resolve

the Hubble tension. Therefore, compared to previous studies, the parameter region where the
Hubble tension can be resolved is slightly shifted toward the larger value of mZ ′ .
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1. Introduction

Recently, a discrepancy has been reported in the values of the Hubble constant H0 from cosmic
microwave background (CMB) measurements [1] and local measurements [2–5]. The inferred value
from the � cold dark matter (�CDM) model with the temperature anisotropy of the CMB measured
by Planck [1] is H0 = 67.36 ± 0.54 km s−1 Mpc−1. On the other hand, the local measurements
using Cepheids [2,3] and type-Ia supernovae [4] by SH0ES reported larger values: H0 = 73.45 ±
1.66 km s−1 Mpc−1 and 74.03 ± 1.42 km s−1 Mpc−1, respectively. A similar value of H0 has also
been reported by H0LiCOW from gravitational lensing with late time [5]. These local measurements
result in a larger value of H0 than the CMB measurement.1 The discrepancy reaches the level of
4–6 σ and is called the Hubble tension.

Although the tension could originate from systematic errors in the measurements [8–10], it would
indicate modifications to the standard cosmological model. Several solutions have been proposed
in the fields of cosmology and particle physics. One of the approaches to solving the tension is to
modify the effective number of neutrino species Neff . In Ref. [1], combining the results from the

1 Local measurements based on the TRGB method [6] and TDCOSMO+SLACS analyses [7] reported values
consistent with the CMB results.
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CMB, Cepheids, and others, Neff is derived as 3.27±0.15 at 68% confidence level (C.L.) [11], which
implies a difference from the �CDM results of 0.2 � �Neff � 0.5 to ameliorate the Hubble tension.2

Such a difference can be obtained when new interactions with neutrinos exist. In this regard, models
with gauged U(1)Lμ−Lτ symmetry are very interesting [13–16], under which only mu- and tau-type
leptons are charged. It is well known that the long-standing discrepancy of the muon anomalous
magnetic moment, (g − 2)μ, can be resolved by the contributions of the new gauge boson Z ′ with a
MeV-scale mass [17–19]. The new interaction also alters the decoupling time of neutrinos from the
thermal bath at the early universe. In particular, the decays of Z ′ to heat neutrinos lead to an increase
of Neff . In Ref. [20], it was shown that the Hubble tension can be solved simultaneously with the
discrepancy of (g − 2)μ.

Other interesting models are those with global lepton number symmetry U(1)L. In the class of
the seesaw mechanism, tiny neutrino masses are explained by the heavy Majorana masses of right-
handed neutrinos, which can often be generated by the spontaneous breaking of the lepton number
symmetry. As a result, a pseudo-Nambu–Goldstone boson, the so-called Majoron, appears in the
spectrum [21–24]. From Ref. [25], the decay of the Majoron with a keV-scale mass can increase
�Neff by at most 0.11 and hence help to ameliorate the Hubble tension.

Some models with U(1)Lμ−Lτ symmetry can reproduce observed neutrino masses and mixing
by introducing global U(1)L symmetry [26]. In such models, the contributions from both the Z ′
boson and Majoron have to be taken into account by tracking the number and energy densities of
light particles in the early universe. In this paper we consider solutions of the Hubble tension in a
U(1)Lμ−Lτ model with a Majoron by including the contributions of all light particles. For simplicity,
we only focus on a case where the Majoron does not exist at the beginning of the universe and is
created by νν → φ after e± annihilation. In this case, Neff can be calculated separately from the
contribution of the Z ′ boson and that of φ.

The paper is organized as follows. In Sect. 2 we describe the U(1)Lμ−Lτ model with the global U(1)L

symmetry. In Sect. 3, we derive the evolution equations of the temperature and chemical potential
in the early universe. In Sect. 4 we solve these equations in order to calculate the contribution of Z ′
and the Majoron to Neff and impose a constraint on the Z ′ and Majoron parameter space. Finally, we
summarize our results in Sect. 5.

2. The U(1)Lμ−Lτ model

We consider a U(1)Lμ−Lτ model which contains the global U(1)L symmetry, similarly to Ref. [26].
Such a model can have a keV Majoron as a pseudo-Nambu–Goldstone (pNG) boson originating from
the spontaneous symmetry breaking of the U(1)L. In addition, this model has a U(1)Lμ−Lτ gauge
boson, which can explain the muon anomalous magnetic moment and the IceCube gap of the cosmic
neutrino flux if this gauge boson has O(10–100) MeV mass [27–30]. As discussed in Refs. [20,25],
these particles can contribute to the expansion history of the early universe and have the possibility
of resolving the Hubble tension.

In this section we show the interactions between the electron, neutrino, U(1)Lμ−Lτ gauge boson
Z ′, and Majoron φ which contribute to the Hubble parameter in the early universe.

