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The main subject of this thesis is scattering amplitudes in N = 4 super-Yang-Mills
theory (SYM) and N = 8 super-gravity theory (SUGRA). We study several aspects
of the scattering amplitudes of Yang-Mills theories as well as gravity theories using
modern techniques. After the introductory chapter, we apply these methods to study
the scattering amplitudes both in N = 4 SYM and N = 8 SUGRA. We first study
two dual formulations of N = 4 SYM, namely the Arkani-Hamed et al Grassmannian
formulation and Witten’s twistor string theory. We present a new, explicit formula
for all tree-level amplitudes in N = 4 SYM. The formula is written as a certain
contour integral of the connected prescription of Witten’s twistor string, expressed
in link variables. A very simple deformation of the integrand gives directly the
Grassmannian integrand proposed together with the explicit contour of integration.
Then we calculate for the first time the five-point three-loop amplitudes of N = 4
SYM using the leading singularity method. Using the method of obstructions we
numerically evaluate two previously unfixed coefficients which appear in the three-
loop BDS ansatz. After the study of N = 4 SYM, we turn our journey to N = 8
SUGRA by first presenting and proving a new formula for MHV amplitude in SUGRA.
Some of interesting features of the formula set it apart as being significantly different
from many more familiar formulas. We then present an algorithm for writing down
explicit formulas for all tree amplitudes in N = 8 SUGRA, obtained from solving
the supersymmetric on-shell recursion relations. The formula is patterned after one
recently obtained for all tree amplitudes in N = 4 SYM which involves nested sums of
dual superconformal invariants. We find that all graviton amplitudes can be written
in terms of exactly the same structure of nested sums with two modifications: the
dual superconformal invariants are promoted from N = 4 to N = 8 superspace in
the simplest manner possible–by squaring them–and certain additional non-dual
conformal gravity dressing factors (independent of the superspace coordinates) are
inserted into the nested sums. To illustrate the procedure we give explicit closed-
form formulas for all NMHV, NNMHV and NNNMV gravity superamplitudes. The
obtained results are further simplified by applying bonus relations between gravity
amplitudes, which arise from the soft behaviour of tree-level gravity amplitude.
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Chapter 1

Introduction

The main subject of this thesis is scattering amplitudes in N = 4 super-Yang-Mills

theory (SYM) and N = 8 super-gravity theory (SUGRA). In weakly coupled field

theories, the natural object to study is the perturbative S-matrix. The perturbative

expansion of the S-matrix is conventionally computed using Feynman rules. It

was observed long time ago that scattering amplitudes show simplicity that is not

apparent from the Feynman rules and usual local formulations. For example, the

maximally helicity violating (MHV) amplitudes of Yang-Mills theory can be expressed

as very simple holomorphic functions.

Recently there have been enormous progresses on unraveling the structure of scat-

tering amplitudes both in gauge theory and gravity, such as generalized unitary-cut

method at loop level [1], and Britto-Cachazo-Feng-Witten (BCFW) recursion rela-

tions at tree level, for Yang-Mills theory [2, 3] and for gravity[4, 5], and BCFW-type

recursion relations for loop-level amplitudes have also been discovered very recently[6].

1
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A particularly important example is the structure of amplitudes in N = 4 super

Yang-Mills theory(SYM), which has remarkable simplicities obscured by the usual

local formulation and Feynman-diagram calculations. For instance, dual conformal

symmetry (even Yangian symmetry) of N = 4 SYM appears very naturally in the

BCFW solutions of the theory [7, 6]. And two beautiful dual formalisms for the

S-matrix in N = 4 SYM, twistor string theory and the Grassmannian formulation,

have been constructed.

Another reason to be interested in supersymmetric N = 4 Yang-Mills is that it

provides the simplest incarnation of the celebrated AdS/CFT correspondence. It is

believed that the supersymmetric N = 4 Yang-Mills in four dimensions is equivalent

to Type IIB string theory on a AdS5 × S5 background. There is by now a fairly

detailed dictionary between observables on both sides of the correspondence but

computations of dual quantities can usually only be performed in non-overlapping

regions of the parameter space. Integrability techniques yield exact solutions and

have afforded non-trivial tests of the AdS/CFT correspondence. It is important

to note here that perturbative computations at weak and strong coupling played a

decisive role in finding solutions for the integrable models which appeared in studying

the dilatation operator for the supersymmetric N = 4 theory.

Indeed duality is one of most important ideas of modern high energy theoretical

physics. In this thesis, we also study the perturbative dual formalisms of N = 4

SYM. In particular, the dual formalisms concerning to us are Witten’s twistor string

theory and Grassmannian formulation, which both perturbatively compute the S-

matrix of N = 4 SYM. Specially the focus will be on the tree-level contours for the

Grassmannian formulation and the relation between the Grassmannian formulation
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and the twistor string theory.

Arkani-Hamed, Cachazo, Cheung and Kaplan [8] proposed a duality between the

leading singularities of planar N(k−2)MHV scattering amplitudes in N = 4 super Yang-

Mills and certain contour integrals denoted Ln,k over the Grassmannian manifold

G(k, n) of k-planes in n-dimensions.

One of important open questions of the Grassmannian formulation is to determine the

appropriate contours in the Grassmannian for computing any general tree amplitude

in N = 4 super Yang-Mills. It turns out that the twistor string connected prescription

is able to provide a preferred choice of integration contour and that its integrand

may be smoothly deformed to the integrand Ln,k.

We prove the equivalence between the connected prescription for the twistor string

and Ln,k for all NMHV amplitudes in [9, 10]. These proofs rely on repeated use of

the global residue theorem, and show that the combination of residues contributing

to any NMHV amplitude computed via the twistor string can be re-expressed as a

direct sum of residues of Ln,k. Moreover, an amazing and much stronger property is

observed: the two integrands were in fact related by a smooth deformation, which

interpolates between the connected prescription of twistor string theory and the

Grassmannian integrand Ln,k. The deformation connecting the two descriptions

moves the locations of each pole, and changes the value of each residue; but the sum

of residues which define the tree amplitude is itself found to be invariant. All those

properties are actually very general, and we propose a new, explicit formula for all

N(k−2)MHV tree amplitudes in N = 4.

Then we turn to study the loop-level amplitudes in N = 4 SYM using leading
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singularity methods. Much of the recent interest in multi-loop scattering ampli-

tudes has been stimulated by the ABDK/BDS ansatz [11, 12] which suggested that

multi-loop MHV amplitudes satisfy a powerful iteration relation implying a simple

exponential form for the full all-loop amplitude. Although the ABDK/BDS ansatz

was successfully tested for four particles at two [11] and three [12] loops, as well as

for five particles at two loops [13, 14], some doubts raised in [15, 16, 17] necessitated

an explicit calculation of the two-loop six-particle amplitude [18] which conclusively

demonstrated the incompleteness of the BDS ansatz. Indeed six particles is the

earliest that the hypothesized dual conformal symmetry of amplitudes could have

allowed BDS ansatz to break down; for n = 4, 5 the symmetry fixes the form of the

amplitude up to a few numerical constants [15, 19].

It was conjectured that leading singularity is enough to determine the whole ampli-

tudes in a maximally supersymmetric theory, including N = 4 SYM. Our calculation

on five-point three-loop amplitudes confirms this conjecture, indeed we determine

the amplitudes purely by knowing the leading singularities. Using the method of

obstructions we also numerically evaluate two previously unfixed coefficients which

appear in the three-loop BDS ansatz.

Meanwhile it has been pointed out [20] that there are reasons to suspect N = 8

SUGRA to have even richer structure and to be ultimately even simpler than SYM.

It motivates us to study various aspects of N = 8 SUGRA tree-level amplitudes.

First we present and prove a new formula for MHV amplitude in SUGRA, which

has many nice properties as a gravity amplitudes. Some of interesting features of

the formula set it apart as being significantly different from many more familiar

formulas. Further more, it has a simple “link representation", which may be helpful
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to understand the dual formulation of the S-matrix of gravity amplitudes. Then

by solving supersymmetric on-shell recursion relations explicitly, we present an

algorithm for writing down an arbitrary tree-level SUGRA amplitude based on the

idea of color-ordered subamplitudes in SUGRA amplitudes, and a KLT-like structure

between Gravity amplitudes and Yang-Mills amplitudes are obtained. The formula

is patterned after one recently obtained for all tree amplitudes in N = 4 SYM

which involves nested sums of dual superconformal invariants. We find that all

graviton amplitudes can be written in terms of exactly the same structure of nested

sums with two modifications: the dual superconformal invariants are promoted from

N = 4 to N = 8 superspace in the simplest manner possible–by squaring them–and

certain additional non-dual conformal gravity dressing factors (independent of the

superspace coordinates) are inserted into the nested sums. To illustrate the procedure

we give explicit closed-form formulas for all NMHV, NNMHV and NNNMV gravity

superamplitudes. The result can be written as a summation over (n− 2)! “ordered

gravity subamplitudes” with different permutations of particles 2, . . . , n− 1. While

in contrast to SYM color-ordered amplitudes, the SUGRA amplitudes actually have

a faster, 1/z2, falloff and the contour integral
¸
dzM(z) gives the bonus relations. we

will see that these relations can be used to further simplify the explicit all tree-level

formulae for the amplitudes in N = 8 SUGRA by reducing the (n− 2)!-permutation

sum to a new (n− 3)!-permutation one.

Finally, we will present some closing comments, and directions for future research.



Chapter 2

Twistor string theory and

Grassmannian: NMHV amplitude

2.1 Introduction

The twistor string theory formulation of Yang-Mills scattering amplitudes has been a

great step forward in unearthing a host of properties of scattering amplitudes, hitherto

unseen via the standard methods of quantum field theory. A connected prescription

formula for computing all tree level superamplitudes in twistor string theory has been

written down in [21], based on Witten’s proposal that the Nk−2MHV superamplitude

should be given by the integral of an open string current algebra correlator over

the space of degree k − 1 curves in supertwistor space P3|4. Furthermore, a “linked”

version of the formula had been written in [22] and [23] by reformulating the original

connected prescription amplitude in terms of the link variables introduced in [24]. A

6
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remarkable new contour integral over a Grassmannian of these link variables, which

apparently encapsulates information about leading singularities of N = 4 Yang-Mills

loop amplitudes in addition to tree-level information, has been written down by

Arkani-Hamed, Cachazo, Cheung and Kaplan (ACCK) in [8].

In this chapter we make the connection between the linked-connected prescription

formula from twistor string theory and the ACCK proposal more transparent by

offering a simple analytic proof between the two formulas for all tree-level NMHV

superamplitudes. Also we note that a simple deformation of the connected prescrip-

tion integrand by non-zero parameters gives directly the Grassmannian integrand

in the limit when the deformation parameters equal zero. Specifically, the ACCK

Grassmannian integrand arises from the linked-connected formula in a simple limit

when the second terms in all sextic polynomials are zero (see formula (2.2.18)).

In section II we review some of the recent developments and write down a general

formula (2.2.15) for n-point NMHV amplitudes in terms of minors in a convenient

way. In section III we show how to get the BCFW contours from the linked-connected

prescription for the six and seven point NMHV amplitudes in a simple way, followed

by the general proof for all n-point NMHV amplitude by using the global residue

theorem (GRT). In the appendix we present the ten–point case as a concrete example.



8

2.2 Review of the Developments

2.2.1 Review of Dual S-Matrix Formulation

Recently Arkani-Hamed, Cachazo, Cheung and Kaplan [8] have conjectured a formula

for a dual formulation for the S-Matrix of N = 4 SYM. According to their proposal

the planar, color stripped, n particle, Nk−2MHV amplitudes are associated with

contour integrals over a Grassmannian

Ln;k(Wa) = 1
Vol(GL(k))

ˆ
dk×nCαa

(12 · · · k) (23 · · · (k + 1) ) · · · (n1 · · · (k − 1) )

k∏
α=1

δ4|4(CαaWa)(2.2.1)

where the Wa are twistor variables obtained by Fourier transforming with respect to

the λa : W = (W |η̃) = (µ̃, λ̃|η̃), and

(m1 · · ·mk) ≡ εα1···αkCα1m1 · · ·Cαkmk . (2.2.2)

Here, Cαa is a k × n matrix and its ‘minor’, (m1 · · ·mk) is the determinant of the

k × k submatrix made by only keeping the k columns m1, · · · ,mk. The integrand of

this formula has a GL(k) symmetry under which Cαa → LβαCβa for any k× k matrix

L, and so one has to gauge fix by dividing by Vol(GL(k)). This formula has manifest

cyclic, parity, superconformal and also dual superconformal symmetry [25].

The outstanding feature of this formula is that, interpreting the integral as a multi-

dimensonal contour integral in momentum space, the residues of the integrand give

a basis for obtaining tree level amplitudes as well as all loop leading singularities,

which was heavily studied in last chapter.
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2.2.2 NMHV tree amplitude from ACCK

A general formula for determining which residues correspond to tree amplitudes

for the n particle NMHV case has been given in [8] which we will now review.

Following their notation we denote a residue when n − 5 minors (i1 i1 + 1 i1 +

2), . . . , (in−5 in−5 + 1 in−5 + 2)→ 0 as {i1, i2, · · · , in−5}, and it is antisymmetric, for

instance, {i1, i2, i3} = −{i2, i1, i3}. Then NMHV tree amplitude is given by the sum

of residues
ANMHV
n,BCFW = (−1)n−5 O ? E ? O ? E . . .︸ ︷︷ ︸

(n− 5) factors
(2.2.3)

where O is the set of odd numbered particles and E is the set of even numbered

particles

O =
∑
k odd
{k}, E =

∑
k even
{k} (2.2.4)

and

{i1} ? {i2} =


{i1, i2} if i1 < i2

0 otherwise
(2.2.5)

The above proposal can also be motivated from the geometric picture presented in

the recent papers [27] and [26].

To get P(BCFW) (parity-conjugated BCFW terms) from BCFW, one can simply

apply the GRT. For example, the BCFW terms of the seven-point NMHV amplitude

can be written as

A7 = {1, 2}+ {1, 4}+ {1, 6}+ {3, 4}+ {3, 6}+ {5, 6}. (2.2.6)
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2.2.3 Review of the Linked-Connected Prescription

Let us begin by reviewing some details of the connected prescription formula [?

]. The 4|4 component homogeneous coordinates for the i-th particle in P3|4 are

Zi = (λαi , µα̇i , ηAi ) with α, α̇ = 1, 2 and A = 1, 2, 3, 4. The connected formula can be

written explicitly in the following form:

A(Z) =
ˆ
d4k|4kA dnσ dnξ

volGL(2)

n∏
i=1

δ4|4(Zi − ξiP(σi))
ξi(σi − σi+1) , (2.2.7)

where P is the degree k − 1 polynomial given in terms of its k C4|4-valued supercoef-

ficients Ad by

P(σ) =
k−1∑
d=0

Adσ
d. (2.2.8)

As emphasized in [21] (see also [28]) the integral (2.2.7) must be interpreted as a

contour integral in a multidimensional complex space. The delta functions specify

the contour of integration (specifically they indicate which poles to include in the sum

over residues). There is also a GL(2) invariance, of the integrand and the measure,

which needs to be gauged. Taking the above connected prescription as a starting

point and motivated by [24] one can express the connected prescription (2.2.7) into

the form of so-called link representation [22], [23].

One can obtain the physical space amplitude from the link representation

A(λ, λ̃) = Jδ(
∑

pi)
˛
dτ U(cJi(τγ)), (2.2.9)

where the Jacobian J generally depends on the parameterization of cJi(τγ). A general

form of U(cJi) has been explicitly evaluated by Dolan and Goddard in [23]. For an
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amplitude with helicities (ε1, . . . , εn) comprising p strings with εα = + and p strings

with εβ = −, their explicit form is

U(c) = F (c)
∏
k,t

1
Skt

, (2.2.10)

where Skt is the sextic SIJk:RSt = cIScktcJk:RScIJ :tR − cItckScJk:tRcIJ :RS with cij:rs =

circjs − cjrcis, and

F (c) = (cIJ :RS)NR−p+2 cp−3
IR cp−3

IS cp−3
JR c

p−3
JS

∏
t∈P′

cl−3
It c

l−3
Jt

∏
k∈N′

cm−3
kR cm−3

kS

∏
k∈N
t∈P

1
ckt

n∏
α=1

dα,α+1,

(2.2.11)

where

dir = cir, dri = cir, dij = ciRcjScjRciS
ciRcjS − cjRciS

, drs = cIrcJscIscJr
cIrcJs − cIscJr

, i, j ∈ N, r, s ∈ P.

We denote P as the set of positive helicity particles and N as the set of negative

helicity particles, and NR is the number of independent sextics, l is the number of

the negative helicity particles, m the number of the positive helicity particles and

n = m+ p is the total number of particles.1

2.2.4 NMHV tree amplitude from the connected prescrip-

tion

In order to make the connection between the linked-connected and ACCK formulas

more transparent, in this section we will express the linked-connected formula in
1Here we exchange the helicities +↔ −, at the same time cij → cji with respect to [23].
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terms of minors as in the ACCK approach.2

Let us start with helicity (−+−+−++ · · ·++), and take I = 1, J = 3, R = 2, S = 4,

then formula (2.2.10) becomes

U(c) = (c52c54c13:24)n−6(c12c32c34c54c56c1n)
n−1∏
α=6

c1αc1,α+1c3αc3,α+1

c13:α,α+1

∏
k∈P,t∈N

1
ckt

n∏
i=6

1
S135:24i

.

(2.2.12)

Using the identity

δ(Sijk:rst)δ(Sijk:rst′) = δ(Sijk:rst)δ(Sijk:rt′t)
citcjk:rt

ciscjk:rs
, (2.2.13)

we can transform the sextics S135:24i in (2.2.12) to S135:246, S135:2,n−1,n, and S135:i−1,i,i+1

to arrive at

U ′(c) =
c35:26c12c13:n−1,nc5,n−1

∏n
α=8 c5α

∏n−1
β=7 c3β

∏n−2
γ=6 c1γ

c52c14c13:67c35:n−1,n

1
S1S2 . . . Sn−5

. (2.2.14)

We then translate it into minors, the result is3

An = N

(123)(345)(567)(n− 1 n 1)
1

S1S2 . . . Sn−5
, (2.2.15)

where the numerator is given as

N = (135)(612)(235)(5 n− 1 n)(13 n− 1)
n∏

α=8
(13α)

n−1∏
β=7

(15β)
n−2∏
γ=6

(35γ). (2.2.16)

2 We are grateful to Freddy Cachazo for encouraging us to rewrite everything in terms of minors.
There are many different ways to write the formulas, but we will pick the one which makes the
proof simpler and has many other nice properties as we will discuss later.

3When n = 6 or n = 7 the minor (567) does not appear in the denominator. And we put the
minor (135) in the numerator by hand to make the scale right, since (135) = 1 for the helitiy we
started.
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The sextics can be written as

S1 = (234)(456)(612)(135)− (123)(345)(561)(246),

S2 = (n12)(13 n− 1)(235)(5 n− 1 n)− (123)(35 n− 1)(5n2)(n− 1 n 1),

Si−3 = (i i+ 1 i+ 2)(13 i+ 2)(15 i+ 1)(35i)− (135)(3i i+ 2)(5i i+ 1)(i+ 1 i+ 2 1),
(2.2.17)

where 6 ≤ i ≤ n− 2.

Several comments about this formula are in order.

Firstly, one can deform the sextics by any non-zero parameters aj, namely

Sj → S ′j = (klm)(mnp)(pqk)(qln)− aj(qkl)(lmn)(npq)(kmp). (2.2.18)

As we will prove in next section, interestingly, the final amplitude does not depend

on aj at all. Taking the limit aj → 0 one gets ACCK formula directly. This appears

to be a general fact, not specific to just NMHV amplitudes: the ACCK Grassmanian

integrand arises from the linked-connected formula in a simple limit when the second

terms in all sextic polynomials are zero.

Secondly, the formula has GL(3) symmetry for the Grassmanian, even though we

had started with the link representation for a particular helicity configuration. We

should point out that for some particular gauge fixings, we do not always get the

form of each sextic as a polynomial of degree 6 in the c′Jis. But, nevertheless, one

can numerically check that we do indeed get the tree amplitudes for the connected

prescription, namely, the residues at the locus where all the sextics simultaneously

vanish.
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Thirdly, writing sextics in terms of minors has a simple geometrical interpretation4.

The minor (i j k) = 0 in twistor space means the points i, j, k lie on a line. For NMHV,

the sextics Sijk:lmn = 0 means that these six points i, j, k, l,m, n lie a conic curve

[29], which is consistent with the origin of the connected prescription–integrating

out degree two curves in twistor space as in formula (2.2.7).

2.3 From the Connected to ACCK Using GRT

In this section we will use the multidimensional Global Residue Theorem (GRT) to

analytically derive the BCFW contour of ACCK as in (2.2.3) from the connected

prescription formula (2.2.15).

2.3.1 n=6 and n=7

We begin with n = 6 and n = 7 cases, which were previously done in [22], [23].

• For the six-point amplitude, the connected formula gives

A6 = (135)
(123)(345)(561)

1
S
, (2.3.1)

where

S = (234)(456)(612)(135)− (123)(345)(561)(246). (2.3.2)
4This was emphasised to us by Freddy Cachazo.
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Cauchy’s theorem states that the sum of residues in this expression is zero, so

{S} = −{1} − {3} − {5}, (2.3.3)

which is ACCK formula (2.2.3) for n = 6.

• For the seven-point amplitude,

A7 = (135)(235)(612)(136)
(123)(345)(671)

1
S1S2

, (2.3.4)

where

S1 = (234)(456)(612)(135)− (123)(345)(561)(246),

S2 = (567)(712)(235)(136)− (123)(356)(572)(671). (2.3.5)

By applying GRT, we get

{S1, S2} = {1, S1}+ {3, S1}+ {6, S1}. (2.3.6)

On the poles (123) = 0 and (345) = 0, the second term of S1 vanishes and we get

{1, S1} = {1, 2}+ {1, 4}, {3, S1} =��
��{3, 2}+ {3, 4}. (2.3.7)

Note that the terms with non-adjacent minors do not contribute because they would

be cancelled by the numerator of A7. Moreover, the condition of the residue {3, 2}

implies that the points 2, 3, 4, 5 lie on a line and hence (235) = 0, which is a term in
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the numerator of A7. To simplify the residue {6, S1} we use GRT again

{6, S1} = − ({6, S2}+ {6, 1}+ {6, 3}) (2.3.8)

= −
(
{6, 5}+��

��{6, 7}+ {6, 1}+ {6, 3}
)
. (2.3.9)

Again, (671) = 0 makes the second term of S2 vanish, hence {6, S2} = {6, 5}+ {6, 7}.

But the condition of {6, 7} implies that (612) = 0, which is a term in the numerator

of A7. So finally, collecting all the residues we get

{S1, S2} = {1, 2}+ {1, 4}+ {1, 6}+ {3, 4}+ {3, 6}+ {5, 6}. (2.3.10)

These are exactly the BCFW contours of the ACCK formula (2.2.3).

Let us conclude this section by saying that there are two useful properties which

play an important role in making the above proof simple. First, the second terms of

the sextics vanish for some particular contours. Second, the residue vanishes if one

of the non-adjacent minors in the first term of the sextic vanishes. We will use these

two simple facts in the general proof, which follows in the next section.

2.3.2 All n proof

Let us first note that one can easily check that the second terms of the sextics vanish

for any BCFW contours. It means that whenever we get a BCFW contour (2.2.3) by

applying GRT, we are sure that our NMHV formula for the amplitude is exactly of

the same form as in ACCK amplitude, namely all the non-adjacent minors cancel

out.
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We can further check that there are no ‘spurious’ solutions, having non-vanishing

contribution, from the connected contour. Spurious solutions are those where the

sextics vanish because individual minors in the expressions for the sextics vanish

(non-spurious solutions are those where the two terms in every sextic are separately

non-zero). We should exclude these solutions simply because the vanishing of any

individual minor of the sextics means that the conic curve is not smooth anymore5.

The way to get BCFW contours from connected prescription is simply to get rid of

all the sextics in the connected contour by applying GRT repeatedly. Let us remind

you that the poles in formula (2.2.15) are

(123)(345)(567)(n− 1 n 1)S1S2 . . . Sn−5. (2.3.11)

Use GRT we have

{S2S1 . . . Sn−5} = −({1S1S3 . . . Sn−5}+ {3S1S3 . . . Sn−5}

+((((((
((({5S1S3 . . . Sn−5}+ {(n− 1)S1S3 . . . Sn−5})

= −({12S3 . . . Sn−5}+ {14S3 . . . Sn−5}+ {34S3 . . . Sn−5}

+((((((
(({32S3 . . . Sn−5}+ {(n− 1)S16 . . . (n− 2)}),

(2.3.12)

where {1S1S3 . . . Sn−5} is the residue of (123) = S1 = S3 = · · · = Sn−5 = 0, and etc.

In order to explain why {5S1S3 . . . Sn−5} = 0 first notice that {5S1S3S4 . . . Sn−5} =

{5S1678 . . . (n−2)}. This is true because on (567) = 0 the second term of S3 vanishes

and hence {5S1S3 . . . Sn−5} = {5S16S4 . . . Sn−5}. Now in addition to (567) = 0, we

also have (678) = 0 which implies that the points 5, 6, 7, 8 lie on a line and hence
5The same reasoning holds for the validity of identity (3.4.1).
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(578) = 0, resulting in the second term of S4 vanishing. So, we get {5S16S4 . . . Sn−5} =

{5S167S5 . . . Sn−5}. We can again apply similar arguments on S4 and reduce it to

(789), and this goes on until the last sextic of the residue, which is Sn−5. Now,

{5S1678 . . . (n − 2)} means that the points 5, 6, . . . , n lie on a straight line, so

(5 n− 1 n) in the numerator vanishes, and hence {5S1S3 . . . Sn−5} = 0.

The equality {(n− 1)S1S3 . . . Sn−5} = {(n− 1)S16 . . . (n− 2)} in (2.3.12) can also be

explained along the same lines, but starting from the fact that, due to (n−1 n1) = 0,

Sn−5 is replaced by (n − 2 n − 1 n). Finally {32S3 . . . Sn−5} = 0 simply because

(345) = (234) = 0 implies (235) = 0, which is a term in the numerator.

