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The main subject of this thesis is scattering amplitudes in N = 4 super-Yang-Mills
theory (SYM) and N = 8 super-gravity theory (SUGRA). We study several aspects
of the scattering amplitudes of Yang-Mills theories as well as gravity theories using
modern techniques. After the introductory chapter, we apply these methods to study
the scattering amplitudes both in N =4 SYM and N = 8 SUGRA. We first study
two dual formulations of N = 4 SYM, namely the Arkani-Hamed et al Grassmannian
formulation and Witten’s twistor string theory. We present a new, explicit formula
for all tree-level amplitudes in N = 4 SYM. The formula is written as a certain
contour integral of the connected prescription of Witten’s twistor string, expressed
in link variables. A very simple deformation of the integrand gives directly the
Grassmannian integrand proposed together with the explicit contour of integration.
Then we calculate for the first time the five-point three-loop amplitudes of N =4
SYM using the leading singularity method. Using the method of obstructions we
numerically evaluate two previously unfixed coefficients which appear in the three-
loop BDS ansatz. After the study of N = 4 SYM, we turn our journey to N = 8
SUGRA by first presenting and proving a new formula for MHV amplitude in SUGRA.
Some of interesting features of the formula set it apart as being significantly different
from many more familiar formulas. We then present an algorithm for writing down
explicit formulas for all tree amplitudes in N = 8 SUGRA, obtained from solving
the supersymmetric on-shell recursion relations. The formula is patterned after one
recently obtained for all tree amplitudes in N = 4 SYM which involves nested sums of
dual superconformal invariants. We find that all graviton amplitudes can be written
in terms of exactly the same structure of nested sums with two modifications: the
dual superconformal invariants are promoted from N = 4 to N = 8 superspace in
the simplest manner possible-by squaring them—and certain additional non-dual
conformal gravity dressing factors (independent of the superspace coordinates) are
inserted into the nested sums. To illustrate the procedure we give explicit closed-
form formulas for all NMHV, NNMHV and NNNMV gravity superamplitudes. The
obtained results are further simplified by applying bonus relations between gravity

amplitudes, which arise from the soft behaviour of tree-level gravity amplitude.
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Chapter 1

Introduction

The main subject of this thesis is scattering amplitudes in N = 4 super-Yang-Mills
theory (SYM) and N = 8 super-gravity theory (SUGRA). In weakly coupled field
theories, the natural object to study is the perturbative S-matrix. The perturbative
expansion of the S-matrix is conventionally computed using Feynman rules. It
was observed long time ago that scattering amplitudes show simplicity that is not
apparent from the Feynman rules and usual local formulations. For example, the
maximally helicity violating (MHV) amplitudes of Yang-Mills theory can be expressed

as very simple holomorphic functions.

Recently there have been enormous progresses on unraveling the structure of scat-
tering amplitudes both in gauge theory and gravity, such as generalized unitary-cut
method at loop level [1], and Britto-Cachazo-Feng-Witten (BCFW) recursion rela-
tions at tree level, for Yang-Mills theory [2, 3] and for gravity[!, 5], and BCFW-type

recursion relations for loop-level amplitudes have also been discovered very recently[(].



A particularly important example is the structure of amplitudes in N = 4 super
Yang-Mills theory(SYM), which has remarkable simplicities obscured by the usual
local formulation and Feynman-diagram calculations. For instance, dual conformal
symmetry (even Yangian symmetry) of N =4 SYM appears very naturally in the
BCFW solutions of the theory [7, 6]. And two beautiful dual formalisms for the
S-matrix in N = 4 SYM, twistor string theory and the Grassmannian formulation,

have been constructed.

Another reason to be interested in supersymmetric N = 4 Yang-Mills is that it
provides the simplest incarnation of the celebrated AdS/CFT correspondence. It is
believed that the supersymmetric N = 4 Yang-Mills in four dimensions is equivalent
to Type IIB string theory on a AdSs x S background. There is by now a fairly
detailed dictionary between observables on both sides of the correspondence but
computations of dual quantities can usually only be performed in non-overlapping
regions of the parameter space. Integrability techniques yield exact solutions and
have afforded non-trivial tests of the AdS/CFT correspondence. It is important
to note here that perturbative computations at weak and strong coupling played a
decisive role in finding solutions for the integrable models which appeared in studying

the dilatation operator for the supersymmetric N = 4 theory.

Indeed duality is one of most important ideas of modern high energy theoretical
physics. In this thesis, we also study the perturbative dual formalisms of N = 4
SYM. In particular, the dual formalisms concerning to us are Witten’s twistor string
theory and Grassmannian formulation, which both perturbatively compute the S-
matrix of N =4 SYM. Specially the focus will be on the tree-level contours for the

Grassmannian formulation and the relation between the Grassmannian formulation



and the twistor string theory.

Arkani-Hamed, Cachazo, Cheung and Kaplan [3] proposed a duality between the
leading singularities of planar N*=2MHYV scattering amplitudes in N = 4 super Yang-
Mills and certain contour integrals denoted £, over the Grassmannian manifold

G(k,n) of k-planes in n-dimensions.

One of important open questions of the Grassmannian formulation is to determine the
appropriate contours in the Grassmannian for computing any general tree amplitude
in N = 4 super Yang-Mills. It turns out that the twistor string connected prescription
is able to provide a preferred choice of integration contour and that its integrand

may be smoothly deformed to the integrand £,, .

We prove the equivalence between the connected prescription for the twistor string
and L, for all NMHV amplitudes in [9, 10]. These proofs rely on repeated use of
the global residue theorem, and show that the combination of residues contributing
to any NMHV amplitude computed via the twistor string can be re-expressed as a
direct sum of residues of £,, . Moreover, an amazing and much stronger property is
observed: the two integrands were in fact related by a smooth deformation, which
interpolates between the connected prescription of twistor string theory and the
Grassmannian integrand £, ;. The deformation connecting the two descriptions
moves the locations of each pole, and changes the value of each residue; but the sum
of residues which define the tree amplitude is itself found to be invariant. All those
properties are actually very general, and we propose a new, explicit formula for all

N*E=2)MHYV tree amplitudes in N = 4.

Then we turn to study the loop-level amplitudes in N = 4 SYM using leading



singularity methods. Much of the recent interest in multi-loop scattering ampli-
tudes has been stimulated by the ABDK/BDS ansatz |11, 12] which suggested that
multi-loop MHV amplitudes satisfy a powerful iteration relation implying a simple

exponential form for the full all-loop amplitude. Although the ABDK/BDS ansatz

was successfully tested for four particles at two [11] and three [12] loops, as well as
for five particles at two loops [13, 14], some doubts raised in [15, 16, 17] necessitated
an explicit calculation of the two-loop six-particle amplitude [18] which conclusively

demonstrated the incompleteness of the BDS ansatz. Indeed six particles is the
earliest that the hypothesized dual conformal symmetry of amplitudes could have
allowed BDS ansatz to break down; for n = 4,5 the symmetry fixes the form of the

amplitude up to a few numerical constants [15, 19].

It was conjectured that leading singularity is enough to determine the whole ampli-
tudes in a maximally supersymmetric theory, including N = 4 SYM. Our calculation
on five-point three-loop amplitudes confirms this conjecture, indeed we determine
the amplitudes purely by knowing the leading singularities. Using the method of
obstructions we also numerically evaluate two previously unfixed coefficients which

appear in the three-loop BDS ansatz.

Meanwhile it has been pointed out [20] that there are reasons to suspect N = 8
SUGRA to have even richer structure and to be ultimately even simpler than SYM.
It motivates us to study various aspects of N = 8 SUGRA tree-level amplitudes.
First we present and prove a new formula for MHV amplitude in SUGRA, which
has many nice properties as a gravity amplitudes. Some of interesting features of
the formula set it apart as being significantly different from many more familiar

formulas. Further more, it has a simple “link representation"', which may be helpful



to understand the dual formulation of the S-matrix of gravity amplitudes. Then
by solving supersymmetric on-shell recursion relations explicitly, we present an
algorithm for writing down an arbitrary tree-level SUGRA amplitude based on the
idea of color-ordered subamplitudes in SUGRA amplitudes, and a KLT-like structure
between Gravity amplitudes and Yang-Mills amplitudes are obtained. The formula
is patterned after one recently obtained for all tree amplitudes in N = 4 SYM
which involves nested sums of dual superconformal invariants. We find that all
graviton amplitudes can be written in terms of exactly the same structure of nested
sums with two modifications: the dual superconformal invariants are promoted from
N =4 to N = 8 superspace in the simplest manner possible-by squaring them-and
certain additional non-dual conformal gravity dressing factors (independent of the
superspace coordinates) are inserted into the nested sums. To illustrate the procedure
we give explicit closed-form formulas for all NMHV, NNMHV and NNNMV gravity
superamplitudes. The result can be written as a summation over (n — 2)! “ordered
gravity subamplitudes” with different permutations of particles 2,...,n — 1. While
in contrast to SYM color-ordered amplitudes, the SUGRA amplitudes actually have
a faster, 1/22, falloff and the contour integral ¢ dzM (z) gives the bonus relations. we
will see that these relations can be used to further simplify the explicit all tree-level
formulae for the amplitudes in N = 8 SUGRA by reducing the (n — 2)!-permutation

sum to a new (n — 3)!-permutation one.

Finally, we will present some closing comments, and directions for future research.



Chapter 2

Twistor string theory and

Grassmannian: NMHYV amplitude

2.1 Introduction

The twistor string theory formulation of Yang-Mills scattering amplitudes has been a
great step forward in unearthing a host of properties of scattering amplitudes, hitherto
unseen via the standard methods of quantum field theory. A connected prescription
formula for computing all tree level superamplitudes in twistor string theory has been
written down in [21], based on Witten’s proposal that the N*"2MHV superamplitude
should be given by the integral of an open string current algebra correlator over
the space of degree k — 1 curves in supertwistor space P3*. Furthermore, a “linked”
version of the formula had been written in [22] and [23] by reformulating the original

connected prescription amplitude in terms of the link variables introduced in [24]. A



remarkable new contour integral over a Grassmannian of these link variables, which
apparently encapsulates information about leading singularities of N' = 4 Yang-Mills
loop amplitudes in addition to tree-level information, has been written down by

Arkani-Hamed, Cachazo, Cheung and Kaplan (ACCK) in [8].

In this chapter we make the connection between the linked-connected prescription
formula from twistor string theory and the ACCK proposal more transparent by
offering a simple analytic proof between the two formulas for all tree-level NMHV
superamplitudes. Also we note that a simple deformation of the connected prescrip-
tion integrand by non-zero parameters gives directly the Grassmannian integrand
in the limit when the deformation parameters equal zero. Specifically, the ACCK
Grassmannian integrand arises from the linked-connected formula in a simple limit

when the second terms in all sextic polynomials are zero (see formula (2.2.18)).

In section II we review some of the recent developments and write down a general
formula (2.2.15) for n-point NMHV amplitudes in terms of minors in a convenient
way. In section III we show how to get the BCF'W contours from the linked-connected
prescription for the six and seven point NMHV amplitudes in a simple way, followed
by the general proof for all n-point NMHV amplitude by using the global residue

theorem (GRT). In the appendix we present the ten—point case as a concrete example.



2.2 Review of the Developments

2.2.1 Review of Dual S-Matrix Formulation

Recently Arkani-Hamed, Cachazo, Cheung and Kaplan [2] have conjectured a formula
for a dual formulation for the S-Matrix of N =4 SYM. According to their proposal
the planar, color stripped, n particle, N*"2MHYV amplitudes are associated with

contour integrals over a Grassmannian

1 dk X ncaa

Losk(Wa) = Vol(GL(k)) / (12 k)23 (kt 1) - (nl--(k—1)) al;[l 5 (CraWR)2.1)

where the W, are twistor variables obtained by Fourier transforming with respect to

the A\, : W= (W) = (1, \|7}), and

(ml v mk) = eal'"akcalml e Cakmk' (222)

Here, C,, is a k X n matrix and its ‘minor’, (my - - -my) is the determinant of the
k x k submatrix made by only keeping the k columns mq, -+, my. The integrand of
this formula has a GL(k) symmetry under which C,,, — LZCp, for any k x k matrix
L, and so one has to gauge fix by dividing by Vol(GL(k)). This formula has manifest

cyclic, parity, superconformal and also dual superconformal symmetry [25].

The outstanding feature of this formula is that, interpreting the integral as a multi-
dimensonal contour integral in momentum space, the residues of the integrand give
a basis for obtaining tree level amplitudes as well as all loop leading singularities,

which was heavily studied in last chapter.



2.2.2 NMHY tree amplitude from ACCK

A general formula for determining which residues correspond to tree amplitudes
for the n particle NMHV case has been given in [8] which we will now review.
Following their notation we denote a residue when n — 5 minors (i1 41 + 1 4 +
2),. oy (ip_p ins5+1i,5+2) — 0as {i,i2, -+ ,in_s5}, and it is antisymmetric, for
instance, {iy, 4,43} = —{i2,%1,43}. Then NMHV tree amplitude is given by the sum

of residues

ATBCrw = ()" PO0xEx0x 8. ..

(2.2.3)
(n — 5) factors

where O is the set of odd numbered particles and € is the set of even numbered

particles

O=> {k}, &= > {k} (2.2.4)

kodd k even
and

{il,ig} if 11 < 19
{in} = {io} = (2.2.5)

0 otherwise
The above proposal can also be motivated from the geometric picture presented in

the recent papers [27] and [20].

To get P(BCFW) (parity-conjugated BCFW terms) from BCFW, one can simply
apply the GRT. For example, the BCFW terms of the seven-point NMHV amplitude

can be written as

Az ={1,2} + {1,4} + {1,6} + {3,4} + {3,6} + {5,6}. (2:2.6)
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2.2.3 Review of the Linked-Connected Prescription

Let us begin by reviewing some details of the connected prescription formula [?
]. The 4|4 component homogeneous coordinates for the i-th particle in P3* are
Z; = (2, pu& ) with o, & = 1,2 and A = 1,2,3,4. The connected formula can be

written explicitly in the following form:

| ngdre A (7. — ¢ .
AZ) / dMARA dra dne 6 (Z, 5,9’(01))7 (2.2.7)

vol GL(2) i=1 &i(oi — o)
where P is the degree k — 1 polynomial given in terms of its & C**-valued supercoef-
ficients Ay by

k—1
Plo) =Y Ago’. (2.2.8)
d=0

As emphasized in [21] (see also [28]) the integral (2.2.7) must be interpreted as a
contour integral in a multidimensional complex space. The delta functions specify
the contour of integration (specifically they indicate which poles to include in the sum
over residues). There is also a GL(2) invariance, of the integrand and the measure,
which needs to be gauged. Taking the above connected prescription as a starting
point and motivated by [24] one can express the connected prescription (2.2.7) into

the form of so-called link representation [22], [23].

One can obtain the physical space amplitude from the link representation

AN = T80 i) 55 dr Ulesi(r)), (2.2.9)

where the Jacobian J generally depends on the parameterization of c¢;(7,). A general

form of U(cy;) has been explicitly evaluated by Dolan and Goddard in [23]. For an
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amplitude with helicities (ey,...,€,) comprising p strings with ¢, = + and p strings
with eg = —, their explicit form is
1
Ule)=F(o)[[ = (2.2.10)
k.t Skt

where Sj; is the sextic Stk:rst = CrsCriCIR:RSCII4R — CItCRSCIR4RCII:RS With Cijips =

CirCjs — CjrCis, and

_ R a1 3 1 £
F(c) = (CIJ:RS)NR P2 C?R?’C?sgcgfzgcgs?) H Clltgcf]tg H Chr 30?5 ’ H - H da,at1;

teP! keN’ ken Ckt q=1
teP
(2.2.11)
where
CiRCjSCjRCiS CirCjsCrsCjr .o
dir = Cir, dri = Cir, dij = 5 drs = ;L] E Na (SRS P.
CirCjs — CjRCis CrrCjs — CrsCjr

We denote P as the set of positive helicity particles and N as the set of negative
helicity particles, and Ny is the number of independent sextics, [ is the number of
the negative helicity particles, m the number of the positive helicity particles and

n = m + p is the total number of particles.’

2.2.4 NMHYV tree amplitude from the connected prescrip-

tion

In order to make the connection between the linked-connected and ACCK formulas

more transparent, in this section we will express the linked-connected formula in

'Here we exchange the helicities + < —, at the same time ¢;; — ¢;j; with respect to [23].
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terms of minors as in the ACCK approach.?

Let us start with helicity (—+—+—++---++),and take =1, J =3, R=2,5 =4,

then formula (2.2.10) becomes

n—6 2 100104103003 041 1 £ 1
Ul(c) = (cs2CsaC13:24)" " (C12C32C34C54C56C1n) H — .
a—6 C13:a,0+1 kePteN Ckt i—¢ S135:24i
(2.2.12)
Using the identity
CitCjk:rt
5(Sijk:rst)5(sijk:rst’> - 5(Sijk:r5t)5(sijk:rt’t)77 (2213)
CisCik:rs

we can transform the sextics 5135;241' in (2212) to 5135:2467 5135;2771_1’71, and 5135;1‘_1,1"7;4_1

to arrive at

n n—1 n—2
_ C35:26C12C13:m—1,nC5,n—1 [ a—g C5a [ 1327 38 [ 176 €14 1

U'(c) = . (22.14)

C52C14C13:67C35:n—1,n S1Sy... S, 5

We then translate it into minors, the result is®

N 1

An = (123)(345)(567)(n — 1 1 1) 5155 ... Sy’ (22.15)
where the numerator is given as
N = (135)(612)(235)(5 n—1n)(13 n —1) ﬁ (13cv) nl:[l(lE)ﬁ) nff(%y). (2.2.16)
a=8 B=T7 y=6

2 We are grateful to Freddy Cachazo for encouraging us to rewrite everything in terms of minors.
There are many different ways to write the formulas, but we will pick the one which makes the
proof simpler and has many other nice properties as we will discuss later.

3When n = 6 or n = 7 the minor (567) does not appear in the denominator. And we put the
minor (135) in the numerator by hand to make the scale right, since (135) = 1 for the helitiy we
started.
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The sextics can be written as

Si = (234)(456)(612)(135) — (123)(345)(561)(246),
So = (nl12)(13 n —1)(235)(bn—1n) — (123)(35 n — 1)(5n2)(n — 1 n 1),

Sig=(ii+1i+2)(13i+2)(15 i+ 1)(35i) — (135)(3i i +2)(5i i + 1) (i + 17 +2 1),

(2.2.17)
where 6 <7 <n— 2.
Several comments about this formula are in order.
Firstly, one can deform the sextics by any non-zero parameters a;, namely
Sj — 8; = (klm)(mnp)(pgk)(gin) — a;(gkl)(Imn)(npq)(kmp). (2.2.18)

As we will prove in next section, interestingly, the final amplitude does not depend
on a; at all. Taking the limit a; — 0 one gets ACCK formula directly. This appears
to be a general fact, not specific to just NMHV amplitudes: the ACCK Grassmanian
integrand arises from the linked-connected formula in a simple limit when the second

terms in all sextic polynomials are zero.

Secondly, the formula has GL(3) symmetry for the Grassmanian, even though we
had started with the link representation for a particular helicity configuration. We
should point out that for some particular gauge fixings, we do not always get the
form of each sextic as a polynomial of degree 6 in the ¢;;s. But, nevertheless, one
can numerically check that we do indeed get the tree amplitudes for the connected
prescription, namely, the residues at the locus where all the sextics simultaneously

vanish.
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Thirdly, writing sextics in terms of minors has a simple geometrical interpretation®.
The minor (7 j k) = 0 in twistor space means the points 4, j, k lie on a line. For NMHV|
the sextics Sijkimn = 0 means that these six points i, j, k, [, m,n lie a conic curve
[29], which is consistent with the origin of the connected prescription—integrating

out degree two curves in twistor space as in formula (2.2.7).

2.3 From the Connected to ACCK Using GRT

In this section we will use the multidimensional Global Residue Theorem (GRT) to
analytically derive the BCFW contour of ACCK as in (2.2.3) from the connected

prescription formula (2.2.15).

2.3.1 n=6 and n=7

We begin with n = 6 and n = 7 cases, which were previously done in [22], [23].

e For the six-point amplitude, the connected formula gives

B (135) 1
As = (123)(345)(561) S (2:3.1)
where
S = (234)(456)(612)(135) — (123)(345)(561)(246). (2.3.2)

4This was emphasised to us by Freddy Cachazo.
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Cauchy’s theorem states that the sum of residues in this expression is zero, so
{5} =—{1} - {8t - {5}, (2.3.3)

which is ACCK formula (2.2.3) for n = 6.

e For the seven-point amplitude,

(135)(235)(612)(136) 1

Ar = (123)(345)(671) 515, (23.4)
where
S; = (234)(456)(612)(135) — (123)(345)(561)(246),
Sy = (567)(712)(235)(136) — (123)(356)(572)(671). (2.3.5)
By applying GRT, we get
{51,592} = {1,581} + {3, 51} + {6, 51} (2.3.6)

On the poles (123) = 0 and (345) = 0, the second term of S; vanishes and we get

(1,5} ={1,2} + {14}, {3,5} = {3:2F + {3,4}. (2.3.7)

Note that the terms with non-adjacent minors do not contribute because they would
be cancelled by the numerator of A;. Moreover, the condition of the residue {3,2}

implies that the points 2, 3,4, 5 lie on a line and hence (235) = 0, which is a term in
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the numerator of A7. To simplify the residue {6,S;} we use GRT again

(6,9} = —({6,5}+{6,1} + {6,3}) (2.3.8)
= —({6,5} + {677+ {6,1} + {6,3}) . (2.3.9)

Again, (671) = 0 makes the second term of Sy vanish, hence {6, S} = {6,5} + {6, 7}.
But the condition of {6,7} implies that (612) = 0, which is a term in the numerator

of A7. So finally, collecting all the residues we get
{S1,S:} ={1,2} + {1,4} + {1,6} + {3,4} + {3,6} + {5,6}. (2.3.10)

These are exactly the BCFW contours of the ACCK formula (2.2.3).