2 We should note that increasing Neff worsens another milder tension relative to σ8 [11,12], the cosmological
parameter concerning the matter density fluctuation amplitude at 8 Mpc scales.
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Fig. 1. One-loop diagram which induces an interaction between Z ′ and electrons.

2.1. The U(1)Lμ−Lτ
Lagrangian

The Lagrangian related to the U(1)Lμ−Lτ gauge boson is given by

LZ ′ = −1

4
Z ′ ρσ Z ′

ρσ + 1

2
m2

Z ′Z ′ρZ ′
ρ + gμ−τ Z ′

ρJ ρ
μ−τ , (1)

where Z ′ denotes the U(1)Lμ−Lτ gauge boson with field strength Z ′
ρσ = ∂ρZ ′

σ − ∂σ Z ′
ρ , and mZ ′ and

gμ−τ are the U(1)Lμ−Lτ gauge boson mass and gauge coupling constant, respectively. Jμ−τ denotes
the Lμ − Lτ current and is written as

J ρ
μ−τ = μ̄γ ρμ + ν̄μγ ρPLνμ − τ̄ γ ρτ − ν̄τ γ

ρPLντ . (2)

At tree level, the U(1)Lμ−Lτ gauge boson interacts only with mu- and tau-type leptons.

2.2. Effective coupling with electrons

In this model there can be a gauge kinetic mixing χ between the Z ′ and the standard model (SM)
hypercharge gauge field B: Lmix = −χ

2 Bρσ Z ′
ρσ , where Bμν is the field strength of B. Although we

assume that this kinetic mixing vanishes at some high scale for simplicity, non-zero kinetic mixing
appears at one-loop level at a low energy scale. This kinetic mixing then induces an interaction
between the Z ′ and electrons through the mixing ε of the Z ′ with the SM photon γ as shown in
Fig. 1, and the interaction term is described as

LZ ′ ⊃ −εeZ ′
μēγ μe, (3)

where ε is calculated by

ε � egμ−τ

12π2 log
m2

τ

m2
μ

� gμ−τ

70
, (4)

with e and m� the electromagnetic charge and the mass of the charged lepton �.
The partial decay widths of the Z ′ are given as follows:

�Z ′→e−e+ = (εe)2mZ ′

12π

(
1 + 2m2

e

m2
Z ′

)√
1 − 4m2

e

m2
Z ′

, (5)

�Z ′→νμ,τ ν̄μ,τ = g2
μ−τ mZ ′

24π
. (6)
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Hereafter, we assume that neutrino masses are negligible and taken to be massless. Note that the
BABAR experiment excludes the U(1)Lμ−Lτ gauge boson with mZ ′ > 2mμ as a solution of the muon
anomalous magnetic moment, and thus we assume mZ ′ < mμ.

2.3. Majoron interactions

The spontaneous breaking of the global U(1)L symmetry gives rise to a Nambu–Goldstone boson
called the Majoron, φ. If the global U(1)L symmetry is slightly broken, then the Majoron has a tiny
mass,

Lmass = −1

2
m2

φφ2. (7)

The interaction between the Majoron and neutrinos is described by

Lint = gαβν̄L,ανc
L,βφ + h.c., (8)

where gαβ = gβα are coupling constants and νc
L,α ≡ (νL,α)c = Cν̄T

L,α with the charge conjugation
matrix C. As we will see later, this interaction can have a significant impact on the early universe.

Using the projection operator as νL,α = PLνα , we can rewrite the Lagrangian as

Lint = gαβν̄αPRCν̄T
βφ + g∗

αβνT
α CPLνβφ

=
∑
α

gααν̄αPRCν̄T
αφ + 2

∑
α<β

gαβν̄αPRCν̄T
βφ

+
∑
α

g∗
αανT

α CPLναφ + 2
∑
α<β

g∗
αβνT

α CPLνβφ. (9)

In the first equality we used C(γ 5)T = γ 5C. From the above interactions we obtain the decay width
for φ → νανβ , φ → ν̄αν̄β as

�φ→νανβ = �φ→ν̄α ν̄β = |gαβ |2mφ

4πSαβ

. (10)

Here, Sαβ is a symmetry factor satisfying Sαβ = 2(α = β), Sαβ = 1(α �= β).

3. Time evolution equation of temperature and chemical potential

Here we consider the thermodynamics of the early universe in the presence of the new light particles
Z ′ and the the Majoron φ. In our study, we assume the following conditions:

(1) For the parameters of the Z ′, we focus on the region gμ−τ ∼ 10−4–10−3 and mZ ′ ∼ 10 MeV
to solve the (g − 2)μ anomaly.

