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We explore a link between AdS black hole thermodynamics and the deflection angle variation. Using 
the elliptic function analysis, we first study the phase structure of RN-AdS solutions in terms of optical 
aspects. Precisely, we find that the stable and the unstable phases can be derived from thermal variations 
of the deflection angle. Then, we investigate the Hawking-Page transition from the Gibbs energy optical 
dependence. Among others, we reveal that the large black hole/small black hole transition occurs at a 
specific value of the deflection angle. The finding results, being confirmed by the help of the Ruppeiner 
metric of the phase state space, indicate that the deflection angle can be exploited to unveil data on 
thermodynamics of AdS black holes.
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1. Introduction

Recently, black holes have been considered as a central subject 
in modern physics, being supported by the recent observations as-
sociated with the Event Horizon Telescope (EHT) providing a direct 
imaging of a black hole at the center of M87 galaxy [1–3] and grav-
itational wave detections [4]. Precisely, this investigation direction 
has attracted huge attentions in connection with other topics deal-
ing with classical and quantum gravity models. Various aspects of 
such fascinating objects have been studied by examining the asso-
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ciated thermodynamical and optical behaviors. For thermodynamic 
properties, black holes in the Anti-de-Sitter space (AdS) with a 
negative cosmological constant � have been approached using dif-
ferent analytical and numerical ways and methods. Interpreting �
as a pressure p, these black holes exhibit similarities with results 
dealing with generic fluids [5–11]. A special emphasis has been 
put on the case of Reissner-Nordstroom Anti-de-sitter black hole 
(RN-AdS) in four dimensions. Precisely, it has been revealed that 
the associated physics shares similar pictures as the Van der Weal 
fluids [12]. Moreover, many behaviors associated with the Gibbs 
free energy G and phase transitions have been treated showing 
non-trivial results corresponding to the second order phase transi-
tion between large black holes (LBH) and small black holes (SBH), 
the existence of a minimal temperature (T0) and the Hawking Page 
transition at temperature (T H P ). The letter reveals a transition be-
tween a LBH and a thermal AdS background required by G = 0.
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Concerning optical aspects, the geometrical shadows and the 
deflection angle of certain black holes have been investigated 
[13–18]. Concretely, shadows of non-rotating black holes involve 
perfect circular geometries where the involved size can depend on 
some parameters including the mass and the charge. It has been 
shown, however, that the rotating parameter distorts such a circu-
lar picture providing deformed configurations with D-shapes [19]. 
These optical behaviors can be approached using astronomical ob-
servables controlling the size and the shape of the shadows. Taking 
appropriate values, the shadows of Kerr solutions could provide 
relevant results compared with EHT collaborations [20]. Moreover, 
the deflection angle of lights has been also studied using different 
roads and methods. Gibbons and Werner suggested a direct way 
to compute such a quantity using the Gauss-Bonnet theorem ap-
plied to a spacial background described by the optic metric [21]. 
Alternatively, it has been proposed a method using the elliptic in-
tegral formalism. It has been given an explicit solution in terms 
of Weierstrass elliptic functional forms [22,23]. In particular, com-
plete and incomplete elliptic functions have also been exploited to 
express the deflection angle [24,25].

More recently, thermodynamical properties of RN-AdS black 
holes and shadow aspects have been combined. In particular, it 
has been shown that one can approach black hole thermodynamics 
from shadow behaviors [26,27]. Concretely, it has been remarked 
that such aspects can be exploited to establish a link between 
shadows and critical properties. A close inspection reveals that the 
deflection angle could depend on certain thermodynamical quanti-
ties. This observation has been inspired by considering two RN-AdS 
black holes with two different temperatures and the same impact 
factor. At this level, one could naturally ask questions concerning 
the deflection angle variation in the thermodynamical systems.