In the following, we will study each term from (2.3.12) individually. In the process,

we will ignore all the vanishing terms without explanation, since the reasons are very

similar.

{(n− 1)S16 . . . (n− 2)} term

By applying GRT again, with the poles

(123)(345)(567)(n− 1 n1)S1(n12)(678)(789) . . . (n− 2 n− 1 n),

we get the following non-vanishing residues

−{(n− 1)S16 . . . (n− 2)} ={(n− 1)16 . . . (n− 2)}+ {(n− 1)36 . . . (n− 2)}

+ {(n− 1)56 . . . (n− 2)}.
(2.3.13)
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Actually these three terms are all the contours of the form {i6 . . . } and i can be 1, 3

or 5, and they have the correct signs.

{34S3 . . . Sn−5} term

Now, in this case the poles are

(123)(345)(567)(n− 1 n1)(234)(456)(n12)S3S4 . . . Sn−5.

Again using GRT we get

−{34S3 . . . Sn−5} = {345S4 . . . Sn−5}︸ ︷︷ ︸
A1

+{34(n− 1)7 . . . (n− 2)}. (2.3.14)

The second term in the previous equation is a BCFW term and we use GRT again

on the term A1 to generate another BCFW term in the next step

{345S4 . . . Sn−5} = −
(
{3456S5 . . . Sn−5}︸ ︷︷ ︸

A2

+{345(n− 1)8 . . . (n− 2)}
)
. (2.3.15)

Similarly, we can keep on using GRT repeatedly on one of the two terms, generated

at each step by using GRT in the previous step. In the final step of this iteration, by

applying GRT we get two terms, {34567 . . . (n− 4)(n− 1)} and {34567 . . . (n− 3)}.

So in this way, we generate {347 . . . (n− 1)}+ {3458 . . . (n− 1)}+ {34569 . . . (n−

1)}+ · · ·+{34567 . . . (n−3)}, which are all the BCFW contours of the form {34 . . . }.
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{14S3 . . . Sn−5} term

Now, let us consider the contours of the form {14 . . . }. Here the poles are given as

(123)(345)(567)(n− 1 n1)(234)(456)(n12)S3S4 . . . Sn−5. (2.3.16)

Using GRT we get the following

−{14S3 . . . Sn−5} = {14(n− 1)7 . . . (n− 2)}+ {142S4 . . . Sn−5}︸ ︷︷ ︸
X1

+ {145S4 . . . Sn−5}︸ ︷︷ ︸
B1

.(2.3.17)

Apart from the BCFW term {147 . . . (n− 1)} we also have other non-BCFW terms.

Out of these, we will see that the terms like X1 generated at each step will cancel out

later from the same terms generated by {12S3 . . . Sn−5} in the next subsection. We

can again apply GRT on B1. Now, we can see the pattern of BCFW terms generated

from the Bi terms, and here we will not write the non-BCFW terms explicitly at

each step
{14S3 . . . Sn−5} ⇒ {147 . . . (n− 1)},

{145S4 . . . Sn−5} ⇒ {1458 . . . (n− 1)},

{1456S5 . . . Sn−5} ⇒ {14569 . . . (n− 1)},

. . . . . .

(2.3.18)

In the final step of this series, by applying GRT, we have two terms, {14567 . . . (n−

4)(n − 1)} and {145678 . . . (n − 3)}. So by using GRT repeatedly, we get all the

BCFW contours of the type {14 . . . }, namely {147 . . . (n− 1)}+ {1458 . . . (n− 1)}+

{14569 . . . (n− 1)}+ · · ·+ {145678 . . . (n− 3)}.
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{12S3 . . . Sn−5} term

Finally, we look at the remaining contours {12S3 . . . Sn−5} in equation (2.3.12).

Let us apply GRT and we get

−{12S3 . . . Sn−5} ={126 . . . (n− 3)3}+ {126 . . . (n− 3)5}

+ {12S3 . . . Sn−6(n− 1)}︸ ︷︷ ︸
C1

+ {12S3 . . . Sn−64}︸ ︷︷ ︸
D1

.
(2.3.19)

We can apply GRT on the term C1 in (2.3.19) again, and we will deal with the term

D1 later. From C1 we get

{12S3 . . . Sn−6(n− 1)} = −({126 . . . (n− 4)3(n− 1)}+ {126 . . . (n− 4)5(n− 1)}

+ {12S3 . . . Sn−7(n− 2)(n− 1)}︸ ︷︷ ︸
C2

+ {12S3 . . . Sn−74(n− 1)}︸ ︷︷ ︸
E1

).
(2.3.20)

We notice that one of the non-BCFW terms, C2, is a similar kind of term to C1.

Terms which are similar to E1 and generated at each step, will combine with other

terms generated from the subsequent steps of applying GRT. The general trend of

BCFW contours generated from the Ci terms are

{12S3 . . . Sn−5} ⇒ {1236 . . . (n− 3)}+ {1256 . . . (n− 3)},

{12S3 . . . Sn−6(n− 1)} ⇒ {1236 . . . (n− 4)(n− 1)}+ {1256 . . . (n− 4)(n− 1)},

{12S3 . . . Sn−7(n− 2)(n− 1)} ⇒ {1236 . . . (n− 5)(n− 2)(n− 1)}

+ {1256 . . . (n− 5)(n− 2)(n− 1)},

. . . . . .

(2.3.21)
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Note that at each step of the iteration we also generate some non-BCFW terms(not

explicitly written down in the above pattern) which need to be dealt with as before.

The final step in the above series generates the BCFW terms {1238 . . . (n − 1)},

{1258 . . . (n− 1)} and {1278 . . . (n− 1)}.

By similar methods we can generate the other BCFW contours of the form {12 . . . }

by using non-BCFW terms generated in previous steps. Since all the steps are similar,

here we only give some examples of generating BCFW terms, without showing the

details
{12S3 . . . Sn−64} ⇒ {12347 . . . (n− 3)},

{125S4 . . . Sn−64} ⇒ {123458 . . . (n− 3)},

{1256S5 . . . Sn−64} ⇒ {1234569 . . . (n− 3)},

. . . . . .

(2.3.22)

Again the last step of this iterative process is special, the BCFW term generated is

{1234 . . . (n− 5)}. We will give a few examples of how non-BCFW terms combine to

generate BCFW terms and we choose these particular examples as they give residues

related to the ones in (2.3.22). Firstly

{12(n− 1)S4 . . . Sn−64}+ {12S3 . . . Sn−74(n− 1)} ⇒ {12347 . . . (n− 4)(n− 1)},

{12(n− 1)S4 . . . Sn−7(n− 2)4}+ {12S3 . . . Sn−84(n− 2)(n− 1)}

⇒ {12347 . . . (n− 5)(n− 2)(n− 1)},

. . . . . .

(2.3.23)

The BCFW term generated from the last step of the above series is {12349 . . . (n−1)}.
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Next example is

{125(n− 1)S5 . . . Sn−64}+ {12(n− 1)S4 . . . Sn−754} ⇒ {123458 . . . (n− 4)(n− 1)},

{125(n− 1)S5 . . . Sn−7(n− 2)4}+ {12(n− 1)S4 . . . Sn−85(n− 2)4}

⇒ {123458 . . . (n− 5)(n− 2)(n− 1)},

. . . . . .

(2.3.24)

The last step generates BCFW term {1234510 . . . (n− 1)}. And one more example

will be

{125(n− 1)S5 . . . Sn−764}+ {1256(n− 1)S6 . . . Sn−64} ⇒ {1234569 . . . (n− 4)(n− 1)},

{125(n− 1)S5 . . . Sn−86(n− 2)4}+ {1256(n− 1)S6 . . . Sn−7(n− 2)4}

⇒ {1234569 . . . (n− 5)(n− 2)(n− 1)},

. . . . . .

(2.3.25)

The BCFW term generated in the last step is {12345611 . . . (n− 1)}.

From the above mentioned examples, we can see the general pattern: the first term

in (2.3.22), {12347 . . . (n− 3)}, combining with all the terms from (2.3.23) generates

all the contours of the form {12347 . . . }; similarly, the second term in (2.3.22),

{123458 . . . (n− 3)}, and all the terms in (2.3.24) give us all the contours of the form

{123458 . . . }; the third term in (2.3.22), {1234569 . . . (n− 3)}, together with all the

terms of (2.3.25) give us all the contours of the form {1234569 . . . }. It is not hard

to see that all the other BCFW terms of the form {1234 . . . } can be generated in

a similar way. So we have generated all the contours of the form {12 . . . } and we

notice that they can be grouped into contours of the form, {1236 . . . }, {1256 . . . },
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{1238 . . . }, {1258 . . . }, {1278 . . . } and {1234 . . . }.

As we had seen so far, each GRT step also generates terms which have no contribution

to BCFW contours. These terms, typically, look like {124 . . . i, Si, . . . , Sn−5}, but

they just cancel out in pairs at each step. At each of the final steps, we also generate

terms like {124 . . . i, i+ 4, . . . , (n− 1)} and {124 . . . (n− 4)}, and they also cancel

out.

Let us conclude with our main result

˛
C

N

(123)(345)(567)(n− 1 n 1)
1

S1S2 . . . Sn−5
=
˛
B

1
(123)(234) . . . (n12) , (2.3.26)

where contour C is the connected contour, and B is the BCFW contour. One can

apply GRT again and show that the same equality is true for the P(BCFW) contour.

Since for any BCFW contour the second terms of sextics vanish, so as a byproduct,

we also proved the statement we made before that deforming sextics by some non-zero

parameters still gives us the correct tree amplitude.



Chapter 3

Twistor string theory and

Grassmannian: All tree-level

amplitude

3.1 Introduction

In this chapter, we present a new, explicit formula for all N(k−2)MHV tree ampli-

tudes in N = 4, generalizing the NMHV results of last chapter. And this compact

formula lacks any recursive-explosion of indices such as was required in the ‘explicit’

formula derived from BCFW in [7]. In section 2 we will present our main formula,

equation (3.2.1), and discuss its smooth deformation to a contour in Ln,k. In section

3 we will describe how this formula can be obtained by iteratively ‘adding particles’

in a natural way to the first non-trivial tree amplitude, the 6-point NMHV amplitude,

25
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while making sure that soft limits and parity are manifest at every stage. In section

4 we will make a series of transformations to map our formula to that of [23], thereby

deriving it from twistor string connected prescription.
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3.2 All Tree Amplitudes in N = 4 Super Yang-

Mills

We propose that the general, tree-level, planar, color-stripped, n-point N(k−2)MHV

amplitude is given by

A (k)
n = 1

vol[GL(k)]

˛

F
(k)
n =~0

dCαa H (k)
n

(n− 1)(1)(3) F (k)
n

k∏
α=1

δ4|4 (CαaWa) , (3.2.1)

where the contour F (k)
n = ~0 is the zero-locus of F (k)

n : C(n−k−2)(k−2) → C(n−k−2)(k−2),

defined in terms of the (n− k − 2)(k − 2) Veronese maps F j
` ,

F (k)
n ≡

n∏
`=k+3

k−2∏
j=1

F j
`

 , (3.2.2)

where each F j
` can be written in terms of the minors of Cαa according to

F j
` ≡

(
σj` ` 2 ` 1 `

) (
σj` ` j j+1

) (
σj` j+1 j+2 ` 2

) (
σj` ` 1 j j+2

)
−
(
σj` j j+1 j+2

) (
σj` j+2 ` 2 ` 1

) (
σj` ` 1 ` j

) (
σj` j+1 ` 2 `

)
,

(3.2.3)

with σj` representing collectively the columns [1, . . . , j 1]⋃ [j+` k, . . . , ` 3] of Cαa,

and where H (k)
n is the product of all the non-consecutive minors in the first line of

equation (3.2.3); explicitly,

H (k)
n = H (k)

n−1 × (σk−2
n−1 n 1 k 2 k 1)

×
k−3∏
j=1

[
(σjn n j j+1)(σj+1

n−1 n 3 n 2 n 1)
] k−2∏
j=1

[
(σjn n 1 j j+2)(σjn j+1 j+2 n 2)

]
.



28

Noticing that all the minors appearing in a given map F j
` involve the same set of

columns σj` , and that the rest are organized according to a ‘3× 3’ Veronese operator,

we may encode the structure of equation (3.2.3) by writing1

F j
` ≡σ

j
` ./ S`−2 `−1 ` j j+1 j+2,

≡
(
[1, . . . , j 1]

⋃
[j+` k, . . . , ` 3]

)
./ S`−2 `−1 ` j j+1 j+2,

(3.2.4)

where Sa b c d e f represents the primitive Veronese operator which, when acting on P2,

tests if the six points a, . . . , e lie on a conic,

Sa b c d e f ≡ (a b c)(c d e)(e f a)(b d f)− (b c d)(d e f)(f a b)(c e a). (3.2.5)

As will be described below, the structure of the numerators H (k)
n is dictated entirely

by the proposed duality between equation (3.2.1) and a related expression in Ln,k.

Following the theme of [9, 10], let us introduce a deformation parameter tj` for each

map F j
` ,

F j
` (tj`) ≡

(
σj` ` 2 ` 1 `

) (
σj` ` j j+1

) (
σj` j+1 j+2 ` 2

) (
σj` ` 1 j j+2

)
− tj`

(
σj` j j+1 j+2

) (
σj` j+2 ` 2 ` 1

) (
σj` ` 1 ` j

) (
σj` j+1 ` 2 `

)
.

(3.2.6)

Then the integral A (k)
n (tj`), with all F j

` in (3.2.1) replaced by F j
` (tj`), will map precisely

to the one appearing for Ln,k in limit of tj` → 0 for all `, j. This is because, together

with the three minors manifest in equation (3.2.1) (namely, (n − 1), (1), and (3))

the factors which constitute F (k)
n (tj`) when tj` → 0 will contribute exactly one copy

1This simplified notation can be justified by observing that only 6 of the k + 3 columns which
are relevant to a given Veronese operator F j` change from one term to another.
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of each of the consecutive minors present in the measure of the integral Ln,k:

F (k)
n =

(
F 1
k+3 · · ·F k−2

k+3

)
︸ ︷︷ ︸

∪
(2),(4)

(
F 1
k+4 · · ·F k−2

k+4

)
︸ ︷︷ ︸

∪
(5)

(
F 1
k+5 · · ·F k−2

k+5

)
︸ ︷︷ ︸

∪
(6)

· · ·
(
F 1
n−1 · · ·F k−2

n−1

)
︸ ︷︷ ︸

∪
(n−k)

(
F 1
n · · ·F k−2

n

)
︸ ︷︷ ︸

∪
(n−k+1),...,(n−2),(n)

.

And since H (k)
n is composed of all the non-consecutive minors present in the first

factors of each F j
` , we have that

lim
tj
`
→0

(
H (k)

n

(n− 1)(1)(3) F (k)
n

)
= 1

(n− 1)(1)(3)
1

(2) (4)(5) · · · (n− 3)(n− 2) (n) ,

(3.2.7)

making the connection between the twistor string and Ln,k manifest.

We strongly suspect that formula (3.2.1) is unchanged by any of the deformations

introduced by the parameters tj` in (3.2.6). For NMHV amplitudes, tj`-independence

has been rigorously proven by a direct application of the global residue theorem,

[10, 9], and we suspect that similar arguments can be used to prove tj`-independence

more generally. We have checked this numerically for several nontrivial N2MHV

amplitudes, including the alternating-helicity amplitude for eight gluons, but we

leave the question of proving complete tj`-independence to future researches.

Let us end this section by presenting explicitly the tj` → 0 limit of the deformed

twistor-string contour (3.2.1), illustrating some of the key differences between the

two formulations. When tj` → 0, each Veronese operator factorizes into the product

of the four minors listed in the first line of (3.2.6). In general, all but n− 3 of these

factors will be non-consecutive, and therefore are included among the factors of the

numerator H (k)
n . Although it is generally ill-advised to ‘cancel terms’ between the

contour-defining maps defining F (k)
n and the numerator, there is a good physical
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reason for suspecting that the ‘fourth’ minors of each of the F j
` (tj` → 0)—which

are never consecutive—contribute no non-vanishing residues to the contour.2 As

described in [30, 10], CSW operators, when translated into the Grassmannian, are

constructed from products of three minors. Although beyond the scope of the

present discussion, ensuring that each pole of the integrand is composed of three-

minor operators helps one to connect the CSW, or ‘disconnected’, support of tree

amplitudes to the ‘connected’ support of the twistor string through a series of global

residue theorems. At any rate, there is now enough direct evidence that general

tree-contours are entirely supported on the vanishing first three factors of each F j
`

when tj` → 0 to justify the simplification to a ‘3-minor’ form of each map in the

contour.

Taking each tj` → 0, the twistor-string contour A (k)
n (tjl ) becomes,

A (k)
n (tj`) −−−→

tj
`
→0

A(k)
n = 1

vol[GL(k)]

˛

F
(k)
n =~0

dCαa H(k)
n

(n− 1)(1)(3) F
(k)
n

k∏
α=1

δ4|4 (CαaWa) ,

(3.2.8)

where

F(k)
n ≡

n∏
`=k+3

k−2∏
j=1

f j`

 with f j` ≡ σj` ./ (` 2 ` 1 `) (` j j+1) (j+1 j+2 ` 2) ,

(3.2.9)

with σj` as before, and where

H(k)
n = H (k)

n∏n
`=k+3

∏k−2
j=1

(
σj` ` 1 j j+2

) , (3.2.10)

2The reason why naïve cancellation of factors between H
(k)
n and those in F

(k)
n (tj` → 0) can

be misleading is described with several examples in [10]; for example, even the poles supported
by purely non-consecutive minors of the F j` ’s can have the interpretation of being supported by
consecutive minors, and thereby contributing a residue to the contour.
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which, as before, represents the product of all non-consecutive minors among the

maps f j` .

Alternatively, we could have started with formula (3.2.8) for A(k)
n and obtained

formula (3.2.1) for A (k)
n by “adding a missing minor" to each map of f according to

f = σ ./ (a b c)(c d e)(e f a)

⇒ F = σ ./ [(a b c)(c d e)(e f a)(b d f)− (b c d)(d e f)(f a b)(c e a)] ,
(3.2.11)

in order to supply a simple geometric meaning to the contour—the maps F ’s having

the natural interpretation of testing the localization of points in P(k−1).

Both formulae give all tree-level amplitudes in N = 4 super Yang-Mills in terms of a

specific contour integral. The first one, equation (3.2.1), naturally arises from twistor

string theory, and its contour F (k)
n = ~0 has a nice geometric meaning: it is the

constraint for n points to lie on a degree-(k− 1) curve in twistor space. On the other

hand, the formula (3.2.8) provides the integration contour for Grassmannian Ln,k,

and thereby ensures that each contribution is itself manifestly Yangian invariant.

3.3 Building the General Contour, one Particle at

a Time

In this section we describe how the general contour for any tree amplitude (3.2.1) can

be obtained by sequentially extending the contour of the first non-trivial amplitude,

the 6-point NMHV amplitude, by adding one particle at a time. Before doing so,

however, it will be useful to briefly discuss some of the generally-desirable features
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that any such contour-prescription should have.

Let us consider what would be necessary to extend a formula valid for Ln−1,k to

one valid for Ln,k while keeping k fixed. Recall that the integral Ln,k’s measure is

given by the product of the n consecutive k × k minors of Cαa. The nth particle,

being represented by the nth column of Cαa participates in k of these consecutive

minors; and these k minors, taken together, span a range of min(n, 2k − 1) columns

of Cαa. This suggests that, fixing k, only for n ≥ 2k − 1 will a tree contour be

sufficiently general to have a natural extension to all n. Conveniently however,

the n = (2k − 1)-point Nk−2MHV amplitude, A (k)
n=2k−1, is nothing but the parity-

conjugate of the n-point Nk−3MHV amplitude, A (k−1)
n=2k−1, allowing it to be uniquely

related to a contour with strictly lower-k. And so we should not be too surprised

that it is possible to ‘bootstrap’ a formula valid for any fixed k to one valid for all k,

using parity when n = 2k − 1 as the bridge which connects each k to k + 1.

Just as there are several equally-valid formulae for the general NMHV tree contour

(see, e.g. [10, 23, 9, 22]), there are several ways of writing the general N(k−2)MHV

tree contour. The one that we derive here is obtained by starting with the particular

NMHV tree contour given in [10] and extending it in such a way that the general

contour prescription is invariant under parity for all n, k. As we will see, these criteria

lead uniquely to the contour given here which defines our general result given in

equation (3.2.1).3

3We have also found other parity-symmetric contour prescriptions by starting from each of the
different forms of the NMHV tree amplitude. We have checked that each of these extensions to
all n, k is unique and that each leads to correct formulae for general tree amplitudes. In addition,
there are further possibilities if one foregoes the connection between Ln,k and the twistor string,
but these will not be considered here.
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3.3.1 NMHV amplitudes

Let us begin with the simplest amplitude which requires a non-trivial contour to

be specified. The 6-point NMHV amplitude’s contour is essentially unique up to a

global residue theorem, and can be written [10, 23, 8, 9, 22],

A (3)
6 = 1

vol[GL(3)]

˛

F
(3)
6 =~0

dCαa
H (3)

6

(5)(1)(3) F (3)
6

3∏
α=1

δ4|4(CαaWa), (3.3.1)

where

F (3)
6 =

[
(4)(6)(2)(1 3 5)− (5 6 1)(1 2 3)(3 4 5)(6 2 4)

]
= S4 5 6 1 2 3

and H (3)
6 = (1 3 5).

(3.3.2)

(Here, we have chosen to de-emphasize the minors which do not appear in the

analogous expressions for Ln,k by colouring them grey, and we have chosen to

highlight each of the consecutive minors which participate in the contour by colouring

them red. This highlighting will be useful when we consider amplitudes involving

more particles and with k > 3.)

As demonstrated in [10], this contour can be extended to all NMHV amplitudes in

the following way,

A (3)
n = 1

vol[GL(3)]

˛

F
(3)
n =~0

dCαa

∏n−1
`=6

[
(1 2 `)(2 3 ` 1)

]∏n
`=6

[
(1 3 ` 1)

]
(n− 1)(1)(3) F (3)

n

3∏
α=1

δ4|4(CαaWa),

(3.3.3)
where

F (k)
n =

n∏
`=6

[
(` 2 ` 1 `)(` 1 2)(2 3 ` 2)(` 1 1 3) − (` 1 ` 1)(1 2 3)(3 ` 2 ` 1)(` 2 ` 1)

]
=

n∏
`=6

S`−2 `−1 ` 1 2 3.
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Notice that the only operator that involves particle n is the last, F j=1
`=n , and this

operator includes in general all but one of the consecutive minors which involve

column n—namely, all but minor (n−1). Indeed, each F 1
` can be seen as an operator

which adds particle ` to the (`− 1)-point contour.

Consider for example the contour for n = 7,

F (3)
7 =

{
F 1

6 = (4) (6 1 2) (2) (5 1 3) − (5 6 1)(1 2 3)(3 4 5)(6 2 4) = S4 5 6 1 2 3
}

{
F 1

7 = (5) (7) (2 3 5)(6 1 3) − (6 7 1)(1 2 3)(3 5 6)(7 2 5) = S5 6 7 1 2 3
} .

(3.3.4)

By recognizing that A (3)
7 is nothing but the parity-conjugate of A (4)

7 , we may use this

contour to directly obtain the contour of the first non-trivial N2MHV tree-amplitude.

3.3.2 N2MHV Amplitudes

As mentioned above, because the parity-conjugate4 of the 7-point NMHV amplitude

is the 7-point N2MHV amplitude, we may use the general NMHV contour to obtain

our first non-trivial contour for k = 4,

F (4)
7 = F̃ (3)

7 =


F 1

7 = (4) (4 7 1 2) (2) (4 6 1 3) − (4 1 2 3)(4 3 5 6)(4 6 7 1)(4 2 6 8) = [4] ./ S5 6 7 1 2 3

F 2
7 = (5) (7) (1 3 4 5)(1 6 2 4) − (1 2 3 4)(1 4 5 6)(1 6 7 2)(1 3 5 7) = [1] ./ S5 6 7 2 3 4

.

From here, there are several ways in which the above contour can be extended to
4Here, we should point out that we are using a definition of ‘parity’ that both exchanges the

column-labels of each minor with their complements, and maps each column j 7→ (n+ 1)− j. This
appears to be the most natural definition of parity in the Grassmannian.
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one for all n. For example, one could make the identification made in [10], that

F 1,2
7 =


[4] ./ S5 6 7 1 2 3

[1] ./ S5 6 7 2 3 4

 =⇒ F 1,2
` ⇔


[` 3] ./ S`−2 `−1 ` 1 2 3

[1] ./ S`−2 `−1 ` 2 3 `−3

 . (3.3.5)

However, this extension of the 7-point N2MHV amplitude leads to a form of the

8-point N2MHV contour which is not manifestly self-conjugate under parity, and

which therefore unnecessarily obfuscates the extension to all N(k−2)MHV amplitudes.5

We suggest that the following extension is more natural,

F 1,2
7 =


[4] ./ S5 6 7 1 2 3

[1] ./ S5 6 7 2 3 4

 =⇒ F 1,2
` ⇔


[` 3] ./ S`−2 `−1 ` 1 2 3

[1] ./ S`−2 `−1 ` 2 3 4

 . (3.3.6)

Notice that the only difference between the contour prescriptions in (3.3.5) and (3.3.6)

is that the former associates S5 6 7 2 3 4 with S`−2 `−1 ` 2 3 `−3 while the latter associates

S5 6 7 2 3 4 with S`−2 `−1 ` 2 3 4.

