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A mi familia y amigos

Few people who are not actually practitioners of a mature science realize how much
mop-up work of this sort a paradigm leaves to be done or quite how fascinating
such work can prove in the execution. And these points need to be understood.
Mop-ping-up operations are what engage most scientists throughout their careers.
They constitute what I am here calling normal science. Closely examined, whether
historically or in the contemporary laboratory, that enterprise seems an attempt
to force nature into the preformed and relatively inflexible box that the paradigm
supplies. 1

Thomas S. Kuhn, The Structure of Scientific Revolutions III (1962).

1Pocas personas que no sean realmente practicantes de una ciencia madura llegan a comprender
cuánto trabajo de limpieza de esta especie deja un paradigma para hacer, o cuán atrayente puede
resultar la ejecución de dicho trabajo. Y es preciso comprender estos puntos. Las operaciones de
limpieza son las que ocupan a la mayoría de los científicos durante todas sus carreras. Constituyen
lo que llamo aquí ciencia normal. Examinada de cerca, tanto históricamente como en el laboratorio
contemporáneo, esa empresa parece ser un intento de obligar a la naturaleza a que encaje dentro
de los límites preestablecidos y relativamente inflexibles que proporciona el paradigma.
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Preface

The production of multi-jet events in particle colliders is widely used to determine
fundamental parameters such as the strong coupling constant. The objective of this
PhD thesis is to determine this parameter at high energy scales with great precision
through measurements in multi-jet events of observables such as transverse energy-
energy correlations. To date, the Large Hadron Collider (LHC) has produced many
of these events at a center-of-mass energy of

√
s = 13 TeV, collected with multi-

purpose detectors like ATLAS.

Although the ATLAS collaboration has published measurements of these observ-
ables [1, 2], this analysis extends previous results to higher energy scales, achieving
great precision and covering a wider range. The first experimental results were made
public at the 40th International Conference on High Energy Physics (ICHEP) [3].
Subsequently, they have been improved and used for the determination of the strong
coupling constant. It should be noted that this study contains the first determina-
tion of this parameter at next-to-next-to-leading-order (NNLO) accuracy in three-jet
production.

This PhD thesis is structured in seven chapters. Chapters 1 and 2 introduce both
the historical context and the theoretical framework required to understanding the
thesis. For instance, an explanation of the theory that describes strong interactions,
Quantum Chromodynamics. This theory was experimentally verified in particle col-
liders, whose experiments along with the most relevant techniques and observables
are briefly discussed at the end of these chapters. Chapter 3 focuses specifically on
the operation of the LHC accelerator and the ATLAS detector at CERN. The de-
tector components are presented separately to capture the complexity of the entire
system. For completeness, Chapter 4 explains in a nutshell the huge computational
infrastructure that has been required, mentioning the main projects and simula-
tions. Chapter 5 discusses the detector performance in terms of reconstruction and
calibration of objects used in the analysis, which can be found in Chapter 6. Fi-
nally, Chapter 7 contains a summary of the thesis and its conclusions. The last
chapter is written in English and Spanish. The other contents can only be found in
English, except for the acknowledgments that are written in Spanish. In addition,
this preface is translated into Spanish hereunder.
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Preface

Presentación

La producción de sucesos multi-jet en colisionadores de partículas es ampliamente
utilizada para la determinación de parámetros fundamentales como la constante de
acoplo fuerte. El objetivo de esta tesis doctoral es determinar este parámetro a altas
escalas de energía y con gran precisión a través de mediciones en sucesos multi-jet
de observables como las correlaciones de energía-energía transversa. A día de hoy,
el gran colisionador de hadrones (LHC) ha proporcionado una enorme cantidad de
estos sucesos a una energía de centro-de-masas de

√
s = 13 TeV y registrados por

detectores multi-propósito como ATLAS.

Aunque la colaboración ATLAS ha publicado análisis de estos observables [1, 2], el
presente análisis extiende estos resultados a escalas de energía más altas, destacando
por la precisión de sus medidas y el amplio rango que cubren. Los primeros resultados
experimentales se hicieron públicos para la cuadragésima Conferencia Internacional
de Física de Altas Energías (ICHEP) [3]. Posteriormente, se han mejorado y utilizado
para la determinación de la constante de acoplo fuerte. Tenemos que acentuar que
este estudio contiene la primera determinación de dicho parámetro con precisión
next-to-next-to-leading-order (NNLO) en sucesos con tres jets en el estado final.

La presente tesis doctoral está estructurada en siete capítulos. Los capítulos 1 y 2
introducen tanto el contexto histórico como el marco teórico necesario para com-
prender la tesis. En ellos encontramos una explicación de la teoría que describe
la interacción fuerte, cromodinámica cuántica. Esta teoría fue corroborada experi-
mentalmente en los colisionadores de partículas, cuyos experimentos junto con las
técnicas y los observables más relevantes se discuten brevemente al final de estos
capítulos. El capítulo 3 se centra específicamente en el acelerador LHC y el detector
ATLAS que operan en el CERN. Las componentes del detector se exponen separada-
mente con el objetivo de captar la complejidad de todo el sistema. Por completitud,
el capítulo 4 explica superficialmente la enorme infraestructura computacional que
ha sido requerida, mencionado los proyectos y las simulaciones principales. El capí-
tulo 5 discute la actividad del detector en términos de reconstrucción y calibración
de los objetos empleados en el análisis, el cual se encuentra en el capítulo 6. Final-
mente, el capítulo 7 contiene un resumen de la tesis y sus conclusiones. Este último
capítulo ha sido redactado en inglés y en español. El resto de la tesis doctoral se
encuentra únicamente en inglés, con la excepción de los agradecimientos que se han
escrito en español.

Agradecimientos

Esta tesis doctoral es el resultado del trabajo llevado a cabo tanto por mí como
por todas las personas que me han ayudado a lo largo de estos años. Destacando
a Fernando Barreiro y Javier Llorente, no solo por la supervisión de mi trabajo,
sino también por su inmenso apoyo y dedicación. Me siento afortunado de haber
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CHAPTER 1

Historical context

The progress of science is closely related to the study of nature. In ancient times,
it was restricted to qualitative knowledge of things. However, the notion of phe-
nomenon as a quantitative abstraction and the role it plays from the 17th century
as a scientific object allowed the development of classical physics.

The 19th century was a triumphal period for classical physics. Nevertheless, despite
brilliant successes, physics suffered from certain hidden malaises. For instance, the
presence of discontinuities in nature. Although most physicists used continuous rep-
resentations to describe physical phenomena, experimental results started to emerge
in favour of a discontinuous nature for matter and electricity. The discovery of cath-
ode rays indicated that electricity was always carried by extremely light corpuscles,
which were called electrons. This was shown by Joseph J. Thomson in 1897.

Thereafter, the assertion that corpuscular discontinuities play an essential role was
increasingly corroborated. The appearance of these quanta was vital to explain the
black-body radiation. The spectral radiation density for this object was described
by Max Planck in 1900 using a heuristically derived formula, which resolved the
problem of the ultraviolet catastrophe predicted by classical physics. This idea was
specified by Albert Einstein in 1905 thanks to the photoelectric effect. He proposed
that a beam of light is a swarm of discrete energy quanta, which were called photons.

These ideas were considered to design new atomic models. For instance, the one
of Ernest Rutherford in 1911, which theorized a small atomic nucleus. Although
this model was incompatible with classical theories of radiation, the problem was
solved with the ideas introduced by Niels Bohr in 1913 which explained the emis-
sion spectrum of atomic hydrogen. In 1917, Ernest Rutherford also proved that
the hydrogen nucleus is present in other nuclei, a result generally described as the
discovery of protons. However, a satisfactory theory should be able to deduce these
phenomenological laws from more fundamental principles. These foundations were
established by two equivalent formalisms developed between 1924 and 1928. On the
one hand, the wave formulation initiated by Louis de Broglie with the discovery of
the wave nature of electrons, and concluded by Erwin Schrödinger. On the other
hand, the matrix formulation initiated by Werner Heisenberg using operators to rep-
resent observable quantities, and later developed independently by Paul Dirac and
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Chapter 1. Historical context

Max Born. Many other physicists contributed to the new quantum theory, among
them Wolfgang Pauli, who enunciated an exclusion principle for assigning quantum
numbers to electrons in the hydrogen atom. That would lead to classifying quantum
particles based on their spin, following either a Bose-Einstein statistics or a Fermi-
Dirac one. Paul Dirac also theorized an antiparticle for the electron, the positron,
which was discovered by Carl Anderson in 1932.

In addition, James Chadwick also discovered a new particle called neutron, laying
a solid foundation for future nuclear models. The similarity between protons and
neutrons led Werner Heisenberg to introduce a global symmetry called isospin. How-
ever, their strong interactions inside the nuclei had not been well understood yet.
To describe their attraction, Hideki Yukawa theorized in 1935 a new particle called
meson, acting as carrier particles for the strong nuclear force. The next year, Carl
Anderson discovered a new particle called muon while working with cosmic rays.
Although this particle was initially thought to be the predicted meson, one has to
wait until 1947 to find the first true mesons, which were the charged pions found in
a collaboration led by Cecil F. Powell. Hideki Yukawa was awarded with the Nobel
Prize in Physics in 1949 “for his prediction of the existence of mesons on the basis of
theoretical work on nuclear forces”, whereas Cecil F. Powell with the one in Physics
in 1950 “for his development of the photographic method of studying nuclear pro-
cesses and his discoveries regarding mesons made with this method”. Afterwards,
more bound states began to be found in experiments. Therefore, physicists required
schemes to classify them, theories to understand their behaviour and laboratories
to perform their experiments.

In 1954, CERN «Conseil européen pour la recherche nucléaire» was established by
twelve European governments in Geneva. The aim was to build a laboratory devoted
to the study of nuclear and particle physics, similar to the Brookhaven National Lab-
oratory. The next years, other organizations emerged with the same purpose like
DESY in Hamburg, SLAC in Stanford and Fermilab in Chicago. These organiza-
tions operated sophisticated particle accelerators like cyclotrons, synchrotrons and
linear accelerators, which were originally used in fixed-target experiments, and later,
implemented in particle colliders. Figure 1.1 shows the main colliders operated by
the previous mentioned organizations. In particular, CERN’s particle colliders have
been vital to attain the Nobel Prize in Physics in 1984 awarded to Carlo Rubbia
and Simon van der Meer “for their decisive contributions to the large project, which
led to the discovery of the field particles W and Z, communicators of weak interac-
tion”, and the one in Physics in 2013 awarded to Peter Higgs and François Englert
“for the theoretical discovery of a mechanism that contributes to our understand-
ing of the origin of mass of subatomic particles, and which recently was confirmed
through the discovery of the predicted fundamental particle, by the ATLAS and
CMS experiments at CERN’s Large Hadron Collider”.

Nowadays, laboratories designed for particle experiments are vital for the develop-
ment of science and technology. New ground-breaking collider-based experiments
are planned, and the future of particle physics is widely open to outstanding discov-
eries.
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Figure 1.1: Timeline of main particle colliders operating at CERN, DESY, SLAC,
and Fermilab. They are written in boldface, along with the particles collided above
and their main experiments below. For completeness, the first accelerators of these
organizations are shown in italics.
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CHAPTER 2

Theoretical framework

Fundamental interactions arise from the constraints imposed by gauge symmetries,
in which case the transformations are continuous and local, varying from point to
point in space and time. The procedure of postulating a specific gauge symmetry
leads to a unique quantum field theory described by a Lagrangian which is invariant
under these transformations. Moreover, the Lagrangian must be also Hermitian and
Lorentz covariant, and CPT symmetry must hold for all physical phenomena.

In general, a set of transformations can be associated to an algebraic structure called
group and consisting of a set of elements equipped with a binary operation in such a
way that the axioms of closure, associativity, identity, and invertibility are satisfied.
Additionally, the group is Abelian if it obeys the axiom of commutativity. A group
representation describes these abstract groups in terms of linear transformations of
vector spaces, where the elements are represented as matrices equipped with the
matrix multiplication. There is a kind of groups widely used in physics called Lie
groups. A Lie group is a continuous group that is also a differentiable manifold and
any Lie group gives rise to a Lie algebra, which is the tangent space at the identity.
The most considered ones are the unitary groups U(N) whose elements are N ×N
unitary matrices over C equipped with matrix multiplication.

The first developed gauge theory was Quantum Electrodynamics (QED). This theory
emerges from the gauge symmetry group U(1)EM and describes the electromagnetic
interactions of photons and charged particles, i.e. the radiation and matter elec-
tromagnetic interaction. The theory was systematized in 1949 by Freeman Dyson
after demonstrating the equivalence of the two current formulations at that time [4].
The established one used by Shin’ichiro Tomonaga and Julian Schwinger to inde-
pendently discover a renormalization method for ultraviolet divergences [5], and the
alternative one introduced by Richard Feynman as a pictorial representation of the
behaviour and interaction of particles [6]. They were awarded with the Nobel Prize
in Physics in 1965 “for their fundamental work in quantum electrodynamics, with
deep-ploughing consequences for the physics of elementary particles”.

The concept of gauge theory was extended to non-Abelian groups in 1954 by Chen-
Ning Yang and Robert Mills at the Brookhaven National Laboratory [7]. Nowadays,
this paradigm remains as the core for understanding strong and weak interactions.
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2.1. Quantum Chromodynamics

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a Yang-Mills theory with gauge symmetry
group SU(3)C that describes strong interactions of gluons and coloured quarks.
There are 3 different colours for each quark flavour and also 8 different colour com-
binations for the gluon, which is the gauge vector boson mediating strong interac-
tions. The theory was independently formulated in 1973 by David Gross and Franck
Wilczek at Princeton University and by Hugh David Politzer at Harvard University,
explaining the weakness of strong interactions at short distances due to asymptotic
freedom [8, 9]. They were awarded with the Nobel Prize in Physics in 2004 “for the
discovery of asymptotic freedom in the theory of the strong interaction”.

Any Yang-Mills theory corresponds to a continuous and local SU(N) symmetry of
the Lagrangian. The special unitary group SU(N) is a subgroup of the unitary
group, consisting of elements with determinant unity. The elements of the group
can be mapped around the identity as U = exp (−igϕ) where g is the coupling and ϕ
is a function varying from point to point in space and time that can be expanded in
terms of the generators in the Lie algebra su(N). These generators are Hermitian and
traceless operators that satisfy the commutation relation [T a, T b] = ifabcT c where
the structure constants are real and completly antisymmetric. For this group, the
number of generators is (N2 − 1) and the rank is (N − 1).

The main irreducible representations of the group are the fundamental one F and
the anti-fundamental one F both with dimension N . Thanks to the Young tableaux
technique one can relate them as F⊗F = 1⊕A where the adjoint representation A
has dimension (N2−1). The generators of each representation are square matrices of
the corresponding dimension. Using matrix notation, the generators for the adjoint
representation can be derived from the structure constants as (T a

A)
bc = −ifabc.

The following normalization conditions are satisfied by the generators of the group:

tr(T aT b) = TFδ
ab; T aT a = CFI; facdf bcd = CAδ

ab.

The normalization coefficients take values TF = 1/2 and CF = (N2 − 1)/2N for the
fundamental representation, along with CA = N for the adjoint one.

In the symmetry group SU(3) postulated by QCD, the generators for the fundamen-
tal representation are given by the Gell-Mann matrices divided by a factor 2 due to
normalization. These matrices were derived by Murray Gell-Mann as analogous to
the Pauli matrices from SU(2) and they take the form:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0



λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0


5



Chapter 2. Theoretical framework

λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


The structure constants of the symmetry group SU(3) are found below, and all other
constants not related to these by permuting indices are zero:

f 123 = 1; f 147 = f 246 = f 257 = f 345 = 1/2;

f 156 = f 367 = −1/2; f 458 = f 678 =
√
3/2.

2.1.1 Gauge theory

The action in a Yang-Mills theory is a functional of a gauge potential A, a spinor field
Ψ and its conjugate spinor field Ψ = Ψ†γ0. The action of the physical system is then
computed as the integral of the Lagrangian over a whole four-dimensional Lorentzian
manifold M. This manifold describes a set of points in space and time where any
point x in the manifold is specified through a given chart using coordinates {xµ}.
Locally, a Lorentzian manifold is reduced to a Minkowskian space equipped with a
metric tensor η = ηµνdxµ ⊗ dxν taking the same form at all points. The signature
is positive in time direction and the inverse metric comes from ηµνη

νρ = δρµ.

The gauge potential is a 1-form in the manifold, while the spinor fields are simply
0-forms and the gamma matrices expressed in the Weyl basis are written as a 1-form.
The exterior covariant derivative is introduced as D = d + igA and the gauge field
strength tensor is a 2-form in the manifold obtained from D ∧D = igF .

The action of a Yang-Mills theory like QCD is simply given by

S[A,Ψ,Ψ] =

∫
M

{
−tr(F ∧ ∗F ) + iΨΓ ∧ ∗

↔
DΨ−ΨM ∧ ∗Ψ

}
where the derivative operator is defined as

↔
D = (1/2)(D −

←
D†) to preserve the

Hermitian requirement of the Lagrangian and M is the mass coupling for spinors.
Note that under a gauge symmetry of element U the spinor field transforms as
Ψ → Ψ′ = UΨ and the conjugate spinor field transforms as Ψ → Ψ

′
= ΨU †. In

order to preserve gauge invariance in the Lagrangian, the gauge potential must then
transform as igA→ igA′ = U

↔
DU † = UigAU † − (dU)U †.

It is convenient to show explicitly all the interactions between fields in the La-
grangian. The first step is to expand the gauge potential in the fundamental rep-
resentation A = Aa

µT
adxµ as different combinations of the gauge boson. Using this

notation, the gauge field strength tensor takes the form F = (1/2)F a
µνT

adxµ ∧ dxν .
Thus, given the definition F = dA+ igA ∧ A, its components are

F a
µν = ∂µA

a
ν − ∂νAa

µ − gfabcAb
µA

c
ν .

The spinor field is an array of the different charged spinor fields ψ with a mass m for

6



2.1. Quantum Chromodynamics

each flavour. The number of active flavours in the theory is given by nf. Moreover,
each of these fields presents N different colour states that may be explicitly indi-
cated as ψi when using the matrix notation for the generators of the group in the
fundamental representation T a

ij. As the spinor fields transform in the fundamental
representation, then the covariant derivate acts like Dijµ = δij∂µ + igT a

ijA
a
µ. It can

also be defined a covariant derivative acting in the adjoint representation, where the
derivative behaves like Dac

Aµ = δac∂µ − gfabcAb
µ.

Perturbative theory

The gauge coupling g is the fundamental parameter in any gauge theory, as it
copies the strength of the interaction. The QCD parameter may be rewritten as
αs = g2/4π or even as a = (g/4π)2 depending on the normalization. This gauge
coupling is a small parameter, so one can perform a perturbative expansion in pow-
ers of the coupling when computing physical observables or applying infinitesimal
transformations.

Under an infinitesimal gauge transformation U = I − igϕaT a + O(g2), the gauge
potential transforms as Aa

µ → A′aµ = Aa
µ +Dac

Aµϕ
c. Thus, the function varying from

point to point in space and time behaves as a massless scalar field transforming in
the adjoint representation. This is going to be vital when implementing the Lorenz
gauge condition ∂µAa

µ = 0 in the perturbative calculation.

Additional terms need to be included in the Lagrangian to perform a perturbative
calculation, namely, the gauge fixing term with the Feynman-’t Hooft parameter ξ =
1 and the Faddeev-Popov ghost field c that transforms in the adjoint representation.
The Faddeev-Popov anti-ghost and ghost fields are anti-commuting scalar fields.
They do not satisfy the spin-statistics theorem and they are their own antiparticles,
c = c† and c = c†. The Lagrangian when including these terms takes the form

LpYM = −1

4
F aµνF a

µν −
1

2ξ
(∂µAa

µ)
2 +(∂µca)Dac

Aµc
c +

nf∑
k=1

ψ
(k)

i

(
iγµ
↔
Dijµ −m(k)δij

)
ψ

(k)
j .

Thus, the Lagrangian in a perturbative Yang-Mills theory like perturbative QCD
(pQCD) where all propagators and interactions are shown explicitly is given by

LpYM =+
1

2
Aa

µδ
ac

[
ηµν□−

(
1− 1

ξ

)
∂µ∂ν

]
Ac

ν − gηµνfabc(∂ρAa
µ)A

b
νA

c
ρ

− 1

4
g2ηµρηνσfabcfadeAb

µA
c
νA

d
ρA

e
σ − caδac□cc − g(∂µca)fabcccAb

µ

+

nf∑
k=1

[
ψ

(k)

i δij

(
iγµ
↔
∂µ −m(k)

)
ψ

(k)
j − gψ

(k)

i γµT a
ijψ

(k)
j Aa

µ

]
.

Physical predictions for observables are obtained computing Feynman diagrams. For
such interaction, vertices and propagators are required, which are directly obtained
from the perturbative Lagrangian. Afterwards, the computation is performed in

7



Chapter 2. Theoretical framework

momentum space, keeping in mind that momenta always flow by convention towards
the interaction point. Functions in position and momentum spaces are related by a
Fourier transform. For example, the gauge potential transforms as

Aa
µ(x) =

∫
d4p

(2π)4
Aa

µ(p)e
−ip·x.

Note that the dependence of functions with the position is only explicitly shown
here to distinguish them from their Fourier transforms in momentum space.

The Feynman rules for the propagators correspond with two-point functions. They
can be derived from the free perturbative Lagrangian of a particular field. For
instance, in the case of the gauge boson propagator:

⟨0|T {Aa
µ(x)A

b
ν(y)}|0⟩ = Gab

Fµν(x− y) =
∫

d4p

(2π)4
Gab

Fµν(p)e
−ip·(x−y);

[
Gab

Fµν(p)/i
] (2π)4δ
δAb

ν(p)

(2π)4δ

δAc
ρ(q)

∫
d4xLprop.(x) = (2π)4δ4(p+ q)δρµδ

ac.

The Feynman rule for an interaction vertex can be derived too from its respective
term in the perturbative Lagrangian. As an example, the triple interaction between
gauge bosons and spinors simply comes from the relation:

(2π)4δ

δAa
µ(p)

(2π)4δ

δψj(q)

(2π)4δ

δψi(k)

∫
d4xLinter.(x) = (2π)4δ4(p+ q + k)

[
V aµ

Fij(p, q, k)/i
]
.

That way all Feynman rules for any quantum field theory can be easily derived. For
pQCD they can be found below when computed in momentum space. Nevertheless,
to compute physical observables, one also need to implement the asymptotic states
and symmetry factors in the perturbative calculation.

Feynman rules for pQCD:

Propagators:
Abν Aaµ

=
−iδab

p2 + iϵ

[
ηµν − (1− ξ)p

µpµ

p2

]
cb ca

=
iδab

p2 + iϵ

ψj ψi
=

iδij
p2 −m2 + iϵ

(γµpµ +m)

Triple interactions:

Abµ
ca(p)

cc

= −gfabcpµ Aaµ
ψi

ψj

= −igγµT a
ij

8



2.1. Quantum Chromodynamics

Abν(p)
Aaµ(k)

Acρ(q)

= −gfabc[ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ]

Quartic interactions:

Aaµ

Abν

Acρ

Adσ

= −ig2[fabef cde(ηµρηνσ − ηµσηνρ) + facef bde(ηµνηρσ − ηµσηνρ)
+ fadef bce(ηµνηρσ − ηµρηνσ)]

2.1.2 Renormalization

In any perturbative quantum field theory logarithmically divergent integrals arise
when computing loop Feynman diagrams due to contributions of objects with un-
bounded energy, or, equivalently, because of physical phenomena at infinitesimal
distances. The ultraviolet divergences encountered in these loop integrals are re-
moved through renormalization.

These divergent integrals are first regularized by computing them in 4 − 2ϵ di-
mensions. Afterwards, renormalization relies on dimensional regularization and
treats divergences by altering coupling values to compensate for effects of their
self-interactions. Therefore, in order to absorb ultraviolet divergences, any bare
coupling in the Lagrangian is rewritten as a renormalized coupling. The latter has
a dependence with an arbitrary mass scale µR at which ultraviolet divergences are
subtracted. The QCD bare gauge coupling a0 is therefore rewritten as

a0 = µ2ϵ
RZaa

where a is the renormalized gauge coupling, Za is the renormalization constant of
the coupling a and the arbitrary mass scale µR is the unphysical renormalization
scale. The renormalization constant Za compensates the divergences encountered
in loop integrals and the dependence of the renormalized coupling a with the mass
scale µR is encoded in the β function.

Ultraviolet divergences are separated in 1/ϵ poles and absorbed into redefinitions of
the coupling. The Laurent series of the β and Zaa functions are rewritten as

β =
da

d lnµ2
R
=

+∞∑
k=−∞

bk

(
1

ϵ

)k

and Zaa =
+∞∑

k=−∞

zk

(
1

ϵ

)k

.

In addition, the bare coupling a0 must be independent of the arbitrary mass scale at
which ultraviolet divergences are subtracted. Therefore, the bare coupling satisfies

da0
d lnµ2

R
= 0.

9



Chapter 2. Theoretical framework

This condition implies that the coefficients in the Laurent series must satisfy the
following relation derived from the Cauchy product:

zk+1 +
k∑

j=−∞

bj
dzk−j
da

= 0.

Any physical observable R must also be independent of the renormalization scale.
In pQCD a physical observable R is described using a perturbative expansion in
powers of the physical coupling a(µ2

R). Then, any observable is expressed as

R
(
ln(Q2/µ2

R), a(µ
2
R), χ

)
=
∞∑
n=0

[
a(µ2

R)
]n+k

rn
(
ln(Q2/µ2

R), χ
)

where χ is a given kinematic variable, Q is the scale of momentum transferred,
and k is the power of the coupling at leading-order. To obtain fixed-order finite
predictions, the physical observable R must satisfy ultraviolet safety. Consequently,
the renormalization group equation (RGE) happens to be fulfilled at any order in
the perturbation expansion for any physical observable:

dR
d lnµ2

R
=

[
∂

∂ lnµ2
R
+

da
d lnµ2

R

∂

∂a

]
R = 0.

Modified Minimal Subtraction

In order to absorb ultraviolet divergences into redefinitions of the coupling, the
subtraction procedure is here performed in the MS renormalization scheme using
pQCD in the massless limit. The first non-trivial coefficient of the Zaa expansion is
z0 = a and the next coefficient z1 is given by a perturbative expansion:

z1 = −
∞∑
n=0

an+2 βn
n+ 1

.

The analytical expressions up to the 3-loop solution for these βn coefficients as a
function of the number of active quark flavours nf are given by

β0 =
11

3
CA −

4

3
TFnf;

β1 =
34

3
C2

A − 4CFTFnf −
20

3
CATFnf;

β2 =
2857

54
C3

A + 2C2
FTFnf −

205

9
CFCATFnf −

1415

27
C2

ATFnf +
44

9
CFT

2
Fn

2
f

+
158

27
CAT

2
Fn

2
f .

These coefficients were calculated in Ref. [10] and can be also found in the PDG [11].
However, the β0 coefficient is going to be derived now from the QCD counter-terms.
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2.1. Quantum Chromodynamics

To do that, the bare parameters and fields in the Lagrangian have to be renormalized
by introducing their respective normalization constants:

g0 = µϵ
R

√
Zag; ψ0i =

√
Z2ψi; Aa

0µ =
√
Z3A

a
µ; ξ0 = Z3ξ; Z2m0 = Zmm.

For the QCD vertex, one introduces the additional constant Z1 = Z2

√
Z3Za. These

renormalization constants are real and can be expanded as Zn = 1 + δn due to its
perturbative nature. The counter-terms required can be found below.

Abν Aaµ

= −iδ3
(
p2ηµν − pµpµ

)
δab; δ3 = a

(
5

3
CA −

4

3
TFnf

)(
1

ϵ

)
ψj ψi

= i(δ2γ
µpµ − δmm)δij; δ2 = −aCF

(
1

ϵ

)
; δm = −a4CF

(
1

ϵ

)

Aaµ
ψi

ψj

= −iδ1µϵ
Rgγ

µT a
ij; δ1 = −a (CA + CF)

(
1

ϵ

)

Combining previous counter-terms, one can obtain the first non-trivial terms of the
Laurent expansion for the Zaa function. The term z1 is computed now only at
leading-order. Thus, the analytical expression for the β0 coefficient is determined
from

Zaa = a− a2
(
11

3
CA −

4

3
TFnf

)(
1

ϵ

)
+O(1/ϵ2).

Asymptotic freedom and confinement

The evolution of a(µ2
R) is simply given by the solution of the RGE for a encoded in

the β function, which at any order in the perturbative expansion takes the form

β =
da

d lnµ2
R
= −aϵ+ a

dz1
da
− z1 +O(1/ϵ) = −aϵ−

∞∑
n=0

an+2βn +O(1/ϵ).

Integrating this differential equation, one obtains the analytical expression for the
3-loop solution to the RGE for a evaluated at a mass scale µR in the MS scheme

aMS(µ
2
R) =

1

β0t

[
1− β1

β2
0

ln t

t
+

β2
1

β4
0t

2

(
ln2 t− ln t− 1 +

β2β0
β2
1

)]
(2.1)

where t = ln
(
µ2

R/Λ
2
QCD

)
and ΛQCD is the scale at which the coupling diverges. The

evolution of the coupling given in Eq. (2.1) is represented in Figure 2.1 where one
observes the behaviour of the coupling with the interaction scale.
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Chapter 2. Theoretical framework

The coupling behaves then as a running coupling with the scale to compensate the
effects of self-interactions. Moreover, if the unphysical mass scale µR is evaluated
close to the scale of momentum transferred Q in a given process, the coupling a(Q2)
becomes an indicative of the effective strength of the interaction.

Thus, the strong interactions of colour charged particles present two main properties
with the interaction scale:

Asymptotic freedom, which becomes dominant at high-energy scales where partons
interact weakly creating a quark-gluon plasma as the effective strength of the interac-
tion decreases. In this case, strong interactions can be described using a perturbative
expansion in powers of the coupling.

Confinement, which becomes dominant at low-energy scales where particle detection
occurs in collider experiments. In this case, partons cannot be isolated singularly,
and therefore, cannot be directly observed because the effective strength does not
diminish as they are separated due to the emission of massless colour charged par-
ticles. They are forever bound into colourless bound states called hadrons. The
hadron structure has then a non-perturbative nature.

5 10 15 20 25 30 35 40

)2
QCDΛ/2

R
µln (

2−10

1−10

1

π
/4 sα

Figure 2.1: Running of the strong coupling constant a(µ2
R) for a number of active

flavours nf = 6 based on the 3-loop solution to the RGE performed in the MS scheme
using pQCD in the massless limit. The gauge symmetry group is SU(3)C.

2.1.3 Factorization

In a perturbative quantum field theory divergent integrals also arise due to the emis-
sion of massless charged particles with arbitrarily small momentum, or equivalently,
because of physical phenomena at long distances. Consequently, the infrared di-
vergences encountered in these integrals imply large non-perturbative effects. These
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2.1. Quantum Chromodynamics

problems start to show up when 2→ 3 kinematics becomes 2→ 2 kinematics, which
happens at the edges of phase space when one parton becomes soft or two partons
become collinear.

The Kinoshita-Lee-Nauenberg (KLN) theorem states that any physical observable
must be infrared safe in the massless limit, i.e. zero-momentum charged particles
do not contribute and collinear splitting does not change the observable. Therefore,
an observable R with n partons in the asymptotic states must satisfy the limits:

lim
pn+1→0

R(n+1)(p1, . . . , pn, pn+1) = R(n)(p1, . . . , pn);

lim
pn∥pn+1

R(n+1)(p1, . . . , pn, pn+1) = R(n)(p1, . . . , pn + pn+1)

where pi is the momenta of the either incoming or outgoing particle i. Then, infrared
divergences cancel exactly at any order in perturbative theory after integration of
real and virtual contributions in dimensional regularization, allowing fixed-order fi-
nite predictions [12]. To achieve this, observables must be totally inclusive quantities
over all charged particles in both asymptotic states, the initial and the final one.

In e+e− collisions, all observables are totally inclusive in the initial state. Therefore,
any observable which is totally inclusive over the final state is an infrared safe
quantity, insensitive to long-distance phenomena like hadron structure. The main
one for this process is the cross section σ(e+e− → X) whose result is calculable at
parton level and it is still valid at particle level.

In hadron collisions, observables are not inclusive in the initial state. As a result,
infrared divergences owing to collinear emissions from incoming partons are not can-
celled by virtual contributions, and therefore, they are not infrared safe by themself.
To account for this effect, divergences are factorized out from the perturbative com-
putation at a certain mass scale µF. Any observable should be independent of the
unphysical scales at which divergences are subtracted. Not currently close to this
ideal situation, the practice consists in defining a theoretical scale uncertainty as
the range of results within µR,F/2 < µR,F < 2µR,F. See more details in Ref. [13].

For a process with an incoming hadron A carrying momenta pA, consider a physical
observable R which is totally inclusive in the final state. The factorization proce-
dure separates the observable into a perturbatively calculable quantity associated
to short-distance effects and the universal non-perturbative functions associated to
long-distance effects. Hence, the observable is given by the formula:

RA =

part.∑
i

∫ 1

0

dx fi/A(x, µ2
F) R̂i

(
pi, ln(Q

2/µ2
F), ln(Q

2/µ2
R), a(µ

2
R), χ

)
where χ is a given kinematic variable and Q is the scale of momentum transferred.
The parton distribution function fi/A(x) represents the probability density for find-
ing a parton i inside the hadron A carrying a certain momentum fraction x. On
the other hand, the perturbatively calculable quantity R̂i corresponds with a certain
subprocess with incoming parton i carrying a momentum pi = xpA.
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Chapter 2. Theoretical framework

Parton Distribution Functions

The universal long-distance functions include the parton distribution functions (PDF)
to factorize hadron-parton transitions in the initial state and the fragmentation
functions (FF) to factorize parton-hadron transitions in the final state. They are
measured with global fit to experiments and their evolution with the unphysical
scale follows the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation:

∂fi/A(x)

∂ lnµ2
F

= 2a(µ2
F)

part.∑
j

∫ 1

x

dz
z
Pi←j(z) fj/A

(x
z
, µ2

F

)
where Pi←j are the splitting kernels of a given parton into another one. The partons
involved in QCD are the gluon g and the quark q. The latter presented in different
flavours. The gluon can split independently into a pair of quarks and a pair of
gluons, but a quark can only radiate a gluon, which implies Pq←q(1−x) = Pg←q(x).

The splitting kernel Pg←q diverges for x → 0, whereas Pq←q diverges for x → 1.
Therefore, the presence of a soft divergence makes crucial to include virtual contri-
butions in order to cancel exactly the singularity. The analytical expressions for the
leading-order kernels in the + notation that avoids a soft cut-off are given by

Pq←q(x) = CF
1 + x2

(1− x)+
+

3

2
CFδ(1− x)

Pg←q(x) = CF
1 + (1− x)2

x
Pq←g(x) = TF

[
x2 + (1− x)2

]
Pg←g(x) = 2CA

[
1− x
x

+ x(1− x) + x

(1− x)+

]
+
β0
2
δ(1− x)

where 1/(1− x)+ is defined by its action on a function f(x) regular at x = 1 as

1

(1− x)+
f(x) =

f(x)− f(1)
1− x

.

These expressions are derived in numerous references like Ref. [14]. The evolu-
tion of the parton distribution functions was published in 1977 by Guido Altarelli
and Giorgio Parisini [15], even though an equivalent formula had been proposed
independently by Vladimir Gribov and Lev Lipatov in 1972. Initially, fixed-targed
experiments were the main source of parton distributions inside hadrons at high x in
the kinematic plane (x,Q). Afterwards, the measured regions were extended at low
x in collider experiments like HERA. The major groups back then providing results
from global fits to these experiments were CTEQ5 [16] and MRST [17]. Nowadays,
there is a wide range of groups regularly updating the parton distributions.

At very low x in the kinematic plane, the DGLAP evolution is no longer applicable
and a BFKL description must be considered. In this scenario, the partonic content
increases as x decreases. Then, partons start to recombine and eventually saturate.
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2.1. Quantum Chromodynamics

Leading-Logarithm Approximation

The perturbative expansion in powers of the coupling used to describe the splitting
kernels is not valid any more at low x due to large logarithms ln(1/x) contained in the
higher-order corrections. Nevertheless, these large logarithms can be controlled by
rearranging terms in the perturbative expansion. This procedure called resummation
was accomplished by the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation.

Logarithm enhancement may also occur for any observable containing terms pro-
portional to powers of a lnk(Q2/µ2

R,F). These terms appear in renormalization and
factorization procedures but also as Sudakov logarithms for k = 2. The latter arises
when particles get both very soft and collinear. In resummation, one uses a factor-
ized expression of an observable, and from that derives an expression that absorbs
the large logarithms into an exponent. Hence, this procedure allows going from a
perturbative expansion in terms of the coupling a to one in terms of a ln(Q2/µ2

R,F),
so that the perturbative expansion is not threatened any more.

2.1.4 Hadron structure

Fixed-target experiments used to probe the inside of hadrons revealed that the point-
like scattering distributions were damped by form factors showing that hadrons are
not point-like and indeed are bound states of partons. The low-resolution picture
of the hadron structure corresponds then with a combination of valence quarks that
only accounts for its quantum numbers. However, a high-resolution picture of the
hadron structure consider that the valence quarks are dressed with a sea of gluons
and quark pairs due to the action of the splitting kernels.

These experiments were operating since 1967 at the Stanford Linear Accelerator
Cente (SLAC), where electron beams were scattered on proton targets at energies
of about 20 GeV to reveal the internal structure of the proton. Richard Feynman
interpreted the results in terms of a model in which protons were composed of
generic point-like constituents called partons [18]. Thereafter, the study of the
produced deep-inelastic scattering (DIS) data led to the development of the quark-
parton model of the proton [19]. Jerome Friedman, Henry Kendall, and Richard
Taylor were awarded with the Nobel Prize in Physics in 1990 “for their pioneering
investigations concerning deep inelastic scattering of electrons on protons and bound
neutrons”.