(2) For the Majoron–neutrino couplings given in Eq. (8), we focus on the region |gαβ | � 10−7 in
order to evade the constraints from Big Bang Nucleosynthesis (BBN) [25], KamLAND-Zen
[31], and SN1987A [32,33].

(3) We assume that there is no primordial abundance of Majorons, and they are produced after
e± annihilation through the inverse decay process νν → φ;3 this assumption corresponds to

3 The initial condition nφ = 0 in the early universe where U(1)L symmetry is restored would be guaranteed
as follows. Let S be an original field of the Majoron when the U(1)L symmetry is unbroken. Here we consider

4/16

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/10/103B05/6355595 by D

ESY-Zentralbibliothek user on 23 N
ovem

ber 2021



PTEP 2021, 103B05 T. Shimomura et al.

looking at the parameter region satisfying Eq. (41). The Boltzmann equations with simulta-
neous contributions from Z ′ and φ are technically difficult to solve. We leave this for future
work.

Under condition (2), the scattering and the annihilation processes of Majorons can be neglected,
and only the decay and inverse decay of the Majoron, φ ↔ νανβ , ν̄αν̄β , are relevant to our study.
Moreover, because of condition (1), the Z ′ becomes non-relativistic before e± annihilation and
decays mainly into neutrinos. On the other hand, from condition (3), Majorons are produced after e±
annihilation. Therefore, the thermodynamics of Z ′ and φ can be considered separately, before and
after the temperature Tγ ∼ 10−2 MeV at which the electrons and positrons have already annihilated.
In the following subsections the evolution equations are derived for each period.

3.1. Evolution equation before e± annihilation

We consider the evolution equations for the universe before e± annihilation, at which photons,
neutrinos, electrons, and Z ′ exist. Following previous studies [20,34,35], we make the following
approximations in the calculation:

◦ All the particles follow the thermal equilibrium distribution function.
◦ In the collision terms we use the Maxwell–Boltzmann statistics.
◦ Neglect the electron mass me in the collision terms for the weak interaction processes.
◦ Neglect the chemical potentials μi for all the particles i.
◦ The temperatures Ti of a particle i in the same thermal bath are equal; Tγ = Te− and Tνα =

TZ ′ ≡ Tν for α = e, μ, τ .

Using these approximations we obtain the evolution equations for the temperatures of photons Tγ

and neutrinos Tν as follows [20]:

dTν

dt
= −

(
∂ρν

∂Tν

+ ∂ρZ ′

∂Tν

)−1[
4Hρν + 3H (ρZ ′ + PZ ′) − δρν

δt
− δρZ ′

δt

]
, (11)

dTγ

dt
= −

(
∂ργ

∂Tγ

+ ∂ρe

∂Tγ

)−1[
4Hργ + 3H (ρe + Pe) + δρν

δt
+ δρZ ′

δt

]
, (12)

with ρi and Pi being the energy density and pressure of particle i, respectively, and H the Hubble
parameter. Here, the energy transfer rates in Eqs. (11) and (12) are given by

δρZ ′

δt
= 3m3

Z ′
2π2

[
Tγ K2

(
mZ ′

Tγ

)
− TνK2

(
mZ ′

Tν

)]
�Z ′→e+e− , (13)

δρν

δt
= 4G2

F

π5

[
(g2

eL + g2
eR) + 2(g2

μL + g2
μR)

]
F(Tγ , Tν) + 2(gμ−τ εe)2

π5m4
Z ′

F(Tγ , Tν), (14)

where GF is the Fermi coupling constant, K2 is the modified Bessel function of the second kind,
geL = 1/2 + s2

W, geR = s2
W, gμL = −1/2 + s2

W, and gμR = s2
W with the sine of the Weinberg angle

situations where S develops a vacuum expectation value after weak bosons decouple (T � mZ ,W /3). If the
field S is sufficiently heavy and is not created by the decay of other fields, the number density of S in the early
universe is negligible. For example, in Ref. [26] the field SL has a mass of about a TeV that is greater than the
masses of the heavy neutrinos, MN ∼ O(100) GeV, and acquires a vacuum expectation value ∼ O(10−7) GeV.
Thus, the initial condition nφ = 0 is justified.
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sW ≡ sin θW. The function F(T1, T2) is defined as

F(T1, T2) = 32(T 9
1 − T 9

2 ) + 56T 4
1 T 4

2 (T1 − T2). (15)

3.2. Evolution equation after e± annihilation

We derive the evolution equations for the universe after e± annihilation, at which photons, neutrinos,
and the Majoron exist. In analogy with the previous subsection, we make the following assumptions
[35]:

◦ All the particles follow the thermal equilibrium distribution function.
◦ In the collision terms, we use the Maxwell–Boltzmann statistics.
◦ Tνα ≡ Tν and μνα ≡ μν (α = e, μ, τ).