Using this prescription, we find that the 8-point N2MHV may be written,

A (4)
8 = 1

vol[GL(4)]

˛

F
(4)
8 =~0

dCαa H (4)
8

(7)(1)(3) F (4)
8

4∏
α=1

δ4|4 (CαaWa) , (3.3.7)

5That being said, we have every reason to suspect the formula given in [10] is in fact just as
correct as the one we present here.
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where F (4)
8 = F 1

7F
2
7 · F 1

8F
2
8 with the F j

` given explicitly by6

F
(4)
8 =

 F 1
7 = (4) (4 7 1 2) (2) (4 6 1 3) − (4 1 2 3)(4 3 5 6)(4 6 7 1)(4 2 6 8) = [4] ./ S5 6 7 1 2 3


F 2

7 = (1 5 6 7)(1 2 3 7)(1 3 4 5)(1 6 2 4) − (1 2 3 4)(1 4 5 6)(1 6 7 2)(1 3 5 7) = [1] ./ S5 6 7 2 3 4 F 1
8 = (5) (5 8 1 2)(5 6 2 3)(5 7 1 3) − (5 1 2 3)(5 3 6 7)(5 7 8 1)(5 2 6 8) = [5] ./ S6 7 8 1 2 3


F 2

8 = (6) (8) (1 3 4 6)(1 7 2 4) − (1 2 3 4)(1 4 6 7)(1 7 8 2)(1 3 6 8) = [1] ./ S6 7 8 2 3 4

(3.3.8)

and H (4)
8 is the product of all non-consective minors of the first factors of the F j

` ’s,

H (4)
8 = (4 7 1 2)(1 5 6 7)(1 2 3 7)(1 3 4 5)(5 8 1 2)(5 6 2 3)(1 3 4 6)

× (4 6 1 3)(1 6 2 4)(5 7 1 3)(1 7 2 4) .
(3.3.9)

It is not hard to see that this contour is manifestly parity self-conjugate. (We should

point out that this contour differs from the one given in [10] by only single minor

appearing in F 2
8 ; however, this minor difference turns out to leave essentially all the

geometry problems described in [10] unchanged, and so the contour (3.3.8) leads to

precisely the same sum of twenty residues described in [10], and therefore reproduces

the correct 8-point N2MHV tree amplitude for all helicity configurations.)

As a further test of the validity of our contour prescription, let us briefly mention the

tree-amplitude obtained for the 9-point N2MHV amplitude. As above, we may write,

A (4)
9 = 1

vol[GL(4)]

˛

F
(4)
9 =~0

dCαa H (4)
9

(8)(1)(3) F (4)
9

4∏
α=1

δ4|4 (CαaWa) , (3.3.10)

6Here, we have highlighted each of the primary ‘consecutive subparts’ of each of the minors in
the contour by colouring them blue. These tend to be the most important minors when computing
a tree amplitude as a series of ‘geometry problems’ as described in [10].



37

where F (4)
9 = F 1

7F
2
7 · F 1

8F
2
8 · F 1

9F
2
9 with each F j

` given explicitly by,

F
(4)
9 =

 F
1
7 = (4) (4 7 1 2) (2) (4 6 1 3) − (4 6 7 1)(4 1 2 3)(4 3 5 6)(4 7 2 5) = [4] ./ S5 6 7 1 2 3


F 2

7 = (1 5 6 7)(1 2 3 7)(1 3 4 5)(1 2 4 6) − (1 6 7 2)(1 2 3 4)(1 4 5 6)(1 7 3 5) = [1] ./ S5 6 7 2 3 4 F
1
8 = (5) (5 8 1 2)(5 6 2 3)(5 7 1 3) − (5 7 8 1)(5 1 2 3)(5 3 6 7)(5 8 2 6) = [5] ./ S6 7 8 1 2 3


F 2

8 = (1 6 7 8)(1 2 3 8)(1 3 4 6)(1 2 4 7) − (1 7 8 2)(1 2 3 4)(1 4 6 7)(1 8 3 6) = [1] ./ S6 7 8 2 3 4 F
1
9 = (6) (6 9 1 2)(6 7 2 3)(6 8 1 3) − (6 8 9 1)(6 1 2 3)(6 3 7 8)(6 9 2 7) = [6] ./ S7 8 9 1 2 3


F 2

9 = (7) (9) (1 3 4 7)(1 8 2 4) − (1 8 9 2)(1 2 3 4)(1 4 7 8)(1 9 3 7) = [1] ./ S7 8 9 2 3 4

,

(3.3.11)

Deforming this contour from the twistor string to L9,4 by sending each tj` → 0—

removing all the contributions shown in coloured grey in (3.3.11)—the problem of

computing the tree-amplitude reduces to a series of ‘geometry problems’—finding

the localization in the Grassmannian induced by requiring that each of the six maps

f j` vanish, and determining which of these configurations are supported entirely by

the vanishing of consecutive minors.7 The six maps f j` are given explicitly by,

F
(4)
9 =

 f
1
7 = (4) (4 7 1 2) (2)


f2

7 = (1 5 6 7)(1 2 3 7)(1 3 4 5)

⋃  f
1
8 = (5) (5 8 1 2)(5 6 2 3)


f2

8 = (1 6 7 8)(1 2 3 8)(1 3 4 6)

⋃  f
1
9 = (6)(6 9 1 2)(6 7 2 3)


f2

9 = (7) (9) (1 3 4 7)
.

(3.3.12)

We have found that there are precisely 50 non-vanishing, consecutively-supported

residues along the contour (3.3.11) and that these residues perfectly reproduce the

fully-supersymmetric 9-point N2MHV tree amplitude.

These 50 residues, together with the ‘geometry problems’ giving rise to each, are

collected in appendix .1, where we have followed the conventions of [10] for the

naming of each residue according to its localization in Cαa.
7Any configuration along the contour not entirely supported by consecutive minors will have

vanishing residue because of the non-consecutive minors which constitute H
(4)
9 .
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3.3.3 N3MHV Amplitudes and Beyond

As was the case for the 7-point amplitude, the parity conjugate of the 9-point N2NHV

amplitude represents the first sufficiently-general N3MHV amplitude from which we

may ‘bootstrap’ the general N3MHV result. We will see that by requiring the 9-point

N3MHV amplitude to be iteratively-related to the 8-point N3MHV amplitude—itself

obtained as the parity-conjugate of the 8-point NMHV amplitude—will uniquely fix

the structure of the ansatz for all further amplitudes in N = 4 super Yang-Mills.

Taking the parity-conjugate of the 9-point k = 4 contour (3.3.11), we find,

F (5)
9 = F̃ (4)

9 =


F 1

8 = [4 5] ./ S6 7 8 1 2 3

F 2
8 = [1 5] ./ S6 7 8 2 3 4

F 3
8 = [1 2] ./ S6 7 8 3 4 5


⋃

F 1

9 = [5 6] ./ S7 8 9 1 2 3

F 2
9 = [1 6] ./ S7 8 9 2 3 4

F 3
9 = [1 2] ./ S7 8 9 3 4 5


. (3.3.13)

Notice that only the last three F j
` ’s—those of the second set above—involve column

9. Moreover, all of the F j
` ’s for ` = 8 involve column 8. Therefore, the requirement

that the 9-point N3MHV contour is the extension of the 8-point N3MHV contour,

uniquely fixes the `-dependence of the maps F j
` . With this, it is not hard to see that

the general solution for all N3MHV amplitudes must be given by

F (5)
n =

n∏
`=8

(
F 1
` ·F 2

` ·F 3
`

)
, with


F 1
` = [` 4 ` 3] ./ S`−2 `−1 ` 1 2 3

F 2
` = [1 ` 3] ./ S`−2 `−1 ` 2 3 4

F 3
` = [1 2] ./ S`−2 `−1 ` 3 4 5


. (3.3.14)

As one further, concrete illustration of this prescription for the tree-amplitude contour,

let us briefly consider the 10-point N3MHV amplitude,
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A (5)
10 = 1

vol[GL(5)]

˛

F
(5)
10 =~0

dCαa H (5)
10

(9)(1)(3) F (5)
10

5∏
α=1

δ4|4 (CαaWa) , (3.3.15)

where F (5)
10 = F 1

8F
2
8F

3
8 · F 1

9F
2
9F

3
9 · F 1

10F
2
10F

3
10, and with each F j

` given by

F (5)
10 =


F 1

8 = (4) (4 5 8 1 2) (2) (4 5 7 1 3) − (4 5 1 2 3)(4 5 3 6 7)(4 5 7 8 1)(4 5 2 6 8)


F 2
8 = (1 5 6 7 8)(1 2 3 5 8)(1 3 4 5 6)(1 5 7 2 4) − (1 5 2 3 4)(1 5 4 6 7)(1 5 7 8 2)(1 5 3 6 8)

F 3
8 = (1 2 6 7 8)(1 2 3 4 8)(1 2 4 5 6)(1 2 7 3 5) − (1 2 3 4 5)(1 2 5 6 7)(1 2 7 8 3)(1 2 4 6 8)
F 1

9 = (5) (5 6 9 1 2)(2 3 5 6 7)(5 6 8 1 3) − (5 6 1 2 3)(5 6 3 7 8)(5 6 8 9 1)(5 6 2 7 9)


F 2
9 = (1 6 7 8 9)(1 2 3 6 9)(1 3 4 6 7)(1 6 8 2 4) − (1 6 2 3 4)(1 6 4 7 8)(1 6 8 9 2)(1 6 3 7 9)

F 3
9 = (1 2 7 8 9)(1 2 3 4 9)(1 2 4 5 7)(1 2 8 3 5) − (1 2 3 4 5)(1 2 5 7 8)(1 2 8 9 3)(1 2 4 7 9)
F 1

10 = (6) (6 7 10 1 2)(2 3 6 7 8)(6 7 9 1 3) − (6 7 1 2 3)(6 7 3 8 9)(6 7 9 10 1)(6 7 2 8 10)


F 2
10 = (7) (7 10 1 2 3)(1 3 4 7 8)(1 7 9 2 4) − (1 7 2 3 4)(1 7 4 8 9)(1 7 9 10 2)(1 7 3 8 10)

F 3
10 = (8) (10) (1 2 4 5 8)(1 2 9 3 5) − (1 2 3 4 5)(1 2 5 8 9)(1 2 9 10 3)(1 2 4 8 10)

where again H (5)
10 can be simply read-off from F j

` ’s:

H (5)
10 = (4 5 8 1 2)(1 5 6 7 8)(1 5 8 2 3)(1 5 3 4 6)(1 2 6 7 8)(1 2 8 3 4)(1 2 4 5 6)

× (5 6 9 1 2)(5 6 2 3 7)(1 6 7 8 9)(1 6 9 2 3)(1 6 3 4 7)(1 2 7 8 9)(1 2 9 3 4)

× (1 2 4 5 7)(6 7 10 1 2)(6 7 2 3 8)(1 7 10 2 3)(1 7 3 4 8)(1 2 4 5 8)

× (4 5 7 1 3)(1 5 7 2 4)(1 2 7 3 5)(5 6 8 1 3)(1 6 8 2 4)(1 2 8 3 5)(6 7 9 1 3)(1 7 9 2 4)(1 2 9 3 5) .

Finally F ’s can be written in a compact way,

F 1
8 = [4 5] ./ S6 7 8 1 2 3, F

2
8 = [1 5] ./ S6 7 8 2 3 4, F

3
8 = [1 2] ./ S6 7 8 3 4 5 (3.3.16)

F 1
9 = [5 6] ./ S7 8 9 1 2 3, F

2
9 = [1 6] ./ S7 8 9 2 3 4, F

3
9 = [1 2] ./ S7 8 9 3 4 5 (3.3.17)

F 1
10 = [6 7] ./ S8 9 10 1 2 3, F

2
10 = [1 7] ./ S8 9 10 2 3 4, F

3
10 = [1 2] ./ S8 9 10 3 4 5.(3.3.18)
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Although it would require more space than warranted by an appendix, we have

explicitly verified that the contour above includes 175 non-vanishing residues which

precisely matches the general, 10-point N3MHV amplitude.

Continuing in this manner, we arrive at the general formula (3.2.1),

A (k)
n = 1

vol[GL(k)]

˛

F
(k)
n =~0

dCαa H (k)
n

(n− 1)(1)(3) F (k)
n

k∏
α=1

δ4|4 (CαaWa) ,

where F (k)
n = (F 1

k+3 · · ·F k−2
k+3 ) · (F 1

k+4 · · ·F k−2
k+4 ) · · · (F 1

n · · ·F k−2
n ) with each F j

` given

by

F j
` ≡ σj` ./ S`−2 `−1 ` j j+1 j+2. (3.3.19)
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3.3.4 General Properties of the Result

Parity

One of the important features of the general contour obtained in the previous

subsections is that it is manifestly parity-symmetric. By this, we mean that the

parity-conjugate of a given amplitude’s contour is the contour for the parity-conjugate

amplitude. For example, for all n = 2k, the contour given by F (k)
n=2k is manifestly

parity self-conjugate.

To see how this works more generally, consider the role played by each of the n

columns of the Grassmannian Cαa in the definition of the Veronese map F j
` ≡ σj` ./

S`−2 `−1 ` j j+1 j+2. In general, the n columns break into six contiguous groups,

[1 2 · · · j 1]︸ ︷︷ ︸
∈σj
`

∈S︷ ︸︸ ︷
[j j+1 j+2] [j+3 · · · j+(k `) 1] [j+(k `) · · · ` 3]︸ ︷︷ ︸

∈σj
`

∈S︷ ︸︸ ︷
[` 2 ` 1 `] [`+1 · · · n],

where the columns of Cαa which do not participate at all in F j
` have been coloured

grey to emphasize the ‘gaps’ in the roles played by various columns. Importantly,

parity does not change the ‘contiguousness’ of these six groups, or the roles they

played by the six columns of the primative Veronese map S`−2 `−1 ` j j+1 j+2 (coloured

red above); parity merely changes the labels we assign each column, and exchanges

the k − 6 columns involved in all the minors of F j
`—those of σj` , coloured blue

above—with the n − k − 6 columns involved in none of the minors of F j
`—those



42

coloured grey above. That is,



[1 · · · j 1] 

parity−−−−−−→
k 7→(n−k)
i 7→(n+1)−i



[n j+2 · · · n]

[j j+1 j+2] [n j 1 n j n j+1]

[j+3 · · · j+(k `) 1] [n+` j k · · · n j 2]

[j+(k `) · · · ` 3] [n `+4 · · · n+` j k 1]

[` 2 ` 1 `] [n `+1 n `+2 n `+3]

[`+1 · · · n] [1 · · · n `]



.

(3.3.20)

This shows that,

F j
`

parity−−−−−−→
k 7→(n−k)
i 7→(n+1)−i

F̃ j
` = F

(n−`+1)
(n−j+1) ≡ F j′

`′ , (3.3.21)

so that

F (k)
n =

n∏
`=k+3

k−2∏
j=1

F j
`

 parity−−−−−−→
k 7→(n−k)
i 7→(n+1)−i

F (n−k)
n =

n∏
`=k+3

k−2∏
j=1

F̃ j
`

 =
k′−2∏
j′=1

 n∏
`′=k′+3

F j′

`′

 =
n∏

`′=k′+3

k′−2∏
j′=1

F j′

`′

 ,
(3.3.22)

where k′ ≡ (n− k), which is that which it was required to demonstrate.

Manifest Soft-Limits and the Particle Interpretation

As we have seen, the contour integral giving the n− 1-particle N(k−2)MHV scattering

amplitude, is related to that giving the n-particle N(k−2)MHV scattering amplitude

by a single overall factor which relates H (k)
n to H (k)

n−1, together with a partial contour
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specification,

A (k)
n = 1

vol[GL(k)]

˛

F
(k)
n =~0

dCαa
H (k)

n

(n− 1)(1)(3) F (k)
n

= 1
vol[GL(k)]

˛

F
(k)
n−1=~0

dCα â
H (k)

n−1

(1)(3) F (k)
n−1
×
˛

F 1
n=0...

Fk−2
n =0

dCαn
H (k)

n /H (k)
n−1

(n− 1) F 1
n · F 2

n · · ·F k−2
n

,

(3.3.23)

where â = 1, . . . , n− 1 and the ratio H (k)
n /H (k)

n−1 was given explicitly after equation

(3.2.3) in section 2. This separation of the integral is warranted because only the

maps F 1
n , . . . , F

k−2
n involve the variables of the nth column of Cαa. We can anticipate

which contour should be specified for these k − 2 variables to extract the soft-limit

by considering the duality between the geometry of the columns of Cαa, viewed as

points in Pk−1, and Z-twistor-space geometry [10]. In twistor space, the soft-limit is

achieved when the three twistors Zn−1,Zn, and Z1 become (projectively) collinear,

and so we can extract the soft limit from A (k)
n by choosing a contour for which the

column-vectors Cαn−1, Cαn, and Cα 1 become linearly-dependent. This fixes exactly

(k − 2) variables of integration, and so should completely specify the integral factor

in (3.3.23) relating A (k)
n to A (k)

n−1.

Recalling the definition of the maps F 1
n , F

2
n , . . . F

k−1
n , it is easy to see that when

the columns n − 1, n, 1 become linearly-dependent, F 2
n , . . . , F

k−2
n all vanish, while

F 1
n factorizes into simply the product of four minors. Importantly, notice that

H (k)
n ,H (k)

n−1, and all the factors of F (k)
n−1 are regular in this limit. Because of this,

we can apply the global residue theorem in (3.3.23) to trade F 1
n for the minor
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(n− 1)—which does vanish in this limit.

This allows us to view the contour integral for the twistor string entirely in Ln,k, and

refer to some well-known facts [10] relating residues in Ln,k to those of Ln−1,k to see

how the soft-factor arises. It turns out that the contour which sets three consecutive

columns of the Grassmannian to be linearly dependent is particularly nice, and is

nothing but a holomorphic inverse soft-factor times the ratio of the k consecutive

minors containing n to the k− 1 minors which were consecutive only prior to ‘adding

particle n’ to G(k, n− 1). Recall that this ratio of minors is explicitly built-into the

definition of H (k)
n

3.4 Transformation to the Twistor String in Link

Variables

In this section we demonstrate the equivalence of the twistor string amplitude [21]

(when expressed in link variables as in [22, 23]) to our main formula (3.2.1) above.

This is accomplished via repeated application of the identity transformation

δ(Sijkrst)δ(Sijkrsu) ∼
(jkt)(irt)
(jks)(irs)δ(Sijkrst)δ(Sijkrtu); (3.4.1)

here, ∼ is used to indicate that the replacement may be made at the level of the

integrand only strictly for physical configurations along the contour of integration.

This transformation has played an important role in the analysis of [9], [31]. Note

that this relation indicates a specific change in the contour prescription: the δ(Sijkrsu)

on the left-hand side may localize the integral on fewer (or more) poles than the
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δ(Sijkrtu) on the right, in which case the extra (or missing) poles on the right-hand

side are provided by zeros the minors in the denominator (or cancelled by zeros of

the minors in the numerator).

In the next two subsections we first focus on following the transformation of the

δ(F i
` )’s from equation (3.2.1) to the formula (4.12) in [23]. We then collect all the

pre-factors which pile-up along the way and demonstrate precise agreement with

[23]. It is very easy to check the agreement between our formula and that of [23]

for NMHV using [9]. We may proceed by induction at step n, beginning with the

assumption that equation (3.2.1) agrees with [23] for the (n−1)-point amplitudes.

3.4.1 Transforming the δ(F j` )’s

Let us first transform the δ(F j
` )’s from equation (3.2.1) to the corresponding ones

in [23]. Because we will use induction, we only need to consider F j
n and for the

simplicity we will denote it as Fj. In order to compare with the formula in [23] we must

first change the common piece in Fj, namely σjn = [1, . . . , j 1]⋃ [j+n k, . . . , n 3] in

(3.2.4), into a subset of the columns [1, 2, . . . , k].8 In this sense F1 is the ‘worst’ of the

F ’s and Fk−2 is the ‘best’, so the strategy will be to first make all transformations

on F1, then to make all transformations on F2, and continue in the same way (as

far as possible) until Fk−3. In this way we gradually transform all of the original

δ(Fj)′s into ‘real sextics’ (objects which are indeed sextics in a certain gauge). In

the following we show a first few steps and then move on to the final conclusion.
8The meaning of this will become clear by looking at the final result, equation (3.4.11).
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• Let us first show how to transform F1 to F ′′1 ,

F1 = [n− k + 1 · · · n− 3] ./ S1 2 3 n−2 n−1 n

→ F ′′1 = [n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n.

(3.4.2)

Step one is to use the identity

δ(F1)δ(F ′2) ∼ J
(1)
1 δ(F ′1)δ(F ′2), (3.4.3)

where the sextics and the Jacobian are

F ′2 =[n− k + 2 · · · n− 3 1] ./ S2 3 n−k+1 n−2 n−1 n

F ′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 n−k+1 n−2 n−1 n

J
(1)
1 =[n− k + 2 · · · n− 3] ./ (n 1 2 3)(n− 2 n− 1 1 2)

(n 1 3 n− k + 1)(n− 2 n− 1 1 n− k + 1) .

(3.4.4)

This identity follows from (3.4.1) by setting a particular gauge, namely to use GL(k)

symmetry to set k columns [1, 2, 3, n−k+1, · · · , n−3] of k×n matrix (Cαa) to be an

identity square matrix, and we will denote the gauge as {1, 2, 3, n− k+ 1, · · · , n− 3}.

Note that we also transformed F2 into F ′2 which generated a Jacobian J which will

end up canceling, so we will not write it explicitly.

Next we further transform F ′1 by using

δ(F ′1)δ(F (n−1)
1 ) ∼ J

(2)
1 δ(F ′′1 )δ(F (n−1)

1 ), (3.4.5)
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where

F
(n−1)
1 =[n− k + 2 · · · n− 3 2] ./ S1 3 n−k+1 n−2 n−1 4,

F ′′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n,

J
(2)
1j =[n− k + 2 · · · n− 3 j] ./ (n− 1 4 j)(3 n− 2 4)

(n− 1 n− k + 1 j)(3 n− 2 n− k + 1) ,

(3.4.6)

with j = 1 and j = 2. Note that in carrying out this transformation we have made

use of the constrain δ(F (n−1)
1 ) which can be obtained by transforming F j

n−1 of the

(n− 1)-point amplitudes.

The third step is to transform F ′2 back to F2, which generates a Jacobian J−1.

To summarize the construction so far, we have shown how to transform the original

F1 into a “better" quantity F ′′1 at the cost of inserting the Jacobain factor J (1)
1 J

(2)
11

into the integrand.

• Next we would like to similarly process F2 with F ′′1 . By applying (3.4.1) for the

new F ′′1 and the old F2

F ′′1 =[n− k + 2 · · · n− 3 2] ./ S1 3 4 n−2 n−1 n,

F2 =[n− k + 2 · · · n− 3 1] ./ S2 3 4 n−2 n−1 n,

(3.4.7)

we get the new quantities

F ′′′1 =[n− k + 3 · · · n− 3 2 3] ./ S1 4 5 n−2 n−1 n,

F ′′′2 =[n− k + 3 · · · n− 3 1 3] ./ S2 4 5 n−2 n−1 n.

(3.4.8)
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The Jacobians generated from this step are

J
(1)
2 J

(2)
21 J

(1)
2 J

(2)
22 , (3.4.9)

where

J
(1)
2 = [n− k + 3 · · · n− 3] ./ (n 1 2 3 4)(n− 2 n− 1 1 2 3)

(n 1 2 4 n− k + 2)(n− 2 n− 1 1 2 n− k + 2) ,

J
(2)
2j = [n− k + 3 · · · n− 3 j] ./ (n− 1 5 j)(4 n− 2 5)

(n− 1 n− k + 2 j)(4 n− 2 n− k + 2) ,

(3.4.10)

with j = 1, 2 and 1 ≡ (2, 3), 2 ≡ (1, 3).

• We proceed by transforming the original F3 together with the new F ′′′1 , F
′′′
2 into

three new quantities F ′′′′1 , F ′′′′2 , F ′′′′3 . We continue in this manner until we reach F ′′′···′′k−3 .

In each step we will always make two-type transformations like the ones described

above. At the end of the day, we have new quantities

Fj = [1, 2, · · · , ��j, · · · , k − 2] ./ Sj k−1 k n−2 n−1 n, (3.4.11)

where 1 ≤ j ≤ k−2. The Jacobians generated during the whole process are products

of

J
(1)
l = [n k+`+1 · · · n 3] ./ (n 1 2 · · · `+2)(n 2 n 1 1 · · · `+1)

(n 1 · · · ` `+2 n k+`)(n 2 n 1 1 · · · ` n k+`) ,

J
(2)
`j

= [n k+`+1 · · · n 3 j] ./ (n 1 `+3 j)(`+2 n 2 `+3)
(n 1 n k+` j)(`+2 n 2 n k+`) ,

(3.4.12)

where j ≡ (1, 2, · · · , ��j, · · · , `+ 1), 1 ≤ ` ≤ k − 3 and 1 ≤ j ≤ `.

Finally let us choose a gauge {1, 2, 3, · · · , k}, in which case Fj = Sj k−1 k n−2 n−1 n
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may be found in (3.4.11). Thus we have mapped our F j
n’s to the sextics in [23], and

all we are left to compare is the corresponding prefactor.

3.4.2 Collecting Prefactors

Let us now verify that performing the above procedure on our formula (3.2.1)leads to

precisely the same prefactor inside the integral as in [23]. We only need to compare

the ratio between n-point amplitude and (n − 1)-point amplitude which for our

formula (3.2.1) reads

An = H (k)
n

H (k)
n−1

= 1
(n 1 n 1 · · · k 2)

[ k 1∏
j=1

(n k+j · · · n 1 1 · · · j)

× (n k+j · · · n 3 n 1 · · · j+1)(n k+j · · · n 2 1 · · · j 1 j+1 j+2)

× (n k+i · · · n 3 n 1 1 · · · j j+2)
]
.

(3.4.13)

The corresponding ratio in twistor string is given by the formula (4.12) of [23] .

Taking into account all the Jacobians from the transformations described in the

previous subsection, we find the ratio of our formula (3.2.1) to that in [23] is pricisely

equal to one. This completes the proof.



Chapter 4

Five point three-loop amplitude in

N = 4 SYM

4.1 Introduction

Much of the recent-year interest in multi-loop scattering amplitudes has been stim-

ulated by the ABDK/BDS ansatz [11, 12] which suggested that multi-loop MHV

amplitudes satisfy a powerful iteration relation implying a simple exponential form

for the full all-loop amplitude. Now, it is well known that the ansatz is incomplete

starting from the two-loop six-particle amplitude [15, 16, 17, 18].