Let us conclude this section by saying that there are two useful properties which
play an important role in making the above proof simple. First, the second terms of
the sextics vanish for some particular contours. Second, the residue vanishes if one
of the non-adjacent minors in the first term of the sextic vanishes. We will use these

two simple facts in the general proof, which follows in the next section.

2.3.2 All n proof

Let us first note that one can easily check that the second terms of the sextics vanish
for any BCFW contours. It means that whenever we get a BCFW contour (2.2.3) by
applying GRT, we are sure that our NMHV formula for the amplitude is exactly of
the same form as in ACCK amplitude, namely all the non-adjacent minors cancel

out.
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We can further check that there are no ‘spurious’ solutions, having non-vanishing
contribution, from the connected contour. Spurious solutions are those where the
sextics vanish because individual minors in the expressions for the sextics vanish
(non-spurious solutions are those where the two terms in every sextic are separately
non-zero). We should exclude these solutions simply because the vanishing of any

individual minor of the sextics means that the conic curve is not smooth anymore’.

The way to get BCFW contours from connected prescription is simply to get rid of
all the sextics in the connected contour by applying GRT repeatedly. Let us remind

you that the poles in formula (2.2.15) are

(123)(345)(567)(n — 1 n 1)51 55 ... S, _s. (2.3.11)

Use GRT we have

{5251 e Sn_5} - —({13153 e Sn_5} + {35153 e Sn_5}

+ {55:85~5, 51 + {(n — 1)5155... 5 5})

(2.3.12)
= ({1255 .. S, 5} + {14S5... S\ s} + {3455 .. S5}
+ {32855,"5} + {(n = 1)S16...(n — 2)}),
where {15155 ... 5,5} is the residue of (123) =5, = S3=--- = 5,5 = 0, and etc.

In order to explain why {55155...S,_5} = 0 first notice that {551555s... 5,5} =
{551678...(n—2)}. This is true because on (567) = 0 the second term of S3 vanishes
and hence {5515;3...S5,_5} = {55165, ...5,_5}. Now in addition to (567) = 0, we

also have (678) = 0 which implies that the points 5,6, 7,8 lie on a line and hence

®The same reasoning holds for the validity of identity (3.4.1).
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(578) = 0, resulting in the second term of Sy vanishing. So, we get {55165, ... 5,5} =
{55167S5...5,_5}. We can again apply similar arguments on S; and reduce it to
(789), and this goes on until the last sextic of the residue, which is S,,_5. Now,
{551678...(n — 2)} means that the points 5,6,...,n lie on a straight line, so

(5 n — 1 n) in the numerator vanishes, and hence {5515;...S,_5} = 0.

The equality {(n —1)S5153...5,-5} ={(n—=1)516...(n—2)} in (2.3.12) can also be
explained along the same lines, but starting from the fact that, due to (n —1nl) =0,
Sn—s is replaced by (n —2 n — 1 n). Finally {3255...5,_5} = 0 simply because

(345) = (234) = 0 implies (235) = 0, which is a term in the numerator.

In the following, we will study each term from (2.3.12) individually. In the process,
we will ignore all the vanishing terms without explanation, since the reasons are very

similar.

{(n—1)86...(n—2)} term

By applying GRT again, with the poles

(123)(345)(567)(n — 1 n1)S1(n12)(678)(789)...(n —2n — 1 n),

we get the following non-vanishing residues

—{(n—=1)516...(n—=2)} ={(n—1)16...(n —2)} +{(n—1)36...(n —2)}

+{(n—=1)56...(n—2)}.
(2.3.13)
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Actually these three terms are all the contours of the form {i6...} and i can be 1,3

or 5, and they have the correct signs.

{34S5;5...5,_5} term
Now, in this case the poles are
(123)(345)(567)(n — 1 n1)(234)(456)(n12)S554 . . . Sp_s.

Again using GRT we get

Ay

The second term in the previous equation is a BCFW term and we use GRT again

on the term A; to generate another BCFW term in the next step

{34554 N Sn_5} = — ({345655 Ce Sn_5} +{345(n - 1)8 N (TL - 2)}) (2'3'15)
Az

Similarly, we can keep on using GRT repeatedly on one of the two terms, generated
at each step by using GRT in the previous step. In the final step of this iteration, by
applying GRT we get two terms, {34567...(n —4)(n — 1)} and {34567...(n — 3)}.
So in this way, we generate {347...(n — 1)} +{3458...(n — 1)} + {34569 ... (n —
1)} +---+{34567... (n—3)}, which are all the BCFW contours of the form {34...}.
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{1453 c. Sn,5} term
Now, let us consider the contours of the form {14...}. Here the poles are given as
(123)(345)(567)(n — 1 n1)(234)(456)(n12)S5S, . .. S,_s. (2.3.16)

Using GRT we get the following

—{14S5... Spsy = {14(n — 1)7... (n = 2)} + {14254 ... Sps} + {1458, ... Sl 17)

X1 Bl

Apart from the BCFW term {147...(n — 1)} we also have other non-BCFW terms.
Out of these, we will see that the terms like X; generated at each step will cancel out
later from the same terms generated by {1255....5,_5} in the next subsection. We
can again apply GRT on B;. Now, we can see the pattern of BCFW terms generated
from the B; terms, and here we will not write the non-BCFW terms explicitly at
each step

{1485... S, 5} = {147.. . (n — 1)},

(2.3.18)

In the final step of this series, by applying GRT, we have two terms, {14567 ... (n —
4)(n — 1)} and {145678...(n — 3)}. So by using GRT repeatedly, we get all the
BCFW contours of the type {14 ...}, namely {147...(n — 1)} +{1458... (n — 1)} +
{14569 ... (n — 1)} +--- + {145678...(n — 3)}.
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{1253 c. Sn,5} term

Finally, we look at the remaining contours {12S5;... 5,5} in equation (2.3.12).

Let us apply GRT and we get

{125 Suoln— D) + {1285 Sty O

Cl Dl

We can apply GRT on the term Cy in (2.3.19) again, and we will deal with the term

D later. From C we get

{1285... Sug(n — 1)} = —({126... (n — 4)3(n — 1)} + {126... (n — 4)5(n — 1)}

+{1283... 8, 7(n —2)(n — 1)} +{12S5... S, _+4(n — 1%‘)??'20)

Co E4

We notice that one of the non-BCFW terms, Cj, is a similar kind of term to C}.
Terms which are similar to E; and generated at each step, will combine with other
terms generated from the subsequent steps of applying GRT. The general trend of

BCFW contours generated from the C; terms are

(1255 .. S5} = {1236... (n — 3)} + {1256. .. (n — 3)},
{1285...8,6¢(n—1)} = {1236...(n —4)(n — 1)} + {1256 ... (n —4)(n — 1)},
{1285...8,7(n —=2)(n—1)} = {1236...(n = 5)(n —2)(n — 1)}

+{1256...(n —5)(n —2)(n — 1)},

(2.3.21)
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Note that at each step of the iteration we also generate some non-BCFW terms(not
explicitly written down in the above pattern) which need to be dealt with as before.
The final step in the above series generates the BCFW terms {1238...(n — 1)},
{1258...(n—1)} and {1278...(n —1)}.

By similar methods we can generate the other BCFW contours of the form {12...}
by using non-BCFW terms generated in previous steps. Since all the steps are similar,
here we only give some examples of generating BCFW terms, without showing the

details
{125;3... S, ¢4} = {12347...(n — 3)},
{12554 ... S, ¢4} = {123458 ... (n — 3)},

(2.3.22)
{12565 ... Sp_gd} = {1234569 ... (n — 3)},

Again the last step of this iterative process is special, the BCFW term generated is
{1234...(n—5)}. We will give a few examples of how non-BCFW terms combine to
generate BCFW terms and we choose these particular examples as they give residues

related to the ones in (2.3.22). Firstly

{12(n — 1)Sy ... Sp_gd} + {1255 . S_rd(n — 1)} = {12347 .. (n — 4)(n — 1)},
{12(n — 1)Sy ... Sp_r(n — 2)4} + {1285 ... Sp_sd(n — 2)(n — 1)}

= {12347...(n—5)(n — 2)(n — 1)},

(2.3.23)

The BCFW term generated from the last step of the above series is {12349 ... (n—1)}.
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Next example is

{125(n — 1)Ss. .. Su_ed} + {12(n — 1)Sy. .. Su_y54} = {123458 ... (n — 4)(n — 1)},
{125(n — 1)S5 ... Sp—7(n — 2)4} + {12(n — 1)S4 ... S,_s5(n — 2)4}

= {123458...(n = 5)(n —2)(n — 1)},
(2.3.24)
The last step generates BCFW term {1234510...(n — 1)}. And one more example
will be

{125(n — 1)Ss ... S, 764} + {1256(n — 1)Ss . .. Sn_ed} = {1234569 ... (n — 4)(n — 1)},

= {1234569...(n —5)(n —2)(n — 1)},
(2.3.25)
The BCFW term generated in the last step is {12345611...(n — 1)}.

From the above mentioned examples, we can see the general pattern: the first term
in (2.3.22), {12347...(n — 3)}, combining with all the terms from (2.3.23) generates
all the contours of the form {12347...}; similarly, the second term in (2.3.22),
{123458 ... (n—3)}, and all the terms in (2.3.24) give us all the contours of the form
{123458 ... }; the third term in (2.3.22), {1234569...(n — 3)}, together with all the
terms of (2.3.25) give us all the contours of the form {1234569...}. It is not hard
to see that all the other BCFW terms of the form {1234 ...} can be generated in
a similar way. So we have generated all the contours of the form {12...} and we

notice that they can be grouped into contours of the form, {1236...}, {1256...},
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{1238...}, {1258 ...}, {1278...} and {1234...}.

As we had seen so far, each GRT step also generates terms which have no contribution
to BCFW contours. These terms, typically, look like {124...4,S;,...,S, 5}, but
they just cancel out in pairs at each step. At each of the final steps, we also generate

terms like {124...4,i+4,...,(n — 1)} and {124...(n —4)}, and they also cancel

out.

Let us conclude with our main result

N ! = ! 2.3.26
512 (123)(345)(567)(n — 1 n 1) S1Sy... S5 §é (123)(234) ... (n12)’ (2.3.26)

where contour C' is the connected contour, and B is the BCFW contour. One can

apply GRT again and show that the same equality is true for the P(BCFW) contour.

Since for any BCFW contour the second terms of sextics vanish, so as a byproduct,
we also proved the statement we made before that deforming sextics by some non-zero

parameters still gives us the correct tree amplitude.



Chapter 3

Twistor string theory and
Grassmannian: All tree-level

amplitude

3.1 Introduction

In this chapter, we present a new, explicit formula for all N¢*~2MHYV tree ampli-
tudes in N = 4, generalizing the NMHV results of last chapter. And this compact
formula lacks any recursive-explosion of indices such as was required in the ‘explicit’
formula derived from BCFW in [7]. In section 2 we will present our main formula,
equation (3.2.1), and discuss its smooth deformation to a contour in £, ;. In section

3 we will describe how this formula can be obtained by iteratively ‘adding particles

in a natural way to the first non-trivial tree amplitude, the 6-point NMHV amplitude,

25
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while making sure that soft limits and parity are manifest at every stage. In section
4 we will make a series of transformations to map our formula to that of [23], thereby

deriving it from twistor string connected prescription.
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3.2 All Tree Amplitudes in N = 4 Super Yang-

Mills

We propose that the general, tree-level, planar, color-stripped, n-point N(*=2MHV

amplitude is given by

(k) k
o ® = 55 dC” A 5 (Cau W) (3.2.1)

" Vol GL (n—1)( aqgk)

where the contour % ( ) = ( is the zero-locus of .Z 6\(’“ : Cln=k=2)(k=2) _, C(n—k-2)(k=2)

defined in terms of the (n — k — 2)(k — 2) Veronese maps FY,

F) = f[ (H F7> (3.2.2)

{=k+3

where each F g can be written in terms of the minors of C,, according to

F= (o] t-2-10) (0] €jj+1) (0] j+1j+2(-2) (0] (-1 j+2) .
3.2.3
— (o} jj+1j+2) (o} jv2e20-1) (o} €1 05) (o} jH+16-20),
with o) representing collectively the columns [1, ..., j-1]U [j+(~k, ..., (=3] of Cua,
and where #2*) is the product of all the non-consecutive minors in the first line of

equation (3.2.3); explicitly,

AW = ff(’“)l x (0872 n-1 k=2 k-1)

n—

k=2
X H { (07 n j j+1) (o)t n=3 n—2 n-1 } 11 {(Ui n-1j j4+2)(o? j+1 j42 n—2)} .
j=1 j=1
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Noticing that all the minors appearing in a given map F, j involve the same set of
columns O’Z, and that the rest are organized according to a ‘3 x 3’ Veronese operator,

we may encode the structure of equation (3.2.3) by writing’

J J
F) =0y 20502 0-1 0 j4+1 j+2.

= ([1, oy J-1] U [j+l-k, . .. ,5—3]) DI Se—9 0-1 0 j4+1 j+25

(3.2.4)

where Sypcqe r Tepresents the primitive Veronese operator which, when acting on P2,

tests if the six points a, ..., e lie on a conic,

Savedef = (abe)(cde)(e fa)(bd f)— (bed)(de f)(fab)(cea). (3.2.5)

As will be described below, the structure of the numerators S#*) is dictated entirely

by the proposed duality between equation (3.2.1) and a related expression in £, .

Following the theme of [0, 10], let us introduce a deformation parameter t% for each
map F/,
Ft)= (o] t=26-10) (0] €5 j+1) (0] j+1j+20-2) (o] (-1 j+2)

—t) (o] 5 j+15+2) (of j+2 6-20-1) (of =1 05) (o j+10-2¢).

(3.2.6)

Then the integral o7*) (tZ), with all F] ej in (3.2.1) replaced by F] ej (tg), will map precisely
to the one appearing for £, ; in limit of ti — 0 for all ¢, 7. This is because, together
with the three minors manifest in equation (3.2.1) (namely, (n — 1), (1), and (3))

the factors which constitute .Z® (¢}) when ¢} — 0 will contribute exactly one copy

! This simplified notation can be justified by observing that only 6 of the k + 3 columns which
are relevant to a given Veronese operator Fj change from one term to another.
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of each of the consecutive minors present in the measure of the integral £, :

FE = (Flay+ Fi3) (B Bt ) (Bl Bi2) o (B Bi22) (B2 RS2)

U U U U U
(2),(4) () (6) (n—k) (n—=k+1),...,(n=2),(n)

And since ¥ is composed of all the non-consecutive minors present in the first

factors of each F}, we have that

lim ( %ﬁ(k) ) = 1 1
do\(n - D)()E) Z0) G- D) @) D) (=3 —2) ()
(3.2.7)

making the connection between the twistor string and £,, , manifest.

We strongly suspect that formula (3.2.1) is unchanged by any of the deformations
introduced by the parameters tz in (3.2.6). For NMHV amplitudes, té—independenee
has been rigorously proven by a direct application of the global residue theorem,
[10, 9], and we suspect that similar arguments can be used to prove tﬂ!—independence
more generally. We have checked this numerically for several nontrivial N?2MHV
amplitudes, including the alternating-helicity amplitude for eight gluons, but we

leave the question of proving complete tg-independence to future researches.

Let us end this section by presenting explicitly the ti — 0 limit of the deformed
twistor-string contour (3.2.1), illustrating some of the key differences between the
two formulations. When t? — 0, each Veronese operator factorizes into the product
of the four minors listed in the first line of (3.2.6). In general, all but n — 3 of these
factors will be non-consecutive, and therefore are included among the factors of the
numerator %), Although it is generally ill-advised to ‘cancel terms’ between the

contour-defining maps defining .%* and the numerator, there is a good physical
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reason for suspecting that the ‘fourth’ minors of each of the FJ(t, — 0)—which
are never consecutive—contribute no non-vanishing residues to the contour.? As
described in [30, 10], CSW operators, when translated into the Grassmannian, are
constructed from products of three minors. Although beyond the scope of the
present discussion, ensuring that each pole of the integrand is composed of three-
minor operators helps one to connect the CSW, or ‘disconnected’, support of tree
amplitudes to the ‘connected’ support of the twistor string through a series of global
residue theorems. At any rate, there is now enough direct evidence that general
tree-contours are entirely supported on the vanishing first three factors of each F;] @J
when tz — 0 to justify the simplification to a ‘3-minor’ form of each map in the

contour.

Taking each ) — 0, the twistor-string contour «Z® (t/) becomes,

. 1 dCpq HW k
E{n(k) t] —‘——>~A£Lk) = T i~T % — - 54'4 CaaWa )
(t2) -0 vol[GL(k)] e (n—1)(1)(3) FP al;[1 ( )
F) =0

(3.2.8)

where

n k=2 ' '
g = [ [T /7] with f]=ojpa((=26=10) (€ j+1) (j+1 j+2 £-2),
t=k+3 \j=1
(3.2.9)

with o7 as before, and where

%(k)
s T17 (0 £-1 5 j42)

FH(F)

n

(3.2.10)

2The reason why naive cancellation of factors between A% and those in FM (ti — 0) can
be misleading is described with several examples in [10]; for example, even the poles supported
by purely non-consecutive minors of the F}’s can have the interpretation of being supported by
consecutive minors, and thereby contributing a residue to the contour.
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which, as before, represents the product of all non-consecutive minors among the

maps fg :
Alternatively, we could have started with formula (3.2.8) for A® and obtained
formula (3.2.1) for «/* by “adding a missing minor" to each map of f according to

f=ox(abe)(cde)(e fa)
(3.2.11)

= F=o0x|(abc)(cde)(e fa)bd f)— (bed)(de f)(fab)(cea)],

in order to supply a simple geometric meaning to the contour—the maps F’s having

the natural interpretation of testing the localization of points in P*~1.

Both formulae give all tree-level amplitudes in N = 4 super Yang-Mills in terms of a
specific contour integral. The first one, equation (3.2.1), naturally arises from twistor
string theory, and its contour .Z¥) = 0 has a nice geometric meaning: it is the
constraint for n points to lie on a degree-(k — 1) curve in twistor space. On the other
hand, the formula (3.2.8) provides the integration contour for Grassmannian £,, ,

and thereby ensures that each contribution is itself manifestly Yangian invariant.

3.3 Building the General Contour, one Particle at

a Time

In this section we describe how the general contour for any tree amplitude (3.2.1) can
be obtained by sequentially extending the contour of the first non-trivial amplitude,
the 6-point NMHV amplitude, by adding one particle at a time. Before doing so,

however, it will be useful to briefly discuss some of the generally-desirable features
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that any such contour-prescription should have.

Let us consider what would be necessary to extend a formula valid for £, to
one valid for £, ; while keeping £ fixed. Recall that the integral £, ;’s measure is
given by the product of the n consecutive k& x k minors of C,,. The n'" particle,
being represented by the n'® column of C,, participates in k of these consecutive
minors; and these k£ minors, taken together, span a range of min(n, 2k — 1) columns
of Cy4. This suggests that, fixing k, only for n > 2k — 1 will a tree contour be
sufficiently general to have a natural extension to all n. Conveniently however,
the n = (2k — 1)-point N*2MHV amplitude, W’n@%fl, is nothing but the parity-
conjugate of the n-point N¥-3MHV amplitude, dn(i;;)—p allowing it to be uniquely
related to a contour with strictly lower-k. And so we should not be too surprised
that it is possible to ‘bootstrap’ a formula valid for any fixed k to one valid for all k,

using parity when n = 2k — 1 as the bridge which connects each k to k + 1.

Just as there are several equally-valid formulae for the general NMHV tree contour
(see, e.g. [10, 23,9, 22]), there are several ways of writing the general N*=2)MHV
tree contour. The one that we derive here is obtained by starting with the particular
NMHYV tree contour given in [10] and extending it in such a way that the general
contour prescription is invariant under parity for all n, k. As we will see, these criteria
lead uniquely to the contour given here which defines our general result given in

equation (3.2.1).

3We have also found other parity-symmetric contour prescriptions by starting from each of the
different forms of the NMHYV tree amplitude. We have checked that each of these extensions to
all n, k is unique and that each leads to correct formulae for general tree amplitudes. In addition,
there are further possibilities if one foregoes the connection between £, ; and the twistor string,
but these will not be considered here.
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3.3.1 NMHYV amplitudes

Let us begin with the simplest amplitude which requires a non-trivial contour to
be specified. The 6-point NMHV amplitude’s contour is essentially unique up to a

global residue theorem, and can be written [10, 23, 8, 9, 22],

@_ 1 AP 3
% a VOl[GL(B)]y(f?Caa(5)(1)(3) yéi%) al;Ilé (Caawa>7 (331)
where
F ={(4)(6)(2)(135) — (561)(123)(345)(624)} — Syis6123
(3.3.2)
and Y = (135)

(Here, we have chosen to de-emphasize the minors which do not appear in the
analogous expressions for £, by colouring them grey, and we have chosen to
highlight each of the consecutive minors which participate in the contour by colouring
them red. This highlighting will be useful when we consider amplitudes involving

more particles and with & > 3.)

As demonstrated in [10], this contour can be extended to all NMHV amplitudes in

the following way,

@_ 1 Iise [(120)(23 -1)] T [(134-1)] 2 "
D Vol[GL(B)]y(zg_;lCO‘“ (n— 1)(1)(3) 70 }15 (CoaWa),
n (3.3.3)
where

n

Fk) = f[ [(f—z (=1 0)(£12)(230-2)((-113) — ({-1 £ 1)(123)(3 (=2 (=1)(¢ 2 é—l)} = f[ Se_oe 10123
=6
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Notice that the only operator that involves particle n is the last, Fg:;, and this
operator includes in general all but one of the consecutive minors which involve
column n—namely, all but minor (n —1). Indeed, each F} can be seen as an operator

which adds particle ¢ to the (¢ — 1)-point contour.