Using these approximations, we obtain the evolution equations for temperature and chemical
potential as [35]:4

dTν

dt
=

(
∂nν

∂μν

∂ρν

∂Tν

− ∂nν

∂Tν

∂ρν

∂μν

)−1[
−3H

(
(ρν + Pν)

∂nν

∂μν

− nν

∂ρν

∂μν

)
+ ∂nν

∂μν

δρν

δt
− ∂ρν

∂μν

δnν

δt

]
,

(16)

dμν

dt
= −

(
∂nν

∂μν

∂ρν

∂Tν

− ∂nν

∂Tν

∂ρν

∂μν

)−1[
−3H

(
(ρν + Pν)

∂nν

∂Tν

− nν

∂ρν

∂Tν

)
+ ∂nν

∂Tν

δρν

δt
− ∂ρν

∂Tν

δnν

δt

]
,

(17)

dTφ

dt
=

(
∂nφ

∂μφ

∂ρφ

∂Tφ

− ∂nφ

∂Tφ

∂ρφ

∂μφ

)−1[
−3H

(
(ρφ + Pφ)

∂nφ

∂μφ

− nφ

∂ρφ

∂μφ

)
+ ∂nφ

∂μφ

δρφ

δt
− ∂ρφ

∂μφ

δnφ

δt

]
,

(18)

dμφ

dt
= −

(
∂nφ

∂μφ

∂ρφ

∂Tφ

− ∂nφ

∂Tφ

∂ρφ

∂μφ

)−1[
−3H

(
(ρφ + Pφ)

∂nφ

∂Tφ

− nφ

∂ρφ

∂Tφ

)
+ ∂nφ

∂Tφ

δρφ

δt
− ∂ρφ

∂Tφ

δnφ

δt

]
,

(19)

dTγ

dt
= −HTγ , (20)

with ni being the number density of particle i. The number and energy density transfer rate of
neutrinos are given by

δnν

δt
=

∑
α

(
δnνα

δt
+ δnν̄α

δt

)
, (21)

δρν

δt
=

∑
α

(
δρνα

δt
+ δρν̄α

δt

)
. (22)

Since φ and ν are no longer strongly coupled to the photon in this period, their chemical potentials are
no longer guaranteed to be zero. Thus, the above evolution equations for μν and μφ are indispensable.

4 A derivation of these equations can be found in Appendix A.
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3.3. Calculation of the number and energy transfer rates

To solve the evolution equations for temperatures and chemical potentials, we need to calculate the
number and the energy transfer rates. For processes φ ↔ νανβ and φ ↔ ν̄αν̄β , the number and the
energy transfer rate of φ are described as follows [35]:

δnφ

δt

∣∣∣∣
φ↔νανβ

= δnφ

δt

∣∣∣∣
φ↔ν̄α ν̄β

= m2
φ�φ→νανβ

2π2

[
Tνe2μν/Tν K1

(
mφ

Tν

)
− Tφeμφ/Tφ K1

(
mφ

Tφ

)]
, (23)

δρφ

δt

∣∣∣∣
φ↔νανβ

= δρφ

δt

∣∣∣∣
φ↔ν̄α ν̄β

= m3
φ�φ→νανβ

2π2

[
Tνe2μν/Tν K2

(
mφ

Tν

)
− Tφeμφ/Tφ K2

(
mφ

Tφ

)]
. (24)

Actually, in addition to the decay and inverse decay of φ, there also exist the scattering and the
annihilation processes of the Majoron. However, we neglect these processes because we assume
|gαβ | � 10−7, as mentioned at the beginning of this section. In this case, the number transfer rate
for φ is given by

δnφ

δt
=

∑
α≤β

(
δnφ

δt

∣∣∣∣
φ↔νανβ

+ δnφ

δt

∣∣∣∣
φ↔ν̄α ν̄β

)

= m2
φ�φ

2π2

[
Tνe2μν/Tν K1

(
mφ

Tν

)
− Tφeμφ/Tφ K1

(
mφ

Tφ

)]
, (25)

where �φ is the total decay width of φ, given by

�φ ≡
∑
α≤β

(�φ→νανβ + �φ→ν̄α ν̄β ) = mφλ2

4π
, (26)

where λ2 ≡ tr(g†g). In the same way, the energy transfer rate for φ is written as

δρφ

δt
=

∑
α≤β

(
δρφ

δt

∣∣∣∣
φ↔νανβ

+ δρφ

δt

∣∣∣∣
φ↔ν̄α ν̄β

)

= m3
φ�φ

2π2

[
Tνe2μν/Tν K2

(
mφ

Tν

)
− Tφeμφ/Tφ K2

(
mφ

Tφ

)]
. (27)