In this chapter we study the three-loop BDS ansatz

M (3)
n (ε) + 1

3(M (1)
n (ε))3 −M (1)

n (ε)M (2)
n (ε)− f (3)(ε)M (1)

n (3ε) = C(3) + O(ε) (4.1.1)

50
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where C(3) is a previously undetermined numerical constant. In sections II and

III we use the leading singularity method [32] to determine the (four-dimensional

cut-constructible part of the) 3-loop 5-particle amplitude M (3)
5 in terms of a simple

basis of integrals. In section IV we then numerically evaluate enough pieces of these

amplitudes (the pieces called ‘obstructions’ in [33, 34]) to determine C(3) = 17.8241.

Although current developments strongly suggest that the quantity appearing on the

right-hand side of (4.1.1) will in general be non-constant (but still dual conformally

invariant) for n > 5, there is some utility in knowing the precise number C(3) =

17.8241 since for any n, whatever appears on the right-hand side of (4.1.1) must

approach this same number in any collinear limit.

4.2 Outline of the Calculation

Our goal is to find a compact expression for the planar 3-loop 5-particle amplitude

in N = 4 SYM as a linear combination of some basic integrals. Several powerful and

related techniques for carrying out calculations such as these include unitarity based

methods [1, 35, 36, 37, 38, 39, 40] and more recently, building on [41, 42], maximal

cuts [43] and the leading singularity method [32]. For the present calculation we

find it convenient to use the leading singularity method (see also [44, 45]) since it

allows for all integral coefficients to be determined analytically by solving simple

linear equations. In this section we provide a detailed outline of the steps involved

in setting up the calculation.
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4.2.1 Review of the Leading Singularity Method

Suppose we are interested in calculating some L-loop scattering amplitude A. On

the one hand, the amplitude may of course be represented as a sum over Feynman

diagrams Fj,

A(k) =
∑
j

ˆ L∏
a=1

dd`a Fj(k, `), (4.2.1)

where k are external momenta and `a are the loop momenta. However it is frequently

the case, especially in theories as rich as N = 4 SYM, that directly calculating

the sum over Feynman diagrams would be impractical. Rather the calculation

proceeds by expressing A as a linear combination of relatively simple integrals in

some appropriate basis {Ii},

A(k) =
∑
i

ci(k)
ˆ L∏

a=1
dd`a Ii(k, `), (4.2.2)

and then determining the coefficients ci by other means.

With the leading singularity method we equate (4.2.1) and (4.2.2) and perform the

integral ∑
i

ci(k)
ˆ

Γ
d4` Ii(k, `) =

ˆ
Γ
d4`

∑
j

Fj(k, `) (4.2.3)

over contours Γ ∈ C4L other than the real `-axis. At L loops each contour is a T 4L

inside C4L. For each contour Γ we obtain one linear equation on the coefficients ci.

Of course if Γ is a random contour then we would generally get the useless equation

0 = 0, so we should choose contours such that the integral on the right-hand side

of (4.2.3) evaluates the residue on the isolated singularities of Feynman diagrams,

which are associated with the locus where internal propagators become on-shell.
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Since the number of isolated singularities in a generic L-loop diagram can be as high

as 2L (simple diagrams can have fewer isolated singularities), the leading singularity

method gives rise to an exponentially large (in L) number of linear equations for the

coefficients ci. We note that the homogeneous part of these linear equations (the

left-hand side of (4.2.3)) depends only on the set of integrals {Ii} and the choice

of contours, while the details of which particular helicity configuration is under

consideration enters only into the inhomogeneous terms on the right-hand side.

4.2.2 Integration Strategy: Collapse and Expand

Here we briefly review from [42, 43, 44, 32, 45] the integration rules which make it

simple to evaluate the contour integrals appearing in (4.2.3) in the cases relevant to

the present calculation. Let us focus on a box with loop momentum p and external

momenta ki. The box may be sitting inside a higher-loop diagram, in which case

the ki may involve other loop momenta. The sum over Feynman diagrams contains

poles at the locus

S = {p ∈ C4 : p2 = 0, (p− k1)2 = 0, (p− k12)2 = 0 , (p+ k4)2 = 0}, (4.2.4)

which, for generic ki, consists of two distinct points. To each of these points there is

an associated contour Γp such that integrating p over Γp calculates the residue at

the associated point.

The residue of a one-loop amplitude at one of these poles is computed by removing

the four internal propagators and evaluating the product of on-shell tree amplitudes

at the four corners (summed over all helicities of internal states). In the simplest
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application, when all four ki satisfy k2
i = 0, this product evaluates on either contour

Γp to a four-particle tree amplitude, leading to the ‘collapse rule’ graphically depicted

as

ˆ
Γp
d4p

k3

k1

k2

k4

p

=

k4

k3k2

k1

. (4.2.5)

The figure on the left indicates the sum over that subset of all one-loop Feynman

diagrams in which all four of the indicated propagators are present. Of course it

may as well be the sum over all one-loop Feynman diagrams since those that do not

contain all four of the indicated propagators contribute zero to the residue.

When one of the k2
i is non-zero, the result (4.2.5) holds on only one of the two

Γp contours, while the integral over the other contour gives zero. Given a helicity

assignment for the external particles it is a simple matter to determine which of the

two solutions leads to the non-zero result.

It is frequently the case that after collapsing a box in some loop momentum p there

are less than four exposed propagators in some other loop momentum, which would

apparently indicate a codimension 1 singularity rather than an isolated singularity.

In this case one can use the ‘expand rule’

k4

k3k2

k1

=

k2

k1

k3

k4

+ terms non-singular at (k1 + k2)2 = 0
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=

k4k1

k3k2

+ terms non-singular at (k2 + k3)2 = 0

to expose additional propagators inside a tree amplitude. The choice of how to expand

is correlated with the choice of integration contour for the next loop momentum.

In the example shown here, the terms isolated on the first line are those which

survive a contour integration around the singularity at (k1 + k2)2 = 0 while the

second expansion displays those terms isolated by a contour integration around the

singularity at (k2 + k3)2 = 0.

These two simple rules are sufficient for evaluating all contour integrals appearing on

the right-hand side of (4.2.3) in this paper. Finally, scalar integrals appearing on the

left-hand side are integrated via the simple rule

ˆ
Γp
d4p

1
p2(p− k1)2(p− k12)2(p+ k4)2 = 1

(k1 + k2)2(k2 + k3)2 , (4.2.6)

which is valid as long as at least three of the ki satisfy k2
i = 0 (we will not encounter

any other cases in the present calculation). We have chosen a simple normalization

factor of 1 on the right-hand side of (4.2.6); this will be adjusted below in (4.3.3) to

match standard conventions for normalizing amplitudes.
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Figure 4.1: The planar 3-loop 5-particle topologies associated to leading singularities.
Each figure represents a sum over that subset of Feynman diagrams in which all of
the indicated propagators are present. We label the external momenta clockwise
with k1 at the leg indicated with the arrow.
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4.2.3 Choosing a Sufficient Set of Contours

In order to proceed systematically we begin by enumerating all planar 3-loop 5-

particle topologies which are free of tadpoles, bubbles, and triangles, since such

diagrams are unnecessary due to N = 4 supersymmetry (see [47] for a thorough

discussion). This leaves 17 topologies, of which 5 do not have any associated leading

singularities and are therefore of no interest to us. The remaining 12 topologies are

shown in Fig. 4.1.

Each topology in Fig. 4.1 has several distinct associated leading singularities, each

of which gives rise to an equation via (4.2.3). The information contained in this

collection of equations is highly redundant—the equations obtained from only a small

subset of the leading singularities are sufficient to determine all coefficients, while

the remaining equations serve as consistency checks. We now present a few details

explaining how to extract a set of equations sufficient for determining all coefficients.

We have verified a number of the additional equations to check consistency, but have

not performed an exhaustive search for all possible leading singularities.

The topologies fall naturally into three different categories according to how we

choose to implement the collapse and expand rules. Let us now address each category

in turn, giving in each case the details of the simplest topology as an example.
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Example 1: Topology L

Topology L has several leading singularities, but the simplest ones can be isolated as

indicated in the following cartoon:

qr

p

´
dp

−→
qr

=
qr

+ O([(q + k1)2]0)
´
dq

−→

r

(4.2.7)

In words: we first integrate the sum of Feynman diagrams over a p contour which

collapses the associated massless box, then expand around (q + k1)2 = 0 keeping

only the singular terms indicated. Integrating q over an appropriate contour isolates

these singular terms while collapsing the massless box. The final integral over r is

again accomplished using the collapse rule.

The leading singularities exposed by these steps are those located at the locus

SL = {(p, q, r) ∈ C12 : p2 = 0, q2 = 0, r2 = 0, (p+ k1)2 = 0, (r − k5)2 = 0,

(r − k45)2 = 0, (r + k12)2 = 0, (q + k12)2 = 0, (p− k2)2 = 0,

(q − r)2 = 0, (p+ q + k1)2 = 0, (q + k1)2 = 0}. (4.2.8)

For generic external momenta the set SL consists of 8 distinct points in C12. For

each point in SL there is an associated contour which computes the residue at the

point and hence leads to an equation via (4.2.3).

It remains only to construct an appropriate ansatz for the left-hand side of (4.2.3).
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We try a linear combination of the two most natural integrals of topology L,

L + L1 . (4.2.9)

Here and in what follows we use pictures as shorthand for the corresponding scalar

integrands, so for example the first term in (4.2.9) represents

L
1

p2q2r2(p+ k1)2(r − k5)2(r − k45)2(r + k12)2(q + k12)2(p− k2)2(q − r)2(p+ q + k1)2

(4.2.10)

while the dotted line in the second picture in (4.2.9) indicates a factor of (r+ k1)2 in

the numerator of the integrand.

Integrating (4.2.9) over the contours detailed above leads to the expression

L+ L1(r + k1)2

s2
12s34s45(r + k1)2 , (4.2.11)

where the denominator factors arise from the Jacobians in (4.2.6). Equating this

to the result of (4.2.7) and choosing a particular helicity configuration leads to the

equation
L+ L1(r + k1)2

s2
12s34s45(r + k1)2 = Atree(1−, 2−, 3+, 4+, 5+) δ〈r,5〉. (4.2.12)

Of course this must be evaluated on the locus SL, and it is easy to check that SL

contains only two different values of r:

r1 = λ5

(
λ̃5 + 〈4, 3〉

〈5, 3〉 λ̃4

)
, r2 =

(
λ5 + [4, 3]

[5, 3]λ4

)
λ̃5, (4.2.13)

giving us two distinct equations which are sufficient to determine the coefficients L
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and L1 uniquely.

Topologies D, G, and N proceed in exactly the same manner, except that in these

cases more than two integrals appear on the left-hand side. Topologies A, C, E and

K are also very similar, except that since these three topologies only have 10 exposed

propagators (rather than 11) it is necessary to isolate a second hidden singularity by

performing a second expansion prior to integrating over r.

Example 2: Topology M

For topology M it is sufficient to consider even simpler contours. We first collapse

and expand the p box as done above for topology L, arriving at

r q

(4.2.14)

At this stage it is convenient to integrate over a symmetric contour of the type

considered in [32] where we require that 〈q, r〉 and [q, r] separately vanish instead of

just (q + r)2 = 0. This leads us to consider the locus

SM = {(p, q, r) ∈ C12 : p2 = 0, q2 = 0, r2 = 0, (p− k4)2 = 0, (r + k1)2 = 0,

(q + k45)2 = 0, (r + k12)2 = 0, (p− q − k45)2 = 0,

(p− k45)2 = 0, (q + k5)2 = 0, 〈q, r〉 = 0, [q, r] = 0}.(4.2.15)

For generic external momenta SM consists of 4 isolated points, each of which leads

to one linear equation for the integral coefficients. Note that the right-hand side
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of (4.2.3) always vanishes for such symmetric contours since the associated product

of tree amplitudes must vanish when 〈q, r〉 = 0 = [q, r].

For topologies B, J and G we proceed along exactly the same lines (we already

treated G in the first example, but additional equations are needed to fix all of the

coefficients which appear for this topology). It turns out that for topology J an

interesting and very useful feature emerges: here we model the left-hand side as the

linear combination

J + J1 + several other integrals. (4.2.16)

We will not display all of the relevant integrals explicitly, but they all have the

property that they either vanish on the locus SJ (so that they do not enter the

associated equations), or they contain the same numerator factor as J1 shown here,

which we denote by `2. Now when we perform the q integral one of the Jacobian

factors is 1/`2, so we obtain the equation

J

`2 + J1 + several other coefficients = 0. (4.2.17)

Since `2 = 0 on the locus SJ , we immediately see that the coefficient J must vanish

in order to avoid a contradiction. Perhaps a safer way to express this is to say that

we can consider an equation obtained by multiplying both sides of (4.2.3) by `2

before performing the contour integrals. Having determined that J = 0, we then see

that (4.2.17) gives an equation relating J1 to the other coefficients. This trick is also

useful for other topologies, in particular for C and E.
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Example 3: Topology R

There are five different triple-box 9-propagator topologies, of which topology R is

the only one with associated leading singularities. These are situated on the locus

SR = {(p, q, r) ∈ C12 : p2 = 0, (p+ q + k15)2 = 0, q2 = 0, (q − k4)2 = 0, (p− r)2 = 0,

(r − k23)2 = 0, r2 = 0, (r + q + k15)2 = 0, (p+ k1)2 = 0,

(q + k15)2 = 0, (r + k1)2 = 0, (r + k15)2 = 0}. (4.2.18)

Here the first nine conditions are the visible propagators, while the last three are

hidden singularities. In order to see what the right-hand side of (4.2.3) should be let

us begin by integrating out q to collapse the first box. This leads to

r

q

(4.2.19)

For the first time we find a triangle-triangle diagram rather than a triangle-box or

box-box. The Jacobian factor from integrating the corresponding scalar integral is

1/(q+k15)2(r+k1)2, suggesting that we expand (4.2.19) to expose either 1/(q+k15)2 or

the 1/(r+k1)2 propagator, but it is clearly impossible to expand both simultaneously.

Either choice leaves us with a sum over triangle-box Feynman diagrams, which

vanishes due to N = 4 supersymmetry. The right-hand side of (4.2.3) is therefore

zero for the R topology leading singularities in eq. (4.2.18).
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A1 B C1 D1 D2 E

G1 G2a G2b J1 K L

L1 M N N1 R

Figure 4.2: The 17 independent integrals appearing in the ansatz. Other integrals
can be obtained by rotations or reflections. As in Fig. 4.1 we label the external
momenta clockwise with k1 at the position indicated by the arrow.

4.3 The 3-loop 5-particle Amplitude

A basis of integrals which is sufficient for representing all of the leading singularities

of the amplitude is shown in Fig. 4.2. By solving the collection of linear equations as

explained in the previous section we find their coefficients

A1 = −s12s
2
23

1− γ3

γ3 − γ̃3
,

B = −s12s23s34s45
γ5

γ5 − γ̃5
,

C1 = −s12s
2
51

γ̃3

γ3 − γ̃3
,

D1 = s12s23s
2
51

1
γ3 − γ̃3

,

D2 = −s23s34s15
1− γ4

γ4 − γ̃4
,

E = −s12s
2
23s51

1
γ3 − γ̃3

,
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G1 = s12s
2
23s51

1
γ3 − γ̃3

,

G2a = −s23s45s51
γ̃2

γ2 − γ̃2
,

G2b = −s23s34s45
1

γ5 − γ̃5
,

J1 = −s34s45s51
1

γ1 − γ̃1
,

K = −s3
12s23

1− γ3

γ3 − γ̃3
,

L = s3
12s23s51

1
γ3 − γ̃3

,

L1 = −s2
12s34s45

γ̃1

γ1 − γ̃1
,

M = −s12s
2
45s51

1
γ2 − γ̃2

,

N = s51s12s34s
2
45

1
γ1 − γ̃1

,

N1 = −s12s34s
2
45

γ̃1

γ1 − γ̃1
,

R = s23s45s51
1− γ1

γ1 − γ̃1
(4.3.1)

where we have introduced the quantity

γi =
(

1 + 〈i+ 2, i+ 3〉[i+ 3, i]
〈i+ 2, i+ 4〉[i+ 4, i]

)−1

, (4.3.2)

and γ̃ is given by the parity conjugate of this expression (i.e., 〈a, b〉 ↔ [a, b]). In

each case we have suppressed an overall factor of Atree
5 . In order to connect to

the standard normalization conventions used in the study of the BDS ansatz it is

necessary to multiply by an overall factor of (−1/2)L. The complete amplitude is

therefore assembled via the formula

M
(3)
5 = A

(3)
5 /Atree

5 = −1
8

∑
permutations

∑
integrals

1
Si

coefficienti × integrali. (4.3.3)
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The first sum runs over the 10 cyclic and anti-cyclic orderings of the labels 1, 2, 3, 4, 5

of the external particles and the second sum runs over the 17 integrals in Fig. 4.2.

Si is a symmetry factor to compensate for possible overcounting: S = 2 for integrals

B, D1, D2, G2b, L, L1, N , and R, and S = 1 for the others.

The presentation (4.3.1) makes it simple to read off the parity-even parts of the

coefficients, which will be useful in the following section. We find the parity-even

parts

A1 = 1
2s12s

2
23, B = −1

2s12s23s34s45,

C1 = 1
2s12s

2
51, D2 = 1

2s23s34s51,

G2a = 1
2s23s45s51, K = 1

2s
3
12s23,

L1 = 1
2s

2
12s34s45, N1 = 1

2s12s34s
2
45,

R = −1
2s23s45s51. (4.3.4)

with all others vanishing. We note that only the coefficients associated to dual

conformal integrals have non-vanishing parity-even parts, as expected based on the

pattern of previously studied amplitudes [12, 13, 14, 47, 18].

4.4 The Three-Loop BDS Ansatz

The infrared divergences of higher loop scattering amplitudes in gauge theory are very

simply related to those of lower loop amplitudes [48]. In [11, 12], it was conjectured

that in N = 4 SYM this simplicity persists, at least for MHV amplitudes, to the finite

terms as well. Although the explicit n = 6 calculation of [18] has now demonstrated,
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following earlier doubts raised in [15, 16, 17] (see also [49]), that these relations are

not true for all n, it is believed that they should hold for four and five particles at

any number of loops since for these cases the amplitudes are determined up to a few

constants by dual conformal invariance [15, 19].

The precise form of the BDS ansatz at three loops, in dimensional regularization to

D = 4− 2ε, is

M (3)
n (ε) = −1

3(M (1)
n (ε))3 +M (1)

n (ε)M (2)
n (ε) + f (3)(ε)M (1)

n (3ε) + C(3) + O(ε) (4.4.1)

where

f (3)(ε) = 11π4

180 + (5ζ(2)ζ(3) + 6ζ(5)) ε+ aε2, C(3) = b (4.4.2)

in terms of two previously undetermined numerical constants a and b. BDS verified

by explicit calculation that the 3-loop 4-particle amplitude satisfies (4.4.1), but the

structure of the equation for n = 4 is insensitive to the values of a and b as long as

they obey the linear relation

2a− 9b = −341
24 ζ(6) + 17ζ(3)2. (4.4.3)

Here we will use our 3-loop 5-particle amplitude to extract a second linear equation

from (4.4.1) which will finally fix the constants a and b.

The calculation of a and b benefits from two simplifcations. The first is that we may

restrict our attention to the parity-even part of (4.4.1). If we write each amplitude

as a sum of its parity-even and parity-odd parts, M (L)
5 = M

(L)
5+ +M

(L)
5− , then taking
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the parity-even part of (4.4.1) for n = 5 gives

M
(3)
5+ (ε) = −1

3(M (1)
5+ (ε))3 +M

(1)
5+ (ε)M (2)

5+ (ε) + f (3)(ε)M (1)
5+ (3ε) + C(3)

+M (1)
5− (ε)

(
M

(2)
5− (ε)−M (1)

5+ (ε)M (1)
5− (ε)

)
+ O(ε). (4.4.4)

In [14] it was shown that M (2)
5− (ε) − M

(1)
5+ (ε)M (1)

5− (ε) = O(ε). Since M (1)
5− (ε) itself

is also O(ε), we see that the entire last line of (4.4.4) can be replaced simply by

+O(ε). A consequence of the result of [14] is therefore that the parity-even part

of the three-loop BDS ansatz can be obtained by making the naive replacement

M
(3)
5 →M

(3)
5+ in (4.4.1).

The second simplication is to make use of the notion of obstructions introduced in [33]

and exploited in the four-loop calculations [34, 46]. We refer the reader to [34] for all

of the necessary details, including a detailed algorithm for calculating obstructions.

Here we simply remind the reader that for an amplitude A(x, ε) depending on a

single kinematic variable x, the obstruction P (ε) is defined to be the coefficient of

the simple pole at y = 0 in the inverse Mellin transform transform, so that

A(x, ε) =
ˆ +i∞

−i∞
dy xy

[
(higher order singularities) + P (ε)

y
+ (regular at y = 0)

]
.

(4.4.5)

As explained in [34] it is important to understand this relation as holding order

by order in ε, rather than at finite ε. The prime advantage of dealing with P (ε)

rather than the full A(x, ε) is that it is much simpler to compute. Furthermore it

is important that obstructions satisfy a product algebra—the obstruction in any

product of amplitudes is equal to the product of the individual obstructions.

This concept generalizes straightforwardly to integrals depending on more than
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one kinematic variable. In the case at hand we have 5-particle integrals depending

on five independent variables si,i+1, and we can extract the obstruction P (ε) by

applying the above procedure five times in succession. Equivalently, we define

P (ε) to be the coefficient of the 1/(y1y2y3y4y5) pole in the 5-fold inverse Mellin

transform of A(s12, s23, s34, s45, s51). By applying the algorithm outlined in [34] it is

straightforward to find that the obstructions in the one- and two-loop five particle

amplitudes are given by

P
(1)
5 (ε) = −5

2
1
ε2

+ 5π2

8 + 179ζ(3)
24 ε+ 97π4

1440ε
2 −

(
51π2ζ(3)

32 − 137ζ(5)
8

)
ε3

−
(

763ζ(3)2

72 − 23π6

3780

)
ε4 + O(ε5),

P
(2)
5 (ε) = 25

8
1
ε4
− 35π2

24
1
ε2
− 865ζ(3)

48
1
ε
− 97π4

1152 + 21.494969ε

−64.357473ε2 + O(ε3). (4.4.6)

For simplicity we have restricted P (L)
5 here to the parity-even parts of the amplitudes.

Note that these expressions satisfy the two-loop ABDK relation

P
(2)
5 (ε) = 1

2(P (1)
5 (ε))2 + (−ζ(2)− ζ(3)ε− ζ(4)ε2)P (1)

5 (2ε)− π4

72 + O(ε) (4.4.7)

as expected.

At three loops, we have found that there are nine independent integrals which

contribute to the parity-even part of the 5-particle amplitude. The obstructions for

each of these types of integrals, through O(ε0), are

PA1 = 20
9

1
ε6

+ 20π2

27
1
ε4
− 43ζ(3)

2
1
ε3

+ 73π4

432
1
ε2
− 850.2420281

ε
+ 34.239832,

PB = 70
3

1
ε6
− 45π2

2
1
ε4
− 1495ζ(3)

6
1
ε3
− 76π4

135
1
ε2

+ 1589.9627981
ε

+ 2824.770745,
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PC1 = 20
9

1
ε6
− 25π2

54
1
ε4
− 557ζ(3)

36
1
ε3

+ 17137π4

12960
1
ε2

+ 221.8949951
ε

+ 1030.164974,

PD2 = 35
3

1
ε6
− 355π2

36
1
ε4
− 645ζ(3)

4
1
ε3

+ 767π4

2160
1
ε2

+ 231.1236871
ε
− 4141.657880,

PG2a = 20 1
ε6
− 155π2

9
1
ε4
− 563ζ(3)

4
1
ε3
− 487π4

288
1
ε2

+ 1294.5204021
ε

+ 2938.6610± 0.0036,

PK = 20
9

1
ε6
− 5π2

18
1
ε4
− 1177ζ(3)

36
1
ε3

+ 719π4

4320
1
ε2

+ 178.4874601
ε
− 2387.290195,

PL1 = 35
3

1
ε6
− 85π2

12
1
ε4
− 1411ζ(3)

12
1
ε3
− 1195π4

432
1
ε2
− 673.3198311

ε
− 2845.889639,

PN1 = 15 1
ε6
− 455π2

36
1
ε4
− 136ζ(3) 1

ε3
+ 983π4

1440
1
ε2

+ 625.8753981
ε

+ 437.509754

PR = −80ζ(3)
3

1
ε3

+ 107π4

108
1
ε2
− 395.5628041

ε
+ 923.415196. (4.4.8)

Each expression displays the result obtained after summing over all 10 permutations

of the corresponding integral (including in each case the appropriate dual conformal

numerator). The estimated error in the numerical results is much smaller than

the precision indicated in all cases except for the last term in PG2a, which is the

overwhelmingly dominant source of numerical error.

Using the parity-even parts of the coefficients obtained in the previous section, and

including the necessary factors of 1/2 to avoid overcounting those integrals with flip

symmetries, we find the total three-loop obstruction

P
(3)
5 = − 1

16

(
PA1 −

1
2PB + PC1 + 1

2PD2 + PG2a + PK + 1
2PL1 + PN1 −

1
2PR

)
= −125

48
1
ε6

+ 325π2

192
1
ε4

+ 4175ζ(3)
192

1
ε3

+ 499π4

10368
1
ε2

−40.7648851
ε

+ 207.1613± 0.0002 + O(ε) (4.4.9)

Using the results (4.4.9) and (4.4.6), we find that the BDS relation (4.4.1) is satisfied
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provided that a and b satisfy the linear relation

5a− 18b = 105.482± 0.004. (4.4.10)

Together with (4.4.3) this implies the solution

a = 85.263± 0.004, b = 17.8241± 0.0009. (4.4.11)

Based on the transcendentality hypothesis, it is expected that each of these numbers

should be a linear combination of ζ(6) and ζ(3)2 with rational coefficients. However

given the limited numerical accuracy of our calculation it seems prudent to avoid

speculating on possible exact values for a and b at this time.