The DIS cross section σ(e−p→ e−X) in the proton rest frame where X is anything
the proton can break up into, is expressed in terms of the scattering angle θ as

dσ
dΩdE ′

=
α2

4E2 sin4(θ/2)

[
W2(ν,Q

2) cos2
θ

2
+ 2W1(ν,Q

2) sin2 θ

2

]
where ν = E−E ′ with E and E ′ the energies of the incoming and outgoing electron,
respectively, Q is the scale of momentum transferred, and α is the fine-structure con-
stant. It is usual to define x = Q2/2mpν which can be interpreted as the momentum
fraction involved in the parton-level scattering. The form factors W1 and W2 can
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Chapter 2. Theoretical framework

be determined by measuring the energy and angular dependence of the outgoing
electron. If the struck partons are point-like spin-1/2 particles, as expected in the
quark model, the following two relations are derived

νW2(ν,Q
2)→ F2(x) =

part.∑
i

e2ixfi/p(x)

mpW1(ν,Q
2)→ F1(x) =

1

2x
F2(x)

where ei is the electric charge of the struck parton i within the proton. The fact that
at fixed Q2 the cross section depends only on the variable x is known as Bjorken
scaling. The relation F2(x) = 2xF1(x) is known as the Callan-Gross relation.

Quark model

The quark model is a non-dynamical classification scheme for hadrons in terms of
their valence quarks. For energy scales above ΛQCD the quarks flavours up, down and
strange are relativistic. Thus, the strong interactions have a SU(3) flavour symmetry
associated. The quark model underlies this global symmetry and it is referred to as
the Eightfold Way. The idea was proposed in 1961 by Murray Gell-Mann and Yuval
Ne’eman to explain the hadron quantum numbers [20, 21].

Hadrons are characterized by their quantum numbers IG(JPC). One set comes from
the Lorentz symmetry where J = L⊕S is the total angular momentum, P is parity
and C is charge conjugation. The others are isospin I, that corresponds to the third
component of the SU(2) flavour symmetry, and G-parity.

The SU(3) flavour symmetry has eight generators, which correspond to the Gell-
Mann matrices divided by a factor two. These matrices are used to determine the
isospin I = λ3/2 and strong hypercharge Y = λ8/

√
3 operators. The hypercharge

is the sum of the baryon number which adds 1/3 for each valence quark and of
the strangeness which adds −1 for each strange valence quark. In this model, the
electric charge of the hadron may be calculated as Q = I + Y/2.

Hadrons must be invariant under the gauge symmetry SU(3)C due to confinement.
Singlets of colour are produced by either quark-antiquark or three quarks combina-
tions. Hadrons made of quarks qq are called mesons, while hadrons made of quarks
qqq are called baryons. It is usual to write their wave function as

|hadron⟩ = |colour⟩ × |space⟩ × |spin⟩ × |flavour⟩ .

For mesons |qq⟩, parity is given by P = −(−1)L and their bound states are the
flavour octet and singlet with JP = 0− or JP = 1− in the ground state L = 0. They
are represented in Figure 2.2. For neutral mesons, charge conjugation is given by
C = (−1)L+S. The tensor products decompose into irreducible representations as

SU(2) spin 2⊗ 2 = 1⊕ 3 SU(3) flavour 3⊗ 3 = 1⊕ 8
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Figure 2.2: Mesons in the ground state from the flavour octet and singlet with
JP = 0− (left) and with JP = 1− (right). They are mixed into a flavour nonet.

For baryons |qqq⟩, the possible combinations in the ground state are the flavour
decuplet with JP = 3/2+ and the flavour octet with JP = 1/2+. They are repre-
sented in Figure 2.3. The corresponding tensor products decompose into irreducible
representations as

SU(2) spin 2⊗ 2⊗ 2 = 2M ⊕ 2M ⊕ 4S

SU(3) flavour 3⊗ 3⊗ 3 = 1A ⊕ 8M ⊕ 8M ⊕ 10S

The subscripts indicate their behaviour under the interchange of any two identical
quarks: A purely antisymmetric, M mixed, and S purely symmetric. In this case,
|space⟩ ∝ (−1)L is symmetric and |colour⟩ is completely antisymmetric. Hence, the
combination |spin⟩ × |flavour⟩ must be always symmetric.
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Figure 2.3: Baryons in the ground state from the flavour decuplet with JP = 3/2+

(left) and the flavour octet with JP = 1/2+ (right).
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Chapter 2. Theoretical framework

2.2 Collider techniques

Particle collider experiments emerged after fixed-target experiments by bringing
together two opposite particle beams. The main advantage for colliders is that
larger energy scales can be achieved in deep-inelastic interactions.

Initially, these experiments crossed an electron beam with a positron beam to pro-
duce e+e− annihilation. This interaction was recorded for the first time in 1964 by
the Istituto Nazionale di Fisica Nucleare (INFN). Afterwards, larger experiments
like the LEP collider at CERN were designed. This collider started to operate in
1989 and accelerated positrons and electrons to a total energy of 45 GeV. Other ex-
periments like the HERA accelerator at DESY were fed with electrons and protons
to produce e−p collisions and test the proton structure. This experiment started to
operate in 1992 with an energy of around 320 GeV at the interaction point.

Hadron colliders allowed increasing the energy scale at the interaction point even
more. The main ones consist in a circular ring and have been build at either CERN
or Fermilab. For pp collisions the first one was the Intersecting Storage Rings (ISR)
and for pp collisions the Super Proton Synchrotron (SPS), both located at CERN.
Afterwards, the Tevatron synchrotron at Fermilab started to accelerate protons and
antiprotons in 1992 to energies of up to 1 TeV. Nowadays, the largest collider is the
LHC at CERN that mainly brings together two proton beams moving in opposite
directions with an energy of 13 TeV.

In order to better understand these collisions, consider first an experiment throwing
a particle beam against a fixed target. A bunch of particles in the beam has velocity
v⃗ and moves perpendicular to a certain surface of area A. The number of parti-
cles passing through the section in a given period of time can be calculated from
∆particles = nA|v⃗|∆t where n is the number density of particles. The incident flux
density for this system is simply given by the quantity

Φ =
1

A

∆particles
∆t

= n|v⃗|.

Then, one of those particles with mass ma and located in the beam collides with a
fixed target with mass mb. In this collision, the number density of particles is given
by n = 1/V where V is the volume where the interaction occurs and the velocity of
the centre of mass is calculated as v⃗com = mav⃗/(ma +mb).

Placed in the centre of mass frame, this is simply a collision between a particle that
moves with velocity v⃗a = v⃗− v⃗com and another one with velocity v⃗b = −v⃗com instead
of a fixed target. That way, the relation |v⃗| = |v⃗a − v⃗b| is recovered. Therefore,
the centre of mass frame may correspond with the laboratory frame in a collider
experiment, bringing together two particle beams moving in opposite directions.
The incident flux density for this new system is given by Φ = (1/V ) |v⃗a − v⃗b|.

The product of the incident flux density and the cross section corresponds to the
probability per unit time of interaction, dP/dt = σΦ. The cross section is the main
observable in particle collider experiments because the probability of interaction can
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2.2. Collider techniques

be calculated from the theory but also measured by counting the number of events
recorded over time for a certain integrated luminosity.

Hence, the differential cross section for an experiment that has been carried out for
a certain period of time T can be derived from the relation:

dσ =
1

TΦ
dP.

To calculate the differential probability of interaction from theory, consider a scat-
tering process with asymptotic states pa + pb → p1 + · · ·+ pn, which comes from

dP (n) =
| ⟨f ; +∞|i;−∞⟩ |2

⟨f ; +∞|f ; +∞⟩ ⟨i;−∞|i;−∞⟩

n∏
i=1

d3pi
(2π)32Ei

.

The scattering matrix, also called S-matrix, arises once the differential probability
of interaction is computed in the interaction picture ⟨f ; +∞|i;−∞⟩ = ⟨f |S|i⟩. It
can be expanded as S = I+ iM(2π)4δ4(Σp). Then, for a deep inelastic scattering:

dP (n) =
(2π)4δ4(Σp)TV |M|2

(2EaV )(2EbV )

n∏
i=1

d3pi
(2π)32Ei

where the matrix element |M|2 = | ⟨f |iM|i⟩ |2 is calculated using the Feynman
diagrams of a certain perturbative quantum filed theory. The differential cross
section for this deep inelastic scattering process is then derived from the formula:

dσ(n) =
1

(2Ea)(2Eb)|v⃗a − v⃗b|
|M|2dΠ(n)

LIPS

where the Lorentz invariant phase space (LIPS) represents all possible outgoing
states of the process, and its differential quantity is given by

dΠ(n)
LIPS = (2π)4δ4

{
pa + pb −

n∑
i=1

pi

}
n∏

i=1

d3pi
(2π)32Ei

.

2.2.1 Coordinate system

Incoming particles move along the direction of the beam pipe and collide at the
interaction point (IP) with an energy

√
s. The outgoing products of the collision

are registered by particle physics detectors. From now on, consider a detector with
a forward-backward symmetric cylindrical geometry and a solid angle coverage of
almost 4π. The detector uses a right-handed coordinate system with its origin at the
nominal IP in the centre of the detector and the z-axis along the beam pipe. The
x-axis points from the IP to the centre of the hadron collider ring, and the y-axis
points upward. Thus, the longitudinal direction corresponds to the z-axis and the
transverse plane with the x-y plane.
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Chapter 2. Theoretical framework

In experiments with incoming hadrons, the hard interaction is the subprocess be-
tween their partons, carrying a fraction of the hadron momentum. The energy
carried by partons is not well-defined and the laboratory frame is neither the c.o.m.
frame. Therefore, observables have to require longitudinally invariant expressions
along the beam pipe direction. For instance, momenta are decomposed into their
transverse and longitudinal components p⃗ = p⃗⊥+ p⃗∥ with respect to the beam pipe.

Particle physics detectors use a system of coordinates determined by the energy E,
the momentum component in the transverse plane pT = |p⃗⊥|, the azimuthal angle
around the beam pipe φ and the pseudo-rapidity η which is based on the polar angle.
The definition of the pseudo-rapidity and its hyperbolic functions are given by

η = − ln

(
tan

θ

2

)
=

1

2
ln

(
|p⃗|+ |p⃗∥|
|p⃗| − |p⃗∥|

)
;

sinh η =
1

tan θ
=

|p⃗∥|√
|p⃗|2 − |p⃗∥|2

; cosh η =
1

sin θ
=

|p⃗|√
|p⃗|2 − |p⃗∥|2

.

The same way that the transverse momentum was defined, one can introduce a
transverse energy ET =

√
E2 − p2L which is also longitudinally invariant along the

beam pipe. Another variable called rapidity y may be also introduced which is
associated with the velocity in longitudinal direction, tanh y = |v⃗∥| = pL/E. The
definition of the rapidity and its hyperbolic functions are given by

y =
1

2
ln

(
E + |p⃗∥|
E − |p⃗∥|

)
; sinh y =

pT

ET
sinh η; cosh y =

E

ET
.

Note that even if the rapidity is not longitudinally invariant by itself, the difference
of rapidities is always going to be invariant. The invariant mass is another important
variable, which comes from the relation m2 = E2 − |p⃗|2 = E2

T − p2T.

Furthermore, the inner product of two four-momenta and the four-momentum’s
components can be rewritten in the notation using detector coordinates as:

pi · pj = ETiETj cosh∆yij − pTipTj cos∆φij;

E = ET cosh y; pz = ET sinh y; px = pT cosφ; py = pT sinφ.

2.2.2 Higher-order emissions

The matrix elements required to get the cross sections are calculated using a pertur-
bative expansion in the coupling a(µ2

R). The first non-trivial contribution is called
leading-order (LO). Higher-order terms in the perturbative expansion are simply cor-
rections to the LO prediction. The first ones come from the next-to-leading-order
(NLO) corrections and so on. These corrections can be real emissions, increasing
the number of particles in the asymptotic states, or virtual loops, increasing the
complexity within the hard interaction.
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2.2. Collider techniques

However, to avoid loop calculations, higher-order real-emission corrections may be
considered through parton showers, where parton splitting kernels are used to sim-
ulate gluon emissions during the QCD cascade. This radiation corresponds to the
QCD bremsstrahlung where emissions are soft and collinear, involving Sudakov log-
arithms that may spoil the perturbative expansion. In that case, the first logarithms
must be absorbed in the leading-logarithm (LL) resummation. Thereafter, higher-
order factors require a next-to-leading-logarithm (NLL) treatment and so on.

Parton showers

Hard interactions involve large momentum transfers, and therefore, partons are
violently accelerated. This accelerated colour-charged partons emit QCD radiation
in the form of gluons which emit even further radiation, leading to a cascade that
parton showers can simulate. During the parton showering, the interaction scale
falls and the coupling rises into the hadronization regime, where partons are bound
into hadrons owing to confinement. Many of them are unstable and later decay.

In principle, parton showers represent higher-order emissions to the hard process
which are calculated in an approximation scheme, where only the dominant con-
tributions are included at each order. These dominant contributions correspond to
soft gluon emission and collinear parton splitting. The probability of not splitting
during evolution of the cascade is given by the Sudakov form factors.

The simplest variable to understand the evolution is the virtual mass-squared of the
partons q2. The reason is that the dominant contributions come from configurations
in which the virtualities are strongly ordered, with the parton nearest to the hard
process farthest from its mass shell and the virtualities falling sharply as the shower
evolves away from it. However, many evolution variables can be considered, like the
opening angle of emissions θ or the transverse momentum of partons pT.

The Sudakov form factor representing the probability of not collinear splitting for
parton i when evolving from the initial scale q20 to the final one q21 is given by

∆i(q
2
0, q

2
1) = exp

{
−
∫ q20

q21

dq2

q2
2a(q2)

part.∑
j

∫ 1

0

dzPj←i(z)

}

where Pj←i is the associated splitting kernel and z is the momentum fraction of
parton i carried by j. This probability is used by Monte Carlo event generators to
determine the splitting and create a cascade, which is developed by sequential appli-
cation of these splittings until the hadronization regime is reached. This Monte Carlo
event generators are virtuality-ordered, angular-ordered or pT-ordered depending on
the choice of the evolution variable.

An alternative treatment of parton showers is dipole showering, where gluon emission
is generated according to the dipole radiation pattern of a pair of partons instead of
parton splitting. In this treatment, each pair of colour partners forms a dipole which
splits into two dipoles when it emits a gluon. Thus, the dipole splitting is a 2 → 3
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process, whereas the parton splitting was a 1 → 2 one. These dipoles generate a
cascade by splitting again and again until the hadronization regime is reached.

2.2.3 Fragmentation schemes

The radiation stops when the evolution variable reaches the hadronization regime.
Then, perturbation theory becomes invalid and partons are bound into final-state
hadrons due to confinement. Hadron structure has a non-perturbative nature, and
therefore, hadronization models must rely on general features of QCD to simulate
their formation. These models can also include the sequential decay of unstable
hadrons produced and the radiation of soft photons until recorded by detectors in
collider experiments. The main hadronization models are the cluster hadronization
model and the Lund string fragmentation model, both based on different features
of the theory, which are explained below.

Cluster hadronization model

The cluster hadronization model is used by Monte Carlo event generators to form
colourless groups in the final-state. Primary clusters are formed by combining the
colour connected partners into a cluster as the scale in the cascade evolves. The
invariant mass distribution of the clusters is independent of the nature and scale
of the hard interaction. This idea is supported by the preconfinement property of
QCD discovered by Daniele Amati and Gabriele Veneziano in 1979 [22]. Eventually,
these clusters decay into the observed final-state hadrons at the hadronization scale.

Lund string fragmentation model

The Lund string fragmentation model is another model used by Monte Carlo event
generators. This model was presented in 1983 by Bo Andersson and Gösta Gustafson
[23]. It treats all gluons as field lines attracting to each other due to their self-
interactions and forming a colour flux tube, usually called string. In the hadroniza-
tion regime, the effective strength between a single quark-antiquark pair connected
by one of these colour flux tubes increases as they are separated. Then, at a certain
range, it is more energetically favourable to create a new quark–antiquark pair rather
than continue to elongate the same colour flux tube. This procedure occurs until
these pairs form the observed final-state hadrons, and it is schematically depicted
in the figure below.

← q q →

← q q → ← q q →

← q q → ← q q →

← q q → ← q q → ← q q → ← q q →
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The hadronization of a system more complicated than a single quark-antiquark
pair depends on its colour structure. Each parton in the system has a unique colour
partner, connected to it by a string segment, which stretches and breaks as described
before to eventually form the observed hadrons.

2.2.4 Event-shape variables

In 1979 events with three collimated bunches of hadrons in the final state were
recorded by PETRA experiments at DESY for the first time. The gauge vector
boson mediating the strong interactions called gluon was discovered. Thereafter,
several observables were designed and measured to test the nature and behaviour
of QCD in e+e− collisions. These observables were the event-shape variables. They
are defined as functions of the final-state particle four-momenta and characterize
the hadronic energy flow in a certain collision.

The classical event-shape variable is the Thrust [24, 25]. The idea is to select the
axis that maximizes the projections of the momentum components. The formal
definition of this variable and its complementary one, Thrust minor, are

T = max
n⃗T

∑
i |p⃗i · n⃗T |∑

i |p⃗i|
; Tm =

∑
i |p⃗i × n⃗T |∑

i |p⃗i|
.

where n⃗T is the unit vector of the thrust axis which is the one that maximize the
quantity and the sum runs over all particles in the final state. Note that this variable
is infrared and collinear safe, and therefore, not affected by long-distance effects like
hadronization.

The Thrust variable takes values between 1 and 1/2 depending on the final-state
configuration. For back-to-back configurations, also called pencil-like, it takes value
1 and for planar configurations 2/3. The spherically symmetric configurations cor-
respond with 1/2. The analytical expression for the cross section distribution with
the Thrust calculated using pQCD at LO in the massless limit is given by Eq. (2.2)
which is represented in Figure 2.4.

1

σ0

dσ
dT

= a(µ2
R) 2CF

[
2(3T 2 − 3T + 2)

T (1− T )
ln

(
2T − 1

1− T

)
− 3(3T − 2)(2− T )

(1− T )

]
(2.2)

Additionally, there is a family of event-shape variables derived from the eigenvalues
of the regularized sphericity tensor [26]. Its formal definition is given by

Mµν =

∑
i p

µ
i p

ν
i |p⃗i|r−2∑

i |p⃗i|r
; µ, ν = 1, 2, 3

where the sum runs over all particles in the final state and the parameter usually
takes values r = 0, 1. This tensor is collinear unsafe, but it is still a good quantity
to extract information of the isotropy of the final-state energy distribution. Its
eigenvalues satisfy the closure λ1+λ2+λ3 = 1 and are ordered so that λ1 ≥ λ2 ≥ λ3.
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Figure 2.4: Thrust distribution at LO calculated using pQCD in the massless limit,
with the strong coupling constant at the same order, for a number of active flavours
nf = 6 and a renormalization scale value of ln(µ2

R/Λ
2
QCD) = 20.

The main event-shape variables extracted from here are the sphericity S and the
aplanarity A. Larger values of the sphericity indicate more spherical events, while
the aplanarity is a measure of the extent to which the radiation is contained in the
plane defined by the two first eigenvectors of the sphericity tensor, larger values
indicate less planar events. Its definitions can be found below, along with other
relevant factors:

S =
3

2
(λ2 + λ3); A =

3

2
λ3; C = 3(λ1λ2 + λ1λ3 + λ2λ3); D = 27(λ1λ2λ3).

Since the C-factor is defined by products of eigenvalue pairs, it vanishes for pencil-
like events, while the D-factor, which is defined by multiplying the three eigenvalues,
vanishes for events in which all particle momenta lie on the same plane.

Energy-Energy Correlations

A particularly interesting infrared safe event-shape observable is the energy-energy
correlation (EEC) function, which was originally introduced in 1979 in Refs. [27, 28]
to provide a quantitative test of QCD in e+e− annihilation experiments. The EEC
function and its associated azimuthal angular asymmetry (AEEC) can be calculated
in pQCD and their measurements have had significant impact on the early precision
tests of QCD and in the determination of the strong coupling constant.

The EEC function is defined as the energy-energy-weighted azimuthal angular dis-
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tribution of produced particle pairs in the final state:

1

σ

dΣ
d cosϕ

=
1

σ

∑
i,j

∫
dσ
EiEj

Q2
δ (cosϕ− cos∆φij)

where the indices i and j run over all outgoing particles in a given event, Q is the
invariant mass of the system, Ei is the energy of the outgoing particle i, and ∆φij

is the angle in the transverse plane between particles i and j.

The Dirac delta function ensures that ϕ = ∆φij and the normalization to the ef-
fective cross section σ =

∫
dσ ensures that the integral of the function over all the

azimuthal range cosϕ is unity by definition, as the invariant mass Q is the total sum
of the outgoing energies. The observable is by definition invariant under collinear
splitting and soft emissions do not contribute. Hence, this weighting of the cross
section prevents from infrared divergences.

In addition, the AEEC function is defined as the difference between the forward
(cosϕ > 0) and the backward (cosϕ < 0) part of the EEC function to cancel
constant contributions over cosϕ. Thus, it is insensitive to isotropic radiation:

1

σ

dΣasym

d cosϕ
=

1

σ

dΣ
d cosϕ

∣∣∣∣
ϕ

− 1

σ

dΣ
d cosϕ

∣∣∣∣
π−ϕ

.

The main features of the EEC function is a peak at cosϕ = 1 associated to self-
correlations, another peak at cosϕ = −1 associated to back-to-back configurations
and a central plateau between them coming from the strong radiation and therefore
sensitive to the strong coupling. The AEEC function presents a strong fall-off, with
the first value taking a negative value due to self-correlations. These contributions
vanish when using alternative weights like pi · pj/Q2 which are Lorentz invariant.

For e+e− experiments, the EEC function calculated at LO using pQCD in the mass-
less limit is given by Eq. (2.3) where the kinematic variable χ = (1 − cosϕ)/2
is implemented to simplify notation. This analytical expression is represented in
Figure 2.5 where the features mentioned before can be clearly identified.

1

σ0

dΣ
d cosϕ

= a(µ2
R) CF

3− 2χ

2χ5(1− χ)
[
2(3− 6χ+ 2χ2) ln(1− χ) + 3χ(2− 3χ)

]
(2.3)

The transverse energy-energy correlation was proposed in 1984 as the appropriate
generalization for hadron collider experiments in Ref. [29]. Longitudinally invariant
quantities must be considered instead, whilst keeping the infrared collinear safety.
Then, the transverse energy-energy correlation function is given by

1

σ

dΣ
d cosϕ

=
1

σ

∑
i,j

∫
dσ
ETiETj

E2
T

δ (cosϕ− cos∆φij)

where the variable ET is the total sum of the transverse energies of the outgoing
particles so that the integral over the whole range is still unity.
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Figure 2.5: Energy-energy correlation at LO calculated using pQCD in the massless
limit, with the strong coupling constant at the same order, for a number of active
flavours nf = 6 and a renormalization scale value of ln(µ2

R/Λ
2
QCD) = 20.

2.2.5 Jet algorithms

In hard interactions, hadrons appear predominantly in collimated bunches, which
are generically called jets. Consequently, physical observables can consider a set
of jets in the final state instead of the individually observed particles. To a first
approximation, a jet can be thought of as a hard parton that has undergone soft
and collinear showering, and then hadronization. To map observed hadrons onto a
set of jets, one uses a jet definition. The main jet definitions are cone algorithms
and sequential recombination algorithms, both jet clustering algorithms are infrared
safe and preserve the infrared safety of observables.

The first jet definition was a cone algorithm proposed by George Sterman and Steven
Weinberg in 1977 to test pQCD calculations in e+e− experiements [30]. The algo-
rithm classified an event as having two jets if at least a fraction of the event’s energy
was contained in two cones of opening half-angle. Afterwards, sequential recombi-
nation algorithms started to abound due to their simplicity. They go beyond finding
jets and implicitly assign a clustering sequence to an event. The first one was intro-
duced by the JADE collaboration. For each pair of particles i,j in the final state, it
computes their distance as dij = 2EiEj(1−cos θij)/Q2 where θij is the angle between
them. If the minimum of all distances is below a certain threshold dcut, then both
particles are recombined into a new pseudo-particle and the process repeats until re-
maining particles are declared jets and the iteration terminates. The recombination
scheme and other properties of jet definitions were set out in the Snowmass accord
from 1990 [31].
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The anti-kt clustering algorithm is a sequential recombination algorithm introduced
in 2008 as a generalization for jet definitions in experiments with incoming hadrons
[32]. It has become the de-facto standard for the LHC experiments. In addition to
the distance between a pair of outgoing particles i,j, there is a distance between a
particle i and the beam direction:

dij = min(p2rTi, p
2r
Tj)

∆R2
ij

R2
; diB = p2rTi;

∆R2
ij = 2 (cosh∆yij − cos∆φij) = ∆y2ij +∆φ2

ij.

Here, pTi,j are their transverse momenta, ∆Rij is their separation in the rapidity-
azimuthal plane and R is a free parameter acting as a threshold for the jet radius.

The proper anti-kt algorithm takes the parameter r = −1 and favours clusterings
that involve hard particles rather than the ones involving soft particles. If one takes
the parameter r = 1 the kt algorithm is recovered instead, whereas for r = 0 one has
the Cambridge/Aachen one (C/A). The former prefers to cluster soft particles first;
the latter was introduced in 1999 as an energy-independent clustering following a
sequence based only on angular separations.

To merge a list of particles into a set of jets one identifies the smallest of all the dij
and diB, and if it is a dij, then i and j are merged into a new pseudo-particle. The
recombination scheme to merge them is the E-scheme, or 4-vector recombination
scheme, that just adds their 4-vectors, producing massive jets. Nevertheless, if the
smallest distance is a diB, then i is removed from the list and declared a jet.

Jet substructure

As mentioned before, a jet can be through of as hard parton that has undergone
showering and then hadronization. However, collimated hadronic decays of boosted
particles can also be reconstructed as a single jet. Jet substructure techniques were
born to distinguish signal jets from background. The first ones were jet tagging
algorithms that classify jets based on either their parton flavour or their collimated
hadronic decay. Later, other techniques like jet grooming algorithms were developed
to remove underlying-event contamination.

In 2008 the Butterworth-Davison-Rubin-Salam (BDRS) Mass Drop plus filtering
technique was presented to split large signal jets from boosted hadronic decays
whilst removing the underlying-event [33]. Other techniques like trimming and
pruning were later introduced to improve jet tagging algorithms.

In 2014 the Soft Drop technique was presented to remove constituents at wide angle
and relatively soft within reconstructed jets [34]. First, jets are clustered using the
anti-kt algorithm and later each one is clustered again using the C/A algorithm
to transverse the angular sequence backwards. At each point in the sequence two
branches merge where i is the harder and j is the softer. The softer branch is
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removed if it satisfies the condition:

zij =
pTj

pTi + pTj

> zcut
∆Rβ

ij

Rβ

where zcut is a threshold and β is the parameter that characterize the algorithm.
Then the process continues down the harder branch until the end of the sequence.

The Lund jet plane encodes this emission pattern in the angular sequence of a jet.
It is based on the transverse momentum fraction of the emitted gluon zij and the
opening angle of the emission ∆Rij/R. The number of emissions within regions
provides discrimination between quark and gluon jets. [35]

In addition, jet-shape variables have been introduced to study the hadronic structure
within jets. These variables can be a powerful discriminant in jet algorithms. The
classical one is called N -subjettiness and was designed in 2010 to identify boosted
hadronically-decaying objects like electroweak bosons and top quarks [36]. One takes
a reconstructed jet and identifies N candidate subjets using a specific subjet finding
procedure. Then, the jet-shape variable is calculated via

τ
(β)
N =

∑
i pTi min(∆Rβ

1i, · · · ,∆R
β
Ni)∑

i pTiRβ

where both sums run over all constituents in the jet and for each of them one
considers the minimal distance between a candidate subjet and that constituent.

There is also a family of jet-shape variables called N -point energy correlation func-
tions (ECF) presented in 2013 as a powerful probe of jet substructure [37, 38]. These
observables have utility for quark-gluon discrimination using 2-point correlators, for
boosted electroweak boson identification using 3-point correlators and for boosted
top quark identification using 4-point correlators. In hadron colliders, their natural
definition is as transverse momentum correlation functions:

ECF(N, β) =
∑

i1<···<iN

(
N∏
a=1

pTia

)(
N−1∏
b=1

N∏
c=b+1

∆Rβ
ibic

)

where the sum runs over all constituents within the reconstructed jet. These func-
tions can be combined to form different dimensionless ratios that are good observ-
ables to study jet substructure. Thus, one has extra jet-shape variables like

C
(β)
N =

ECF(N + 1, β)ECF(N − 1, β)

ECF(N, β)2
.

2.2.6 Underlying event

In hadron collider events that contain a hard interaction, there is extra hadron pro-
duction that cannot be ascribed to showering from partons participating in the main
interaction. This extra activity is called underlying event (UE) and arises mainly
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from collisions between those partons in the incoming hadrons that do not directly
participate in the hard interaction. These soft collisions are called multiple-parton
interactions (MPI). Although there are other sources like beam-beam remnants,
asymptotic radiation, pile-up, and noise. The events where the hard interaction is
not identifiable are called minimum-bias events.

Models that account for both underlying event and minimum-bias events are based
on multiple-parton interactions with relatively small momentum transfer. The most
common one is the elastic gluon-gluon scattering, which is highly probable in hadron
collisions and leads to extra hadron production. This production is simulated us-
ing different tunes, where an impact parameter characterizes the structure of the
collision. Bear in mind that the presence of a hard interaction in the collision is
correlated with more multiple interactions and a higher level of underlying event
activity.

Pile-up mitigation

Pile-up is a situation frequently observed in collider experiments where a particle de-
tector is affected by several events at the same time. Hence, background signals that
occur in the same time gate as the signal of interest add to the event. These signals
correspond with multiple-hadron collisions happening during a single bunch cross-
ing. These soft and simultaneous proton-proton collisions complicate the extraction
of precise information from the hard interaction in LHC experiments.

In 2008 a novel technique was proposed to mitigate this effect in hadron collider
experiments. This technique is called ρ×Ajet subtraction method and it is based on
background densities and jet areas to provide jet-by-jet corrections for pile-up and
underlying-event [39]. In 2015 the ATLAS collaboration developed its own algorithm
to correct for the impact of pile-up on jet energy and jet shapes using subtraction
and grooming procedures, the so-called jet vertex tagger (JVT) algorithm [40].

Nowadays, one can still find new techniques to face the pile-up major challenge. The
iterative constituent subtraction (ICS) method was proposed in 2019 to improve the
background mitigation in hadron collisions [41]. This method is an extension to
the jet area-based pile-up subtraction method with an iterative implementation to
equilibrate the background subtraction across the entire event.

2.2.7 Monte Carlo methods

Monte Carlo (MC) methods are a broad class of computational algorithms that rely
on repeated random sampling to obtain numerical theoretical results. The random
sampling follows a certain density distribution of a random variable.

In 1946 Stanislaw Ulam and John von Neumann invented the first modern version
of a Monte Carlo method at the Los Alamos National Laboratory. The aim was
to solve problems in nuclear weapons projects using random sampling instead of
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deterministic mathematical methods. Later, these algorithms were improved and
implemented in different fields thanks to the development of computing machinery.

In the first place, the middle-square method was used for generating pseudo-random
numbers which act as seeds for Monte Carlo algorithms. For instance, the acceptance-
rejection algorithm that returns random numbers distributed according to a density
function from random numbers generated following a uniform distribution.

More worldly methods appeared later to generate the initial pseudo-random num-
bers. In 1958 the linear congruential generator was presented, producing a set of
pseudo-random numbers u ∈ [0, 1) following a uniform distribution h(u) = 1 accord-
ing to the sequence:

un+1 = (aun + c) mod m

where the initial seed is u0, the modulo is m and the mod operator returns the
remainder of the division. The parameters are the multiplier a and the increment c.

Once the pseudo-random numbers u have been generated, one can compute the set of
pseudo-random numbers x following a certain invertible distribution f(x) using the
transformation method dxf(x) = duh(u). Then, the outcome values are determined
by inverting the equation: ∫ x

−∞
dxf(x) = u.

The definite integral may have intricate boundary conditions, and a conventional
solution is limited to a few scenarios. Monte Carlo integration must employ a non-
deterministic approach to provide the outcome values. Thus, the final outcome is
an approximation of the correct value with respective error bars, where the correct
value is likely to be found.

In particle physics, Monte Carlo methods are used to generate events. These sim-
ulated events allow obtaining theoretical predictions for physical observables when
analytical calculations cannot be performed. In order to do that, observables are
computed as histograms, where each bin is filled with simulated events.
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Experimental setup

CERN operates a wide range of particle and nuclear fa-
cilities used by experiments covering a wealth of topics
in physics. For instance, nuclear fixed-target experi-
ments at ISOLDE, antimatter experiments at AD, and
particle collider experiments at LHC.

In this chapter, a description of the experimental setup
is given, with special attention to the LHC accelerator
and the ATLAS detector. The LHC accelerator is the
largest particle accelerator in the world. Its circular
tunnel was originally constructed for the LEP machine between 1984 and 1989. It
has 26.7 km of circumference and is buried 100 m under the franco-swiss border in
Geneva. The LHC facilities are run by several experimental collaborations, mainly,
ATLAS and CMS which are general-purpose particle detectors, whereas LHCb focus
primarily on flavour physics and ALICE specializes on heavy ion collisions.

3.1 The LHC accelerator

The LHC accelerator [42] accelerates two proton beams moving in opposite directions
up to a nominal centre-of-mass energy taking the value

√
s = 13 TeV since 2015.

Once the nominal energy is reached, both beams collide inside the particle detectors,
which are distributed along the accelerator circumference. The purpose of the LHC
is to produce these proton-proton collisions, which are then recorded by detectors
and used for physical analyses, like the one presented in this thesis.

Although the initial proton beams were injected into the LHC in 2008, the first
successful collision occurred in 2010 at 7 TeV. The collision energy was increased
to 8 TeV during the 2012 data-taking period, delivering a luminosity of 22.8 fb−1.
Thereafter, the LHC was deactivated for a two-year maintenance period, restarting
in 2015 with a collision energy of 13 TeV. This was the beginning of the LHC
Run 2, which extended until 2018 and delivered a total luminosity of 156 fb−1.
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Additionally, the LHC also recorded proton-lead collisions to study the quark-gluon
plasma. Nowadays, the LHC remains deactivated for its second long shutdown.

The proton beams accelerated by the LHC are extracted from Hydrogen gas and
drift in a smaller system of accelerators. The injection complex pushes beams from
the 50 MeV obtained with Linac 2, to 1.4 GeV in the Proton Synchrotron Booster
(PSB), to 25 GeV in the Proton Synchrotron (PS) and 450 GeV in the Super Proton
Synchrotron (SPS). Proton beams reaching the LHC travel in two separate rings
inside vacuum chambers, passing through 1232 superconducting dipole magnets and
392 quadrupole magnet distributed around the circumference. Figure 3.1 depicts the
layout of this accelerator chain.

Figure 3.1: Distribution of the CERN accelerator complex, including particle and
nuclear experiments, along with other additional information [43].

As previously mentioned in Section 2.2, every physics process has a probability to
occur parametrized by the process cross section. The LHC provides millions of pp
collisions per second, giving an expected event rate proportional to its cross section:

dNev

dt
= σL ⇒ Nev(t0, t1) = σ

∫ t1

t0

dtL = σL

where the proportionality factor corresponds to the differential luminosity. Con-
sequently, the total number of events recorded is the product of the process cross
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section and the differential luminosity integrated over time. This key quantity is
called integrated luminosity and needs to be precisely measured by both the accel-
erator (delivered luminosity) and each experimental detector (recorded luminosity)
when the data taking is ready. Figure 3.2 shows the integrated luminosity delivered
to ATLAS as a function of the month in years from 2011 to 2018.
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Figure 3.2: Cumulative luminosity versus day delivered to ATLAS during stable
beams and for high-energy pp collisions only between 2011 and 2018 [44].

The differential luminosity is defined as the number of protons crossing the unit
area per unit time. Assuming a gaussian distribution of the proton density inside
the beam, it can be calculated from beam parameters like σx and σy, characterizing
the beam transverse profiles. Proton beams have a bunch train structure, with each
bunch containing a high number of protons to maximize the probability of interaction
for each bunch crossing. Then, if two proton bunches cross with numbers of particles
N1 and N2 collide at a frequency f , the differential luminosity is simply given by

L = f
N1N2

4πσxσy
.

The average bunch crossing rate is given by the product of the number of bunches
per beam and the revolution frequency, frevNbunch. Hence, one can use this result
to obtain the number of interactions per bunch crossing as

µ =
Nev

frevNbunch
.

Figure 3.3 presents the mean number of interactions per bunch crossing registered
in pp collisions for each of the yearly data-taking periods during the Run 2. The
nominal value for the bunch spacing is always 25 ns. This number of interactions
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per bunch crossing is a powerful indicator of the pile-up effects in measurements.
As also mentioned in Section 2.2, pile-up is a situation where a particle detector
is affected by several events at the same time. Attending to the time difference
between interactions, one can distinguish two types of pile-up collisions. On the one
hand, the in-time pile-up occurs when the pile-up signal in the detector corresponds
to the same bunch crossing as the hard-scattering signal, and therefore, both are
recorded in the same data taking window. On the other hand, the out-of-time pile-
up is the effect of collisions which have produced in a different bunch crossing has
the hard-scattering signal recorded in the detector.
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Figure 3.3: Mean number of interactions per bunch crossing µ, showing the 13 TeV
data recorded by ATLAS from 2015 to 2018 [44].