The transfer rates for neutrinos, δnν/δt and δρν/δt, can be obtained from the number and the
energy conservation law. In the present case, the physics does not depend on a basis of neutrinos,
because the neutrino masses are neglected. This is understood from the fact that �φ depends on gαβ

only in the form tr(g†g). Thus, without loss of generality, we can assume that gαβ has only diagonal
components, and the number conservation is expressed as

δnνα

δt

∣∣∣∣
φ↔νανα

= −2
δnφ

δt

∣∣∣∣
φ↔νανα

, (28)

which leads to

δnν

δt
=

∑
α

(
δnνα

δt

∣∣∣∣
φ↔νανα

+ δnν̄α

δt

∣∣∣∣
φ↔ν̄α ν̄α

)
= −2

δnφ

δt
. (29)

On the other hand, energy conservation leads to

δρνα

δt

∣∣∣∣
φ↔νανα

= −δρφ

δt

∣∣∣∣
φ↔νανα

. (30)
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From Eq. (30), δρν/δt is found to be

δρν

δt
=

∑
α

(
δρνα

δt

∣∣∣∣
φ↔νανα

+ δρν̄α

δt

∣∣∣∣
φ↔ν̄α ν̄α

)
= −δρφ

δt
. (31)

4. Numerical calculation

In this section we discuss the initial conditions and the parameters for the evolution equations of
temperatures and the chemical potentials derived in the previous section, and show the numerical
results. The software used for the calculations is partially based on NUDEC_BSM [35].

4.1. Initial conditions and integration range

Before e± annihilation We solve the system of differential equations in Eqs. (11) and (12) starting
from Tγ = Tν = 20 MeV, at which all the particles are in thermal equilibrium, to Tγ ∼ 10−2 MeV,
where the e± annihilation has taken place.

After e± annihilation Let us consider solving the system of differential equations in Eqs. (16)–(20)
from the temperature where the Majoron hardly exists. To see when the Majoron can be produced in
the early universe, we can consider 〈�νν→φ〉/H , where 〈�νν→φ〉 is the thermally averaged neutrino
inverse decay rate, and H is the Hubble rate. The ratio 〈�νν→φ〉/H is written as [35]

〈�νν→φ〉
H

= 1

81K1(3)
�eff

(
mφ

Tν

)4

K1

(
mφ

Tν

)
, (32)

�eff ≡ 〈�νν→φ〉
H

∣∣∣∣
Tν=mφ/3

�
(

λ

4 × 10−12

)2(keV

mφ

)
. (33)

This is illustrated in [35, Fig. 2]. Imposing 〈�νν→φ〉/H < 10−4, we obtain the condition for Tν as
follows:

Tν

mφ

>

(
�eff

81K1(3) × 10−4

)1/3

� 10 �
1/3

eff . (34)

Here, we use the approximation K1(x) ∼ 1/x for x < 1, because the situation with Tν/mφ > 1
is what we want to consider. If we set the range �eff ≤ 103, the initial value of Tν should satisfy
Tν � 100mφ . Thus, we will take

Tν = 100 mφ (35)

as the initial condition for Tν . As the initial condition for Tγ /Tν , we use the numerical values after
e± annihilation (Tγ � 10−2 MeV) obtained by solving Eqs. (11) and (12).

The remaining initial conditions are determined so that ρφ/ρν < 10−12 is satisfied. Since the
Majoron is ultra-relativistic for Tν = 100 mφ , we can treat the Majoron as a massless particle, so
ρφ/ρν is written as

ρφ

ρν

= 1

6

(
Tφ

Tν

)4 Li4(eμφ/Tφ )

−Li4(−eμν/Tν )
= 4

21

(
Tφ

Tν

)4(
1 + a

μφ

Tφ

− 6

7
a
μν

Tν

+ · · ·
)

. (36)
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Here, Lis(z) is the polylogarithm and a ≡ ζ(3)/ζ(4) ∼ 1.2/1.08 ∼ 1.1. Therefore, to satisfy
ρφ/ρν < 10−12, the parameters should be

Tφ

Tν

� 10−3,

∣∣∣∣μφ

Tφ

∣∣∣∣ < 1,

∣∣∣∣μν

Tν

∣∣∣∣ < 1. (37)

This means that the condition for μφ is

∣∣∣∣μφ

Tν

∣∣∣∣ =
∣∣∣∣μφ

Tφ

∣∣∣∣ Tφ

Tν

<
Tφ

Tν

� 10−3. (38)

Furthermore, since the Majoron is a boson, μφ must satisfy

μφ

Tν

<
mφ

Tν

= 10−2, (39)

from μφ ≤ mφ . Here, the equality sign is removed because Bose–Einstein condensation cannot
occur due to the very small number density of the Majoron.