4.5 Summary

We have used the leading singularity method to obtain an ansatz for the four-

dimensional cut-constructible part of the 3-loop 5-particle amplitude in N = 4 SYM

theory. This means that we have determined the coefficients of the integrals shown

in Fig. 4.2 by comparing residues of the ansatz to those of the amplitude on various

leading singularities. Although it has not yet been proven that determination of only

leading singularities completely determines an amplitude (in principle one might

have to add additional integrals that vanish on all leading singularities but that have

subleading singularities), the method so far has been found to give the complete

answer in all cases where comparison with alternate methods was possible.

Dimensionally regulated amplitudes occasionally contain so-called ‘µ-terms’ which are
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defined as terms in the integrand which vanish in D = 4 but not in D = 4− 2ε (note

that this statement is, in general, completely unrelated to whether or not these terms

vanish in D = 4− 2ε after integration; indeed µ-terms can easily be IR divergent).

Since the leading singularity method itself works with strictly four-dimensional loop

momenta, it is insensitive to possible µ terms, although it seems that in principle

they could be determined by considering leading singularities in integer dimensions

other than 4. However, in all cases that have been studied so far it has been observed

that µ-terms separately cancel out of the BDS relation, leaving C(3) unaffected. We

can therefore hope that even if the 3-loop 5-particle amplitude contains such terms

which we have missed, they would not contribute to the constants a and b computed

in section IV.

Finally we emphasize that since our goal in section IV was to streamline the calculation

of a and b as much as possible, we have only evaluated the obstructions, not the full

amplitude. Consequently we have not checked (even numerically) that the quantity

+C(3) appearing in (4.2.3) is a numerical constant; in principle it could depend on

the kinematic variables si,i+1. The method of obstructions is efficient for quickly

extracting the ‘constant part’ of C(3) (defined as the coefficient of 1/y in the inverse

Mellin transform) but is insensitive to any other potential terms in C(3) that depend

on the si,i+1. It remains an interesting open problem to verify that there are no such

terms.



Chapter 5

Tree formula for MHV gravity

amplitude

5.1 Introduction

Now, we turn to study various aspects of the tree-level amplitudes inN = 8 SUGRA. It

has recently been pointed out [20] that there are reasons to suspectN = 8 supergravity

(SUGRA) to have even richer structure and to be ultimately even simpler than SYM.

Despite great progress has been made, however, our understanding of SUGRA

amplitudes is still poor compared to SYM, suggesting that we are still missing

some key insights into this problem. Much of the progress on gluon amplitudes can

be easily recycled and applied to graviton amplitudes due ultimately to the KLT

relations [50] which roughly speaking state that “gravity is Yang-Mills squared”.

Slightly more precisely, the KLT relations express an n-graviton amplitude as a sum

72
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over permutations of the square of the color-ordered n-gluon subamplitude times

some simple extra factors (see [52] for a review). There are several indications that

maximal supergravity may be an extraordinarily remarkable theory and possibly

even ultraviolet finite,but our feeling is that even at tree level we are still far from

fully unlocking the structure of graviton amplitudes.

To illustrate this disparity we need look no further than the simplest graviton

amplitudes. The original BGK (Berends, Giele and Kuijf) formula for the n-graviton

MHV amplitude [51] is now over 20 years old. For later convenience we review here

a different form due to Mason and Skinner [53], who proved the equivalence of the

original BGK formula to the expression

MMHV
n =

∑
P (1,...,n−3)

1
〈nn−2〉〈n−2n−1〉〈n−1n〉

1
〈1 2〉 · · · 〈n 1〉

n−3∏
k=1

[k|pk+1 + · · ·+ pn−2|n−1〉
〈k n−1〉 ,

(5.1.1)

where the sum indicates a sum over all (n−3)! permutations of the labels 1, . . . , n−3

and we use the convention

[a|pi + pj + · · · |b〉 = [a i]〈i b〉+ [a k]〈j b〉+ · · · . (5.1.2)

The fact that any closed form expression exists at all for this quantity, the calculation

of which would otherwise be vastly more complicated even than the corresponding

one for n gluons, is an amazing achievement. Nevertheless the formula has some

features which strongly suggest that it is not the end of the story.

First of all, the formula (5.1.1) does not manifest the requisite permutation symmetry

of an n-graviton superamplitude. Specifically, any superamplitude Mn must be fully
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symmetric under all n! permutations of the labels 1, . . . , n of the external particles,

but only an Sn−3 subgroup of this symmetry is manifest in (5.1.1) (several formulas

which manifest a slightly larger Sn−2 subgroup are known [4, 54]). Of course one can

check, numerically if necessary, that (5.1.1) does in fact have this symmetry, but it is

far from obvious. Moreover, even the Sn−3 symmetry arises in a somewhat contrived

way, via an explicit sum over permutations. Undoubtedly the summand in (5.1.1)

contains redundant information which is washed out by taking the sum.

Secondly, one slightly disappointing feature of all previously known MHV formulas

including (5.1.1) is the appearance of “· · · ”, which indicates that a particular cyclic

ordering of the particles must be chosen in order to write the formula, even though a

graviton amplitude ultimately cannot depend on any such ordering since gravitons

do not carry any color labels. This vestigial feature usually traces back to the use of

the KLT relations to calculate graviton amplitudes by recycling gluon amplitudes.

An important feature of graviton amplitudes is that they fall off like 1/z2 as the

supermomenta of any two particles are taking to infinity in a particular complex

direction unlike in Yang-Mills theory where the falloff is only 1/z. As we noted

in previous Chapter, this seeming simple fact can be greatly used for simplifying

the tree-level amplitudes. And this exceptionally soft behavior of graviton tree

amplitudes is of direct importance for the remarkable ultraviolet cancellations in

supergravity loop amplitudes (see e.g. [55] and related references).

It is difficult to imagine that it might be possible to improve upon the Parke-Taylor

formula for the n-gluon MHV amplitude. However, for the reasons just reviewed, we

feel that (5.1.1) cannot be the end of the story for gravity. Ideally one would like to

have a formula for n-graviton scattering that (1) is manifestly Sn symmetric without
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the need for introducing an explicit sum over permutations to impose the symmetry

vi et armis; (2) makes no vestigial reference to any cyclic ordering of the n gravitons,

and (3) manifests 1/z2 falloff term by term, making it unsqueezable by the bonus

relations.

In this chapter we present and prove an new formula for the MHV scattering

amplitude which addresses the second and third points but only manifests Sn−2

symmetry. In section 2 we introduce the tree formula and discuss several special

cases as well as the general soft limit. In section 3 we work out the simple link

representation of the amplitude in twistor space, from which new physical space

formula follows. Finally the proof is in section 4.

5.2 The MHV Tree Formula

5.2.1 Statement of the Tree Formula

Here we introduce a formula for the n-graviton MHV scattering amplitude which

we call the “tree formula” since it consists of a sum of terms, each of which is

conveniently represented by a tree diagram. The tree formula manifests an Sn−2

subgroup of the full permutation group. For the moment we choose to treat particles

n− 1 and n as special. With this arbitrary choice the formula is:

MMHV
n = 1

〈n− 1n〉2
∑
trees

 ∏
edges ab

[a b]
〈a b〉

( ∏
vertices a

(〈a n− 1〉〈a n〉)deg(a)−2
)
. (5.2.1)
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It is interested to note that the expression for the n-point amplitude can actu-

ally be represented as all inequivalent connected tree graphs with vertices labelled

1, 2, . . . , n − 2. (It was proven by Cayley long time ago that there are precisely

(n− 2)n−4 such diagrams.)

5.2.2 Examples

We defer to section IV a formal proof of the tree formula as the impatient reader

may be sufficiently convinced by seeing the formula in action here for small n and

by noting that it has the correct soft limits for all n, as we discuss shortly.

For each of the trivial cases n = 3, 4 there is only a single tree diagram,

MMHV
3 = 1

(〈1 2〉〈1 3〉〈2 3〉)2 (5.2.2)

and

MMHV
4 = [1 2]

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉2 (5.2.3)

respectively, which immediately reproduce the correct expressions.

For n = 5 there are three tree diagrams

A5 = [1 2][2 3]
〈1 2〉〈1 4〉〈1 5〉〈2 3〉〈3 4〉〈3 5〉〈4 5〉2

+ [1 3][2 3]
〈1 3〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈2 5〉〈4 5〉2

+ [1 2][1 3]
〈1 2〉〈1 3〉〈2 4〉〈2 5〉〈3 4〉〈3 5〉〈4 5〉2

(5.2.4)

which can easily be verified by hand to sum to the correct expression. Agreement
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between the tree formula and other known formulas such as (5.1.1) may be checked

numerically for slightly larger values of n by assigning random values to all of the

spinor helicity variables.

5.2.3 Soft Limit of the Tree Formula

Let us consider for a moment the component amplitude

M(1+, . . . , (n− 2)+, (n− 1)−, n−) = 〈n− 1n〉8MMHV
n (5.2.5)

with particles n − 1 and n having negative helicity. The universal soft factor for

gravitons is [51]

lim
p1→0

M(1+, . . . , (n− 2)+, (n− 1)−, n−)
M(2+, . . . , (n− 2)+, (n− 1)−, n−) =

n−2∑
i=2

g(i+), g(i+) = 〈i n− 1〉
〈1n− 1〉

〈i n〉
〈1n〉

[1 i]
〈1 i〉 .

(5.2.6)

It is simple to see that the MHV tree formula satisfies this property: the tree diagrams

which do not vanish in the limit p1 → 0 are those in which vertex 1 is connected

by a propagator to a single other vertex i. Such diagrams remain connected when

vertex 1 is chopped off, leaving a contribution to the n− 1-graviton amplitude times

the indicated factor g(i+).

Thinking about this process in reverse therefore suggests a simple interpretation

of (5.2.6) in terms of tree diagrams—it is a sum over all possible places i where the

vertex 1 may be attached to the n− 1-graviton amplitude. This structure is exactly

that of the “inverse soft factors”, and we have checked that the MHV tree formula

may be built up by recursively applying the rule proposed there.
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5.3 The MHV Tree Formula in Twistor Space

Before turning to the formal proof of the tree formula in the next section, here we

work out the link representation of the MHV graviton amplitude in twistor space,

which was one of the steps which led to the discovery of the tree formula. Two

papers [56, 24] have recently constructed versions of the BCF on-shell recursion

relation directly in twistor space variables. We follow the standard notation where µ,

µ̃ are respectively Fourier transform conjugate to the spinor helicity variables λ, λ̃,

and assemble these together with a four-component Grassmann variable η and its

conjugate η̃ into the 4|8-component supertwistor variables

Z =


λ

µ

η

 , W =


µ̃

λ̃

η̃

 . (5.3.1)

In the approach of [24], in which variables of both chiralities Z and W are used

simultaneously, an apparently important role is played by the link representation

which expresses an amplitude M in the form

M(Zi,WJ) =
ˆ
dc U(ciJ , λi, λ̃J) exp

i∑
i,J

ciJZi ·WJ

 . (5.3.2)

Here one splits the n particles into two groups, one of which (labeled by i) one

chooses to represent in Z space and the other of which (labeled by J) one chooses to

represent in W space. The integral runs over all of the aptly-named link variables ciJ

and we refer to the integrand U(ciJ , λi, λ̃J) as the link representation of M. It was

shown in [24] that the BCF on-shell recursion in twistor space involves nothing more
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than a simple integral over Z, W variables with a simple (and essentially unique)

measure factor.

The original motivation for our investigation was to explore the structure of link

representations for graviton amplitudes. We will always adopt the convenient conven-

tion of expressing an NkMHV amplitude in terms of k + 2 Z variables and n− k − 2

W variables. The three-particle MHV and MHV amplitudes

UMHV
3 = |〈1 2〉|

c2
13c

2
23
, UMHV

3 = |[1 2]|
c2

31c
2
32

(5.3.3)

seed the on-shell recursion, which is then sufficient (in principle) to determine the

link representation for any desired amplitude.

For example, the four-particle amplitude is the sum of two contributing BCF diagrams

UMHV
4 = 〈1 2〉[3 4]

c2
13c

2
24c12:34

+ 〈1 2〉[3 4]
c2

13c
2
24c14c23

(5.3.4)

where we use the notation

ci1i2:J1J2 = ci1J1ci2J2 − ci1J2ci2J1 . (5.3.5)

Remarkably the two terms in (5.3.4) combine nicely into the simple result presented

already in [24]:

UMHV
4 = 〈1 2〉[3 4]

c13c14c23c24c12:34
. (5.3.6)

This simplification seems trivial at the moment but it is just the tip of an ice-

berg. For larger n the enormous simplifications discussed in the previous section,

which are apparently non-trivial in physical space, occur automatically in the link
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representation.

For example the five particle MHV amplitude is the sum of three BCF diagrams,

UMHV
5 =

{
|〈1 2〉|[4 5](c24[3 4] + c25[3 5])

c13c23c14c2
25c12:34c12:45

+ (3↔ 4)
}

+ |〈1 2〉|[3 4](c24[4 5] + c23[3 5])
c13c14c15c23c24c2

25c12:34

(5.3.7)

which nicely simplifies to

1
|〈1 2〉|U

MHV
5 = [3 4][4 5]

c13c15c23c25c12:34c12:45
+ [3 5][4 5]
c13c14c23c24c12:35c12:45

+ [3 4][3 5]
c14c15c24c25c12:34c12:35

.

(5.3.8)

This expression already exhibits the structure of the MHV tree formula (except that

here particles 1 and 2 are singled out, and the vertices of the trees are labeled by

{3, 4, 5}).

Subsequent investigations for higher n reveal the general pattern which is as follows.

Returning to the convention where particles n− 1 and n are treated as special, the

link representation for any desired MHV amplitude may be written down by drawing

all tree diagrams with vertices labeled by {1, . . . , n− 2} and then assigning

1. an overall factor of 〈n− 1n〉sign(〈n− 1n〉)n,

2. for each propagator connecting nodes a and b, a factor of [a b]/cn−1,n:a,b,

3. for each vertex a, a factor of (cn−1,acn,a)deg(a)−2, where deg(a) is the degree of

the vertex labeled a.

It is readily verified by direct integration over the link variables that these rules are

precisely the link-space representation of the physical space rules for the MHV tree

formula given in the previous section.
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5.4 Proof of the MHV Tree Formula

Here we present a proof of the MHV tree formula. One way one might attempt

to prove the formula would be to show directly that it satisfies the BCF on-shell

recursion relation [2, 3] for gravity [4, 5], but the structure of the formula is poorly

suited for this task. Instead we proceed by considering the usual BCF deformation of

the formula MMHV
n by a complex parameter z and demonstrating that MMHV

n (z) has

the same residue at every pole (and behavior at infinity) as the similarly deformed

graviton amplitude, thereby establishing equality of the two for all z.

In this section we return to singling out particles 1 and 2, letting the vertices in the

tree diagrams carry the labels {3, . . . , n}. Then the MHV tree formula (5.2.1) can

be written as

MMHV
n = 〈1 2〉6

∑
trees

[ ] · · · [ ]
〈 〉 · · · 〈 〉

n∏
a=3

(〈1 a〉〈2 a〉)deg(a)−2 (5.4.1)

(note that we continue to work with the component amplitude (5.2.5)) where the

factors [ ] · · · [ ]/〈 〉 · · · 〈 〉 associated with the propagators of a diagram are independent

of 1 and 2. Let us now make the familiar BCF shift [3]

λ1 → λ1(z) = λ1 − zλ2, λ̃2 → λ̃2(z) = λ̃2 + zλ̃1 (5.4.2)

which leads to the z-deformed MHV tree formula

MMHV
n (z) = 〈1 2〉6

∑
trees

[ ] · · · [ ]
〈 〉 · · · 〈 〉

n∏
a=3

[(〈1 a〉 − z〈2 a〉)〈2 a〉]deg(a)−2 . (5.4.3)

Here we are in a position to observe a nice fact: since each tree diagram is connected,
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3

1̂ 2̂

MHV MHV
... +

4

1̂ 2̂

MHV MHV
... + · · · +

n

1̂ 2̂

MHV MHV
...

Figure 5.1: All factorizations contributing to the on-shell recursion relation for
the n-point MHV amplitude. Only the first diagram contributes to the residue at
z = 〈1 3〉/〈2 3〉.

the degrees satisfy the sum rule

n∑
a=3

(deg(a)− 2) = −2, (5.4.4)

which guarantees that each individual term in (5.4.3) manifestly behaves like 1/z2 at

large z. This exceptionally soft behavior of graviton amplitudes is completely hidden

in the usual Feynman diagram expansion.

A complex function of a single variable which vanishes at infinity is uniquely deter-

mined by the locations of its poles as well as its residues. Having noted that (5.4.3)

has the correct behavior at large z, we can conclude the proof of the MHV tree

formula by demonstrating that (5.4.3) has precisely the expected residues at all of

its poles. In order to say what the expected residues are we shall use induction on

n. As discussed above the tree formula is readily verified for sufficiently small n, so

let us assume that it has been established up through n− 1. We can then use BCF

on-shell recursion (whose terms are displayed graphically in Fig. 5.1) to determine

what the residues in the deformed n-point amplitude ought to be.

Without loss of generality let us consider just the pole at z = z3 ≡ 〈1 3〉/〈2 3〉.

The only tree diagrams which contribute to the residue at this pole are those with
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deg(3) = 1, meaning that the vertex labeled 3 is connected to the rest of the diagram

by a single propagator. Chopping off vertex 3 gives a subdiagram with vertices

labeled {4, . . . , n}. Clearly all diagrams which contribute to this residue can be

generated by first considering the collection of tree diagrams with vertices labeled

{4, . . . , n} and then attaching vertex 3 in all possible ways to the n− 3 vertices of

the subdiagram. We therefore have

MMHV
n (z) ∼ 〈1 2〉6

∑
subdiagrams

[ ] · · · [ ]
〈 〉 · · · 〈 〉

(
n∑
b=4

[3 b]
〈3 b〉〈1̂ b〉〈2 b〉

)
1

〈1̂ 3〉〈2 3〉

n∏
a=4

(
〈1̂ a〉〈2 a〉

)deg(a)−2

(5.4.5)

where ∼ denotes that we have dropped terms which are nonsingular at z = z3, the

sum over b runs over all the places where vertex 3 can be attached to the subdiagram,

and [ ] · · · [ ]/〈 〉 · · · 〈 〉 indicates all edge factors associated the subdiagram, necessarily

independent of 3. Using the Schouten identity we find that 〈1̂ b〉 = 〈1 2〉〈b 3〉/〈2 3〉 so

we have after a couple of simple steps (and using (5.4.4))

MMHV
n (z) ∼ 〈1 2〉6 [1 3]

〈1 3〉 − z〈2 3〉
∑

subdiagrams

[ ] · · · [ ]
〈 〉 · · · 〈 〉

n∏
a=4

(〈2 a〉〈3 a〉)deg(a)−2 . (5.4.6)

On the other hand we know from the on-shell recursion for the n-point amplitude

that the residue at z = z3 comes entirely from the first BCFW diagram in Fig. 5.1,

whose value is

MMHV
3 (z3)× 1

P 2(z) ×M
MHV
n−1 (z3) (5.4.7)

where

P (z) = p1 + p3 − zλ2λ̃1. (5.4.8)

Assuming the validity of the MHV tree formula for the n− 1-point amplitude on the
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right, the expression (5.4.7) evaluates to

[P̂ 3]6

[3 1]2[1 P̂ ]2
× 1

[1 3](〈1 3〉 − z〈2 3〉) × 〈P̂ 2〉6
∑

subdiagrams

[ ] · · · [ ]
〈 〉 · · · 〈 〉

n∏
a=4

(
〈P̂ a〉〈2 a〉

)deg(a)−2

(5.4.9)

where P̂ = P (z3). After simplifying this result with the help of (5.4.8) we find precise

agreement with (5.4.5), thereby completing the proof of the MHV tree formula.

5.5 Discussion and Open Questions

The tree formula introduced in this paper has several conceptually satisfying features

and almost completely fulfills the wish-list outlined in the introduction. It appears

to be a genuinely gravitational formula, rather than a recycled Yang-Mills result.

The new MHV tree formula can be very naturally translated into “link" representation,

we hope that the new MHV tree formula might provide a more appropriate starting

point for this purpose and perhaps shed some more light on a twistor-string-like (or

Grassmannian formulation) description, as we discussed earlier, for supergravity.

Another interesting fact is that the tree formula apparently can neither be easily

derived from BCF, nor usefully used as an input to BCF, suggests the possible

existence of some kind of new rules for the efficient calculation of more general

gravity amplitudes.



Chapter 6

All tree-level amplitudes in N = 8

SUGRA

6.1 Introduction

Previously we have presented a new formula for gravity MHV amplitude, which has

many nice properties as a gravity amplitude. Now we would like to go beyond MHV

level to study all tree-level amplitudes in SUGRA. The natural weapon we will use

is BCFW recursion relations.

In this chapter we present an algorithm for writing down an arbitrary tree-level

SUGRA amplitude. Our result was largely made possible by combining and extending

the results of two recent papers. In [7] an explicit formula for all tree amplitudes in

SYM was found by solving the supersymmetric version [20] of the on-shell recursion

relation [2, 3]. We will review all appropriate details in a moment, but for now it

85
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suffices to write their formula for the color-ordered SYM amplitude A(1, . . . , n) very

schematically as

A(1, . . . , n) = AMHV(1, . . . , n)
∑
{α}

Rα(λi, λ̃i, ηi) , (6.1.1)

where the sum runs over a collection of dual superconformal [57, 58, 59] invariants

Rα. The set {α} is dictated by whether A is MHV (in which case there is obviously

only a single term, 1, in the sum), next-to-MHV (NMHV), next-to-next-to-MHV

(NNMHV), etc.

Our second inspiration is an intriguing formula for the n-graviton MHV amplitude

obtained by Elvang and Freedman [54] which has the feature of expressing the

amplitude in terms of sums of squares of gluon amplitudes, in spirit similar to though

in detail very different from the KLT relations. Their formula reads

MMHV
n =

∑
P(2,...,n−1)

[AMHV(1, . . . , n)]2GMHV(1, . . . , n) , (6.1.2)

where the sum runs over all permutations of the labels 2 through n − 1 and

GMHV(1, . . . , n) is a particular ‘gravity factor’ reviewed below.

Our result involves a natural merger of (6.1.1) and (6.1.2), expressing an arbitrary

n-graviton super-amplitude in the form

Mn =
∑

P(2,...,n−1)
[AMHV(1, . . . , n)]2

∑
{α}

[Rα(λi, λ̃i, ηi)]2Gα(λi, λ̃i) . (6.1.3)

Two important features worth pointing out are that the sum runs over precisely the

same set {α} that appears in the SYM case (6.1.1), rather than some kind of double
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sum as one might have guessed, and that the ‘gravity dressing factors’ Gα do not

depend on the fermionic coordinates ηAi of the on-shell N = 8 superspace. All of the

‘super’ structure of the amplitudes is completely encoded in the same R-factors that

appear already in the SYM amplitudes.

We begin in the next section by reviewing some of the necessary tools for carrying

out our calculation. In section III we provide detailed derivations of explicit formulas

for MHV, NMHV, and NNMHV amplitudes. Finally in section IV we discuss the

structure of the gravity dressing factors Gα for more general graviton amplitudes.

6.2 Setting up the Calculation

6.2.1 Supersymmetric Recursion

We will use the supersymmetric version [60, 20] of the on-shell recursion relation [2, 3]

Mn =
∑
P

ˆ
d8η

P 2 ML(zP )MR(zP ) (6.2.1)

where we follow the conventions of [7] in choosing the supersymmetry preserving

shift

λ1̂(z) = λ1 − zλn ,

λ̃n(z) = λ̃n + zλ̃1 ,

ηn(z) = ηn + zη1 , (6.2.2)
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so that the sum in (6.2.1) runs over all factorization channels of Mn which separate

particle 1 and particle n (into ML and MR, respectively). The value of the shift

parameter

zP = P 2

[1|P |n〉 (6.2.3)

is chosen so that the shifted intermediate momentum

P̂ (z) = P + zλnλ̃1 , P = −p1 − · · · = · · ·+ pn (6.2.4)

goes on-shell at z = zP . The recursion relation (6.2.1) can be seeded with the

fundamental 3-particle amplitudes [20]

MMHV
3 = δ(8)(η1[2 3] + η2[3 1] + η3[1 2])

([1 2][2 3][3 1])2 , MMHV
3 = δ(16)(q)

(〈1 2〉〈2 3〉〈3 1〉)2 . (6.2.5)

6.2.2 Gravity Subamplitudes

Color-ordered amplitudes in SYM have a cyclic structure such that only those

factorizations preserving the cyclic labeling of the external particles appear in the

analogous recursion (6.2.1).

In contrast, gravity amplitudes must be completely symmetric under the exchange

of any particle labels, so vastly more factorizations contribute to (6.2.1). We can

deal with this complication once and for all by introducing the notion of an ordered

‘gravity subamplitude’ M(1, . . . , n). These non-physical but mathematically useful
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1 n

2 n−1· · ·

=
∑

P(2,...,n−1)

1 n

2 n−1· · ·

Figure 6.1: A diagrammatic representation of the relation (6.2.6) between a physical
gravity amplitude Mn and the sum over its ordered subamplitudes M(1, . . . , n). We
draw an arrow indicating the cyclic order of the indices between the special legs n
and 1.

objects are related to the complete, physical amplitudes Mn via the relation

Mn =
∑

P(2,...,n−1)
M(1, . . . , n) , (6.2.6)

depicted graphically in Fig. 6.1. This decomposition only makes a subgroup of the

full permutation symmetry manifest. However it is the largest subgroup that the

recursion (6.2.1) allows us to preserve since two external lines are singled out for

special treatment.