The aim of this work is to explore an alternative way of ap-
proaching thermodynamics of AdS black holes using a deflection 
angle formalism. For RN-AdS black holes in four dimensions, we 
show that this optical quantity allows one to unveil data on ther-
modynamical behaviors. Concretely, we establish an interplay be-
tween the RN-AdS black hole thermodynamics and the deflection 
angle variation. Preforming elliptic function analysis, we first ap-
proach the phase structure of such black holes from the deflection 
thermal variation. Then, we investigate the Hawking-Page transi-
tion from the Gibbs energy optical dependence. Among others, we 
show that the LBH/SBH transition occurs at a specific value of the 
deflection angle. This transition takes the same place for generic 
values of the impact parameter b. The obtained findings, supported 
by the Ruppeiner metric of the phase state space, explore that the 
deflection angle could be suggest to provide data on the AdS black 
hole thermodynamics.

The organization of this work is as follows. In section 2, we 
reconsider the deflection angle study of the RN-AdS black holes 
in four dimensions. In section 3, we investigate the phase struc-
ture by varying the deflection angle. In section 4, we reconsider 
the study of the Hawking-Page (HP) transition in terms of the 
deflection angle variation. In section 5, we implement the opti-
cal behaviors in the phase state space using the Ruppeiner metric 
computations. The last section is devoted to conclusions and final 
remarks.

2. Deflection angle of RN-AdS black holes

In this section, we re-examine the behavior of the deflection 
angle of AdS black holes in four dimensions which will be ex-
ploited to approach stability aspects and phase transitions. For 
simplicity reasons, we deal with RN-AdS black holes [28,29]. The 
corresponding action is given by

S = 1
∫ √−gdx4

(
R − F μν Fμν + 6

2

)
. (2.1)
16π �

2

In this action, R represents the Ricci scalar curvature. Fμν =
∂μ Aν − ∂ν Aμ is the Maxwell tensor, where A is the electromag-
netic potential vector. � denotes the AdS radius being related to a 
negative cosmological constant � via the relation � = − 3

�2 . In the 
Boyer-Lindquist coordinates, the solution of the equations of mo-
tion, corresponding to the above action, can be expressed as

ds2 = gμνdxμdxν

= − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θdφ2), (2.2)

where the metric function f (r) reads as follows

f (r) = 1 − 2M

r
+ Q 2

r2
+ r2

�2
. (2.3)

It is noted that M and Q represent the mass and the charge, re-
spectively. In this way, the potential 1-form defined by F = dA
takes the following form

Aμ =
(

− Q

r
,0,0,0

)
. (2.4)

Using the event horizon radius rh , being the largest real root of the 
metric function f , and laws of thermodynamics, we can compute 
the relevant quantities. In particular, the mass, the temperature 
and the entropy are given by the following relations

M = r4
h + �2r2

h + �2 Q 2

2�2rh
, (2.5)

T = 3r4
h + �2(r2

h − Q 2)

4π�2r3
h

, (2.6)

S = πr2
h . (2.7)

In the equatorial plane θ = π

2
, the Euler-Lagrange equations for 

null geodesics provide the following equations of motion

φ̇ = L

r2
, (2.8)

ṙ2 = E2 − f (r)
L2

r2
, (2.9)

where L and E are conserved quantities corresponding to the en-
ergy and the angular momentum, respectively. Implementing, the 
impact parameter b = L

E , the equation (2.9) becomes

ṙ2 = E2
(

1 − f (r)

r2
b2

)
. (2.10)

In what follows, we consider a light ray starting from the infinity. 
Then, it approaches to the black hole until the distance of closest 
approach r0, and then it goes back to infinity. In this case, the 
ray is in the deflection angle zone and the impact parameter is 
constrained by b > b0, where b0 is the critical value for which the 
photons can perform an unstable circular orbit around a black hole. 
The critical value r0 can be obtained from the following conditions

V ef f (r) |r=r0= 0,
dV ef f (r)

dr
|r=r0= 0, (2.11)

where V ef f is the effective potential taking the form

V ef f (r) = E2
(

f (r)

r2
b2 − 1

)
. (2.12)

Exploiting (2.11) and (2.12), one gets
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r0 = 3M +
√

9M2 − 8Q 2

2
. (2.13)

Putting r0 in the effective potential equation, we obtain the critical 

value b0 =
√

r2
0

f (r0)
. To express the deflection angle 	, one needs 

the total change in φ which is given by 2|φ(r0) −φ(∞)|. Assuming 
that the trajectory is a straight line, the change in φ equals to π . 
Indeed, this gives

