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Abstract: The Reissner–Nordstrom spacetimes and some generalised Reissner–Nordstrom space-

times are analysed. The blackhole solutions are considered. The generalised Reissner–Nordstrom

spacetimes with a cosmological-constant term, endowed with a Schwarzschild solid-angle element,

are analytically delineated: the radii of the blackholes are analytically calculated and newly param-

eterised; the coordinate-singularity-avoiding coordinate extension is newly found, i.e., such that

the tortoise-coordinate transformation can therefore be applied; the new conditions for merging the

solutions as the physical horizons are analytically outlined; the new parameter space of the model is

set and constrained; the new role of the cosmological-constant term in designating the Schwarzschild

radius is demonstrated; the Reissner–Nordstrom–deSitter case and in the Reissner–Nordstrom–anti-

deSitter one are newly demonstrated to be characterised in a different analytical manner. Furthermore,

a new family of solutions is found, qualified after the cosmological-constant term. The generalised

Reissner–Nordstrom spacetimes with a linear term, endowed with a Schwarzschild solid-angle

element, are analytically studied: the radii are enumerated and newly parameterised; the new condi-

tions for the merging of the radii as the physical horizons are set; the new parameter space of the

system is arranged and constrained; the role of the linear-term parameter in the delineation of the

Schwarzschild radius is newly proven to be apt to imply a small modification only. The generalised

Reissner–Nordstrom spacetimes, endowed with a Schwarzschild solid-angle element, with a linear

term and a cosmological-constant term are newly inspected: the radii are analytically calculated and

newly parameterised; the new conditions for the merging of the radii as the physical horizons are

prescribed; the new parameter space of the scheme is appointed and constrained; the roles of the

parameters are newly scrutinised in their application to modify the physical interpretation of the

Reissner–Nordstrom parameters only in a small manner; the coordinate-singularity-avoiding coordi-

nate extensions are newly found, i.e., such that the tortoise-coordinate transformation can therefore

be applied; the definition of the physical radii is newly found; the results are newly demonstrated

in both cases of a positive value of the cosmological constant and in the case of a negative value of

the cosmological constant in a different manner; the role of the linear-term parameter is also newly

enunciated. More over, a new family of solutions is found, which is delineated after particular values

of the linear term and of the cosmological-constant one. The quantum implementation of the models

is prospectively envisaged.

Keywords: Reissner–Nordstrom spacetimes; generalised Reissner–Nordstrom spacetimes

1. Introduction

Reissner–Nordstrom blackholes are constituted of one singularity point and two
horizons, i.e., an inner Cauchy horizon and an event horizon. The embedding diagram of
the Reissner–Nordstrom blackhole for a constant-angle section is obtained as in [1]
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ς(r) = ±
∫ r

r+
dr′

2Mr′ − Q2

r′2 − (2Mr′ − Q2)
(1)

Differently from single-horizon blackholes and so, in particular, from asymptotically flat
spacetime blackhole solutions [2], for a Reissner–Nordstrom spacetime blackhole solution,
it is possible to provide a tortoise-coordinate extension, i.e., an extension of the radial
coordinate r into the complex plane as a function of the real component and of the imaginary
one. In more detail, let be x the real component and y the imaginary one: the tortoise-
coordinate z is defined as

z(x, y) =
∫ x+iy dr

gtt
. (2)

An analytical discussion leads to the definition of Re[z(x, y)] and Im[z(x, y)] as tow surfaces,
respectively. Two groups of contours on each surface are possible, i.e.,

Re[z(x, y)] = c1, (3a)

Im[z(x, y)] = c2, (3b)

with
C = c1 + ic2, (4)

i.e., such that Re[z(x, y)] and Im[z(x, y)] are two surfaces. The Stokes lines are defined as

Re[z(x, y)] = 0 (5)

on Re[z(x, y)] = c1 from [3]; the horizons must stay within the closed lines of the Stokes lines.
The numerical calculation of the Stokes lines of a Reissner–Nordstrom blackhole (in

four spacetime dimensions) is depicted in ([4] Figure 4), leftmost panel.
It is therefore necessary to outline that the singularity, the inner horizon and the event

horizon correspond, respectively, to the three poles of the variable z from Equation (2).
This analysis is complemented after the study of [5], in which the imaginary part of

the frequency is found to be not periodic.
The Stokes portraits of regular blackholes are introduced in [6].
The generalised Reissner–Nordstrom spacetimes endowed with a Schwarzschild solid-

angle element and a cosmological-constant term were pointed out as enjoying innovative
characterisations.

The stability properties of the generalised Reissner–Nordstrom spacetimes with a
cosmological-constant term both in the deSitter case and in the anti-deSitter case have been
studied in [7].

The Minkowski inequality of the Reissner–Nordstrom–anti-deSitter spacetimes is
presented in [8].

The generalised Reissner–Nordstrom spacetimes endowed with a schwarzschild solid-
angle element and a linear term were delineated after the following interesting properties.

In [9], a Reissner–Nordstrom spacetime endowed with a linear term was presented
and the three horizons were hinted at; the possibility of merging of the horizons was not
included in the analysis.

In [10], the features of a Reissner–Nordstrom spacetime endowed with a ‘quintessen-
tial’ component is qualitatively analysed as the mass and the charge are assumed as small
quantities; ‘approximate Lie symmetries’ are implemented.

The generalised Reissner–Nordstrom spacetimes endowed with a Schwarzschild solid-
angle element, a linear term and a cosmological constant were delineated to exhibit crucial
features.

In [11], different types of spacetimes are qualitatively depicted and the features of the
horizons are qualitatively described.