As for the initial conditions that satisfy Eqs. (37)–(39), in this paper we take them as

Tφ

Tν

= 10−3,
μν

Tν

= −10−4,
μφ

Tν

= −10−5, (40)

according to Ref. [35]. The differential equations are solved until ρφ/ρν < 10−6, when the Majoron
has completely decayed away.5

4.2. Parameters

As mentioned before, we consider the case where the Majoron does not exist in the very early universe
and is created after e± annihilation (Tγ � 10−2 MeV). To realize this situation, the parameters of
the Majoron must satisfy the following conditions:

◦ Majoron production is most active after e± annihilation.
◦ Shortly after e± have annihilated (Tγ � 10−2 MeV), Majoron production is not yet effective.

Since 〈�νν→φ〉/H is maximal when Tν � mφ/3 [35], the above conditions are expressed as

mφ/3 < 10−2 MeV,
〈�νν→φ〉

H

∣∣∣∣
Tν=10−2 MeV

< 1. (41)

4.3. Results

Here, we show the results of solving the evolution equations derived in the previous section. In this
study the deviation of Neff from the standard value occurs twice, namely before and after the e±
annihilation. Thus, it is convenient to write Neff as

Neff = N ′
eff + �N ′

eff . (42)

5 For �eff < 0.1, we solve the equations until ρφ/ρν < 10−7 because it takes a long time for the Majoron to
decay.
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Fig. 2. The evolution of the neutrino energy density for some Z ′ parameter.

Here, N ′
eff describes the effective number of neutrino species determined at Tν/Tγ = constant soon

after e± annihilation, and is defined as

N ′
eff = 3

(
11

4

)4/3 (
Tν

Tγ

)4 ∣∣∣∣
Tγ �10−2 MeV

. (43)

On the other hand, �N ′
eff represents the change in the effective number of neutrino species due to the

Majoron production after e± annihilation. As we will see later, N ′
eff and �N ′

eff are not completely
independent, and �N ′

eff slightly depends on N ′
eff .

Figure 2 shows the evolution of the neutrino temperature obtained by solving Eqs. (11) and (12).
As can be seen from this figure, the value of Neff is slightly larger than that of the SM N SM

eff � 3.045
[36,37] due to the new gauge boson Z ′.

Figure 3 shows the evolution of the neutrino energy density and the Majoron energy density for
the case of N ′

eff = 3.5. This figure shows that for �eff � 1, the Majoron begins to be produced by
νν → φ when the temperature reaches Tν � mφ . After that, the neutrinos and Majoron gradually
reach thermal equilibrium. This corresponds to the gently sloping area around the peak in the Figure 3.
Since the net energy transfer due to φ ↔ νν is negligibly small, the evolution of the energy densities
can be determined by the following Boltzmann equations:

dρν

dt
+ 4Hρν = 0, (44)

dρφ

dt
+ 3H (ρφ + Pφ) = 0. (45)

At temperature Tν � mφ the Majoron becomes non-relativistic and ρφ becomes much larger than
Pφ . Consequently, the energy densities are derived as

ρν ∝ R−4, ρφ ∝ R−3, (46)

where R is the scale factor. Therefore, the difference between ρν and ρφ occurs as the universe
expands. At temperature Tν � mφ/3, Majorons start to decay into neutrinos. Since the neutrinos
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Fig. 3. The evolution of neutrino (solid line) and Majoron (dashed line) energy density for the case of N ′
eff =

3.5.

Fig. 4. The evolution of the neutrino energy density for the case of N ′
eff = 3.5, mφ = 1 keV.

produced by this decay are more energetic than the existing neutrinos, the overall neutrino energy
density slightly increases, resulting in a slightly larger Neff .

Figure 4 shows the evolution of the neutrino energy density for the case of N ′
eff = 3.5, mφ = 1 keV.

This figure is obtained by smoothly connecting Figs. 2 and 3 at Tγ � 10−2 MeV.
Figure 5 shows the �eff dependence of �N ′

eff for some N ′
eff . The parameters �N ′

eff and N ′
eff are not

completely independent, and �N ′
eff slightly depends on N ′

eff . As you can see, �N ′
eff becomes larger

for larger N ′
eff ; the reason is as follows: A large N ′

eff corresponds to a large number of neutrinos after
e± annihilation. For �eff � 1, which corresponds to the case where the thermal equilibrium between
the Majoron and neutrino is reached due to φ ↔ νν, this process acts to equalize the number of
neutrinos and Majorons. Thus, for a larger number of neutrinos after e± annihilation, more neutrinos
are converted to Majorons. As a result, the neutrino energy density at Tν � mφ becomes larger,
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Fig. 5. The �eff dependence of �N ′
eff for some N ′

eff .

yielding an increase in �N ′
eff . On the other hand, for �eff � 1, thermal equilibrium is not achieved

between ν and φ, but a small number of Majorons are produced by νν → φ. This process occurs
more often for a larger number of neutrinos after e± annihilation. Thus, the production of Majorons
increases slightly and leads to an increase in �N ′

eff . Note that the contribution of the Majoron �N ′
eff

cannot be larger than ∼ 0.12 in the case of the SM N ′
eff = 3.045.