3.2 The ATLAS detector

The ATLAS detector [45] is a multi-purpose particle
detector located at Point-1, near CERN Meyrin site,
whose name derives from the expression A Toroidal
LHC ApparatuS. This cylindrical apparatus is designed
to detect the outgoing products of hadron collisions
occurring along the beam pipe. The coordinate system
is exactly the same as the one presented in Section 2.2.

From the nominal IP outwards, it contains an inner
detector (ID), designed to precisely measure the mo-
mentum of charged particle tracks, a calorimeter system for measuring the energy
deposition of electrons and photons, along with strong-interacting particles, and a
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muon spectrometer based on toroidal magnets for measuring the energy and momen-
tum of muons. A schematic representation of the detector is shown in Figure 3.4.
Moreover, the detector is equipped with an excellent trigger and data-acquisition
system (TDAQ).

Figure 3.4: Cut-away view of the ATLAS detector. The dimensions of the detector
are 25 m in height and 44 m in length. The overall weight of the detector is
approximately 7000 tonnes [45].

3.2.1 Inner Detector

The ATLAS ID [46, 47] is designed to precisely measure the momentum of charged
particles produced in the collisions, as well as for primary and secondary vertex iden-
tification. Thus, it is expected to give an excellent tracking performance, covering
the full azimuthal range −π < φ ≤ π and the pseudo-rapidity region |η| < 2.5. It is
able to track particles with transverse momentum above 500 MeV, except for some
minimum bias analyses where the threshold is 100 MeV. The ID is immersed in an
axial magnetic field of 2 T which bends the trajectory of charged particles and allows
for a measurement of the charge. The overall transverse momentum resolution of
the ID is required to be

σpT

pT
= 0.05%pT[GeV]⊕ 1%.

The inner detector consists of three different systems, starting from the nearest to
the IP is the Pixel detector, followed by the Semiconductor Tracker (SCT) and then
the Transition Radiation Tracker (TRT). Figure 3.5 depicts a cut-away view of this
structure, and Table 3.1 provides the main parameters of each system.
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Figure 3.5: Cut-away view of the ATLAS inner detector [45].

System and position Coverage Channels
(×106)

Resolution
(µm)

Pixel 4 barrel cylindrical layers
2×3 end-cap disks |η| < 2.5 92 10 (R− φ), 115 (z)

10 (R− φ), 115 (R)

SCT 4 barrel cylindrical layers |η| < 1.4 3.24 17 (R− φ), 580 (z)
2×9 end-cap disks 1.1 < |η| < 2.5 3.04 17 (R− φ), 580 (R)

TRT 73 barrel straw planes |η| < 0.625 0.105 170 (R− φ)
160 end-cap straw planes 1.07 < |η| < 2.0 0.246 170 (R− φ)

Table 3.1: Main parameters of the systems conforming the inner detector. The
resolutions quoted are the typical intrinsic accuracies per module or straw. Note
that the channels in the pixel system were increased from 80.4 to 92 millions during
the first long shutdown thanks to an additional barrel cylindrical layer.

Pixel Detector

The main advantage of the pixel detector is its high granularity close to the IP.
It determines the performance of the ID at finding short-lived particles, such as
b-quarks and τ -leptons. The system is designed to be highly modular, with four
barrel cylindrical layers containing 1736 identical sensor modules, plus three end-
cap disks on each side containing 288 modules. The whole system uses just one
type of support structure in the barrel and one in the disks. The pixel modules
are designed very similarly for the disks and layer modules. Each module contains
61440 pixel elements, with a read-out system consisting of 16 chips.

Semiconductor Tracker

The SCT is designed to provide four independent measurements per track in the
intermediate radial range, contributing to the measurement of the track momentum,
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impact parameter and vertex position. The SCT contains four layers of silicon
microstrip detectors in the barrel and nine end-cap disks on each side. A silicon
microstrip tracker consisting of 4,088 two-sided modules and over 6 million implanted
read-out strips, to allow precision measurements of the track coordinates.

Transition Radiation Tracker

The TRT consists of gaseous straw detectors, measuring the track radial and az-
imuthal coordinates. Each straw tube is 4 mm in diameter, with a gold-plated
tungsten wire of diameter 0.03 mm in the centre, providing fast response and good
mechanical properties. The barrel is formed 50,000 straws, each of 144 cm long
and placed parallel to the beam direction, with their wires divided in two halves
approximately at η = 0. In both end-cap regions, there are 250,000 straws, each of
39 cm long and arranged radially in wheels.

3.2.2 Calorimeter System

The ATLAS calorimeter system is made of a Liquid Argon (LAr) calorimeter [48]
and a Tile calorimeter [49]. These calorimeters cover the pseudo-rapidity region
|η| < 4.9 and are designed for a good containment of electromagnetic and hadronic
showers, also providing punch-through containment into the muon system. The fine
granularity of the LAr electromagnetic calorimeter is ideally suited for precision
measurements of electrons and photons, within the |η| range matched to the inner
detector. The coarser granularity of hadronic calorimeters is sufficient to satisfy the
physics requirements for jet and missing transverse energy reconstruction. Figure 3.6
presents a view of the systems composing the calorimeter system, and Tables 3.2
and 3.3 detail their main parameters.

LAr electromagnetic calorimeter

The electromagnetic calorimeter is a lead-LAr detector with accordion-shaped kap-
ton electrodes and lead absorber plates over its full coverage. The accordion geome-
try provides a complete azimuthal symmetry without cracks, while the lead thickness
in the absorber plates is optimized in terms of energy resolution performance. The
energy resolution for the LAr electromagnetic calorimeter is required to be

σE
E

=
10%√
E[GeV]

⊕ 0.7%.

The system is divided into a barrel part covering the range |η| < 1.475, and two
end-caps covering 1.375 < |η| < 3.2, both made of several layers of active material.
The barrel calorimeter consists of two identical half-barrels, separated by a small
gap, and each end-cap is divided into two coaxial wheels.
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Figure 3.6: Cut-away view of the ATLAS calorimeter system [45].

The granularity ∆η ×∆φ depends on the layer but also on the |η| range, being the
finest in the central region of the barrel, where maximum precision is required. In
addition, a presampler detector made of an active LAr layer is used within |η| < 1.8
to correct for the energy lost by electrons and photons upstream of the calorimeter.
Table 3.2 specifies the main parameters of the electromagnetic calorimeter.

System and position Coverage Channels
(×100)

Granularity
∆η ×∆φ

Presampler 1 barrel layer |η| < 1.52 7808 0.025× 0.1
1 end-cap layer 1.5 < |η| < 1.8 1536 0.025× 0.1

Calorimeter 5 barrel layers |η| < 1.475 101760 0.075× 0.025
5 inner end-cap layers
2 outer end-cap layers

1.375 < |η| < 2.5
2.5 < |η| < 3.2

62208 0.050× 0.1
0.1× 0.1

Table 3.2: Main parameters of the LAr electromagnetic calorimeter. The quoted
values for the granularity are the larger ones within that layer and |η| range.

Hadronic calorimeters

The hadronic part of the ATLAS calorimeter is composed of several systems, namely
the scintillator tile calorimeter (TileCal), the LAr hadronic end-cap (HEC), and the
LAr forward calorimeter (FCal), with their parameters specified in Table 3.3. The
energy resolution for the calorimeters varies with the system and is required to be

σE
E

=
50%√
E[GeV]

⊕ 3% (barrel & end-cap);
σE
E

=
100%√
E[GeV]

⊕ 10% (forward).
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Therefore, the forward calorimeter has a poorer resolution compared to the barrel
and end-cap calorimeters. A brief description of the different hadronic calorimeters
is presented below.

TileCal: The scintillator tile hadronic calorimeter is a sampling calorimeter using
layers of steel as absorber and around 500,000 plastic scintillating tiles as active
material. It is the heaviest part of the experiment, weighing almost 2900 tons. Its
barrel covers the region |η| < 1.0 and its two extended barrels the range 0.8 < |η| <
1.7. The central barrel and each of the two extended barrels are made of 64 wedges
extended azimuthally.

HEC: The LAr hadronic end-cap consists of two independent wheels per end-cap,
located directly behind the end-cap electromagnetic calorimeter and sharing the
same LAr cryostats. It overlaps with the forward calorimeter to reduce the drop
in the material density at the transition region around |η| = 3.1, extending up to
|η| = 3.2. Each wheel is built from 32 identical wedge-shaped modules, assembled
with fixtures at the periphery and at the central board. Each wheel is divided into
two segments in depth for a total of four layers per end-cap.

FCal: The LAr forward calorimeter is integrated into the end-cap cryostats, as
this provides clear benefits in terms of uniformity of the coverage as well as reduced
radiation levels in the muon spectrometer. It is approximately 10 interaction lengths
deep, and consists of three modules in each end-cap: the first, made of copper, is
optimized for electromagnetic measurements, while the other two, made of tungsten,
measure predominantly the energy of hadronic interactions.

System and position Coverage Channels
(×100)

Granularity
∆η ×∆φ

TileCal 3 barrel layers |η| < 1.0 5760 0.2× 0.1
3 extended barrel layers 0.8 < |η| < 1.7 4092 0.2× 0.1

HEC 4 end-cap layers 1.5 < |η| < 3.2 5632 0.2× 0.2
FCal 3 end-cap layers 3.1 < |η| < 4.9 3524 5.4× 4.7

Table 3.3: Main parameters of the hadronic calorimeters. The quoted values for the
granularity are the larger ones within that layer and |η| range.

3.2.3 Muon Spectrometer

The ATLAS muon system [50] exploits the magnetic deflection of muon tracks in
the large superconducting air-core toroid magnets. In the barrel region |η| < 1.4,
the bending is provided by a large barrel toroid with a bending power between 1.5
and 5.5 Tm, while for the end-cap region 1.6 < |η| < 2.7, the muon trajectories
are deflected by two smaller end-cap magnets inserted into both ends of the barrel
toroid, providing a bending power between 1 and 7.5 Tm. In the so-called transition
region 1.4 < |η| < 1.6, the deflection is provided by a combination of barrel and
end-cap fields. This configuration provides a field which is mostly orthogonal to the
muon trajectories, while minimizing the degradation of resolution due to multiple
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scattering. The tracks are measured in chambers arranged in three cylindrical layers
located either around the beam axis for the barrel region, or in planes perpendic-
ular to the beam for the transition and end-cap regions. The overall transverse
momentum resolution of the muon system is required to be

σpT

pT
= 10% at pT = 1 TeV.

Note that, for high-pT muons, the muon-spectrometer performance is independent
of the inner-detector system.

The muon spectrometer is a collection of four different systems, namely the Moni-
tored Drift Tubes (MDT), the Cathode Strip Chambers (CSC), the Resistive Plate
Chambers (RPC) and the Thin Gap Chambers (TGC). The two former are used
for precision tracking purposes, whereas the two latter provide triggering capabili-
ties. Figure 3.7 depicts a general view of the muon spectrometer, including toroid
magnets, and Table 3.4 provides the main parameters of each system.

Figure 3.7: Cut-away view of the ATLAS muon system [45].

System Function Coverage Chambers
(×100)

Channels
(×103)

MDT Precision tracking |η| < 2.7 1150 354
CSC 2.0 < |η| < 2.7 32 31
RPC Tiggering, |η| < 1.05 606 373
TGC second coordinate 1.05 < |η| < 2.7 3588 318

Table 3.4: Main parameters of the systems conforming the muon spectrometer, along
with the function that each system fulfils in the detection.
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Precision tracking chambers

The MDT chambers are made of three to eight drift tube layers, operated at an ab-
solute pressure of 3 bar, achieving an average resolution of 80 µm per tube, or about
35 µm per chamber. The MDTs perform the precision momentum measurement and
cover the pseudo-rapidity range |η| < 2.7, except in the innermost end-cap layer,
where their coverage is limited to |η| < 2.0.

The CSCs are multiwire proportional chambers with cathode planes segmented into
strips in orthogonal directions, allowing the measurement of both coordinates from
the induced-charge distribution. The achieved resolution of a chamber is 40 µm
in the bending plane, and about 5 mm in the transverse plane. They are used in
the innermost tracking layer due to their higher rate capability and time resolution,
covering the pseudo-rapidity region 2.0 < |η| < 2.7.

Triggering chambers

The precision-tracking chambers are complemented by a system of fast trigger cham-
bers capable of delivering track information with a spread of 15 to 25 ns. In the
barrel region |η| < 1.05, the RPCs were selected for this purpose, whereas in the
end-cap region 1.05 < |η| < 2.4, the TGCs were chosen. In addition, they are de-
signed to measure both coordinates of the track, one in the bending plane, in the η
direction, and another one in the non-bending azimuthal plane. Here, the end-cap
range extends up to |η| < 2.7.

The purpose of the precision-tracking chambers is to determine the coordinate of
the track in the bending plane. After matching of the MDT and trigger chamber
hits in the bending plane, the trigger chamber’s coordinate in the non-bending
plane is adopted as the second coordinate of the MDT measurement. This method
assumes that in any MDT/trigger chamber pair a maximum of one track per event
be present, since with two or more tracks the η and φ hits cannot be combined in
an unambiguous way.

3.2.4 Trigger and Data-Acquisition System

The ATLAS TDAQ system [51], upgraded for Run 2 [52], is designed to select with
high efficiency signal events, while rejecting the overwhelming background processes.
Its aim is to reduce the storage event rate to approximately 1 kHz from the nominal
bunch crossing rate, happening with a frequency of 40 MHz, every 25 ns. In order to
achieve it, the trigger decision chain uses a hardware-based first level trigger (Level-
1) and a software-based high-level trigger (HLT). The former reduces the storage
rate to 100 kHz, and then, the latter down to the limit of 1 kHz. The performance
of the trigger system during the whole Run 2 is presented in Ref. [53]

41



Chapter 3. Experimental setup

Level-1 Trigger

The Level-1 trigger performs the initial event selection based on the information from
the calorimeter and muon systems, searching for high-transverse momentum objects.
This process reduces the event rate to about 100 kHz and makes use of custom
electronics to determine Regions-of-Interest (RoIs), characterized by a position in
the η-φ plane where the selection process has identified interesting features. It
requires about 2.5 µs to reach its decision, including the propagation delays on
cables between the detector and the underground computing farm where the trigger
logic is located.

The information provided by the calorimeter system allows the Level-1 trigger to
identify high-transverse energy objects such as electrons, photons, hadronically de-
caying τ -leptons or jet clusters, as well as events with large missing transverse energy.
Each of the determined RoIs consists of 4 × 4 trigger towers with a reduced gran-
ularity of ∆η × ∆φ = 0.1 × 0.1, and a η-dependent pT requirement to account for
energy losses and the geometry of the detector. In addition, the triggering capabil-
ities of muon chambers also bring information into the decision chain by tracking
the trajectory of high-transverse momentum muons.

High Level Trigger

The HLT is mainly based on the same regions identified by the Level-1 trigger and
runs on an underground computing farm at Point-1. The RoIs are used to construct
a seed for each formed object, consisting of a pT threshold and a position in the
η-φ plane. Later, for the final trigger decision, sophisticated selection algorithms
are run using full granularity detector information, including the ID. That way, the
HLT reduces the storage event rate to around 1 kHz on average, within a processing
time of approximately 200 ms, which is the one required to take the decision of
either keeping or rejecting the event. At the end of the trigger decision chain, data
registered in disk are prepared through a processing chain that promptly reconstructs
objects using calibration and validation algorithms, to provide data samples for
physical analyses.
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Computing projects

In addition to the experimental setup, physical analyses achieve high precision
thanks to a gigantic computing infrastructure that increases information processing
speed and handles the prodigious volume of data produced by LHC experiments.
CERN designed a grid-based computer network infrastructure called Worldwide
LHC Computing Grid to cope with the situation.

Nowadays, this international collaborative project works with an operating system
called CentOS Linux 7 equipped with a GNU bash shell and a gcc compiler by
default. CERN users operate the same software when running in local machines.
So as to access these machines, a valid user within the LXPLUS service is required.
Each user has a user and a work area operating with the distributed file system
AFS with Kerberos for authentication. The work area stores up to 100 giga-bytes.
However, if more quota is required one can save up to 1 tera-byte at the CERN
storage system called EOS, which was created for the extreme LHC computing
requirements and is connected to the cloud storage CERNBox. Other machines
have been used to perform analyses like the UIs machines at DFT UAM which
provide numerous computer cores.

To provide computing power for their machines, the CERN Batch service has the
aim to share the resources fairly and as agreed between all users of the system. Local
jobs are supported via HTCondor which is a software framework for parallelization
of computationally intensive tasks. Other services provided by the IT department
are Indico to organize events, JIRA to track issues, VOMS to sort users into group
hierarchies and CDS to archive documents, among others.

There are other tools that have been essential to carry out the analysis and there-
fore this thesis. For instance, GitLab which is a mainstream tool that provides a
repository for code and documentation, Docker which is a set of products used to
deliver software in packages, and LaTeX which is a system for document prepara-
tion designed for the production of technical and scientific documentation. In this
framework, the writer uses a plain text that later generates the formatted version,
displaying always a professional-looking. ROOT is another relevant tool for this
analysis, discussed below owing to its importance.
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ROOT is a data analysis framework widely
used in particle physics [54]. The aim of this
software is to analyse and visualize large
amounts of data. It is mainly written in
C++ which is one of the foremost general-
purpose programming languages along with Python. The great advantage of this
framework is the vast set of libraries provided. They are linked at the macro file
and allow working with a wide range of objects and functionalities. This macro file
contains the code that one want to run. In most scenarios, it reads data from an
input file to return an output one. These ROOT files generally contain histograms
and trees. The latter were designed for managing data held in a relational database
system, therefore providing the perfect objects for storing relevant information at
particle collisions.

ROOT is open source and can be directly downloaded from their website, which
also provide tutorials and courses to improve user skills. Additionally, users can
create their own packages to implement new techniques in the software. The central
external packages employed in this analysis are BootstrapGenerator for man-
aging the bootstrapping technique and RooUnfold for performing the Iterative
Bayesian unfolding. They can be respectively downloaded from their repositories:

https://gitlab.cern.ch/cjmeyer/BootstrapGenerator.git
https://gitlab.cern.ch/RooUnfold/RooUnfold.git

Moreover, the Minuit package used to minimize the χ2 function in the fit is already
included, while the one for the Gaussian kernel smoothing is implemented manually.

4.1 Monte Carlo Event Generators

Monte Carlo algorithms in particle physics are applied to MC event generators.
These programs simulate particle collisions based on a theoretical framework and a
random number generator with an input seed, allowing for comparison with data
and validating the theory. Most of them either belong to the HEPForge project or
are externally hosted by it. This project constitutes a development environment for
high energy physics software projects.

The main general-purpose event generators like Herwig, Sherpa, and Pythia
can be found at HEPForge. They are implemented in a C++ routine using Rivet
which is a widespread system for validation of MC event generators [55, 56]. This
system reads the event information from HepMC to return YODA files containing
the simulated distributions.

In order to obtain physical simulations, additional programs have to be linked in the
routine. For instance, the LHAPDF 6 interpolator used for evaluation of PDFs from
discretized data [57]. This library comes from “Les Houches Accord” and contains a
wide range of official PDF groups which are supported and available at their website.
For jet-based simulations, the FastJet library is required to find jets in the final
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state given a certain jet definition [58]. Furthermore, other software packages like
the UE+MPI tunes may be necessary to take into account extra features.

There are also tools designed to display events for the visual investigation and the
understanding of particle physics. Figure 4.1 created with Atlantis event display
shows two multi-jet events registered by the ATLAS detector.

Figure 4.1: Transverse plane projection of two final states in multi-jet events created
with the Atlantis event display. The colours are chosen for illustrative purposes [59].

4.1.1 Fixed-order generators

Fixed-order generators allow reliable theoretical predictions for infrared-safe physi-
cal observables at a given order in perturbative theory. They calculate the matrix-
elements that contribute to get the expected cross section that weights the random-
generated event. The first non-trivial contribution is the LO one, but when increas-
ing to NLO a subtraction scheme is required in the calculation.

The Catani-Seymour subtraction scheme based on the dipole factorization formulae
has become the major scheme for NLO QCD corrections [60]. This scheme is used to
construct the NLOJet++ program presented by Zoltan Nagy [61, 62]. This fixed-
order event generator was one of the firsts to reproduce three-jet events in hadron
collisions at NLO accuracy in pQCD. Therefore, initiating the accurate study of
geometrical properties of the hadronic final state, thanks to a considerable reduction
of the theoretical scale uncertainty.

Nowadays, novel subtraction schemes have been developed to achieve NNLO ac-
curacy in pQCD like the antenna subtraction method. Another example is the
STRIPPER subtraction scheme, which was extended in Ref. [63] to arbitrary pro-
cesses with any number of coloured partons in the final state, and up to two partons
in the initial state. The last scheme allows the calculation of NNLO QCD corrections
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to three-jet events and has been used to construct a MC event generator, providing
today the perfect tool to study physical observables in hadron collisions [64, 65].

This MC event generator requires libraries from OpenLoops 2 to calculate the
matrix-elements [66], which is a program that allows for fast and stable numerical
evaluation of tree and one-loop matrix-elements for any process at NLO QCD. Con-
sequently, it has become one of the core libraries in many general-purpose event
generators. In addition, the FivePointAmplitudes library has to be considered
for evaluation of analytic expressions for finite remainders of two-loop five-point
scattering amplitudes [67]. The library is meant to provide so-called double-virtual
contributions using PentagonFunctions++ [68].

4.1.2 General-purpose generators

There are other MC event generators called general-purpose generators which are
used to describe multi-jet production in hadron collisions by the convolution of the
production cross sections for parton-parton scattering, given by pQCD, with the cor-
responding PDFs. In addition to the matrix-elements calculations, a parton shower
is incorporated here to consider higher-order real emissions along with a match-
ing procedure between them. Moreover, they can provide particle-level predictions
when a fragmentation model and a UE+MPI tune are considered to account for
long-distance effects.

QCD-based MC event generators differ between them in the approximations used to
calculate the underlying short-distance hard processes, in the way parton showers
are built to take into account higher-order effects and in the fragmentation scheme
responsible for long-distance effects. In multi-jet production in hadron colliders, the
baseline MC simulated samples are generated with the Pythia 8.235 [69] event
generator, which is generally used to unfold the measured distributions from the
detector to the particle level, as well as the theoretical predictions from the parton
to the particle level. Alternatively, MC simulated samples with the Herwig 7.1.3
[70, 71] , Sherpa 2.1.1 [72], and Sherpa 2.2.5 event generators are also considered.

The Pythia 8.235 event generator uses LO matrix elements to calculate the 2→ 2
hard processes matched to a pT-ordered parton shower to simulate higher-order
processes. The hadronization follows the Lund string fragmentation model and the
ATLAS A14 tune [73] has been used to simulate the underlying-event. The Herwig
7.1.3 event generator calculates matrix elements for 2 → 2 hard processes at NLO
with Matchbox [74], higher-order processes are simulated with a dipole showering
or an angular-ordered parton shower, both interfaced to the matrix element calcula-
tion using the MC@NLO matching scheme. The fragmentation follows the cluster
hadronization model [75]. Finally, Sherpa 2.1.1 calculates matrix elements for
2→ 2 and 2→ 3 hard processes at LO, using the CKKW [76] method for the par-
ton shower matching, while Sherpa 2.2.5 calculates only 2 → 2 matrix elements.
The fragmentation follows a phenomenological cluster hadronization model. How-
ever, the latest version also includes the Lund string fragmentation model. These
MC event generators used different PDF groups; namely, NNPDF 2.3 LO [77] for
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Pythia 8.235, MMHT 2014 NLO [78] for Herwig 7.1.3, CT10 [79] for Sherpa
2.1.1, and CT14 [80] for Sherpa 2.2.5.

4.2 The Worldwide LHC Computing Grid

The Worldwide LHC Computing Grid (WLCG) is a global computing infrastructure
whose mission is to provide computing resources to store, distribute and analyse the
data generated by the LHC, making data equally available to all partners, regardless
of their physical location. This project is a global collaboration of around 170
computing centres in 42 countries, supported by many national and international
grid infrastructures across the world. It has become the largest computing grid in
the globe, managed and operated by a worldwide collaboration between the LHC
experiments and the participating computer centres.

The WLCG consists of sophisticated data-taking & analysis systems, providing
physicists around the world with near real-time access to LHC data, and the power
to process it. This ground-breaking infrastructure is made up of almost 1 million
computer cores and has a quota of 1 exa-bytes of storage. Bear in mind that these
numbers will increase as computing resources and new technologies will become
ever more available in the future. These computing resources include not only data
storage capacity and processing power, but also a wide range of tools.

In LHC experiments, produced raw data passing TDAQ system requirements are
promptly analysed and stored in the Tier-0 of the computing grid, which corresponds
with the CPU farm at the CERN Data Centre. Then, data are sent out from CERN
to thirteen Tier-1 academic institutions in Europe, Asia, and America, via the LHC
Optical Private Network. A larger number of Tier-2 institutions are connected to
Tier-1 centres by general-purpose national research and education networks. The
national Spanish Tier-1 centre is Port d’Informació Científica (PIC) at Barcelona,
while my institution holds a Tier-2 centre at Madrid called UAM-LCG2.

4.3 ATLAS Computing and Software

LHC experiments design software to analyse produced data. To accomplish the goal,
ATLAS uses a common Gaudi framework called Athena, whose repository contains
any and all code that could be built into an ATLAS software release. The repository
is hosted in https://gitlab.cern.ch/atlas/athena.git.

Athena contains a wide range of projects with difference purposes. For instance,
the AnalysisBase one used in ROOT-based analyses. When a particular build of an
Athena project is deemed ready for production, it is installed as a numbered release
onto the ATLAS production server. In this case, the analysis has been carried out
with the AnalysisBase,21.2.139 release.
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Users can access to this software with setupATLAS which also grant access to other
programs like PanDa and Rucio. The former sends tasks to run in the WLCG, the
latter downloads their output samples. In order to access WLCG resources, ATLAS
users require a valid certificate and their tasks can be monitored at the website
https://bigpanda.cern.ch/.

Information about any ATLAS resources or recommendations are usually found in
specific Twiki pages that are only going to be mentioned in this thesis if necessary.

4.3.1 Data preparation

Data collected by the ATLAS detector need to be stored in files that can be read
by users in their local analyses. The processing chain that prepares data registered
at detectors for analyses works with the ATLAS software framework called Athena.
The first step is to provide a sample with all data written to disk after being selected
by triggers. The data sample used in this analysis corresponds to the full dataset
with 25 ns bunch-crossing space taken during the pp Run 2. In this case, the LHC
delivers up to 40 MHz for each bunch crossing. The Level-1 trigger implemented
in hardware reduces rate to 100 kHz, then the High Level trigger implemented in
software running on Point-1 machines reduces rate to 1 kHz.

The next step in the processing chain is object reconstruction, which runs at the
WLCG with Athena to produce the Analysis Object Data (AOD) samples. Firstly,
raw data stored at Point-1 machines are promptly reconstructed at the Tier-0 using
fast calibrations and validation software. Data Quality algorithms check operation
of detectors and performance of physical objects to decide which data should be ac-
cepted. The All Good Data Quality criteria require all reconstructed physics objects
to be of good data quality [81]. Only events labelled as “Good for Physics” enter the
sample, and therefore, the real luminosity is slightly lower than the delivered one
by the LHC. The delivered luminosity accounts for the luminosity delivered from
the start of stable beams until the LHC requests ATLAS to put the detector in a
safe standby mode to allow a beam dump or beam studies. The total integrated
luminosity and data quality in the 2015-2018 period is shown in Figure 4.2.

The total integrated luminosity during the pp Run 2 that can be considered in
physical analyses reaches up to 139 fb−1. For each data-taking period the integrated
luminosities are 36.2 fb−1 for 2015+2016, 44.3 fb−1 for 2017 and 58.5 fb−1 for
2018. The luminosity blocks labelled as “Good for Physics” are given in the official
precomputed Good Run Lists (GRLs) which are taken from the following path:

/cvmfs/atlas.cern.ch/repo/sw/database/GroupData/GoodRunsLists/.

4.3.2 Monte Carlo production

The ATLAS Collaboration produces its own official MC simulations, which are avail-
able for all users. These samples also undergo a processing chain with Athena at
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Figure 4.2: Cumulative luminosity versus time delivered to ATLAS, recorded by
ATLAS, and certified to be good quality data during stable beams for pp collisions
at 13 TeV centre-of-mass energy in the 2015-2018 period [44].

the WLC Grid until they are ready to be considered in local ROOT-based analy-
ses. They can be found along with data samples at the ATLAS Metadata Interface
(AMI). A Grid certificate is required to access its website https://ami.in2p3.fr/
where one can search for all the official samples available.

The first step in the processing chain is event generation, where all events in the
sample are created using MC programs like the ones described before. Generated
samples at this point are called EVNT. The next step is detector simulation, where
the performance of the detector is taken into account. The generated events are
processed with the ATLAS full detector simulation [82] based on Geant4 [83].
Output samples once the simulated detector deposits are included are called HITS.
To compare with real data, one must assume that simulated collisions would be
collected by the same electronics. The simulated deposits have then to be turned
into a detector response comparable to the one of the raw data from the real detector.
This step is digitalization and output samples are called RDO.

The last steps are the same for data and simulation, and provide the samples that
are going to be processed in the analysis routine. The first one is called object recon-
struction and returns the already mentioned AOD samples. To better handle these
huge samples, one should apply a derivation to save only certain event information
within them. The derivation frameworks considered in here for multi-jet production
are JETM1 and STDM11. These Derived Analysis Object Data (DAOD) samples
are then validated by the corresponding Physics Modelling Group (PMG) before us-
ing them. To conclude, validated DAOD samples are processed by users to get their
ROOT input files. In this step, users build a set of trees with the main information
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required in their local ROOT-based analyses. Figure 4.3 shows a diagram of the
whole software processing chain for MC production and data preparation.

Point-1

WLCG

Local

High Level
Trigger

Object
Reconstruction

JETM1
Derivation

Release 21
AnalysisBase

Digitalization Detector
Simulation

Event
Generation

ROOT-based
Analysis

DAOD

RDO HITS

AOD

RAW EVNT

ROOT

Figure 4.3: Software processing chain for official data and MC simulation samples
at the ATLAS experiment. The name of the output samples after each step in the
chain is included and arrows indicates the direction of the processing chain.

The official MC simulations are produced in mc16 campaigns that match the data
collected by detectors. Hence, making a comparison between data and simulation
suitable. mc16 campaigns are divided in different subcampaigns depending on the
period of time they try to simulate. The aim is to have the same pile-up distribution
in data and simulation for each data collecting period. The mc16a subcampaign
matches the 2015-2016 period, mc16d the 2017 period, and mc16e the 2018 period.

In order to compensate for the steeply falling pT spectrum, each subcampaign in
multi-jet production is generated in difference intervals of the leading transverse
momentum of the generated outgoing partons p̂T. These slices are called JZ slices
and are merged together in analyses using the luminosity weights that reproduce
the expected leading-jet pT distribution.

Luminosity weights are given by the ratio wlumi = Lphys/LMC. This is the ratio of
integrated luminosity in the simulated data-taking period Lphys and the MC sample
luminosity LMC which is computed for each JZ slice of the subcampaign as

LMC =

∑Nev
A=1w

(A)
ev

σFeff

where σ is the cross section and Feff is the filter efficiency for each slice in a sub-
campaign. Note that each slice contains Nev events with different event weights wev.
Finally, all MC simulated samples are subject to a reweighting algorithm in order
to match exactly with the average number of pp interactions per bunch-crossing
observed in the associated data-taking period divided by a factor 1.03.
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Object reconstruction and calibration

This chapter discusses the performance of the ATLAS detector in terms of object
reconstruction and calibration, including vertices and jets originated from them.
The latter are collimated bunches of hadrons, reconstructed from tracks in the inner
detector and calibrated following certain criteria. Jet systematic uncertainties asso-
ciated to the calibration procedure, namely, jet energy scale (JES) and jet energy
resolution (JER), are also discussed in the chapter, along with jet quality criteria.

5.1 Tracks and vertices

Tracks are charged-particle trajectories reconstructed from global fits and Kalman-
filter techniques [84] in the inner detector, which are later considered in the re-
construction of other objects, mainly, vertices and jets. Track seeds are formed by
combining space-points from clusters in the pixel and first SCT layer, which are then
extended throughout the whole SCT and fitted to form track candidates. The latter
are extended into the TRT to associate the drift-circle information and fitted again
including information from all the ID. Track candidates passing certain kinematic
cuts and quality criteria are taken as input for vertex and jet reconstruction:

• Kinematic cuts |η| < 2.5 and pT > 400 MeV, plus pT > 500 MeV for jets.

• Number of silicon hits ≥ 9, plus silicon hits ≥ 11 for vertices if |η| > 1.65.

• Pixel holes = 0, plus SCT holes ≤ 1 for vertices.

• IBL hits + B-layer hits ≥ 1 for vertices.

Moreover, tracks selected for jet reconstruction must be associated with a primary
vertex so as to suppress the effects of pile-up. Primary vertex reconstruction [85]
in a LHC collision is essential for determining the full kinematic properties of a
hard-scatter event and of soft interactions. The procedure of primary vertex recon-
struction from tracks passing these selection criteria is divided in two stages: vertex
finding and vertex fitting. The best vertex position is iteratively derived from the
selected tracks and a seed position. Thereafter, incompatible tracks with the vertex
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are removed from it and allowed to be used in the determination of another one.
The procedure is repeated until no unassociated tracks are left in the event or no
additional vertex can be found in the remaining set of tracks. Note that a vertex
requires at least two selected tracks to be formed as a candidate vertex.

5.2 Jet reconstruction

Jets are collimated bunches of hadrons in an attempt to reconstruct the kinematic
properties of the hard partons from which they originated. As already discussed
in Section 2.2, a jet definition is required to map observed hadrons onto a set of
jets. In this case, jets are defined using the anti-kt clustering algorithm with radius
R = 0.4, conforming the main objects used in the analyses presented in this thesis.

Nowadays, based on the input four-vector objects considered for the jet reconstruc-
tion, one can identify two different schemes. The old-fashioned procedure builds jets
from calorimeter energy deposits through a set of topological clusters (EMtopo) [86],
whereas the current one builds jets including also charged-particle tracks into the
particle-flow (PFlow) reconstruction technique [87]. Both algorithms are properly
discussed at the end of this section.

A detailed explanation for the whole procedure of jet reconstruction and calibration
is found in Ref. [88]. This is carried out with the latest version of the ATLAS
software, as discussed in Section 4.3. Specific analysis recommendations for Release
21 mc16 are provided by the ATLAS Jet and Etmiss Combined Performance Group
at the twiki.cern.ch webpage:

/twiki/bin/view/AtlasProtected/JetEtmissRecommendationsR21

These recommendations are supported for jet collections with transverse momentum
pT > 20 GeV and pseudo-rapidity |η| < 4.5. The PFlow jet collection is the one rec-
ommended by default. The main analysis uses this collection for jet reconstruction
in data and MC, along with a detailed jet calibration scheme: calibration for data
or FullSim (JES MC ⊕ in situ) ⊕ nominal JER MC-smearing ⊕ JMS calibration.
Table 5.1 summarizes the main information of the jet calibration procedure:

AntiKt4EMPFlow
Configuration file: .config

JES_JMS_MC16Recommendation_Consolidated_MC_only_PFlow_July2019_Rel21
JES_JMS_MC16Recommendation_Consolidated_data_only_PFlow_July2019_Rel21

Calibration sequence:
JetArea_Residual_EtaJES_GSC_Smear_JMS
JetArea_Residual_EtaJES_GSC_JMS_Insitu

Calibration area: 00-04-82

Table 5.1: Main parameters of the jet calibration procedure for PFlow jets recon-
structed using the anti-kt algorithm with radius parameter R = 0.4. The files above
in the cell apply to MC, isData=false, and the ones below to data, isData=true.
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5.2.1 Topological clusters

The EMtopo jet reconstruction [86] is based on clustering of individual calorimeter
cells following their signal-significance patterns generated by electromagnetic and
hadronic showers. These cells are first clustered into three-dimensional topological
clusters using a nearest-neighbour algorithm. These massless clusters are called
topo-clusters and their formation is depicted in Figure 5.1. Then, calorimeter cells
are added to a topo-cluster according to the ratio of the cell energy to the expected
noise in each cell, removing cells with insignificant signals which are not in close
proximity to significant cells in order to suppress the noise contribution.

The resulting topological cell clusters have shape and location information, which is
required for local energy calibration. Moreover, the resulting energy is given at the
electromagnetic scale, which is the one that correctly measures energy depositions
from electromagnetic showers. Thereafter, positive-energy topo-clusters are used as
inputs to the jet reconstruction. These topo-clusters are corrected to account for
the position of the primary vertex in each event, defined as the reconstructed vertex
with at least two associated tracks and the largest sum of squared track momentum.
This step is referred to as origin correction. In addition, topo-clusters are also used
to represent the energy flow from softer particles, required for the reconstruction of
observables like the missing transverse momentum.

Jets reconstructed using only calorimeter-based energy information from origin-
corrected topo-clusters are referred to as EMtopo jets. This was the primary method
used for jet reconstruction in ATLAS before particle-flow reconstruction techniques.
EMtopo jets exhibit robust energy scale and resolution characteristics across a wide
kinematic range, and are independent of other reconstruction algorithms such as
tracking at the jet-building stage.

Figure 5.1: Stages of topo-cluster formation in the FCAL calorimeter for a simulated
dijet event with at least one jet entering this calorimeter. The left figure shows cells
with signal significance |EEM|/σ > 4 that can seed topo-clusters, while the right one
shows all clustered cells and the outline of topo-clusters in this module [86].
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5.2.2 Particle-flow reconstruction technique

The PFlow algorithm [87] makes a more complete use of the information from both
the tracking and calorimeter systems to form the input signals, which are intended to
approximate individual particles. This algorithm subtracts energy deposited in the
calorimeter by charged particles from the observed topo-clusters, and replaces it by
the momenta of tracks that are matched to those topo-clusters. Jet reconstruction is
then performed on an ensemble of particle-flow objects consisting of the remaining
calorimeter energy and tracks which are matched to the hard interaction. These
resulting PFlow jets exhibit improved energy and angular resolution, reconstruction
efficiency, and pile-up stability compared to EMtopo jets.