Consider for example the contour for n =7,

go_ { F= @) (612 () (613) = (561)123)(345)(624) =Siserns |
T A=) (M) (85613 - (6TD123)B56)(725) = Sherizs )
(3.3.4)

By recognizing that ,%(3) is nothing but the parity-conjugate of %(4), we may use this

contour to directly obtain the contour of the first non-trivial N2MHV tree-amplitude.

3.3.2 N’MHV Amplitudes

As mentioned above, because the parity-conjugate® of the 7-point NMHV amplitude
is the 7-point N2MHYV amplitude, we may use the general NMHV contour to obtain

our first non-trivial contour for k = 4,

— Fl= (4) (4712) (2) (4613) — (4123)(4356)(4671)(4268)
F2= (5) (7) (1345)(1624) — (1234)(1456)(1672)(1357)

From here, there are several ways in which the above contour can be extended to

4Here, we should point out that we are using a definition of ‘parity’ that both exchanges the
column-labels of each minor with their complements, and maps each column j — (n + 1) — j. This
appears to be the most natural definition of parity in the Grassmannian.

= [4] > S567123

= [1] > S567234
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one for all n. For example, one could make the identification made in [10], that

F71’2 _ [4] > 5567123 . Fel’2 N [g—S] > Sg,g /—1/¢123 . (335)

[1] > S567234 (1] Sp2010230-3
However, this extension of the 7-point N2MHV amplitude leads to a form of the
8-point N2MHYV contour which is not manifestly self-conjugate under parity, and
which therefore unnecessarily obfuscates the extension to all N*=2MHV amplitudes.’
We suggest that the following extension is more natural,

F71’2 _ [4] > S567123 . F€1’2 - [(=3] <1 Sy 2010123  (336)

[1]NS567234 [1]D<]S£72871£234

Notice that the only difference between the contour prescriptions in (3.3.5) and (3.3.6)
is that the former associates Ssg7234 With Sy_oy_1¢23,—3 while the latter associates

Ss67234 With Se_9s_1/234.

Using this prescription, we find that the 8-point N2MHV may be written,

1 dChq Y 24
A = 515 aa 778 S (ChaW,), (3.3.7)
® vol[GL(4)] (7)(1)(3) FY agl
FH=0
®That being said, we have every reason to suspect the formula given in [10] is in fact just as

correct as the one we present here.
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where ﬁ8(4) — F}F2 . F}F? with the F/ given explicitly by®

Fl= (4) (4712) (2) (4613) — (4123)(4356)(4671)(4268) =[4]< S567123

) { F2= (1567)(1237)(1345)(1624) — (1234)(1456)(1672)(1357) = [1] = Ss67234
Fl= (5) (5812)(5623)(5713) — (5123)(5367)(5781)(5268) =[5 Ss78123

{ F2= (6) (8) (1346)(1724) — (1234)(1467)(1782)(1368) =[1]xSs78234

(3.3.8)

and %(4) is the product of all non-consective minors of the first factors of the FJ’s,

ALY = (4712)(1567)(1237)(1345)(5812)(5623)(1346)
(3.3.9)

x (4613)(1624)(5713)(1724).

It is not hard to see that this contour is manifestly parity self-conjugate. (We should
point out that this contour differs from the one given in [10] by only single minor
appearing in FZ; however, this minor difference turns out to leave essentially all the
geometry problems described in [10] unchanged, and so the contour (3.3.8) leads to
precisely the same sum of twenty residues described in [10], and therefore reproduces

the correct 8-point N*MHYV tree amplitude for all helicity configurations.)

As a further test of the validity of our contour prescription, let us briefly mention the

tree-amplitude obtained for the 9-point N2MHV amplitude. As above, we may write,

OR— 95 dCoa A"
(

51 (
vllGLA]_J (1)@ 2" i 110" (CaatVe), (3.3.10)

SHere, we have highlighted each of the primary ‘consecutive subparts’ of each of the minors in
the contour by colouring them blue. These tend to be the most important minors when computing
a tree amplitude as a series of ‘geometry problems’ as described in [10].
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where ﬁ&) = F}F2 . F}F? - F}F2 with each FJ given explicitly by,

{F7: (4) (4712) (2) (4613) — (4671)(4123)(4356)(4725) :[4]»«5567123}

F2= (1567)(1237)(1345)(1246) — (1672)(1234)(1456)(1735) =[1]Ss67234

9 _ { Fl= (5 (5812)(5623)(5713) — (5781)(5123)(5367)(5826) = [5]d Se7s123 } |
F2= (1678)(1238)(1346)(1247) — (1782)(1234)(1467)(1836) =[1]<Ss78234
Fl= (6) (6912)(6723)(6813) — (6891)(6123)(6378)(6927) = [6]d S7s9123
{ng (7) (9) (1347)(1824) — (1892)(1234)(1478)(1937) :[1]m5789234}

(3.3.11)

Deforming this contour from the twistor string to Lg4 by sending each ti — 0—
removing all the contributions shown in coloured grey in (3.3.11)—the problem of
computing the tree-amplitude reduces to a series of ‘geometry problems—finding
the localization in the Grassmannian induced by requiring that each of the six maps
fg vanish, and determining which of these configurations are supported entirely by

the vanishing of consecutive minors.” The six maps fg are given explicitly by,

340 _ {f%z (4) (4712) (2) }U {féz (5) (5812)(5623) }U {fglz (6)(6912)(6

f2= (1567)(1237)(1345) f2= (1678)(1238)(1346) 2= (M 9
(3.3.12)

We have found that there are precisely 50 non-vanishing, consecutively-supported
residues along the contour (3.3.11) and that these residues perfectly reproduce the

fully-supersymmetric 9-point N2MHYV tree amplitude.

These 50 residues, together with the ‘geometry problems’ giving rise to each, are
collected in appendix .1, where we have followed the conventions of [10] for the

naming of each residue according to its localization in Cl,,.

7Any configuration along the contour not entirely supported by consecutive minors will have

4
vanishing residue because of the non-consecutive minors which constitute U-C( )



38

3.3.3 N°MHV Amplitudes and Beyond

As was the case for the 7-point amplitude, the parity conjugate of the 9-point N2NHV
amplitude represents the first sufficiently-general N3MHV amplitude from which we
may ‘bootstrap’ the general N3MHYV result. We will see that by requiring the 9-point
N3MHYV amplitude to be iteratively-related to the 8-point N*MHV amplitude—itself
obtained as the parity-conjugate of the 8-point NMHV amplitude—will uniquely fix

the structure of the ansatz for all further amplitudes in N = 4 super Yang-Mills.

Taking the parity-conjugate of the 9-point k = 4 contour (3.3.11), we find,

Fglz [45] > 8678123 F91: [56] > S789123
yg(@ = y9(4) = F82 = [1 5] > 3678234 U F92 = [1 6] > 8789234 : <3313)
F83 = [1 2] > Se78345 Fg3 = [1 2] > S789345

Notice that only the last three F}’s—those of the second set above—involve column
9. Moreover, all of the F; g ’s for £ = 8 involve column 8. Therefore, the requirement
that the 9-point N*MHYV contour is the extension of the 8-point N*MHYV contour,
uniquely fixes the ¢-dependence of the maps Fg . With this, it is not hard to see that

the general solution for all N3MHV amplitudes must be given by

Ff = [(=44=3]>a S 9010123
Z2 =11 (Fg.Fg.Ff), with § F? = [14-3]>0Sr9p 10254 (- (3:3.14)

(=8
Fzgz 12]>aS2¢-1¢345

As one further, concrete illustration of this prescription for the tree-amplitude contour,

let us briefly consider the 10-point N®MHV amplitude,
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&%O__wﬂGLﬁﬂ

-0

S (CL W), 3.3.15
)(1)(3) all ( ) ( )

(5) 1 % dCa a ‘%(5) >
(9

where Z\) = FIF2F3 - FLF2FS - F,F2 F3 and with cach FJ given by

Fl= (4 (45812) (2) (45713) — (45123)(45367)(45781)(45268)
F2= (15678)(12358)(13456)(15724) — (15234)(15467)(15782)(15368)
F}= (12678)(12348)(12456)(12735) —  (12345)(12567)(12783)(12468)
Fl= (50 (56912)(23567)(56813) — (56123)(56378)(56891)(56279)
F =  F2= (16789)(12369)(13467)(16824) —  (16234)(16478)(16892)(16379)
F}= (12789)(12349)(12457)(12835) —  (12345)(12578)(12893)(12479)
Fly= (6) (671012)(23678)(67913) — (67123)(67389)(679101)(672810)
Fi= (7) (710123)(13478)(17924) — (17234)(17489)(179102)(173810)
Fi= (8 (10) (12458)(12935) — (12345)(12589)(129103)(124810)

where again %”15)5) can be simply read-off from F;] gj ’s:

A = (45812)(15678)(15823)(15346)(12678)(12834)(12456)
x (56912)(56237)(16789)(16923)(16347)(12789)(12934)
x (12457)(671012)(67238)(171023)(17348)(12458)

X (45713)(15724)(12735)(56813)(16824)(12835)(67913)(17924)(12935).

Finally F’s can be written in a compact way,

F81 = [45] > 5678 123, F82 = []_ 5] > 5678 234, Fg’ = [1 2] > 5678 345 (3316)
Fgl = [56] > 5789 123, F92 = [1 6] > S789 234, ng = [1 2] > 8789 345 (3317)

Fly =167 Ss8910123, F% = [17] > Sg910234, Fiy = [12] > Sg910345(3.3.18)
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Although it would require more space than warranted by an appendix, we have
explicitly verified that the contour above includes 175 non-vanishing residues which

precisely matches the general, 10-point N3MHV amplitude.

Continuing in this manner, we arrive at the general formula (3.2.1),

1 dCpo P b
%n(k) = AT % o S 54'4 Caawa )
vol[GL(k)] (n—1)(1)(3) FP gl ( )
7 =6
where FF) = (FlL - FF2) - (Fly, - Ffh - (FL- - FF?) with each F} given
by

Fg = O'g X Sg_g 0—103 j+1 j+2- (3319)
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3.3.4 General Properties of the Result
Parity

One of the important features of the general contour obtained in the previous
subsections is that it is manifestly parity-symmetric. By this, we mean that the
parity-conjugate of a given amplitude’s contour is the contour for the parity-conjugate
amplitude. For example, for all n = 2k, the contour given by %ﬁ@zk is manifestly

parity self-conjugate.

To see how this works more generally, consider the role played by each of the n
columns of the Grassmannian C,, in the definition of the Veronese map F} = o7 4

Se—20-1¢jj+15+2- In general, the n columns break into six contiguous groups,

es es
12 -+ 5=1] [j j+1 j+2] [7+3 -+ j+(k=0)-1] [j+(k=€) --- €3] [(=2 ¢-1¢] [(+1 --- n],
€o; GO"[{

where the columns of C,, which do not participate at all in Fg have been coloured
grey to emphasize the ‘gaps’ in the roles played by various columns. Importantly,
parity does not change the ‘contiguousness’ of these six groups, or the roles they
played by the six columns of the primative Veronese map Sy_2¢—1¢;j+1+2 (coloured
red above); parity merely changes the labels we assign each column, and exchanges
the k — 6 columns involved in all the minors of FJ—those of o}, coloured blue

above—with the n — k — 6 columns involved in none of the minors of FJ—those
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coloured grey above. That is,

L - j-] (n—j+2 -+ n]
[ J+1 j+2] [n—j—1 n—j n—j+1]
[G+3 - jH(k=0)-1] parity [n+l—j—k - - - n—j=2]
[+(k=0) - £-3] hirayns 44 -+ k1]
(=2 (-1 /] [n—l+1 n—0+2 n—{+3]
[(+1 -+ n] 1 - n-f]
(3.3.20)
This shows that,

F - B = ) = F (3:3.21)

i—(n+1)—3
so that

n k—2 . n k-2 k'—2 n k'—2 ,
so- 1 (M) 2o s = 11 () - T0( 10 w) - 01 ()
=k+3 \j=1 lﬁ;’éi})’?l ji=1 \=k'+3 v=k'43 \j=1

(3.3.22)

where k' = (n — k), which is that which it was required to demonstrate.

Manifest Soft-Limits and the Particle Interpretation

As we have seen, the contour integral giving the n — 1-particle N*=2MHYV scattering
amplitude, is related to that giving the n-particle N¢*=2MHYV scattering amplitude

by a single overall factor which relates J#*) to %” 1, together with a partial contour
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specification,

w__ L A
n vol[GL(K)] 3£ dCa“<n_1)(1)(3) Z ")

FM =5
1 <%ﬂ(/’f) AL %(k)
= yg dC, ~——""1 % }5 dcC.,, w5 :
vol[GL ()] (1)B3) 2P (n—1) Fi-F-- Fi2
7MW =5 " Fl=0
n—1 .
F,’f*:2:0
(3.3.23)
where @ = 1,...,n — 1 and the ratio s£*)/ ,%fﬁ)l was given explicitly after equation

(3.2.3) in section 2. This separation of the integral is warranted because only the
maps F1, ..., F*=2 involve the variables of the n'"" column of C,,. We can anticipate
which contour should be specified for these £ — 2 variables to extract the soft-limit
by considering the duality between the geometry of the columns of C,,, viewed as
points in P*~! and Z-twistor-space geometry [10]. In twistor space, the soft-limit is
achieved when the three twistors Z,,_1, Z,, and Z; become (projectively) collinear,
and so we can extract the soft limit from .27*) by choosing a contour for which the
column-vectors Cy,_1, Con, and Cy1 become linearly-dependent. This fixes exactly

(k — 2) variables of integration, and so should completely specify the integral factor

in (3.3.23) relating .&* to AR

Recalling the definition of the maps F!, F? ... FF¥=1 it is easy to see that when
the columns n — 1,7n,1 become linearly-dependent, F2, ..., Ff=2 all vanish, while
F! factorizes into simply the product of four minors. Importantly, notice that

AR %”n(f)l, and all the factors of ﬁ,(ﬁ)l are regular in this limit. Because of this,

we can apply the global residue theorem in (3.3.23) to trade F)! for the minor
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(n — 1)—which does vanish in this limit.

This allows us to view the contour integral for the twistor string entirely in £,, , and
refer to some well-known facts [10] relating residues in £, to those of £,_1 to see
how the soft-factor arises. It turns out that the contour which sets three consecutive
columns of the Grassmannian to be linearly dependent is particularly nice, and is
nothing but a holomorphic inverse soft-factor times the ratio of the k consecutive
minors containing n to the £ — 1 minors which were consecutive only prior to ‘adding
particle n’ to G(k,n — 1). Recall that this ratio of minors is explicitly built-into the
definition of %)

3.4 Transformation to the Twistor String in Link

Variables

In this section we demonstrate the equivalence of the twistor string amplitude [21]
(when expressed in link variables as in [22, 23]) to our main formula (3.2.1) above.
This is accomplished via repeated application of the identity transformation

(jkt)(irt)

O (Sijrst)0 (Sijhrsu) ~ (jks)(irs)

O(Sijhrst)0(Sijkrin); (3.4.1)

here, ~ is used to indicate that the replacement may be made at the level of the
integrand only strictly for physical configurations along the contour of integration.
This transformation has played an important role in the analysis of [9], [31]. Note
that this relation indicates a specific change in the contour prescription: the §(S;jkrsu)

on the left-hand side may localize the integral on fewer (or more) poles than the
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d(Sijkrtn) on the right, in which case the extra (or missing) poles on the right-hand
side are provided by zeros the minors in the denominator (or cancelled by zeros of

the minors in the numerator).

In the next two subsections we first focus on following the transformation of the
§(F})’s from equation (3.2.1) to the formula (4.12) in [23]. We then collect all the
pre-factors which pile-up along the way and demonstrate precise agreement with
[23]. Tt is very easy to check the agreement between our formula and that of [23]
for NMHYV using [9]. We may proceed by induction at step n, beginning with the

assumption that equation (3.2.1) agrees with [23] for the (n—1)-point amplitudes.

3.4.1 Transforming the §(F})’s

Let us first transform the 6(F})’s from equation (3.2.1) to the corresponding ones

in [23]. Because we will use induction, we only need to consider F? and for the
simplicity we will denote it as F}j. In order to compare with the formula in [23] we must
first change the common piece in Fj, namely o? = [1,...,j-1]U[j+n—k,...,n=3] in

(3.2.4), into a subset of the columns [1,2,...,k].*® In this sense F} is the ‘worst’ of the
F’s and Fj_5 is the ‘best’, so the strategy will be to first make all transformations
on Fi, then to make all transformations on Fj, and continue in the same way (as
far as possible) until Fj_3. In this way we gradually transform all of the original
d(F;)'s into ‘real sextics’ (objects which are indeed sextics in a certain gauge). In

the following we show a first few steps and then move on to the final conclusion.

8The meaning of this will become clear by looking at the final result, equation (3.4.11).
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o Let us first show how to transform F to FY,

Fi=n—k+1---n—=3523n2n1n

(3.4.2)
—>F1//: [n—k—l—Q n—32]><5134n_2n_1n.
Step one is to use the identity
S(F)S(Fy) ~ JiV6(F)S(F), (343)

where the sextics and the Jacobian are

Fy=n—k+2 - n—31>553n k1 n—2n-1n

Fl=n—k+2 - n—32>513n k1 n-2n1n
n123)(n—2n—-112)

m13n—k+1)n—2n—11n—kKk+1)
(3.4.4)

JV =n—k+2 - n—3x

This identity follows from (3.4.1) by setting a particular gauge, namely to use GL(k)
symmetry to set k columns [1,2,3,n—k+1,--- ;n—3] of k xn matrix (Cy,) to be an
identity square matrix, and we will denote the gauge as {1,2,3,n—k+1,--- ;n—3}.
Note that we also transformed Fj into F} which generated a Jacobian J which will

end up canceling, so we will not write it explicitly.

Next we further transform F| by using

S(EDS(FM V) o JOS(FD)S(FY), (3.4.5)
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where

Fl(n_l) :[n_k+2 n_32]l>q813n—k+1n—2n—1 4,

F{/:[n—kj+2 n—32][>48134n—2n—1n7
(n—14j)(3n—24)

m—1n—k+1j)Bn—-2n—k+1)
(3.4.6)

T2 =n—k+2 - n—37]

with j =1 and 7 = 2. Note that in carrying out this transformation we have made
use of the constrain (Fl(nfl)) which can be obtained by transforming F’_, of the

(n — 1)-point amplitudes.
The third step is to transform Fj back to Fb, which generates a Jacobian J!.

To summarize the construction so far, we have shown how to transform the original
F into a “better" quantity F}’ at the cost of inserting the Jacobain factor Jl(l)Jl(f)

into the integrand.

e Next we would like to similarly process F, with F{'. By applying (3.4.1) for the

new F]" and the old F;

Fl”z[n—/{?-i‘z n—32][><]8134n—2’n—1n7

(3.4.7)
Fro=n—k+2 -+ n—31>534n2n1n,
we get the new quantities
F'"=n—k+3 - n—323]85145n2n1n,
(3.4.8)

Fé’lz[n—k"f‘?) n—313][>45245n—2n—1n-
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The Jacobians generated from this step are
I3 J5) 5 a5, (3.4.9)

where

n1234)(n—2n-1123)
ml24n—k+2)(n—2n-112n—-k+2)’

(n—=154)4n—-25)
m—1n—k+2j)dn—-2n—k+2)

JV=n—k+3 - n—3x

Jz(f):[n—k’+3 e n—37]

(3.4.10)
with j =1,2and T = (2,3), 2 = (1, 3).

e We proceed by transforming the original Fj together with the new F}”, Fy’ into
three new quantities FJ"’, Fy", F¥". We continue in this manner until we reach F} .
In each step we will always make two-type transformations like the ones described

above. At the end of the day, we have new quantities

Fy=[1,2,- 7, k=2 S} k-1 k n-2 n—1 n, (3.4.11)

where 1 < 57 < k—2. The Jacobians generated during the whole process are products

of

12 (42)(n2n-11 --- (+1)
nl - 0l2n-k+0)(n2n-11 --- £ n-k+L)’
@ _ 1o m37 (n—l (+3 j)(€+2 n—2 €+3)
Ti7 = In-kt n=3 j] e (n=1 n—k+{ j)(0+2 n-2 n—k-+()’

Jl(l) = [n—k+{+1 --- n=3] <

(3.4.12)

Where}E(LZ’?ju7£+1>71§€§k_3and1§j§£

Finally let us choose a gauge {1,2,3,---,k}, in which case F; =S} p-1 k n—2 n—1 n
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may be found in (3.4.11). Thus we have mapped our FJ’s to the sextics in [23], and

all we are left to compare is the corresponding prefactor.

3.4.2 Collecting Prefactors

Let us now verify that performing the above procedure on our formula (3.2.1)leads to
precisely the same prefactor inside the integral as in [23]. We only need to compare
the ratio between n-point amplitude and (n — 1)-point amplitude which for our
formula (3.2.1) reads

%(k) 1 k—1

— [H(n—kﬂ---n—ll---j)

4, =Zn
P ) (n-1nl - k-2)t3

X (n=k+j - n=3n1 - j+1)(n=k+j -+ n=21 -+ j=1 j+1 j+2)

X (n—k+i -+ n=3n-11 - jj+2)]
(3.4.13)

The corresponding ratio in twistor string is given by the formula (4.12) of [23] .
Taking into account all the Jacobians from the transformations described in the
previous subsection, we find the ratio of our formula (3.2.1) to that in [23] is pricisely

equal to one. This completes the proof.



Chapter 4

Five point three-loop amplitude in

N=4SYM

4.1 Introduction

Much of the recent-year interest in multi-loop scattering amplitudes has been stim-
ulated by the ABDK/BDS ansatz [1 1, 12] which suggested that multi-loop MHV
amplitudes satisty a powerful iteration relation implying a simple exponential form
for the full all-loop amplitude. Now, it is well known that the ansatz is incomplete

starting from the two-loop six-particle amplitude [15, 16, 17, 18].