Some of the features of the generalised Kottler spacetimes and their parameter spaces
were studied in [12,13].
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In the present study, we analyse the generalised Reissner–Nordstrom spacetimes
endowed with a Schwarzschild solid-angle element, a cosmological constant; the gener-
alised Reissner–Nordstrom spacetimes endowed with a Schwarzschild solid-angle ele-
ment, a linear term; and the generalised Reissner–Nordstrom spacetimes endowed with a
Schwarzschild solid-angle element, a linear term and a cosmological constant.

The analytical expressions of the radii are spelled out within a new parameterisation.
The well-posedness of the new analytical expressions of the radii is discussed.
The coordinate-singularity-avoiding coordinate extensions are newly found and pro-

vided in the instances where the cosmological-constant term is present: the tortoise-
coordinate transformation is newly demonstrated to apply to the generalised Reissner–
Nordstrom spacetimes, thus giving rise to new understanding of the geometries.

In the case of a generalised Reissner–Nordstrom spacetime with a linear-term parame-
ter, the conditions for the vanishing of the explicit imaginary part of the radii are set.

In the three instances, the parameter space of the models is newly set and newly fully
constrained.

The manuscript is aimed at examining the physical features of these spacetimes; the
spacetimes endowed with a deSittter-like case and those endowed with an anti-deSitter-like
term are newly demonstrated to exhibit very different intrinsic geometrical properties.
The geometrical role of the linear term is newly explored within the Reissner–Nordstrom
generalised spacetimes.

The paper is organised as follows.
In Section 1, some features of the Reissner–Nordstrom spacetimes are recalled; in

particular, the implementation of the tortoise-coordinate transformation and the study of
the horizons is recapitulated.

In Section 2, the generalised Reissner–Nordstrom spacetimes chosen are described; a
comparison with the studies of the phenomenological parameters involved in the schemes
is summarised.

In Section 3, the generalised Reissner–Nordstrom spacetimes, endowed with a
Schwarzschild solid-angle element, with a cosmological-constant term, are newly stud-
ied: the expressions of the analytical radii are spelled out in a new characterisation; the
coordinate-singularity-avoiding coordinate extensions are newly found, to which the
tortoise-coordinate transformation is therefore newly demonstrated to apply; the parameter
space of the model is newly established and constrained. The results newly significantly
reveal that the deSitter case and the anti-deSitter case are denoted after new significantly
distinct properties.

In Section 4, the generalised Reissner–Nordstrom spacetimes, endowed with a
Schwarzschild solid-angle element, with a linear term, are newly investigated: the ex-
pressions of the radii are spelled out in a new parameterisation; the physical radii are newly
individuated; the parameter space of the model is newly set and constrained.

In Section 5, the generalised Reissner–Nordstrom spacetimes, endowed with a
Schwarzschild solid-angle element, with a linear term and a cosmological-constant term,
are newly examined: the expressions of the radii are written in a new parameteirsation,
the coordinate-singularity-avoiding coordinate extensions are newly found, for which the
tortoise-coordinate transformation is thus newly revealed to apply; the parameter space
of the model is newly indicated and constrained. The results newly demonstrate that the
deSitter-like case and the anti-deSitter-like one exhibit very different, non-trivial proper-
ties; the presence of the linear term is newly demonstrated to be qualified after intrinsic
geometrical properties.

In Section 7, the quantum features of Reissner–Nordstrom spacetimes are recalled
with the aim of comparison with the perturbation approach presented in Section 1.

In Section 8, remarks about the newly found results are presented.
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2. The Generalised Reissner–Nordstrom Spacetimes

A generalisation of the Reissner–Nordstrom spacetimes endowed with a Schwarzschild
solid-angle element is presented in [14] as

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 −
n=N

∑
n=1

knrn

)

dt2 − 1
(

1 − rs
r +

r2
Q

r2 − ∑
n=N
n=1 knrn

)dr2 − r2dθ2 − r2(sin θ)2dφ2. (6)

Particular values of the summation in Equation (6) are to be chosen.
The ranges of the parameters wi of the metrics were studied in [15] as

−1 ≤ wi ≤≃ 0.6 (7)

and analysed in [16–18].
The spacetimes are discussed in [19] as far as their geometrical features are concerned.
In [14], two particular solutions of the Reissner–Nordstrom–deSitter blackhole space-

time

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 − kr2

)

dt2 − 1
(

1 − rs
r +

r2
Q

r2 − kr2

)dr2 − r2dθ2 − r2(sin θ)2dφ2 (8)

corresponding to a Reissner–Nordstrom–deSitter spacetime

ds2 = c2
(

1 − rs

r
+

rQ

r2
k1

r1+3w

)

dt2 − 1
(

1 − rs
r +

rQ

r2
k1

r1+3w

)dr2 − r2dθ2 − r2(sin θ)2dφ2 (9)

were found to have an outer horizon of deSitter kind at r = rQ with −1 < w < −1/3, and
an inner horizon of the blackhole kind was found at r = rQ with − 1

3 < w < 0.
In the present study, the generalisation

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 − k1

r1+3w1
− k2

r1+3w2

)

dt2 − 1
(

1 − rs
r

r2
Q

r2 − k1
r1+3w1

− k2
r1+3w2

) dr2 − r2dθ2 − r2(sin θ)2dφ2 (10)

is chosen. In more detail, the parameters selected will allow one to describe generalised
Reissner–Nordstrom spacetimes, endowed with a Schwarzschild sold-angle element, with a
cosmological-constant term k2; generalised Reissner–Nordstrom spacetimes, endowed with
a Schwarzschild sold-angle element, with a linear-term parameter term k1; and generalised
Reissner–Nordstrom spacetimes, endowed with a Schwarzschild sold-angle element, with
a linear-term parameter k1 and with a cosmological-constant term k2. The linear-term-
parameter generalisation will be confirmed to be consistent as a small modification of the
Schwarzschild radius. The deSitter cases and the anti-deSitter cases will be newly found
to qualify the generalised spacetimes in a different manner, according to the two different
instances.