For the Run 2 jet calibration, the alternative particle-flow approach superseded the
previous clustering of individual calorimeter cells. A combination of the tracking
and calorimeter systems is preferred for optimal event reconstruction, as the capa-
bilities of the tracker in reconstructing charged particles are complemented by the
reconstruction of both charged and neutral particles provided by the calorimeter.
The algorithm provides a list of tracks and a list of topo-clusters containing also a
set of new topo-clusters resulting from the energy subtraction procedure. Figure 5.2
sketches the whole technique. First, well-measured tracks are selected, and then,
each track is matched to a single topo-cluster in the calorimeter. However, it is
quite common for a single particle to deposit energy in multiple topo-clusters, so
the algorithm has to decide if it is necessary to add more topo-clusters so as to
recover the full shower energy. In this case, the expected energy is now subtracted
cell by cell from the set of matched topo-clusters. Finally, the topo-cluster remnants
are removed. Figure 5.3 illustrates this methodology for several cases.

Figure 5.2: A flow chart of how the particle flow algorithm proceeds, starting with
track selection and continuing until the energy associated with the selected tracks
has been removed from the calorimeter. At the end, charged particles, topo-clusters
which have not been modified by the algorithm, and remnants of topo-clusters which
have had part of their energy removed remain [87].
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Figure 5.3: Idealized examples of how the algorithm is designed to deal with several
different cases. The red cells are those which have energy from the π+, the green cells
energy from the photons from the π0 decay, the dotted lines represent the original
topo-cluster boundaries with those outlined in blue having been matched by the
algorithm to the π+, while those in black are yet to be selected. The different layers
in the electromagnetic calorimeter are indicated [87].

55



Chapter 5. Object reconstruction and calibration

5.3 Jet energy scale calibration

Thereafter, PFlow jets are reconstructed, a MC simulation is used to determine the
energy scale and resolution of jets by comparing those jets with particle-level jets.
The latter are reconstructed using stable final-state particles and excluding muons,
neutrinos, and particles from pile-up interactions. The so-called truth jets must
fulfil the same kinematic cuts and are geometrically matched to PFlow jets using
the angular distance with the requirement ∆R < 0.3 in the y-φ plane.

The procedure that restores the jet energy to that of jets reconstructed at the particle
level is called jet energy scale calibration. At each stage of the calibration chain,
the four-momentum of the jet is corrected, scaling certain kinematic variables, such
as transverse momentum, energy, and mass. Figure 5.4 illustrates the full chain of
corrections for the JES calibration.

Applied as a function of
event pile-up pT density

and jet area.

Removes residual pile-up
dependence, as a 

function of μ and NPV.

Reconstructed
jets

Jet finding applied to 
tracking- and/or 
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Global sequential
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Figure 5.4: Stages of jet energy scale calibrations. Each one is applied to the jet
four-momentum in order to restore the jet energy to the one at particle level [88].

The first two steps in the calibration chain are pile-up corrections, removing the
excess energy due to additional pp interactions within the same or nearby bunch
crossings. The main correction is based on the jet area and transverse momentum
density of the event, while the residual one is derived from MC simulation and pa-
rameterized as a function of the mean number of interactions per bunch crossing,
µ, and the number of reconstructed primary vertices in the event, NPV. The ab-
solute JES calibration occurs in the next step, correcting the four-momentum of
jets so that it agrees in energy and direction with the one of truth jets from di-
jet MC events. The same MC simulation is later used to improve the transverse
momentum resolution. This step is called global sequential calibration, and it asso-
ciates uncertainties by removing the dependence of the reconstructed jet response
on observables constructed using information from the detector systems. Finally, a
residual in situ calibration is applied only to data to correct for remaining differ-
ences between data and MC simulation. All the stages of the chain are discussed in
this section. Furthermore, the full treatment of the systematic uncertainties coming
from the calibration procedure is included at the end of the section.
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5.3.1 Simulation-based calibration

Pile-up corrections

As explained in Section 2.2, pile-up effects are mitigated using the so-called ρ×Ajet

subtraction method. The jet area is considered as a measure of the susceptibility
of the jet to pile-up and is calculated by determining the relative number of ghost
particles associated with a jet after clustering. Note that tracks are matched to jets
using ghost association [39]. Next, the background pT density is calculated from jets
in the central region so as to estimate the pile-up contribution. A subtraction of
this pile-up contribution to the transverse momentum is then performed, applying
the ratio of the subtracted to the uncorrected jet pT as a scale factor to the jet
four-momentum. The computation of ρ in the central region |η| < 2.0 gives a more
meaningful measure of the pile-up activity than the median over the entire detector
acceptance. In this case, jets are reconstructed from positive-energy topo-clusters
using the kt algorithm with radius parameter R = 0.4. The main reason to consider
this jet definition is that the algorithm has a tendency to naturally reconstruct jets
including a uniform soft background.

After the main pile-up correction, effects of the pile-up activity remains in the jet pT,
mainly, due to the fact that the pile-up sensitivity in the forward calorimeter region
or in higher-occupancy core of high pT jets is not described. Therefore, a residual
correction is introduced as the difference between the reconstructed and truth jet
pT as a function of both NPV and µ. The final corrected jet pT is then given by

pcorr
T = preco

T − ρ× Ajet − α× (NPV − 1)− β × µ.

where α and β are fitted coefficients. The residual pT dependences on NPV and µ
are observed to be fairly linear and independent of one another. Their coefficients
are derived in |ηdet| and ptruth

T bins, where the former is the jet η pointing from the
geometric centre of the detector, and the latter is the pT of the truth jet that matches
the reconstructed jet. Four systematic uncertainties are introduced to account for
MC mis-modelling of NPV, µ, the ρ topology, and the pT dependence of the residual
pile-up corrections.

Absolute MC-based calibration

The next stage in the chain is the absolute MC-based calibration of the energy and
direction of reconstructed jets. Hence, the four-momentum of the jet is corrected to
the particle-level energy scale accounting for non-compensating calorimeter response,
energy losses in dead material, out-of-cone effects and biases in the jet direction
reconstruction. Those bias are primarily caused by the transition between different
calorimeter technologies and sudden changes in calorimeter granularity. In addition,
at this point, the jet mass scale (JMS) calibration may be also considered to improve
reliability of jet kinematics, which is recommended for low-energy measurements.

The calibration is derived from a Pythia 8 simulation of dijet events after the
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Chapter 5. Object reconstruction and calibration

application of the pile-up corrections. The reconstructed jets are defined using the
anti-kt algorithm with radius parameter R = 0.4. Then, they are geometrically
matched to truth jets within ∆R = 0.3 and a numerical inversion procedure is used.
The relation between the different jet calibration variables for the reconstructed jet
and the truth jet matched to it provides the correction parameters:

Ereco = cJESE
truth; mreco = cJEScJMSm

truth; ηreco = ηtruth +∆η.

The mean of a Gaussian fit to the core of the Ereco/Etruth distribution returns the
average jet energy response R which is measured in ηdet and Ereco bins. However,
changes in calorimeter geometry or technology cause different energy responses. A
second correction is therefore derived as the difference between the reconstructed
and truth directions parametrized in ηdet and Etruth bins.

Global sequential calibration

Nevertheless, the response can still vary from jet to jet depending on the flavour
and energy distribution of the constituent particles, their transverse distribution,
and the fluctuations of the jet development in the calorimeter. As discussed in Sec-
tion 2.2, jet’s features are determined by the hard parton originating the showering.
For instance, the average particle composition and shower shape, which vary most
notably between quark- and gluon-initiated jets. A quark-initiated jet will often
include hadrons with a higher fraction of the jet pT that penetrate further into the
calorimeter, whereas a gluon-initiated jet will typically contain more particles of
softer pT, leading to a lower calorimeter response and a wider transverse profile.

The global sequential calibration (GSC) reduces the effects from these fluctuations
and improve the jet resolution without changing the average jet energy response.
This procedure is based on global jet observables such as the longitudinal structure
of the energy depositions within the calorimeters, tracking information associated
with the jet, and information related to the activity in the muon chambers behind
a jet. In total, six observables are parametrized as a function of |ηdet| and ptruth

T .
Then, corrections for each observable are applied independently and sequentially to
the jet four-momentum for jets with |η| < 3.2 The six observables that account for
the dependence of the jet response in the GSC are given in Table 5.2.

Obser. Description
fcharged fraction of jet pT measured from ghost-associated tracks
fTile0 fraction of jet E measured in the first layer of the TileCal
fLAr3 fraction of jet E measured in the third layer of the LAr EMCal
ntrk number of tracks with pT > 1 GeV ghost-associated with the jet

wtrk
average pT-weighted transverse distance in the η-φ plane between the
jet axis and all tracks of pT > 1 GeV ghost-associated with the jet

nsegments number of muon track segments ghost-associated with the jet

Table 5.2: Observables parametrized during the GSC to improve the jet response.
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5.3. Jet energy scale calibration

5.3.2 In situ calibration

The absolute MC-based JES calibration and the GSC do not account for differences
between the jet response in data and MC simulation. Therefore, one final calibration
stage must be applied only to data to correct for these differences. This last step
is the so-called residual in situ calibration, which measures the jet response in data
and MC simulation separately and uses the ratio as an additional correction in data.

The differences between data and MC simulation arises by imperfect simulation of
both the detector materials and the physics processes involved. These imperfections
translate into the jet response, which must then be calculated by balancing the pT

of a jet against that of a well-calibrated reference object or system. The response is
given by the average ratio of the jet pT to the reference object pT in bins of reference
object pT. In order to avoid sensitivity to secondary effects, the double ratio from
the response in data and MC simulation is computed as a reliable measure of the
jet energy scale difference between them. In the final step of the in situ calibration,
this quantity is transformed via a numerical inversion to a function of the jet pT.

There are three stages of in situ analyses and they are performed sequentially,
namely, η intercalibration, Z/γ + jet MPDF, and MJB. Each of them based on
a well-calibrated reference object or system. A set of systematic uncertainties is
introduced for each analysis, which arise from three sources: modelling of physics
processes in simulation, uncertainties in the measurement of the reference object,
and uncertainties in the expected pT balance due to the event’s topology.

The first step is the η intercalibration analysis, where the energy scale of forward
jets is corrected to match those of central jets thanks to the pT balance presented
in dijet events. Afterwards, the Z+jet and γ+jet analyses balance the hadronic
recoil of a jet in an event against the pT of a calibrated Z boson or photon. To
help mitigate effects of pile-up in low-pT measurements, the missing-ET projection
fraction (MPF) method uses the full hadronic recoil to compute the balance [89].
Finally, the multi-jet balance (MJB) analysis uses a system of well-calibrated low-
pT jets to calibrate a single high-pT jet [90]. Even though the last two analysis are
computed only for central jets, they still apply to forward jets due to the effect of
the η intercalibration. Additionally, they provide a single smooth calibration that
covers the full transverse momentum range.

The three in situ analyses require some common selection criteria. For instance,
each event must have a reconstructed vertex with at least two associated tracks of
pT > 500 MeV. Moreover, each jet with 20 GeV < pT < 60 GeV and |η| < 2.4
must pass the jet vertex tagging (JVT) criteria. These requirements for tagging
and suppressing pile-up jets are constructed as a multivariate combination of the
fraction of the total momentum of tracks in the jet which is associated with the
primary vertex and the number of reconstructed primary vertices in the event [91].
In analyses working with the PFlow jet collection, the Tight threshold is JVT > 0.5.
In addition, there is a forward pile-up jet vertext tagging (fJVT) algorithm that
covers the rest of the supported range 2.5 < |η| < 4.5. In this case, the Loose
threshold is fJVT < 0.5 with the additional timing cut < 10.
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Chapter 5. Object reconstruction and calibration

5.3.3 Systematic uncertainties

The full systematic uncertainty in the jet energy scale consists of 113 sources with
variations up and down. They are summarized in Table 5.3 and, as mentioned
before, they are derived from the in situ measurements, pile-up effects, flavour de-
pendence, and other additional effects. Figure 5.5 shows the fractional jet energy
scale uncertainty as a function of the jet pT and jet η when considering PFlow jets.
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Figure 5.5: Fractional jet energy scale systematic uncertainty components for anti-
kt R = 0.4 jets reconstructed from particle-flow objects as a function of jet pT at
η = 0 in the left figure, and as a function of η at pT = 60 GeV in the right one.
Flavour-dependent components shown here assume a dijet flavour composition [88].

These JES uncertanties are extended to other analyses following the official recom-
mendations. In this case, the variations are computed for the baseline MC simulation
using the parameters given in Table 5.4. Note that this procedure takes into account
the 34 sources parametrizing the JER uncertainties discussed in Section 5.4.

AntiKt4EMPFlow
Configuration file:

rel21/Summer2019/R4_AllNuisanceParameters_AllJERNP.config
Analsysis file:

FlavourComposition.root
Calibration area: CalibArea-08

Table 5.4: Main parameters of the jet uncertainty procedure for PFlow jets recon-
structed using the anti-kt algorithm with radius parameter R = 0.4. It applies to
MC, isData=false, but also to pseudo-data in JER variations, isData=true.

The file FlavourComposition provides the flavour composition expected in the sam-
ple as a function of the jet pT and jet |η|. Otherwise, the fraction of quark- and
gluon-initiated jets is assumed 0.5± 0.5 by default in both cases. Therefore, as the
topology differs, the gluon fraction fg and its uncertainty ∆fg must be derived for
each analysis. These two parameters determine the flavour composition uncertainty,
∆fg× (Rq−Rg), and flavour response uncertainty, fg×∆Rg, where Rq and Rg are
the response for quark- and gluon initiated jets, respectively.
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5.3. Jet energy scale calibration

Component Description
η intercalibration

Systematic mis-modelling Envelope of the generator, pile-up, and event topology var.
Statistical component Statistical component (single component)
Non-closure Three components at high energy and at η ∼ ±2.4
Non-closure, 2018 only Single component at η ∼ ±1.5 due to Tile calibration

Z + jet
Electron scale Uncertainty in the electron energy scale
Electron resolution Uncertainty in the electron energy resolution
Muon scale Uncertainty in the muon momentum scale
Muon resolution (ID) Uncertainty in the muon resolution in the ID
Muon resolution (MS) Uncertainty in the muon resolution in the MS
MC generator Difference between MC event generators
JVT cut Jet vertex tagger uncertainty
∆ϕ cut Variation of ∆ϕ between the jet and Z boson
Subleading jet veto Radiation suppression though second-jet veto
Showering & topology Modelling energy flow and distribution in and around a jet
Statistical Statistical uncertainty in 28 discrete pT terms

γ + jet
Photon scale Uncertainty in the photon energy scale
Photon resolution Uncertainty in the photon energy resolution
MC generator Difference between MC event generators
JVT cut Jet vertex tagger uncertainty
∆ϕ cut Variation of ∆ϕ between the jet and photon
Subleading jet veto Radiation suppression though second-jet veto
Showering & topology Modelling energy flow and distribution in and around a jet
Photon purity Purity of sample used for γ + jet balance
Statistical Statistical uncertainty in 16 discrete pT terms

Multi-jet balance
∆ϕ (lead, recoil system) Angle between leading jet and recoil system
∆ϕ (lead, any sublead) Angle between leading jet and closest subleading jet
MC generator Difference between MC event generators
pasym
T selection Second jet’s pT contribution to the recoil system

Jet pT Jet pT threshold
Statistical Statistical uncertainty in 28 discrete pT terms

Pile-up
µ offset Uncertainty in the µ modelling in MC simulation
MPV offset Uncertainty in the NPV modelling in MC simulation
ρ topology Uncertainty in the ρ density modelling in MC sim.
pT dependence Uncertainty in the residual pT dependence

Jet flavour
Flavour composition Uncertainty in the prop. sample composition of partons
Flavour response Uncertainty in the response of gluon-initiated jets
b-jets Uncertainty in the response of b-quark initiated jets
Punch-though Uncertainty in GSC punch-through correction
Single-particle response High-pT jet unc. from single-particle and test-beam meas.

Table 5.3: Sources of systematic uncertainty in the jet energy scale [88].
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Chapter 5. Object reconstruction and calibration

5.4 Jet energy resolution

In this section, the details of the JER are discussed. This information together with
the one from the JES calibration are required for precise measurements with jets
in the final state. In order to measure the JER, jet momentum must be measured
precisely. This implies that the jets must either recoil against a reference object, or
be balanced against one another in a well-defined dijet system.

The relative JER has a dependence on the transverse momentum of the jet, which
may be parameterized using a functional with three independent contributions,
namely, the noise (N), stochastic (S) and constant (C) terms [92]:

σpT

pT
=
N

pT
⊕ S
√
pT
⊕ C.

Consequently, the dominant contribution at low-pT is the noise term, whereas at
high-pT is the constant term. The noise term comes from the contribution of elec-
tronic noise to the signal measured by the detector front-end electronics, but also
from the pile-up. The stochastic captures the statistical fluctuations in the amount
of energy deposited and represents the limiting term in the resolution. Finally, the
constant term corresponds to fluctuations that are a constant fraction of the jet
pT, such as energy depositions in passive material, the starting point of the hadron
showers, and non-uniformities of response across the calorimeter.

5.4.1 Resolution measurement

The resolution measurement is generally performed using well-defined jet systems.
In this case, the procedure relies on the approximate scalar balance between the
transverse momenta of the two leading jets. The so-called dijet balance method
measures the deviation from the exact balance due to a combination of experimental
resolution, the presence of additional radiation in the event, and biases due to the
event selection used in the measurement. This imbalance in the system is qualified
via the asymmetry given by

A = 2
pprobe

T − pref
T

pprobe
T + pref

T

.

The pT of a reference jet ref is required to be located in the well-calibrated, central
region of the detector and the probe jet is the jet for which the resolution is to be
measured. Taken the standard deviations of both pT, the standard deviation of the
asymmetry can be expressed as

σA = ⟨σpT

pT
⟩
probe

⊕ ⟨σpT

pT
⟩
ref
.

The determination of this deviation must account for effects such as additional radi-
ation, non-perturbative processes including hadronization and multi-parton interac-
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5.4. Jet energy resolution

tions, and others that may lead to particle losses and additions in the measured jets.
Therefore, a baseline MC simulation modelling this effects needs to be considered.

5.4.2 Noise measurement

The noise contribution from the pile-up to the resolution is estimated by measuring
the fluctuations in the energy deposits due to pile-up using data samples that are
collected by random unbiased triggers.

These measurements are performed using the random cones method, in which energy
deposits in the calorimeter are summed at the energy scale of the constituents in
circular areas analogous to the jet area. The imbalance between two of these random
cones within opposite pseudo-rapidity regions is given by ∆pRC

T , whose distribution
provides an estimator of noise NPU = σRC/2

√
2.

The total noise contribution to the JER includes also electronic noise, to which the
random cones are not sensitive due to the topo-clustering process. This electronic
contribution is estimated through fits to the JER measured in a dedicated MC
simulation with no pile-up effects µ = 0. The total noise term used is therefore
taken to be N = NPU ⊕Nµ=0.

5.4.3 Total in situ combination

The implementation of the total in situ combination is performed in a manner
nearly identical for the JES and JER sources, propagating uncertainties from the
dijet measurement and using an eigenvalue decomposition to reduce the final number
of nuisance parameters. Nevertheless, the JES combination uses polynomial splines
to interpolate across the jet pT, while the JER combination uses the functional
introduced at the beginning of Section 5.4. In this case, its combined measurement
is obtained by performing a fit to the dijet balance measurements using a constraint
on the noise term derived as previously explained.

5.4.4 Systematic uncertainties

There are 34 JER sources with variations up and down, each of them computed
as pseudo-data and MC simulation. Added to the 113 JES sources with variations
up and down, the total number of variations needed to describe the jet systematic
uncertainties is 360. Moreover, one also has to consider the effect of other sources,
such as, the jet angular resolution (JAR) or the choice of a MC model in the un-
folding procedure. Figure 5.6 shows the resulting combined JER measurement and
the absolute uncertainties on it as a function of the jet pT at a fixed jet η when
considering PFlow jets.

A smearing procedure is recommended to ensure that the resolution of the jet energy
scale in MC simulation matches that in data. For regions of phase space in which
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Figure 5.6: Relative jet energy resolution as a function of pT for fully calibrated
PFlow+JES jets in the left figure, and absolute uncertainty on the relative jet en-
ergy resolution as a function of jet pT in the right one. Uncertainties from the two
in situ measurements and from the data/MC simulation difference are shown sepa-
rately [88].

the resolution in data is larger than in MC simulation, the simulation sample should
be smeared until its average resolution matches that of data. However, data should
always remain unaltered, even if resolution in data is smaller than in simulation.
JER systematic uncertainties are propagated through analyses by smearing jets
according to a Gaussian function with width σ2

smear = (σnom − |σNP|)2 − σ2
nom where

σnom is the nominal JER of the sample and the one-standard-deviation variation in
the uncertainty component to be evaluated is given by σNP.

Application of JER systematic uncertainties must account for anti-correlations across
a single uncertainty component and differences in resolution between data and MC
simulation. Therefore, the uncertainty is calculated for each JER source as the
difference between the varied values computed as pseudo-data and MC simulation,
while, for each JES source, it is just the difference between the varied value and the
nominal value, both computed as MC simulation.

5.5 Jet quality criteria

The quality criteria for the selection of reconstructed anti-kt jets with radius pa-
rameter R = 0.4 is described in Ref. [93]. There are two selection criteria used for a
jet-based event cleaning, namely, Loose and Tight. The cleaning recommendation
is to remove the whole event from the sample if either a pre-selected jet within it is
tagged as BadLoose, or one of the two leading jets is tagged as BadTight.

These selection criteria are designed to distinguish signal jets from misidentified
jets of non-collision origin. The Loose selection is proposed by default, whereas the
Tight selection is designed to further reject background jets for analyses sensitive to
non-collision backgrounds. The main background jets come from these sources:

• Beam-induced background due to proton losses upstream of the interaction
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5.5. Jet quality criteria

point that can induce secondary cascades leading to muons that can reach the
detector and are reconstructed as jets.

• Cosmic-ray showers produced in the atmosphere overlapping with collision
events. The particles reaching the ATLAS detector are predominantly muons.

• Calorimeter noise from large scale coherent noise or isolated pathological cells.
Thankfully, most of the noise is already identified and rejected by the data
quality inspection mentioned in Section 4.3 and performed shortly after the
data taking.

These jet candidates coming from the background are referred to as fake jets, while
jets produced in collision events are called good jets. The jet selection criteria should
efficiently identify the nature of the jet candidate so as to reject jets from background
processes while keeping the highest efficiency selection for jets. Jet quality variables
help to perform this task. They can be divided into three categories: variables based
on signal pulse shape in the LAr calorimeters, energy ratio variables, and track-based
variables. The last two categories provide a good discrimination against noise in the
LAr and Tile calorimeters, rejecting beam-induced background and cosmic muon
showers at the same time.
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CHAPTER 6

Asymptotic freedom beyond the TeV scale

In this chapter, measurements of transverse energy-energy correlations and their
associated azimuthal asymmetries in multi-jet events are presented. The data sample
with integrated luminosity of 139 fb−1 corresponds to proton-proton collisions at a
centre-of-mass energy of

√
s = 13 TeV, collected with the ATLAS detector at the

LHC. The measurements are presented in bins of the scalar sum of the transverse
momenta of the two leading jets, compared with simulations from Monte Carlo
event generators and unfolded to the particle level. The unfolded distributions are
fitted to NNLO pQCD calculations. The agreement between data and theory is
excellent, thus providing a precision test of QCD at large momentum transfers. The
strong coupling constant has been extracted from these fits at different scale regimes,
studying asymptotic freedom beyond the TeV scale.

The transverse energy-energy correlation (TEEC) and its associated azimuthal an-
gular asymmetry (ATEEC) were proposed as the appropriate generalization of the
EEC function for hadron collider experiments in Ref. [29], where LO predictions
were also presented. The EEC function was originally introduced in Refs. [27, 28]
to provide a quantitative test of QCD in e+e− annihilation experiments. It can
be calculated in pQCD and in fact the O(α2

s ) corrections were found to be modest
[94–98] and studied also in the nearly back-to-back limit [99]. Their measurements
[100–112] have had significant impact on the early precision tests of QCD and in
the determination of the strong coupling constant.

The EEC function has attracted significant recent attention. Analytical calculations
at NLO using pQCD [113, 114] and N = 4 SYM [115, 116] have been performed.
Moreover, resummation of the EEC function in the back-to-back limit has been
improved [117, 118] and numerical results with NNLL+NNLO accuracy have been
computed [119, 120] and used to determine the strong coupling [121]. Most recently,
a factorization formula to describe the collinear limit of the EEC function has been
presented [122].

In experiments with incoming hadrons, longitudinally invariant expressions along
the direction of the beams are required. Therefore, as jet-based observables, the
TEEC and ATEEC make use of the jet transverse energy ET. Both observables are
sensitive to QCD radiation and present a clear dependence with the strong coupling.
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Chapter 6. Asymptotic freedom beyond the TeV scale

Numerical results at NLO for the jet-based TEEC function were obtained [123] by
using the NLOJET++ program [61, 62], which provides the LO and NLO correc-
tions to the three-jet production. Furthermore, numerical results for the hadron-
based TEEC function with NLO+NNLL accuracy were computed [124]. Recently,
the NNLO corrections to the 3-jet cross sections have been calculated [65] and they
have been used to obtain predictions for the TEEC function at NNLO accuracy.

The TEEC function is defined as the transverse energy-weighted azimuthal angular
distribution of produced jet pairs in the final state [125], i.e.

1

σ

dΣ
d cosϕ

=
1

σ

∑
i,j

∫
dσ

dxTidxTjd cosϕ
xTixTjdxTidxTj

where the indices i and j run over all jets in a given event, xTi = ETi/ET is the jet
i normalized transverse energy, ET is the sum of the jet transverse energies, ∆φij

is the angle in the transverse plane between the jets i and j, and the Dirac delta
function ensures that ϕ = ∆φij. The normalization to the effective cross section
σ =

∫
dσ guarantees that the integral of the TEEC function over cosϕ is unity.

In order to cancel uncertainties which are constant over cosϕ, the ATEEC function
is defined as the difference between the forward (cosϕ > 0) and the backward
(cosϕ < 0) part of the TEEC function, i.e.

1

σ

dΣasym

d cosϕ
=

1

σ

dΣ
d cosϕ

∣∣∣∣
ϕ

− 1

σ

dΣ
d cosϕ

∣∣∣∣
π−ϕ

.

In pp collisions, observables are not totally inclusive over all coloured particles in
the initial state. However, finite predictions can still be obtained at any order in
pQCD when infrared divergences due to collinear emissions from incoming partons
are factorized out of the perturbative computation. The hadron-parton transition
is then factorized into the PDFs. Furthermore, ultraviolet divergences arise in any
perturbative calculation. The bare coupling is then renormalized to the physical
coupling, which is an indicative of the effective strength of the interaction when the
unphysical scale is taken close to the interaction scale Q. The evolution of αs(Q) is
given by the solution to the RGE for αs [126].

Recently, the ATLAS Collaboration presented a measurement of the TEEC and
ATEEC functions at

√
s = 7 TeV [1] and at

√
s = 8 TeV [2], determining αs(Q) in

each of the scale regimes and using these determinations to test the running of αs

predicted by the RGE for αs. The existence of new coloured fermions would imply
modifications to the QCD β-function [127, 128]. Therefore, the running of αs is not
only important as a precision test of QCD at large scales, but also as a test for new
physics. An interpretation of these measurements in terms of constraints on new
coloured particles through their impact on the running of αs has been presented in
Ref. [129].

This analysis extends previous measurements to higher scales Q and with a sig-
nificantly improved precision. It also makes comparisons to NNLO pQCD predic-
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Chapter 6. Asymptotic freedom beyond the TeV scale

tions, providing a quantitative test of the running of αs beyond the TeV scale, thus
measuring asymptotic freedom. In addition, these measurements provide a tighter
constraint for new physics.

6.1 Data and Monte Carlo samples

The treatment of data and MC samples is explained in Section 4.3. In both cases,
jets are reconstructed using the anti-kt EMPFlow algorithm with jet radius R = 0.4.
Hence, any arbitrarily soft particle emitted at a larger distance than R will become
a jet in its own. Therefore, a jet pT threshold is specified for jets to be of interest,
pT > 60 GeV. They are also required to lie within |η| < 2.4. A more restrictive cut
in jet pT reduces significantly the amount of hard radiation, increasing the effect of
unbalanced 2-jet events in the nearly back-to-back limit of the TEEC function. On
the other hand, one is exposed to pile-up effects when reducing the jet pT threshold.

Events are collected using the HLT_j460 unprescaled single-jet trigger. The single-
jet trigger requires at least one jet with a jet transverse energy measured by the
trigger system greater than 460 GeV at the trigger level. The trigger efficiency is
computed as the fraction of events passing the probe and the reference trigger with
respect to the total number of events passing the reference trigger. Figure 6.1 shows
the trigger efficiency as a function of the two leading jets’ calibrated transverse
momenta for the data and the baseline MC event generator. The trigger is fully
efficient for values above 1.0 TeV.
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Figure 6.1: Trigger efficiency of the HLT_j460 trigger using the HLT_j100 trigger
as the reference one for the data and the baseline MC event generator.

For this analysis, events with at least two jets are selected and the two leading
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6.1. Data and Monte Carlo samples

jets are required to fulfil HT2 > 1.0 TeV where HT2 is defined as the sum of the
two leading jets’ transverse momenta pT1 + pT2. Thus, the HLT_j460 unprescaled
single-jet used to collect the data is fully efficient. In addition, all events with at
least one jet passing the experimental requirements and tagged as TightBad are
removed.

In order to study the energy scale dependence of observables, the phase space is
binned in HT2. This has the main advantage not to underestimate the scale of the
hard process as taking only the leading jet pT does. Additionally, it does not intro-
duce a discontinuous behaviour with the jet pT cut for multi-jet events. Furthermore,
HT2 has been proved to be significantly stable against higher-order perturbative cor-
rections [130]. Table 6.1 summarizes the number of events in each HT2 bin, Nev,
along with the corresponding average scale value, ⟨HT2⟩.

HT2 range [GeV] ⟨HT2⟩ [GeV] Nev

[1000,1200] 1082 36447484
[1200,1400] 1284 12526282
[1400,1600] 1485 4885650
[1600,1800] 1687 2093521
[1800,2000] 1888 958406
[2000,2300] 2125 602846
[2300,2600] 2427 226740
[2600,3000] 2762 107920
[3000,3500] 3197 39888
[3500,8000] 3919 15931

Table 6.1: Summary of the HT2 intervals in the analysis, together with the average
scale value for each bin, ⟨HT2⟩, and the number of events in each bin, Nev.

The QCD-based MC event generators are described in Section 4.1. As stated above,
the baseline MC simulated samples are generated with the Pythia 8.235 [69] event
generator and used to unfold the measured distributions from the detector to the
particle level, as well as the theoretical predictions from the parton to the parti-
cle level. Table 6.2 summarizes the main properties of the Pythia 8.235 sample,
mainly, the p̂T range of each JZ slice and the parameters required to merge them
properly. Table 6.3 shows the equivalent information for Herwig 7.1.3 with dipole
showering, while Table 6.4 does it for Herwig 7.1.3 with angular-ordered parton
shower [70, 71]. Table 6.5 summarizes the properties of the Sherpa 2.1.1 sam-
ple [72]. All these samples are sliced using the anti-kt jet p̂T with jet radius R = 0.6.

6.1.1 Control plots for MC predictions

To test the global quality of the description of the data made by the baseline MC
predictions, a comparison between data and MC is performed for some relevant jet-
based variables as shown in Figure 6.2, where the MC predictions are normalized to
have the same area as the data distributions. The description of the shape of the
distributions is good in general for all the variables considered.
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DSID p̂T range [GeV] σ [nb] Feff Nev

364704 [400,800] 2.5461E+02 1.3369E-02 61872800
364705 [800,1300] 4.5529E+00 1.4529E-02 31933284
364706 [1300,1800] 2.5754E-01 9.4734E-03 31961550
364707 [1800,2500] 1.6215E-02 1.1099E-02 15875000
364708 [2500,3200] 6.2506E-04 1.0156E-02 15963000
364709 [3200,3900] 1.9639E-05 1.2057E-02 7691000

Table 6.2: The Pythia 8.235 samples used in the analysis, along with their cross
sections σ, filter efficiencies Feff, and number of events Nev.

DSID p̂T range [GeV] σ [nb] Feff Nev

364904 [400,800] 3.5330E+02 6.9838E-03 58664000
364905 [800,1300] 6.0335E+00 7.9876E-03 58047000
364906 [1300,1800] 3.2247E-01 5.4909E-03 19560000
364907 [1800,2500] 1.9162E-02 6.8314E-03 7837000
364908 [2500,3200] 7.0036E-04 6.6438E-03 3916000
364909 [3200,3900] 2.1234E-05 8.2304E-03 3918000

Table 6.3: The Herwig 7.1.3 samples with dipole showering used in the analysis,
along with their cross sections σ, filter efficiencies Feff, and number of events Nev.

DSID p̂T range [GeV] σ [nb] Feff Nev

364924 [400,800] 3.5358E+02 7.4221E-03 58718000
364925 [800,1300] 6.0311E+00 8.4244E-03 58740000
364926 [1300,1800] 3.2251E-01 5.7101E-03 19582000
364927 [1800,2500] 1.9148E-02 7.0547E-03 7799000
364928 [2500,3200] 7.0005E-04 6.7417E-03 3910000
364929 [3200,3900] 2.1245E-05 8.1723E-03 3913000

Table 6.4: The Herwig 7.1.3 samples with angular-ordered parton shower used in
the analysis, along with their cross sections σ, filter efficiencies Feff, and number of
events Nev.

DSID p̂T range [GeV] σ [nb] Feff Nev

426134 [400,800] 9.6079E+01 2.7790E-02 29200600
426135 [800,1300] 2.7250E+00 1.8421E-02 29257400
426136 [1300,1800] 2.0862E-01 8.7435E-03 7179200
426137 [1800,2500] 4.3732E-02 3.1001E-03 7217000
426138 [2500,3200] 3.3372E-04 1.4573E-02 7311800
426139 [3200,3900] 5.8948E-05 3.0994E-03 7263900

Table 6.5: The Sherpa 2.1.1 samples used in the analysis, along with their cross
sections σ, filter efficiencies Feff, and number of events Nev.
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Figure 6.2: Distributions, measured in the inclusive HT2 sample, for jet multiplicity
(top left), ⟨µ⟩/1.03 (top right), HT2 (middle left), jet pT (middle right), jet η (bottom
left) and jet φ (bottom right), along with normalized Pythia 8.235 simulations.
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Chapter 6. Asymptotic freedom beyond the TeV scale

6.2 Detector-level results

In practical terms, for a data sample fulfilling the requirements described in Sec-
tion 6.1, the transverse energy-energy correlations are measured as distributions in
cosϕ bins of width ∆cosϕ following Eq. (6.1).

1

σ

dΣ
d cosϕ

∣∣∣∣
ϕ

=
1

Nev ∆cosϕ

Nev∑
A=1

jets∑
i,j

E
(A)
Ti E

(A)
Tj(∑

k E
(A)
Tk

)2 (6.1)

Only jet pairs with azimuthal angular differences within the bin limits contribute,
i.e cos∆φ

(A)
ij ∈ (cosϕ − (∆ cosϕ)/2, cosϕ + (∆cosϕ)/2), and the total number of

multi-jet events in the data sample is Nev. The fully inclusive TEEC distribution,
HT2 > 1.0 TeV, is measured considering 100 bins of width ∆cosϕ = 0.02. The
TEEC distributions in theHT2 intervals introduced in Table 6.1 have to be measured
with a coarser binning because statistical fluctuations increase as the number of
events steeply falls with increasing HT2. Nevertheless, for | cosϕ| > 0.90 the bin
width is kept at ∆cosϕ = 0.02 in all the HT2 bins to provide detailed measurements
of the nearly back-to-back limit at different scale regimes.

Figure 6.3 compares the TEEC and ATEEC distributions, measured in the first HT2

bin, for two different jet transverse momentum thresholds, including the nominal
one. The ATEEC distributions are less sensitive to the effects of the jet pT threshold,
allowing measurements slightly affected by the jet selection cuts.
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Figure 6.3: Detector-level TEEC (left) and ATEEC (right) distributions, measured
in the first HT2 bin, for two jet pT thresholds: pT > 60 GeV and pT > 120 GeV.
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The TEEC distributions show two peaks in the regions close to the kinematical
endpoints cosϕ = ±1. The first one, at cosϕ = −1 is due to the back-to-back
configuration in 2-jet events, while the second peak at cosϕ = +1 is due to the self-
correlations of one jet with itself. These self-correlations are included in Eq. (6.1)
and are necessary for the correct normalization of the TEEC function. The effect
of the jet radius R is seen as a kink in the TEEC distributions at cosϕ ≃ 0.92.
Furthermore, the TEEC distributions present a central plateau dominated by jets
arising from hard gluon radiation, which is decorrelated from the main event axis
as predicted by QCD and measured in Refs. [131, 132]. The ATEEC distributions
show a fall-off from cosϕ ≃ −1 to cosϕ = 0, with the value at cosϕ = −1 being
negative, and therefore, not represented using a logarithmic scale.

In order to see possible effects due to pile-up, the TEEC and ATEEC distributions
are measured for two separated samples, depending on whether the average number
of pp interactions per bunch crossing lies above or below the median which is found
to be 33. This is illustrated in Figure 6.4 where the TEEC and ATEEC distributions
are shown in the first HT2 bin. The differences are below the statistical uncertainty
for most of the phase space, and therefore, pile-up effects are almost negligible.
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Figure 6.4: Detector-level TEEC (left) and ATEEC (right) distributions for low,
⟨µ⟩ < 33, and high, ⟨µ⟩ ≥ 33, average number of interactions per bunch-crossing.