	 = 2|φ(r0) − φ(∞)| − π,

= 2

∞∫
r0

| dφ

dr
| dr − π. (2.14)

Combining the equations (2.8) and (2.9), one finds(
dφ

dr

)2

= A2

P (r)
, (2.15)

where 1
A2 = 1

b2 − 1
�2 and P (r) = r4 − A2(r2 − 2Mr + Q 2). It is noted 

that P (r) involves four real roots indicated by r1 < r2 < r3 < r4. The 
largest root defines the critical value r0. Performing the following 
variable redefinitions u = r − r0, φ becomes a function of u

φ(u) =
u∫

0

Adu√
u(u + u1)(u + u2)(u + u3)

, (2.16)

where u1 = r0 − r1, u2 = r0 − r2, u3 = r0 − r3. The integral of the 
equation (2.16) can be calculated either in terms of the first kind 
of complete and incomplete elliptic functions or the Weierstrass 
elliptic functions. Adopting the second method and according to 
[22], one can redefine the equation (2.16) as follows

φ(x) = λ

∞∫
x

dx√
4x3 − g2x − g3

. (2.17)

Taking the following changes α = u−1
1 +u−1

2 +u−1
3 , β = (u1u2)

−1 +
(u3u1)

−1 + (u3u2)
−1, γ = (u1u2u3)

−1, λ = A√
u1u2u3

, x = 1
4u + α

12 in 
the equation (2.16), the expressions of the arguments g2 and g3

take the forms

g2 = 1

4

(
α2

3
− β

)
, g3 = 1

16

(
αβ

3
− γ − 2α3

27

)
. (2.18)

Solving the equation (2.17) in terms of the Weierstrass elliptic 
function x = ℘(

φ
λ
, g2, g3), we can get the expression of the func-

tion φ(r) which reads as

φ(r) = λ℘−1
(

1

r − r0
+ α

12
, g2, g3

)
. (2.19)

Considering the equations (2.14) and (2.19), we can obtain the de-
flection angle of the RN-AdS black hole. It is given by

	 = 2|λ℘−1
( α

12
, g2, g3

)
| − π. (2.20)

A close inspection reveals that the optical quantity 	 is controlled 
by four parameters (b, �, Q , M) defining the associated black hole 
moduli space. Fixing the values of the mass and the AdS radius, 
the variation of the deflection angle as a function of the impact 
parameter for several values of Q is plotted in Fig. 1. Indeed, this 
figure represents the expected behavior of the deflection angle as a 
continuous function of the impact parameter. It has been observed 
that this optical angle decreases when the charge increases. Similar 
optical aspects have been remarked for various AdS black holes 
[30,31]. Having discussed optical behaviors of RN-AdS black holes, 
we move to approach the associated thermodynamics properties 
using the deflection angle variation.
3

Fig. 1. Variation of the deflection angle in terms of the impact parameter for differ-
ent values of the charge by taking � = 172, M = 1.

3. Stability of RN-AdS black holes vs the deflection angle

In this section, we investigate the charged black hole stabil-
ity using optical aspects. In particular, we show that the stability 
requirement can be approached in terms of the deflection an-
gle. To make a connection between the conditions under which 
a black hole is stable and such an optical quantity, we exploit 
the sign of the heat capacity, being a relevant thermodynamical 
quantity in the stability analysis. It is recalled that the condition 
C = T

(
∂ S
∂T

)
> 0 defines the stable phase and the unstable one cor-

responds to C = T
(

∂ S
∂T

)
< 0. To implement the deflection angle, we 

extend the heat capacity expression as follows

C = T

(
∂ S

∂rh

)(
∂rh

∂	

)(
∂	

∂T

)
. (3.1)

Taking into account the constraint ∂ S
∂rh

> 0, the crucial information 
on the stability phase can be encoded in the sign of the prod-

uct 
(

∂rh
∂	

)(
∂	
∂T

)
. To handle such a product, we first re-examine the 

temperature behaviors in terms of rh in different regions of the 
black hole moduli space. This is needed to inspect the involved 
phase structures [26]. Precisely, the obtained data will be exam-
ined by exploring the deflection angle variation. Fixing the value 
of the AdS radius via the relation �2 = 675