3. The Generalised Reissner–Nordstrom Spacetimes with a Cosmological Constant

The generalised Reissner–Nordstrom spacetimes with a cosmological-constant term,
endowed with a Schwarzschild solid-angle element, are written after the square line
element

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 − k2r2

)

dt2 − 1
(

1 − rs
r +

r2
Q

r2 − k2r2

)dr2 − r2dθ2 − r2(sin θ)2dφ2 (11)

with k2 being the cosmological-constant term; i.e., a generalised Reissner–Nordstrom–
deSitter spacetime is obtained in the case k2 > 0, while a generalised Reissner–Nordstrom–
anti-deSitter spacetime is described in the case k2 > 0.
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The equation gtt = 0 is solved as the formal expressions of the four radii

r1 =
1
2

√

2
3k2

− 21/3n

3k2m
− m

21/33k2
− 1

2

√

√

√

√

4
3k2

+
21/3n

3k2m
+

m

21/33k2
− 2rs

k2

√

2
3k2

− 21/3n
3k2m − m

21/33k2

, (12a)

r2 =
1
2

√

2
3k2

− 21/3n

3k2m
− m

21/33k2
+

1
2

√

√

√

√

4
3k2

+
21/3n

3k2m
+

m

21/33k2
− 2rs

k2

√

2
3k2

− 21/3n
3k2m − m

21/33k2

, (12b)

r3 = −1
2

√

2
3k2

− 21/3n

3k2m
− m

21/33k2
− 1

2

√

√

√

√

4
3k2

+
21/3n

3k2m
+

m

21/33k2
+

2rs

k2

√

2
3k2

− 21/3n
3k2m − m

21/33k2

, (12c)

r4 = −1
2

√

2
3k2

− 21/3n

3k2m
− m

21/33k2
+

1
2

√

√

√

√

4
3k2

+
21/3n

3k2m
+

m

21/33k2
+

2rs

k2

√

2
3k2

− 21/3n
3k2m − m

21/33k2

, (12d)

with the functions m and n defined as

m =
(

2 + 72k2r2
Q − 27k2r2

s +
√

−4(1 − 12k2r2
Q)

3 + (2 + 72k2r2
Q − 27k2r2

s )
2
)1/3

, (13)

and
n = 1 − 12k2r2

Q. (14)

3.1. Discussion of the Solutions of the Generalised Reissner–Nordstrom Spacetimes with a
Cosmological-Constant Term

The well-posedness of the solutions of Equation (12) are discussed in the following.
The non-vanishing nature of the denominators m in the summands of the radii of

Equation (12) is as follows

−4(1 − 12k2r2
Q)

3 + (2 + 72k2r2
Q − 27k2r2

s )
2 6= 0; (15)

This way, the new following physically consistent constraints are obtained

rs 6= 0, (16a)

k2 6= 0, (16b)

rQ 6= 0, (16c)

rs 6=
1

18

√
6
√

(6912k3
2r6

Q − 1728k2
2r4

Q + 288k2r2
Q − 1)k2. (16d)

From Equation (16), one newly learns that the limit to a vanishing cosmological constant is
non-trivial.

Furthermore, differently, one newly learns also that the limit to a vanishing k1 parame-
ter is well posed: its physical implementation is the restoration of the Schwarzschild radius
in the presence of a cosmological constant; this role is modified after the definition of the
new coordinate-singularity-avoiding coordinate extension.

In particular, Equation (16d) defines the modifications to the physical meaning of the
Schwarzschild radius, which, in their turn, further constrain the parameter space.

The conditions in Equation (16d) are plotted in Figure 1.
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Figure 1. The modifications of the Schwarzschild-radius parameter after the conditions of the
parameter space Equation (19).

The new constraints from Equation (16) imply that there is a profound difference
between the geometries of the deSitter characterisation and those of the anti-deSitter one,
as can be seen in Figure 1.

Moreover, one new region of the parameter space of the scheme is delineated, which
is already ruled out.

The non-vanishing nature of the denominators m is formulated as follows

2 + 72k2r2
Q − 27k2r2

s +
√

−4(1 − 12k2r2
Q)

3 + (2 + 72k2r2
Q − 27k2r2

s )
2 6= 0. (17)

Requesting n 6= 0, i.e., requesting the most general scheme, further implies

1 − 12k2r2
Q 6= 0 : (18)

From Equation (18), a new constraint on the parameter space is found, which involves
the possible values of k2.
The choice of an equality in Equation (18) delineates a new particular family of generalised
Reissner–Nordstrom spacetimes with a cosmological constant, which has not been explored
yet. More specifically, the new family of generalised Reissner–Nordstrom spacetimes with a
cosmological constant admits two new physically different cases, in which the cosmological-
constant term acts in a different manner and whose geometric properties have not been
investigated yet.

Furthermore, Equation (16d) automatically further implies the new following con-
straint on the parameter space which newly relates k2 and rQ in a new non-trivial man-
ner; i.e.,

k2 6= 1
12

−22/3 + 1
2 21/3 + 1

r2
Q

, (19)

for which, in more detail, one demonstrates that the limit to a Schwarzschild spacetime or
to a generalised Schwarzschild spacetime are not only highly non-trivial, but also depend
momentously on the sign of the cosmological constant; i.e., the generalised Reissner–
Nordstrom geometries are found to admit a representation characterised after the new
constraints.

More specifically, the request r2
Q > 0 (where the inequality is learnt from the analysis

in the above) implies a new lower bound of k2 in the deSitter case.

Requesting n 6= 0, i.e., requesting the most general scheme, further implies possible
modifications of the roles and of the values of the square length r2

Q: form the new definition
of the new coordinates-singularity avoiding coordinates extension, one will learn that the
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modifications of the square length r2
Q are only small; furthermore, one will learn that such

modifications are intrinsically related with the (small) modifications of the value of the
Schwarzschild radius.