The results at detector level for the TEEC and ATEEC distributions, compared with
the MC predictions from the Pythia 8.235, Herwig 7.1.3 and Sherpa 2.1.1 event
generators, are shown in Figures 6.5 to 6.10. The agreement of the detector-level
predictions with data is good in general for Pythia 8.235, Sherpa 2.1.1, and
Herwig 7.1.3 with angular-ordered parton shower.
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Figure 6.5: Detector-level TEEC (top) and ATEEC (bottom) distribution for the
inclusive HT2 sample with the statistical uncertainty (shaded area), along with
detector-level MC predictions. The ratio pad below compares the measured data
and the MC predictions.
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Figure 6.6: Detector-level TEEC (left) and ATEEC (right) distributions in two ex-
clusive HT2 bins with the statistical uncertainty (shaded area), along with detector-
level MC predictions. The ratio pad below compares the measured data and the
MC predictions.
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Figure 6.7: Detector-level TEEC (left) and ATEEC (right) distributions in two ex-
clusive HT2 bins with the statistical uncertainty (shaded area), along with detector-
level MC predictions. The ratio pad below compares the measured data and the
MC predictions.
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Figure 6.8: Detector-level TEEC (left) and ATEEC (right) distributions in two ex-
clusive HT2 bins with the statistical uncertainty (shaded area), along with detector-
level MC predictions. The ratio pad below compares the measured data and the
MC predictions.

77



Chapter 6. Asymptotic freedom beyond the TeV scale

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

Data (Stat. unc.)

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Detector-level TEEC

 < 2600 GeVT22300 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.8

1

1.2

  D
at

a 
 

R
at

io
 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Stat. unc.)

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Detector-level ATEEC

 < 2600 GeVT22300 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0

0.5

1

1.5

2
  D

at
a 

 
R

at
io

 to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

Data (Stat. unc.)

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Detector-level TEEC

 < 3000 GeVT22600 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.8

1

1.2

  D
at

a 
 

R
at

io
 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Stat. unc.)

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Detector-level ATEEC

 < 3000 GeVT22600 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0

0.5

1

1.5

2

  D
at

a 
 

R
at

io
 to

Figure 6.9: Detector-level TEEC (left) and ATEEC (right) distributions in two ex-
clusive HT2 bins with the statistical uncertainty (shaded area), along with detector-
level MC predictions. The ratio pad below compares the measured data and the
MC predictions.
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Figure 6.10: Detector-level TEEC (left) and ATEEC (right) distributions in two ex-
clusive HT2 bins with the statistical uncertainty (shaded area), along with detector-
level MC predictions. The ratio pad below compares the measured data and the
MC predictions.
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6.3 Iterative Bayesian unfolding

The measured histograms differ from their true quantities due to the fact that the
detectors are not perfect. Thus, and in order to allow comparisons with theoretical
predictions, the TEEC and ATEEC distributions shown in Section 6.2 need to be
corrected for detector effects. An Iterative Bayesian (IB) unfolding procedure [133],
as implemented in RooUnfold [134], is used to correct for these distortions so as
to extract the true distributions.

This technique uses Monte Carlo simulations to determine the detector response.
The IB unfolding algorithm takes as input the transfer matrix Mij parametrizing the
bin-by-bin migrations in cosϕ due to the finite resolution of the detector response.
The transfer matrix encodes the probability of reconstructing a value of cosϕ in bin
i when the generated one is in bin j, which is called response matrix P (recoi|genj).
The matrix projection can thus be written as

PiRi =
∑
j

Mij =
∑
j

EjTjP (recoi|genj) with
∑
i

P (recoi|genj) = 1.

The quantities Ri and Tj are the reconstructed or measured content in bin i (detector
level) and the true generated quantity at bin j (particle level), respectively, whereas
the factors Ej and Pi are the efficiency and the purity corrections due to the matching
inefficiency involved in the transfer matrix. For instance, it can be reconstructed in
bin i an entry that was not generated in any j bin and vice versa. Therefore, the
value Mij is the number of entries selected at detector level and measured in bin i
matched to entries selected at particle level and generated in bin j.

At this point, the probability of generating a vale of cosϕ in bin j when the recon-
structed one is in bin i is obviously unknown. Fortunately, probabilities are though
related in the Bayes formula as

P (genj|recoi) =
EjTjP (recoi|genj)∑
k EkTkP (recoi|genk)

.

The IB unfolding method calculates the “inverse” of the response matrix using an
iterative algorithm that converges after five iterations. The aim is to get the true
distributions which are not affected by detector effects any more:

unfj(R) = Tj =
1

Ej

∑
i

PiRiP (genj|recoi).

This procedure is implemented for the baseline MC predictions generated with
Pythia 8.235, and thereafter, a closure test is performed to validate it. Then,
it can be applied to data so that their true quantities are extracted from the mea-
sured ones.

In Monte Carlo predictions, jets are reconstructed using the anti-kt algorithm with
radius R = 0.4 and applied to final-state particles with average lifetime τ > 10−11 s.
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6.3. Iterative Bayesian unfolding

The selection criteria for jets and events at particle level are the same as for those at
detector level. Afterwards, the transfer matrices are obtained by matching detector
and particle-level jets by requiring them to be within ∆R = 0.3 in the η-ϕ plane.
This procedure ensures that every detector-level jet entering the matrix has always
a particle-level counterpart and therefore, a detector-level jet pair enters the transfer
matrix if both jets in the pair are matched to the corresponding particle-level jets.
Each jet pair enters the matrix with the generated weight, i.e. the one at particle-
level, as by definition the matrix parametrizes the probability of a jet pair generated
in one bin to be reconstructed in another one. Figures 6.11 and 6.12 show the transfer
matrices, normalizing each row. The excellent azimuthal resolution of the ATLAS
detector, together with the reduction of the energy scale and resolution effects by
the weighting involved in the definition of the TEEC function, are reflected in the
fact that the transfer matrices have very small off-diagonal terms, leading to very
small migrations between cosϕ bins.

However, the matching procedure used for the calculation of the transfer matrices
has an inherent inefficiency, mainly, due to the arbitrariness of the ∆R cut. Thus,
not all jets at the detector level have a counterpart at the particle level and vice
versa. Pairs of jets not entering the transfer matrices are accounted for using ineffi-
ciency correction factors. These factors are defined as the ratio between the TEEC
distribution obtained using only the detector-level jets matched to a particle-level
jet, i.e. the x-projection of the transfer matrix normalized to area unity, and the
TEEC distribution obtained using all detector-level jets, regardless of whether they
are matched or not to a particle-level jet. The detector-level data distribution is
then multiplied by these correction factors before using it as an input to the IB un-
folding algorithm. Figures 6.13 and 6.14 show the calculated inefficiency correction
factors. These factors correspond with the purity correction and are above one for
cosϕ = ±1 due to the normalization of the distributions. The efficiency correction
factors are also considered accordingly in the unfolding procedure.

As a cross-check of the IB procedure, a bin-by-bin correcting method based on
correction factors from detector level to particle level is also tested. The differences
between the two approaches are below the statistical uncertainties, pointing to a
very small dependence on the unfolding procedure.
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Figure 6.11: Transfer matrices normalizing each row, in inclusive (top) and exclusive
(bottom) HT2 bins, for the TEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator. The off-diagonal terms are negligible since
the excellent azimuthal resolution of the detector leads to very small migrations
between cosϕ bins.
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Figure 6.12: Transfer matrices normalizing each row, in exclusive HT2 bins, for the
TEEC function obtained from the MC simulated sample with the Pythia 8.235
event generator. The off-diagonal terms are negligible since the excellent azimuthal
resolution of the detector leads to very small migrations between cosϕ bins.
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Figure 6.13: Inefficiency correction factors, in inclusive (top) and exclusive (bottom)
HT2 bins, for the TEEC function obtained from the MC simulated sample with the
Pythia 8.235 event generator. These factors correspond with the purity correction
and are above one for cosϕ = ±1 due to the normalization of the distributions.
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Figure 6.14: Inefficiency correction factors, in exclusive HT2 bins, for the TEEC
function obtained from the MC simulated sample with the Pythia 8.235 event
generator. These factors correspond with the purity correction and are above one
for cosϕ = ±1 due to the normalization of the distributions.
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6.4 Statistical uncertainty

In collider experiments, there is numerous hadrons involved in each bunch crossing,
but the probability to have inelastic scattering between them is low. Therefore,
events follow a Poisson discrete probability distribution:

f(k;λ) =
λke−λ

k!

where k is the number of times an event occurs and the parameter the λ is both the
mean and the variance. Hence, a bin that has been filled with Nev events would have
a relative statistical uncertainty that goes like 1/

√
Nev. As expected, more precise

results are obtained as the number of events filling the bin increases.

For observables like the TEEC function, the same event enters weighted in different
bins of the histogram at the same time. Moreover, correlations between histograms
are presented when deriving new ones. In order to take into account correlations
and to improve accuracy of statistical uncertainties, the bootstrapping technique, as
implemented in BootstrapGenerator, is widely used. This method generates a
large number of replicas, 103, whilst filling the histogram, by weighting each event
with Poisson-distributed weights with λ = 1. For the resulting histogram, the value
and statistical uncertainty on each bin are defined as the mean and the standard
deviation, respectively, of all the bootstrap generated replicas.

The statistical uncertainty in the unfolded distributions is also calculated with the
bootstrapping technique, after performing the IB unfolding method for each replica,
thus taking into account the correlations between the particle and detector-level
distributions. This statistical uncertainty is therefore determined by those in the
detector-level data distribution and in the MC sample, which are required as inputs
in the unfolding method.

Figures 6.15 to 6.18 show the relative difference of each bootstrap replica with re-
spect to the nominal distribution, i.e. the one which has not been weighted using
the Poisson-distributed weights described above, for the TEEC and ATEEC distri-
butions. The resulting statistical uncertainty is also shown as a red line.

Furthermore, the bin-by-bin correlations in cosϕ of the TEEC and ATEEC distri-
butions are studied. Figures 6.19 to 6.22 show the correlation coefficient for each
cosϕ bin pair, by considering the differences between the bootstrap replicas with
respect to the nominal distribution. The correlations for cosϕ bin pairs is found to
be negligible, except for the correlation between the bins cosϕ = +1 and cosϕ = −1
due to the normalization of the TEEC distributions.
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Figure 6.15: Relative difference of the bootstrap replicas with respect to the nomi-
nal distribution, in inclusive (top) and exclusive (bottom) HT2 bins, for the TEEC
function obtained from the MC simulated sample with the Pythia 8.235 event
generator. The resulting statistical uncertainty, derived as the RMS of these differ-
ences, is shown with a red line.
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Figure 6.16: Relative difference of the bootstrap replicas with respect to the nominal
distribution, in exclusive HT2 bins, for the TEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator. The resulting statistical
uncertainty, derived as the RMS of these differences, is shown with a red line.
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Figure 6.17: Relative difference of the bootstrap replicas with respect to the nomi-
nal distribution, in inclusive (top) and exclusive (bottom) HT2 bins, for the ATEEC
function obtained from the MC simulated sample with the Pythia 8.235 event
generator. The resulting statistical uncertainty, derived as the RMS of these differ-
ences, is shown with a red line.
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Figure 6.18: Relative difference of the bootstrap replicas with respect to the nominal
distribution, in exclusive HT2 bins, for the ATEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator. The resulting statistical
uncertainty, derived as the RMS of these differences, is shown with a red line.
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Figure 6.19: Bin-by-bin cosϕ correlation matrices, in inclusive (top) and exclusive
(bottom) HT2 bins, for the TEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator. The correlations for bin pairs is negligible,
with the exception of the correlation between the bins cosϕ± 1 due to the normal-
ization of the distributions. The first two bins are also found to be anti-correlated.
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Figure 6.20: Bin-by-bin cosϕ correlation matrices, in exclusive HT2 bins, for the
TEEC function obtained from the MC simulated sample with the Pythia 8.235
event generator. The correlations for bin pairs is negligible, with the exception of the
correlation between the bins cosϕ± 1 due to the normalization of the distributions.
The first two bins are also found to be anti-correlated.
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Figure 6.21: Bin-by-bin cosϕ correlation matrices, in inclusive (top) and exclusive
(bottom)HT2 bins, for the ATEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator. The correlations for bin pairs is negligible,
with the exception of the correlation between the first two bins in cosϕ which are
found to be anti-correlated.
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Figure 6.22: Bin-by-bin cosϕ correlation matrices, in exclusive HT2 bins, for the
ATEEC function obtained from the MC simulated sample with the Pythia 8.235
event generator. The correlations for bin pairs is negligible, with the exception of the
correlation between the first two bins in cosϕ which are found to be anti-correlated.
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6.5 Systematic uncertainties

The main sources of systematic uncertainty for the measurements include the jet
energy scale, the jet energy resolution, the jet angular resolution, the mismodelling
of the data by the MC in the unfolding (non-closure), and an additional uncertainty
due to the choice of the MC model used for the unfolding. All systematics uncertain-
ties are estimated together with their statistical uncertainties using the bootstrap
technique and added together in quadrature.

In order to mitigate statistical fluctuations in a set of bins that follow a curve, a
smoothing technique is applied to the resulting systematic uncertainties combining
adjacent bins until they have statistical significance over 2σ. Adjacent bins are then
combined, starting from left to right and from right to left, selecting the combination
with a higher number of bins.

This smoothing technique is called Gaussian kernel smoothing and it calculates
each bin content as a weighted average of the contents in all bins in the distribution.
Eq. (6.2) defines the estimated content Ĥ for a value cosϕ in a given bin.

Ĥi = Ĥ(cosϕi) =

∑
j KijHj∑
j Kij

; Kij = exp

[
−(cosϕi − cosϕj)

2

2b2i

]
(6.2)

The quantity Hj is the original content in bin j and Kij are the Gaussian ker-
nels. They take into account the distance between each pair of bins to weight their
contribution accordingly. The free parameter b is the length scale controlling the
smoothness of the distribution, larger values imply smoother averaged distributions.
In this case, it is parametrized for each bin as bi = A[1 − (cosϕi)

2]. The vale of A
is adequately set for each source of uncertainty.

The total relative systematic uncertainty for the TEEC and ATEEC distributions
is shown in Figures 6.23 to 6.26, together with a breakdown of the general source
uncertainties: JES, JER, JAR, MC modelling and unfolding closure. The dominant
systematic sources for the TEEC distributions are due to the JES and the choice of
the MC model used in the IB unfolding. The former is dominated by the Flavour
Response nuisance parameters from the JES; the latter is computed as the symmetric
envelope of the differences between the distributions unfolded with Sherpa 2.1.1
and Herwig 7.1.3, with respect to those unfolded with Pythia 8.235. They are
found to be around 2% in the central plateau. This deviation arises from the two
hadronization schemes considered, namely, cluster hadronization and Lund string
fragmentation. Figures 6.27 to 6.30 show the relative systematic uncertainty of the
TEEC and ATEEC distributions associated to the MC model.

The jet systematic uncertainties are introduced in Sections 5.3 and 5.4. The JES,
JER and JAR sources are considered propagating the uncertainty to the TEEC and
ATEEC distributions by varying certain jet variables by their uncertainties in the
MC simulated sample obtained with the Pythia 8.235 event generator. The varied
distributions associated to each source are computed at detector level, unfolded to
the particle level with the nominal Pythia 8.235 and compared with the associated
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unfolded nominal Pythia 8.235 distribution at particle level. In the case of the JER
sources, the unfolded varied distributions are compared with the associated unfolded
varied distribution generated as data. In the case of the Flavour Composition and
Flavour Response sources, the varied distributions consider the gluon fraction of the
jet as the one obtained from the MC simulation as a function of the pT and the |η| of
the jet. The gluon fraction is determined using Pythia 8.235, while its uncertainty
is defined as the difference between Pythia 8.235, Sherpa 2.1.1, and Herwig
7.1.3. They are depicted in Figures 6.31 and 6.32.

For the JES and JER sources, the uncertainty in the jet calibration procedure [135]
is propagated by varying up and down each jet energy and transverse momentum by
one standard deviation of each of the 113 nuisance parameters of the JES uncertainty
and the 34 nuisance parameters of JER uncertainty. The dominant contribution to
the JES systematic uncertainty for the TEEC distributions comes from the Flavour
Response nuisance parameters. Figures 6.33 to 6.36 show the relative systematic
uncertainty of the TEEC and ATEEC distributions associated to the variations
of the Flavour Response nuisance parameter. The dominant contribution for the
ATEEC distributions comes from the Gjet GamESZee for the JES uncertainties
and from the JER dijet closure for the JER uncertainties. Figures 6.37 to 6.44
show the relative systematic uncertainty of the TEEC and ATEEC distributions
associated to these last two sources.

For the JAR source, the jet azimuthal coordinate is smeared by a factor defined
as the azimuthal angular resolution estimated in the MC simulated sample as a
function of the pT and the |η| of the jet. This resolution is calculated by using the
same matching approach as in the calculation of the transfer matrices. A detector-
level jet is matched to a particle-level jet if the latter is the closest jet to the former
within ∆R = 0.3. Figures 6.45 and 6.46 show the distribution of the azimuthal
differences φ(reco)− φ(gen) along with a fit to a Gaussian distribution, that yields
a standard deviation considered as the azimuthal angular resolution. The angular
resolution for the inclusive sample is well below the binning used in the TEEC and
ATEEC measurements, which is always greater than or equal to ∆cosϕ = 0.02.
Indeed, Figures 6.47 and 6.48 show the cosϕ resolution for the central plateau and a
fit to a Gaussian distribution yields a standard deviation of σ = 0.01. The minimum
width used in the cosϕ binning approximately corresponds to this ±1σ contour.
Figures 6.49 to 6.52 show the relative systematic uncertainty of the TEEC and
ATEEC distributions associated to the JAR.
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Figure 6.23: Total relative systematic uncertainty for the TEEC distribution, in
inclusive (top) and exclusive (bottom) HT2 bins, together with a breakdown on the
general source uncertainties: JES, JER, JAR, MC model and unfolding closure.
These sources are added together in quadrature, with the JES and the choice of the
MC model being the dominant ones.
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Figure 6.24: Total relative systematic uncertainty for the TEEC distribution, in
exclusive HT2 bins, together with a breakdown on the general source uncertainties:
JES, JER, JAR, MC model and unfolding closure. These sources are added together
in quadrature, with the JES and the choice of the MC model being the dominant
ones.
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Figure 6.25: Total relative systematic uncertainty for the ATEEC distribution, in
inclusive (top) and exclusive (bottom) HT2 bins, together with a breakdown on the
general source uncertainties: JES, JER, JAR, MC model and unfolding closure.
These sources are added together in quadrature, with the JES and the JER being
the dominant ones.
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Figure 6.26: Total relative systematic uncertainty for the ATEEC distribution, in
exclusive HT2 bins, together with a breakdown on the general source uncertainties:
JES, JER, JAR, MC model and unfolding closure. These sources are added together
in quadrature, with the JES and the JER being the dominant ones.
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Figure 6.27: Relative systematic uncertainty due to the MC model used in the
IB unfolding, in inclusive (top) and exclusive (bottom) HT2 bins, for the TEEC
function obtained from MC simulated samples with Pythia 8.235, Herwig 7.1.3,
and Sherpa 2.1.1 event generators. It arises from the two hadronization schemes
considered: cluster hadronization and Lund string fragmentation.
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Figure 6.28: Relative systematic uncertainty due to the MC model used in the IB
unfolding, in exclusiveHT2 bins, for the TEEC function obtained from MC simulated
samples with Pythia 8.235, Herwig 7.1.3, and Sherpa 2.1.1 event generators.
It arises from the two hadronization schemes considered: cluster hadronization and
Lund string fragmentation.
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Figure 6.29: Relative systematic uncertainty due to the MC model used in the
IB unfolding, in inclusive (top) and exclusive (bottom) HT2 bins, for the ATEEC
function obtained from MC simulated samples with Pythia 8.235, Herwig 7.1.3,
and Sherpa 2.1.1 event generators. It arises from the two hadronization schemes
considered: cluster hadronization and Lund string fragmentation.
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Figure 6.30: Relative systematic uncertainty due to the MC model used in the IB un-
folding, in exclusive HT2 bins, for the ATEEC function obtained from MC simulated
samples with Pythia 8.235, Herwig 7.1.3, and Sherpa 2.1.1 event generators.
It arises from the two hadronization schemes considered: cluster hadronization and
Lund string fragmentation.
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Figure 6.31: Gluon jet fraction determined as a function of the pT and the |η| of the
jet. The distribution is determined using the Pythia 8.235 simulated sample and
used to constrain the Flavour Response uncertainty.
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Figure 6.32: Uncertainty in the determination of the gluon jet fraction defined as
the difference between Pythia 8.235, Sherpa 2.1.1, and Herwig 7.1.3 simulated
samples. The distribution is used to constrain the Flavour Composition uncertainty.
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Figure 6.33: Relative systematic uncertainty due to the Flavour Response, in inclu-
sive (top) and exclusive (bottom) HT2 bins, for the TEEC function obtained from
the MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.34: Relative systematic uncertainty due to the Flavour Response, in exclu-
sive HT2 bins, for the TEEC function obtained from the MC simulated sample with
the Pythia 8.235 event generator.
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Figure 6.35: Relative systematic uncertainty due to the Flavour Response, in inclu-
sive (top) and exclusive (bottom) HT2 bins, for the ATEEC function obtained from
the MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.36: Relative systematic uncertainty due to the Flavour Response, in ex-
clusive HT2 bins, for the ATEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator.
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Figure 6.37: Relative systematic uncertainty due to the Gjet GamESZee, in inclusive
(top) and exclusive (bottom) HT2 bins, for the TEEC function obtained from the
MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.38: Relative systematic uncertainty due to the Gjet GamESZee, in exclusive
HT2 bins, for the TEEC function obtained from the MC simulated sample with the
Pythia 8.235 event generator.
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Figure 6.39: Relative systematic uncertainty due to the Gjet GamESZee, in inclusive
(top) and exclusive (bottom) HT2 bins, for the ATEEC function obtained from the
MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.40: Relative systematic uncertainty due to the Gjet GamESZee, in exclusive
HT2 bins, for the ATEEC function obtained from the MC simulated sample with
the Pythia 8.235 event generator.
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Figure 6.41: Relative systematic uncertainty due to the JER dijet closure, in inclu-
sive (top) and exclusive (bottom) HT2 bins, for the TEEC function obtained from
the MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.42: Relative systematic uncertainty due to the JER dijet closure, in exclu-
sive HT2 bins, for the TEEC function obtained from the MC simulated sample with
the Pythia 8.235 event generator.
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Figure 6.43: Relative systematic uncertainty due to the JER dijet closure, in inclu-
sive (top) and exclusive (bottom) HT2 bins, for the ATEEC function obtained from
the MC simulated sample with the Pythia 8.235 event generator.
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Figure 6.44: Relative systematic uncertainty due to the JER dijet closure, in ex-
clusive HT2 bins, for the ATEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator.
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Figure 6.45: Azimuthal angular resolution in the Pythia 8.235 simulated sample
for 600 GeV < pT < 800 GeV and |η| < 0.3. A fit to a Gaussian distribution yields
a standard deviation of σ = 5.6× 10−3.
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Figure 6.46: Azimuthal angular resolution in the Pythia 8.235 simulated sample
for 60 GeV < pT < 80 GeV and |η| < 0.3. A fit to a Gaussian distribution yields a
standard deviation of σ = 16.0× 10−3.
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Figure 6.47: Variable cosϕ resolution for the Pythia 8.235 simulated sample in the
angular bin 0.00 < cosϕ < 0.02. A fit to a Gaussian distribution yields a standard
deviation of σ = 0.012.
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Figure 6.48: Variable cosϕ resolution for the Pythia 8.235 simulated sample in
the angular bin −0.40 < cosϕ < −0.38. A fit to a Gaussian distribution yields a
standard deviation of σ = 0.011.
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Figure 6.49: Relative systematic uncertainty due to the JAR, in inclusive (top)
and exclusive (bottom) HT2 bins, for the TEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator.
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Figure 6.50: Relative systematic uncertainty due to the JAR, in exclusive HT2 bins,
for the TEEC function obtained from the MC simulated sample with the Pythia
8.235 event generator.
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Figure 6.51: Relative systematic uncertainty due to the JAR, in inclusive (top)
and exclusive (bottom) HT2 bins, for the ATEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator.
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Figure 6.52: Relative systematic uncertainty due to the JAR, in exclusive HT2 bins,
for the ATEEC function obtained from the MC simulated sample with the Pythia
8.235 event generator.
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6.5.1 Unfolding Closure Test

The unfolding uncertainty takes into account the mismodelling of the data made
by the MC simulated sample (non-closure). The method relies on the row-by-row
weighting of the transfer matrices, shown in Figures 6.11 and 6.12, to enhance the
agreement between the detector-level data and MC, given by the x-projection of
the transfer matrices. The weights are therefore estimated as the ratio between the
detector-level data and MC distributions:

wj =
Dj

Rj

; M̃ij = wjMij.

where Dj is the measured content in bin j for the data sample. The values of the
weighted transfer matrix are represented by M̃ij.

Figures 6.53 and 6.54 show the ratio of the detector-level MC and data distributions
for the TEEC function before and after the weights are applied. Once the transfer
matrices have been weighted, the detector-level MC distributions, defined as the x-
projections of the weighted transfer matrices, are unfolded using the nominal transfer
matrices and taking into account matching inefficiencies:

R̃i =
1

Pi

∑
j

M̃ij; unfj(R̃) =
1

Ej

∑
i

PiR̃iP (genj|recoi);

Afterwards, they are compared to the particle-level MC distributions, given by the
y-projections of the weighted transfer matrices:

T̃j = wjTj =
1

Ej

∑
i

M̃ij.

The differences between both distributions define the unfolding systematic uncer-
tainty. Figures 6.55 to 6.58 show the relative systematic uncertainty of the TEEC
and ATEEC distributions associated to the unfolding uncertainty. As expected,
this uncertainty is negligible within the statistical uncertainties for the whole phase
space owing to the reliability of the Iterative Bayesian unfolding procedure.
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Figure 6.53: Ratios of the detector-level data to the detector-level MC TEEC dis-
tributions obtained from the MC simulated sample with the Pythia 8.235 event
generator before (red) and after (green) the row-by-row weighting procedure, in in-
clusive (top) and exclusive (bottom) HT2 bins.
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Figure 6.54: Ratios of the detector-level data to the detector-level MC TEEC dis-
tributions obtained from the MC simulated sample with the Pythia 8.235 event
generator before (red) and after (green) the row-by-row weighting procedure, in ex-
clusive HT2 bins.
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Figure 6.55: Relative systematic uncertainty due to the unfolding, in inclusive (top)
and exclusive (bottom) HT2 bins, for the TEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator. It is found to be com-
patible with zero within the statistical fluctuations.

127



Chapter 6. Asymptotic freedom beyond the TeV scale

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.2−

0.1−

0

0.1

0.2

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 < 2000 GeVT21800 GeV < H

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 < 2300 GeVT22000 GeV < H

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 < 2600 GeVT22300 GeV < H

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 < 3000 GeVT22600 GeV < H

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 < 3500 GeVT23000 GeV < H

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

S
ys

te
m

at
ic

 u
nc

er
ta

in
ty

 [%
]

Nominal uncertainty

Rebin until significant

Gaussian kernel smoothing

 > 3500 GeVT2H

Figure 6.56: Relative systematic uncertainty due to the unfolding, in exclusive HT2

bins, for the TEEC function obtained from the MC simulated sample with the
Pythia 8.235 event generator. It is found to be compatible with zero within the
statistical fluctuations.
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Figure 6.57: Relative systematic uncertainty due to the unfolding, in inclusive (top)
and exclusive (bottom) HT2 bins, for the ATEEC function obtained from the MC
simulated sample with the Pythia 8.235 event generator. It is found to be com-
patible with zero within the statistical fluctuations.
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Figure 6.58: Relative systematic uncertainty due to the unfolding, in exclusive HT2

bins, for the ATEEC function obtained from the MC simulated sample with the
Pythia 8.235 event generator. It is found to be compatible with zero within the
statistical fluctuations.
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6.6 Experimental results

The unfolded data including the estimated systematic uncertainties are compared
with particle-level MC predictions. Figures 6.59 to 6.64 show this comparison for the
TEEC and ATEEC distributions with particle-level MC predictions from Pythia
8.235, Herwig 7.1.3 and Sherpa 2.1.1 event generators. Tables 6.6 to 6.27 present
the numerical values for the TEEC and ATEEC functions, together with their sta-
tistical and systematic uncertainties.

The agreement of the particle-level predictions with data is good in general for
all the MC event generators considered. However, Sherpa 2.1.1 which includes
contributions due to 2→ 3 hard processes at LO describes the large angle ATEEC
distributions a bit better than Pythia 8.235 which is a 2 → 2 event generator.
Herwig 7.1.3 exhibits some discrepancies but the improvement over older versions
is very visible [1, 2]. In fact Herwig 7.1.3 with angular-ordered parton shower is
superior to the dipole version, which fails to reproduce the large | cosϕ| region of
the TEEC distributions in all HT2 bins.

To sum up, the following comments are in order:

• Pythia 8.235, Sherpa 2.1.1 and Herwig 7.1.3 with angular-ordered parton
shower give a similar and fairly good description of the correlations.

• Pythia 8.235 clearly underestimates the cosϕ > −0.70 region of the asym-
metries, while Sherpa 2.1.1 provides a better agreement with data.

• Herwig 7.1.3 with the dipole showering shows some discrepancies with the
data in particular for | cosϕ| > 0.80 regions of the correlations.

After comparing the experimental results with predictions from general-purpose
event generators, the unfolded distributions are fitted to finite fixed-order pQCD
calculations in order to extract the value of the strong coupling constant at different
scale regimes. Thus, measuring asymptotic freedom at high-energy scales.

The predictions for the transverse energy-energy correlations and their asymmetries
are also computed using the Sherpa 2.2.5 generated sample with the CT14 PDF
group and the default CSS parton shower. The calculation only contains matrix el-
ements for 2→ 2 hard processes at LO, but the fragmentation follows two different
hadronization schemes, the AHADIC model and the Lund string model. The results
are found in Section A.1 and include a Sherpa 2.2.11 generated sample with a sec-
ond parton shower called DIRE. Additionally, the distributions are computed using
the Powheg + Pythia 8.245 + EvtGen 1.7.0 and the Powheg + Herwig
7.1.6 + EvtGen 1.7.0 generated samples. Nevertheless, there is no improvement
in the description of data when considering these two generated samples.
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Figure 6.59: Particle-level TEEC (top) and ATEEC (bottom) distribution for the
inclusive HT2 sample with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.

132



6.6. Experimental results

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

 Syst. unc.)⊕Data (Stat. 

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Particle-level TEEC

 < 1200 GeVT21000 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.8

1

1.2

  D
at

a 
 

R
at

io
 to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.05−

0

0.05

0.1

U
nc

er
ta

in
ty

   
R

el
at

iv
e 

  Total Syst. MC Modelling  JAR⊕ JER ⊕JES 

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0
φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

 Syst. unc.)⊕Data (Stat. 

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

 < 1200 GeVT21000 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0

0.5

1

1.5

2

  D
at

a 
 

R
at

io
 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.05−

0

0.05

U
nc

er
ta

in
ty

   
R

el
at

iv
e 

  Total Syst. MC Modelling  JAR⊕ JER ⊕JES 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

 Syst. unc.)⊕Data (Stat. 

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Particle-level TEEC

 < 1400 GeVT21200 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.8

1

1.2

  D
at

a 
 

R
at

io
 to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.05−

0

0.05

0.1

U
nc

er
ta

in
ty

   
R

el
at

iv
e 

  Total Syst. MC Modelling  JAR⊕ JER ⊕JES 

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0
φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

 Syst. unc.)⊕Data (Stat. 

Pythia 8.235

Sherpa 2.1.1

Herwig 7.1.3 (Ang. ord.)

Herwig 7.1.3 (Dipole)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

 < 1400 GeVT21200 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0

0.5

1

1.5

2

  D
at

a 
 

R
at

io
 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.05−

0

0.05

U
nc

er
ta

in
ty

   
R

el
at

iv
e 

  Total Syst. MC Modelling  JAR⊕ JER ⊕JES 

Figure 6.60: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.
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Figure 6.61: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.
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Figure 6.62: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.
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Figure 6.63: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.
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Figure 6.64: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The relative systematic uncertainties (green area) are
shown in the ratio pad below, while the ratio pad above compares the unfolded data
and the MC predictions.
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−0.00003 0.00001 0.00066

( -0.20 , -0.18 ) 0.03457 0.00008 +0.00074
−0.00073

+0.00007
−0.00003 0.00001 0.00065

( -0.18 , -0.16 ) 0.03415 0.00008 +0.00074
−0.00072

+0.00007
−0.00003 0.00001 0.00065

( -0.16 , -0.14 ) 0.03355 0.00008 +0.00073
−0.00071

+0.00006
−0.00003 0.00001 0.00064

( -0.14 , -0.12 ) 0.03335 0.00008 +0.00073
−0.00071

+0.00006
−0.00003 0.00001 0.00063
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( -0.12 , -0.10 ) 0.03283 0.00008 +0.00072
−0.00070

+0.00006
−0.00003 0.00001 0.00063

( -0.10 , -0.08 ) 0.03249 0.00008 +0.00071
−0.00070

+0.00006
−0.00003 0.00001 0.00062

( -0.08 , -0.06 ) 0.03236 0.00008 +0.00071
−0.00070

+0.00006
−0.00003 0.00001 0.00062

( -0.06 , -0.04 ) 0.03194 0.00008 +0.00071
−0.00069

+0.00006
−0.00003 0.00001 0.00062

( -0.04 , -0.02 ) 0.03184 0.00007 +0.00071
−0.00069

+0.00006
−0.00003 0.00000 0.00062

( -0.02 , 0.00 ) 0.03167 0.00008 +0.00070
−0.00069

+0.00006
−0.00003 0.00000 0.00061

( 0.00 , 0.02 ) 0.03142 0.00007 +0.00070
−0.00069

+0.00006
−0.00003 0.00000 0.00061

( 0.02 , 0.04 ) 0.03106 0.00007 +0.00070
−0.00068

+0.00006
−0.00003 0.00000 0.00061

( 0.04 , 0.06 ) 0.03110 0.00007 +0.00070
−0.00068

+0.00006
−0.00003 0.00000 0.00061

( 0.06 , 0.08 ) 0.03102 0.00007 +0.00070
−0.00069

+0.00006
−0.00003 0.00000 0.00061

( 0.08 , 0.10 ) 0.03083 0.00007 +0.00070
−0.00068

+0.00006
−0.00003 0.00000 0.00061

( 0.10 , 0.12 ) 0.03077 0.00007 +0.00070
−0.00068

+0.00006
−0.00004 0.00000 0.00061

( 0.12 , 0.14 ) 0.03075 0.00007 +0.00070
−0.00069

+0.00006
−0.00004 0.00000 0.00061

( 0.14 , 0.16 ) 0.03074 0.00007 +0.00070
−0.00069

+0.00006
−0.00004 0.00000 0.00061

( 0.16 , 0.18 ) 0.03070 0.00007 +0.00070
−0.00069

+0.00006
−0.00004 0.00000 0.00061

( 0.18 , 0.20 ) 0.03080 0.00007 +0.00071
−0.00069

+0.00006
−0.00004 0.00000 0.00062

( 0.20 , 0.22 ) 0.03099 0.00007 +0.00071
−0.00070

+0.00006
−0.00004 0.00000 0.00062

( 0.22 , 0.24 ) 0.03105 0.00007 +0.00072
−0.00070

+0.00006
−0.00004 0.00000 0.00063

( 0.24 , 0.26 ) 0.03115 0.00007 +0.00072
−0.00070

+0.00006
−0.00004 0.00000 0.00063

( 0.26 , 0.28 ) 0.03124 0.00007 +0.00073
−0.00071

+0.00006
−0.00004 0.00000 0.00063

( 0.28 , 0.30 ) 0.03149 0.00007 +0.00074
−0.00072

+0.00006
−0.00004 0.00000 0.00064

( 0.30 , 0.32 ) 0.03166 0.00007 +0.00074
−0.00072

+0.00006
−0.00004 0.00000 0.00065

( 0.32 , 0.34 ) 0.03203 0.00007 +0.00075
−0.00073

+0.00007
−0.00004 0.00001 0.00066

( 0.34 , 0.36 ) 0.03231 0.00007 +0.00076
−0.00074

+0.00007
−0.00004 0.00001 0.00066

( 0.36 , 0.38 ) 0.03252 0.00007 +0.00077
−0.00075

+0.00007
−0.00004 0.00001 0.00067

( 0.38 , 0.40 ) 0.03274 0.00007 +0.00077
−0.00075

+0.00007
−0.00004 0.00001 0.00068

( 0.40 , 0.42 ) 0.03339 0.00007 +0.00079
−0.00077

+0.00007
−0.00004 0.00001 0.00069

( 0.42 , 0.44 ) 0.03392 0.00008 +0.00081
−0.00078

+0.00007
−0.00004 0.00001 0.00071

( 0.44 , 0.46 ) 0.03425 0.00007 +0.00082
−0.00079

+0.00007
−0.00004 0.00001 0.00072

( 0.46 , 0.48 ) 0.03498 0.00007 +0.00083
−0.00081

+0.00007
−0.00004 0.00001 0.00073

( 0.48 , 0.50 ) 0.03543 0.00007 +0.00085
−0.00083

+0.00007
−0.00004 0.00001 0.00075

( 0.50 , 0.52 ) 0.03629 0.00008 +0.00087
−0.00085

+0.00008
−0.00005 0.00001 0.00077

( 0.52 , 0.54 ) 0.03708 0.00008 +0.00089
−0.00087

+0.00008
−0.00005 0.00001 0.00079

( 0.54 , 0.56 ) 0.03790 0.00008 +0.00091
−0.00089

+0.00008
−0.00005 0.00001 0.00081

( 0.56 , 0.58 ) 0.03886 0.00008 +0.00093
−0.00091

+0.00008
−0.00005 0.00001 0.00083

( 0.58 , 0.60 ) 0.04013 0.00008 +0.00096
−0.00094

+0.00009
−0.00005 0.00001 0.00086

( 0.60 , 0.62 ) 0.04132 0.00009 +0.00099
−0.00097

+0.00009
−0.00005 0.00001 0.00089

( 0.62 , 0.64 ) 0.04266 0.00008 +0.00102
−0.00101

+0.00009
−0.00005 0.00001 0.00092

( 0.64 , 0.66 ) 0.04402 0.00009 +0.00106
−0.00104

+0.00009
−0.00005 0.00001 0.00095

( 0.66 , 0.68 ) 0.04601 0.00009 +0.00111
−0.00109

+0.00010
−0.00006 0.00001 0.00099

( 0.68 , 0.70 ) 0.04815 0.00009 +0.00116
−0.00115

+0.00010
−0.00006 0.00001 0.00104

( 0.70 , 0.72 ) 0.05025 0.00009 +0.00122
−0.00120

+0.00011
−0.00006 0.00001 0.00108

( 0.72 , 0.74 ) 0.05346 0.00009 +0.00130
−0.00128

+0.00012
−0.00007 0.00001 0.00115

( 0.74 , 0.76 ) 0.05705 0.00010 +0.00139
−0.00137

+0.00012
−0.00007 0.00001 0.00122

( 0.76 , 0.78 ) 0.06077 0.00010 +0.00149
−0.00147

+0.00013
−0.00007 0.00001 0.00128

( 0.78 , 0.80 ) 0.06608 0.00010 +0.00162
−0.00161

+0.00014
−0.00008 0.00001 0.00138
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( 0.80 , 0.82 ) 0.07218 0.00011 +0.00178
−0.00176