In this chapter we study the three-loop BDS ansatz

MO (e) + =(MD () — MO () MP(e) — fO (MO (3e) = C® + O(e)  (4.1.1)

20
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where C®) is a previously undetermined numerical constant. In sections II and
IIT we use the leading singularity method [32] to determine the (four-dimensional

cut-constructible part of the) 3-loop 5-particle amplitude M5(3)

in terms of a simple
basis of integrals. In section IV we then numerically evaluate enough pieces of these
amplitudes (the pieces called ‘obstructions’ in [33, 34]) to determine C® = 17.8241.
Although current developments strongly suggest that the quantity appearing on the
right-hand side of (4.1.1) will in general be non-constant (but still dual conformally
invariant) for n > 5, there is some utility in knowing the precise number C® =

17.8241 since for any n, whatever appears on the right-hand side of (4.1.1) must

approach this same number in any collinear limit.

4.2 QOutline of the Calculation

Our goal is to find a compact expression for the planar 3-loop 5-particle amplitude
in N =4 SYM as a linear combination of some basic integrals. Several powerful and

related techniques for carrying out calculations such as these include unitarity based

methods [1, 35, 36, 37, 38, 39, 40] and more recently, building on [11, 12], maximal
cuts [13] and the leading singularity method [32]. For the present calculation we
find it convenient to use the leading singularity method (see also [14, 45]) since it

allows for all integral coefficients to be determined analytically by solving simple
linear equations. In this section we provide a detailed outline of the steps involved

in setting up the calculation.
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4.2.1 Review of the Leading Singularity Method

Suppose we are interested in calculating some L-loop scattering amplitude A. On
the one hand, the amplitude may of course be represented as a sum over Feynman

diagrams F},
Z/HCM Fy(k,0), (4.2.1)

where k are external momenta and ¢, are the loop momenta. However it is frequently
the case, especially in theories as rich as N = 4 SYM, that directly calculating
the sum over Feynman diagrams would be impractical. Rather the calculation
proceeds by expressing A as a linear combination of relatively simple integrals in

some appropriate basis {;},

Ak) =Y ai(k) f[ d, I;(k,0), (4.2.2)

% a=1
and then determining the coefficients ¢; by other means.

With the leading singularity method we equate (4.2.1) and (4.2.2) and perform the

integral

ch-(k)/d%[i(k,f) = /d‘% ZFj(k,e) (4.2.3)

7 T r
over contours I' € C** other than the real /-axis. At L loops each contour is a T*F
inside C*~'. For each contour I we obtain one linear equation on the coefficients c;.
Of course if I" is a random contour then we would generally get the useless equation
0 = 0, so we should choose contours such that the integral on the right-hand side
of (4.2.3) evaluates the residue on the isolated singularities of Feynman diagrams,

which are associated with the locus where internal propagators become on-shell.
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Since the number of isolated singularities in a generic L-loop diagram can be as high
as 2L (simple diagrams can have fewer isolated singularities), the leading singularity
method gives rise to an exponentially large (in L) number of linear equations for the
coefficients ¢;. We note that the homogeneous part of these linear equations (the
left-hand side of (4.2.3)) depends only on the set of integrals {I;} and the choice
of contours, while the details of which particular helicity configuration is under

consideration enters only into the inhomogeneous terms on the right-hand side.

4.2.2 Integration Strategy: Collapse and Expand

Here we briefly review from [12, 43, 44, 32, 15] the integration rules which make it
simple to evaluate the contour integrals appearing in (4.2.3) in the cases relevant to
the present calculation. Let us focus on a box with loop momentum p and external
momenta k;. The box may be sitting inside a higher-loop diagram, in which case
the k; may involve other loop momenta. The sum over Feynman diagrams contains

poles at the locus

S={peC':p’=0, (p—k1)*=0, (p—ki2)*=0,(p+k)*>=0}, (424)

which, for generic k;, consists of two distinct points. To each of these points there is
an associated contour I', such that integrating p over I', calculates the residue at

the associated point.

The residue of a one-loop amplitude at one of these poles is computed by removing
the four internal propagators and evaluating the product of on-shell tree amplitudes

at the four corners (summed over all helicities of internal states). In the simplest
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application, when all four k; satisfy k? = 0, this product evaluates on either contour
I', to a four-particle tree amplitude, leading to the ‘collapse rule’ graphically depicted

as i i
2 3 . s

/F d*p — : (4.2.5)

p kA ka
kA ka

The figure on the left indicates the sum over that subset of all one-loop Feynman
diagrams in which all four of the indicated propagators are present. Of course it
may as well be the sum over all one-loop Feynman diagrams since those that do not

contain all four of the indicated propagators contribute zero to the residue.

When one of the k? is non-zero, the result (4.2.5) holds on only one of the two
I', contours, while the integral over the other contour gives zero. Given a helicity
assignment for the external particles it is a simple matter to determine which of the

two solutions leads to the non-zero result.

It is frequently the case that after collapsing a box in some loop momentum p there
are less than four exposed propagators in some other loop momentum, which would
apparently indicate a codimension 1 singularity rather than an isolated singularity.

In this case one can use the ‘expand rule’

ko ks ks kg

- + terms non-singular at (k; 4 ky)* = 0

ki ke o M Fa
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ko ks

— + terms non-singular at (ks + ]{73)2 =0

kA ka4

to expose additional propagators inside a tree amplitude. The choice of how to expand
is correlated with the choice of integration contour for the next loop momentum.
In the example shown here, the terms isolated on the first line are those which
survive a contour integration around the singularity at (k; + ko)? = 0 while the
second expansion displays those terms isolated by a contour integration around the

singularity at (ks + k3)? = 0.

These two simple rules are sufficient for evaluating all contour integrals appearing on
the right-hand side of (4.2.3) in this paper. Finally, scalar integrals appearing on the

left-hand side are integrated via the simple rule

1 1
d4 — , 426
/rp P —k)2(p— koo + ka)2 (ki + k2)2(ks + )2 (4:2:6)

which is valid as long as at least three of the k; satisfy k? = 0 (we will not encounter
any other cases in the present calculation). We have chosen a simple normalization
factor of 1 on the right-hand side of (4.2.6); this will be adjusted below in (4.3.3) to

match standard conventions for normalizing amplitudes.



Figure 4.1: The planar 3-loop 5-particle topologies associated to leading singularities.
Each figure represents a sum over that subset of Feynman diagrams in which all of
the indicated propagators are present. We label the external momenta clockwise
with k; at the leg indicated with the arrow.
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4.2.3 Choosing a Sufficient Set of Contours

In order to proceed systematically we begin by enumerating all planar 3-loop 5-
particle topologies which are free of tadpoles, bubbles, and triangles, since such
diagrams are unnecessary due to N = 4 supersymmetry (see [17] for a thorough
discussion). This leaves 17 topologies, of which 5 do not have any associated leading
singularities and are therefore of no interest to us. The remaining 12 topologies are

shown in Fig. 4.1.

Each topology in Fig. 4.1 has several distinct associated leading singularities, each
of which gives rise to an equation via (4.2.3). The information contained in this
collection of equations is highly redundant—the equations obtained from only a small
subset of the leading singularities are sufficient to determine all coefficients, while
the remaining equations serve as consistency checks. We now present a few details
explaining how to extract a set of equations sufficient for determining all coefficients.
We have verified a number of the additional equations to check consistency, but have

not performed an exhaustive search for all possible leading singularities.

The topologies fall naturally into three different categories according to how we
choose to implement the collapse and expand rules. Let us now address each category

in turn, giving in each case the details of the simplest topology as an example.
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Example 1: Topology L

Topology L has several leading singularities, but the simplest ones can be isolated as

indicated in the following cartoon:

T 4 fdp T q
pr —
T ol ] r
- o+ k) T (1.2

In words: we first integrate the sum of Feynman diagrams over a p contour which
collapses the associated massless box, then expand around (q + k;)? = 0 keeping
only the singular terms indicated. Integrating g over an appropriate contour isolates
these singular terms while collapsing the massless box. The final integral over r is

again accomplished using the collapse rule.
The leading singularities exposed by these steps are those located at the locus
SL = {(p7Q7T) € C12 : p2 = Oa q2 = Oa T2 = 07 (p+k1)2 = 07 (T'— k5)2 = 07

(7’ — k45) = 0 (7’ + k’12)2 = O, (q + k’12)2 = O7 (p — k’g)Q = 0,
(=7 =0, (p+q+k)* =0, (¢+k1)* = 0}. (4.2.8)

For generic external momenta the set S;, consists of 8 distinct points in C!2. For
each point in Sy, there is an associated contour which computes the residue at the

point and hence leads to an equation via (4.2.3).

It remains only to construct an appropriate ansatz for the left-hand side of (4.2.3).
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We try a linear combination of the two most natural integrals of topology L,

L + L ‘I’ . (4.2.9)

Here and in what follows we use pictures as shorthand for the corresponding scalar

integrands, so for example the first term in (4.2.9) represents

1

L D222 (p + k)2 (r — ks)2(r — kas)2(r + k12)2(q + k12)2(p — k2)2(q — )2 (p + q + k1)?
(4.2.10)

while the dotted line in the second picture in (4.2.9) indicates a factor of (r + k;)? in

the numerator of the integrand.

Integrating (4.2.9) over the contours detailed above leads to the expression

L+ Ly(r + ky)?

8%2834845(7’ —|— k‘l)Q ’

(4.2.11)

where the denominator factors arise from the Jacobians in (4.2.6). Equating this
to the result of (4.2.7) and choosing a particular helicity configuration leads to the

equation
L+ Ly(r+ k)2
8%2834845(7’ + k‘l)2

= Atree(17;2773+74+,5+) 5<7‘75>' (4212)

Of course this must be evaluated on the locus Sy, and it is easy to check that Sy,

contains only two different values of r:

= s <X5 + g g; L) - <A5 + E 2} A4> %, (4.2.13)

giving us two distinct equations which are sufficient to determine the coefficients L
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and L; uniquely.

Topologies D, GG, and N proceed in exactly the same manner, except that in these
cases more than two integrals appear on the left-hand side. Topologies A, C, F and
K are also very similar, except that since these three topologies only have 10 exposed
propagators (rather than 11) it is necessary to isolate a second hidden singularity by

performing a second expansion prior to integrating over r.

Example 2: Topology M

For topology M it is sufficient to consider even simpler contours. We first collapse

and expand the p box as done above for topology L, arriving at

(4.2.14)
07

At this stage it is convenient to integrate over a symmetric contour of the type
considered in [32] where we require that {(q,r) and [q, r] separately vanish instead of

just (¢ + )% = 0. This leads us to consider the locus

SM:{(p7Q7T)E(C12 : p2:OJ q2:O7 T2:07 (p_k4)2:07 (T+k1)2:07
(q + k45)2 = 07 (T + k12)2 = 07 (p —q— k45)2 = 07
(p - k45)2 - 07 (q + k5>2 = 07 <q7 T) = O) [Q7 T] %4)2150
For generic external momenta Sy, consists of 4 isolated points, each of which leads

to one linear equation for the integral coefficients. Note that the right-hand side
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of (4.2.3) always vanishes for such symmetric contours since the associated product

of tree amplitudes must vanish when (g,7) =0 = [q,r].

For topologies B, J and G we proceed along exactly the same lines (we already
treated GG in the first example, but additional equations are needed to fix all of the
coefficients which appear for this topology). It turns out that for topology J an
interesting and very useful feature emerges: here we model the left-hand side as the
linear combination

[ ]
’

J + “. + several other integrals. (4.2.16)

We will not display all of the relevant integrals explicitly, but they all have the
property that they either vanish on the locus S; (so that they do not enter the
associated equations), or they contain the same numerator factor as J; shown here,
which we denote by ¢2. Now when we perform the ¢ integral one of the Jacobian

factors is 1/£2, so we obtain the equation

é + J; + several other coefficients = 0. (4.2.17)
Since £2 = 0 on the locus Sy, we immediately see that the coefficient J must vanish
in order to avoid a contradiction. Perhaps a safer way to express this is to say that
we can consider an equation obtained by multiplying both sides of (4.2.3) by ¢?
before performing the contour integrals. Having determined that J = 0, we then see
that (4.2.17) gives an equation relating J; to the other coeflicients. This trick is also

useful for other topologies, in particular for C' and F.
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Example 3: Topology R

There are five different triple-box 9-propagator topologies, of which topology R is

the only one with associated leading singularities. These are situated on the locus

SR:{(p’Q7T)E(C12 : p2:07 (p+q—|_k15)2:07 q2:07 (q_k4)2:07 (p—?”)2:0,
(r—ky)?=0,12=0, (r+q+ks)?=0, (p+k)* =0,

(q+ki5)> =0, (r+ki)*> =0, (r+ki5)* =0} (4.2.18)

Here the first nine conditions are the visible propagators, while the last three are
hidden singularities. In order to see what the right-hand side of (4.2.3) should be let

us begin by integrating out ¢ to collapse the first box. This leads to

(4.2.19)

For the first time we find a triangle-triangle diagram rather than a triangle-box or
box-box. The Jacobian factor from integrating the corresponding scalar integral is
1/(q+k15)(r+k1)?, suggesting that we expand (4.2.19) to expose either 1/(q+ki5)? or
the 1/(r+ k1)? propagator, but it is clearly impossible to expand both simultaneously.
Either choice leaves us with a sum over triangle-box Feynman diagrams, which
vanishes due to N = 4 supersymmetry. The right-hand side of (4.2.3) is therefore

zero for the R topology leading singularities in eq. (4.2.18).
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Figure 4.2: The 17 independent integrals appearing in the ansatz. Other integrals
can be obtained by rotations or reflections. As in Fig. 4.1 we label the external
momenta clockwise with k; at the position indicated by the arrow.

4.3 The 3-loop 5-particle Amplitude

A basis of integrals which is sufficient for representing all of the leading singularities
of the amplitude is shown in Fig. 4.2. By solving the collection of linear equations as

explained in the previous section we find their coefficients

1 —7
2 3
A = —S812893
V3 — 3
B — V5
= 512523534545 =~
s
2 V3
¢, = —S812851 =
3 —173
2
D, = 512523551 =~
1—73
— V4
Dy = —593534515 =
4 I V4
2
E = —512593551

Y3 — 3’
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1
G, = 81252 S51 ~
2 Y3 — )3
Gy = —823345551#7
Y2 I 2
Gapy = —523534545 ~
Vs I Vs
J1 = —834545551 =~
1 "N
K = —8?28237’137
V3 —1’73
L = s})s0385 —,
Y3 =3
i
L, = —8%2834845%7
TN
= 819828 !
12945 51,)/2 _ ,727
9 1
N = 55151253455 =~
="
Ny = —812834SZ5L~
1 1—N
R = 593545551 P):,l (431)
1—N
where we have introduced the quantity
. . . N |
1+2,04+3))t+ 3,1
vi= |1+ < ; >[ ] , (4.3.2)
(i +2,i+4)[i +4,1]

and 7 is given by the parity conjugate of this expression (i.e., {(a,b) < [a,b]). In
each case we have suppressed an overall factor of A, In order to connect to
the standard normalization conventions used in the study of the BDS ansatz it is
necessary to multiply by an overall factor of (—1/2)F. The complete amplitude is

therefore assembled via the formula

1 1
M5(3) = Aé3) JAZe® = ~3 > > —coefficient; x integral,. (4.3.3)

permutations integrals =%
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The first sum runs over the 10 cyclic and anti-cyclic orderings of the labels 1,2,3,4,5
of the external particles and the second sum runs over the 17 integrals in Fig. 4.2.

S; is a symmetry factor to compensate for possible overcounting: S = 2 for integrals

B, Dy, Dy, G, L, L1, N, and R, and S = 1 for the others.

The presentation (4.3.1) makes it simple to read off the parity-even parts of the

coefficients, which will be useful in the following section. We find the parity-even

parts
1 1
2
Ay = =512853, B = ~ 5512523534545,
1
2
Cy = 58128517 Dy = 55238345517
1 1
3
Gaq = = 523545551, K = 53128237
Ly = =5? N, = ! 2
1= 5812834845, 1= 53128348457
1
R = —5823845851. (434)

with all others vanishing. We note that only the coefficients associated to dual
conformal integrals have non-vanishing parity-even parts, as expected based on the

pattern of previously studied amplitudes [12, 13, 14, 47, 18].

4.4 The Three-Loop BDS Ansatz

The infrared divergences of higher loop scattering amplitudes in gauge theory are very
simply related to those of lower loop amplitudes [18]. In [11, 12], it was conjectured
that in N =4 SYM this simplicity persists, at least for MHV amplitudes, to the finite

terms as well. Although the explicit n = 6 calculation of [18] has now demonstrated,
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following earlier doubts raised in [15, 16, 17] (see also [19]), that these relations are
not true for all n, it is believed that they should hold for four and five particles at
any number of loops since for these cases the amplitudes are determined up to a few

constants by dual conformal invariance [15, 19].

The precise form of the BDS ansatz at three loops, in dimensional regularization to

D=4—9,is
MO(O) = —H(MP(O) + MPEMP () + FVOMP(3) + P +0() (14.1)
where
£ = M (5@0(3) + 6 e + o, 0D = (142)

in terms of two previously undetermined numerical constants a and b. BDS verified
by explicit calculation that the 3-loop 4-particle amplitude satisfies (4.4.1), but the
structure of the equation for n = 4 is insensitive to the values of a and b as long as

they obey the linear relation

2a — 9b = —?’illc(ﬁ) +17¢(3)%. (4.4.3)

Here we will use our 3-loop 5-particle amplitude to extract a second linear equation

from (4.4.1) which will finally fix the constants a and b.

The calculation of a and b benefits from two simplifcations. The first is that we may
restrict our attention to the parity-even part of (4.4.1). If we write each amplitude

as a sum of its parity-even and parity-odd parts, MéL) = éJLr) + Méf), then taking
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the parity-even part of (4.4.1) for n =5 gives

M2 =~ + MM + 1O (M Ee) + O
+ME2 (e) (M2 (e) — ME ()M (€)) + O(e). (4.4.4)

In [11] it was shown that M (e) — MY (€)M (€) = O(e). Since MV (e) itself
is also O(e), we see that the entire last line of (4.4.4) can be replaced simply by
+0(€). A consequence of the result of [11] is therefore that the parity-even part

of the three-loop BDS ansatz can be obtained by making the naive replacement

M — M in (4.4.1).

The second simplication is to make use of the notion of obstructions introduced in [33]
and exploited in the four-loop calculations [31, 16]. We refer the reader to [34] for all
of the necessary details, including a detailed algorithm for calculating obstructions.
Here we simply remind the reader that for an amplitude A(x,¢) depending on a
single kinematic variable z, the obstruction P(e) is defined to be the coefficient of

the simple pole at y = 0 in the inverse Mellin transform transform, so that

Az, €) = / J‘rioo dy ¥ l(higher order singularities) + PZ(JE) + (regular at y = 0)] .

o (4.4.5)
As explained in [31] it is important to understand this relation as holding order
by order in ¢, rather than at finite e. The prime advantage of dealing with P(e)
rather than the full A(z,€) is that it is much simpler to compute. Furthermore it

is important that obstructions satisfy a product algebra—the obstruction in any

product of amplitudes is equal to the product of the individual obstructions.

This concept generalizes straightforwardly to integrals depending on more than
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one kinematic variable. In the case at hand we have 5-particle integrals depending
on five independent variables s; ;. 1, and we can extract the obstruction P(e) by
applying the above procedure five times in succession. Equivalently, we define
P(e) to be the coefficient of the 1/(y192y3y4y5) pole in the 5-fold inverse Mellin
transform of A(s12, S23, S34, S45, S51)- By applying the algorithm outlined in [34] it is
straightforward to find that the obstructions in the one- and two-loop five particle

amplitudes are given by

51 572 179¢(3) 97 5172¢(3)  137¢(5)
PO I L 2 B 3
5 () st s T TS 32 A

~[(763¢(3)>  23x°

4 5
_ 0
72 a0 ) € TOE),
251 3571 865C(3)1  97xt
POy _ BL 1 1 21.494969
5 () 8¢l 24 e 18 ¢ 1152 ¢
—64.357473¢* + O(%). (4.4.6)

For simplicity we have restricted PEEL) here to the parity-even parts of the amplitudes.

Note that these expressions satisfy the two-loop ABDK relation

P (e) = ;(Pél)@))? (@) = (B - COAP ) - T 10l (447)

as expected.

At three loops, we have found that there are nine independent integrals which
contribute to the parity-even part of the 5-particle amplitude. The obstructions for

each of these types of integrals, through O(e°), are

201 20m21 43¢(3) 1 73t 1 1

P, = —— - il — —850.242028= + 34.239832
T T

Py, = —— _ —_ — — £ 1580.962798~ + 2824.770745

B 3 €6 9 ¢t 6 & 13 e ¢t ’
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201 2572 1 557{(3) 1 171377 1 1
— — — — 4+ 221.894995— + 1030.164974
9 6 54 ¢4 36 €3 + 12960 €2 + € + ’

351 355m21  645C(3) 1 767At 1 1

ST e BT s oo
201 _ 57?2164_ 117751(3) 16: rior 162+ 178 4%74601 E— 2387 250195 o
31 _ s 1 _ 1431614(3)6:1 —41312905;2 BN 6'73 3198‘;11 _ 28;15 8896;%9

3¢ wEf 2P gt c e | |

15 — —i = — 1360(3) + o — + 625.875308~ + 437.509754

€
80C(3) 1 1077 1 1
— — — — 395.562804—- + 923.415196. 4.4.8
3 e + 108 €2 € + ( )

Each expression displays the result obtained after summing over all 10 permutations

of the corresponding integral (including in each case the appropriate dual conformal

numerator). The estimated error in the numerical results is much smaller than

the precision indicated in all cases except for the last term in Pgo,, which is the

overwhelmingly dominant source of numerical error.