4π and using the equa-
tion (2.6), Fig. 2 illustrates the temperature as a function of the 
event horizon radius rh for various values of the charge. For charge 
values in the range 0.1 ≤ Q ≤ 1, the temperature behaviors are 
presented in dotted, dashed, and solid curves. It follows from this 
figure that the stable states of the black hole correspond to the 
dotted and the solid curves, where the temperature is an increas-
ing function of rh . However, the dashed curves are associated with 
the unstable phase. Therefore, the phase structure of the RN-AdS 
black holes can be approached from the quantity dT

drh
. To under-

stand how the deflection angle can reflect the phase structure, we 
consider the variation of 	 in terms of rh . This is plotted in Fig. 3. 
For generic regions of the black hole moduli space, it has been 
remarked that the deflection angle is a decreasing function of rh , 
without any critical value. It provides a continuous function for the 
variable rh . In this way, the information about the phase structures 
can be extracted from the sign of the quantity dT

d	
. Concretely, the 

stable and the unstable phases correspond, respectively, to the fol-
lowing constraints

dT

d	
< 0,

dT

d	
> 0. (3.2)

To investigate the interplay between the phase transitions and the 
deflection angle, we exploit the temperature expression given in 
the equation (2.6). Indeed, such thermal behaviors are depicted in 
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Fig. 2. Variation of the temperature in terms of the horizon radius for �2 = 675
4π .
Fig. 3. Variation of the deflection angle in terms of rh for different values of the 
charges by taking b = 10 and �2 = 675

4π .

Fig. 4, by taking into account the previous regions of the stable 
and the unstable phases associated with rh . Effectively, the sta-
ble and the unstable phases are manifested in such a figure. These 
behaviors, which match perfectly with results presented in Fig. 2, 
show that the phase structure can be investigate from using the 
optical aspects relying on the deflection angle variation. Following 
the heat capacity of the RN-AdS black hole, the sign changing at 
critical points can be investigated in terms of the temperature de-
pendence of the deflection angle. Indeed, for a stable phase, the 
deflection angle is a decreasing function of the temperature. This 
phase is represented by solid and dotted curves. For the unstable 
one, however, the deflection angle increases with the temperature. 
This is represented by dashed curves. The present findings could 
suggest that such a deflection angle can be considered as a new 
tool for studying phase transitions of charged AdS black holes from 
optical aspect.

4. Deflection angle and Hawking-Page phase transition

In this section, we explore the relation between the deflec-
tion angle and the Hawking-page transition of RN-AdS black holes 
in four dimensions. It is noted that the Gibbs free energy is the 
relevant thermodynamical quantity providing physical data to in-
vestigate such a transition [7,32]. Taking RN-AdS black holes in a 
grand canonical ensemble, with an fixed electric potential �, this 
quantity reads as

G = M − T S − �Q , (4.1)

where � is the electric potential given by � = Q
rh

. Interpreting the 
cosmological constant as a pressure via the relation p = 3

8π�2 , and 
using the electric potential, calculations give the following needed 
relations
4

T = 8π pr2
h − �2 + 1

4πrh
, (4.2)

M = rh
(
8π pr2

h + 3�2 + 3
)

6
, (4.3)

being obtained from the previous quantities. Substituting (4.2), 
(4.3) into (4.1), one obtains the Gibbs free energy, as a function 
of rh , p and �,

G =
(
3rh − 8π pr3

h − 3rh�
2
)

12
. (4.4)

An examination on the temperature function T = T (rh, p, �)

shows that the RN-AdS black hole possesses two critical values. 

The first one associated with the critical value T0 =
√

2p(1−�2)
π cor-

responds to the minimum of this function, below which no black 
hole can survive [33]. Solving the horizon radius rh in terms of 
the temperature T , we get two solutions associated with large and 
small black holes relaying on two different even horizon radius r+

h
and r−

h , respectively. Presenting in the Fig. 5 the event horizon ra-
dius as a function of the temperature for different values of charge 
and a fixed value of the pressure p = 0.04, such a critical value 
is indicated by the intersection of the LBH, represented by dashed 
curves, and the SBH solid curves. The second relevant critical value 
T H P =

√
8p(1−�2)

3π is the point where the Hawking-Page transition 
takes place, a situation which both the radiation and the black hole 
have a vanishing Gibbs free energy. To illustrate graphically the as-
sociated behaviors, the variation of the Gibbs free energy in terms 
of the temperature for LBH and SBH is plotted in Fig. 6.