+0.00016
−0.00009 0.00002 0.00148

( 0.82 , 0.84 ) 0.07957 0.00011 +0.00198
−0.00195

+0.00018
−0.00010 0.00001 0.00160

( 0.84 , 0.86 ) 0.08921 0.00012 +0.00224
−0.00221

+0.00020
−0.00011 0.00003 0.00176

( 0.86 , 0.88 ) 0.10050 0.00012 +0.00255
−0.00251

+0.00023
−0.00013 0.00013 0.00193

( 0.88 , 0.90 ) 0.11423 0.00013 +0.00292
−0.00287

+0.00027
−0.00015 0.00026 0.00213

( 0.90 , 0.92 ) 0.12626 0.00013 +0.00323
−0.00317

+0.00031
−0.00016 0.00026 0.00224

( 0.92 , 0.94 ) 0.12456 0.00014 +0.00317
−0.00310

+0.00030
−0.00017 0.00018 0.00202

( 0.94 , 0.96 ) 0.13282 0.00013 +0.00337
−0.00331

+0.00031
−0.00019 0.00013 0.00170

( 0.96 , 0.98 ) 0.15937 0.00014 +0.00432
−0.00427

+0.00038
−0.00025 0.00011 0.00116

( 0.98 , 1.00 ) 22.31758 0.00047 +0.06378
−0.06466

+0.01507
−0.00487 0.00003 0.05145

Table 6.6: Numerical values of the TEEC function together with statistical and
systematic uncertainties for HT2 > 1000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 17.99154 0.00190 +0.04996

−0.05221
+0.00952
−0.02999 0.00781 0.04782

( -0.98 , -0.96 ) 1.91746 0.00117 +0.00529
−0.00508

+0.00403
−0.00156 0.00473 0.00748

( -0.96 , -0.94 ) 0.95296 0.00083 +0.00306
−0.00266

+0.00236
−0.00078 0.00109 0.00303

( -0.94 , -0.92 ) 0.60412 0.00066 +0.00281
−0.00247

+0.00161
−0.00050 0.00054 0.00319

( -0.92 , -0.90 ) 0.42989 0.00055 +0.00262
−0.00240

+0.00118
−0.00036 0.00026 0.00298

( -0.90 , -0.88 ) 0.32565 0.00047 +0.00240
−0.00225

+0.00091
−0.00028 0.00016 0.00274

( -0.88 , -0.86 ) 0.25755 0.00041 +0.00217
−0.00209

+0.00072
−0.00022 0.00013 0.00249

( -0.86 , -0.84 ) 0.21147 0.00037 +0.00197
−0.00195

+0.00059
−0.00019 0.00012 0.00226

( -0.84 , -0.82 ) 0.17881 0.00034 +0.00181
−0.00180

+0.00049
−0.00016 0.00011 0.00206

( -0.82 , -0.80 ) 0.15430 0.00031 +0.00168
−0.00167

+0.00042
−0.00014 0.00011 0.00189

( -0.80 , -0.76 ) 0.12796 0.00017 +0.00154
−0.00153

+0.00034
−0.00009 0.00008 0.00167

( -0.76 , -0.72 ) 0.10354 0.00015 +0.00142
−0.00141

+0.00026
−0.00008 0.00005 0.00145

( -0.72 , -0.68 ) 0.08730 0.00014 +0.00133
−0.00131

+0.00021
−0.00007 0.00002 0.00128

( -0.68 , -0.64 ) 0.07563 0.00013 +0.00125
−0.00122

+0.00018
−0.00006 0.00002 0.00114

( -0.64 , -0.60 ) 0.06726 0.00012 +0.00117
−0.00115

+0.00015
−0.00005 0.00001 0.00104

( -0.60 , -0.56 ) 0.06026 0.00011 +0.00110
−0.00107

+0.00013
−0.00004 0.00001 0.00095

( -0.56 , -0.52 ) 0.05530 0.00010 +0.00104
−0.00102

+0.00012
−0.00004 0.00001 0.00088

( -0.52 , -0.48 ) 0.05126 0.00010 +0.00099
−0.00097

+0.00010
−0.00005 0.00001 0.00083

( -0.48 , -0.44 ) 0.04742 0.00010 +0.00093
−0.00092

+0.00009
−0.00004 0.00001 0.00077

( -0.44 , -0.40 ) 0.04484 0.00009 +0.00090
−0.00088

+0.00009
−0.00004 0.00001 0.00074

( -0.40 , -0.36 ) 0.04261 0.00009 +0.00087
−0.00085

+0.00008
−0.00004 0.00001 0.00071

( -0.36 , -0.32 ) 0.04049 0.00009 +0.00083
−0.00082

+0.00008
−0.00004 0.00001 0.00068

( -0.32 , -0.28 ) 0.03882 0.00008 +0.00081
−0.00080

+0.00007
−0.00003 0.00001 0.00066

( -0.28 , -0.24 ) 0.03740 0.00008 +0.00079
−0.00078

+0.00007
−0.00003 0.00001 0.00064

( -0.24 , -0.20 ) 0.03606 0.00008 +0.00077
−0.00076

+0.00007
−0.00003 0.00001 0.00063

( -0.20 , -0.16 ) 0.03514 0.00008 +0.00076
−0.00074

+0.00007
−0.00003 0.00001 0.00062

( -0.16 , -0.12 ) 0.03410 0.00008 +0.00075
−0.00073

+0.00007
−0.00003 0.00001 0.00060

( -0.12 , -0.08 ) 0.03331 0.00008 +0.00073
−0.00072

+0.00006
−0.00003 0.00001 0.00060

( -0.08 , -0.04 ) 0.03273 0.00007 +0.00073
−0.00071

+0.00006
−0.00003 0.00001 0.00059

( -0.04 , 0.00 ) 0.03232 0.00007 +0.00072
−0.00071

+0.00006
−0.00003 0.00001 0.00059

( 0.00 , 0.04 ) 0.03182 0.00007 +0.00072
−0.00070

+0.00006
−0.00003 0.00001 0.00059
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( 0.04 , 0.08 ) 0.03154 0.00007 +0.00072
−0.00070

+0.00006
−0.00003 0.00001 0.00059

( 0.08 , 0.12 ) 0.03129 0.00007 +0.00072
−0.00070

+0.00006
−0.00003 0.00001 0.00059

( 0.12 , 0.16 ) 0.03124 0.00007 +0.00072
−0.00070

+0.00006
−0.00004 0.00001 0.00059

( 0.16 , 0.20 ) 0.03123 0.00007 +0.00073
−0.00071

+0.00006
−0.00004 0.00001 0.00060

( 0.20 , 0.24 ) 0.03147 0.00007 +0.00074
−0.00072

+0.00006
−0.00004 0.00001 0.00061

( 0.24 , 0.28 ) 0.03159 0.00007 +0.00075
−0.00072

+0.00006
−0.00004 0.00001 0.00062

( 0.28 , 0.32 ) 0.03197 0.00007 +0.00076
−0.00074

+0.00007
−0.00004 0.00001 0.00063

( 0.32 , 0.36 ) 0.03253 0.00007 +0.00078
−0.00075

+0.00007
−0.00004 0.00001 0.00065

( 0.36 , 0.40 ) 0.03301 0.00007 +0.00079
−0.00077

+0.00007
−0.00004 0.00001 0.00066

( 0.40 , 0.44 ) 0.03403 0.00007 +0.00082
−0.00080

+0.00007
−0.00004 0.00001 0.00069

( 0.44 , 0.48 ) 0.03496 0.00007 +0.00085
−0.00082

+0.00007
−0.00004 0.00001 0.00072

( 0.48 , 0.52 ) 0.03618 0.00007 +0.00088
−0.00086

+0.00008
−0.00004 0.00001 0.00075

( 0.52 , 0.56 ) 0.03783 0.00007 +0.00092
−0.00090

+0.00008
−0.00005 0.00001 0.00079

( 0.56 , 0.60 ) 0.03978 0.00007 +0.00097
−0.00095

+0.00009
−0.00005 0.00001 0.00084

( 0.60 , 0.64 ) 0.04235 0.00008 +0.00103
−0.00102

+0.00009
−0.00005 0.00002 0.00090

( 0.64 , 0.68 ) 0.04536 0.00008 +0.00111
−0.00110

+0.00010
−0.00006 0.00002 0.00098

( 0.68 , 0.72 ) 0.04952 0.00008 +0.00122
−0.00120

+0.00011
−0.00006 0.00003 0.00107

( 0.72 , 0.76 ) 0.05556 0.00008 +0.00138
−0.00136

+0.00013
−0.00007 0.00002 0.00120

( 0.76 , 0.80 ) 0.06378 0.00008 +0.00160
−0.00158

+0.00015
−0.00008 0.00002 0.00135

( 0.80 , 0.82 ) 0.07249 0.00014 +0.00183
−0.00181

+0.00017
−0.00009 0.00001 0.00151

( 0.82 , 0.84 ) 0.07994 0.00015 +0.00203
−0.00200

+0.00019
−0.00010 0.00001 0.00164

( 0.84 , 0.86 ) 0.08940 0.00016 +0.00229
−0.00225

+0.00021
−0.00011 0.00002 0.00180

( 0.86 , 0.88 ) 0.10047 0.00016 +0.00260
−0.00255

+0.00024
−0.00013 0.00011 0.00199

( 0.88 , 0.90 ) 0.11438 0.00017 +0.00298
−0.00292

+0.00028
−0.00015 0.00028 0.00221

( 0.90 , 0.92 ) 0.12585 0.00018 +0.00327
−0.00321

+0.00031
−0.00017 0.00035 0.00234

( 0.92 , 0.94 ) 0.12470 0.00018 +0.00321
−0.00314

+0.00031
−0.00017 0.00004 0.00217

( 0.94 , 0.96 ) 0.13293 0.00017 +0.00342
−0.00338

+0.00031
−0.00019 0.00022 0.00197

( 0.96 , 0.98 ) 0.15945 0.00019 +0.00439
−0.00437

+0.00040
−0.00028 0.00018 0.00089

( 0.98 , 1.00 ) 22.29510 0.00064 +0.06586
−0.06676

+0.01502
−0.00496 0.00004 0.05192

Table 6.7: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 1000 GeV < HT2 < 1200 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 18.47755 0.00286 +0.05078

−0.05143
+0.00883
−0.02613 0.00739 0.06643

( -0.98 , -0.96 ) 1.77902 0.00179 +0.00557
−0.00629

+0.00330
−0.00103 0.00460 0.00833

( -0.96 , -0.94 ) 0.87397 0.00124 +0.00311
−0.00326

+0.00188
−0.00069 0.00106 0.00511

( -0.94 , -0.92 ) 0.55446 0.00097 +0.00271
−0.00267

+0.00128
−0.00051 0.00036 0.00466

( -0.92 , -0.90 ) 0.39347 0.00081 +0.00257
−0.00246

+0.00094
−0.00037 0.00019 0.00398

( -0.90 , -0.88 ) 0.29732 0.00068 +0.00237
−0.00228

+0.00072
−0.00028 0.00013 0.00332

( -0.88 , -0.86 ) 0.23771 0.00062 +0.00218
−0.00212

+0.00058
−0.00023 0.00010 0.00281

( -0.86 , -0.84 ) 0.19686 0.00055 +0.00199
−0.00195

+0.00048
−0.00019 0.00009 0.00241

( -0.84 , -0.82 ) 0.16548 0.00050 +0.00180
−0.00178

+0.00040
−0.00017 0.00007 0.00208

( -0.82 , -0.80 ) 0.14349 0.00046 +0.00166
−0.00164

+0.00034
−0.00015 0.00006 0.00185

( -0.80 , -0.76 ) 0.11876 0.00026 +0.00151
−0.00150

+0.00028
−0.00012 0.00005 0.00160

( -0.76 , -0.72 ) 0.09705 0.00022 +0.00139
−0.00137

+0.00022
−0.00010 0.00003 0.00138
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( -0.72 , -0.68 ) 0.08183 0.00020 +0.00128
−0.00127

+0.00017
−0.00006 0.00002 0.00122

( -0.68 , -0.64 ) 0.07138 0.00018 +0.00120
−0.00118

+0.00014
−0.00005 0.00002 0.00112

( -0.64 , -0.60 ) 0.06333 0.00017 +0.00112
−0.00110

+0.00012
−0.00004 0.00001 0.00103

( -0.60 , -0.56 ) 0.05720 0.00017 +0.00105
−0.00103

+0.00011
−0.00004 0.00001 0.00097

( -0.56 , -0.52 ) 0.05292 0.00015 +0.00100
−0.00098

+0.00010
−0.00004 0.00001 0.00093

( -0.52 , -0.48 ) 0.04869 0.00014 +0.00094
−0.00092

+0.00009
−0.00004 0.00001 0.00088

( -0.48 , -0.44 ) 0.04538 0.00014 +0.00089
−0.00087

+0.00008
−0.00004 0.00001 0.00084

( -0.44 , -0.40 ) 0.04350 0.00013 +0.00086
−0.00085

+0.00008
−0.00004 0.00001 0.00082

( -0.40 , -0.36 ) 0.04059 0.00014 +0.00081
−0.00080

+0.00007
−0.00003 0.00001 0.00078

( -0.36 , -0.32 ) 0.03907 0.00013 +0.00079
−0.00078

+0.00007
−0.00003 0.00001 0.00077

( -0.32 , -0.28 ) 0.03749 0.00013 +0.00077
−0.00075

+0.00007
−0.00003 0.00001 0.00075

( -0.28 , -0.24 ) 0.03621 0.00012 +0.00075
−0.00073

+0.00007
−0.00003 0.00001 0.00073

( -0.24 , -0.20 ) 0.03503 0.00012 +0.00073
−0.00072

+0.00006
−0.00003 0.00001 0.00072

( -0.20 , -0.16 ) 0.03416 0.00012 +0.00072
−0.00071

+0.00006
−0.00003 0.00001 0.00071

( -0.16 , -0.12 ) 0.03335 0.00011 +0.00071
−0.00070

+0.00006
−0.00003 0.00001 0.00070

( -0.12 , -0.08 ) 0.03238 0.00011 +0.00069
−0.00068

+0.00006
−0.00003 0.00001 0.00069

( -0.08 , -0.04 ) 0.03212 0.00011 +0.00069
−0.00068

+0.00006
−0.00003 0.00001 0.00069

( -0.04 , 0.00 ) 0.03177 0.00011 +0.00069
−0.00068

+0.00006
−0.00003 0.00001 0.00068

( 0.00 , 0.04 ) 0.03106 0.00011 +0.00068
−0.00067

+0.00006
−0.00003 0.00001 0.00067

( 0.04 , 0.08 ) 0.03102 0.00011 +0.00068
−0.00067

+0.00006
−0.00003 0.00001 0.00068

( 0.08 , 0.12 ) 0.03079 0.00010 +0.00068
−0.00067

+0.00006
−0.00003 0.00001 0.00068

( 0.12 , 0.16 ) 0.03059 0.00011 +0.00068
−0.00067

+0.00006
−0.00003 0.00001 0.00067

( 0.16 , 0.20 ) 0.03076 0.00010 +0.00069
−0.00068

+0.00006
−0.00004 0.00001 0.00068

( 0.20 , 0.24 ) 0.03090 0.00010 +0.00070
−0.00069

+0.00006
−0.00004 0.00001 0.00069

( 0.24 , 0.28 ) 0.03122 0.00010 +0.00071
−0.00070

+0.00006
−0.00004 0.00001 0.00069

( 0.28 , 0.32 ) 0.03169 0.00010 +0.00072
−0.00071

+0.00006
−0.00004 0.00001 0.00070

( 0.32 , 0.36 ) 0.03226 0.00010 +0.00074
−0.00073

+0.00006
−0.00004 0.00001 0.00072

( 0.36 , 0.40 ) 0.03261 0.00011 +0.00075
−0.00074

+0.00007
−0.00004 0.00000 0.00073

( 0.40 , 0.44 ) 0.03371 0.00010 +0.00078
−0.00077

+0.00007
−0.00004 0.00000 0.00075

( 0.44 , 0.48 ) 0.03474 0.00011 +0.00081
−0.00079

+0.00007
−0.00004 0.00000 0.00077

( 0.48 , 0.52 ) 0.03595 0.00010 +0.00084
−0.00082

+0.00007
−0.00005 0.00000 0.00080

( 0.52 , 0.56 ) 0.03769 0.00011 +0.00089
−0.00087

+0.00008
−0.00005 0.00001 0.00084

( 0.56 , 0.60 ) 0.03979 0.00011 +0.00094
−0.00092

+0.00008
−0.00005 0.00001 0.00088

( 0.60 , 0.64 ) 0.04201 0.00011 +0.00100
−0.00097

+0.00009
−0.00006 0.00000 0.00093

( 0.64 , 0.68 ) 0.04524 0.00012 +0.00107
−0.00105

+0.00009
−0.00006 0.00000 0.00100

( 0.68 , 0.72 ) 0.04950 0.00012 +0.00118
−0.00116

+0.00010
−0.00007 0.00001 0.00108

( 0.72 , 0.76 ) 0.05553 0.00012 +0.00133
−0.00132

+0.00012
−0.00007 0.00002 0.00120

( 0.76 , 0.80 ) 0.06378 0.00013 +0.00154
−0.00153

+0.00013
−0.00009 0.00003 0.00135

( 0.80 , 0.82 ) 0.07249 0.00023 +0.00176
−0.00176

+0.00015
−0.00010 0.00004 0.00151

( 0.82 , 0.84 ) 0.07993 0.00023 +0.00196
−0.00195

+0.00017
−0.00011 0.00005 0.00164

( 0.84 , 0.86 ) 0.08986 0.00024 +0.00222
−0.00221

+0.00019
−0.00012 0.00002 0.00183

( 0.86 , 0.88 ) 0.10167 0.00025 +0.00253
−0.00251

+0.00022
−0.00014 0.00009 0.00204

( 0.88 , 0.90 ) 0.11505 0.00026 +0.00288
−0.00285

+0.00025
−0.00015 0.00029 0.00229

( 0.90 , 0.92 ) 0.12824 0.00028 +0.00320
−0.00316

+0.00029
−0.00017 0.00031 0.00250

( 0.92 , 0.94 ) 0.12567 0.00028 +0.00309
−0.00304

+0.00029
−0.00016 0.00018 0.00231

( 0.94 , 0.96 ) 0.13415 0.00026 +0.00330
−0.00324

+0.00032
−0.00017 0.00010 0.00199
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( 0.96 , 0.98 ) 0.16115 0.00028 +0.00433
−0.00418

+0.00040
−0.00016 0.00007 0.00099

( 0.98 , 1.00 ) 22.30639 0.00098 +0.06241
−0.06319

+0.01507
−0.00516 0.00006 0.05547

Table 6.8: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 1200 GeV < HT2 < 1400 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 18.90289 0.00447 +0.04695

−0.04834
+0.01168
−0.02768 0.00788 0.06090

( -0.98 , -0.96 ) 1.65177 0.00272 +0.00618
−0.00594

+0.00463
−0.00358 0.00505 0.01416

( -0.96 , -0.94 ) 0.80954 0.00189 +0.00331
−0.00330

+0.00213
−0.00163 0.00146 0.00735

( -0.94 , -0.92 ) 0.51042 0.00146 +0.00273
−0.00277

+0.00128
−0.00098 0.00021 0.00463

( -0.92 , -0.90 ) 0.36525 0.00115 +0.00246
−0.00247

+0.00091
−0.00069 0.00026 0.00313

( -0.90 , -0.88 ) 0.27613 0.00105 +0.00223
−0.00218

+0.00069
−0.00053 0.00005 0.00256

( -0.88 , -0.86 ) 0.22170 0.00092 +0.00205
−0.00198

+0.00055
−0.00042 0.00012 0.00230

( -0.86 , -0.84 ) 0.18271 0.00076 +0.00186
−0.00180

+0.00045
−0.00034 0.00007 0.00209

( -0.84 , -0.82 ) 0.15356 0.00070 +0.00168
−0.00162

+0.00038
−0.00029 0.00001 0.00192

( -0.82 , -0.80 ) 0.13415 0.00065 +0.00156
−0.00151

+0.00033
−0.00025 0.00000 0.00181

( -0.80 , -0.76 ) 0.11117 0.00037 +0.00141
−0.00137

+0.00027
−0.00020 0.00001 0.00165

( -0.76 , -0.72 ) 0.09073 0.00031 +0.00129
−0.00125

+0.00021
−0.00016 0.00002 0.00147

( -0.72 , -0.68 ) 0.07665 0.00030 +0.00119
−0.00116

+0.00018
−0.00013 0.00002 0.00131

( -0.68 , -0.64 ) 0.06806 0.00028 +0.00112
−0.00110

+0.00015
−0.00011 0.00002 0.00120

( -0.64 , -0.60 ) 0.06006 0.00026 +0.00104
−0.00102

+0.00013
−0.00007 0.00002 0.00108

( -0.60 , -0.56 ) 0.05459 0.00024 +0.00097
−0.00096

+0.00012
−0.00006 0.00002 0.00100

( -0.56 , -0.52 ) 0.05011 0.00022 +0.00092
−0.00090

+0.00011
−0.00005 0.00001 0.00093

( -0.52 , -0.48 ) 0.04680 0.00021 +0.00087
−0.00086

+0.00010
−0.00005 0.00001 0.00088

( -0.48 , -0.44 ) 0.04404 0.00021 +0.00084
−0.00083

+0.00009
−0.00005 0.00001 0.00083

( -0.44 , -0.40 ) 0.04129 0.00020 +0.00080
−0.00079

+0.00008
−0.00004 0.00001 0.00079

( -0.40 , -0.36 ) 0.03926 0.00019 +0.00077
−0.00076

+0.00008
−0.00004 0.00001 0.00075

( -0.36 , -0.32 ) 0.03771 0.00019 +0.00075
−0.00073

+0.00008
−0.00004 0.00001 0.00073

( -0.32 , -0.28 ) 0.03563 0.00018 +0.00071
−0.00070

+0.00007
−0.00004 0.00001 0.00070

( -0.28 , -0.24 ) 0.03480 0.00019 +0.00070
−0.00069

+0.00007
−0.00004 0.00001 0.00069

( -0.24 , -0.20 ) 0.03405 0.00018 +0.00069
−0.00068

+0.00007
−0.00004 0.00001 0.00068

( -0.20 , -0.16 ) 0.03273 0.00017 +0.00067
−0.00066

+0.00007
−0.00004 0.00001 0.00066

( -0.16 , -0.12 ) 0.03222 0.00017 +0.00066
−0.00065

+0.00007
−0.00004 0.00001 0.00065

( -0.12 , -0.08 ) 0.03151 0.00017 +0.00065
−0.00064

+0.00006
−0.00004 0.00001 0.00064

( -0.08 , -0.04 ) 0.03088 0.00017 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00063

( -0.04 , 0.00 ) 0.03056 0.00016 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00063

( 0.00 , 0.04 ) 0.03010 0.00017 +0.00063
−0.00062

+0.00006
−0.00004 0.00001 0.00062

( 0.04 , 0.08 ) 0.03021 0.00016 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00063

( 0.08 , 0.12 ) 0.02981 0.00016 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00062

( 0.12 , 0.16 ) 0.02977 0.00016 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00062

( 0.16 , 0.20 ) 0.02974 0.00016 +0.00064
−0.00063

+0.00006
−0.00004 0.00001 0.00062

( 0.20 , 0.24 ) 0.03054 0.00016 +0.00066
−0.00065

+0.00007
−0.00004 0.00001 0.00064

( 0.24 , 0.28 ) 0.03038 0.00015 +0.00066
−0.00065

+0.00007
−0.00004 0.00001 0.00064

( 0.28 , 0.32 ) 0.03072 0.00015 +0.00067
−0.00066

+0.00007
−0.00004 0.00000 0.00065

( 0.32 , 0.36 ) 0.03164 0.00016 +0.00070
−0.00068

+0.00007
−0.00004 0.00000 0.00067
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( 0.36 , 0.40 ) 0.03219 0.00016 +0.00071
−0.00070

+0.00007
−0.00004 0.00000 0.00068

( 0.40 , 0.44 ) 0.03301 0.00016 +0.00073
−0.00072

+0.00007
−0.00004 0.00001 0.00070

( 0.44 , 0.48 ) 0.03426 0.00015 +0.00076
−0.00075

+0.00008
−0.00005 0.00000 0.00072

( 0.48 , 0.52 ) 0.03530 0.00016 +0.00078
−0.00077

+0.00008
−0.00005 0.00000 0.00074

( 0.52 , 0.56 ) 0.03684 0.00017 +0.00082
−0.00081

+0.00009
−0.00005 0.00001 0.00077

( 0.56 , 0.60 ) 0.03899 0.00016 +0.00087
−0.00086

+0.00009
−0.00005 0.00002 0.00081

( 0.60 , 0.64 ) 0.04159 0.00017 +0.00093
−0.00092

+0.00010
−0.00006 0.00001 0.00085

( 0.64 , 0.68 ) 0.04433 0.00018 +0.00099
−0.00098

+0.00011
−0.00006 0.00000 0.00090

( 0.68 , 0.72 ) 0.04890 0.00018 +0.00109
−0.00109

+0.00012
−0.00007 0.00001 0.00098

( 0.72 , 0.76 ) 0.05470 0.00019 +0.00123
−0.00123

+0.00013
−0.00008 0.00001 0.00108

( 0.76 , 0.80 ) 0.06288 0.00020 +0.00144
−0.00142

+0.00015
−0.00009 0.00003 0.00123

( 0.80 , 0.82 ) 0.07201 0.00034 +0.00166
−0.00164

+0.00018
−0.00011 0.00003 0.00140

( 0.82 , 0.84 ) 0.07952 0.00035 +0.00184
−0.00182

+0.00019
−0.00012 0.00003 0.00153

( 0.84 , 0.86 ) 0.08912 0.00036 +0.00207
−0.00205

+0.00022
−0.00013 0.00001 0.00170

( 0.86 , 0.88 ) 0.10118 0.00038 +0.00238
−0.00236

+0.00025
−0.00015 0.00006 0.00188

( 0.88 , 0.90 ) 0.11457 0.00040 +0.00273
−0.00270

+0.00028
−0.00017 0.00020 0.00205

( 0.90 , 0.92 ) 0.12728 0.00041 +0.00303
−0.00298

+0.00031
−0.00019 0.00030 0.00211

( 0.92 , 0.94 ) 0.12550 0.00040 +0.00293
−0.00290

+0.00030
−0.00019 0.00013 0.00183

( 0.94 , 0.96 ) 0.13330 0.00040 +0.00313
−0.00306

+0.00030
−0.00021 0.00016 0.00162

( 0.96 , 0.98 ) 0.16034 0.00042 +0.00398
−0.00398

+0.00043
−0.00027 0.00011 0.00093

( 0.98 , 1.00 ) 22.35160 0.00154 +0.05788
−0.05845

+0.01538
−0.00657 0.00008 0.05042

Table 6.9: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 1400 GeV < HT2 < 1600 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 19.30135 0.00657 +0.04367

−0.04576
+0.01177
−0.02978 0.00884 0.05601

( -0.98 , -0.96 ) 1.54676 0.00386 +0.00845
−0.00692

+0.00458
−0.00210 0.00661 0.00659

( -0.96 , -0.94 ) 0.74968 0.00263 +0.00346
−0.00306

+0.00257
−0.00106 0.00125 0.00377

( -0.94 , -0.92 ) 0.46953 0.00198 +0.00252
−0.00238

+0.00173
−0.00072 0.00018 0.00320

( -0.92 , -0.90 ) 0.33807 0.00160 +0.00235
−0.00218

+0.00123
−0.00052 0.00002 0.00295

( -0.90 , -0.88 ) 0.25610 0.00147 +0.00214
−0.00199

+0.00091
−0.00039 0.00004 0.00262

( -0.88 , -0.86 ) 0.20445 0.00125 +0.00190
−0.00183

+0.00071
−0.00030 0.00005 0.00232

( -0.86 , -0.84 ) 0.16823 0.00111 +0.00170
−0.00168

+0.00058
−0.00024 0.00004 0.00207

( -0.84 , -0.82 ) 0.14449 0.00104 +0.00156
−0.00157

+0.00048
−0.00020 0.00004 0.00189

( -0.82 , -0.80 ) 0.12453 0.00093 +0.00143
−0.00144

+0.00041
−0.00017 0.00003 0.00170

( -0.80 , -0.76 ) 0.10358 0.00052 +0.00129
−0.00130

+0.00032
−0.00013 0.00003 0.00149

( -0.76 , -0.72 ) 0.08434 0.00046 +0.00117
−0.00116

+0.00025
−0.00010 0.00002 0.00127

( -0.72 , -0.68 ) 0.07188 0.00042 +0.00109
−0.00108

+0.00020
−0.00008 0.00002 0.00112

( -0.68 , -0.64 ) 0.06340 0.00038 +0.00102
−0.00101

+0.00016
−0.00007 0.00002 0.00102

( -0.64 , -0.60 ) 0.05662 0.00036 +0.00095
−0.00094

+0.00014
−0.00006 0.00001 0.00093

( -0.60 , -0.56 ) 0.05156 0.00034 +0.00089
−0.00089

+0.00012
−0.00005 0.00001 0.00086

( -0.56 , -0.52 ) 0.04787 0.00033 +0.00085
−0.00085

+0.00011
−0.00005 0.00001 0.00081

( -0.52 , -0.48 ) 0.04402 0.00031 +0.00080
−0.00079

+0.00010
−0.00004 0.00001 0.00075

( -0.48 , -0.44 ) 0.04157 0.00030 +0.00077
−0.00076

+0.00009
−0.00004 0.00001 0.00072

( -0.44 , -0.40 ) 0.03952 0.00029 +0.00074
−0.00074

+0.00009
−0.00004 0.00001 0.00069
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( -0.40 , -0.36 ) 0.03706 0.00027 +0.00070
−0.00070

+0.00008
−0.00004 0.00001 0.00065

( -0.36 , -0.32 ) 0.03580 0.00027 +0.00068
−0.00068

+0.00008
−0.00004 0.00001 0.00063

( -0.32 , -0.28 ) 0.03419 0.00027 +0.00066
−0.00066

+0.00008
−0.00004 0.00001 0.00061

( -0.28 , -0.24 ) 0.03361 0.00026 +0.00065
−0.00065

+0.00008
−0.00004 0.00001 0.00060

( -0.24 , -0.20 ) 0.03253 0.00026 +0.00064
−0.00064

+0.00007
−0.00004 0.00001 0.00059

( -0.20 , -0.16 ) 0.03121 0.00025 +0.00062
−0.00061

+0.00007
−0.00004 0.00001 0.00057

( -0.16 , -0.12 ) 0.03063 0.00024 +0.00061
−0.00061

+0.00007
−0.00004 0.00001 0.00056

( -0.12 , -0.08 ) 0.03040 0.00024 +0.00061
−0.00061

+0.00007
−0.00003 0.00001 0.00056

( -0.08 , -0.04 ) 0.02986 0.00025 +0.00060
−0.00060

+0.00007
−0.00003 0.00001 0.00055

( -0.04 , 0.00 ) 0.02947 0.00024 +0.00060
−0.00059

+0.00007
−0.00003 0.00001 0.00055

( 0.00 , 0.04 ) 0.02913 0.00024 +0.00060
−0.00059

+0.00007
−0.00003 0.00001 0.00055

( 0.04 , 0.08 ) 0.02892 0.00023 +0.00060
−0.00059

+0.00007
−0.00004 0.00001 0.00055

( 0.08 , 0.12 ) 0.02906 0.00023 +0.00060
−0.00059

+0.00007
−0.00004 0.00001 0.00056

( 0.12 , 0.16 ) 0.02920 0.00022 +0.00061
−0.00060

+0.00007
−0.00004 0.00001 0.00056

( 0.16 , 0.20 ) 0.02866 0.00022 +0.00060
−0.00059

+0.00007
−0.00004 0.00001 0.00056

( 0.20 , 0.24 ) 0.02904 0.00022 +0.00061
−0.00060

+0.00007
−0.00004 0.00001 0.00057

( 0.24 , 0.28 ) 0.02951 0.00024 +0.00062
−0.00061

+0.00007
−0.00004 0.00001 0.00058

( 0.28 , 0.32 ) 0.03011 0.00023 +0.00063
−0.00062

+0.00007
−0.00004 0.00001 0.00060

( 0.32 , 0.36 ) 0.03039 0.00022 +0.00064
−0.00063

+0.00007
−0.00004 0.00001 0.00061

( 0.36 , 0.40 ) 0.03085 0.00022 +0.00066
−0.00064

+0.00007
−0.00004 0.00001 0.00062

( 0.40 , 0.44 ) 0.03234 0.00023 +0.00069
−0.00067

+0.00007
−0.00005 0.00001 0.00066

( 0.44 , 0.48 ) 0.03264 0.00023 +0.00070
−0.00069

+0.00008
−0.00005 0.00001 0.00067

( 0.48 , 0.52 ) 0.03466 0.00024 +0.00075
−0.00073

+0.00008
−0.00005 0.00001 0.00072

( 0.52 , 0.56 ) 0.03577 0.00024 +0.00077
−0.00076

+0.00008
−0.00006 0.00001 0.00075

( 0.56 , 0.60 ) 0.03819 0.00024 +0.00082
−0.00081

+0.00009
−0.00006 0.00001 0.00080

( 0.60 , 0.64 ) 0.04039 0.00025 +0.00087
−0.00086

+0.00009
−0.00007 0.00001 0.00086

( 0.64 , 0.68 ) 0.04340 0.00026 +0.00094
−0.00091

+0.00010
−0.00007 0.00001 0.00092

( 0.68 , 0.72 ) 0.04739 0.00026 +0.00103
−0.00099

+0.00011
−0.00008 0.00001 0.00101

( 0.72 , 0.76 ) 0.05351 0.00027 +0.00116
−0.00112

+0.00013
−0.00009 0.00001 0.00115

( 0.76 , 0.80 ) 0.06172 0.00029 +0.00135
−0.00132

+0.00015
−0.00011 0.00001 0.00132

( 0.80 , 0.82 ) 0.07130 0.00050 +0.00158
−0.00154

+0.00017
−0.00013 0.00001 0.00150

( 0.82 , 0.84 ) 0.07712 0.00051 +0.00172
−0.00168

+0.00019
−0.00014 0.00000 0.00161

( 0.84 , 0.86 ) 0.08884 0.00054 +0.00200
−0.00195

+0.00021
−0.00016 0.00002 0.00182

( 0.86 , 0.88 ) 0.09891 0.00057 +0.00226
−0.00219

+0.00024
−0.00018 0.00011 0.00198

( 0.88 , 0.90 ) 0.11279 0.00059 +0.00260
−0.00253

+0.00027
−0.00020 0.00028 0.00218

( 0.90 , 0.92 ) 0.12575 0.00061 +0.00287
−0.00281

+0.00029
−0.00022 0.00038 0.00233

( 0.92 , 0.94 ) 0.12207 0.00059 +0.00272
−0.00268

+0.00028
−0.00021 0.00001 0.00212

( 0.94 , 0.96 ) 0.13180 0.00058 +0.00297
−0.00293

+0.00032
−0.00021 0.00020 0.00201

( 0.96 , 0.98 ) 0.15830 0.00060 +0.00377
−0.00368

+0.00038
−0.00029 0.00014 0.00033

( 0.98 , 1.00 ) 22.42199 0.00223 +0.05369
−0.05461

+0.01464
−0.00643 0.00002 0.04970

Table 6.10: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 1600 GeV < HT2 < 1800 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 19.67682 0.00909 +0.04230

−0.04351
+0.01157
−0.02617 0.00758 0.05404
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( -0.98 , -0.96 ) 1.44149 0.00549 +0.00731
−0.00717