Using the parity-even parts of the coefficients obtained in the previous section, and

including the necessary factors of 1/2 to avoid overcounting those integrals with flip

symmetries, we find the total three-loop obstruction

PY

—36 (P = 5P+ Poy & 3Poy + Poa + Prc + 5Py + P = 3 Pr)
_%l . 3257T2l n 4175§(3)l n 4997T4l

48 €6 92 € 192 € 10368 ¢2
—40.764885- + 2071613 40,0002 + O() (4.4.9)

Using the results (4.4.9) and (4.4.6), we find that the BDS relation (4.4.1) is satisfied
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provided that a and b satisfy the linear relation
5a — 18b = 105.482 +£ 0.004. (4.4.10)
Together with (4.4.3) this implies the solution
a = 85.263 £ 0.004, b = 17.8241 £ 0.0009. (4.4.11)

Based on the transcendentality hypothesis, it is expected that each of these numbers
should be a linear combination of ¢(6) and ¢(3)* with rational coefficients. However
given the limited numerical accuracy of our calculation it seems prudent to avoid

speculating on possible exact values for a and b at this time.

4.5 Summary

We have used the leading singularity method to obtain an ansatz for the four-
dimensional cut-constructible part of the 3-loop 5-particle amplitude in N =4 SYM
theory. This means that we have determined the coefficients of the integrals shown
in Fig. 4.2 by comparing residues of the ansatz to those of the amplitude on various
leading singularities. Although it has not yet been proven that determination of only
leading singularities completely determines an amplitude (in principle one might
have to add additional integrals that vanish on all leading singularities but that have
subleading singularities), the method so far has been found to give the complete

answer in all cases where comparison with alternate methods was possible.

Dimensionally regulated amplitudes occasionally contain so-called ‘u-terms’ which are
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defined as terms in the integrand which vanish in D = 4 but not in D = 4 — 2¢ (note
that this statement is, in general, completely unrelated to whether or not these terms
vanish in D = 4 — 2¢ after integration; indeed p-terms can easily be IR divergent).
Since the leading singularity method itself works with strictly four-dimensional loop
momenta, it is insensitive to possible p terms, although it seems that in principle
they could be determined by considering leading singularities in integer dimensions
other than 4. However, in all cases that have been studied so far it has been observed
that p-terms separately cancel out of the BDS relation, leaving C® unaffected. We
can therefore hope that even if the 3-loop 5-particle amplitude contains such terms
which we have missed, they would not contribute to the constants a and b computed

in section IV.

Finally we emphasize that since our goal in section IV was to streamline the calculation
of a and b as much as possible, we have only evaluated the obstructions, not the full
amplitude. Consequently we have not checked (even numerically) that the quantity
+C®) appearing in (4.2.3) is a numerical constant; in principle it could depend on
the kinematic variables s;;41. The method of obstructions is efficient for quickly
extracting the ‘constant part’ of C® (defined as the coefficient of 1/y in the inverse
Mellin transform) but is insensitive to any other potential terms in C® that depend
on the s; ;1. It remains an interesting open problem to verify that there are no such

terms.



Chapter 5

Tree formula for MHV gravity

amplitude

5.1 Introduction

Now, we turn to study various aspects of the tree-level amplitudes in N = 8 SUGRA. It
has recently been pointed out [20] that there are reasons to suspect N = 8 supergravity
(SUGRA) to have even richer structure and to be ultimately even simpler than SYM.
Despite great progress has been made, however, our understanding of SUGRA
amplitudes is still poor compared to SYM, suggesting that we are still missing
some key insights into this problem. Much of the progress on gluon amplitudes can
be easily recycled and applied to graviton amplitudes due ultimately to the KLT
relations [50] which roughly speaking state that “gravity is Yang-Mills squared”.

Slightly more precisely, the KLT relations express an n-graviton amplitude as a sum

72
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over permutations of the square of the color-ordered n-gluon subamplitude times
some simple extra factors (see [52] for a review). There are several indications that
maximal supergravity may be an extraordinarily remarkable theory and possibly
even ultraviolet finite,but our feeling is that even at tree level we are still far from

fully unlocking the structure of graviton amplitudes.

To illustrate this disparity we need look no further than the simplest graviton
amplitudes. The original BGK (Berends, Giele and Kuijf) formula for the n-graviton
MHYV amplitude [51] is now over 20 years old. For later convenience we review here
a different form due to Mason and Skinner [53], who proved the equivalence of the

original BGK formula to the expression

NMHV > 1 1 ﬁ [k[pri1 + - + ppa|n—1)
" PO ) (nn—2)(n—2n—1)(n—1n) (12)---(n1) gt (kn—1) ’
(5.1.1)
where the sum indicates a sum over all (n — 3)! permutations of the labels 1,...,n—3
and we use the convention
lalpi +p;j + - |b) = [ai](ib) + [ak](jb) 4 - - . (5.1.2)

The fact that any closed form expression exists at all for this quantity, the calculation
of which would otherwise be vastly more complicated even than the corresponding
one for n gluons, is an amazing achievement. Nevertheless the formula has some

features which strongly suggest that it is not the end of the story.

First of all, the formula (5.1.1) does not manifest the requisite permutation symmetry

of an n-graviton superamplitude. Specifically, any superamplitude M,, must be fully
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symmetric under all n! permutations of the labels 1,... n of the external particles,
but only an S,,_3 subgroup of this symmetry is manifest in (5.1.1) (several formulas
which manifest a slightly larger S,,_» subgroup are known [/, 51]). Of course one can
check, numerically if necessary, that (5.1.1) does in fact have this symmetry, but it is
far from obvious. Moreover, even the S,,_3 symmetry arises in a somewhat contrived
way, via an explicit sum over permutations. Undoubtedly the summand in (5.1.1)

contains redundant information which is washed out by taking the sum.

Secondly, one slightly disappointing feature of all previously known MHV formulas
including (5.1.1) is the appearance of “---” which indicates that a particular cyclic
ordering of the particles must be chosen in order to write the formula, even though a
graviton amplitude ultimately cannot depend on any such ordering since gravitons
do not carry any color labels. This vestigial feature usually traces back to the use of

the KLT relations to calculate graviton amplitudes by recycling gluon amplitudes.

An important feature of graviton amplitudes is that they fall off like 1/2? as the
supermomenta of any two particles are taking to infinity in a particular complex
direction unlike in Yang-Mills theory where the falloff is only 1/z. As we noted
in previous Chapter, this seeming simple fact can be greatly used for simplifying
the tree-level amplitudes. And this exceptionally soft behavior of graviton tree
amplitudes is of direct importance for the remarkable ultraviolet cancellations in

supergravity loop amplitudes (see e.g. [55] and related references).

It is difficult to imagine that it might be possible to improve upon the Parke-Taylor
formula for the n-gluon MHV amplitude. However, for the reasons just reviewed, we
feel that (5.1.1) cannot be the end of the story for gravity. Ideally one would like to

have a formula for n-graviton scattering that (1) is manifestly .S,, symmetric without
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the need for introducing an explicit sum over permutations to impose the symmetry
vi et armis; (2) makes no vestigial reference to any cyclic ordering of the n gravitons,
and (3) manifests 1/2? falloff term by term, making it unsqueezable by the bonus

relations.

In this chapter we present and prove an new formula for the MHV scattering
amplitude which addresses the second and third points but only manifests S,,_»
symmetry. In section 2 we introduce the tree formula and discuss several special
cases as well as the general soft limit. In section 3 we work out the simple link
representation of the amplitude in twistor space, from which new physical space

formula follows. Finally the proof is in section 4.

5.2 The MHV Tree Formula

5.2.1 Statement of the Tree Formula

Here we introduce a formula for the n-graviton MHV scattering amplitude which
we call the “tree formula” since it consists of a sum of terms, each of which is
conveniently represented by a tree diagram. The tree formula manifests an S, _»
subgroup of the full permutation group. For the moment we choose to treat particles

n — 1 and n as special. With this arbitrary choice the formula is:

MHV __ 1 M an — an deg(a)—2
Mn o <n_1n>2 Z ( H (ab>) ( H (< 1>< >) > (5‘2'1>

trees \ edgesab vertices a
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It is interested to note that the expression for the n-point amplitude can actu-
ally be represented as all inequivalent connected tree graphs with vertices labelled
1,2,...,n — 2. (It was proven by Cayley long time ago that there are precisely

(n — 2)"* such diagrams.)

5.2.2 Examples

We defer to section IV a formal proof of the tree formula as the impatient reader
may be sufficiently convinced by seeing the formula in action here for small n and

by noting that it has the correct soft limits for all n, as we discuss shortly.
For each of the trivial cases n = 3,4 there is only a single tree diagram,

1
((12)(13)(23))

MY = (5.2.2)

and
M = s a9 es @Bl (5:2.3)

respectively, which immediately reproduce the correct expressions.

For n = 5 there are three tree diagrams

[12][23]
(12)(14)(15)(23)(34)(35)(45)?
[13][23]
(13)(14)(15)(23)(24)(25)(45)2
[12][13]
(12)(13)(24)(25)(34)(35)(45)?

Ay =

+ (5.2.4)

+

which can easily be verified by hand to sum to the correct expression. Agreement
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between the tree formula and other known formulas such as (5.1.1) may be checked
numerically for slightly larger values of n by assigning random values to all of the

spinor helicity variables.

5.2.3 Soft Limit of the Tree Formula

Let us consider for a moment the component amplitude

MA*T, ... (n=2)", (n—1)",n") = (n— 1n)MMV (5.2.5)

with particles n — 1 and n having negative helicity. The universal soft factor for

gravitons is [01]

- M(1+,...,(n—2)+,(n—1)_,n_):”_2 + ) (in—1) (in) [14]
P M, (=2 (= 1) n) 1229( b 90 = T ey (1)
(5.2.6)

It is simple to see that the MHV tree formula satisfies this property: the tree diagrams
which do not vanish in the limit p; — 0 are those in which vertex 1 is connected
by a propagator to a single other vertex i. Such diagrams remain connected when
vertex 1 is chopped off, leaving a contribution to the n — 1-graviton amplitude times

the indicated factor g(i1).

Thinking about this process in reverse therefore suggests a simple interpretation
of (5.2.6) in terms of tree diagrams—it is a sum over all possible places i where the
vertex 1 may be attached to the n — 1-graviton amplitude. This structure is exactly
that of the “inverse soft factors”, and we have checked that the MHV tree formula

may be built up by recursively applying the rule proposed there.
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5.3 The MHYV Tree Formula in Twistor Space

Before turning to the formal proof of the tree formula in the next section, here we
work out the link representation of the MHV graviton amplitude in twistor space,
which was one of the steps which led to the discovery of the tree formula. Two
papers [50, 21] have recently constructed versions of the BCF on-shell recursion
relation directly in twistor space variables. We follow the standard notation where p,
i1 are respectively Fourier transform conjugate to the spinor helicity variables A, 5\,
and assemble these together with a four-component Grassmann variable n and its

conjugate 7 into the 4|8-component supertwistor variables

A I
2=|ul, w=|[x]|. (5.3.1)
U gl
In the approach of [24], in which variables of both chiralities Z and W are used

simultaneously, an apparently important role is played by the link representation

which expresses an amplitude M in the form

M(ZZ,WJ) = /dC U(CiJ,)\Z‘,XJ) €xXp [ZZCZJZ’Z : WJ:| . (532)

i,J

Here one splits the n particles into two groups, one of which (labeled by i) one
chooses to represent in Z space and the other of which (labeled by J) one chooses to
represent in W space. The integral runs over all of the aptly-named link variables c;;
and we refer to the integrand U(c;y, A;, hy s) as the link representation of M. It was

shown in [24] that the BCF on-shell recursion in twistor space involves nothing more
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than a simple integral over Z, W variables with a simple (and essentially unique)

measure factor.

The original motivation for our investigation was to explore the structure of link
representations for graviton amplitudes. We will always adopt the convenient conven-
tion of expressing an N*MHV amplitude in terms of k + 2 Z variables and n — k — 2
W variables. The three-particle MHV and MHV amplitudes
12 1eavd 12
g _ 102 e [[12) .

2 ) 2 9
C13Ca3 C31C32

seed the on-shell recursion, which is then sufficient (in principle) to determine the

link representation for any desired amplitude.

For example, the four-particle amplitude is the sum of two contributing BCF diagrams

gy _ (12034 (12)[34] )

2 2 2 2
C13C34C12:34 C13C54C14C23

where we use the notation
Civig:J1Ja = CiyJ1Cigdy — Ciy JoCigJy - (535)

Remarkably the two terms in (5.3.4) combine nicely into the simple result presented

already in [24]:
UMy = (12)[34 (5.3.6)

C13€14C23C24C12:34

This simplification seems trivial at the moment but it is just the tip of an ice-
berg. For larger n the enormous simplifications discussed in the previous section,

which are apparently non-trivial in physical space, occur automatically in the link
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representation.

For example the five particle MHV amplitude is the sum of three BCF diagrams,

|(12)[[34](c24[45] + c23[35])

2
C13€14C15C23C24C95C12:34

(5.3.7)

MY { [(12)[[45](ca4[34] + 253 5])

2
C13C23C14C55C12:34C12:45

+@H@}+

which nicely simplifies to

Loy BABS sy 3433

|<12>’ b C13C15C23C25C12:34C12:45 C13C14C23C24C12:35C12:45 014015024025012:34012:35'

(5.3.8)

This expression already exhibits the structure of the MHV tree formula (except that

here particles 1 and 2 are singled out, and the vertices of the trees are labeled by

{3,4,5}).

Subsequent investigations for higher n reveal the general pattern which is as follows.
Returning to the convention where particles n — 1 and n are treated as special, the
link representation for any desired MHV amplitude may be written down by drawing

all tree diagrams with vertices labeled by {1,...,n — 2} and then assigning

1. an overall factor of (n — 1 n)sign({(n — 1n))",

2. for each propagator connecting nodes a and b, a factor of [ab]/c,—1 n.a.p,

deg(a)—2

3. for each vertex a, a factor of (¢,—1,4Cn.a) , where deg(a) is the degree of

the vertex labeled a.

It is readily verified by direct integration over the link variables that these rules are
precisely the link-space representation of the physical space rules for the MHV tree

formula given in the previous section.
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5.4 Proof of the MHV Tree Formula

Here we present a proof of the MHV tree formula. One way one might attempt
to prove the formula would be to show directly that it satisfies the BCF on-shell
recursion relation [2, 3] for gravity [1, 5], but the structure of the formula is poorly
suited for this task. Instead we proceed by considering the usual BCF deformation of
the formula MM1Y by a complex parameter z and demonstrating that MMHV(z) has
the same residue at every pole (and behavior at infinity) as the similarly deformed

graviton amplitude, thereby establishing equality of the two for all z.

In this section we return to singling out particles 1 and 2, letting the vertices in the
tree diagrams carry the labels {3,...,n}. Then the MHV tree formula (5.2.1) can

be written as

M= 203 gy L@ 2a) ™o (541

(note that we continue to work with the component amplitude (5.2.5)) where the
factors []---[]/() -+ () associated with the propagators of a diagram are independent

of 1 and 2. Let us now make the familiar BCF shift [3]
)\1 — /\1(2’) = )\1 - Z)\Q, 5\2 — 5\2(2’) = }\2 -+ 25\1 (542)

which leads to the z-deformed MHYV tree formula

MYV (z) = (12)° 3 H 11K<1a> - :2a) a5 (5.43)

Here we are in a position to observe a nice fact: since each tree diagram is connected,
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3 4 n
Figure 5.1: All factorizations contributing to the on-shell recursion relation for
the n-point MHV amplitude. Only the first diagram contributes to the residue at
z=(13)/(23).

the degrees satisfy the sum rule

n

> (deg(a) —2) = -2, (5.4.4)

a=3

which guarantees that each individual term in (5.4.3) manifestly behaves like 1/2% at
large z. This exceptionally soft behavior of graviton amplitudes is completely hidden

in the usual Feynman diagram expansion.

A complex function of a single variable which vanishes at infinity is uniquely deter-
mined by the locations of its poles as well as its residues. Having noted that (5.4.3)
has the correct behavior at large z, we can conclude the proof of the MHV tree
formula by demonstrating that (5.4.3) has precisely the expected residues at all of
its poles. In order to say what the expected residues are we shall use induction on
n. As discussed above the tree formula is readily verified for sufficiently small n, so
let us assume that it has been established up through n — 1. We can then use BCF
on-shell recursion (whose terms are displayed graphically in Fig. 5.1) to determine

what the residues in the deformed n-point amplitude ought to be.

Without loss of generality let us consider just the pole at z = z3 = (13)/(23).

The only tree diagrams which contribute to the residue at this pole are those with
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deg(3) = 1, meaning that the vertex labeled 3 is connected to the rest of the diagram
by a single propagator. Chopping off vertex 3 gives a subdiagram with vertices
labeled {4,...,n}. Clearly all diagrams which contribute to this residue can be
generated by first considering the collection of tree diagrams with vertices labeled
{4,...,n} and then attaching vertex 3 in all possible ways to the n — 3 vertices of

the subdiagram. We therefore have

MHV 6 HH = [3b] > 1 L ~ deg(a)—2
e~ 2 5 ] (Z e b>) Taag 1L (T0es)
(5.4.5)

where ~ denotes that we have dropped terms which are nonsingular at z = z3, the
sum over b runs over all the places where vertex 3 can be attached to the subdiagram,
and []---[]/()--- () indicates all edge factors associated the subdiagram, necessarily
independent of 3. Using the Schouten identity we find that (1) = (12)(b3)/(23) so

we have after a couple of simple steps (and using (5.4.4))

M)~ s S L T (RaEa) e G

subdiagrams

On the other hand we know from the on-shell recursion for the n-point amplitude
that the residue at z = 23 comes entirely from the first BCFW diagram in Fig. 5.1,

whose value is

NIV 1
M"Y (z3) x P2 MY (23) (5.4.7)
where
P(z) = p1 + ps — 2XeA1. (5.4.8)

Assuming the validity of the MHV tree formula for the n — 1-point amplitude on the
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right, the expression (5.4.7) evaluates to

[P3) X 1 % (P96 11 ¢ B (9 g ) @2
s s —eea <Y L o L Para)

subdiagrams a=4
(5.4.9)

where P = P(z3). After simplifying this result with the help of (5.4.8) we find precise

agreement with (5.4.5), thereby completing the proof of the MHV tree formula.

5.5 Discussion and Open Questions

The tree formula introduced in this paper has several conceptually satisfying features
and almost completely fulfills the wish-list outlined in the introduction. It appears

to be a genuinely gravitational formula, rather than a recycled Yang-Mills result.

The new MHV tree formula can be very naturally translated into “link" representation,
we hope that the new MHYV tree formula might provide a more appropriate starting
point for this purpose and perhaps shed some more light on a twistor-string-like (or

Grassmannian formulation) description, as we discussed earlier, for supergravity.

Another interesting fact is that the tree formula apparently can neither be easily
derived from BCF, nor usefully used as an input to BCF, suggests the possible
existence of some kind of new rules for the efficient calculation of more general

gravity amplitudes.



Chapter 6

All tree-level amplitudes in N =8
SUGRA

6.1 Introduction

Previously we have presented a new formula for gravity MHV amplitude, which has
many nice properties as a gravity amplitude. Now we would like to go beyond MHV
level to study all tree-level amplitudes in SUGRA. The natural weapon we will use

is BCFW recursion relations.

In this chapter we present an algorithm for writing down an arbitrary tree-level
SUGRA amplitude. Our result was largely made possible by combining and extending
the results of two recent papers. In [7] an explicit formula for all tree amplitudes in
SYM was found by solving the supersymmetric version [20] of the on-shell recursion

relation [2, 3]. We will review all appropriate details in a moment, but for now it

85
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suffices to write their formula for the color-ordered SYM amplitude A(1,...,n) very

schematically as

A(lv ce ,’I’L) = AMHV(L s 7n) Z Ra()‘h Xia 771) ) (611>
{a}
where the sum runs over a collection of dual superconformal [57, 58, 59] invariants

R,. The set {a} is dictated by whether A is MHV (in which case there is obviously
only a single term, 1, in the sum), next-to-MHV (NMHV), next-to-next-to-MHV

(NNMHYV), etc.

Our second inspiration is an intriguing formula for the n-graviton MHV amplitude
obtained by Elvang and Freedman [51] which has the feature of expressing the
amplitude in terms of sums of squares of gluon amplitudes, in spirit similar to though

in detail very different from the KLT relations. Their formula reads
MY = N A, )P GV (L, n), (6.1.2)
where the sum runs over all permutations of the labels 2 through n — 1 and

GMIV(1,...,n) is a particular ‘gravity factor’ reviewed below.

Our result involves a natural merger of (6.1.1) and (6.1.2), expressing an arbitrary

n-graviton super-amplitude in the form

Mn = Z [AMHV(L .. ,n)]ZZ[Ra()\i,j\i,ni)]zGa()\i,j\i) . (613)
P(2,....,n—1) {a}

Two important features worth pointing out are that the sum runs over precisely the

same set {a} that appears in the SYM case (6.1.1), rather than some kind of double
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sum as one might have guessed, and that the ‘gravity dressing factors’ GG, do not
depend on the fermionic coordinates 1! of the on-shell N = 8 superspace. All of the
‘super’ structure of the amplitudes is completely encoded in the same R-factors that

appear already in the SYM amplitudes.

We begin in the next section by reviewing some of the necessary tools for carrying
out our calculation. In section III we provide detailed derivations of explicit formulas
for MHV, NMHV, and NNMHV amplitudes. Finally in section IV we discuss the

structure of the gravity dressing factors G, for more general graviton amplitudes.

6.2 Setting up the Calculation

6.2.1 Supersymmetric Recursion

We will use the supersymmetric version [60, 20] of the on-shell recursion relation [2, 3]

where we follow the conventions of [7] in choosing the supersymmetry preserving

shift

(z2) =\ — 2\,

—)

Xﬁ(z) = }\n + le )

Ma(2) = Nn + 2m (6.2.2)



88

so that the sum in (6.2.1) runs over all factorization channels of M,, which separate

particle 1 and particle n (into My, and Mg, respectively). The value of the shift

parameter
P2
Zp = (6.2.3)
[1]P|n)
is chosen so that the shifted intermediate momentum
P(z) =P+ z2\AN, P=—p—-=-+p, (6.2.4)

goes on-shell at z = zp. The recursion relation (6.2.1) can be seeded with the

fundamental 3-particle amplitudes [20]

6®) (m1[23] + na[31] + n3[12])
([12][23][31]) ’

MHV __ 5(16)(51)
M= menene 7Y

MHV __
MY —

6.2.2 Gravity Subamplitudes

Color-ordered amplitudes in SYM have a cyclic structure such that only those
factorizations preserving the cyclic labeling of the external particles appear in the

analogous recursion (6.2.1).