The generalised Reissner–Nordstrom spacetimes with a cosmological constant there-
fore are distinguished in a different manner; more specifically, the role of the cosmological
constant is that of modifying the expression of the Schwarzschild radius and that of the RQ

length in a new non-trivial manner, which, furthermore, act differently in the deSitter case
and in the anti-deSitter case.

The numerator of the summands in Equation (12) is studied as follows.

3.2. Merging of the Radii

For the sake of comparison with the more general results of Section 5, the solutions
of Equation (12) are simplified and the four radii are demonstrated to become the two
horizons as follows

r− = − k1

4k2
− 1

2

√

k2
1

4k2
2
+

2
3k2

− 21/3T

3k2 p
− p

3 · 21/3k2
, (20a)

r+ = − k1

4k2
+

1
2

√

k2
1

4k2
2
+

2
3k2

− 21/3T

3k2 p
− p

3 · 21/3k2
. (20b)

with the functions
T = 1 − 3k1rs − 12k2r2

q , (21)

b = 2 + 27k2
1r2

q + 72k2r2
q − 9k1rs − 27k2r2

s , (22)

and
p = [b +

√

(−4)T3 + b]1/3. (23)

Indeed, the first summand is calculated to vanish for real values of all the parameters
but that of the cosmological-constant term; i.e., it vanishes for k2 consisting of a real part and
a (positive) imaginary one: the differences between the deSitter case and the anti-deSitter
case are here newly understood also as far as the multivaluedness of the tortoise-coordinate
extension is concerned. It is therefore newly verified that the tortoise-coordinate extension
is here well posed.

3.3. New Coordinate-Singularity-Avoiding Coordinate Extension of the Generalised
Reissner–Nordstrom Spacetimes with a Cosmological Constant

The new coordinate-singularity-avoiding coordinate extension is found to be

dρ

ρ
≡ dr

(1 − k2r2)(1 − rs
r − r2

Q

r2 )(1 − k2r2)
(24)

with
ρ0 = 0 (25)

Indeed, it is crucial to remark that

∫

dr

(1 − k2r2)(1 − rs
r − r2

Q

r2 )(1 − k2r2)
=
∫

dr

1 − rs
r − r2

Q

r2

+ O(k2
2). (26)

The coordinate-extension Equation (24) is valid for small values of k2 only; the cosmological-
constant term is therefore newly demonstrated to modify the value of the Schwarzschild
radius only slightly.

It is thus possible to implement the tortoise-coordinate transformation to study
the radii.
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4. The Generalised Reissner–Nordstrom Spacetimes with a Linear Term

The generalised Reissner–Nordstrom spacetimes with a linear term, endowed with a
Schwarzschild solid angle, are written after the square line element

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 − k1r

)

dt2 − 1
(

1 − rs
r +

r2
Q

r2 − k1r

)dr2 − r2dθ2 − r2(sin θ)2dφ2, (27)

with k1 being the parameter qualifying the linear term generalising the studied spacetimes.
The sign of the parameter k1 is not specified, in order to let one appreciate the geometrical
qualifications of the linear term.

The equation gtt=0 of the spacetime Equation (27) is fulfilled after the analytical radii

r1 =
1
6

d1/3

k1
− 2

3
3k1rs − 1

k1d1/3
+

1
3k1

, (28a)

r2 = − 1
12

d1/3

k1
+

1
3

3k1rs − 1
k1d1/3

+
1

3k1
+ i

√
3

2

(

1
3

d1/3

k1
+

2
3

3k1rs − 1
k1d1/3

)

, (28b)

r3 = − 1
12

d1/3

k1
+

1
3

3k1rs − 1
k1d1/3

+
1

3k1
− i

√
3

2

(

1
3

d1/3

k1
+

2
3

3k1rs − 1
k1d1/3

)

, (28c)

where the quantity d is defined as

d ≡ 12
√

3
√

27k2
1r4

Q + 4k1r3
s − 18k1r2

Qrs − r2
s + 4r2

Qk1 + 108k2
1r2

Q − 36rsk1 + 8. (29)

From Equation (28), the conditions
k1 6= 0 (30)

and
d 6= 0 (31)

are found.
Equation (31) imposes the new condition on the Schwarzschild radius as a constraint

of the parameter space

rs 6=
1

3k1
(32)

Condition Equation (30) is relevant in establishing the new non-trivial limit to a vanishing
‘linear-term’ component.

The limit procedure is nevertheless comprehended within the analysis of the physical
characterisation of the ranges of the ‘linear-term’ parameter. It is crucial to remark that the
condition is highly non-trivial, as the k1 term does not define the grade of the equation
gtt = 0 characterising the blackhole solution.

Furthermore, Equation (32) sheds light of the non-trivial geometry of the generalised
Reissner–Nordstrom spacetimes with a linear term, as such geometry is manifested as
modifying the Schwarzschild radius but not the rQ parameter in this specific instance.

4.1. Merging of the Radii

The two radii r2 and r3 merge at the vanishing of the square root multiplying the
imaginary unit

d2/3 + 12k1rs − 4 = 0, (33)

where the condition Equation (33) is solved as the new constraint of the parameter space

rQ =
1

27
−2 + 9k1rs + 2(1 − 3k1rs)3/2

k2
1

, (34)
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The physical radii rQa and rQb are defined and therefore newly parameterised as

rQa =
1
6

d1/3

k1
− 2

3
3k1rs − 1

k1d1/3
+

1
3k1

, (35a)

rQb = − 1
12

d1/3

k1
+

1
3

3k1rs − 1
k1d1/3

+
1

3k1
. (35b)

As an example of the conditions imposed on the phase space from Equation (35a), the
function rQa from Equation (35a) is illustrated a function of rs and k1 in Figure 2, in
which one part of the new non-trivial conditions imposed on the parameter space can
be visualised.