Effectively, the Hawking-Page behaviors and the minimum tem-
perature are presented in this figure. To make a contact with 
the optical quantities, we first replace the event horizon radius 
in the expression of the deflection angle by the temperature. 
Then, we inspect the variation of the deflection angle function 
	 = 	(b, T , p, �) with respect to T and b. For fixed values of �
and p, a 3-dimensional behavior is illustrated in Fig. 7. It has been 
observed a minimum temperature which does not depend on the 
b direction of the associated moduli space. For b > r0

h , where r0
h is 

associated with T0, the variation of the impact parameter b does 
not affect the black hole temperature. This can be understood from 
the intrinsic behaviors of black holes.

Looking for the Hawking-Page transition from optical aspects 
of the charged black holes, we consider the variation of the Gibbs 
free energy in terms of the deflection angle. The behavior is pre-
sented in Fig. 8. For LBH, we get a vanishing Gibbs free energy 
corresponding to 	 = 	c . This imitates the Hawking-page transi-
tion behavior where this critical value could play the same role 
as rh = rH P for which T = T H P . It has been remarked that LBH is 
manifested when G is an increasing function of 	. However, SBH 
appears when G decreases with such a quantity. As expected, the 
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Fig. 4. Variation of the temperature in terms of the deflection angle for b = 10 and �2 = 675
4π .
Fig. 5. Variation of the event horizon radius in terms of the temperature.

Fig. 6. Behavior of the Gibbs free energy as function of the temperature for � = 0.9
and p = 0.04.

intersection point of LBH and SBH which corresponds to a mini-
mum temperature value provides a maximum value of the Gibbs 
free energy at a critical value 	 = 	0. This result could confirm 
the previous finding which reveals that the deflection angle can be 
exploited as a relevant quantity to approach critical behaviors of 
charged AdS black holes in four dimensions.

5. Geothermodynamics and the deflection angle

In this section, we implement the deflection angle in the in-
vestigation of the AdS black hole thermodynamics from geometric 
properties of the phase state space. It is noted that the associated 
data are encoded in a thermodynamic potential � and conserved 
quantities considered as space coordinates denoted usually by xi

[34]. In this way, the involved metric takes the following form

gij = ∂2�

∂xi∂x j
. (5.1)

It is recalled, in passing, that � shares similarities with the Kähler 
potential explored in the metric building of complex manifolds in-
5

Fig. 7. Gibbs free energy in terms of the temperature and the impact parameter b
for p = 0.04 and � = 0.9.

Fig. 8. Variation of the Gibbs free energy in function of 	 for � = 0.9 and p = 0.04.

cluding Calabi-You geometries [35]. Many metric forms have been 
elaborated to unveil information on critical behaviors of black hole 
objects. More details can be found in [34,36]. For simplicity rea-
sons, we consider the Ruppeiner metric where the thermodynamic 
potential � is identified with the entropy function S [37]. Taking a 
two dimensional geometry, for the RN-AdS black hole, the metric 
(5.1) reduces to

gij = − ∂ S

∂xi∂x j
, i, j = 1,2. (5.2)

Using x1 = M and x2 = Q , the metric (5.2) can be written as
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Fig. 9. Variation of the heat capacity in terms of 	. Left: Q = 0.11. Right: Q = 0.5.

Fig. 10. Variation of the Ruppeiner invariant R in terms of 	. Left: Q = 0.11. Right: Q = 0.5.
gij =
(

− ∂ S(M,Q )

∂M2 − ∂ S(M,Q )
∂M∂ Q

− ∂ S(M,Q )
∂M∂ Q − ∂ S(M,Q )

∂ Q 2

)
. (5.3)

According to [38], the curvature scalar R , which encodes data on 
critical behaviors, reads as

R = −
18r6

(
3Q 2 − r2

)
+ 3�2r2

(
10Q 4 − 9Q 2r2 + 3r4

)
+ �4

(
Q 2 − r2

)2

π�4
(
3r4/�2 − Q 2 + r2

) (
3r4/�2 + 3Q 2 − r2

)2
.