In contrast, gravity amplitudes must be completely symmetric under the exchange
of any particle labels, so vastly more factorizations contribute to (6.2.1). We can
deal with this complication once and for all by introducing the notion of an ordered

‘gravity subamplitude’ M(1,...,n). These non-physical but mathematically useful
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1 n 1 n

Figure 6.1: A diagrammatic representation of the relation (6.2.6) between a physical
gravity amplitude M,, and the sum over its ordered subamplitudes M(1,...,n). We
draw an arrow indicating the cyclic order of the indices between the special legs n
and 1.

objects are related to the complete, physical amplitudes M,, via the relation

M,= > M(,...,n), (6.2.6)

P(2,...,n—1)

depicted graphically in Fig. 6.1. This decomposition only makes a subgroup of the
full permutation symmetry manifest. However it is the largest subgroup that the
recursion (6.2.1) allows us to preserve since two external lines are singled out for

special treatment.

The relation (6.2.6) does not uniquely determine the subamplitudes for a given M,,,
since one could add to M (1,...,n) any quantity which vanishes after summing over
permutations. We choose to define the subamplitudes M recursively via (6.2.1)
restricted to factorizations which preserve the cyclic ordering of the indices, just like

in SYM theory:
n—1 dSn N =R =N
M(L,...,n) =) ﬁM(l,Q,...,i— L,PYM(=P,i,...,n—1,m). (6.2.7)
=3

This recursion is also seeded with the three-point amplitudes (6.2.5) since there is no
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distinction between M (1,2,3) and M3. Note however that unlike the color-ordered
SYM amplitudes A(1,...,n), the gravity subamplitude M(1,...,n) is not in general

invariant under cyclic permutations of its arguments.

It remains to prove the consistency of this definition. That is, we need to check
that the subamplitudes defined in (6.2.7), when substituted into (6.2.6), do in fact
give correct expressions for the physical gravity amplitude M,,. This straightforward
combinatorics exercise proceeds by induction, beginning with the n = 3 case which is
trivial and then assuming that (6.2.6) is correct up to and including n — 1 gravitons.
For n gravitons we then have

d®n. ~ . _
M, = > FM(L {A}, PYM(—P,{B},n)

Al B={2,...n—1}

1 d&) o
= 2 3 " M1 {4}, PYM(~P,{B}.7)

T P(2,...,n—1) AUB—{27 n—1}

~

= 3 Z( 2)/‘;’273%( o j— 1L PM(=P,j,....n—1,7)

'9(2, n— 1)] 3

~ ~

= > Z voosj—1,PYM(—=P,j,...,n—1,7)

P(2,...,n—1) j=3
= Y M1,2,....n). (6.2.8)
P(2,....,n—1)

The first line is the superrecursion for the physical amplitude, including a sum over all
partitions of {2,...,n — 1} into two subsets A and B, not just those which preserve
a cyclic ordering. In the second line we have thrown in a spurious sum over all
permutations of {2,...,n — 1} at the cost of dividing by (n — 2)! to compensate for
the overcounting. This is allowed since we know that M,, is completely symmetric

under the exchange of any of its arguments. Inside the sum over permutations we
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are then free to choose A = {2,...,i—1} and B = {i,...,n— 1} as indicated on the

third line, including the factor (?:22

) to count the number of times this particular
term appears. On the fourth line our prior assumption that (6.2.6) holds up to n — 1
particles allows us to replace M, — (a — 2)!M, inside the sum over permutations.
The last line invokes the definition (6.2.7) and completes the proof that the physical

n-graviton amplitude may be recovered from the ordered subamplitudes via (6.2.6)

and the definition (6.2.7).

6.2.3 From N =4 to N =8 Superspace

The astute reader may have objected already to (6.1.2) in the introduction. The
SYM MHV amplitude involves the delta function 6® (q) expressing conservation of

the total supermomentum

g=> A,  a=12, A=1,... 4. (6.2.9)

i=1

Since the square of a fermionic delta function is zero, it would seem that it makes no

sense for the quantity [AMIV(1,... n)]? to appear in (6.1.2).

Throughout this paper it will prove extremely convenient to adopt the convention
that the square of an N = 4 superspace expression refers to an N = 8 superspace
expression in the most natural way. For example, it should always be understood
that

[6® (@) =6"(q), (6.2.10)

where the ¢ on the right-hand side is given by the same expression (6.2.9) but
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with A = 1,...,8. This notation will prove especially useful for lifting results of
Grassmann integration from N = 4 to N = 8 superspace. This trick works because
we can break the SU(8) symmetry of a d®n integration into SU(4), x SU(4), by
taking 7y, ..., n4 for SU(4), and 7, ..., ng for SU(4),. Then every d®n integral can
be rewritten as a product of two SYM integrals and the SU(8) symmetry of the

answer is restored simply by adopting the convention (6.2.10).

For a specific example consider the basic SYM integral

d*n MHV (T 9 P\ AMHV/ 7 = _ 5(8)(61)
/PQA (1,2, P)A (—P,3,...,m) = A28 (1) (6.2.11)

which expresses the superrecursion for the case of MHV amplitudes. By ‘squaring’

this formula we immediately obtain the answer for a similar N = 8 Grassmann
integral,
d®n

a e MHAV/T o DVI2[AMHV, D )2 = p2 5(16)(19)
/P2 [A (1,2, P)|]*[A (—P,3,...,7m)] P (12)(23) - (1) (6.2.12)

Note the extra factor of P? which appears on the right-hand side because we have,

for obvious reasons, chosen not to square the propagator 1/P? on the left.

6.2.4 Review of SYM Amplitudes

Given the above considerations it should come as no surprise that we will be able to
import much of the structure of SYM amplitudes directly into our SUGRA results.

Therefore we now review the results of [7] for tree amplitudes in SYM. Here and in
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all that follows we use the standard dual superconformal [57, 58, 59] notation

Tij =Pit Piv1t -+ D1,

Oij = Aimi + -+ -+ Nj_imj—1, (6.2.13)

where all subscripts are understood mod n.

We will base our expression for the SUGRA amplitudes on an expression for the SYM
amplitudes which is equivalent to, but not exactly the same as the one presented
in [7]. The reason is that the cyclic symmetry of the Yang-Mills amplitudes implies
certain identities for the invariants R,, appearing in (6.1.1). This symmetry was used
in [7] when solving the recursion relations. Instead it is helpful to have a different
expression which is more suitable to the gravity case where the subamplitudes M do

not have cyclic symmetry.

To be precise we need to return to the construction of [7] and make sure that when
considering the right-hand side of the BCF recursion relation we always insert the
lower point amplitudes so that leg 1 of the left amplitude factor corresponds to
the shifted leg I. We also need to have the leg n of the right amplitude factor

corresponding to the shifted leg 7, but this was already the choice made in [7].

The expression for all N = 4 SYM amplitudes is given in terms of paths in a particular

rooted tree diagram, these invariants appeared in (6.1.1) take the general form [59, 7]

Ry o o fea=Dbb—1) 0 (€|, aza|Op, ) + (€|b,0T0a|Oas, )
Ao 22 (€@, aTan| D) (€| Ty aTab|b — 1){E|Tp0Thala) (€| T pTpala — 1)
(6.2.14)
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where the chiral spinor £ is given by

<£| = <n|xna1xalblxb1a2xa2b2 - Layb, - (6215)

As in [7] this expression needs to be slightly modified when any a; index attains the

lower limit of its range'. We indicate by means of a superscript on R the nature

llvn"lr
n;a1b1;a2b2;..

of the appropriate modification. Specifically, R anbyap INdicates the same
quantity (6.2.14) but with the understanding that when a reaches its lower limit, we
need to replace

(a—1| = (n|xpy Ty, - Ty, - (6.2.16)

We now have all of the ingredients necessary to begin assembling the complete

amplitude, which is given by the formula

5@)
A, = AMVP = ﬁﬂ%, (6.2.17)
(12)---{n1)
where P, is given by the sum over vertical paths in the rooted diagram [7]. To each

such path we associate a nested sum of the product of the associated R-invariants in
the vertices visited by the path. The last pair of labels in a given R are those which
are summed first, these are denoted by a,b, in row p of the diagram. We always take
the convention that a, and b, are separated by at least two (a, < b, — 1) which is
necessary for the R-invariants to be well-defined. The lower and upper limits for the
summation variables a,, b, are indicated by the two numbers appearing adjacent to

the line above each vertex.

1 In [7] it was also necessary to sometimes take into account modifications when indices reached
the upper limits of their ranges, but this feature does not arise in our reorganized presentation of
the amplitude.
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Given the complexity of this prescription it behooves us to illustrate a few cases
explicitly. There is one path of length zero, whose value is simply 1 and this

corresponds to the MHV amplitudes,
PMHV — 1 (6.2.18)

Then there is one path of length one which gives the NMHV amplitudes. We get
1 X Ry.q, p,, summed over the region 2 < a;,b; < n, as always with the convention

that a; < b; — 1. There are no boundary replacements so we have

PIMIY =N Riarey - (6.2.19)

2<ay,b1<n

The two paths of length two give the NNMHV amplitudes. This time we get

superscripts on the R-invariants as dictated by the rules in point 4 above,

TSNMHV = Z Rn;a1b1 Z szl;gibuazbz + Z Rzggbz) ’ (6'2'20>

2<a1,b1<n a1<az,ba<by b1<agz,ba<n

Continuing to N3MHV amplitudes we find five paths of length three, giving the

following nested sums,

NSMHV __
j)n - Z Rn;a1b1 [

2<ai,bi<n
brai a1b1boas a1brasbs a1b1
Z Rn;alb1;a2b2( Z Rn;a1b1;azb2;a3b3 + Z Rn;a1b1;a3b3 + Z Rn;asbs>
a1<az,b2<by az<a3,b3<bz b2<az,b3<by b1<as,bz<n
a1by baas azbz
+ Z Rn;a2b2< Z Rn;azbz;asbg + Z Rn;asbsﬂ ) <6‘2'21)
b1<az,ba<n az2<as,b3<bz ba<az,bz<n

These examples hopefully serve to illustrate how to write a general SYM amplitude,
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though a more thorough discussion may be found in [7].

6.3 Examples of Gravity Amplitudes

6.3.1 MHYV Amplitudes

Elvang and Freedman have shown that the n-graviton MHV amplitude may be

written in the form?

MY = S A, n))PGMTY(LL L n) (6.3.1)
P(2,...,n—1)
in terms of
n—3
GV, o n) =23, [] <8|xs’szf;>+2’"|n> : (6.3.2)
s=2

The formula (6.3.1) is valid for n > 3; n = 3 will always be treated as a special case

with GMHV(1,2,3) = 1.
Comparison of (6.3.1) with (6.2.6) suggests that we should identify the MHV ordered
subamplitude as

MMV, n) = [AMIY(1 L n)PGMY (L, n). (6.3.3)

Let us now check that our definition (6.2.7) yields precisely the same expression for
the subamplitude (they may have differed by terms which cancel out when one sums

over all permutations in (6.2.6)).

2 We have relabeled their indices according to ¢ — 2 —4 mod n and have expressed the amplitude
in N = 8 superspace.
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~

1 n

1 n
Figure 6.2: The recursion for MHV amplitudes.

We will again proceed by induction, assuming that (6.3.3) satisfies (6.2.7) for n — 1
and fewer gravitons. To calculate MMBV for n gravitons from the definition (6.2.7)

we first note that only the single term ¢ = 3 contributes, giving

T _
MMBEV(1 ) :/PZMMHV(1,2,P)MMHV(—P,3,...,n) (6.3.4)

as shown in Fig. 6.2. The calculation is rendered essentially trivial by plugging in

the relations

MMIV(T, 2, P) = [AMY(1, 2, PP,
MMIWV(_P 3 . m)=[AMY(—P 3, .. n))PGMY(—P,3,....n) (6.3.5)
between ordered graviton and Yang-Mills amplitudes. The G factor in (6.3.4) comes
along for the ride as we perform the d®n integral using the square of the analogous

Yang-Mills calculation as explained above (6.2.12). Therefore with no effort we find
that (6.3.4) gives

MMIV(1, o n) = [AMV, L )P PPGMEY(—P,3, ... T). (6.3.6)
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1 n
1 n T n
Figure 6.3: The two kinds of diagrams contributing to the recursion of NMHV

amplitudes.

A simple calculation using the shift (6.2.2) now reveals that

n—3 e
PQCTvMHV(_P’ 3,... ’ﬁ) _ xfg(—P +p3)2 H <S|:L‘s,s+2xs+2,n|n>
s=3 <S n>
o |ZL’5 s+2xs+2n|n>
1313 H (sn)
= GMV(1,...,n). (6.3.7)

This completes the inductive proof that the formula (6.3.3) obtained by Elvang and
Freedman is precisely the MHV case of the ordered subamplitudes that we have
defined in (6.2.7).

6.3.2 NMHV Amplitudes

Next we turn our attention to the NMHV amplitude. The two kinds of diagrams
which contribute to the recursion are shown in Fig. 6.3. Let us begin with n =5, in

which case the first diagram is absent and only the term ¢ = 4 appears in the sum.
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According to the definition (6.2.7) we then have

fﬂ
= [ANMEV(15)P P2GMEV(T, 2,3, P)

& B B4
MNMEV (15 :/nMMHV(LQ’g,P)MMHV(_P,Zl, 5)

= [ANMEV( L B)PGNMEY(L, .. 5). (6.3.8)

Here, following the example set in the previous subsection, evaluating the Grassmann

integral leads to the square of the analogous SYM result, times the gravity factor

[4]pspa1]
[41]
(6.3.9)

GNMEV(1 . 5) = P2GMIV(T,2,3, P) = (p4 +ps)*(pr +12)? = (pa +ps)°

One can check that this result it is consistent with the known answer (for example,

from the KLT relation).

Let us now turn to the general NMHV case. In the previous section we recalled the

SYM result obtained in [7],

n—3 n—1
ANV on) =AML n) YT DT Ry (6.3.10)
=2 j=it2
It was shown in [7] that the i = 2 term in (6.3.10) corresponds to the sum over

MHV x MHV diagrams in Fig. 6.3, while the ¢ > 2 terms arise iteratively from the
MHV x NMHV diagram.
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Statement

Now we claim that the NMHV gravity subamplitude is given by

n—3 n—1

MMMV ) =AM )P > R GV (6.3.11)

n;ij ~ niig
i=2 j=i+2

where R is the same dual superconformal invariant (6.2.14) as in SYM and the

NMHYV gravity factor can be split for future convenience into three parts as follows,

Ghon Y = [rabGhaGr oy - (6.3.12)

n;ab

To express the gravity factor we introduce the notation

Pl’u _ ﬁ <k|xk,k‘+2xk+2,a1xalanGQGB .- 'mar—lar|a7”> (6 3 13)
ot k=l <k|xa1a2xa2a3 .- 'xar—1ar‘ar> ’
A1yl . <a1|xa1agxa2a3" 'xau71au|au> (6'3'14)

b1,..,bric1,ener T )
" <bl|xb1b2xb2b3 < Thy_ybLereaLeges - - 'xcr715r|cr>

which is overkill at the moment but will be fully utilized below when we move beyond
the NMHYV level. In the numerators only dual conformal chains of z-matrices appear,
while in the denominators the chains are not dual conformal due to the break in the
way the labels are arranged. The break is denoted by the semi-colon in the subscript

of Z while in the denominator of P it is immediately after the left-most spinor (k.

Then the first factor in (6.3.12) is given by

Frop = 73, (6.3.15)

Frsab = T2 (= 2000 p2a~? for a > 2, (6.3.16)

n;a—1
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while the remaining two are

L _ n,a+1,b,a,n pHa,b—3

Gn;ab - _Zn;b,a,n Pb,a,n 5 (6317)
R — nvb+1»b’a7n b,n73

Gn;ab - _Zn;b,a,n Pn . (6318)

Proof

To check that the formula (6.3.11) is correct it is useful to first have a general formula
for #2 , where the shift is defined so that P2 = 2% = 0. This tells us that the shift

parameter is given by (6.2.3), i.e

aat (6.3.19)

o T 3.

" (1]
Then we have
2 = a2 — zp(nfaw|1] (6.3.20)
_ 2ty (nfzull] — 2% (e |1] (6.3.21)
(nla[1]
_ (nfwry (w10 — 210) 24| 1] (6.3.22)
(nla[1]
_ (nfrnwirll] (6.3.23)
(nlz[1]

_ (1| T TuiinTon|n) — _Z;LZUQZS” (6.3.24)

(n|xinxon|n)
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Note that instead of writing (6.3.22) we could have alternatively written it as

(n|xy (1 — 21:)T10|1]
x%v _ . (6.3.25)
(n]@[1]
_ (n|213T50 710 |1] (6.3.26)
(n]z1i|1] -
B (| TniTipToaTon|n) Zglz;}s" (6.3.27)

(n|xinxon|n)

The freedom to write this factor in these two various forms is useful because in
certain cases either one or the other form simplifies by cancelling factors from the

numerator and denominator.

Finally we are set up to check our claim (6.3.12) for the NMHV G-factor. We first
check the case a = 2 which comes entirely from MHV x MHV diagrams. From these

diagrams we obtain

ZRWGNMHV ZRMZWGMHV( 1,...,-P)GMYV(P,....m), (6328

n;2,i

from which we find

3
GNYEV _ 2, (x% ( |55k,k+21ik+2, P )( 2 ] l {1, ”237”2 |n>> (6.3.29)

(k P) In)
= a2 (= Zp2inm PR (2o P2 (6.3.30)

which is in agreement with equations (6.3.12) to (6.3.18) for the case a = 2.

For the case a > 2 we must consider diagrams of the form MHV3 x NMHV,,_;. From
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these diagrams we obtain

S ORL,GWMEV Y R PRGNV 3 ) (6.3.31)

3<a,b<n—1 3<a,b<n—1

The sum splits into two contributions, a = 3 and a > 3. The first gives

NMHV _ .2 2 n,4,b,3,n pa,b—3 n,b+1,b,3,n pbn—3
Gn;?;b - ‘TIBx/ﬂ)(_ n;b,3,n Pb,a,n ) (_ n;b,3,n Pn ) (6332)
2 n,b,2 n,4,b,3,n pa,b—3 n,b+1,b,3,n pbn—3
- IIB(_ZnQ ) <_Zn;b,3,n Pb,a,n ) (_Zn;b,B,n Pn ) ) (6333)

in agreement with equations (6.3.12) to (6.3.18) for the case a = 3. To go from (6.3.32)
to (6.3.33) we have used the fact that 3, = — niyet = — 710 where the simplifica-

n;3,2,n

tion of the Z-factor is due to a cancellation between its numerator and denominator.

For the contributions to (6.3.31) where a > 3 we find

NMHV _ 2 2 n,b,a—1 3,a—2 n,a+1,b,a,n pa,b—3 n,b+1,b,a,n pb,n—3
Gn;ab - xle/fgl(_ n;a—1 )Pn (_Zn;b,a,n Pb,a,n ) (_Zn;b,a,n Pn )

(6.3.34)

2 n,b,a—1 2,a—2 n,a+1,b,a,n Ha,b—3 n,b+1,b,a,n Hpb,n—3
= aly(— 2z ) PR (— 2 P (-2 Phm3) | (6.3.35)

n;b,a,n b,a,n n;b,a,n

which is again in agreement with equations (6.3.12) to (6.3.18). The factor 22
completes the factor P3*2 to P22 just as in the MHV case. This completes
the verification of the formula (6.3.11) for NMHYV graviton amplitudes. Appendix
B contains some notes on extracting NMHV graviton amplitudes from the super-

amplitude (6.3.11).
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6.3.3 NNMHYV Amplitudes

In this section we consider the NNMHYV case as an exercise towards finding the

general algorithm for all tree-level gravity amplitudes.

Statement

The structure of the result is just like in Yang-Mills and similar to the NMHV
case (6.3.11) except that we now have two more subscripts on both the Yang-Mills

R-factors and the gravity factors,

MNNMHV(17 cty TL) _ R2 Rba 2H(1) Rab 2H(2)
[AMHV(I )]2 - Z n;ab Z ( n;ab;cd) n;ab;cd+ Z ( n;cd) n;absed |
g ,TL 2<a,b<n-—1 a<c,d<b b<c,d<n
(6.3.36)
The factors HY and H® can be written in the form
H?Sj()zb;cd = fmabGg;abfmab;CdeL;ab;chﬁab;cd ) (6337>
HT(L?()zb;cd = fn§abGrlzl;abﬁ%ab;CdGrlzl;ch’rlz%;cd : (6338)

In this formula fy.q, GF.. and GJf,, are defined as before in the case of the NMHV
amplitude (see formulae (6.3.16), (6.3.17) and (6.3.18)). The factor f in H® is given
by

fn;ab,ad = —Zﬁ;’g’iﬁ’" ) (6-3-39)

Frabed = (= Zigat ™) (= Z 4™ ) P, fore>a, (6.3.40)

n;b,a,n c—1;b,a,n
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and the factor f in the second term in the parentheses is given by

ﬁL;ab;bd = —ZZ{zfl,ffZ’n (6.3.41)
Frsaed = (= Zipat V(= ZwTHY P2 fore> b, (6.3.42)

Finally the new G-factors are given by

n,a,b,c+1,d,c,b,a,n He,d—3

Gn abjed — _Zn,a,b;d,c,b,a,n Pd,c,b,a,n ) (6343)
n,a,b,d+1,d,c,b,a,n pd,n—3

Gn abjed — T “n,abid,c,b,an Pb an (6344>

Proof

Let us now check the claim (6.3.36). As before we begin with the case a = 2 which
comes purely from NMHV x MHV diagrams and MHV x NMHV diagrams. We

start by calculating the former kind. From these diagrams we obtain

ZRn 21 Z n2z cd) Hr(LI%z ,cd

2<c,d<1

—ZRM S (Ryica) 2p2GNMEV(T L —P)GMEV(P, ... 7). (6.3.45)

2<c,d<i

The sum over ¢ splits into two pieces, ¢ = 2 and ¢ > 2. For the terms where ¢ = 2

we have

2 2 n,2,1,3,d,2n p2,d—3 n,2,1,d+1,d,2,n pd,i—3
Hn2z 2d = L14 |:‘T1d(_ n,2,i;d,2,n Pd2n )( Zn2,z,d2n P ):|

Pzn 3:|

lz—i—l L

(6.3.46)
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Here as in the previous subsection we have used the fact that certain Z-factors
simplify. For example, reading the Z-factor from the formula (6.3.17) and taking
into account the fact that the spinor (P| can be replaced in both the numerator
and denominator of Z by (n|z,2xs;, we would obtain ZZSZS’;ZZ ;2" The sequence
of indices 2, 4,2 implies however that one can factor out z3;. Since the sequence is

present in both the numerator and the denominator, it can simply be replaced by 2.