Using N ′
eff and �N ′

eff defined above, we can write Neff as in Eq. (42). If we fix either N ′
eff or

�N ′
eff , a constraint can be imposed on the other parameter by using the constraint from Planck 2018:

Neff = 3.27±0.15 with 68% C.L. [11]. Although various patterns are possible, we will only discuss
the following two cases.

N ′
eff � 3.4: Figure 6 shows the parameter space of the Majoron in the presence of Z ′ that realizes

N ′
eff = 3.4. The solid and dotted blue lines are the contour lines of �N ′

eff (�eff ). The solid and
dotted red lines represent the same contour lines without the Z ′ boson (N ′

eff = 3.045). The area
below the dashed purple line corresponds to Eq. (41). The blue region (�N ′

eff � 0.1) represents the
region where the Hubble tension can be resolved (3.4 � Neff � 3.5). The lower limit of the mass of
the Majoron is taken to be 10−6 MeV because neutrino masses are not negligible below this value.
The upper limit of the Majoron mass (3 × 10−2 MeV) corresponds to the first condition in Eq. (41),
mφ/3 < 10−2 MeV. If the Z ′ boson is in the parameter region where the (g − 2)μ anomaly can be
solved, the Hubble tension and the (g − 2)μ anomaly can be resolved simultaneously in the blue
region. Furthermore, the gold region above the contour line of �N ′

eff = 0.1 is excluded at more than
a 2 σ level.

�N ′
eff � 0.1: Figure 7 shows the Z ′ parameter space near the region where the (g − 2)μ anomaly

can be resolved. The region between the solid and dashed dotted lines (3.2 � N ′
eff � 3.5) represents

the region where the Hubble tension can be resolved only by the Z ′ boson, as in previous studies
(e.g. [20, Fig. 5]). The region between the dashed and dashed double-dotted lines (3.1 � N ′

eff � 3.4)
represents the same region in the presence of the Majoron that realizes �N ′

eff � 0.1. In this case,
the parameter region where the Hubble tension can be resolved is slightly shifted toward the larger
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Fig. 6. Parameter space of the Majoron in the presence of Z ′ that realizes N ′
eff = 3.4. The solid and dotted

blue lines are the contour lines of �N ′
eff (�eff ). The solid and dotted red lines represent the same contour lines

without the Z ′ boson (N ′
eff = 3.045). The area below the dashed purple line corresponds to one which satisfies

Eq. (41). The gold region represents the region where �N ′
eff � 0.1 holds. The blue region represents the

parameter region where Hubble tensions can be resolved (3.4 � Neff � 3.5). The dark blue region is excluded
by Planck 2018 data [25]. The gray region is excluded by SN1987A [32,33], BBN [25]. The white region
cannot be treated in this paper.

value of mZ ′ . As a result, a new allowed region emerges for larger mZ ′ . The choice of parameters
mZ ′ � 13 − 26 MeV and gμ−τ � (3.6–7) × 10−4 can resolve the Hubble tension and (g − 2)μ

anomaly simultaneously in the presence of the Majoron. The region to the left of the N ′
eff = 3.4

contour line is excluded at more than a 2 σ level.

5. Summary

We have explored the possibilities of resolving the Hubble tension and (g − 2)μ anomaly simulta-
neously in realistic U(1)Lμ−Lτ models that can explain the origin of neutrino mass. In these models,
there is a new light gauge boson Z ′ and a new light scalar, the Majoron φ. It arises from the sponta-
neous breaking of the global U(1)L symmetry and weakly couples to neutrinos. The parameters of
the Z ′ boson are set to be 10−3 � gμ−τ � 10−4, mZ ′ � 10 MeV, neighborhoods of the region that
can resolve the (g − 2)μ anomaly.

We have only focused on the case where the Majoron does not exist at the beginning of the
universe and is created by νν → φ after e± annihilation. In this case, the contributions of Z ′ and φ

to the effective number Neff can be calculated independently. Thus, it is convenient to write Neff as
Neff = N ′

eff + �N ′
eff , the sum of the effective number after e± annihilations, N ′

eff , and its change
due to the Majoron, �N ′

eff . The effective number Neff is evaluated by the evolution equations of
temperatures and the chemical potentials of light particles in each period.