The relation (6.2.6) does not uniquely determine the subamplitudes for a given Mn,

since one could add to M(1, . . . , n) any quantity which vanishes after summing over

permutations. We choose to define the subamplitudes M recursively via (6.2.1)

restricted to factorizations which preserve the cyclic ordering of the indices, just like

in SYM theory:

M(1, . . . , n) ≡
n−1∑
i=3

ˆ
d8η

P 2 M(1̂, 2, . . . , i− 1, P̂ )M(−P̂ , i, . . . , n− 1, n) . (6.2.7)

This recursion is also seeded with the three-point amplitudes (6.2.5) since there is no
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distinction between M(1, 2, 3) and M3. Note however that unlike the color-ordered

SYM amplitudes A(1, . . . , n), the gravity subamplitude M(1, . . . , n) is not in general

invariant under cyclic permutations of its arguments.

It remains to prove the consistency of this definition. That is, we need to check

that the subamplitudes defined in (6.2.7), when substituted into (6.2.6), do in fact

give correct expressions for the physical gravity amplitude Mn. This straightforward

combinatorics exercise proceeds by induction, beginning with the n = 3 case which is

trivial and then assuming that (6.2.6) is correct up to and including n− 1 gravitons.

For n gravitons we then have

Mn =
∑

A
⋃
B={2,...,n−1}

ˆ
d8η

P 2 M(1̂, {A}, P̂ )M(−P̂ , {B}, n)

= 1
(n− 2)!

∑
P(2,...,n−1)

∑
A
⋃
B={2,...,n−1}

ˆ
d8η

P 2 M(1̂, {A}, P̂ )M(−P̂ , {B}, n)

= 1
(n− 2)!

∑
P(2,...,n−1)

n−1∑
j=3

(
n− 2
j − 2

)ˆ
d8η

P 2 M(1̂, 2, . . . , j − 1, P̂ )M(−P̂ , j, . . . , n− 1, n)

=
∑

P(2,...,n−1)

n−1∑
j=3

ˆ
d8η

P 2 M(1̂, 2, . . . , j − 1, P̂ )M(−P̂ , j, . . . , n− 1, n)

=
∑

P(2,...,n−1)
M(1, 2, . . . , n) . (6.2.8)

The first line is the superrecursion for the physical amplitude, including a sum over all

partitions of {2, . . . , n− 1} into two subsets A and B, not just those which preserve

a cyclic ordering. In the second line we have thrown in a spurious sum over all

permutations of {2, . . . , n− 1} at the cost of dividing by (n− 2)! to compensate for

the overcounting. This is allowed since we know that Mn is completely symmetric

under the exchange of any of its arguments. Inside the sum over permutations we
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are then free to choose A = {2, . . . , i− 1} and B = {i, . . . , n− 1} as indicated on the

third line, including the factor
(
n−2
i−2

)
to count the number of times this particular

term appears. On the fourth line our prior assumption that (6.2.6) holds up to n− 1

particles allows us to replace Ma → (a− 2)!Ma inside the sum over permutations.

The last line invokes the definition (6.2.7) and completes the proof that the physical

n-graviton amplitude may be recovered from the ordered subamplitudes via (6.2.6)

and the definition (6.2.7).

6.2.3 From N = 4 to N = 8 Superspace

The astute reader may have objected already to (6.1.2) in the introduction. The

SYM MHV amplitude involves the delta function δ(8)(q) expressing conservation of

the total supermomentum

q =
n∑
i=1

λαi η
A
i , α = 1, 2 , A = 1, . . . , 4 . (6.2.9)

Since the square of a fermionic delta function is zero, it would seem that it makes no

sense for the quantity [AMHV(1, . . . , n)]2 to appear in (6.1.2).

Throughout this paper it will prove extremely convenient to adopt the convention

that the square of an N = 4 superspace expression refers to an N = 8 superspace

expression in the most natural way. For example, it should always be understood

that

[δ(8)(q)]2 = δ(16)(q) , (6.2.10)

where the q on the right-hand side is given by the same expression (6.2.9) but
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with A = 1, . . . , 8. This notation will prove especially useful for lifting results of

Grassmann integration from N = 4 to N = 8 superspace. This trick works because

we can break the SU(8) symmetry of a d8η integration into SU(4)a × SU(4)b by

taking η1, . . . , η4 for SU(4)a and η5, . . . , η8 for SU(4)b. Then every d8η integral can

be rewritten as a product of two SYM integrals and the SU(8) symmetry of the

answer is restored simply by adopting the convention (6.2.10).

For a specific example consider the basic SYM integral

ˆ
d4η

P 2 A
MHV(1̂, 2, P̂ )AMHV(−P̂ , 3, . . . , n) = δ(8)(q)

〈1 2〉〈2 3〉 · · · 〈n 1〉 (6.2.11)

which expresses the superrecursion for the case of MHV amplitudes. By ‘squaring’

this formula we immediately obtain the answer for a similar N = 8 Grassmann

integral,

ˆ
d8η

P 2 [AMHV(1̂, 2, P̂ )]2[AMHV(−P̂ , 3, . . . , n)]2 = P 2 δ(16)(p)
(〈1 2〉〈2 3〉 · · · 〈n 1〉)2 . (6.2.12)

Note the extra factor of P 2 which appears on the right-hand side because we have,

for obvious reasons, chosen not to square the propagator 1/P 2 on the left.

6.2.4 Review of SYM Amplitudes

Given the above considerations it should come as no surprise that we will be able to

import much of the structure of SYM amplitudes directly into our SUGRA results.

Therefore we now review the results of [7] for tree amplitudes in SYM. Here and in
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all that follows we use the standard dual superconformal [57, 58, 59] notation

xij = pi + pi+1 + · · ·+ pj−1 ,

θij = λiηi + · · ·+ λj−1ηj−1 , (6.2.13)

where all subscripts are understood mod n.

We will base our expression for the SUGRA amplitudes on an expression for the SYM

amplitudes which is equivalent to, but not exactly the same as the one presented

in [7]. The reason is that the cyclic symmetry of the Yang-Mills amplitudes implies

certain identities for the invariants Rα appearing in (6.1.1). This symmetry was used

in [7] when solving the recursion relations. Instead it is helpful to have a different

expression which is more suitable to the gravity case where the subamplitudes M do

not have cyclic symmetry.

To be precise we need to return to the construction of [7] and make sure that when

considering the right-hand side of the BCF recursion relation we always insert the

lower point amplitudes so that leg 1 of the left amplitude factor corresponds to

the shifted leg 1̂. We also need to have the leg n of the right amplitude factor

corresponding to the shifted leg n, but this was already the choice made in [7].

The expression for all N = 4 SYM amplitudes is given in terms of paths in a particular

rooted tree diagram, these invariants appeared in (6.1.1) take the general form [59, 7]

Rn;a1b1;a2b2;...;arbr;ab = 〈a a− 1〉〈b b− 1〉 δ(4)(〈ξ|xbraxab|θbbr〉+ 〈ξ|xbrbxba|θabr〉)
x2
ab〈ξ|xbraxab|b〉〈ξ|xbraxab|b− 1〉〈ξ|xbrbxba|a〉〈ξ|xbrbxba|a− 1〉 ,

(6.2.14)
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where the chiral spinor ξ is given by

〈ξ| = 〈n|xna1xa1b1xb1a2xa2b2 . . . xarbr . (6.2.15)

As in [7] this expression needs to be slightly modified when any ai index attains the

lower limit of its range1. We indicate by means of a superscript on R the nature

of the appropriate modification. Specifically, Rl1,...,lr
n;a1b1;a2b2;...;arbr;ab indicates the same

quantity (6.2.14) but with the understanding that when a reaches its lower limit, we

need to replace

〈a−1| → 〈n|xnl1xl1l2 · · ·xlr−1lr . (6.2.16)

We now have all of the ingredients necessary to begin assembling the complete

amplitude, which is given by the formula

An = AMHV
n Pn = δ(8)(q)

〈1 2〉 · · · 〈n 1〉Pn , (6.2.17)

where Pn is given by the sum over vertical paths in the rooted diagram [7]. To each

such path we associate a nested sum of the product of the associated R-invariants in

the vertices visited by the path. The last pair of labels in a given R are those which

are summed first, these are denoted by apbp in row p of the diagram. We always take

the convention that ap and bp are separated by at least two (ap < bp − 1) which is

necessary for the R-invariants to be well-defined. The lower and upper limits for the

summation variables ap, bp are indicated by the two numbers appearing adjacent to

the line above each vertex.
1 In [7] it was also necessary to sometimes take into account modifications when indices reached

the upper limits of their ranges, but this feature does not arise in our reorganized presentation of
the amplitude.
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Given the complexity of this prescription it behooves us to illustrate a few cases

explicitly. There is one path of length zero, whose value is simply 1 and this

corresponds to the MHV amplitudes,

PMHV
n = 1 . (6.2.18)

Then there is one path of length one which gives the NMHV amplitudes. We get

1×Rn;a1,b1 , summed over the region 2 ≤ a1, b1 < n, as always with the convention

that ai < bi − 1. There are no boundary replacements so we have

PNMHV
n =

∑
2≤a1,b1<n

Rn;a1b1 . (6.2.19)

The two paths of length two give the NNMHV amplitudes. This time we get

superscripts on the R-invariants as dictated by the rules in point 4 above,

PNNMHV
n =

∑
2≤a1,b1<n

Rn;a1b1

( ∑
a1≤a2,b2<b1

Rb1a1
n;a1b1;a2b2 +

∑
b1≤a2,b2<n

Ra1b1
n;a2b2

)
. (6.2.20)

Continuing to N3MHV amplitudes we find five paths of length three, giving the

following nested sums,

PN3MHV
n =

∑
2≤a1,b1<n

Rn;a1b1

[
∑

a1≤a2,b2<b1

Rb1a1
n;a1b1;a2b2

( ∑
a2≤a3,b3<b2

Ra1b1b2a2
n;a1b1;a2b2;a3b3 +

∑
b2≤a3,b3<b1

Ra1b1a2b2
n;a1b1;a3b3 +

∑
b1≤a3,b3<n

Ra1b1
n;a3b3

)

+
∑

b1≤a2,b2<n

Ra1b1
n;a2b2

( ∑
a2≤a3,b3<b2

Rb2a2
n;a2b2;a3b3 +

∑
b2≤a3,b3<n

Ra2b2
n;a3b3

)]
. (6.2.21)

These examples hopefully serve to illustrate how to write a general SYM amplitude,
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though a more thorough discussion may be found in [7].

6.3 Examples of Gravity Amplitudes

6.3.1 MHV Amplitudes

Elvang and Freedman have shown that the n-graviton MHV amplitude may be

written in the form2

MMHV
n =

∑
P(2,...,n−1)

[AMHV(1, . . . , n)]2GMHV(1, . . . , n) (6.3.1)

in terms of

GMHV(1, . . . , n) = x2
13

n−3∏
s=2

〈s|xs,s+2xs+2,n|n〉
〈s n〉

. (6.3.2)

The formula (6.3.1) is valid for n > 3; n = 3 will always be treated as a special case

with GMHV(1, 2, 3) = 1.

Comparison of (6.3.1) with (6.2.6) suggests that we should identify the MHV ordered

subamplitude as

MMHV(1, . . . , n) = [AMHV(1, . . . , n)]2GMHV(1, . . . , n) . (6.3.3)

Let us now check that our definition (6.2.7) yields precisely the same expression for

the subamplitude (they may have differed by terms which cancel out when one sums

over all permutations in (6.2.6)).
2 We have relabeled their indices according to i→ 2− i mod n and have expressed the amplitude

in N = 8 superspace.
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1 n

2 n−1· · ·

MHV =

1̂ n

2 3

MHV MHV
...

Figure 6.2: The recursion for MHV amplitudes.

We will again proceed by induction, assuming that (6.3.3) satisfies (6.2.7) for n− 1

and fewer gravitons. To calculate MMHV for n gravitons from the definition (6.2.7)

we first note that only the single term i = 3 contributes, giving

MMHV(1, . . . , n) =
ˆ
d8η

P 2 M
MHV(1̂, 2, P̂ )MMHV(−P̂ , 3, . . . , n) (6.3.4)

as shown in Fig. 6.2. The calculation is rendered essentially trivial by plugging in

the relations

MMHV(1̂, 2, P̂ ) = [AMHV(1̂, 2, P̂ )]2 ,

MMHV(−P̂ , 3, . . . , n) = [AMHV(−P̂ , 3, . . . , n)]2GMHV(−P̂ , 3, . . . , n) (6.3.5)

between ordered graviton and Yang-Mills amplitudes. The G factor in (6.3.4) comes

along for the ride as we perform the d8η integral using the square of the analogous

Yang-Mills calculation as explained above (6.2.12). Therefore with no effort we find

that (6.3.4) gives

MMHV(1, . . . , n) = [AMHV(1, . . . , n)]2 P 2GMHV(−P̂ , 3, . . . , n) . (6.3.6)
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1 n

2 n−1· · ·

NMHV =

1̂ n

2 3

MHV NMHV
... +

n−1∑

j=4

1̂ n

j − 1 j

MHV MHV
...

...

Figure 6.3: The two kinds of diagrams contributing to the recursion of NMHV
amplitudes.

A simple calculation using the shift (6.2.2) now reveals that

P 2GMHV(−P̂ , 3, . . . , n) = x2
13(−P̂ + p3)2

n−3∏
s=3

〈s|xs,s+2xs+2,n|n〉
〈s n〉

= x2
13

n−3∏
s=2

〈s|xs,s+2xs+2,n|n〉
〈s n〉

= GMHV(1, . . . , n) . (6.3.7)

This completes the inductive proof that the formula (6.3.3) obtained by Elvang and

Freedman is precisely the MHV case of the ordered subamplitudes that we have

defined in (6.2.7).

6.3.2 NMHV Amplitudes

Next we turn our attention to the NMHV amplitude. The two kinds of diagrams

which contribute to the recursion are shown in Fig. 6.3. Let us begin with n = 5, in

which case the first diagram is absent and only the term i = 4 appears in the sum.
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According to the definition (6.2.7) we then have

MNMHV(1, . . . , 5) =
ˆ
d8η

P 2 M
MHV(1̂, 2, 3, P̂ )MMHV(−P̂ , 4, 5)

= [ANMHV(1, . . . , 5)]2 P 2GMHV(1̂, 2, 3, P̂ )

≡ [ANMHV(1, . . . , 5)]2GNMHV(1, . . . , 5) . (6.3.8)

Here, following the example set in the previous subsection, evaluating the Grassmann

integral leads to the square of the analogous SYM result, times the gravity factor

GNMHV(1, . . . , 5) = P 2GMHV(1̂, 2, 3, P̂ ) = (p4 + p5)2(p1̂ + p2)2 = (p4 + p5)2 [4|p3p2|1]
[4 1] .

(6.3.9)

One can check that this result it is consistent with the known answer (for example,

from the KLT relation).

Let us now turn to the general NMHV case. In the previous section we recalled the

SYM result obtained in [7],

ANMHV(1, . . . , n) = AMHV(1, . . . , n)
n−3∑
i=2

n−1∑
j=i+2

Rn;ij . (6.3.10)

It was shown in [7] that the i = 2 term in (6.3.10) corresponds to the sum over

MHV×MHV diagrams in Fig. 6.3, while the i > 2 terms arise iteratively from the

MHV× NMHV diagram.
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Statement

Now we claim that the NMHV gravity subamplitude is given by

MNMHV(1, . . . , n) = [AMHV(1, . . . , n)]2
n−3∑
i=2

n−1∑
j=i+2

R2
n;ijG

NMHV
n;ij (6.3.11)

where R is the same dual superconformal invariant (6.2.14) as in SYM and the

NMHV gravity factor can be split for future convenience into three parts as follows,

GNMHV
n;ab = fn;abG

L
n;abG

R
n;ab . (6.3.12)

To express the gravity factor we introduce the notation

P l,u
a1,...,ar =

u∏
k=l

〈k|xk,k+2xk+2,a1xa1a2xa2a3 . . . xar−1ar |ar〉
〈k|xa1a2xa2a3 . . . xar−1ar |ar〉

, (6.3.13)

Za1,...,au
b1,...,bl;c1,...,cr = 〈a1|xa1a2xa2a3 . . . xau−1au |au〉

〈b1|xb1b2xb2b3 . . . xbl−1blxc1c2xc2c3 . . . xcr−1cr |cr〉
, (6.3.14)

which is overkill at the moment but will be fully utilized below when we move beyond

the NMHV level. In the numerators only dual conformal chains of x-matrices appear,

while in the denominators the chains are not dual conformal due to the break in the

way the labels are arranged. The break is denoted by the semi-colon in the subscript

of Z while in the denominator of P it is immediately after the left-most spinor 〈k|.

Then the first factor in (6.3.12) is given by

fn;2b = x2
1b , (6.3.15)

fn;ab = x2
13(−Zn,b,a−1

n;a−1 )P 2,a−2
n for a > 2 , (6.3.16)
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while the remaining two are

GL
n;ab = −Zn,a+1,b,a,n

n;b,a,n P a,b−3
b,a,n , (6.3.17)

GR
n;ab = −Zn,b+1,b,a,n

n;b,a,n P b,n−3
n . (6.3.18)

Proof

To check that the formula (6.3.11) is correct it is useful to first have a general formula

for x2
1̂v, where the shift is defined so that P̂ 2

i = x2
1̂i = 0. This tells us that the shift

parameter is given by (6.2.3), i.e

zP = x2
1i

〈n|x1i|1] . (6.3.19)

Then we have

x2
1̂v = x2

1v − zP 〈n|x1v|1] (6.3.20)

= x2
1v〈n|x1i|1]− x2

1i〈n|x1v|1]
〈n|x1i|1] (6.3.21)

= 〈n|x1v(x1v − x1i)x1i|1]
〈n|x1i|1] (6.3.22)

= 〈n|x1vxivx1i|1]
〈n|x1i|1] (6.3.23)

= −〈n|xnvxvixi2x2n|n〉
〈n|xi2x2n|n〉

≡ −Zn,v,i,2,n
n;i,2,n . (6.3.24)
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Note that instead of writing (6.3.22) we could have alternatively written it as

x2
1̂v = 〈n|x1i(x1v − x1i)x1v|1]

〈n|x1i|1] (6.3.25)

= 〈n|x1ixivx1v|1]
〈n|x1i|1] (6.3.26)

= 〈n|xnixivxv2x2n|n〉
〈n|xi2x2n|n〉

≡ Zn,i,v,2,n
n;i,2,n . (6.3.27)

The freedom to write this factor in these two various forms is useful because in

certain cases either one or the other form simplifies by cancelling factors from the

numerator and denominator.

Finally we are set up to check our claim (6.3.12) for the NMHV G-factor. We first

check the case a = 2 which comes entirely from MHV × MHV diagrams. From these

diagrams we obtain

n−1∑
i=4

R2
n;2,iG

NMHV
n;2,i =

n−1∑
i=4

R2
n;2,iP

2GMHV(1̂, . . . ,−P̂ )GMHV(P̂ , . . . , n) , (6.3.28)

from which we find

GNMHV
n;2,i = x2

1i

(
x2

1̂3

i−3∏
k=2

〈k|xk,k+2xk+2,i|P̂ 〉
〈k P̂ 〉

)(
x2

1̂i+1

n−3∏
l=i

〈l|xl,l+2xl+2,n|n〉
〈l n〉

)
(6.3.29)

= x2
1i

(
−Zn,3,i,2,n

n;i,2,n P 2,i−3
i,2,n

)(
−Zn,i+1,i,2,n

n;i,2,n P i,n−3
n

)
, (6.3.30)

which is in agreement with equations (6.3.12) to (6.3.18) for the case a = 2.

For the case a > 2 we must consider diagrams of the form MHV3×NMHVn−1. From
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these diagrams we obtain

∑
3≤a,b≤n−1

R2
n;abG

NMHV
n;ab =

∑
3≤a,b≤n−1

R2
n;abP

2GNMHV(P̂ , 3, . . . , n) . (6.3.31)

The sum splits into two contributions, a = 3 and a > 3. The first gives

GNMHV
n;3b = x2

13x
2
1̂b

(
−Zn,4,b,3,n

n;b,3,n P a,b−3
b,a,n

)(
−Zn,b+1,b,3,n

n;b,3,n P b,n−3
n

)
(6.3.32)

= x2
13

(
−Zn,b,2

n;2

)(
−Zn,4,b,3,n

n;b,3,n P a,b−3
b,a,n

)(
−Zn,b+1,b,3,n

n;b,3,n P b,n−3
n

)
, (6.3.33)

in agreement with equations (6.3.12) to (6.3.18) for the case a = 3. To go from (6.3.32)

to (6.3.33) we have used the fact that x2
1̂b = −Zn,b,3,2,n

n;3,2,n = −Zn,b,2
n;2 where the simplifica-

tion of the Z-factor is due to a cancellation between its numerator and denominator.

For the contributions to (6.3.31) where a > 3 we find

GNMHV
n;ab = x2

13x
2
1̂4

(
−Zn,b,a−1

n;a−1

)
P 3,a−2
n

(
−Zn,a+1,b,a,n

n;b,a,n P a,b−3
b,a,n

)(
−Zn,b+1,b,a,n

n;b,a,n P b,n−3
n

)
(6.3.34)

= x2
13

(
−Zn,b,a−1

n;a−1

)
P 2,a−2
n

(
−Zn,a+1,b,a,n

n;b,a,n P a,b−3
b,a,n

)(
−Zn,b+1,b,a,n

n;b,a,n P b,n−3
n

)
, (6.3.35)

which is again in agreement with equations (6.3.12) to (6.3.18). The factor x2
1̂4

completes the factor P 3,a−2
n to P 2,a−2

n just as in the MHV case. This completes

the verification of the formula (6.3.11) for NMHV graviton amplitudes. Appendix

B contains some notes on extracting NMHV graviton amplitudes from the super-

amplitude (6.3.11).
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6.3.3 NNMHV Amplitudes

In this section we consider the NNMHV case as an exercise towards finding the

general algorithm for all tree-level gravity amplitudes.

Statement

The structure of the result is just like in Yang-Mills and similar to the NMHV

case (6.3.11) except that we now have two more subscripts on both the Yang-Mills

R-factors and the gravity factors,

MNNMHV(1, . . . , n)
[AMHV(1, . . . , n)]2 =

∑
2≤a,b≤n−1

R2
n;ab

[ ∑
a≤c,d<b

(Rba
n;ab;cd)2H

(1)
n;ab;cd+

∑
b≤c,d<n

(Rab
n;cd)2H

(2)
n;ab;cd

]
.

(6.3.36)

The factors H(1) and H(2) can be written in the form

H
(1)
n;ab;cd = fn;abG

R
n;abf̃n;ab;cdG

L
n;ab;cdG

R
n;ab;cd , (6.3.37)

H
(2)
n;ab;cd = fn;abG

L
n;abf̂n;ab;cdG

L
n;cdG

R
n;cd . (6.3.38)

In this formula fn;ab, GL
n;ab and GR

n;ab are defined as before in the case of the NMHV

amplitude (see formulae (6.3.16), (6.3.17) and (6.3.18)). The factor f̃ in H(1) is given

by

f̃n;ab,ad = −Zn,b,d,a,n
n;b,a,n , (6.3.39)

f̃n;ab;cd =
(
−Zn,b,a+1,a,n

n;b,a,n

)(
−Zc−1,d,b,a,n

c−1;b,a,n

)
P a,c−2
b,a,n for c > a , (6.3.40)
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and the factor f̂ in the second term in the parentheses is given by

f̂n;ab;bd = −Zn,d,b,a,n
n;b,a,n (6.3.41)

f̂n;ab;cd =
(
−Zn,b+1,b,a,n

n;b,a,n

)(
−Zn,d,c−1

n;c−1

)
P b,c−2
n for c > b . (6.3.42)

Finally the new G-factors are given by

GL
n;ab;cd = −Zn,a,b,c+1,d,c,b,a,n

n,a,b;d,c,b,a,n P c,d−3
d,c,b,a,n , (6.3.43)

GR
n;ab;cd = −Zn,a,b,d+1,d,c,b,a,n

n,a,b;d,c,b,a,n P d,n−3
b,a,n . (6.3.44)

Proof

Let us now check the claim (6.3.36). As before we begin with the case a = 2 which

comes purely from NMHV × MHV diagrams and MHV × NMHV diagrams. We

start by calculating the former kind. From these diagrams we obtain

n−1∑
i=5

R2
n;2i

∑
2≤c,d<i

(Ri2
n;2i;cd)2H

(1)
n;2i,cd

=
n−1∑
i=5

R2
n;2i

∑
2≤c,d<i

(Ri2
n;2i;cd)2P 2GNMHV(1̂, . . . ,−P̂ )GMHV(P̂ , . . . , n) . (6.3.45)

The sum over c splits into two pieces, c = 2 and c > 2. For the terms where c = 2

we have

H
(1)
n;2i;2d = x2

1i

[
x2

1̂d

(
−Zn,2,i,3,d,2,n

n,2,i;d,2,n P 2,d−3
d,2,n

)(
−Zn,2,i,d+1,d,2,n

n,2,i;d,2,n P d,i−3
i,2,n

)][
x2

1̂,i+1P
i,n−3
n

]
.

(6.3.46)
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Here as in the previous subsection we have used the fact that certain Z-factors

simplify. For example, reading the Z-factor from the formula (6.3.17) and taking

into account the fact that the spinor 〈P̂ | can be replaced in both the numerator

and denominator of Z by 〈n|xn2x2i, we would obtain Zn,2,i,3,d,2,i,2,n
n,2,i;d,2,i,2,n . The sequence

of indices 2, i, 2 implies however that one can factor out x2
2i. Since the sequence is

present in both the numerator and the denominator, it can simply be replaced by 2.

Thus we arrive at the form of the Z-factor in the first set of parentheses in (6.3.46).

To verify that equation (6.3.46) is consistent with (6.3.37) it remains to substitute

the Z-factors appropriate to the factors x2
1̂d and x2

1̂,i+1. Doing so we obtain

H
(1)
n;2i;2d = x2

1i

[
−Zn,d,i,2,n

n;i,2,n

(
−Zn,2,i,3,d,2,n

n,2,i;d,2,n P 2,d−3
d,2,n

)(
−Zn,2,i,d+1,d,2,n

n,2,i;d,2,n P d,i−3
i,2,n

)][
−Zn,i+1,i,2,n

n;i,2,n P i,n−3
n

]
.