Figure 2. The new conditions imposed on the parameter space of the generalised Reissner–Nordstrom
spacetimes with a linear term after the definition of the new function rQa from Equation (35a) as a
function of the Schwarzschild radius rs and of the parameter k1 qualifying the generalisation of the
studied spacetime.

4.2. Merging(s) of the Solution(s)

The function Equations (28b) and (28c) are found to merge and to give rise to the
physical horizons following the new condition

d2/3 + 12k1rs − 4 = 0, (36)

for which Equation (36) is solved as

rQ =
1

27
−2 + 9k1rs + 2(1 − 3k1rs)3/2

k2
1

, (37)

within the constraint of the parameter space

k1 ≤ 1
3 · rs

. (38)

The available portion of parameter space avaialable for the solution r2
Q of Equation (33) is

plotted in Figure 3 as a function of the Schwarzschild radius rs and of the parameter k1.
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Figure 3. The function rQ from Equation (33) is plotted as a function of rs and k1, from which the full
constraints imposed on the parameter space from this condition are delineated.

The two horizon Equations (28b) and (28c) therefore merge at the new condition (37).
The new conditions must therefore be imposed on the parameter space of the two-horizon
solution of the scheme; it is important to remark that the positive-valued- linear term
generalised spacetimes and those qualified after a negative value of the linear term are
newly found to be analytically described as with very different geometrical properties
newly indicated after the new parameterisation is chosen.

5. Generalised Reissner–Nordstrom Spacetimes with a Linear Term and a
Cosmological-Constant Term

The generalised Reissner–Nordstrom spacetimes with a linear term and a cosmological-
constant term, endowed with a Schwarzschild solid-angle element, are written after the
square line element

ds2 = c2

(

1 − rs

r
+

r2
Q

r2 − k1r − k2r2

)

dt2 − 1
(

1 − rs
r +

r2
Q

r2 − k1r − k2r2

)dr2 − r2dθ2 − r2(sin θ)2dφ2, (39)

where k1 is the parameter characterising the linear term and k2 is the cosmological-constant
term, which is, for the moment, not specified as having positive values or as having negative
values. The gtt = 0 equation of the spacetime (39) is calculated to admit the analytical
solutions, which are here newly parameterised as

r1 = − k1

4k2
− 1

2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
− 1

2

√

√

√

√

√

√

√

k2
1

4k2
2
+

4
3k2

+
21/3N

3k2P
+

P

3 · 21/3k2
−









(

− k3
1

k3
2
− 4k1

k2
2
− 8rs

k2

)

4

√

k2
1

4k2
2
+ 2

3k2
− 21/3 N

3k2P − P
3·21/3k2









, (40a)

r2 = − k1

4k2
− 1

2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
+

1
2

√

√

√

√

√

√

√

k2
1

4k2
2
+

4
3k2

+
21/3N

3k2P
+

P

3 · 21/3k2
−









(

− k3
1

k3
2
− 4k1

k2
2
− 8rs

k2

)

4

√

k2
1

4k2
2
+ 2

3k2
− 21/3 N

3k2P − P
3·21/3k2









, (40b)

r3 = − k1

4k2
+

1
2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
− 1

2

√

√

√

√

√

√

√

k2
1

4k2
2
+

4
3k2

+
21/3N

3k2P
+

P

3 · 21/3k2
−









(

− k3
1

k3
2
− 4k1

k2
2
− 8rs

k2

)

4

√

k2
1

4k2
2
+ 2

3k2
− 21/3 N

3k2P − P
3·21/3k2









, (40c)

r4 = − k1

4k2
+

1
2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
+

1
2

√

√

√

√

√

√

√

k2
1

4k2
2
+

4
3k2

+
21/3N

3k2P
+

P

3 · 21/3k2
−









(

− k3
1

k3
2
− 4k1

k2
2
− 8rs

k2

)

4

√

k2
1

4k2
2
+ 2

3k2
− 21/3 N

3k2P − P
3·21/3k2









, (40d)

where the following definitions have been taken:

N = 1 − 3k1rs − 12k2r2
q , (41)
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a = 2 + 27k2
1r2

q + 72k2r2
q − 9k1rs − 27k2r2

s , (42)

and
P = [a +

√

(−4)N3 + a]1/3. (43)

5.1. Discussion of the Radii Solutions

The denominators of the radii solutions of Equation (40) are well posed when

P 6= 0 (44)

The equation P = 0 is discussed as

a +
√

(−4) f 3 + a, (45)

which is solved after the values

a± =
−1 ±

√

1 − 16 f 3

2
, (46)

which is well posed for
1 − 16n3

> 0 : (47)

The discussion of the equality in the latter shows that there are regions of the parameter
space which have to be excluded since their expression is multiplied by the imaginary unit.

In particular, from the discussion of Equation (45) with respect to the square length r2
Q,

the region to be excluded is depicted in Figure 4.

Figure 4. The region of the parameter space to be excluded after the discussion of Equation (45).

Furthermore, the value rs = 0 has to be excluded from the investigation, as will be
explained after the explanations of the roles of the parameters k1 and k2 with respect to the
definition of the Schwarzschild radius, for the implementation of the tortoise coordinates,
for the study of the blackhole spacetime in a non-perturbation way.

A new particular family of solutions from Equation (40) is

N = 0, (48)

which is solved after the relation for the Reissner–Nordstrom squared length

rq2 = − 1
12

1 − 3k1rs

k2
; (49)

when evaluated at rs = 2; Equation (49) therefore becomes

rq2 = − 1
12

1 − 6k1

k2
. (50)
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Equation (49) is plotted in Figure 5.
Equation (50) is plotted in Figure 6.