+0.00462
−0.00177 0.00469 0.00632

( -0.96 , -0.94 ) 0.68659 0.00354 +0.00355
−0.00354

+0.00215
−0.00078 0.00160 0.00484

( -0.94 , -0.92 ) 0.44341 0.00280 +0.00251
−0.00250

+0.00129
−0.00047 0.00051 0.00397

( -0.92 , -0.90 ) 0.31042 0.00234 +0.00210
−0.00224

+0.00087
−0.00034 0.00027 0.00301

( -0.90 , -0.88 ) 0.23697 0.00196 +0.00186
−0.00203

+0.00064
−0.00025 0.00020 0.00242

( -0.88 , -0.86 ) 0.19100 0.00173 +0.00172
−0.00180

+0.00050
−0.00021 0.00016 0.00204

( -0.86 , -0.84 ) 0.15700 0.00149 +0.00157
−0.00156

+0.00040
−0.00017 0.00013 0.00174

( -0.84 , -0.80 ) 0.12432 0.00083 +0.00141
−0.00135

+0.00030
−0.00011 0.00010 0.00145

( -0.80 , -0.76 ) 0.09605 0.00067 +0.00124
−0.00117

+0.00022
−0.00008 0.00008 0.00119

( -0.76 , -0.72 ) 0.08046 0.00062 +0.00112
−0.00109

+0.00017
−0.00007 0.00007 0.00105

( -0.72 , -0.64 ) 0.06339 0.00036 +0.00097
−0.00096

+0.00013
−0.00005 0.00003 0.00088

( -0.64 , -0.56 ) 0.05098 0.00030 +0.00086
−0.00084

+0.00010
−0.00004 0.00002 0.00077

( -0.56 , -0.48 ) 0.04306 0.00027 +0.00076
−0.00074

+0.00008
−0.00003 0.00000 0.00069

( -0.48 , -0.36 ) 0.03756 0.00020 +0.00069
−0.00067

+0.00006
−0.00002 0.00001 0.00065

( -0.36 , -0.24 ) 0.03273 0.00019 +0.00063
−0.00060

+0.00005
−0.00002 0.00000 0.00060

( -0.24 , -0.12 ) 0.03004 0.00017 +0.00059
−0.00057

+0.00005
−0.00003 0.00001 0.00057

( -0.12 , 0.00 ) 0.02850 0.00017 +0.00057
−0.00055

+0.00005
−0.00003 0.00001 0.00056

( 0.00 , 0.12 ) 0.02802 0.00016 +0.00056
−0.00055

+0.00005
−0.00003 0.00000 0.00056

( 0.12 , 0.24 ) 0.02790 0.00015 +0.00056
−0.00057

+0.00005
−0.00003 0.00000 0.00055

( 0.24 , 0.36 ) 0.02888 0.00016 +0.00059
−0.00059

+0.00005
−0.00004 0.00000 0.00056

( 0.36 , 0.48 ) 0.03075 0.00016 +0.00063
−0.00063

+0.00006
−0.00004 0.00000 0.00059

( 0.48 , 0.56 ) 0.03386 0.00020 +0.00070
−0.00068

+0.00006
−0.00004 0.00000 0.00063

( 0.56 , 0.64 ) 0.03798 0.00022 +0.00080
−0.00077

+0.00007
−0.00005 0.00000 0.00071

( 0.64 , 0.72 ) 0.04415 0.00023 +0.00093
−0.00091

+0.00008
−0.00006 0.00000 0.00082

( 0.72 , 0.76 ) 0.05277 0.00038 +0.00111
−0.00110

+0.00010
−0.00007 0.00000 0.00098

( 0.76 , 0.80 ) 0.05996 0.00041 +0.00127
−0.00125

+0.00012
−0.00008 0.00000 0.00111

( 0.80 , 0.84 ) 0.07235 0.00043 +0.00156
−0.00152

+0.00014
−0.00010 0.00000 0.00132

( 0.84 , 0.86 ) 0.08477 0.00072 +0.00186
−0.00180

+0.00017
−0.00012 0.00000 0.00152

( 0.86 , 0.88 ) 0.09728 0.00075 +0.00215
−0.00209

+0.00020
−0.00014 0.00000 0.00171

( 0.88 , 0.90 ) 0.10899 0.00080 +0.00240
−0.00236

+0.00022
−0.00016 0.00000 0.00186

( 0.90 , 0.92 ) 0.12330 0.00083 +0.00271
−0.00266

+0.00026
−0.00020 0.00000 0.00205

( 0.92 , 0.94 ) 0.12272 0.00083 +0.00268
−0.00262

+0.00028
−0.00022 0.00000 0.00200

( 0.94 , 0.96 ) 0.12838 0.00082 +0.00271
−0.00276

+0.00030
−0.00025 0.00000 0.00208

( 0.96 , 0.98 ) 0.15289 0.00087 +0.00353
−0.00351

+0.00047
−0.00036 0.00000 0.00167

( 0.98 , 1.00 ) 22.50616 0.00305 +0.05026
−0.05099

+0.01588
−0.00624 0.00011 0.04632

Table 6.11: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 1800 GeV < HT2 < 2000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 20.05806 0.01053 +0.04132

−0.04076
+0.01034
−0.02687 0.00796 0.05639

( -0.98 , -0.96 ) 1.33519 0.00632 +0.00707
−0.00914

+0.00345
−0.00135 0.00585 0.01099

( -0.96 , -0.94 ) 0.63864 0.00417 +0.00310
−0.00344

+0.00211
−0.00064 0.00038 0.00473

( -0.94 , -0.92 ) 0.39574 0.00340 +0.00252
−0.00245

+0.00142
−0.00050 0.00008 0.00359

( -0.92 , -0.90 ) 0.28893 0.00263 +0.00234
−0.00210

+0.00102
−0.00039 0.00005 0.00304

( -0.90 , -0.88 ) 0.21814 0.00227 +0.00203
−0.00185

+0.00075
−0.00030 0.00004 0.00255
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( -0.88 , -0.86 ) 0.17638 0.00204 +0.00177
−0.00170

+0.00060
−0.00025 0.00003 0.00223

( -0.86 , -0.84 ) 0.14579 0.00177 +0.00153
−0.00155

+0.00049
−0.00021 0.00003 0.00193

( -0.84 , -0.80 ) 0.11363 0.00094 +0.00130
−0.00135

+0.00037
−0.00015 0.00002 0.00157

( -0.80 , -0.76 ) 0.08957 0.00079 +0.00117
−0.00116

+0.00029
−0.00011 0.00002 0.00128

( -0.76 , -0.72 ) 0.07435 0.00074 +0.00106
−0.00102

+0.00023
−0.00009 0.00001 0.00109

( -0.72 , -0.64 ) 0.05928 0.00041 +0.00091
−0.00088

+0.00018
−0.00007 0.00001 0.00091

( -0.64 , -0.56 ) 0.04753 0.00035 +0.00079
−0.00079

+0.00013
−0.00006 0.00001 0.00076

( -0.56 , -0.48 ) 0.04074 0.00032 +0.00072
−0.00071

+0.00011
−0.00005 0.00001 0.00068

( -0.48 , -0.36 ) 0.03572 0.00023 +0.00065
−0.00063

+0.00009
−0.00004 0.00001 0.00062

( -0.36 , -0.24 ) 0.03070 0.00021 +0.00058
−0.00056

+0.00007
−0.00003 0.00001 0.00056

( -0.24 , -0.12 ) 0.02880 0.00021 +0.00055
−0.00054

+0.00006
−0.00003 0.00001 0.00054

( -0.12 , 0.00 ) 0.02720 0.00020 +0.00053
−0.00052

+0.00005
−0.00003 0.00000 0.00052

( 0.00 , 0.12 ) 0.02642 0.00019 +0.00052
−0.00051

+0.00005
−0.00003 0.00000 0.00051

( 0.12 , 0.24 ) 0.02676 0.00017 +0.00054
−0.00051

+0.00005
−0.00003 0.00000 0.00051

( 0.24 , 0.36 ) 0.02775 0.00018 +0.00056
−0.00054

+0.00005
−0.00003 0.00001 0.00052

( 0.36 , 0.48 ) 0.02960 0.00018 +0.00060
−0.00059

+0.00005
−0.00004 0.00001 0.00054

( 0.48 , 0.56 ) 0.03277 0.00024 +0.00067
−0.00065

+0.00006
−0.00005 0.00001 0.00058

( 0.56 , 0.64 ) 0.03667 0.00026 +0.00074
−0.00074

+0.00007
−0.00005 0.00001 0.00064

( 0.64 , 0.72 ) 0.04193 0.00027 +0.00084
−0.00084

+0.00008
−0.00006 0.00003 0.00071

( 0.72 , 0.76 ) 0.05055 0.00046 +0.00103
−0.00101

+0.00010
−0.00008 0.00004 0.00083

( 0.76 , 0.80 ) 0.05768 0.00047 +0.00118
−0.00116

+0.00012
−0.00009 0.00000 0.00093

( 0.80 , 0.84 ) 0.06992 0.00051 +0.00145
−0.00144

+0.00015
−0.00012 0.00002 0.00111

( 0.84 , 0.86 ) 0.08240 0.00088 +0.00173
−0.00172

+0.00018
−0.00014 0.00002 0.00129

( 0.86 , 0.88 ) 0.09275 0.00091 +0.00198
−0.00195

+0.00021
−0.00015 0.00005 0.00144

( 0.88 , 0.90 ) 0.10757 0.00098 +0.00233
−0.00228

+0.00025
−0.00018 0.00022 0.00166

( 0.90 , 0.92 ) 0.11876 0.00099 +0.00256
−0.00251

+0.00028
−0.00019 0.00031 0.00179

( 0.92 , 0.94 ) 0.11757 0.00103 +0.00250
−0.00244

+0.00028
−0.00018 0.00007 0.00169

( 0.94 , 0.96 ) 0.12420 0.00097 +0.00264
−0.00252

+0.00030
−0.00019 0.00026 0.00152

( 0.96 , 0.98 ) 0.14944 0.00100 +0.00330
−0.00334

+0.00051
−0.00016 0.00016 0.00000

( 0.98 , 1.00 ) 22.60561 0.00373 +0.04670
−0.04748

+0.01503
−0.00723 0.00010 0.04262

Table 6.12: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 2000 GeV < HT2 < 2300 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 20.52361 0.01637 +0.03751

−0.04181
+0.01285
−0.03017 0.00835 0.05735

( -0.98 , -0.96 ) 1.21439 0.00991 +0.00865
−0.00660

+0.00612
−0.00279 0.00672 0.01390

( -0.96 , -0.94 ) 0.56514 0.00668 +0.00399
−0.00321

+0.00259
−0.00141 0.00084 0.00554

( -0.94 , -0.92 ) 0.36187 0.00512 +0.00285
−0.00236

+0.00169
−0.00093 0.00031 0.00320

( -0.92 , -0.90 ) 0.26252 0.00386 +0.00245
−0.00209

+0.00122
−0.00067 0.00021 0.00239

( -0.90 , -0.88 ) 0.18718 0.00324 +0.00197
−0.00168

+0.00084
−0.00044 0.00014 0.00183

( -0.88 , -0.86 ) 0.15877 0.00292 +0.00180
−0.00157

+0.00069
−0.00034 0.00012 0.00166

( -0.86 , -0.84 ) 0.12960 0.00254 +0.00155
−0.00138

+0.00053
−0.00025 0.00010 0.00144

( -0.84 , -0.80 ) 0.10388 0.00136 +0.00134
−0.00121

+0.00040
−0.00019 0.00009 0.00124

( -0.80 , -0.76 ) 0.08244 0.00120 +0.00116
−0.00107

+0.00029
−0.00014 0.00010 0.00106

( -0.76 , -0.72 ) 0.06473 0.00108 +0.00097
−0.00091

+0.00021
−0.00010 0.00005 0.00087
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( -0.72 , -0.64 ) 0.05389 0.00060 +0.00086
−0.00082

+0.00016
−0.00008 0.00001 0.00076

( -0.64 , -0.56 ) 0.04293 0.00054 +0.00072
−0.00070

+0.00011
−0.00006 0.00001 0.00062

( -0.56 , -0.48 ) 0.03721 0.00047 +0.00064
−0.00063

+0.00009
−0.00004 0.00001 0.00055

( -0.48 , -0.36 ) 0.03233 0.00034 +0.00057
−0.00057

+0.00007
−0.00003 0.00000 0.00049

( -0.36 , -0.24 ) 0.02902 0.00033 +0.00052
−0.00053

+0.00005
−0.00003 0.00000 0.00046

( -0.24 , -0.12 ) 0.02639 0.00032 +0.00049
−0.00050

+0.00005
−0.00002 0.00000 0.00044

( -0.12 , 0.00 ) 0.02530 0.00031 +0.00048
−0.00048

+0.00004
−0.00003 0.00000 0.00045

( 0.00 , 0.12 ) 0.02459 0.00027 +0.00047
−0.00047

+0.00004
−0.00003 0.00000 0.00045

( 0.12 , 0.24 ) 0.02471 0.00028 +0.00048
−0.00047

+0.00004
−0.00003 0.00000 0.00047

( 0.24 , 0.36 ) 0.02607 0.00028 +0.00052
−0.00050

+0.00004
−0.00003 0.00000 0.00052

( 0.36 , 0.48 ) 0.02747 0.00028 +0.00054
−0.00053

+0.00004
−0.00004 0.00000 0.00055

( 0.48 , 0.56 ) 0.03097 0.00037 +0.00061
−0.00060

+0.00005
−0.00004 0.00000 0.00063

( 0.56 , 0.64 ) 0.03419 0.00039 +0.00068
−0.00066

+0.00005
−0.00005 0.00000 0.00069

( 0.64 , 0.72 ) 0.04055 0.00041 +0.00081
−0.00079

+0.00006
−0.00006 0.00000 0.00080

( 0.72 , 0.76 ) 0.04798 0.00068 +0.00096
−0.00095

+0.00007
−0.00007 0.00000 0.00093

( 0.76 , 0.80 ) 0.05432 0.00072 +0.00109
−0.00108

+0.00008
−0.00008 0.00000 0.00103

( 0.80 , 0.84 ) 0.06628 0.00079 +0.00135
−0.00133

+0.00010
−0.00010 0.00000 0.00124

( 0.84 , 0.86 ) 0.07710 0.00138 +0.00160
−0.00157

+0.00011
−0.00011 0.00000 0.00143

( 0.86 , 0.88 ) 0.08764 0.00145 +0.00184
−0.00179

+0.00013
−0.00013 0.00000 0.00161

( 0.88 , 0.90 ) 0.10387 0.00151 +0.00221
−0.00212

+0.00016
−0.00016 0.00000 0.00188

( 0.90 , 0.92 ) 0.11536 0.00152 +0.00243
−0.00235

+0.00018
−0.00018 0.00000 0.00202

( 0.92 , 0.94 ) 0.11514 0.00152 +0.00236
−0.00232

+0.00018
−0.00018 0.00000 0.00193

( 0.94 , 0.96 ) 0.12164 0.00155 +0.00254
−0.00243

+0.00017
−0.00019 0.00000 0.00197

( 0.96 , 0.98 ) 0.14212 0.00163 +0.00312
−0.00302

+0.00028
−0.00030 0.00000 0.00103

( 0.98 , 1.00 ) 22.74054 0.00570 +0.04268
−0.04358

+0.01551
−0.00597 0.00001 0.04312

Table 6.13: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 2300 GeV < HT2 < 2600 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 21.03794 0.02244 +0.03860

−0.03652
+0.01297
−0.02702 0.00840 0.05301

( -0.98 , -0.96 ) 1.07362 0.01413 +0.00836
−0.00859

+0.00507
−0.00270 0.00617 0.00930

( -0.96 , -0.94 ) 0.48589 0.00835 +0.00357
−0.00401

+0.00218
−0.00104 0.00136 0.00493

( -0.94 , -0.92 ) 0.30605 0.00625 +0.00235
−0.00269

+0.00129
−0.00059 0.00037 0.00353

( -0.92 , -0.90 ) 0.23336 0.00525 +0.00207
−0.00225

+0.00092
−0.00042 0.00020 0.00283

( -0.90 , -0.88 ) 0.17424 0.00447 +0.00174
−0.00186

+0.00065
−0.00028 0.00014 0.00216

( -0.88 , -0.86 ) 0.13354 0.00373 +0.00146
−0.00155

+0.00047
−0.00019 0.00009 0.00168

( -0.86 , -0.84 ) 0.11856 0.00347 +0.00137
−0.00146

+0.00040
−0.00017 0.00005 0.00151

( -0.84 , -0.80 ) 0.09004 0.00186 +0.00110
−0.00118

+0.00029
−0.00012 0.00001 0.00116

( -0.80 , -0.76 ) 0.06903 0.00155 +0.00092
−0.00096

+0.00021
−0.00009 0.00004 0.00092

( -0.76 , -0.72 ) 0.06068 0.00139 +0.00087
−0.00089

+0.00017
−0.00007 0.00005 0.00084

( -0.72 , -0.64 ) 0.04731 0.00079 +0.00073
−0.00074

+0.00012
−0.00005 0.00002 0.00069

( -0.64 , -0.56 ) 0.03956 0.00071 +0.00065
−0.00066

+0.00009
−0.00004 0.00001 0.00063

( -0.56 , -0.48 ) 0.03325 0.00062 +0.00056
−0.00058

+0.00007
−0.00004 0.00001 0.00057

( -0.48 , -0.36 ) 0.03010 0.00046 +0.00052
−0.00052

+0.00006
−0.00003 0.00001 0.00056

( -0.36 , -0.24 ) 0.02652 0.00044 +0.00047
−0.00047

+0.00005
−0.00002 0.00000 0.00053
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( -0.24 , -0.12 ) 0.02420 0.00044 +0.00044
−0.00044

+0.00004
−0.00002 0.00000 0.00050

( -0.12 , 0.00 ) 0.02253 0.00042 +0.00042
−0.00042

+0.00004
−0.00002 0.00000 0.00048

( 0.00 , 0.12 ) 0.02241 0.00036 +0.00042
−0.00042

+0.00004
−0.00003 0.00000 0.00048

( 0.12 , 0.24 ) 0.02233 0.00037 +0.00042
−0.00042

+0.00004
−0.00003 0.00000 0.00047

( 0.24 , 0.36 ) 0.02379 0.00037 +0.00045
−0.00046

+0.00005
−0.00003 0.00000 0.00049

( 0.36 , 0.48 ) 0.02592 0.00039 +0.00049
−0.00050

+0.00005
−0.00003 0.00000 0.00051

( 0.48 , 0.56 ) 0.02860 0.00048 +0.00055
−0.00054

+0.00005
−0.00004 0.00000 0.00054

( 0.56 , 0.64 ) 0.03183 0.00051 +0.00061
−0.00060

+0.00006
−0.00004 0.00001 0.00058

( 0.64 , 0.72 ) 0.03774 0.00057 +0.00072
−0.00072

+0.00007
−0.00005 0.00001 0.00067

( 0.72 , 0.76 ) 0.04464 0.00095 +0.00084
−0.00085

+0.00009
−0.00006 0.00001 0.00079

( 0.76 , 0.80 ) 0.05153 0.00098 +0.00099
−0.00098

+0.00010
−0.00007 0.00001 0.00090

( 0.80 , 0.84 ) 0.06090 0.00109 +0.00119
−0.00116

+0.00012
−0.00008 0.00000 0.00105

( 0.84 , 0.86 ) 0.07478 0.00188 +0.00149
−0.00145

+0.00015
−0.00009 0.00005 0.00128

( 0.86 , 0.88 ) 0.08488 0.00194 +0.00170
−0.00167

+0.00017
−0.00010 0.00013 0.00144

( 0.88 , 0.90 ) 0.09762 0.00203 +0.00197
−0.00196

+0.00019
−0.00012 0.00029 0.00164

( 0.90 , 0.92 ) 0.10786 0.00214 +0.00219
−0.00217

+0.00022
−0.00013 0.00030 0.00178

( 0.92 , 0.94 ) 0.10271 0.00202 +0.00206
−0.00203

+0.00020
−0.00012 0.00020 0.00162

( 0.94 , 0.96 ) 0.11608 0.00209 +0.00229
−0.00228

+0.00022
−0.00015 0.00006 0.00162

( 0.96 , 0.98 ) 0.13712 0.00222 +0.00289
−0.00286

+0.00022
−0.00027 0.00000 0.00000

( 0.98 , 1.00 ) 22.90232 0.00769 +0.03884
−0.03885

+0.01560
−0.00618 0.00007 0.03860

Table 6.14: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 2600 GeV < HT2 < 3000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 21.55663 0.03324 +0.03438

−0.03489
+0.01416
−0.03281 0.00703 0.05749

( -0.98 , -0.96 ) 0.93558 0.02005 +0.00863
−0.00867

+0.00705
−0.00287 0.00544 0.01007

( -0.96 , -0.94 ) 0.39890 0.01217 +0.00312
−0.00351

+0.00269
−0.00125 0.00098 0.00546

( -0.94 , -0.92 ) 0.26852 0.00902 +0.00237
−0.00262

+0.00171
−0.00073 0.00042 0.00401

( -0.92 , -0.90 ) 0.19507 0.00769 +0.00192
−0.00204

+0.00118
−0.00050 0.00025 0.00302

( -0.90 , -0.86 ) 0.14170 0.00416 +0.00163
−0.00161

+0.00080
−0.00033 0.00009 0.00229

( -0.86 , -0.80 ) 0.08646 0.00219 +0.00115
−0.00110

+0.00045
−0.00019 0.00003 0.00145

( -0.80 , -0.72 ) 0.05468 0.00140 +0.00080
−0.00080

+0.00026
−0.00011 0.00002 0.00096

( -0.72 , -0.60 ) 0.04095 0.00091 +0.00066
−0.00064

+0.00018
−0.00008 0.00001 0.00078

( -0.60 , -0.36 ) 0.02808 0.00047 +0.00049
−0.00046

+0.00011
−0.00005 0.00001 0.00059

( -0.36 , 0.00 ) 0.02133 0.00040 +0.00039
−0.00037

+0.00006
−0.00003 0.00000 0.00049

( 0.00 , 0.36 ) 0.02037 0.00031 +0.00038
−0.00037

+0.00004
−0.00002 0.00000 0.00045

( 0.36 , 0.60 ) 0.02496 0.00040 +0.00047
−0.00045

+0.00005
−0.00002 0.00000 0.00049

( 0.60 , 0.72 ) 0.03259 0.00066 +0.00060
−0.00061

+0.00007
−0.00003 0.00001 0.00060

( 0.72 , 0.80 ) 0.04422 0.00096 +0.00083
−0.00080

+0.00009
−0.00004 0.00001 0.00080

( 0.80 , 0.86 ) 0.06105 0.00134 +0.00115
−0.00113

+0.00013
−0.00006 0.00002 0.00107

( 0.86 , 0.90 ) 0.08534 0.00195 +0.00168
−0.00165

+0.00018
−0.00008 0.00024 0.00138

( 0.90 , 0.92 ) 0.10070 0.00326 +0.00198
−0.00197

+0.00020
−0.00010 0.00030 0.00145

( 0.92 , 0.94 ) 0.10007 0.00331 +0.00192
−0.00191

+0.00019
−0.00011 0.00015 0.00130

( 0.94 , 0.96 ) 0.10276 0.00314 +0.00202
−0.00197

+0.00018
−0.00012 0.00005 0.00116

( 0.96 , 0.98 ) 0.12725 0.00336 +0.00263
−0.00255

+0.00025
−0.00015 0.00000 0.00000
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( 0.98 , 1.00 ) 23.09402 0.01179 +0.03377
−0.03457

+0.01328
−0.00534 0.00014 0.03876

Table 6.15: Numerical values of the TEEC function together with statistical and
systematic uncertainties for 3000 GeV < HT2 < 3500 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) 22.33047 0.04458 +0.03110

−0.02998
+0.01468
−0.03022 0.00696 0.04168

( -0.98 , -0.96 ) 0.67872 0.02730 +0.00696
−0.00774

+0.00543
−0.00245 0.00560 0.00758

( -0.96 , -0.94 ) 0.31362 0.01738 +0.00302
−0.00336

+0.00233
−0.00103 0.00043 0.00464

( -0.94 , -0.92 ) 0.22504 0.01320 +0.00237
−0.00244

+0.00157
−0.00068 0.00016 0.00355

( -0.92 , -0.90 ) 0.14365 0.00974 +0.00163
−0.00170

+0.00096
−0.00041 0.00009 0.00230

( -0.90 , -0.86 ) 0.10856 0.00542 +0.00134
−0.00139

+0.00069
−0.00029 0.00007 0.00176

( -0.86 , -0.80 ) 0.06336 0.00253 +0.00089
−0.00089

+0.00037
−0.00016 0.00003 0.00106

( -0.80 , -0.72 ) 0.04624 0.00191 +0.00072
−0.00071

+0.00025
−0.00010 0.00002 0.00081

( -0.72 , -0.60 ) 0.03219 0.00117 +0.00054
−0.00052

+0.00016
−0.00006 0.00002 0.00059

( -0.60 , -0.36 ) 0.02175 0.00059 +0.00037
−0.00038

+0.00009
−0.00004 0.00001 0.00041

( -0.36 , 0.00 ) 0.01781 0.00054 +0.00032
−0.00032

+0.00006
−0.00003 0.00000 0.00036

( 0.00 , 0.36 ) 0.01689 0.00041 +0.00031
−0.00031

+0.00004
−0.00001 0.00000 0.00035

( 0.36 , 0.60 ) 0.02109 0.00056 +0.00039
−0.00039

+0.00004
−0.00002 0.00000 0.00042

( 0.60 , 0.72 ) 0.02729 0.00093 +0.00050
−0.00050

+0.00005
−0.00003 0.00001 0.00052

( 0.72 , 0.80 ) 0.03679 0.00134 +0.00068
−0.00066

+0.00008
−0.00004 0.00002 0.00068

( 0.80 , 0.86 ) 0.04944 0.00191 +0.00092
−0.00091

+0.00011
−0.00005 0.00001 0.00090

( 0.86 , 0.90 ) 0.07453 0.00290 +0.00144
−0.00142

+0.00017
−0.00008 0.00021 0.00133

( 0.90 , 0.92 ) 0.09419 0.00491 +0.00182
−0.00178

+0.00023
−0.00010 0.00041 0.00166

( 0.92 , 0.94 ) 0.08416 0.00474 +0.00158
−0.00159

+0.00021
−0.00010 0.00003 0.00142

( 0.94 , 0.96 ) 0.09007 0.00465 +0.00168
−0.00173

+0.00024
−0.00009 0.00015 0.00134

( 0.96 , 0.98 ) 0.11638 0.00529 +0.00241
−0.00232

+0.00026
−0.00017 0.00019 0.00100

( 0.98 , 1.00 ) 23.39142 0.01647 +0.02887
−0.02891

+0.01392
−0.00549 0.00001 0.03099

Table 6.16: Numerical values of the TEEC function together with statistical and
systematic uncertainties for HT2 > 3500 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -4.02732 0.00110 +0.02227

−0.02147
+0.04173
−0.01220 0.00775 0.01788

( -0.98 , -0.96 ) 1.67287 0.00088 +0.00732
−0.00729

+0.00337
−0.00083 0.00328 0.00193

( -0.96 , -0.94 ) 0.77286 0.00063 +0.00352
−0.00327

+0.00289
−0.00064 0.00128 0.00050

( -0.94 , -0.92 ) 0.44932 0.00050 +0.00222
−0.00206

+0.00185
−0.00042 0.00070 0.00020

( -0.92 , -0.90 ) 0.28223 0.00044 +0.00147
−0.00138

+0.00124
−0.00029 0.00040 0.00010

( -0.90 , -0.88 ) 0.19498 0.00036 +0.00103
−0.00099

+0.00087
−0.00020 0.00025 0.00006

( -0.88 , -0.86 ) 0.14509 0.00032 +0.00077
−0.00074

+0.00065
−0.00016 0.00017 0.00004

( -0.86 , -0.84 ) 0.11290 0.00030 +0.00060
−0.00058

+0.00051
−0.00012 0.00013 0.00002

( -0.84 , -0.82 ) 0.09109 0.00027 +0.00048
−0.00047

+0.00041
−0.00010 0.00010 0.00002

( -0.82 , -0.80 ) 0.07550 0.00024 +0.00040
−0.00039

+0.00034
−0.00008 0.00007 0.00001

( -0.80 , -0.78 ) 0.06339 0.00023 +0.00034
−0.00033

+0.00029
−0.00007 0.00006 0.00001

( -0.78 , -0.76 ) 0.05458 0.00022 +0.00030
−0.00029

+0.00025
−0.00006 0.00005 0.00001

( -0.76 , -0.74 ) 0.04697 0.00020 +0.00026
−0.00025

+0.00021
−0.00005 0.00004 0.00001
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( -0.74 , -0.72 ) 0.04126 0.00019 +0.00023
−0.00022

+0.00019
−0.00005 0.00003 0.00001

( -0.72 , -0.70 ) 0.03668 0.00018 +0.00021
−0.00020

+0.00017
−0.00004 0.00002 0.00001

( -0.70 , -0.68 ) 0.03257 0.00018 +0.00019
−0.00018

+0.00015
−0.00004 0.00002 0.00001

( -0.68 , -0.66 ) 0.02947 0.00017 +0.00017
−0.00017

+0.00013
−0.00004 0.00002 0.00000

( -0.66 , -0.64 ) 0.02633 0.00016 +0.00016
−0.00016

+0.00012
−0.00003 0.00001 0.00000

( -0.64 , -0.62 ) 0.02408 0.00015 +0.00015
−0.00014

+0.00011
−0.00003 0.00001 0.00000

( -0.62 , -0.60 ) 0.02158 0.00016 +0.00013
−0.00013

+0.00010
−0.00003 0.00001 0.00000

( -0.60 , -0.58 ) 0.01956 0.00015 +0.00012
−0.00012

+0.00009
−0.00002 0.00001 0.00000

( -0.58 , -0.56 ) 0.01810 0.00014 +0.00012
−0.00011

+0.00008
−0.00002 0.00001 0.00000

( -0.56 , -0.54 ) 0.01680 0.00014 +0.00011
−0.00011

+0.00008
−0.00002 0.00001 0.00000

( -0.54 , -0.52 ) 0.01546 0.00014 +0.00010
−0.00010

+0.00007
−0.00002 0.00001 0.00000

( -0.52 , -0.50 ) 0.01435 0.00013 +0.00009
−0.00009

+0.00007
−0.00002 0.00000 0.00000

( -0.50 , -0.48 ) 0.01323 0.00013 +0.00009
−0.00009

+0.00006
−0.00002 0.00000 0.00000

( -0.48 , -0.46 ) 0.01182 0.00013 +0.00008
−0.00008

+0.00005
−0.00001 0.00000 0.00000

( -0.46 , -0.44 ) 0.01125 0.00013 +0.00007
−0.00008

+0.00005
−0.00001 0.00000 0.00000

( -0.44 , -0.42 ) 0.01042 0.00012 +0.00007
−0.00007

+0.00005
−0.00001 0.00000 0.00000

( -0.42 , -0.40 ) 0.00974 0.00012 +0.00007
−0.00007

+0.00004
−0.00001 0.00000 0.00000

( -0.40 , -0.38 ) 0.00915 0.00012 +0.00006
−0.00006

+0.00004
−0.00001 0.00000 0.00000

( -0.38 , -0.36 ) 0.00838 0.00012 +0.00006
−0.00006

+0.00004
−0.00001 0.00000 0.00000

( -0.36 , -0.34 ) 0.00758 0.00011 +0.00005
−0.00005

+0.00003
−0.00001 0.00000 0.00000

( -0.34 , -0.32 ) 0.00706 0.00011 +0.00005
−0.00005

+0.00003
−0.00001 0.00000 0.00000

( -0.32 , -0.30 ) 0.00650 0.00011 +0.00004
−0.00004

+0.00003
−0.00001 0.00000 0.00000

( -0.30 , -0.28 ) 0.00601 0.00011 +0.00004
−0.00004

+0.00003
−0.00001 0.00000 0.00000

( -0.28 , -0.26 ) 0.00559 0.00011 +0.00004
−0.00004

+0.00003
−0.00001 0.00000 0.00000

( -0.26 , -0.24 ) 0.00510 0.00011 +0.00004
−0.00004

+0.00002
−0.00001 0.00000 0.00000

( -0.24 , -0.22 ) 0.00458 0.00011 +0.00003
−0.00003

+0.00002
−0.00001 0.00000 0.00000

( -0.22 , -0.20 ) 0.00400 0.00011 +0.00003
−0.00003

+0.00002
−0.00001 0.00000 0.00000

( -0.20 , -0.18 ) 0.00377 0.00011 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.18 , -0.16 ) 0.00344 0.00011 +0.00002
−0.00002

+0.00002
−0.00000 0.00000 0.00000

( -0.16 , -0.14 ) 0.00281 0.00011 +0.00002
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.14 , -0.12 ) 0.00259 0.00011 +0.00002
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.12 , -0.10 ) 0.00206 0.00010 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.10 , -0.08 ) 0.00165 0.00011 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.08 , -0.06 ) 0.00134 0.00010 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.06 , -0.04 ) 0.00084 0.00011 +0.00001
−0.00001

+0.00000
−0.00000 0.00000 0.00000

( -0.04 , -0.02 ) 0.00078 0.00010 +0.00001
−0.00001

+0.00000
−0.00000 0.00000 0.00000

( -0.02 , 0.00 ) 0.00025 0.00010 +0.00000
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.17: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for HT2 > 1000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -4.30357 0.00150 +0.02665

−0.02543
+0.04332
−0.01168 0.00775 0.01710

( -0.98 , -0.96 ) 1.75801 0.00118 +0.00841
−0.00825

+0.00359
−0.00106 0.00348 0.00172

( -0.96 , -0.94 ) 0.82003 0.00085 +0.00409
−0.00372

+0.00308
−0.00056 0.00120 0.00051

( -0.94 , -0.92 ) 0.47942 0.00068 +0.00258
−0.00236

+0.00192
−0.00033 0.00063 0.00023
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( -0.92 , -0.90 ) 0.30404 0.00058 +0.00172
−0.00160

+0.00126
−0.00022 0.00037 0.00012

( -0.90 , -0.88 ) 0.21126 0.00050 +0.00121
−0.00115

+0.00088
−0.00016 0.00025 0.00007

( -0.88 , -0.86 ) 0.15708 0.00044 +0.00090
−0.00087

+0.00065
−0.00012 0.00018 0.00005

( -0.86 , -0.84 ) 0.12207 0.00040 +0.00069
−0.00067

+0.00051
−0.00010 0.00013 0.00003

( -0.84 , -0.82 ) 0.09887 0.00037 +0.00056
−0.00054

+0.00041
−0.00008 0.00010 0.00003

( -0.82 , -0.80 ) 0.08180 0.00034 +0.00046
−0.00044

+0.00034
−0.00007 0.00007 0.00002

( -0.80 , -0.76 ) 0.06418 0.00019 +0.00035
−0.00034

+0.00027
−0.00006 0.00005 0.00002

( -0.76 , -0.72 ) 0.04798 0.00017 +0.00026
−0.00025

+0.00020
−0.00004 0.00003 0.00001

( -0.72 , -0.68 ) 0.03778 0.00016 +0.00021
−0.00020

+0.00016
−0.00003 0.00002 0.00001

( -0.68 , -0.64 ) 0.03027 0.00015 +0.00017
−0.00017

+0.00013
−0.00003 0.00002 0.00001

( -0.64 , -0.60 ) 0.02491 0.00014 +0.00014
−0.00014

+0.00010
−0.00002 0.00001 0.00001

( -0.60 , -0.56 ) 0.02049 0.00013 +0.00012
−0.00012

+0.00009
−0.00002 0.00001 0.00000

( -0.56 , -0.52 ) 0.01748 0.00012 +0.00010
−0.00011

+0.00007
−0.00002 0.00001 0.00000

( -0.52 , -0.48 ) 0.01507 0.00012 +0.00009
−0.00009

+0.00006
−0.00001 0.00000 0.00000

( -0.48 , -0.44 ) 0.01246 0.00012 +0.00007
−0.00008

+0.00005
−0.00001 0.00000 0.00000

( -0.44 , -0.40 ) 0.01081 0.00012 +0.00006
−0.00007

+0.00005
−0.00001 0.00000 0.00000

( -0.40 , -0.36 ) 0.00960 0.00011 +0.00006
−0.00006

+0.00004
−0.00001 0.00000 0.00000

( -0.36 , -0.32 ) 0.00796 0.00011 +0.00005
−0.00005

+0.00003
−0.00001 0.00000 0.00000

( -0.32 , -0.28 ) 0.00685 0.00011 +0.00004
−0.00004

+0.00003
−0.00001 0.00000 0.00000

( -0.28 , -0.24 ) 0.00581 0.00011 +0.00004
−0.00004

+0.00002
−0.00001 0.00000 0.00000

( -0.24 , -0.20 ) 0.00459 0.00011 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.20 , -0.16 ) 0.00391 0.00010 +0.00002
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.16 , -0.12 ) 0.00286 0.00010 +0.00002
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.12 , -0.08 ) 0.00202 0.00011 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.08 , -0.04 ) 0.00118 0.00010 +0.00001
−0.00001

+0.00000
−0.00000 0.00000 0.00000

( -0.04 , 0.00 ) 0.00051 0.00011 +0.00000
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.18: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 1000 GeV < HT2 < 1200 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -3.82885 0.00224 +0.02415