Thus we arrive at the form of the Z-factor in the first set of parentheses in (6.3.46).

To verify that equation (6.3.46) is consistent with (6.3.37) it remains to substitute

the Z-factors appropriate to the factors a:% y and .CE% e Doing so we obtain

(1) 2 n,d,i,2,n n,2,i,3,d,2,n 2,d—3 n,2,i,d+1,d,2,n Hd,i—3 n,i+1,i,2,n pin—3
Hn;2i;2d =Ty _Zn;i,Q,n _Zn,Q,i;d,Z,n Pd,Z,n _Zn,Z,i;d,Q,n 132',2,71 _Zn;i,Q,n pn .

(6.3.47)
The factor 22, gives the required contribution fni2i, while the factor in the second

The remaining factor in the first set of square

factor in square brackets is GZ,,.

brackets is the contribution from fn;%,gd and the other Z and P factors in (6.3.37).

Now let us look at the terms where ¢ > 2. We have

H(l) — 2
n;2i;ed — 14 n,2,;c—1 %,2,m n,2,i;d,c,i,2,n d,c,i,2,n n,2,i;d,c,i,2,n ©,2,n

3?%3 (_Zn,2,i,d7c—1p2,c—2> (_Zn,?,i,c—i—l,d,c,i,Q,nPc,d—3 ) (_Zn72,i,d+1,d,c,i,?,npd,i—i%)]

{gﬁ Pi’”‘:”] : (6.3.48)

Ti+1"

Again, substituting for x%?) and a:% i Ve find agreement with (6.3.37).

Now let us turn our attention to the latter kind of diagrams, namely the MHV x
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NMHV diagrams. From these diagrams we find

Z Rn 121 Z n; cd)2H1(1?;i,cd

2<c,d<1i

_ZRMZ SO (RE)PPPGNMYV(T, . —P)GMIY(P,... 7). (6.3.49)

2<¢,d<i

As before the sum over c splits into two pieces. For ¢ =i we find

n;d,i,n d,i,n n;d,i,n

H',Sf%i;zd |: 2 P7,221n3] [ 2 ( Ak i+1,d.i, an ,d— 3) ( Ak ,d+1, dz,npg,n—B)] : (6350)
while for ¢ > i we find

A n;d,c,n d,c,,n n;d,c,n

Hgiwd 3711{ PQ?Z"?)H 2 ( e 1Pé7c—2)( gnctlden ped- 3)( gm+idien pon- 3)}

(6.3.51)

Making the usual substitutions for the factors of the form :v%} we find agreement

with (6.3.38) in both cases.

To check the terms for a > 2 we need to consider MHV3; x NNMHV,,_; diagrams.

These diagrams give us

Z Rnab|: Z Rnabcd) Hr(t()zbcd+ Z Rncd angbcd]

3<a,b<n a<c,d<b b<c,d<n
ZRnab[ Z Rnabcd) P2H(1)(ﬁ + Z Rncd H(2) P "aﬁ) .
3<a,b<n a<c,d<b b<c,d<n

(6.3.52)

As in the NMHV case, the sum over a splits into a part where a = 3 and a part

where a > 3. The calculation is essentially the same as in the NMHV case, with
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the factor of P? = z?; providing the necessary piece of f,.,; in both cases. This

completes the verification of the formula (6.3.36) for NNMHV amplitudes.

6.4 Discussion of General Tree-Level Amplitudes

Because of the association between vertices in the rooted tree diagram Fig. 7?7 with
individual terms appearing in the iterative solution of the recursion relation (6.2.1),
it is clear that the procedure applied in the previous section can be generalized to

express an arbitrary N°PMHV n-graviton super-amplitude in the form

Mn = Z [AMHV(17 .. 7”)]QZ[RO¢(/\Z7XH”Z)PGO&()"M:\J ) (641>
P(2,...,n—1) {o}

where R, are precisely the same dual superconformal invariants (6.2.14) that appear
in SYM and G, are some additional, non-dual conformally invariant, dressing factors.
Explicit formulas for the MHV, NMHV, and NNMHV gravity factors are given
respectively in (6.3.2), (6.3.12), and (6.3.37)—(6.3.38).

The gravity factors G, for a general amplitude can be worked out on a case-by-case

basis. They always have the form

Gn;albl;... = fn;albl ey (642)

where . .. is some combination of f, G and G* factors. The iterative construction
of any desired amplitude is no more difficult than the examples we have already
studied in detail. Actually one only needs to take care of the factor f,.q,5,, because

the other parts just go from lower points to higher points automatically under the
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usual rules

(nlzny — (Plziy — (nfwnzjity , (6.4.3)

and

(n|lzg — Dlrg — (n|n;xjiTm , (6.4.4)

as, for example, in going from the NMHV formula (6.3.12) to the NNMHV for-
mula (6.3.37) and (6.3.38). The f factors arise at each level for the simple reason
that an extra propagator P? appears in on-shell recursion for gravity as compared to
the ‘square’ of the corresponding Yang-Mills result, a fact which we noted already
back in (6.2.12) As we already explained carefully in previous section for the NMHV

case, the factor f,.q,5, is needed to satisfy the recursion relation.

Although it is simple to describe the algorithm for a general amplitude in words and
by appealing to the examples detailed above, we have not identified a pattern which
would allow us to write down a general explicit formula, as was done for SYM in [7].
As noted above each R, invariant comes with its own f-type factor, and each path
in rooted diagrams which ends on a vertex with indices a1bs;...;a,b, leads to an
associated factor of the form

GR

a1,b1;...;apbp

Gt (6.4.5)

albl;..‘;apbp ?

where the general f, G and G* are suitably defined following the examples in the

previous section. Specifically we have

L _ n,al,bl,...,aT,bT,a+1,b,a,br,ar,“.,b1,al,npa,bf?) (6 4 6)
n;a1bi;...;arbriab n,a1,b1,...,ar,br;b,a,br,ar,...,b1,a1,n b,a,br,ar,...,b1,a1,n T
GR __ __rn,a1bi,.ar,bebt+10,a,00 00, b1,01,m pbyn—3 (6 4 7)
n;a1by;...;arbp;ab n,a1,b1,...,ar,br;b,a,br,ar,...,b1,a1,n br,ar,...,.b1,a1,m * o
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The f factors can be of two types, f and f . The first type are defined as follows,
n,a1,b1,...,0r,br,0,0r,br—1,ar_1,...,b1,a1,n (648)

f”?a1b13~~~§“TbT?arb = T “n,a1,b1,0,00—1,br—15br,ar,...,b1,01,0 ’

fn;albl;...;arbr;ab =

__n,aibi,esbeartlarbr—1,ar 1,501,010
1,a1,b1,...,0r—1,br—1;br,ar,...,b1,a1,n

(—zotptmem v pora fora>a,.  (6.4.9)

a—1br,ar,...,b1,a1,n br,ar,...,.b1,a1,n

The second type are given by

f __ oma1,bi,ear-1,br 1,065 ,ar,..,b1,01,m (6 4 10)
n;a1b1;..;arbr;brb — n,a1,b1,.0s0r—1,00—1;br,ayp,...,b1,a1,m s

J? _ _Zn7a17b17-~-7ar—17br—17br+17b7‘7a’r7"~7bl7a17n
n;a1b1;...;arbrab — 1n,a1,b1,...,ar—1,b0—1;br,ar,...,.b1,a1,n

(_ nﬂzl7b17~--7ar—17br—17b7a_1) by,a—2 fOl" a > b
.

n,a1,b1,...,ar—1,br—1;0—1 br—1,ar-1,...,b1,a1,n

(6.4.11)

In addition to the factors (6.4.5), other G® and G factors also appear. We emphasize
that we have attempted here only to illustrate some features of the general structure;
in order to determine precisely the factors which appear for a given path it seems
necessary to work out recursively which kinds of N°MHV xN’MHYV factorizations

that particular path corresponds to.

To stress that the algorithm can be simply exploited to generate higher and higher
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NPMHV amplitudes, we give here the formula for N3MHV amplitudes:

NIV (L) = AV () S R |

2<ai,bi<n

blal 2 a1b1b202 2 (l)
Z (Rn;aﬂn;azbz) ( Z (Rn;a1b1;a2b2;a3b3) Gn;alb1;azb2;a3b3

a1<az,ba<by az<as,b3<bz

a1biazbs 2~(2) a1by 2~(3)
+ Z <Rn;a1b1;a3b3) Gn;a1b1;a2b2;a3b3 + Z Rn ;a3,b3 ) Gn;a1b1;a2b2;a3b3

b2<as,b3<by b1<as,b3<n

a1by 2 boasg 2 (4) azba
+ Z Rn ;a2,b2 ( Z (Rn;azbz;a3b3> Gn;albl;azb2;asbs + Z Rn ;a3,b3 Gn ;a1b1;02b2;a3b3 :

b1<az,ba<n az<a3,b3<bz b2<asz,bz<n

(6.4.12)

The five different G-factors are in correspondence with the five different vertical
paths from the root node to the vertices on the lowest row explicitly shown in Fig. ?7.
Explicitly they are given by

Gl

n;a1bi;asbo;asbs fn ;a1b1 fn ;a1b13a2b2 fn ;a1b1;a2b2;a3b3 Gn sa1b1 Gn ;a1b1;a2b2 Gn;a1b1;a2b2;a3b3 ’

(6.4.13)

(2)
Gn;albl;agbz;agbg fn ;a1b1 fn ;a1b1;a2b2 fn ;a1b1;02b2;03b3 Gn sa1by Gn ;a1b1;a2b2 Gn;alb1;a3b3 )

(6.4.14)

(3) _ 7 n
Gn;albl;ang;(lgbg - fn;albl fn;albl;azbzfn;albl;%bsGn;albl;azban;asbS ) (6415)

4)
Gn;albl;azbz;agbg fn ;a1b1 fn ;a1b1;a2b2 fn albl,a2b27a3b3Gn ;a1by Gn aszGn§a2b2§CLSb37 (6416)

(5)
Gn;albl;QQbQ;lZgbg - fn ;a1b1 fn ;a1b1;a2b2 fn ;a1b1;02b2;03b3 Gn sa1by Gn sa2bo Gn;a3b3 ) (6417)

where G is shorthand for G* x G® (with the same subscripts on both).

The expressions we have found can certainly be used in the calculation of loop

amplitudes in supergravity. It is straightforward to apply the generalized unitarity
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technique in a manifestly supersymmetric way [61, 60, 20]; the basic ingredients in

this procedure are the tree-level super-amplitudes.



Chapter 7

Bonus relations in gravity

amplitudes

7.1 Review of tree amplitudes in SUGRA and

bonus relations

In last chapter, we obtained all tree-level amplitudes in N = 8 SUGRA by solving
supersymmetric BCFW recursion relations. In this chapter, we will simplify the
obtained results by applying the extra relations between gravity tree-level amplitude,

which will be called bonus relations.

As we noted from last chapter that SUGRA tree amplitude can be written as a
summation of (n — 2)! ordered gravity subamplitudes, and each of them has a

structure similar to SYM ordered amplitude. In the following we shall use bonus

113
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3
—
3
>
3

Figure 7.1: All factorizations contributing to (7.1.2) for the MHV amplitude.

relations to reduce this form to a simpler, (n — 3)! form, and first we recall the

simplest MHV case.

7.1.1 Applying Bonus Relations to MHV Amplitudes

Applying bonus relation to MHV SUGRA tree-level amplitudes was well understood
in [62]. From Eq. (6.3.2), we have the MHV amplitudes as a summation of (n — 2)!

terms,

MY = GMEV(L ) [AMV(L L n)2 4 P(2,3, . n— 1) (T.L)

From Fig. 7.1, we see that there are (n — 2) BCFW factorizations and thus the

formula can be expressed as,

MMV = My + M3+ ... + M,_4, (7.1.2)

_ o~

where each M; is a BCFW term from MAV(T, 4, P(z)) x MHV,_ with 2 = =&

<
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Now since the amplitude has 1/2? fall off, we have a bonus relation which is simple
in the MHV case,
0= ZQMQ + 23M3 + ...+ Zn—an—l' (713)

Using this relation, we can express the last diagram M,,_; in terms of the other n — 3

diagrams, and a simple manipulation gives us a (n — 3)!-term formula,

M%HV _ BMHVGMHV(L 2’ o ’n)[AMHV(L 2, e ,n)]2
(7.1.4)
+?(27377n_2)

where we have defined the MHV bonus coefficient BMHY = % Beyond
MHYV, we have many more types of BCFW diagrams with complicated structures
and the application of bonus relations becomes trickier. In the next section, we shall

work out the NMHV and N*MHYV cases, and then move on to general amplitudes in

section 4.

7.2 Applying Bonus Relations to Non-MHYV Grav-

ity Tree Amplitudes

7.2.1 General Strategy

Before moving on to examples, we first explain the general strategy for applying
bonus relations to non-MHYV gravity tree amplitudes. For a N*MHV amplitude,

inhomogeneous contributions of the form NP MHV x NYMHV are needed (p+¢+1 =
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k)'. Naively one would like to use “bonus-simplified'? lower-point amplitudes for
both M; and Mg in the BCFW recursion relations, but this is not compatible
with the fact that we can only delete one diagram (not two) by applying the bonus

relations, if we want to preserve the structure of ordered BCFW recursion relations.

To keep the advantages of the ordered BCFW recursion relations, which are crucial
to solve for all tree-level amplitudes, instead we shall apply bonus relations selectively.
The idea is illustrated in Fig. 7.2. Similar to the MHV case, we shall delete Fig. 7.2(d)
by using bonus relations. To compute the inhomogeneous parts of the amplitudes,
we shall use the bonus-simplified amplitude only on one side of a BCFW diagram,
namely the lower-point amplitude with the leg (n —1) in it, as indicated in Fig. 7.2(a)
and Fig. 7.2(b). In this way, the amplitude splits into two types, one type coming
from the diagrams of the form as in Fig. 7.2(a), which has the leg (n — 1) adjacent
to the leg n and will be called the normal, or type I contributions, and the other
one coming from those having the form as in Fig. 7.2(b), which has the leg (n — 1)
exchanged with another leg (b — 1), and will be called the exchanged, or type II

contributions,

Mn = {AnMHV}2(Z Bél’ml)GaRi + Z Béznm)[GﬁR%(bl —len— 1)]) + ?(27 37 sy 2)7
a B
(7.2.1)
where (b — 1 <> n — 1) denotes the exchanges of momenta (py, 1 < p,_1) as well

as the fermionic coordinates (my, 1 < 7,-1), and we have used square bracket to

indicate that the exchanges act only on the expression inside the bracket. The

'We follow the notations of reference [7] to call the contributions from diagrams of type Fig. 7.2(a)
or Fig. 7.2(b) as inhomogeneous contributions, while those from Fig. 7.2(¢) as homogeneous ones.

2Here “bonus-simplified" means that these lower-point amplitudes used in the BCFW diagrams
are simplified by using bonus relations.
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by —1 by

\

~ |—

1 n

(a) Inhomogeneous diagram type I

1 1 Vi N

o AN NG

/ \ \
- >~ |-
T b —1 n—1
1 n 1 n
(b) Inhomogeneous diagram type II (c) Homogeneous diagram
n—1 3

2

1 n

(d) Diagram deleted by bonus re-
lations

Figure 7.2: Different types of diagrams for a general N*MHV amplitude, where
k=p+q+ 1. We use a dashed line — — —— connecting three legs to denote a
bonus-simplified lower-point amplitude, in which these three legs are kept fixed. For
lower-point amplitudes without dashed lines, we use the usual (n — 2)! form.
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superscript (i, m;) in Bc(f’mi) is used to show the type of this contribution, which will

become clear in the examples.

Thus we have seen that, by using bonus relations, any amplitude can be written as a
summation of (n — 3)! permutations with the coefficients B which will be called
bonus coefficients. In this section, we shall calculate all bonus coefficients for NMHV
and N2MHYV cases, and generalize the pattern observed in these examples to general

N*MHV amplitudes in the next section. Once bonus coefficients are calculated, we

obtain explicitly all simplified SUGRA tree amplitudes.

7.2.2 NMHYV Amplitudes

Here we use bonus relations to simplify the (n — 2)! form of NMHV amplitudes.
First we state the general simplified form of NMHV amplitudes, and then prove it

by induction. To be concise, we abbreviate the combinations

{n; albl} = Gn;albl {Rn;alblAMHV(l, 2, . ,n):|2 (722)

and similar notations will be used in the following sections.

As mentioned above generally, we delete the contributions corresponding to Fig. 7.2(d)
by using the bonus relation. It is straightforward to compute the inhomogeneous
contributions from the two MHV x MHV diagrams, Fig. 7.3(a) and Fig. 7.3(b).

Firstly, let us consider the contribution from Fig. 7.3(a), which corresponds to terms
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bl —1 bl n—1 b]

D A \M/\ NP \u\
/

(=)

b —1

(a) Inhomogeneous diagram type I~ (b) Inhomogeneous diagram type II

n—1

(c) Homogeneous diagram

Figure 7.3: Diagrams for NMHV amplitudes.
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with a; = 2, and we have

M, = Bfll;%bl{n; 2b1}, with 4<b <n-1, (7.2.3)

where Bg%b , are the special cases of the general bonus coefficients Br(ic)bl b, We have
used the superscript (1) to indicate that this is the contribution coming from type-I

diagram, and similar notations will be used below.

When by # n — 1, the bonus coefficients are given by,

n — 1|Zp, 0, Tpin |
Bﬁ:()zlb1 _ BMHV( ’ biai b ‘ > (7'2'4)
7 <n - ]‘|$blalxaln‘n>
Here we note that we can get the above coefficients from the previous ones, namely
the bonus coefficients of MHV amplitude, multiplied by the factor % It
1(11 aln
is a general feature of this type of coefficients for N\MHYV case, which are given by

NE=IMHYV coefficients multiplied by the same factor, as we will see explicitly again

in the N>2MHYV case.

However when b; = n — 1, no bonus relation can be used for the right-hand-side
3-point MHV amplitude in Fig. 7.3(a), and we find
BW S U O G V1Y 1]. (7.2.5)

e = 1) ol — 1

For the exchanged diagrams, Fig. 7.3(b), the contribution can be similarly written as

My = B, [{n;2a}(by =1 > n—1)], with 4<b <n—1, (7.2.6)
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2)

where the bonus coefficients B, ;.

are given by

(1n) (n—10b —2)(a, )

Bylosn, = ai 7.2.7
0 = = 1) (gt b1 — 2) (727)
and we have defined z7,, as,
x;ibi = Ta;bi—1 + Tp—1n
= Tasb; (pbifl ~ pnfl)- (728)

All the above calculations do not include the boundary case a;y =n — 3,y =n — 1,
which needs special treatment. This boundary case is special because it recursively
reduces to the special 5-point NMHV (MHV) amplitude. It does not have the
diagram with the type of MHV3;x NMHV, and one has to treat it separately. We
apply the bonus relations to this case in the following way: we use the bonus relation

to delete the contribution from Fig. 7.4(a), and compute Fig. 7.4(b), and we find

[24][34][51]

51
Ms = - [23][45][41]

[{5:24}(3 = 9)] + P(2,3). (7.2.9)
By plugging the above 5-point result in Fig. 7.4(c), we get the boundary term of the
6-point NMHV amplitude

Méboundary) o <16> <25> [35] [45}1‘%6

~ (15)[34] (2|1 + 6[5](6]1 + 2|5] {635} (4 = 5)]. (7.2.10)

A generic form for the boundary term of the n-point NMHV amplitudes can be
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(a) 5-point diagram deleted by (b) 5-point diagram
bonus relation
2 3
4
= /\/
D —(J—°
AN /
1 6

(¢) 6-point diagram calculat-
ing the boundary contribution

122

Figure 7.4: Diagrams for 5-point NMHV amplitude and the boundary term of 6-point
NMHYV amplitude. Fig. 6(a) and Fig. 6(b) are used to calculate the bonus-simplified

5-point right-hand-side amplitude of Fig. 6(c).
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obtained as a straightforward generalization of (7.2.9) and (7.2.10),

M(boundary) — B(boundary) {{TL, n—3n— 1}(n — Qs n — 1)}’ (7211)

n nn—3 n—1

boundary) . .
where Bfw(ﬁ% Zr_y% is given by,

B(boundary) _ <1Tl> <Tl —4n— 1>[n —3n— 1] [n —2n— 1]']’%7311
w3 el i — D — 3 n—2(n — 4 2n_3 n1|n — 1) (n|@n_1 n_sln — 1]
(7.2.12)

Putting everything together, we obtain the general formula for NMHV amplitude and

as promised, the amplitude indeed can be written as a sum of (n — 3)! permutations

n—4 n—1
MM = 33 (Bl dmanbi} + B [{msanbi 1o — 1 n = 1)]) 4 M)
a1=2 bi=ai1+2

+P(2,3,...,n—2). (7.2.13)

Proof by Induction

Here we shall give an inductive proof for the simplified NMHV formula. For a; = 2,
as we explained above, the formula follows directly from Fig. 7.3(a) and Fig. 7.3(b).
Therefore we shall focus on the cases when a; > 3, which correspond to the homoge-
neous contributions from Fig. 7.3(c). We shall prove that the formula satisfies the

BCFW recursion relations.