(5.4)

This geometric quantity can share the same divergence behav-
iors provided by the heat capacity in terms either of the event 
horizon or the entropy. This analysis of the phase transition us-
ing such a geometric method has been extensively investigated 
showing a nice interplay between thermodynamics and Rieman-
nian geometries [36]. Motivated by such activities, we numerically 
discuss such aspects from the deflection angle formalism. In this 
way, the expression of the heat capacity, at constant charges, will 
be needed. Indeed, it is given by

C Q = T

(
∂ S

∂T

)
Q

= 2πr2
(
�2

(
r2 − Q 2

) + 3r4
)

�2
(
3Q 2 − r2

) + 3r4
. (5.5)

It has been revealed that the phase transition LBH/SBH occurs at 
a range of charge values Q bounded by a critical value Q c , where 
6

one has Q < Q c . For a sake of simplicity, we consider particular 
regions of the moduli space. Taking � = 1, for instance, this critical 
value has been found to be Q c = 0.408. Plugging the deflection an-
gle in the equation (5.5), we plot the variation of the heat capacity, 
at constant charges, as a function of 	 in the left and the right of 
Fig. 9 for Q < Q c and Q > Q c , respectively. For Q < Q c , the phase 
transition behavior is manifested, where we have a discontinuous 
curve for the singular points 	1 � 1.01 and 	2 � 4.15, illustrated 
by blue dashed lines. For Q > Q c , however, a continuous curve 
with non divergence behaviors is observed, which indicates that 
there is only one black hole solution.

Consider now the curvature scalar behavior. Fixing the value of 
the impact parameter b = 10, we examine the variation of R in 
terms of 	 for the above charge conditions Q < Q c and Q > Q c . 
Such behaviors are depicted in Fig. 10. For Q < Q c , it has been ob-
served that R is a discontinuous function of 	, which exhibits sim-
ilar divergent points appearing in the heat capacity variation. For 
Q > Q c , however, R is a continuous function without singular lo-
cations, matching with the heat capacity aspects. As excepted, the 
deflection angle can be considered as a relevant parameter provid-
ing data on black hole thermodynamical properties. This confirms 
the results obtained in the previous sections. We anticipate to note 
that such an optical quantity could be exploited as a tool to reflect 
curved features on the phase state space. This non-trivial remark 
deserves more investigations. We hope to address such a question 
in future works.
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6. Conclusions and final remarks

In this work, we have explored a relation between RN-AdS black 
hole thermodynamics in four dimensions and the deflection angle 
variation. In particular, we have examined how this optical quan-
tity can reflect some thermodynamical behaviors of such black 
holes. Firstly, we have exploited the Weierstrass elliptic function 
to reconsider the deflection angle expression. Then, we have es-
tablished a connection between the phase structure of RN-AdS 
solutions and the deflection angle dependance. The stability de-
pends on the thermal variation of such an angle. Concretely, we 
have found that the stable phase is associated with decreasing 
behaviors. However, the unstable one corresponds to increasing be-
haviors.

To support the present finding, we have approached the 
Hawking-Page transition from the Gibbs free energy optical varia-
tion. Precisely, we have shown that the LBH/SBH transition occurs 
at a specific value of the deflection angle. It has been remarked 
that such a transition takes the same place for generic values of 
the impact parameter.

The obtained results have been confirmed by the help of ge-
ometric properties of the phase state space with the Ruppeiner 
metric. It has been observed that geometric properties of such a 
space could be controlled by the deflection angle variations. This 
has suggested that the deflection angle can be exploited to unveil 
data on thermodynamics of the charged AdS black holes.

This work comes up with certain open questions. It should be 
interesting to consider others parameters and backgrounds either 
in four dimensions or in arbitrary dimensions. These investigations 
could open new windows to deal with black hole thermodynam-
ics using the phase state space controlled by the deflection angle 
variations. These questions could addressed in future works.
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