Figure 5. The parameter space of r2
Q in Equation (49).

Figure 6. The parameter space of r2
Q in Equation (50) in units (rs = 2).

Furthermore, one must stipulate

k2
1

4k2
2

1
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
≥ 0 (51)

5.2. The Physical Horizons

The two physical horizons are obtained from Equation (40) after stipulating that the
opportune quantities vanish, i.e.,

k2
1

4k2
2

1
3k2

+
21/3N

3k2P
+

P

3 · 21/3k2
= 0 (52)

and

− k3
1

k3
2

− 4k1

k2
2
− 8rs

k2
= 0 (53)

because of Equation (51).
It is important to remark that the condition Equation (53) does not depend on the

square length r2
Q.

Equation (53) is solved as

rs = −1
8

k1(k
2
1 + 4k2)

k2
2

; (54)
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Imposing rs > 0 is realised in the instances

k1 < 0, k2 < 0, −1
4

k2
1 < k2; (55a)

k1 < 0, k2 > 0; (55b)

k1 < 0, k2 > 0, −1
4

k2
1 > k2. (55c)

The horizons are therefore found as

r− = − k1

4k2
− 1

2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
, (56a)

r+ = − k1

4k2
+

1
2

√

k2
1

4k2
2
+

2
3k2

− 21/3N

3k2P
− P

3 · 21/3k2
. (56b)

From Equation (54) and from Equation (55), the new constraints on the Schwarzscihld
radius, on k1 and on k2 are obtained.

Furthermore, the new roles of the parameters characterising the value of the
Schwarzshild radius are outlined.

The parameter space is therefore studied at the realness of the square roots.
It is possible to remark that the two horizons of Equation (56) exhibit different proper-

ties in the deSitter case and in the anti-deSitter case.
The different properties exhibited in the deSitter case and those demonstrated in the

anti-deSitter case also involve the linear-term parameter k1
The method presented in [20] applies only to a Schwarzschild–deSitter spacetime.

In [21], the ‘trapping horizons’ are described only for Reissner–Nordstrom–deSitter space-

times in the special case of r2
Q = 0 and in the special case +

√

r2
Q = rs

2 .

In the present analysis, the manner of merging of the radii to create the two horizons
is newly defined according to the ratio k1/k2. The new constraints of the new functions a
and f on the parameter space further complete the new establishment of the parameter
space of the model.

5.3. New Coordinate-Singularity-Avoiding Coordinate Extension of the Generalised
Reissner–Nordstrom Spacetimes with a Linear Term and with a Cosmological Constant

The new coordinate-singularity-avoiding coordinate extensions are written as

dρ

ρ
≡ dr

(1 + k1r − k2r2)(1 − rs
r − r2

Q

r2 )(1 + k1r − k2r2)
(57)

with the value of r0 being

r0 ≡ −1/(2k
3/2)
2 ) + (−r2

Q − (1/2)r2
s )/sqrtk2) + ((1/2)r4

Q − (1/2)(2r2
Q + r2

s )
2)sqrtk2)+

((1/2(2r2
Q + r2

s ))r
4
Q − (1/2(3r4

Q + 4r2
Qr2

s + r4
s ))(2r2

Q + r2
s ))k

3/2)
2 + O(k5/2

2 )

This way, the expansion is balanced after the newly found initial value ρ0 of the new radial
variable ρ as

∫

dr

(1 + k1r − k2r2)(1 − rs
r − r2

Q

r2 )(1 + k1r − k2r2)
+ O(k5/2

2 ) =
∫

dr

1 − rs
r − r2

Q

r2

. (58)

The new coordinate-extension Equation (57) is apt for small values of k1 and k2 only; the
linear-term parameter and the cosmological-constant term are thus demonstrated to modify
the value of the Schwarzschild radius in a new manner. The newly found generalised
Reissner–Nordstrom–deSitter geometry and the generalised Reissner–Nordstrom–anti-
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deSitter one are newly explored; the two geometries are found to be different, the difference
being highly non-trivial due to the non-linearity of the Einstein field equations.

One therefore newly learns that the limit to a vanishing cosmological constant is
non-trivial.

Moreover, in a different manner, it is also possible to infer the well-posed-ness of the
limit to a vanishing value of the k1 parameter; indeed, its physical understanding is the
accomplishment in the restoration of the role of the Schwarzschild radius in the presence of
a cosmological- constant term ; this interpretation is modified after the implementation of
the new coordinate-singularity-avoiding coordinate extension.

It is therefore possible to apply the tortoise-coordinate transformation to analyse
the radii.

6. Outlook

The present work is aimed at studying some particular features of the generalised
Reissner–Nordstrom blackhole spacetimes. The new methodology used is the findings of
the analytical radii, the discussion of their well-posedness and the conditions for the obten-
tion of the physical horizons; from the study, new features of the generalised spacetimes
are found and new constraints on the parameter spaces of the models are established.

Three particular cases of interest have been investigated.
Concerning the generalised cosmological Reissner–Nordstrom spacetime with a cos-

mological constant, endowed with a Schwarzschild solid-angle element, the results found
complete studies in the literature by adding new qualifications and new relationships
among the Reissner–Nordstrom parameters and the cosmological constant; the findings
far and away generalise the pioneering work [21], in which only particular aspects of the
Schwarzschild–deSitter spacetime were outlined; the study was not followed after further
investigations. Furthermore, the present analysis of this spacetimes is complemented with
the new definition of the coordinate-singularity-avoiding coordinate extensions, which
allows one to implement the tortoise-coordinate transformation; the new coordinate ex-
tensions generalise the Nairai transformation for the considered case: in particular, the
role of the cosmological constant in modifying the other parameters only slightly is newly
found. A new particular family of generalised Reissner–Nordstrom spacetimes with a
cosmological constant is found and studied. All the results are demonstrated to hold in the
Reissner–Nordstrom–deSitter case and in the Reissner–Nordstrom–anti-deSitter case in a
new different non-trivial manner, which further clarifies new features of the generalised
deSitter spaces and those of the generalised anti-deSitter spaces.