First note that we have deleted one diagram of the form MHV,(1,n—1,P) x MHVy

by using bonus relations, this results in a multiplicative prefactor for the overall
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amplitude, which is given by,

- (In){n —1 2)

=)= o1

(7.2.14)

(1)

(2) (boundary)
ra1by? and B

Let us consider the bonus coefficient B other coefficients B, ;, nin—3 n—1

can be treated similarly. By plugging formula (7.2.4) into the (n — 1)-point amplitude

M(—ﬁ’, 3,4,...,n—1,7) in Fig. 7.3(c), it is straightforward to check that the second

1) n=lzeya) Tyyaln)

b is transformed back to itself under the recursion
n;a1by? <n—1\xb1a1xa1n\n>’

piece of B

relations.

For the first piece BMHY = % of B! which is the MHV bonus coeffi-

T (n n—-2){1 n—1 n;a1b1?

cient, the proof is essentially the same as in the MHV case. Taking into account the

factor in (7.2.14) coming from bonus relations, we have

(n—1n—-2)(pn) (In){n—12) (n—1n-2)(1n)

nn—2pn—1  An-1(n2) (n_2y1n_1)

(7.2.15)

Thus the contribution with Bfll()l b, indeed satisfies the recursion relations.

Finally we should remark that we have used the fact that {n;a;b;} by themselves

satisfy the ordered BCFW recursion relations during the whole proof.

7.2.3 N?MHYV amplitudes

In this subsection we consider N2MHV amplitudes as one more example to show the

general features of bonus-simplified gravity amplitudes. Similar to NMHYV case, let



125

us denote the ordered gravity solutions in the following way

H(l)

n;a1by,azbz

2
{Rn;albl bia1 AMHV(L 2, e ,77,):| = {Tl, Cllbl, agbz}l,

n;a1by,az2b2

H(2)

n;a1by,azbz

2
[Rn;alln RZ?S;@AMHV(L 2. .. 771)} = {n; a1b1, a252}2-
There are four relevant types of diagrams (and a boundary case) which contribute
to the general N2MHV amplitudes. The general structure of N?MHV is given in
Fig. 7.5 and the corresponding contributions from each of the four diagrams can be

calculated separately.

First we consider the contributions from the diagrams in Fig. 7.5(b), which are of
the form MHVx NMHV. We use bonus-simplified amplitude for the right-hand-side

NMHV amplitude and we obtain?,

MI - Z Z (B7(11;t7111)b1;a2b2 {n7 albl; a2b2}2

2<a1,b1<n—1 b1 <az,b2<n

+ B, s [{n a1by; asho}a(by — 15 m — 1)])
+ 3 BEPm) niagby;n — 3n — 1a(n — 2 & n — (J12.16)

n;a1b1;n—3n—1
2<ay,b1<n—1

where in the first sum as < n — 4 because of the range of summation of the first

3Here and in the following calculations we have included the corresponding homogeneous terms,
for the case we consider the contributions are from Fig. 7.5(a).
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term in Eq. (7.2.13). Here the bonus coefficients are given by

(1,1) _ <1TL> <TL —1n-— 2> <TL — 1|xa2b2xb2N|n> <7’L - 1|xa1b1xb1n‘n>
niibriazby <1n - 1><7’L n— 2> <n - 1]$a2b2xa2n|n> <n - 1|xalblxam|n>
(1,1) _ <17’L> <7’L _ 1|$n—1¢12|n _ 1] <n _ 1|xa1b1xbm|n> by —
nja1biiagby T 1n—1 1 -1 ( 2 ="N— 1)
(In ) (N Tpay |0 ] (n |Z a1 Tayn|n)
(1,2) _ <1Tl> <n — 10— 2>( a2b2>2 <TL B 1|xa1b1xb1n|n>
nieibrsazb: (In — 1)(n|pa,x a2b2|b2 2) (n = gy, Tayn|n)
— 1|@ayp, Toyn|n)
Bq,bou.ndary) _ B(l?oundary) < arbiLbin 7917
n;a1by;n—3n—1 nn—3 n—1 < 1|$a1b1xa1n|n>, ( )

(1,boundary)

where the last term B, . 5, 1

comes from Eq. (7.2.12). Again the superscripts
are used to show the types of the contributions. For instance, in the superscript

(1,1) of B the first “1” means that it is the type-I contribution, while the

n; a1b1 azbz’
second “1” implies that it is descendant from the NMHV case. A generalization to

the N*MHV case will be B™ where m is a string composed of three kinds

n; a1b1 sakbr

of labels, “1" “2" and “boundary".

As we have mentioned in the NMHV case, and we want to stress it here again that
the bonus coefficients of Fig. 7.5(b) are simply given as the previous ones, namely

the coefficients of NMHV amplitudes, with replacements (a; — ag,b; — by) and

<n71|xa1b1 $b1n|n>
(n=1Za;b; Tagn|n) "

multiplied by the same factor

Next, we calculate the contributions from the diagrams in Fig. 7.5(c¢) which are of

the form NMHV x MHV and we get

My= > > (Bffallbham{n arby;asbeti(n — 1 by — 1)

2<a1,b1<n—1 a;<az,ba<by

+ B2 [{njaiby;asbs}r(bs — 1« by — 1)]) (7.2.18)

n;a1bi;a2b2

+ ) Ba(zgali?zunfirym 2[{njan —Lin —3n —1h(n -2 < n—1)].

2<a1<n—3
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(a) Homogeneous diagram

b1 —1 by
HCa
. \
n—1

3

3

b —1

(¢) Inhomogeneous diagram type II

3l

b —1

(d) Inhomogeneous diagram type IT

b —1

n—2

(b) Inhomogeneous diagram type I

by

Sl

(e) Inhomogeneous diagram type I

Figure 7.5: Diagrams for N2MHV amplitudes.
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In the above sum we do not include the boundary case (a, by, as,b) = (n —4,n —

1,n —4,n — 2), which we shall study separately. The coefficients are given by

(2,1) . (In){n —1 by —2)(n — 1|$bza2$§>2b1$;1bl%m|”>(xiubl)z
nibiazbs <1n - 1><b1 - 2|x:zlb1$a1n|n> <n - 1|xb2a2$;2b1xg1b1xa1nm>
PSRN L0 e T L [C7AYH
mOaE (1 — 1) (0] Tpa, Ty, Thyagn — 1
(2,2) o (In)(n —1 by — 2>(I:12b2>2(x;1b1)2
bzt (1 — 1) (] Za, Ty, Ty 0y Tty |02 — 2)
(2,boundary) (In){by —4n—1)[by —3n—1][by —2n — 1]($21—3b1)2(37:11b1)2

n;a1by;n—4n—2 — <1

By comparing the results with those of NMHV, now we are ready to see the patterns.
For this type of diagrams Fig. 7.5(c), the bonus coefficients can be obtained from
the results of NMHV by doing the following replacements on the indices of region
momenta z’s: n — by,a; — ag,by — by, and x — 2’ when x has the index n with
it. Furthermore one should apply the changes on (n| as well as (n — i|, which read
(n| — (n|@pag, 2}, and (n —i|(or [n —i]) — (by —i[(or [by —i|) for ¢ > 1. Finally

we multiply the obtained answers by a factor (2, ; ).

The bonus coefficients of the contributions from other diagrams are actually the
same as those of the NMHYV case. For the sake of completeness, let us write down

these contributions: for the contribution from Fig. 7.5(d), we have

Muy= ), > Bgilblmw[{n; arby;aghy}a(by — 1 n—1)], (7.2.20)

2<ay,b1<n—1b1<az,ba<n

where the bonus coefficients B are given by Eq. (7.2.7); for the other

n;a1bi;azbs

n—1)[br =3 by = 2[{br — 4|wy,—a b, 1|0 — 10| Tpa, 2, p, oy 10,30 — 1]
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contributions coming from Fig. 7.5(e), we get

My = Z Z Br(iz)zlbl;agbg{n; arby; asbs }y, (7.2.21)

2<a1,b1<n—1a1<az,ba<b;

and similarly the coefficients are given by Eq. (7.2.4) and Eq. (7.2.5).

Again as in the case of Eq. (7.2.18), this formula does not include the boundary case,
{n;a1by; asbe}1 = {n;n —4n —1;n —4n — 2};, which should be considered separately,

as we shall do below.

Similar to 5-point NMHV amplitude, the 6-point N2MHV amplitude is special which
only receives contributions from diagrams of NMHV x MHV type and we must treat
it separately. We can delete Fig. 7.6(a) by bonus relations, and the contribution

from Fig. 7.6(b) gives,

MGI—

[16][25”‘51?[{6; 25,24},(3 < 5)] + P(2,3, 4). (7222)

[15][24][56]

As the NMHYV case (7.2.11), 6-point N*MHV amplitude (7.2.22) can also be similarly

generalized, and we obtain the boundary term of the full n-point N2MHV amplitudes,

Mboundary) pLPovndary) {nsn—4n—1;n—4n—2}(n—3 < (7-2133)

nin—4 n—1n—4 n—2

where the bonus coefficients are given as

B(boundary) o <1Tl> <n —on— 1)[” —4dn— 1][77’ —2n-— 1]'%7217471 (7.9 24)
nin—4 n—1n—4 n—-2 — <1n — 1>{n —4n— 2] <n _ 5|.T |n _ 1]<n|x |n \ '1] :
n—4 n—1 n—1 n—4

Therefore we have calculated all the contributions for N2MHV amplitudes and as in
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N o

N \S

1 6 1 6
(a) 6-point diagram deleted by bonus (b) 6-point diagram
relations

Figure 7.6: Diagrams for 6-point N2MHV amplitude.

the NMHYV case, it can also be written as a sum of (n — 3)! permutations,
MEZMHV = MI + MII + MHI + MIV + My(Lboundary) + ?(2, 3, oo, = 2) (7225)

The result can be proved very similarly by induction as in the NMHYV case.

7.3 Generalization to all gravity tree amplitudes

Now we have all the ingredients for generalizing our results and stating the patterns
for all tree-level gravity amplitudes. Our way of using bonus relations gives the
simplified tree-level N°MHV superamplitude as a sum of (n — 3)! permutations, and

each of them contains normal and exchanged contributions,

MSkMHV _ [AnMHv}Q(Z B((l17ml)GaRi+Z Béz’WQ)[GﬁR?g(bl_l — n—l)])+f]3(2, 3,... 771—2),
@ B
(7.3.1)
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In both contributions, by reducing the homogeneous term recursively, we have k
types of terms from & BCFW channels, N°MHV x NYMHYV, for p 4+ ¢ + 1 = k with
0 < p,q < k. As we have stressed repeatedly, to respect the ordered structure, we
have only used bonus relations on one lower-point amplitude, namely the right-hand-
side NYMHYV for normal contribution, and the left-hand-side N°MHYV for exchanged

contribution.

Before presenting all the bonus coefficients for general tree amplitudes, we pause to
show by induction that bonus relations roughly reduce the number of terms from
(n — 2)! in the original solution to (k + 1)(n — 3)! in the simplified one. To get the
previous counting we note that in the N°MHV x NYMHV channel of the normal
contribution, by applying bonus relations to the NYMHV lower-point amplitude we
can reduce the number of terms from (n — 2)!/k to (¢ + 1)(n — 3)!/k. Taking into
account all channels gives us (1+24...+k)(n —3)!/k terms, with the same number
from the exchanged contribution, thus the simplified form has only (k + 1)(n — 3)!
terms. By parity, one only needs N\ MHV amplitudes with n > 2k + 2 legs and thus
the bonus relations can be used to delete at least half of the terms in tree amplitudes.

The simplification becomes more significant when n > k.

Now we generalize the pattern found in the NMHV and N2MHV cases to write down
all the bonus coefficients for general tree amplitudes. As we have learned from the
examples, once the bonus coefficients of N¥"!MHV amplitudes are calculated, then for
the N*MHV amplitudes, one only needs to compute two types of new contributions
for N'MHV amplitudes, namely the normal contribution from MHV x N*~'MHV
channel (¢ = k — 1) and the exchanged contribution from N*"!MHV x MHV channel

(p =k — 1) (see Fig. 7.7). All other bonus coefficients B(™ of N°MHV x NYMHV
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b1—1 b1 n—1 b]

O ACEYCRES
5 AN

(a) MHV x N*~IMHV (b) NF=IMHV x MHV

/o

b —1

P> \
3i

Figure 7.7: Two relevant diagrams for computing new bonus coefficients for n-point
NA¥MHYV amplitude. The rest of the bonus coefficients can be obtained recursively
from the N*"'MHV case.

with ¢ < k —1 and p < k — 1, are the same as those computed previously, namely
the results from N*'MHV amplitudes. Since the summation variables of N*\MHV
amplitude can be obtained by adding a pair of new labels ay, by to the previous one,

o, a = {d;ay, by}, the result can be written as

™), (7.3.2)

for both normal contributions with ¢ < £ — 1 and exchanged ones with p < k — 1.

Thus we only need to calculate two new contributions from Fig. 7.7(a) and Fig. 7.7(b).
It is straightforward to confirm that all the observations we have made for the cases of
NMHYV and N2MHYV can be directly generalized to all tree-level amplitudes. We shall
first state the rules and then justify them. Firstly, just like Eq. (7.2.4) and Eq. (7.2.17)
for NMHV and N2MHYV cases, the bonus coefficients of Fig. 7.7(a), B{™1) | can be
similarly obtained by the replacements on the indices of the region momenta z’s,

a; — Qiy1,b; — biyq, for Bg,nl) of N*=IMHV amplitudes, then multiplying with a
<n71‘xa1b1xb1n‘n>

simple common factor of the form
(n=1|Za;b; Taynln)

, which are the same for all tree-level
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amplitudes,

<n - 1|xa1b1xb1N|n>

Bél,ml) —
<n - 1’Ia1b1xa1n|n>

B(T,nl)(az — A1, bz — bi+1). (733)

«

Secondly, the bonus coefficients for the new exchanged contributions Fig. 7.7(b),
Béz’m) , can be obtained by taking Bg,m) of N¥~I!MHV amplitudes, and performing
the following replacements on the indices of region momenta x’s, namely n — by, a; —
air1,b; — biy1, and  — 2’ when x has index n with it. And for the spinors, we have
(n| — (n|rpa,z,,,, as well as |n —i)(or |n —1i]) — |by —i)(or |by —i]) for i > 1. In

addition, the obtained answers are further multiplied by a factor (z , )2,

BE™) = (al,,)*Bg", (7:34)

aiby

where the arguments of Bg,m) should be changed under the rules we described above.

All these rules can be understood in a simple way. For the rules of the normal

contributions, the common factor is obtained in the following way,

s (nP) (0= 1rayaneln)

Zn—1 <n — 1ﬁ> <n - 1|xa151xa1N|n>,

z; (nl)
Zno1 (n —11)

(1- (7.3.5)

—>(1—

where (1— i) comes from the fact that we delete one diagram using bonus relations,

(nl)
(n—11)

and is a factor that always appears in every bonus coefficient.

While for the rules of the exchanged contributions, we find that the factor (z/, , )2

aiby

appears because

(n1) — (P1) — [P1)(P1) — («,, )% (7.3.6)
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and (n| changes in the following way under the recursion relations,

(n| — (P| — (n1)[1P|(P| — (N|Trna, Ty, - (7.3.7)
Besides, the transformation rule of z,,,, follows as
Ty =7 xﬁ%-&-l - xél%‘ﬂ’ (7‘3‘8)

where v can be a or b and we have used the fact that Pp =Dbt+Dn—2+Db-1+D5-

So in this way, we have a complete understanding of the rules we have proposed.

Finally, as shown in the examples a boundary contribution has to be considered
separately because the special case (k+4)-point N'MHV amplitude only has diagrams
of N*"IMHV x MHV type. For this special contribution, it is straightforward to

obtain a general form,
M) Bl (AN G RS (n — k — 1o n = 1), (7.39)

where fp = {n;n—k—2n—1in—k—2n—-2;...;n—k—2n—k}, and the
coefficients can be written as

2
boundsy) _ (In)(n—k=3n—Dn—-k-2n—1]n—kn—-1z} 4 ,, 3.10)

ho T (n—Dn—k—2n—-2(n—k—3Tn_t_s n1|n — 1(n|Tp_1 n_r_o|n —1]

Therefore, we have found a set of explicit rules to write down all the bonus coefficients

for all tree amplitude in N = 8 supergravity.
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7.4 Conclusion and outlook

In this chapter, we simplified tree-level amplitudes in N = 8 SUGRA, from the
BCFW form with a sum of (n — 2)! permutations to a new form as a sum of (n — 3)!
permutations. This is achieved by using the bonus relations, which are relations
between tree amplitudes in theories without color ordering. In contrast to the MHV
case, a naive use of the bonus relations ruins the structure of the non-MHV ordered
tree-level solution, thus we proposed an improved application of the relations, which
respects the ordered structure. The key point here is to apply the bonus relations
to only one of two lower-point amplitudes in any BCFW diagram, which indeed
brings SUGRA amplitudes to a simplified form having a (n — 3)!-permutation sum
with some bonus coefficients. To illustrate the method, we have explicitly calculated
simplified amplitudes for the NMHV and N?MHV cases. We have also argued that
the pattern generalizes to N¥MHV cases, and presented a simple way for writing
down the bonus coefficients of all amplitudes, thus one can recursively obtain the

simplified form for general SUGRA tree amplitudes.

Apart from the computational advantages, the simplification is also conceptually inter-
esting. The relations between gravity and gauge theories have been reexamined from
various perspectives recently [63, 64]. A common feature, of these “gravity”="“gauge
theory”? methods, is the freedom of rewriting (n — 2)! forms of gravity tree ampli-
tudes as (n — 3)! forms, essentially by using BCJ relations on the gauge theory side.
Our result confirms this freedom at an explicit level by directly using it to simplify
SUGRA amplitudes, which also suggests that bonus relations may be regarded as
explicit gravity relations induced by Yang-Mills BCJ relations. It may be fruitful

to understand the exact connections between our method, general forms of KLT
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relations, and the square relations. In particular, it would be nice to go beyond
SUGRA and see if similar simplifications occur generally, given that both BCFW

recursion relations and bonus relations are valid in more general gravity theories.

Bonus relations and simplifications we obtained at tree level can also have implications
for loop amplitudes. Through the generalized unitarity-cut method, our new form
of tree amplitudes can be used in calculations of loop amplitudes. In addition, the
square relations have been conjectured to hold at loop level [65], thus we may expect

similar simplifications directly for the SUGRA loop amplitudes.



Chapter 8

Conclusions

Before looking forward for the future directions, let us look back and briefly summarize
the main ideas we have encountered. In this thesis, we have showed how the power
of modern on-shell techniques of computing scattering amplitudes both in N = 4
SYM and N = 8 SUGRA. Firstly two dual formalisms, namely twistor string thoery
and Grassmannian formulation, of the S-matrix in N =4 SYM have been studied in
great details, specially we focus on the amazing relation between these two beautiful
formalisms, and all tree-level contour in Grassmannian formulation was constructed
by using the idea of “adding one particle at a time"'. We observed that there is a
smooth deformation which interpolates between the connected prescription of twistor
string theory and the Grassmannian integrand together with the explicit contour of

integration.

Then we turn to study the loop-level amplitudes in N = 4 SYM using leading

singularity methods. We, for the first time, determined all the scalar integral basis

137
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and the corresponding coefficients of three-loop five-point amplitude in N =4 SYM.
We also use our new obtained result to determine two previously unknown numerical

constants in BDS ansatz.

After finishing the study on N = 4 SYM, we study various aspects of tree-level
scattering amplitudes in N = 8 SUGRA. A new MHYV scattering amplitude of n
gravitons at tree level was presented and proved. Some of the interesting features
of the formula set it apart as being significantly different from many more familiar
ones. We hope the formula will eventually lead to Parke-Taylor-like formula for
SUGRA. We also found that the formula has a very simple link representation in
twistor space, which may be useful for finding Grassmannian formulation(or twistor

string formulation) for N = 8 SUGRA.

By solving BCFW recursion relations explicitly, an algorithm of computing all tree-
level S-matrix in N = 8 SUGRA was obtained by solving supersymmetric BCFW
recursion relations. A very interesting Kawai-Lewellen-Tye (KLT)-like structure
between Yang-Mills amplitudes and the gravity amplitudes naturally appears in our
tree-level solutions. Meanwhile it has been pointed out that there are reasons to
suspect that N = 8 SUGRA to be ultimately even simpler than SYM. One particular
interesting feature is that gravity amplitudes exhibit exceptionally soft behavior
under BCFW shift, which leads to an interesting extra relation between gravity
amplitudes, which we called bonus relation, which allows us to even simply the

obtained all tree-level amplitude.

There various remaining issues that need to be addressed, let us point out some
of them here. Firstly, it would be of great interest to find the generalization of

the Grassmannian formulation(or the twistor string formulation) for the S-matrix
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of N = 8 SUGRA. Another possibly related exciting direction is the finiteness of
N =8 SUGRA. All the symmetries of the theory as well as the novel soft behavior
of gravity tree-level amplitudes under BCFW shift may finally help us to understand
better the perturbative behaviors of SUGRA amplitudes. For N =4 SYM, recently
a lot efforts have been focused on the loop amplitudes and the so-called remainder
functions. Due to the recent exciting developments on the BCFW-type recursion
relations for loop integrands as well as many other relevant interesting progresses,
we are in a good position to completely understand the N =4 SYM in the planar
limit and also to have a better understanding of the non-planar case in future. It

would not be very surprising if all these subjects are eventually related to each other.
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.1 The Nine-Point N°MHV Tree Amplitude
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