For simplicity, the following two cases were discussed. First, we explored the parameter space
of the Majoron in the presence of a Z ′ that realizes N ′

eff = 3.4. In this case, the Hubble tension
can be resolved (Neff � 3.4–3.5) in the wide region of the parameter space where �N ′

eff � 0.1
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Fig. 7. The Z ′ parameter space near the region where the (g−2)μ anomaly can be resolved. The region between
the solid and dashed dotted lines (3.2 � N ′

eff � 3.5) represents the region where the Hubble tension can be
resolved only by the Z ′ boson. The region between the dashed and dashed double-dotted lines (3.1 � N ′

eff � 3.4)
represents the same region in the presence of the Majoron that realizes �N ′

eff � 0.1. The magenta band
represents the region where the (g −2)μ anomaly can be resolved within a 2 σ level [38]. The brown and green
regions are excluded by the Borexino and CCFR experiments, respectively [39].

(λ � 10−12–10−14) holds. On the other hand, the region with �N ′
eff � 0.1 is excluded at more

than 2 σ level. In the second case, we surveyed the parameter region of Z ′ where the Hubble tension
can be resolved in the presence of a Majoron that realizes �N ′

eff � 0.1. The choice of parameters
mZ ′ � 13–26 MeV, gμ−τ � (3.6–7) × 10−4, which corresponds to N ′

eff � 3.1–3.4, can resolve
the Hubble tension and (g − 2)μ anomaly simultaneously. On the other hand, the region with
mZ ′ � 10 MeV is excluded at more than a 2 σ level.

As a result, we found that the heavier mZ ′ results in a smaller N ′
eff and requires a larger �N ′

eff to
resolve the Hubble tension. Therefore, compared to previous studies, the parameter region where
the Hubble tension can be resolved is slightly shifted toward the larger value of mZ ′ . Note that N ′

eff
and �N ′

eff are not completely independent, and �N ′
eff slightly depends on N ′

eff .
Finally, the Boltzmann equations with simultaneous contributions from Z ′ and φ are more difficult

to solve. We leave this for future work.
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Appendix A. Derivation of the evolution equation after e± annihilation

We derive here the evolution equations in Eqs. (16)–(19) after e± annihilation. First of all, the
evolution equations for the temperature Ta and chemical potential μa of a particle species a that
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follows the thermal equilibrium distribution function are given by [35]

dTa

dt
=

(
∂na

∂μa

∂ρa

∂Ta
− ∂na

∂Ta

∂ρa

∂μa

)−1[
−3H

(
(ρa + Pa)

∂na

∂μa
− na

∂ρa

∂μa

)
+ ∂na

∂μa

δρa

δt
− ∂ρa

∂μa

δna

δt

]
,

(A.1)

dμa

dt
= −

(
∂na

∂μa

∂ρa

∂Ta
− ∂na

∂Ta

∂ρa

∂μa

)−1[
−3H

(
(ρa + Pa)

∂na

∂Ta
− na

∂ρa

∂Ta

)
+ ∂na

∂Ta

δρa

δt
− ∂ρa

∂Ta

δna

δt

]
.

(A.2)

In Eqs. (A.1) and (A.2), na, ρa, and Pa are the particle number density, energy density, and pressure of
particle species a, respectively. From the third approximation at the start of Sect. 3.2 and Tνα = Tν̄α ,
μνα = μν̄α , Eq. (A.1) for the neutrino and antineutrino leads to

dTν

dt
=

(
∂nνα

∂μν

∂ρνα

∂Tν

− ∂nνα

∂Tν

∂ρνα

∂μν

)−1

×
[
−3H

(
(ρνα + Pνα )

∂nνα

∂μν

− nνα

∂ρνα

∂μν

)
+ ∂nνα

∂μν

δρνα

δt
− ∂ρνα

∂μν

δnνα

δt

]
, (A.3)

dTν

dt
=

(
∂nν̄α

∂μν

∂ρν̄α

∂Tν

− ∂nν̄α

∂Tν

∂ρν̄α

∂μν

)−1

×
[
−3H

(
(ρν̄α + Pν̄α )

∂nν̄α

∂μν

− nν̄α

∂ρν̄α

∂μν

)
+ ∂nν̄α

∂μν

δρν̄α

δt
− ∂ρν̄α

∂μν

δnν̄α

δt

]
. (A.4)

In addition, each thermodynamic quantity for {να}, {ν̄α} is expressed by the particle number density
nν , the energy density ρν , and the pressure Pν for the total neutrino:

nνα = nν̄α = 1

6
nν , (A.5)

ρνα = ρν̄α = 1

6
ρν , (A.6)

Pνα = Pν̄α = 1

6
Pν . (A.7)

By adding both sides of Eqs. (A.3) and (A.4), and summing over all flavors, we obtain the evolution
equation for Tν , Eq. (16). The evolution equation for μν , Eq. (17), can also be obtained in the same
way.

For the Majoron evolution equation, by using Eqs. (A.1) and (A.2) set to a = φ, we obtain the
evolution equations for Tφ , Eq. (18), and μφ , Eq. (19).
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