The exploration of the generalised Reissner–Nordstrom spacetimes with a linear term
is motivated by a particular case in [14] and the related literature. In this case, the analytical
radii are found and discussed and the expressions of the physical horizons are presented.
The analysed generalised spacetime is therefore qualified after new relations among the
parameters characterising the solution, as well as new constraints of the parameter space of
the model.

The generalised Reissner–Nordstrom spacetimes with a linear term and a cosmo-
logical constant, endowed with a Schwarzschild solid-angle element, are studied analyt-
ically after [14]. As a result, the analytical expressions of the radii are found and their
well-posedness is discussed; the expressions of the physical horizons are presented. The
new aspects of the relations among the parameters qualifying the solution are investi-
gated and the new parameter space is set. A new particular family of solutions is found
and explored. The new coordinate-singularity-avoiding coordinate extension is newly
found to be consistent with the Nairai transformation and allows one to further apply the
tortoise-coordinate transformation; the coordinate-singularity-avoiding coordinate exten-
sions newly characterise the role of the parameters of the generalised model in modifying
the Reissner–Nordstrom parameters only slightly: furthermore, differently from the case of
the generalised Reissner–Nordstrom spacetimes with a cosmological-constant term, the
initial values of the coordinates are calculated to be non-trivial.
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The specificities of the newly introduced methodology consist also in analysing the
physical spacetimes non-perturbatively.

The gathering of the results allows one to implement further qualifications and fur-
ther investigations.

7. Perspectives

Quantum effects in the present literature about the Reissner–Nordstrom geometry
are presented in two issues: one being the perturbative approach after the application
of the tortoise-coordinate transformation; the other being the calculation of the Hawking
temperature, which is evaluated after the knowledge of the surface of the blackhole object
(the surfaces of the generalised Reissner–Nordstrom blackhole objects being determined
after the physical radii here found).

7.1. Geometrical Settings

Another aspect which might be considered is therefore the geometrical definition of
the radii in the case of non-Riemannian geometries; the most general classification of non-
Riemannian geometries was given in the Schouten classification [22,23] and in the extended
Schouten classification [24], in which the metric-asymmetricity object, the generalised
contortion tensor and non-metricity object are comprehended.

Within this framework, there is room for investigation of different realisations of
Reissner–Nordstrom-related spacetimes, for which r2

Q ≡ ζ, with ζ < 0. According to this
scheme, it is possible to consider also the spinning features of the spacetime realisation [25],
for which already the properties of the analytical radii offer different interpretations.

Differently, in [26,27], a cosmological implementation of mass-inflation and kink
instabilities can also be considered.

From a different viewpoint, the Petrov classification can be taken into account for
analysis of the geometric properties of the generalised spacetimes, i.e., also to improve the
investigation of [21], which was only partially developed in the case of the Schwarzschild–
deSitter spacetime and no further investigations have followed ever since.

Within the Petrov classification [28], the action of the 4-rank tensors on bivectors are
analysed as those of operators (of which the bivectors are the eigenvectors, bringing the
proper eigenvalues), such as the Weyl tensor.

In [29], the characterisation of algebraic types in four-dimensional Lorentzian space
is presented. According to the study, the Schwarzschild spacetime is the only spacetime
whose asymptotic limit is Minkowski; the geometric asymptotic limit of the other possible
generalised spacetimes can be correspondingly analysed. As a result, according to the
analysis in [29], the study of the causal character of the corresponding eigenspaces can
be compared to the suited analysis of the Schwarzschild case in order to gain items of
information about the asymptotical features from an algebraic point of view as well as from
a differential-geometry point of view in a new manner.

In [30], Weyl–Cartan spaces are studied as far as the Lorentzian transformations are
concerned, for the sake of a classification of the curvature tensor within the framework
of Weyl–Cartan geometry: also in this case, from the classification of the Weyl tensor,
it is possible to compare the analysed spaces with the Schwarzschild case as far as the
asymptotical behaviour is concerned.

7.2. Further Implementations

The quantum instability of the Cauchy horizon in Reissner–Nordstrom–deSitter space-
time was described in [31].

The entropy of the Reissner–Nordstrom–anti-deSitter spacetimes was investigated
in [32]. The quantum version of Reissner–Nordstrom–deSitter spacetimes and that of
Reissner–Nordstrom–anti-deSitter spacetimes were described in [33]; the quantum feature
of the radial coordinate was implemented.
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Kerr–deSitter spacetimes were envisaged in [34]; in this case, only three horizons were
shown to be physically relevant (i.e., defined with positive sign).

The Gibbons–Hawking temperature of the Reissner–Nordstrom spacetime with a
cosmological constant was calculated in [35].

The Reissner–Nordstrom–deSitter blackhole with a linear term and the Reissner–
Nordstrom–anti-deSitter blackhole with a linear term have different thermodynamical
properties, as scrutinised in [36] and the references therein.

Reissner–Nordstrom spacetimes with cosmological constant were investigated in [37],
where different thermodynamical properties were described in the cases of a positive
value of the cosmological constant and in those of a negative value of the cosmological
constant; the thermodynamical system is investigated within the comparison of the role of
the cosmological horizon and that of the blackhole horizon.

Some thermodynamical properties derived from the definition of the Gibbons–Hawking
temperature are delineated in [35].

In [38], a temperature which does not match that of a Reissner–Nordstrom–deSitter
spacetime was outlined as far as the outer horizon is concerned.