(6.3.47)

The factor x2
1i gives the required contribution fn;2i, while the factor in the second

factor in square brackets is GR
n;2i. The remaining factor in the first set of square

brackets is the contribution from f̃n;2i,2d and the other Z and P factors in (6.3.37).

Now let us look at the terms where c > 2. We have

H
(1)
n;2i;cd =x2

1i

[
x2

1̂3

(
−Zn,2,i,d,c−1

n,2,i;c−1 P 2,c−2
i,2,n

)(
−Zn,2,i,c+1,d,c,i,2,n

n,2,i;d,c,i,2,n P c,d−3
d,c,i,2,n

)(
−Zn,2,i,d+1,d,c,i,2,n

n,2,i;d,c,i,2,n P d,i−3
i,2,n

)]
[
x2

1̂,i+1P
i,n−3
n

]
. (6.3.48)

Again, substituting for x2
1̂3 and x2

1̂,i+1 we find agreement with (6.3.37).

Now let us turn our attention to the latter kind of diagrams, namely the MHV ×
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NMHV diagrams. From these diagrams we find

n−3∑
i=4

R2
n;2i

∑
2≤c,d<i

(R2i
n;cd)2H

(2)
n;2i,cd

=
n−3∑
i=4

R2
n;2i

∑
2≤c,d<i

(R2i
n;cd)2P 2GNMHV(1̂, . . . ,−P̂ )GMHV(P̂ , . . . , n) . (6.3.49)

As before the sum over c splits into two pieces. For c = i we find

H
(2)
n;2i;2d = x2

1i

[
x2

1̂3P
2,i−3
i,2,n

][
x2

1̂d

(
−Zn,i+1,d,i,n

n;d,i,n P i,d−3
d,i,n

)(
−Zn,d+1,d,i,n

n;d,i,n P d,n−3
n

)]
, (6.3.50)

while for c > i we find

H
(2)
n;2i;cd = x2

1i

[
x2

1̂3P
2,i−3
i,2,n

][
x2

1̂,i+1

(
−Zn,d,c−1

n;c−1 P i,c−2
n

)(
−Zn,c+1,d,c,n

n;d,c,n P c,d−3
d,c,,n

)(
−Zn,d+1,d,c,n

n;d,c,n P d,n−3
n

)]
.

(6.3.51)

Making the usual substitutions for the factors of the form x2
1̂v we find agreement

with (6.3.38) in both cases.

To check the terms for a > 2 we need to consider MHV3 × NNMHVn−1 diagrams.

These diagrams give us

∑
3≤a,b<n

R2
n;ab

[ ∑
a≤c,d<b

(Rba
n;ab;cd)2H

(1)
n;ab,cd +

∑
b≤c,d<n

(Rab
n;cd)2H

(2)
n;ab;cd

]

=
∑

3≤a,b<n
R2
n;ab

[ ∑
a≤c,d<b

(Rba
n;ab;cd)2P 2H(1)(P̂ , . . . , n) +

∑
b≤c,d<n

(Rab
n;cd)2H(2)(P̂ , . . . , n)

]
.

(6.3.52)

As in the NMHV case, the sum over a splits into a part where a = 3 and a part

where a > 3. The calculation is essentially the same as in the NMHV case, with
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the factor of P 2 = x2
13 providing the necessary piece of fn;ab in both cases. This

completes the verification of the formula (6.3.36) for NNMHV amplitudes.

6.4 Discussion of General Tree-Level Amplitudes

Because of the association between vertices in the rooted tree diagram Fig. ?? with

individual terms appearing in the iterative solution of the recursion relation (6.2.1),

it is clear that the procedure applied in the previous section can be generalized to

express an arbitrary NpMHV n-graviton super-amplitude in the form

Mn =
∑

P(2,...,n−1)
[AMHV(1, . . . , n)]2

∑
{α}

[Rα(λi, λ̃i, ηi)]2Gα(λi, λ̃i) , (6.4.1)

where Rα are precisely the same dual superconformal invariants (6.2.14) that appear

in SYM and Gα are some additional, non-dual conformally invariant, dressing factors.

Explicit formulas for the MHV, NMHV, and NNMHV gravity factors are given

respectively in (6.3.2), (6.3.12), and (6.3.37)–(6.3.38).

The gravity factors Gα for a general amplitude can be worked out on a case-by-case

basis. They always have the form

Gn;a1b1;... = fn;a1b1 . . . , (6.4.2)

where . . . is some combination of f , GR and GL factors. The iterative construction

of any desired amplitude is no more difficult than the examples we have already

studied in detail. Actually one only needs to take care of the factor fn;a1b1 , because

the other parts just go from lower points to higher points automatically under the
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usual rules

〈n|xny → 〈p̂|xiy → 〈n|xnjxjixiy , (6.4.3)

and

〈n|xkl → 〈p̂|xkl → 〈n|xnjxjixkl , (6.4.4)

as, for example, in going from the NMHV formula (6.3.12) to the NNMHV for-

mula (6.3.37) and (6.3.38). The f factors arise at each level for the simple reason

that an extra propagator P 2 appears in on-shell recursion for gravity as compared to

the ‘square’ of the corresponding Yang-Mills result, a fact which we noted already

back in (6.2.12) As we already explained carefully in previous section for the NMHV

case, the factor fn;a1b1 is needed to satisfy the recursion relation.

Although it is simple to describe the algorithm for a general amplitude in words and

by appealing to the examples detailed above, we have not identified a pattern which

would allow us to write down a general explicit formula, as was done for SYM in [7].

As noted above each Rα invariant comes with its own f -type factor, and each path

in rooted diagrams which ends on a vertex with indices a1b1; . . . ; apbp leads to an

associated factor of the form

GR
a1,b1;...;apbpG

L
a1b1;...;apbp , (6.4.5)

where the general f , GR and GL are suitably defined following the examples in the

previous section. Specifically we have

GL
n;a1b1;...;arbr;ab = −Zn,a1,b1,...,ar,br,a+1,b,a,br,ar,...,b1,a1,n

n,a1,b1,...,ar,br;b,a,br,ar,...,b1,a1,n P a,b−3
b,a,br,ar,...,b1,a1,n , (6.4.6)

GR
n;a1b1;...;arbr;ab = −Zn,a1,b1,...,ar,br,b+1,b,a,br,ar,...,b1,a1,n

n,a1,b1,...,ar,br;b,a,br,ar,...,b1,a1,n P b,n−3
br,ar,...,b1,a1,n . (6.4.7)
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The f factors can be of two types, f̃ and f̂ . The first type are defined as follows,

f̃n;a1b1;...;arbr;arb = −Zn,a1,b1,...,ar,br,b,ar,br−1,ar−1,...,b1,a1,n
n,a1,b1,...,ar−1,br−1;br,ar,...,b1,a1,n , (6.4.8)

f̃n;a1b1;...;arbr;ab =
(
−Zn,a1,b1,...,br,ar+1,ar,br−1,ar−1,...,b1,a1,n

n,a1,b1,...,ar−1,br−1;br,ar,...,b1,a1,n

)
(
−Za−1,b,br,ar,...,b1,a1,n

a−1;br,ar,...,b1,a1,n

)
P ar,a−2
br,ar,...,b1,a1,n for a > ar. (6.4.9)

The second type are given by

f̂n;a1b1;...;arbr;brb = −Zn,a1,b1,...,ar−1,br−1,b,br,ar,...,b1,a1,n
n,a1,b1,...,ar−1,br−1;br,a,r,...,b1,a1,n , (6.4.10)

f̂n;a1b1;...;arbr;ab =
(
−Zn,a1,b1,...,ar−1,br−1,br+1,br,ar,...,b1,a1,n

n,a1,b1,...,ar−1,br−1;br,ar,...,b1,a1,n

)
(
−Zn,a1,b1,...,ar−1,br−1,b,a−1

n,a1,b1,...,ar−1,br−1;a−1

)
P br,a−2
br−1,ar−1,...,b1,a1,n for a > br .

(6.4.11)

In addition to the factors (6.4.5), other GR and GL factors also appear. We emphasize

that we have attempted here only to illustrate some features of the general structure;

in order to determine precisely the factors which appear for a given path it seems

necessary to work out recursively which kinds of NaMHV×NbMHV factorizations

that particular path corresponds to.

To stress that the algorithm can be simply exploited to generate higher and higher
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NpMHV amplitudes, we give here the formula for N3MHV amplitudes:

MN3MHV(1, . . . , n) = [AMHV(1, . . . , n)]2
∑

2≤a1,b1<n

R2
n;a1b1

[
∑

a1≤a2,b2<b1

(Rb1a1
n;a1b1;a2b2)2

( ∑
a2≤a3,b3<b2

(Ra1b1b2a2
n;a1b1;a2b2;a3b3)2G

(1)
n;a1b1;a2b2;a3b3

+
∑

b2≤a3,b3<b1

(Ra1b1a2b2
n;a1b1;a3b3)2G

(2)
n;a1b1;a2b2;a3b3 +

∑
b1≤a3,b3<n

(Ra1b1
n;a3,b3)2G

(3)
n;a1b1;a2b2;a3b3

)

+
∑

b1≤a2,b2<n

(Ra1b1
n;a2,b2)2

( ∑
a2≤a3,b3<b2

(Rb2a2
n;a2b2;a3b3)2G

(4)
n;a1b1;a2b2;a3b3 +

∑
b2≤a3,b3<n

(Ra2b2
n;a3,b3)2G

(5)
n;a1b1;a2b2;a3b3

)]
.

(6.4.12)

The five different G-factors are in correspondence with the five different vertical

paths from the root node to the vertices on the lowest row explicitly shown in Fig. ??.

Explicitly they are given by

G
(1)
n;a1b1;a2b2;a3b3 = fn;a1b1 f̃n;a1b1;a2b2 f̃n;a1b1;a2b2;a3b3G

R
n;a1b1G

R
n;a1b1;a2b2Gn;a1b1;a2b2;a3b3 ,

(6.4.13)

G
(2)
n;a1b1;a2b2;a3b3 = fn;a1b1 f̃n;a1b1;a2b2 f̃n;a1b1;a2b2;a3b3G

R
n;a1b1G

L
n;a1b1;a2b2Gn;a1b1;a3b3 ,

(6.4.14)

G
(3)
n;a1b1;a2b2;a3b3 = fn;a1b1 f̃n;a1b1;a2b2 f̂n;a1b1;a3b3Gn;a1b1;a2b2Gn;a3b3 , (6.4.15)

G
(4)
n;a1b1;a2b2;a3b3 = fn;a1b1 f̂n;a1b1;a2b2 f̂n;a1b1;a2b2;a3b3G

L
n;a1b1G

R
n;a2b2Gn;a2b2;a3b3 , (6.4.16)

G
(5)
n;a1b1;a2b2;a3b3 = fn;a1b1 f̂n;a1b1;a2b2 f̂n;a1b1;a2b2;a3b3G

L
n;a1b1G

L
n;a2b2Gn;a3b3 , (6.4.17)

where G is shorthand for GL ×GR (with the same subscripts on both).

The expressions we have found can certainly be used in the calculation of loop

amplitudes in supergravity. It is straightforward to apply the generalized unitarity
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technique in a manifestly supersymmetric way [61, 60, 20]; the basic ingredients in

this procedure are the tree-level super-amplitudes.



Chapter 7

Bonus relations in gravity

amplitudes

7.1 Review of tree amplitudes in SUGRA and

bonus relations

In last chapter, we obtained all tree-level amplitudes in N = 8 SUGRA by solving

supersymmetric BCFW recursion relations. In this chapter, we will simplify the

obtained results by applying the extra relations between gravity tree-level amplitude,

which will be called bonus relations.

As we noted from last chapter that SUGRA tree amplitude can be written as a

summation of (n − 2)! ordered gravity subamplitudes, and each of them has a

structure similar to SYM ordered amplitude. In the following we shall use bonus

113
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Figure 7.1: All factorizations contributing to (7.1.2) for the MHV amplitude.

relations to reduce this form to a simpler, (n − 3)! form, and first we recall the

simplest MHV case.

7.1.1 Applying Bonus Relations to MHV Amplitudes

Applying bonus relation to MHV SUGRA tree-level amplitudes was well understood

in [62]. From Eq. (6.3.2), we have the MHV amplitudes as a summation of (n− 2)!

terms,

MMHV
n = GMHV(1, . . . n)[AMHV(1, . . . , n)]2 + P(2, 3, . . . , n− 1). (7.1.1)

From Fig. 7.1, we see that there are (n − 2) BCFW factorizations and thus the

formula can be expressed as,

MMHV
n = M2 +M3 + . . .+Mn−1, (7.1.2)

where each Mi is a BCFW term from MHV(1̂, i, P̂ (zi))×MHVn−1 with zi = − 〈1i〉〈ni〉 .
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Now since the amplitude has 1/z2 fall off, we have a bonus relation which is simple

in the MHV case,

0 = z2M2 + z3M3 + . . .+ zn−1Mn−1. (7.1.3)

Using this relation, we can express the last diagram Mn−1 in terms of the other n− 3

diagrams, and a simple manipulation gives us a (n− 3)!-term formula,

MMHV
n = BMHVGMHV(1, 2, . . . , n)[AMHV(1, 2, . . . , n)]2

+ P(2, 3, . . . , n− 2).
(7.1.4)

where we have defined the MHV bonus coefficient BMHV = 〈1 n〉〈n−1 n−2〉
〈1 n−1〉〈n n−2〉 . Beyond

MHV, we have many more types of BCFW diagrams with complicated structures

and the application of bonus relations becomes trickier. In the next section, we shall

work out the NMHV and N2MHV cases, and then move on to general amplitudes in

section 4.

7.2 Applying Bonus Relations to Non-MHVGrav-

ity Tree Amplitudes

7.2.1 General Strategy

Before moving on to examples, we first explain the general strategy for applying

bonus relations to non-MHV gravity tree amplitudes. For a NkMHV amplitude,

inhomogeneous contributions of the form NpMHV × NqMHV are needed (p+ q+ 1 =
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k)1. Naively one would like to use “bonus-simplified"2 lower-point amplitudes for

both ML and MR in the BCFW recursion relations, but this is not compatible

with the fact that we can only delete one diagram (not two) by applying the bonus

relations, if we want to preserve the structure of ordered BCFW recursion relations.

To keep the advantages of the ordered BCFW recursion relations, which are crucial

to solve for all tree-level amplitudes, instead we shall apply bonus relations selectively.

The idea is illustrated in Fig. 7.2. Similar to the MHV case, we shall delete Fig. 7.2(d)

by using bonus relations. To compute the inhomogeneous parts of the amplitudes,

we shall use the bonus-simplified amplitude only on one side of a BCFW diagram,

namely the lower-point amplitude with the leg (n−1) in it, as indicated in Fig. 7.2(a)

and Fig. 7.2(b). In this way, the amplitude splits into two types, one type coming

from the diagrams of the form as in Fig. 7.2(a), which has the leg (n− 1) adjacent

to the leg n and will be called the normal, or type I contributions, and the other

one coming from those having the form as in Fig. 7.2(b), which has the leg (n− 1)

exchanged with another leg (b1 − 1), and will be called the exchanged, or type II

contributions,

Mn =
[
AMHV
n

]2(∑
α

B(1,m1)
α GαR

2
α +

∑
β

B
(2,m2)
β [GβR

2
β(b1 − 1↔ n− 1)]

)
+ P(2, 3, . . . , n− 2),

(7.2.1)

where (b1 − 1↔ n− 1) denotes the exchanges of momenta (pb1−1 ↔ pn−1) as well

as the fermionic coordinates (ηb1−1 ↔ ηn−1), and we have used square bracket to

indicate that the exchanges act only on the expression inside the bracket. The
1We follow the notations of reference [7] to call the contributions from diagrams of type Fig. 7.2(a)

or Fig. 7.2(b) as inhomogeneous contributions, while those from Fig. 7.2(c) as homogeneous ones.
2Here “bonus-simplified" means that these lower-point amplitudes used in the BCFW diagrams

are simplified by using bonus relations.
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(a) Inhomogeneous diagram type I

(b) Inhomogeneous diagram type II (c) Homogeneous diagram

(d) Diagram deleted by bonus re-
lations

Figure 7.2: Different types of diagrams for a general NkMHV amplitude, where
k = p + q + 1. We use a dashed line − − −− connecting three legs to denote a
bonus-simplified lower-point amplitude, in which these three legs are kept fixed. For
lower-point amplitudes without dashed lines, we use the usual (n− 2)! form.
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superscript (i,mi) in B(i,mi)
α is used to show the type of this contribution, which will

become clear in the examples.

Thus we have seen that, by using bonus relations, any amplitude can be written as a

summation of (n− 3)! permutations with the coefficients B(i,mi)
α , which will be called

bonus coefficients. In this section, we shall calculate all bonus coefficients for NMHV

and N2MHV cases, and generalize the pattern observed in these examples to general

NkMHV amplitudes in the next section. Once bonus coefficients are calculated, we

obtain explicitly all simplified SUGRA tree amplitudes.

7.2.2 NMHV Amplitudes

Here we use bonus relations to simplify the (n − 2)! form of NMHV amplitudes.

First we state the general simplified form of NMHV amplitudes, and then prove it

by induction. To be concise, we abbreviate the combinations

{n; a1b1} ≡ Gn;a1b1

[
Rn;a1b1A

MHV(1, 2, . . . , n)
]2 (7.2.2)

and similar notations will be used in the following sections.

As mentioned above generally, we delete the contributions corresponding to Fig. 7.2(d)

by using the bonus relation. It is straightforward to compute the inhomogeneous

contributions from the two MHV × MHV diagrams, Fig. 7.3(a) and Fig. 7.3(b).

Firstly, let us consider the contribution from Fig. 7.3(a), which corresponds to terms
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(a) Inhomogeneous diagram type I (b) Inhomogeneous diagram type II

(c) Homogeneous diagram

Figure 7.3: Diagrams for NMHV amplitudes.
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with a1 = 2, and we have

M1 = B
(1)
n;2b1{n; 2b1}, with 4 ≤ b1 ≤ n− 1, (7.2.3)

where B(1)
n;2b1 are the special cases of the general bonus coefficients B(1)

n;a1b1 . We have

used the superscript (1) to indicate that this is the contribution coming from type-I

diagram, and similar notations will be used below.

When b1 6= n− 1, the bonus coefficients are given by,

B
(1)
n;a1b1 = BMHV 〈n− 1|xb1a1xb1n|n〉

〈n− 1|xb1a1xa1n|n〉
. (7.2.4)

Here we note that we can get the above coefficients from the previous ones, namely

the bonus coefficients of MHV amplitude, multiplied by the factor 〈n−1|xb1a1xb1n|n〉
〈n−1|xb1a1xa1n|n〉

. It

is a general feature of this type of coefficients for NkMHV case, which are given by

Nk−1MHV coefficients multiplied by the same factor, as we will see explicitly again

in the N2MHV case.

However when b1 = n − 1, no bonus relation can be used for the right-hand-side

3-point MHV amplitude in Fig. 7.3(a), and we find

B
(1)
n;a1n−1 = 〈1 n〉

〈1 n− 1〉
〈n− 1|xn−1a1|n− 1]
〈n|xna1 |n− 1] . (7.2.5)

For the exchanged diagrams, Fig. 7.3(b), the contribution can be similarly written as

M2 = B
(2)
n;2b1 [{n; 2a1}(b1 − 1↔ n− 1)], with 4 ≤ b1 ≤ n− 1, (7.2.6)
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where the bonus coefficients B(2)
n;a1b1 are given by

B
(2)
n;a1b1 = 〈1 n〉

〈1 n− 1〉
〈n− 1 b1 − 2〉(x′a1b1)2

〈n|xna1x
′
a1b1 |b1 − 2〉 , (7.2.7)

and we have defined x′aibi as,

x′aibi ≡ xaibi−1 + xn−1n

= xaibi(pbi−1 ↔ pn−1). (7.2.8)

All the above calculations do not include the boundary case a1 = n− 3, b1 = n− 1,

which needs special treatment. This boundary case is special because it recursively

reduces to the special 5-point NMHV (MHV) amplitude. It does not have the

diagram with the type of MHV3× NMHV, and one has to treat it separately. We

apply the bonus relations to this case in the following way: we use the bonus relation

to delete the contribution from Fig. 7.4(a), and compute Fig. 7.4(b), and we find

M5 = − [24][34][51]
[23][45][41]

[
{5; 24}(3↔ 4)

]
+ P(2, 3). (7.2.9)

By plugging the above 5-point result in Fig. 7.4(c), we get the boundary term of the

6-point NMHV amplitude

M
(boundary)
6 = 〈16〉〈25〉[35][45]x2

36
〈15〉[34]〈2|1 + 6|5]〈6|1 + 2|5]

[
{6; 35}(4↔ 5)

]
. (7.2.10)

A generic form for the boundary term of the n-point NMHV amplitudes can be
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(a) 5-point diagram deleted by
bonus relation

(b) 5-point diagram

(c) 6-point diagram calculat-
ing the boundary contribution

Figure 7.4: Diagrams for 5-point NMHV amplitude and the boundary term of 6-point
NMHV amplitude. Fig. 6(a) and Fig. 6(b) are used to calculate the bonus-simplified
5-point right-hand-side amplitude of Fig. 6(c).
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obtained as a straightforward generalization of (7.2.9) and (7.2.10),

M (boundary)
n = B

(boundary)
n;n−3 n−1

[
{n;n− 3 n− 1}(n− 2↔ n− 1)

]
, (7.2.11)

where B(boundary)
n;n−3 n−1 is given by,

B
(boundary)
n;n−3 n−1 = 〈1n〉〈n− 4 n− 1〉[n− 3 n− 1][n− 2 n− 1]x2

n−3n
〈1 n− 1〉[n− 3 n− 2]〈n− 4|xn−3 n−1|n− 1]〈n|xn−1 n−3|n− 1] .

(7.2.12)

Putting everything together, we obtain the general formula for NMHV amplitude and

as promised, the amplitude indeed can be written as a sum of (n− 3)! permutations

MNMHV
n =

n−4∑
a1=2

n−1∑
b1=a1+2

(
B

(1)
n;a1b1{n; a1b1}+B

(2)
n;a1b1 [{n; a1b1}(b1 − 1↔ n− 1)]

)
+M (boundary)

n

+P(2, 3, . . . , n− 2). (7.2.13)

Proof by Induction

Here we shall give an inductive proof for the simplified NMHV formula. For a1 = 2,

as we explained above, the formula follows directly from Fig. 7.3(a) and Fig. 7.3(b).

Therefore we shall focus on the cases when a1 ≥ 3, which correspond to the homoge-

neous contributions from Fig. 7.3(c). We shall prove that the formula satisfies the

BCFW recursion relations.

First note that we have deleted one diagram of the form MHVL(1̂, n− 1, P̂)×MHVR

by using bonus relations, this results in a multiplicative prefactor for the overall
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amplitude, which is given by,

(1− z2

zn−1
) = 〈1n〉〈n− 1 2〉
〈n2〉〈1n− 1〉 . (7.2.14)

Let us consider the bonus coefficient B(1)
n;a1b1 , other coefficients B(2)

n;a1b1 and B(boundary)
n;n−3 n−1

can be treated similarly. By plugging formula (7.2.4) into the (n−1)-point amplitude

M(−P̂ , 3, 4, . . . , n− 1, n) in Fig. 7.3(c), it is straightforward to check that the second

piece of B(1)
n;a1b1 ,

〈n−1|xb1a1xb1n|n〉
〈n−1|xb1a1xa1n|n〉

, is transformed back to itself under the recursion

relations.

For the first piece BMHV = 〈n−1 n−2〉〈1 n〉
〈n n−2〉〈1 n−1〉 of B

(1)
n;a1b1 , which is the MHV bonus coeffi-

cient, the proof is essentially the same as in the MHV case. Taking into account the

factor in (7.2.14) coming from bonus relations, we have

〈n− 1 n− 2〉〈p̂ n〉
〈n n− 2〉〈p̂ n− 1〉 ×

〈1 n〉〈n− 1 2〉
〈1 n− 1〉〈n 2〉 = 〈n− 1 n− 2〉〈1 n〉

〈n n− 2〉〈1 n− 1〉 . (7.2.15)

Thus the contribution with B(1)
n;a1b1 indeed satisfies the recursion relations.

Finally we should remark that we have used the fact that {n; a1b1} by themselves

satisfy the ordered BCFW recursion relations during the whole proof.

7.2.3 N2MHV amplitudes

In this subsection we consider N2MHV amplitudes as one more example to show the

general features of bonus-simplified gravity amplitudes. Similar to NMHV case, let



125

us denote the ordered gravity solutions in the following way

H
(1)
n;a1b1,a2b2

[
Rn;a1b1R

b1a1
n;a1b1,a2b2A

MHV(1, 2, . . . , n)
]2
≡ {n; a1b1, a2b2}1,

H
(2)
n;a1b1,a2b2

[
Rn;a1b1R

a1b1
n;a2b2A

MHV(1, 2, . . . , n)
]2
≡ {n; a1b1, a2b2}2.

There are four relevant types of diagrams (and a boundary case) which contribute

to the general N2MHV amplitudes. The general structure of N2MHV is given in

Fig. 7.5 and the corresponding contributions from each of the four diagrams can be

calculated separately.