The study of a family of spacetimes which generalise the Reissner–Nordstrom space-
time after the definition of a linear term and a cosmological constant is presented in [39].

An uncharged, rotating Kerr–deSitter solution is examined in [40].
Reissner–Nordstrom blackhole solutions are considered in [41] as far as the ‘quintessen-

tial’ component is concerned; in more detail, the variation of the temperature is plotted for
different values of the parameter of state related to the quintessence and, for increasing
density, the blackhole temperature is shown to decrease.

The temperature of the Schwarzschild ‘quintessential’ blackhole and the Reissner–
Nordstrom one with a linear term are defined in [42].

The study of the quantum presentation of the possible realisations of the generalisa-
tions of the Reissner–Nordstrom geometries allows for possible cosmological implementa-
tions; these geometries can shed light on the mechanisms of celestial-object formations. A
comparison with the Bardeen picture is presented in [43].

8. Remarks

In the present paper, the generalised Reissner–Nordstrom spacetimes have been
analysed in three particular instances: the generalised Reissner–Nordstrom spacetimes
with a cosmological constant, the generalised Reissner–Nordstrom spacetimes with a
linear term and the Reissner–Nordstrom spacetimes with a linear term and a cosmological-
constant term.

The generalised Reissner–Nordstrom spacetime with a cosmological constant helped
us reveal the highly non-trivial differences between the deSitter case and the anti-deSitter
case. The differences are outlined not only in the definition of the radii, but also as far as
the coordinate-singularity-avoiding coordinate extension is concerned. A comparison with
the perturbation approach is accomplished after exploring the features of the cosmological-
constant term k2. A particular new specific family of such spacetime blackhole solutions,
corresponding to n = 0, is found. The analytical expressions of the physical horizons are
set within the appropriate constraints of the parameter space.

The generalised Reissner–Nordstrom spacetimes with a linear term have been anal-
ysed. The three radii are found, which are determined after the reduced quartic qtt = 0
equation, and the conditions for the description of the physical spacetime two physical
horizons are displayed. The geometry role of the linear term, k1, is here newly investi-
gated with respect to the previous interpretations as quintessence and as non-dynamical
dark energy.

Cases of generalised Reissner–Nordstrom spacetime with a linear term and a cosmo-
logical constant have been explored. The well-posedness of the four radii is discussed,
as well as the description of the two physical horizons. A new family of particular solu-
tions is newly found, according to the new parameterisation of the blackhole spacetime
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radii and horizons, and the parameter space of these solutions is newly inspected. The
coordinate-singularity-avoiding coordinate extension is found; in particular, the non-trivial
value of the initial conditions of the radial variable is studied. The comparison with the
generalised Reissner–Nordstrom spacetimes with a cosmological-constant term is therefore
accomplished after the recognition of the features which are exhibited within the discussion
of the physical conditions.

The analysis of the role of the lienar.term parameter and of that of the cosmological
term parameter in the modifications of the physical implementation of the Schwarzschild
radius open the way to the comparison with analysis of the comparison with [44], which was
developed for the sake of possible descriptions of particular types of galaxy rotation curves.

The paper is organised as follows.
In Section 1, the generalised Reissner–Nordstrom spacetimes are introduced; in par-

ticular, the perturbation approach is presented, also with respect to the definition of the
tortoise-coordinate system.

In Section 2, the generalised Reissner–Nordstrom spacetimes are present from a geo-
metrical point of view. Among the generalisations possible, three of them were taken into
account, whose physical expression is straightforwardly juxtaposed with the generalised
Schwarzschild spacetimes within the same instances of physical definition.

In Section 3, the generalised Reissner–Nordstrom spacetimes with a cosmological-
constant term are newly studied. The two physical horizons are exhibited as analytically
descending from the non-trivial four radii, which are the solutions of the gtt = 0 equation.
The parameter space of the model is set and constrained. The coordinate-singularity-
avoiding coordinate extension is found. The results are demonstrated to hold in a different
manner in the deSitter case and in the anti-deSitter case, whose specific aspects are found
to be significantly different. The solutions are also rewritten in a manner so as to render
easy the comparison with the case of a generalised Reissner–Nordstrom spacetime with a
linear term and a cosmological-constant term.

In Section 4, generalised Reissner–Nordstrom spacetimes with a linear term are in-
vestigated. The particular features of the reduced-quartic gtt = 0 equation are outlined
as implying three radii; the constraints for the obtention of the two physical radii are
discussed. The parameter space of the scheme is established and constrained. The role of
the linear term is here contrasted with that of the case of the generalised Schwarzschild
spacetimes, in which such a role is straightforwardly interpreted as a small modification of
the Schwarzschild radius.

In Section 5, the generalised Reissner–Nordstrom spacetimes with a linear term and a
cosmological-constant term are examined. The four radii are found; the well-posedness
of the solutions is scrutinised and the conditions of the definition of the two physical
radii are researched. The parameter space of the model is defined and constrained and
also compared with the cases of the generalised Reissner–Nordstrom spacetimes with a
cosmological-constant term. The differences between the deSitter case and the anti-deSitter
case are set for comparison. A prospective systematic study of the possible quantum
implementations of the geometries allows for the definitions of new cosmological settings
also at the semiclassicalisation epoch.

In Section 7, some features of the (generalised) Reissner–Nordstrom spacetimes, such
as the Minkowski inequality, are reviewed for the sake of comparison with the Schouten
classification and the Petrov classification within the framework of an analysis of asymp-
totical behaviour; furthermore, the quantum features of generalised Reissner–Nordstrom
spacetimes are recalled for comparison with the perturbation approach as well as for
prospective studies.

In Section 8, the main features of the generalised chosen Reissner–Nordstrom space-
times are compared with further examples.
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