First we consider the contributions from the diagrams in Fig. 7.5(b), which are of

the form MHV× NMHV. We use bonus-simplified amplitude for the right-hand-side

NMHV amplitude and we obtain3,

MI =
∑

2≤a1,b1≤n−1

∑
b1≤a2,b2<n

(
B

(1,1)
n;a1b1;a2b2{n; a1b1; a2b2}2

+ B
(1,2)
n;a1b1;a2b2 [{n; a1b1; a2b2}2(b2 − 1↔ n− 1)]

)
+

∑
2≤a1,b1≤n−1

B
(1,boundary)
n;a1b1;n−3n−1[{n; a1b1;n− 3n− 1}2(n− 2↔ n− 1)],(7.2.16)

where in the first sum a2 ≤ n − 4 because of the range of summation of the first
3Here and in the following calculations we have included the corresponding homogeneous terms,

for the case we consider the contributions are from Fig. 7.5(a).
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term in Eq. (7.2.13). Here the bonus coefficients are given by

B
(1,1)
n;a1b1;a2b2 = 〈1n〉〈n− 1 n− 2〉〈n− 1|xa2b2xb2n|n〉

〈1n− 1〉〈n n− 2〉〈n− 1|xa2b2xa2n|n〉
〈n− 1|xa1b1xb1n|n〉
〈n− 1|xa1b1xa1n|n〉

B
(1,1)
n;a1b1;a2b2 = 〈1n〉〈n− 1|xn−1a2|n− 1]

〈1n− 1〉〈n|xna2 |n− 1]
〈n− 1|xa1b1xb1n|n〉
〈n− 1|xa1b1xa1n|n〉

(b2 = n− 1)

B
(1,2)
n;a1b1;a2b2 =

〈1n〉〈n− 1 b2 − 2〉(x′a2b2)2

〈1n− 1〉〈n|xna2x
′
a2b2|b2 − 2〉

〈n− 1|xa1b1xb1n|n〉
〈n− 1|xa1b1xa1n|n〉

B
(1,boundary)
n;a1b1;n−3n−1 = B

(boundary)
n;n−3 n−1

〈n− 1|xa1b1xb1n|n〉
〈n− 1|xa1b1xa1n|n〉

, (7.2.17)

where the last term B
(1,boundary)
n;a1b1;n−3n−1 comes from Eq. (7.2.12). Again the superscripts

are used to show the types of the contributions. For instance, in the superscript

(1, 1) of B(1,1)
n;a1b1;a2b2 , the first “1” means that it is the type-I contribution, while the

second “1” implies that it is descendant from the NMHV case. A generalization to

the NkMHV case will be B(m)
n;a1b1;...;akbk , where m is a string composed of three kinds

of labels, “1" “2" and “boundary".

As we have mentioned in the NMHV case, and we want to stress it here again that

the bonus coefficients of Fig. 7.5(b) are simply given as the previous ones, namely

the coefficients of NMHV amplitudes, with replacements (a1 → a2, b1 → b2) and

multiplied by the same factor 〈n−1|xa1b1xb1n|n〉
〈n−1|xa1b1xa1n|n〉

.

Next, we calculate the contributions from the diagrams in Fig. 7.5(c) which are of

the form NMHV× MHV and we get

MII =
∑

2≤a1,b1≤n−1

∑
a1≤a2,b2<b1

(
B

(2,1)
n;a1b1;a2b2{n; a1b1; a2b2}1(n− 1↔ b1 − 1)

+B
(2,2)
n;a1b1;a2b2 [{n; a1b1; a2b2}1(b2 − 1↔ b1 − 1)]

)
+

∑
2≤a1≤n−3

B
(2,boundary)
n;a1n−1;n−4n−2[{n; a1n− 1;n− 3n− 1}1(n− 2↔ n− 1)].

(7.2.18)
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(a) Homogeneous diagram (b) Inhomogeneous diagram type I

(c) Inhomogeneous diagram type II

(d) Inhomogeneous diagram type II (e) Inhomogeneous diagram type I

Figure 7.5: Diagrams for N2MHV amplitudes.
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In the above sum we do not include the boundary case (a1, b1, a2, b2) = (n− 4, n−

1, n− 4, n− 2), which we shall study separately. The coefficients are given by

B
(2,1)
n;a1b1;a2b2 =

〈1n〉〈n− 1 b1 − 2〉〈n− 1|xb2a2x
′
b2b1x

′
a1b1xa1n|n〉(x′a1b1)2

〈1n− 1〉〈b1 − 2|x′a1b1xa1n|n〉〈n− 1|xb2a2x
′
a2b1x

′
a1b1xa1n|n〉

B
(2,1)
n;a1b1;a2b2 =

〈1n〉〈n− 1|xn−1a2|n− 1](x′a1b1)2

〈1n− 1〉〈n|xna1x
′
a1b1x

′
b1a2 |n− 1] (b2 = n− 2)

B
(2,2)
n;a1b1;a2b2 =

〈1n〉〈n− 1 b2 − 2〉(x′a2b2)2(x′a1b1)2

〈1n− 1〉〈n|xna1x
′
a1b1x

′
b1a2x

′
a2b2|b2 − 2〉

B
(2,boundary)
n;a1b1;n−4n−2 =

〈1n〉〈b1 − 4 n− 1〉[b1 − 3 n− 1][b1 − 2 n− 1](x′b1−3b1)2(x′a1b1)2

〈1 n− 1〉[b1 − 3 b1 − 2]〈b1 − 4|xb1−4 b1−1|n− 1]〈n|xna1x
′
a1b1xb1−1b1−3|n− 1] .

(7.2.19)

By comparing the results with those of NMHV, now we are ready to see the patterns.

For this type of diagrams Fig. 7.5(c), the bonus coefficients can be obtained from

the results of NMHV by doing the following replacements on the indices of region

momenta x’s: n → b1, a1 → a2, b1 → b2, and x → x′ when x has the index n with

it. Furthermore one should apply the changes on 〈n| as well as 〈n− i|, which read

〈n| → 〈n|xna1x
′
a1b1 , and 〈n − i|(or [n − i|) → 〈b1 − i|(or [b1 − i|) for i > 1. Finally

we multiply the obtained answers by a factor (x′a1b1)2.

The bonus coefficients of the contributions from other diagrams are actually the

same as those of the NMHV case. For the sake of completeness, let us write down

these contributions: for the contribution from Fig. 7.5(d), we have

MIII =
∑

2≤a1,b1≤n−1

∑
b1≤a2,b2<n

B
(2)
n;a1b1;a2b2 [{n; a1b1; a2b2}2(b1 − 1↔ n− 1)], (7.2.20)

where the bonus coefficients B(2)
n;a1b1;a2b2 are given by Eq. (7.2.7); for the other



129

contributions coming from Fig. 7.5(e), we get

MIV =
∑

2≤a1,b1≤n−1

∑
a1≤a2,b2<b1

B
(1)
n;a1b1;a2b2{n; a1b1; a2b2}1, (7.2.21)

and similarly the coefficients are given by Eq. (7.2.4) and Eq. (7.2.5).

Again as in the case of Eq. (7.2.18), this formula does not include the boundary case,

{n; a1b1; a2b2}1 = {n;n− 4n− 1;n− 4n− 2}1, which should be considered separately,

as we shall do below.

Similar to 5-point NMHV amplitude, the 6-point N2MHV amplitude is special which

only receives contributions from diagrams of NMHV × MHV type and we must treat

it separately. We can delete Fig. 7.6(a) by bonus relations, and the contribution

from Fig. 7.6(b) gives,

M6 = − [16][25][45]
[15][24][56] [{6; 25, 24}1(3↔ 5)] + P(2, 3, 4). (7.2.22)

As the NMHV case (7.2.11), 6-point N2MHV amplitude (7.2.22) can also be similarly

generalized, and we obtain the boundary term of the full n-point N2MHV amplitudes,

M (boundary)
n = B

(boundary)
n;n−4 n−1;n−4 n−2[{n;n− 4 n− 1;n− 4 n− 2}1(n− 3↔ n− 1)],(7.2.23)

where the bonus coefficients are given as

B
(boundary)
n;n−4 n−1;n−4 n−2 = 〈1n〉〈n− 5 n− 1〉[n− 4 n− 1][n− 2 n− 1]x2

n−4n
〈1n− 1〉[n− 4 n− 2]〈n− 5|xn−4 n−1|n− 1]〈n|xn−1 n−4|n− 1] .(7.2.24)

Therefore we have calculated all the contributions for N2MHV amplitudes and as in
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(a) 6-point diagram deleted by bonus
relations

(b) 6-point diagram

Figure 7.6: Diagrams for 6-point N2MHV amplitude.

the NMHV case, it can also be written as a sum of (n− 3)! permutations,

MN2MHV
n = MI +MII +MIII +MIV +M (boundary)

n + P(2, 3, . . . , n− 2). (7.2.25)

The result can be proved very similarly by induction as in the NMHV case.

7.3 Generalization to all gravity tree amplitudes

Now we have all the ingredients for generalizing our results and stating the patterns

for all tree-level gravity amplitudes. Our way of using bonus relations gives the

simplified tree-level NkMHV superamplitude as a sum of (n− 3)! permutations, and

each of them contains normal and exchanged contributions,

MNkMHV
n =

[
AMHV
n

]2(∑
α

B(1,m1)
α GαR

2
α+
∑
β

B
(2,m2)
β [GβR

2
β(b1−1↔ n−1)]

)
+P(2, 3, . . . , n−2).

(7.3.1)
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In both contributions, by reducing the homogeneous term recursively, we have k

types of terms from k BCFW channels, NpMHV × NqMHV, for p+ q + 1 = k with

0 ≤ p, q < k. As we have stressed repeatedly, to respect the ordered structure, we

have only used bonus relations on one lower-point amplitude, namely the right-hand-

side NqMHV for normal contribution, and the left-hand-side NpMHV for exchanged

contribution.

Before presenting all the bonus coefficients for general tree amplitudes, we pause to

show by induction that bonus relations roughly reduce the number of terms from

(n− 2)! in the original solution to (k + 1)(n− 3)! in the simplified one. To get the

previous counting we note that in the NpMHV× NqMHV channel of the normal

contribution, by applying bonus relations to the NqMHV lower-point amplitude we

can reduce the number of terms from (n− 2)!/k to (q + 1)(n− 3)!/k. Taking into

account all channels gives us (1 + 2 + . . .+ k)(n− 3)!/k terms, with the same number

from the exchanged contribution, thus the simplified form has only (k + 1)(n− 3)!

terms. By parity, one only needs NkMHV amplitudes with n > 2k + 2 legs and thus

the bonus relations can be used to delete at least half of the terms in tree amplitudes.

The simplification becomes more significant when n� k.

Now we generalize the pattern found in the NMHV and N2MHV cases to write down

all the bonus coefficients for general tree amplitudes. As we have learned from the

examples, once the bonus coefficients of Nk−1MHV amplitudes are calculated, then for

the NkMHV amplitudes, one only needs to compute two types of new contributions

for NkMHV amplitudes, namely the normal contribution from MHV × Nk−1MHV

channel (q = k− 1) and the exchanged contribution from Nk−1MHV×MHV channel

(p = k − 1) (see Fig. 7.7). All other bonus coefficients B(m)
α of NpMHV × NqMHV
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(a) MHV×Nk−1MHV (b) Nk−1MHV×MHV

Figure 7.7: Two relevant diagrams for computing new bonus coefficients for n-point
NkMHV amplitude. The rest of the bonus coefficients can be obtained recursively
from the Nk−1MHV case.

with q < k − 1 and p < k − 1, are the same as those computed previously, namely

the results from Nk−1MHV amplitudes. Since the summation variables of NkMHV

amplitude can be obtained by adding a pair of new labels ak, bk to the previous one,

α′, α = {α′; ak, bk}, the result can be written as

B(m)
α = B

(m)
α′ , (7.3.2)

for both normal contributions with q < k − 1 and exchanged ones with p < k − 1.

Thus we only need to calculate two new contributions from Fig. 7.7(a) and Fig. 7.7(b).

It is straightforward to confirm that all the observations we have made for the cases of

NMHV and N2MHV can be directly generalized to all tree-level amplitudes. We shall

first state the rules and then justify them. Firstly, just like Eq. (7.2.4) and Eq. (7.2.17)

for NMHV and N2MHV cases, the bonus coefficients of Fig. 7.7(a), B(1,m1)
α , can be

similarly obtained by the replacements on the indices of the region momenta x’s,

ai → ai+1, bi → bi+1, for B(m1)
α′ of Nk−1MHV amplitudes, then multiplying with a

simple common factor of the form 〈n−1|xa1b1xb1n|n〉
〈n−1|xa1b1xa1n|n〉

, which are the same for all tree-level
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amplitudes,

B(1,m1)
α = 〈n− 1|xa1b1xb1n|n〉

〈n− 1|xa1b1xa1n|n〉
B

(m1)
α′ (ai → ai+1, bi → bi+1). (7.3.3)

Secondly, the bonus coefficients for the new exchanged contributions Fig. 7.7(b),

B
(2,m2)
β , can be obtained by taking B(m2)

β′ of Nk−1MHV amplitudes, and performing

the following replacements on the indices of region momenta x’s, namely n→ b1, ai →

ai+1, bi → bi+1, and x→ x′ when x has index n with it. And for the spinors, we have

〈n| → 〈n|xna1x
′
a1b1 as well as |n− i〉(or |n− i]) → |b1 − i〉(or |b1 − i]) for i > 1. In

addition, the obtained answers are further multiplied by a factor (x′a1b1)2,

B
(2,m2)
β = (x′a1b1)2B

(m2)
β′ , (7.3.4)

where the arguments of B(m2)
β′ should be changed under the rules we described above.

All these rules can be understood in a simple way. For the rules of the normal

contributions, the common factor is obtained in the following way,

(1− zi
zn−1

) 〈n1〉
〈n− 11〉 → (1− zi

zn−1
) 〈nP̂ 〉
〈n− 1P̂ 〉

→ 〈n− 1|xa1b1xb1n|n〉
〈n− 1|xa1b1xa1n|n〉

, (7.3.5)

where (1− zi
zn−1

) comes from the fact that we delete one diagram using bonus relations,

and 〈n1〉
〈n−11〉 is a factor that always appears in every bonus coefficient.

While for the rules of the exchanged contributions, we find that the factor (x′a1b1)2

appears because

〈n1〉 → 〈P̂ 1̂〉 → [P̂ 1̂]〈P̂ 1̂〉 → (x′a1b1)2, (7.3.6)
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and 〈n| changes in the following way under the recursion relations,

〈n| → 〈P̂ | → 〈n1〉[1P̂ ]〈P̂ | → 〈n|xna1x
′
a1b1 . (7.3.7)

Besides, the transformation rule of xnγi follows as

xnγi → x
P̂ γi+1

→ x′b1γi+1
, (7.3.8)

where γ can be a or b and we have used the fact that p
P̂

= pb1 + · · ·+pn−2 +pb1−1 +pn̂.

So in this way, we have a complete understanding of the rules we have proposed.

Finally, as shown in the examples a boundary contribution has to be considered

separately because the special case (k+4)-point NkMHV amplitude only has diagrams

of Nk−1MHV × MHV type. For this special contribution, it is straightforward to

obtain a general form,

M (boundary)
n = B

(boundary)
β0

[(
AMHV
n

)2
Gβ0R

2
β0(n− k − 1↔ n− 1)

]
, (7.3.9)

where β0 = {n;n − k − 2 n − 1;n − k − 2 n − 2; . . . ;n − k − 2 n − k}, and the

coefficients can be written as

B
(boundary)
β0 = 〈1n〉〈n− k − 3 n− 1〉[n− k − 2 n− 1][n− k n− 1]x2

n−k−2 n

〈1n− 1〉[n− k − 2 n− 2]〈n− k − 3|xn−k−3 n−1|n− 1]〈n|xn−1 n−k−2|n− 1] .(7.3.10)

Therefore, we have found a set of explicit rules to write down all the bonus coefficients

for all tree amplitude in N = 8 supergravity.
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7.4 Conclusion and outlook

In this chapter, we simplified tree-level amplitudes in N = 8 SUGRA, from the

BCFW form with a sum of (n− 2)! permutations to a new form as a sum of (n− 3)!

permutations. This is achieved by using the bonus relations, which are relations

between tree amplitudes in theories without color ordering. In contrast to the MHV

case, a naive use of the bonus relations ruins the structure of the non-MHV ordered

tree-level solution, thus we proposed an improved application of the relations, which

respects the ordered structure. The key point here is to apply the bonus relations

to only one of two lower-point amplitudes in any BCFW diagram, which indeed

brings SUGRA amplitudes to a simplified form having a (n− 3)!-permutation sum

with some bonus coefficients. To illustrate the method, we have explicitly calculated

simplified amplitudes for the NMHV and N2MHV cases. We have also argued that

the pattern generalizes to NkMHV cases, and presented a simple way for writing

down the bonus coefficients of all amplitudes, thus one can recursively obtain the

simplified form for general SUGRA tree amplitudes.

Apart from the computational advantages, the simplification is also conceptually inter-

esting. The relations between gravity and gauge theories have been reexamined from

various perspectives recently [63, 64]. A common feature, of these “gravity”=“gauge

theory”2 methods, is the freedom of rewriting (n− 2)! forms of gravity tree ampli-

tudes as (n− 3)! forms, essentially by using BCJ relations on the gauge theory side.

Our result confirms this freedom at an explicit level by directly using it to simplify

SUGRA amplitudes, which also suggests that bonus relations may be regarded as

explicit gravity relations induced by Yang-Mills BCJ relations. It may be fruitful

to understand the exact connections between our method, general forms of KLT
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relations, and the square relations. In particular, it would be nice to go beyond

SUGRA and see if similar simplifications occur generally, given that both BCFW

recursion relations and bonus relations are valid in more general gravity theories.

Bonus relations and simplifications we obtained at tree level can also have implications

for loop amplitudes. Through the generalized unitarity-cut method, our new form

of tree amplitudes can be used in calculations of loop amplitudes. In addition, the

square relations have been conjectured to hold at loop level [65], thus we may expect

similar simplifications directly for the SUGRA loop amplitudes.



Chapter 8

Conclusions

Before looking forward for the future directions, let us look back and briefly summarize

the main ideas we have encountered. In this thesis, we have showed how the power

of modern on-shell techniques of computing scattering amplitudes both in N = 4

SYM and N = 8 SUGRA. Firstly two dual formalisms, namely twistor string thoery

and Grassmannian formulation, of the S-matrix in N = 4 SYM have been studied in

great details, specially we focus on the amazing relation between these two beautiful

formalisms, and all tree-level contour in Grassmannian formulation was constructed

by using the idea of “adding one particle at a time". We observed that there is a

smooth deformation which interpolates between the connected prescription of twistor

string theory and the Grassmannian integrand together with the explicit contour of

integration.

Then we turn to study the loop-level amplitudes in N = 4 SYM using leading

singularity methods. We, for the first time, determined all the scalar integral basis

137
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and the corresponding coefficients of three-loop five-point amplitude in N = 4 SYM.

We also use our new obtained result to determine two previously unknown numerical

constants in BDS ansatz.

After finishing the study on N = 4 SYM, we study various aspects of tree-level

scattering amplitudes in N = 8 SUGRA. A new MHV scattering amplitude of n

gravitons at tree level was presented and proved. Some of the interesting features

of the formula set it apart as being significantly different from many more familiar

ones. We hope the formula will eventually lead to Parke-Taylor-like formula for

SUGRA. We also found that the formula has a very simple link representation in

twistor space, which may be useful for finding Grassmannian formulation(or twistor

string formulation) for N = 8 SUGRA.

By solving BCFW recursion relations explicitly, an algorithm of computing all tree-

level S-matrix in N = 8 SUGRA was obtained by solving supersymmetric BCFW

recursion relations. A very interesting Kawai-Lewellen-Tye (KLT)-like structure

between Yang-Mills amplitudes and the gravity amplitudes naturally appears in our

tree-level solutions. Meanwhile it has been pointed out that there are reasons to

suspect that N = 8 SUGRA to be ultimately even simpler than SYM. One particular

interesting feature is that gravity amplitudes exhibit exceptionally soft behavior

under BCFW shift, which leads to an interesting extra relation between gravity

amplitudes, which we called bonus relation, which allows us to even simply the

obtained all tree-level amplitude.

There various remaining issues that need to be addressed, let us point out some

of them here. Firstly, it would be of great interest to find the generalization of

the Grassmannian formulation(or the twistor string formulation) for the S-matrix
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of N = 8 SUGRA. Another possibly related exciting direction is the finiteness of

N = 8 SUGRA. All the symmetries of the theory as well as the novel soft behavior

of gravity tree-level amplitudes under BCFW shift may finally help us to understand

better the perturbative behaviors of SUGRA amplitudes. For N = 4 SYM, recently

a lot efforts have been focused on the loop amplitudes and the so-called remainder

functions. Due to the recent exciting developments on the BCFW-type recursion

relations for loop integrands as well as many other relevant interesting progresses,

we are in a good position to completely understand the N = 4 SYM in the planar

limit and also to have a better understanding of the non-planar case in future. It

would not be very surprising if all these subjects are eventually related to each other.
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.1 The Nine-Point N2MHV Tree Amplitude

Residue Geometry Problem:

f1
7 f2

7 f1
8 f2

8 f1
9 f2

9

(2)(3)2(4)2(5)9 1
4 5 6 (4567)(5671)(5678)(1346)(2367)(1347)

(4)(5)2(6)2(7)2 3
6 7 8 (4567)(5671)(5678)(6781)(6789)(7891)

(6)(7)2(8)2(9)4 5
8 9 1 (1247)(1237)(1258)(6781)(9126)(9123)

(2)(3)2(4)(7)94 5 (4567)(3451)(2356)(1346)(2367)(7891)

(2)(3)2(4)(9)94 5 (4567)(3451)(2356)(1346)(9126)(9123)

(4)(5)2(6)(9)26 7 (4567)(5671)(5678)(6781)(6789)(9123)

(2)(5)(6)2(7)37 8 (2345)(5671)(5678)(6781)(6789)(7891)

(2)(7)(8)2(9)59 1 (2345)(1237)(1258)(1238)(9126)(9123)

(4)(7)(8)2(9)59 1 (4567)(1237)(1258)(1238)(9126)(9123)

[(2)(3)][(6)(7)]4 8 (2345)(3451)(2356)(6781)(6789)(7891)

[(2)(3)][(8)(9)]1 4 (2345)(3451)(2356)(1238)(9126)(9123)

[(4)(5)][(8)(9)]1 6 (4567)(5671)(5678)(1238)(9126)(9123)

(2)(3)2(4)(6)(7)4 5 8 (4567)(3451)(2356)(1346)(6789)(7891)

(2)(3)2(4)(8)(9)4 5 1 (4567)(3451)(2356)(1346)(9126)(9123)

(2)(3)(5)(6)2(7)4 7 8 (2345)(3451)(5678)(6781)(6789)(7891)

(2)(3)(7)(8)2(9)4 9 1 (2345)(3451)(1258)(1238)(9126)(9123)

(4)(5)2(6)(8)(9)6 7 1 (4567)(5671)(5678)(6781)(9126)(9123)

(4)(5)(7)(8)2(9)6 9 1 (4567)(5671)(5678)(1238)(9126)(9123)

(1)(2)2(3)(6)(9)82 4 (2345)(3451)(2356)(1346)(6789)(9123)

(9)(1)2(2)(5)(8)71 2 (2345)(3451)(5678)(1238)(9126)(9123)

(1)(2)[(5)(6)](9)2 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)2(4)(6)(9)4 5 (4567)(3451)(2356)(1346)(9126)(9123)

[(2)(3)](5)(6)(9)4 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)[(5)(6)](9)4 7 (2345)(3451)(5678)(6781)(6789)(9123)

(2)(3)(5)[(8)(9)]1 4 (2345)(3451)(5678)(1238)(9126)(9123)

Residue Geometry Problem:

f1
7 f2

7 f1
8 f2

8 f1
9 f2

9

(2)(4)(5)2(6)(9)6 7 (4567)(5671)(5678)(6781)(6789)(9123)

(2)(4)(5)[(8)(9)]1 6 (4567)(5671)(5678)(1238)(9126)(9123)

[(2)(3)](4)(6)(7)94 (4567)(3451)(2356)(6781)(6789)(7891)

[(2)(3)](4)(8)(9)94 (4567)(3451)(2356)(1238)(2367)(9123)

[(4)(5)](6)(8)(9)26 (4567)(5671)(5678)(1238)(6789)(9123)

(2)[(5)(6)](7)(9)37 (2345)(5671)(5678)(6781)(6789)(9123)

(2)(3)(5)[(6)(7)]38 (2345)(5671)(5678)(6781)(6789)(7891)

(2)(3)(7)[(8)(9)]51 (2345)(1237)(2356)(1238)(9126)(9123)

(2)(5)(7)[(8)(9)]51 (2345)(1237)(5678)(1238)(9126)(9123)

(4)(5)(7)[(8)(9)]51 (4567)(1237)(5678)(1238)(9126)(9123)

[(2)(3)](6)(7)(9)4 (2345)(3451)(2356)(6781)(6789)(9123)

[(2)(3)](6)(8)(9)4 (2345)(3451)(2356)(1238)(6789)(9123)

(2)(3)(5)(6)(8)(9)1 4 7 (2345)(3451)(5678)(6781)(9126)(9123)

(2)(3)(4)(5)(6)(7)3 9
6 (4567)(5671)(5678)(6781)(6789)(7891)

(4)(5)(6)(7)(8)(9)2 5
8 (4567)(1237)(5678)(1238)(6789)(9123)

(1)(2)(3)(5)(6)(9)82 (2345)(3451)(5678)(1346)(6789)(9123)

(2)(3)(4)(5)(8)(9)96 (4567)(5671)(5678)(1238)(2367)(9123)

(2)(3)(6)(7)(8)(9)58 (2345)(1237)(2356)(1238)(6789)(9123)

(2)(5)(6)(7)(8)(9)58 (2345)(1237)(5678)(1238)(6789)(9123)

(2)(5)(6)(7)(8)(9)39 (2345)(5671)(5678)(6781)(6789)(9123)

(1)(2)(5)(6)(8)(9)2 (2345)(3451)(5678)(1238)(6789)(9123)

(2)(3)(5)(6)(8)(9)4 (2345)(3451)(5678)(1238)(6789)(9123)

(2)(4)(5)(6)(8)(9)6 (4567)(5671)(5678)(1238)(6789)(9123)

(2)(3)(4)(7)(8)(9)5 9 (2345)(1237)(2356)(1238)(2367)(7891)

(2)(3)(5)(6)(7)(9)3 (2345)(5671)(5678)(6781)(6789)(7891)

nine_point_table.pdf   1   2/6/10   11:06 PM
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