−0.02459
+0.04010
−0.01127 0.00746 0.02181

( -0.98 , -0.96 ) 1.61787 0.00178 +0.00815
−0.00884

+0.00285
−0.00077 0.00330 0.00278

( -0.96 , -0.94 ) 0.73982 0.00125 +0.00392
−0.00391

+0.00279
−0.00054 0.00113 0.00082

( -0.94 , -0.92 ) 0.42879 0.00100 +0.00252
−0.00243

+0.00176
−0.00033 0.00050 0.00037

( -0.92 , -0.90 ) 0.26523 0.00085 +0.00165
−0.00158

+0.00114
−0.00021 0.00024 0.00019

( -0.90 , -0.88 ) 0.18227 0.00072 +0.00116
−0.00111

+0.00080
−0.00014 0.00014 0.00011

( -0.88 , -0.86 ) 0.13604 0.00066 +0.00087
−0.00083

+0.00060
−0.00011 0.00009 0.00007

( -0.86 , -0.84 ) 0.10699 0.00060 +0.00069
−0.00066

+0.00047
−0.00009 0.00006 0.00005

( -0.84 , -0.82 ) 0.08554 0.00055 +0.00055
−0.00053

+0.00038
−0.00007 0.00004 0.00004

( -0.82 , -0.80 ) 0.07101 0.00050 +0.00045
−0.00044

+0.00031
−0.00006 0.00003 0.00003

( -0.80 , -0.76 ) 0.05497 0.00028 +0.00035
−0.00034

+0.00024
−0.00004 0.00002 0.00002

( -0.76 , -0.72 ) 0.04152 0.00025 +0.00026
−0.00026

+0.00019
−0.00004 0.00001 0.00002

( -0.72 , -0.68 ) 0.03234 0.00024 +0.00021
−0.00020

+0.00015
−0.00003 0.00001 0.00001

( -0.68 , -0.64 ) 0.02614 0.00021 +0.00017
−0.00017

+0.00012
−0.00003 0.00001 0.00001

( -0.64 , -0.60 ) 0.02132 0.00020 +0.00014
−0.00014

+0.00010
−0.00003 0.00000 0.00001
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( -0.60 , -0.56 ) 0.01741 0.00020 +0.00012
−0.00012

+0.00008
−0.00002 0.00000 0.00001

( -0.56 , -0.52 ) 0.01523 0.00019 +0.00010
−0.00010

+0.00007
−0.00002 0.00000 0.00001

( -0.52 , -0.48 ) 0.01273 0.00017 +0.00009
−0.00009

+0.00006
−0.00002 0.00000 0.00000

( -0.48 , -0.44 ) 0.01065 0.00017 +0.00007
−0.00007

+0.00005
−0.00002 0.00000 0.00000

( -0.44 , -0.40 ) 0.00979 0.00017 +0.00007
−0.00007

+0.00005
−0.00002 0.00000 0.00000

( -0.40 , -0.36 ) 0.00798 0.00017 +0.00006
−0.00005

+0.00004
−0.00001 0.00000 0.00000

( -0.36 , -0.32 ) 0.00681 0.00016 +0.00005
−0.00005

+0.00003
−0.00001 0.00000 0.00000

( -0.32 , -0.28 ) 0.00580 0.00016 +0.00004
−0.00004

+0.00003
−0.00001 0.00000 0.00000

( -0.28 , -0.24 ) 0.00499 0.00016 +0.00004
−0.00003

+0.00002
−0.00001 0.00000 0.00000

( -0.24 , -0.20 ) 0.00413 0.00016 +0.00003
−0.00003

+0.00002
−0.00001 0.00000 0.00000

( -0.20 , -0.16 ) 0.00340 0.00015 +0.00002
−0.00002

+0.00002
−0.00001 0.00000 0.00000

( -0.16 , -0.12 ) 0.00276 0.00015 +0.00002
−0.00002

+0.00001
−0.00001 0.00000 0.00000

( -0.12 , -0.08 ) 0.00158 0.00015 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.08 , -0.04 ) 0.00110 0.00015 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.04 , 0.00 ) 0.00070 0.00017 +0.00001
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.19: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 1200 GeV < HT2 < 1400 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -3.44871 0.00344 +0.02441

−0.02370
+0.04192
−0.01373 0.00786 0.03190

( -0.98 , -0.96 ) 1.49143 0.00275 +0.00861
−0.00850

+0.00503
−0.00143 0.00346 0.00820

( -0.96 , -0.94 ) 0.67624 0.00192 +0.00426
−0.00443

+0.00249
−0.00042 0.00130 0.00255

( -0.94 , -0.92 ) 0.38492 0.00151 +0.00264
−0.00267

+0.00153
−0.00024 0.00071 0.00114

( -0.92 , -0.90 ) 0.23797 0.00124 +0.00174
−0.00170

+0.00101
−0.00015 0.00039 0.00059

( -0.90 , -0.88 ) 0.16156 0.00112 +0.00122
−0.00115

+0.00071
−0.00010 0.00023 0.00034

( -0.88 , -0.86 ) 0.12051 0.00098 +0.00091
−0.00084

+0.00053
−0.00007 0.00015 0.00023

( -0.86 , -0.84 ) 0.09358 0.00084 +0.00070
−0.00064

+0.00041
−0.00005 0.00011 0.00016

( -0.84 , -0.82 ) 0.07404 0.00077 +0.00055
−0.00050

+0.00033
−0.00004 0.00007 0.00012

( -0.82 , -0.80 ) 0.06213 0.00072 +0.00046
−0.00041

+0.00027
−0.00003 0.00006 0.00009

( -0.80 , -0.76 ) 0.04829 0.00041 +0.00036
−0.00031

+0.00021
−0.00002 0.00004 0.00007

( -0.76 , -0.72 ) 0.03602 0.00036 +0.00027
−0.00023

+0.00016
−0.00002 0.00002 0.00005

( -0.72 , -0.68 ) 0.02775 0.00033 +0.00021
−0.00018

+0.00012
−0.00001 0.00002 0.00004

( -0.68 , -0.64 ) 0.02372 0.00033 +0.00019
−0.00016

+0.00010
−0.00001 0.00001 0.00003

( -0.64 , -0.60 ) 0.01847 0.00031 +0.00015
−0.00012

+0.00008
−0.00001 0.00001 0.00002

( -0.60 , -0.56 ) 0.01561 0.00029 +0.00013
−0.00011

+0.00007
−0.00001 0.00001 0.00002

( -0.56 , -0.52 ) 0.01326 0.00028 +0.00011
−0.00009

+0.00006
−0.00000 0.00000 0.00002

( -0.52 , -0.48 ) 0.01150 0.00026 +0.00010
−0.00008

+0.00005
−0.00000 0.00000 0.00001

( -0.48 , -0.44 ) 0.00978 0.00027 +0.00008
−0.00007

+0.00004
−0.00000 0.00000 0.00001

( -0.44 , -0.40 ) 0.00828 0.00026 +0.00007
−0.00006

+0.00004
−0.00000 0.00000 0.00001

( -0.40 , -0.36 ) 0.00707 0.00025 +0.00006
−0.00005

+0.00003
−0.00000 0.00000 0.00001

( -0.36 , -0.32 ) 0.00607 0.00024 +0.00005
−0.00005

+0.00003
−0.00000 0.00000 0.00001

( -0.32 , -0.28 ) 0.00490 0.00023 +0.00004
−0.00004

+0.00002
−0.00000 0.00000 0.00001

( -0.28 , -0.24 ) 0.00443 0.00024 +0.00004
−0.00003

+0.00002
−0.00000 0.00000 0.00001

( -0.24 , -0.20 ) 0.00351 0.00024 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.20 , -0.16 ) 0.00298 0.00022 +0.00003
−0.00002

+0.00001
−0.00000 0.00000 0.00000
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( -0.16 , -0.12 ) 0.00245 0.00023 +0.00002
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.12 , -0.08 ) 0.00170 0.00023 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.08 , -0.04 ) 0.00067 0.00023 +0.00001
−0.00001

+0.00000
−0.00000 0.00000 0.00000

( -0.04 , 0.00 ) 0.00046 0.00026 +0.00000
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.20: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 1400 GeV < HT2 < 1600 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -3.12065 0.00509 +0.02468

−0.02357
+0.04335
−0.01457 0.00895 0.01600

( -0.98 , -0.96 ) 1.38846 0.00390 +0.01058
−0.00940

+0.00472
−0.00178 0.00400 0.00133

( -0.96 , -0.94 ) 0.61788 0.00268 +0.00426
−0.00411

+0.00339
−0.00030 0.00118 0.00038

( -0.94 , -0.92 ) 0.34747 0.00205 +0.00256
−0.00251

+0.00191
−0.00012 0.00054 0.00016

( -0.92 , -0.90 ) 0.21232 0.00170 +0.00162
−0.00164

+0.00116
−0.00006 0.00026 0.00008

( -0.90 , -0.88 ) 0.14331 0.00158 +0.00109
−0.00115

+0.00079
−0.00003 0.00014 0.00005

( -0.88 , -0.86 ) 0.10554 0.00134 +0.00079
−0.00086

+0.00058
−0.00002 0.00009 0.00003

( -0.86 , -0.84 ) 0.07939 0.00121 +0.00058
−0.00064

+0.00043
−0.00001 0.00006 0.00002

( -0.84 , -0.82 ) 0.06738 0.00114 +0.00048
−0.00054

+0.00037
−0.00001 0.00004 0.00002

( -0.82 , -0.80 ) 0.05323 0.00102 +0.00037
−0.00042

+0.00029
−0.00001 0.00003 0.00001

( -0.80 , -0.76 ) 0.04186 0.00058 +0.00028
−0.00033

+0.00023
−0.00001 0.00002 0.00001

( -0.76 , -0.72 ) 0.03083 0.00053 +0.00021
−0.00024

+0.00017
−0.00000 0.00001 0.00001

( -0.72 , -0.68 ) 0.02449 0.00048 +0.00016
−0.00019

+0.00013
−0.00000 0.00001 0.00001

( -0.68 , -0.64 ) 0.02000 0.00045 +0.00013
−0.00015

+0.00011
−0.00000 0.00001 0.00000

( -0.64 , -0.60 ) 0.01623 0.00044 +0.00011
−0.00012

+0.00009
−0.00000 0.00000 0.00000

( -0.60 , -0.56 ) 0.01338 0.00041 +0.00009
−0.00010

+0.00007
−0.00000 0.00000 0.00000

( -0.56 , -0.52 ) 0.01210 0.00040 +0.00008
−0.00009

+0.00007
−0.00000 0.00000 0.00000

( -0.52 , -0.48 ) 0.00936 0.00039 +0.00006
−0.00007

+0.00005
−0.00000 0.00000 0.00000

( -0.48 , -0.44 ) 0.00893 0.00038 +0.00006
−0.00007

+0.00005
−0.00000 0.00000 0.00000

( -0.44 , -0.40 ) 0.00718 0.00036 +0.00005
−0.00006

+0.00004
−0.00000 0.00000 0.00000

( -0.40 , -0.36 ) 0.00622 0.00035 +0.00005
−0.00005

+0.00003
−0.00000 0.00000 0.00000

( -0.36 , -0.32 ) 0.00541 0.00034 +0.00004
−0.00005

+0.00003
−0.00000 0.00000 0.00000

( -0.32 , -0.28 ) 0.00409 0.00035 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.28 , -0.24 ) 0.00410 0.00035 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.24 , -0.20 ) 0.00349 0.00033 +0.00003
−0.00003

+0.00002
−0.00000 0.00000 0.00000

( -0.20 , -0.16 ) 0.00255 0.00033 +0.00002
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.16 , -0.12 ) 0.00143 0.00033 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.12 , -0.08 ) 0.00134 0.00034 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.08 , -0.04 ) 0.00095 0.00034 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

( -0.04 , 0.00 ) 0.00034 0.00037 +0.00000
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.21: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 1600 GeV < HT2 < 1800 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -2.82934 0.00705 +0.02390

−0.02332
+0.04216
−0.01477 0.00755 0.01882

( -0.98 , -0.96 ) 1.28860 0.00552 +0.00947
−0.00857

+0.00488
−0.00000 0.00362 0.00188
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( -0.96 , -0.94 ) 0.55821 0.00360 +0.00430
−0.00447

+0.00271
−0.00097 0.00088 0.00056

( -0.94 , -0.92 ) 0.32070 0.00290 +0.00252
−0.00267

+0.00153
−0.00056 0.00032 0.00026

( -0.92 , -0.90 ) 0.18713 0.00248 +0.00150
−0.00163

+0.00088
−0.00032 0.00014 0.00014

( -0.90 , -0.88 ) 0.12798 0.00211 +0.00107
−0.00113

+0.00060
−0.00022 0.00008 0.00009

( -0.88 , -0.86 ) 0.09372 0.00185 +0.00081
−0.00082

+0.00044
−0.00016 0.00005 0.00006

( -0.86 , -0.84 ) 0.07223 0.00168 +0.00063
−0.00063

+0.00034
−0.00013 0.00003 0.00004

( -0.84 , -0.80 ) 0.05197 0.00093 +0.00046
−0.00044

+0.00024
−0.00009 0.00002 0.00003

( -0.80 , -0.76 ) 0.03609 0.00078 +0.00031
−0.00030

+0.00017
−0.00006 0.00001 0.00002

( -0.76 , -0.72 ) 0.02769 0.00072 +0.00024
−0.00022

+0.00013
−0.00005 0.00001 0.00001

( -0.72 , -0.64 ) 0.01924 0.00041 +0.00017
−0.00016

+0.00009
−0.00004 0.00001 0.00001

( -0.64 , -0.56 ) 0.01300 0.00035 +0.00012
−0.00011

+0.00006
−0.00002 0.00000 0.00001

( -0.56 , -0.48 ) 0.00919 0.00032 +0.00009
−0.00007

+0.00004
−0.00002 0.00000 0.00000

( -0.48 , -0.36 ) 0.00682 0.00025 +0.00008
−0.00006

+0.00003
−0.00001 0.00000 0.00000

( -0.36 , -0.24 ) 0.00385 0.00024 +0.00005
−0.00003

+0.00002
−0.00001 0.00000 0.00000

( -0.24 , -0.12 ) 0.00213 0.00022 +0.00003
−0.00002

+0.00001
−0.00000 0.00000 0.00000

( -0.12 , 0.00 ) 0.00048 0.00024 +0.00001
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.22: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 1800 GeV < HT2 < 2000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -2.54755 0.00800 +0.02184

−0.02387
+0.04220
−0.01283 0.00801 0.02286

( -0.98 , -0.96 ) 1.18575 0.00637 +0.00916
−0.01130

+0.00308
−0.00204 0.00378 0.00656

( -0.96 , -0.94 ) 0.51443 0.00426 +0.00414
−0.00395

+0.00332
−0.00000 0.00115 0.00274

( -0.94 , -0.92 ) 0.27817 0.00348 +0.00255
−0.00218

+0.00198
−0.00000 0.00051 0.00138

( -0.92 , -0.90 ) 0.17017 0.00279 +0.00164
−0.00158

+0.00131
−0.00000 0.00026 0.00079

( -0.90 , -0.88 ) 0.11057 0.00244 +0.00107
−0.00107

+0.00090
−0.00000 0.00015 0.00048

( -0.88 , -0.86 ) 0.08363 0.00216 +0.00080
−0.00082

+0.00071
−0.00000 0.00010 0.00034

( -0.86 , -0.84 ) 0.06339 0.00198 +0.00059
−0.00062

+0.00056
−0.00000 0.00007 0.00025

( -0.84 , -0.80 ) 0.04371 0.00102 +0.00040
−0.00042

+0.00040
−0.00000 0.00004 0.00016

( -0.80 , -0.76 ) 0.03189 0.00092 +0.00028
−0.00030

+0.00030
−0.00000 0.00003 0.00011

( -0.76 , -0.72 ) 0.02380 0.00086 +0.00021
−0.00022

+0.00023
−0.00000 0.00002 0.00008

( -0.72 , -0.64 ) 0.01735 0.00049 +0.00015
−0.00016

+0.00017
−0.00001 0.00001 0.00006

( -0.64 , -0.56 ) 0.01086 0.00041 +0.00010
−0.00010

+0.00011
−0.00000 0.00001 0.00004

( -0.56 , -0.48 ) 0.00797 0.00038 +0.00007
−0.00007

+0.00008
−0.00000 0.00000 0.00003

( -0.48 , -0.36 ) 0.00612 0.00029 +0.00006
−0.00006

+0.00006
−0.00000 0.00000 0.00002

( -0.36 , -0.24 ) 0.00295 0.00027 +0.00003
−0.00003

+0.00003
−0.00000 0.00000 0.00001

( -0.24 , -0.12 ) 0.00204 0.00026 +0.00002
−0.00002

+0.00002
−0.00000 0.00000 0.00001

( -0.12 , 0.00 ) 0.00078 0.00027 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

Table 6.23: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 2000 GeV < HT2 < 2300 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -2.21693 0.01240 +0.02310

−0.01914
+0.04652
−0.01311 0.00859 0.02504

( -0.98 , -0.96 ) 1.07228 0.00999 +0.00973
−0.00810

+0.00749
−0.00232 0.00422 0.00500
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( -0.96 , -0.94 ) 0.44351 0.00681 +0.00459
−0.00373

+0.00362
−0.00130 0.00110 0.00144

( -0.94 , -0.92 ) 0.24673 0.00526 +0.00279
−0.00218

+0.00205
−0.00073 0.00064 0.00066

( -0.92 , -0.90 ) 0.14716 0.00406 +0.00177
−0.00137

+0.00122
−0.00043 0.00041 0.00035

( -0.90 , -0.88 ) 0.08331 0.00356 +0.00103
−0.00080

+0.00069
−0.00024 0.00024 0.00018

( -0.88 , -0.86 ) 0.07113 0.00323 +0.00088
−0.00069

+0.00059
−0.00021 0.00021 0.00014

( -0.86 , -0.84 ) 0.05249 0.00286 +0.00064
−0.00050

+0.00043
−0.00015 0.00016 0.00010

( -0.84 , -0.80 ) 0.03760 0.00160 +0.00045
−0.00035

+0.00031
−0.00011 0.00012 0.00007

( -0.80 , -0.76 ) 0.02812 0.00137 +0.00033
−0.00026

+0.00023
−0.00008 0.00009 0.00005

( -0.76 , -0.72 ) 0.01676 0.00124 +0.00019
−0.00016

+0.00014
−0.00005 0.00005 0.00003

( -0.72 , -0.64 ) 0.01334 0.00073 +0.00015
−0.00013

+0.00011
−0.00004 0.00004 0.00002

( -0.64 , -0.56 ) 0.00874 0.00065 +0.00010
−0.00009

+0.00007
−0.00003 0.00003 0.00001

( -0.56 , -0.48 ) 0.00624 0.00060 +0.00007
−0.00006

+0.00005
−0.00002 0.00002 0.00001

( -0.48 , -0.36 ) 0.00487 0.00044 +0.00006
−0.00005

+0.00004
−0.00002 0.00002 0.00001

( -0.36 , -0.24 ) 0.00296 0.00041 +0.00003
−0.00003

+0.00003
−0.00001 0.00001 0.00000

( -0.24 , -0.12 ) 0.00169 0.00041 +0.00002
−0.00002

+0.00001
−0.00001 0.00001 0.00000

( -0.12 , 0.00 ) 0.00071 0.00042 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00000

Table 6.24: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 2300 GeV < HT2 < 2600 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -1.86438 0.01737 +0.01978

−0.02155
+0.04272
−0.01356 0.00856 0.01440

( -0.98 , -0.96 ) 0.93649 0.01411 +0.00935
−0.00948

+0.00613
−0.00110 0.00430 0.00821

( -0.96 , -0.94 ) 0.36981 0.00848 +0.00392
−0.00451

+0.00257
−0.00052 0.00090 0.00324

( -0.94 , -0.92 ) 0.20334 0.00660 +0.00218
−0.00255

+0.00139
−0.00029 0.00031 0.00178

( -0.92 , -0.90 ) 0.12550 0.00569 +0.00134
−0.00161

+0.00085
−0.00018 0.00014 0.00110

( -0.90 , -0.88 ) 0.07662 0.00492 +0.00081
−0.00099

+0.00051
−0.00011 0.00007 0.00066

( -0.88 , -0.86 ) 0.04866 0.00414 +0.00050
−0.00063

+0.00032
−0.00007 0.00004 0.00042

( -0.86 , -0.84 ) 0.04378 0.00397 +0.00045
−0.00056

+0.00029
−0.00007 0.00003 0.00037

( -0.84 , -0.80 ) 0.02913 0.00215 +0.00029
−0.00037

+0.00019
−0.00005 0.00002 0.00024

( -0.80 , -0.76 ) 0.01750 0.00181 +0.00017
−0.00022

+0.00011
−0.00003 0.00001 0.00014

( -0.76 , -0.72 ) 0.01604 0.00163 +0.00016
−0.00020

+0.00010
−0.00004 0.00001 0.00013

( -0.72 , -0.64 ) 0.00956 0.00093 +0.00009
−0.00012

+0.00006
−0.00003 0.00000 0.00008

( -0.64 , -0.56 ) 0.00773 0.00085 +0.00008
−0.00009

+0.00005
−0.00003 0.00000 0.00006

( -0.56 , -0.48 ) 0.00465 0.00075 +0.00005
−0.00006

+0.00003
−0.00002 0.00000 0.00004

( -0.48 , -0.36 ) 0.00418 0.00058 +0.00004
−0.00005

+0.00003
−0.00002 0.00000 0.00003

( -0.36 , -0.24 ) 0.00273 0.00055 +0.00003
−0.00003

+0.00002
−0.00001 0.00000 0.00002

( -0.24 , -0.12 ) 0.00187 0.00055 +0.00002
−0.00002

+0.00001
−0.00001 0.00000 0.00001

( -0.12 , 0.00 ) 0.00012 0.00056 +0.00000
−0.00000

+0.00000
−0.00000 0.00000 0.00000

Table 6.25: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 2600 GeV < HT2 < 3000 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -1.53739 0.02549 +0.01909

−0.01958
+0.04707
−0.01239 0.00737 0.02188
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( -0.98 , -0.96 ) 0.80833 0.02020 +0.00970
−0.00943

+0.00854
−0.00179 0.00408 0.00873

( -0.96 , -0.94 ) 0.29614 0.01240 +0.00334
−0.00388

+0.00297
−0.00066 0.00133 0.00320

( -0.94 , -0.92 ) 0.16845 0.00959 +0.00207
−0.00231

+0.00170
−0.00037 0.00068 0.00182

( -0.92 , -0.90 ) 0.09437 0.00827 +0.00124
−0.00131

+0.00097
−0.00021 0.00036 0.00102

( -0.90 , -0.86 ) 0.05636 0.00450 +0.00076
−0.00079

+0.00059
−0.00013 0.00020 0.00061

( -0.86 , -0.80 ) 0.02541 0.00253 +0.00035
−0.00036

+0.00028
−0.00006 0.00008 0.00027

( -0.80 , -0.72 ) 0.01046 0.00158 +0.00015
−0.00015

+0.00012
−0.00002 0.00003 0.00011

( -0.72 , -0.60 ) 0.00836 0.00105 +0.00012
−0.00012

+0.00010
−0.00002 0.00003 0.00009

( -0.60 , -0.36 ) 0.00311 0.00057 +0.00005
−0.00005

+0.00004
−0.00001 0.00001 0.00003

( -0.36 , 0.00 ) 0.00096 0.00044 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00001

Table 6.26: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for 3000 GeV < HT2 < 3500 GeV.

cosϕ Value Stat. JES JER JAR MC Mod.
( -1.00 , -0.98 ) -1.06094 0.03387 +0.01747

−0.01808
+0.04384
−0.01477 0.00696 0.01366

( -0.98 , -0.96 ) 0.56234 0.02713 +0.00733
−0.00792

+0.00593
−0.00146 0.00316 0.00821

( -0.96 , -0.94 ) 0.22355 0.01786 +0.00315
−0.00350

+0.00297
−0.00071 0.00054 0.00335

( -0.94 , -0.92 ) 0.14089 0.01393 +0.00208
−0.00236

+0.00205
−0.00052 0.00028 0.00213

( -0.92 , -0.90 ) 0.04946 0.01068 +0.00081
−0.00088

+0.00076
−0.00020 0.00010 0.00075

( -0.90 , -0.86 ) 0.03403 0.00582 +0.00060
−0.00063

+0.00054
−0.00015 0.00007 0.00052

( -0.86 , -0.80 ) 0.01392 0.00296 +0.00026
−0.00027

+0.00023
−0.00007 0.00003 0.00022

( -0.80 , -0.72 ) 0.00945 0.00223 +0.00019
−0.00019

+0.00016
−0.00005 0.00002 0.00016

( -0.72 , -0.60 ) 0.00489 0.00138 +0.00010
−0.00010

+0.00008
−0.00003 0.00001 0.00008

( -0.60 , -0.36 ) 0.00066 0.00070 +0.00001
−0.00001

+0.00001
−0.00000 0.00000 0.00001

( -0.36 , 0.00 ) 0.00092 0.00058 +0.00002
−0.00002

+0.00002
−0.00000 0.00000 0.00002

Table 6.27: Numerical values of the ATEEC function together with statistical and
systematic uncertainties for HT2 > 3500 GeV.
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6.7 Theoretical predictions

The theoretical predictions for the TEEC function are calculated from the NNLO
3-jet cross sections obtained by M. Czakon, A. Mitov and R. Poncelet using pQCD
in powers of the strong coupling constant, αs(µR), [65]. Their calculations at NNLO
include NLO corrections and LO predictions compatible with the ones provided
by NLOJET++ [61, 62]. The value of αs(µR) which enters the partonic matrix-
element calculation is obtained by evolving the αs values provided by the PDF at
the Z boson mass scale, mZ = 91 GeV. Jets are reconstructed using the anti-kt
algorithm with R = 0.4 as implemented in FastJet [58], and the NNLO PDF
groups used to convolute the partonic cross sections are provided in the LHAPDF
[57] package, namely MMHT 2014 [78], NNPDF 3.0 [136], and CT14 [80]. It has
been proved that the calculations obtained with CT18 [137] coincide with those of
MMHT 2014 when evolving the nominal value αs(mZ) = 0.1180. They use the MS
scheme in the fixed-flavour number scheme for nf = 5.

The STRIPPER scheme [63, 64] introduced in Section 4.1 allows the calculation of
NNLO QCD corrections to 3-jet events. For this subtraction scheme, higher order
corrections are decomposed in different contributions, which are calculated sepa-
rately and then added all together to the LO prediction. The NLO correction is built
with the virtual-finite term VF, the real-finite term RF, and the unresolved terms
and convolutions UC. In addition, the NNLO correction is made of the double-virtual
finite term VVF, the double-real finite term RRF, the single-unresolved term SU,
the double-unresolved term DU, the real-virtual-finite term RVF, and finite remain-
ders FR. Figure 6.65 displays certain configurations of NNLO corrections to 3-jet
events for illustrative purposes only.

Figure 6.65: Feynman diagrams for gluon-gluon processes at 3-jet NNLO accuray in
pQCD. These particular configurations contribute to the RRF (left), RVF (middle),
and VVF (right) terms. They are depicted for illustrative purposes only and have
been provided through the courtesy of R. Poncelet.

Finite theoretical predictions for processes with incoming hadrons and totally inclu-
sive in the final state can be obtained at any order in pQCD. The cross section is
factorized into the partonic cross sections, σ̂ab, and the PDFs, fa/p(xa) and fb/p(xb),
where xa and xb are the fractional momenta carried by the incoming partons a and
b, respectively. The azimuthal angular range in the calculation is restricted in the
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calculation to | cosϕ| < 0.92 due to the finite resolution for the angular difference be-
tween jet pairs introduced by the jet algorithm. In the pQCD framework at NNLO,
the differential partonic cross section for a 2→ m partonic process is given by

dσ̂ab→m = dσB(m)
ab + dσVF(m)

ab + dσRF(m+1)
ab + dσUC(m)

ab + dσVVF(m)
ab +

dσRRF(m+2)
ab + dσSU(m+1)

ab + dσDU(m)
ab + dσRVF(m+1)

ab + dσFR(m)
ab .

The azimuthal cut avoids calculating the 2 → 2 partonic processes at Born level
and their virtual corrections for cosϕ distributions. Moreover, the contribution of
unbalanced 2-jet events in the range | cosϕ| < 0.92 is highly suppressed. Therefore,
the TEEC function can be simply calculated as the transverse energy-weighted 3-jet
cross section of produced jet pairs in cosϕ normalized to the 2-jet cross section. The
former is computed in this framework as

dΣ3jet

d cosϕ
=

jets∑
i,j

∫ part.∑
a,b

fa/pfb/p ⊗ dσ̂ab→3
ETiETj

E2
T

δ(cosϕ− cos∆φij)

where ⊗ denotes the convolution of the partonic cross sections with the parton
distribution functions. See more details in Section 2.1.

The renormalization and factorization scales, µR,F, inherent in any pQCD calcu-
lation with incoming hadrons, contribute to the cross section computation with
logarithmic terms as ln(µ2

R,F/Q
2) where Q is a physical hard scale. In order to keep

the perturbative framework reliable, these scales are taken to reflect the physical
hard scale Q. Therefore, the renormalization and factorization scales are set for
each event to the interaction scale of the partonic process given by the sum of the
transverse momentum of the outgoing partons, µR,F = ĤT.

In that situation, the strong coupling becomes indicative of the effective strength
of the short-distance interaction between partons. Furthermore, this scale choice
is event based, infrared safe and independent of the analysis constraints. In Born
kinematics, ĤT coincides with the event based scale, HT2. Recently, the authors
of Ref. [138] have found the central scale choice µR = ĤT to be clearly favoured
in terms of stability and convergence of the perturbative expansion for single jet
inclusive production and encourage using it for precision determination of QCD
parameters.

The treatment of the number of active flavours follows a mixed scheme in this
analysis. On the one hand, the fixed-order predictions are calculated in the fixed-
flavour number scheme for nf = 5, but on the other hand, the strong coupling αs

includes the top-quark flavour in the running. The proper transition rules for nf = 5
to nf = 6 are applied, so that the running of αs is a continuous function across top
quark mass threshold. Despite the lack of the top-quark flavour in the fixed-order
predictions, the effects from top-quark loops are not expected to be sizeable when
everything is treated consistently and the fraction of tt̄ dijets events is negligible for
the inclusive sample.

In order to fit the theoretical predictions in pQCD to the experimental results mea-
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sured by ATLAS, thus determining the strong coupling αs, the former must be gen-
erated with precision. 5×O(1013) events are generated for the calculation. In total,
around 200M CPU hours in the WLCG infrastructure were required to produce the
whole theoretical sample at NNLO in pQCD.

The pQCD predictions for the TEEC function are calculated at parton level only,
i.e. considering jets as collimated bunches of partons instead of hadrons. Therefore,
in order to compare with the experimental results at particle level, the predictions
have to be unfolded from the parton to the hadron (particle) level, correcting them
for non-pQCD effects, namely hadronization, underlying event (UE) and beam rem-
nants. See more details in Section 2.2. A bin-by-bin correcting method based on
correction factors is considered, where the factors are obtained using a Pythia 8.235
simulated sample with ATLAS A14 tune [73] and NNPDF 2.3 LO [77], which is
the same one used to unfold the measurements from detector to particle level.

The non-pQCD correction factors are just the ratio between the predictions simu-
lated at particle and parton level as implemented in Rivet, with the only difference
that in the parton-level predictions effects due to hadronization, multi-parton inter-
actions (MPI) and primordial kt are turned off. These factors correct the pQCD
prediction to the particle level by multiplying each cosϕ bin of the theoretical distri-
butions. They are also calculated using other tunes like the default one and the tune
4C [139]. Moreover, they are calculated too using a Herwig 7.2.1 simulated sample
with the default tune. The other tunes available, namely, BaryonicReconnection and
SoftTune, provide similar predictions. Figures 6.66 and 6.67 show the distributions
of these correction factors for the TEEC function. The non-pQCD effects are only
significant in the nearly self correlation limit, cosϕ > 0.86 where the factors can
reach a 5% deviation. In addition, to avoid statistical fluctuations spoiling the accu-
racy in the pQCD predictions, the Gaussian kernel smoothing technique, introduced
in Section 6.5, is applied in the range | cosϕ| < 0.86 to the non-pQCD correction
factor distributions.

The statistical uncertainty is below the one from measurements at NLO and comes
from two different sources. Namely, the one provided by the parton-level predictions
and the one from MC simulations generated with Pythia 8.235, required for the
bin-by-bin correcting method. The clear dependence of the predictions with the
strong coupling value αs(mZ) for each HT2 interval makes these observables suitable
to determine the fundamental QCD parameter at large scale regimes. Figures 6.68
to 6.73 show the particle-level pQCD predictions for the TEEC and ATEEC func-
tions at NLO, along with their dependence upon the strong coupling αs(mZ), using
MMHT 2014 as the nominal group of parton distribution functions. Unfortu-
nately, the current statistical uncertainties in the NNLO predictions do not match
the experimental accuracy. Therefore and in order to mitigate theoretical statistical
fluctuations, theoretical predictions at NNLO are presented with a coarser binning.
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Figure 6.66: Non-perturbative QCD correction factors, in inclusive (top) and ex-
clusive (bottom) HT2 bins, for the TEEC function obtained from MC simulated
samples with Pythia 8.235 and Herwig 7.2.1 event generator. They are only
significant in the nearly self correlation limit.
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Figure 6.67: Non-perturbative QCD correction factors, in exclusive HT2 bins, for
the TEEC function obtained from MC simulated samples with Pythia 8.235 and
Herwig 7.2.1 event generator. They are only significant in the nearly self correla-
tion limit.
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Figure 6.68: Dependence with αs(mZ) of the particle-level pQCD predictions at NLO
for the TEEC (top) and ATEEC (bottom) functions in the inclusive HT2 sample
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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Figure 6.69: Dependence with αs(mZ) of the particle-level pQCD predictions at
NLO for the TEEC (left) and ATEEC (right) functions in two exclusive HT2 bins
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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Figure 6.70: Dependence with αs(mZ) of the particle-level pQCD predictions at
NLO for the TEEC (left) and ATEEC (right) functions in two exclusive HT2 bins
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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Figure 6.71: Dependence with αs(mZ) of the particle-level pQCD predictions at
NLO for the TEEC (left) and ATEEC (right) functions in two exclusive HT2 bins
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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Figure 6.72: Dependence with αs(mZ) of the particle-level pQCD predictions at
NLO for the TEEC (left) and ATEEC (right) functions in two exclusive HT2 bins
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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Figure 6.73: Dependence with αs(mZ) of the particle-level pQCD predictions at
NLO for the TEEC (left) and ATEEC (right) functions in two exclusive HT2 bins
using MMHT 2014 PDF group. The clear dependence of the predictions with the
value αs(mZ) makes these observables suitable to determine the strong coupling.
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6.7. Theoretical predictions

6.7.1 Theoretical systematic uncertainties

The theoretical uncertainties are divided into statistical and systematic uncertain-
ties. The systematic uncertainties sources include the PDF parametrization, the
different MC tunes used to correct for non-pQCD effects, and the dependence of the
unphysical scales introduced in Section 2.1.

The choice of the theoretical scales gives rise to a scale uncertainty, which is cal-
culated varying the renormalization and factorization scales by a factor of two,
µR = xRĤT and µF = xFĤT, with the additional requirement 1/2 ≤ xR/xF ≤ 2 to
avoid large logarithmic contributions. This uncertainty improves significantly the
accuracy in the pQCD predictions when compared to those in Refs. [1, 2] which
reached up to 20% in the central plateau and were based on the choice µR = HT2/2.

The ambiguity in the MC tune used to correct for non-pQCD effects is computed as
the envelope of the differences of the particle-level theoretical predictions corrected
with the different tunes with respect to the nominal prediction, which uses ATLAS
tune A14 for the non-pQCD correction. The value of this uncertainty is below 1%
in the phase-space region where αs is determined.

In order to take into account the uncertainty on the PDF parameters, the PDFs are
varied following the set of replicas or eigenvectors of the covariance matrix provided
by each group, which come from fitted parameters at a confidence level of 68% or
90%. The propagation of the corresponding uncertainty to the observables is done
following the set of errors and combining them accordingly [78, 80, 136]. NNPDF
3.0 provides a set of N = 100 replicas; while MMHT 2014 and CT14 use a Hessian
type of error, providing a set of N = 25 and N = 28 eigenvectors, respectively, with
non-symmetric variations up and down.

The relative uncertainty at a confidence level of 68% for an observable H due to the
uncertainty in PDF parameter k is defined in Eq. (6.3) for each PDF group:

σMMHT
k =

|Hup
k −Hdown

k |
2H

; σNNPDF
k =

1√
N − 1

|Hk − ⟨H⟩|
H

;

σCT14
k =

|Hup
k −Hdown

k |
1.645 · 2H

.

(6.3)

The PDF parametrization uncertainties are then added in quadrature. Figures 6.74
and 6.75 show these uncertainties for the TEEC distributions at LO and NLO. The
relative uncertainty has a mild dependence with the perturbative order for all PDF
groups considered. Thus, they are not explicitly computed at NNLO in order to
save computational resources; instead, they are extrapolated from the NLO results.

The total theoretical uncertainty is then obtained by adding these uncertainties in
quadrature and shown in Figures 6.76 and 6.77. The NNLO corrections for the scale
choice µR,F = ĤT reduce the scale uncertainty down to 2% for the central plateau
of the TEEC function. This is the dominant uncertainty of the analysis. However,
the PDF parametrization uncertainty can increase up to 2% for high HT2 intervals.
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Figure 6.74: Theoretical relative uncertainty for the TEEC distributions at LO and
NLO in pQCD obtained from the PDF parameters using the PDF groups available,
in inclusive (top) and exclusive (bottom) HT2 bins. The PDF parametrization un-
certainty at NNLO is extrapolated from the NLO results applying the same relative
uncertainty to the NNLO nominal value.
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Figure 6.75: Theoretical relative uncertainty for the TEEC distributions at LO and
NLO in pQCD obtained from the PDF parameters using the PDF groups available,
in exclusive HT2 bins. The PDF parametrization uncertainty at NNLO is extrap-
olated from the NLO results applying the same relative uncertainty to the NNLO
nominal value.
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Figure 6.76: Total relative theoretical systematic uncertainty for the TEEC distri-
bution using MMHT 2014 PDF group, in inclusive (top) and exclusive (bottom)
HT2 bins, together with a breakdown on the general source uncertainties: PDF
parametrization, theoretical scale, non-pQCD tune and αs(mZ) variation. These
sources are added together in quadrature.
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Figure 6.77: Total relative theoretical systematic uncertainty for the TEEC dis-
tribution using MMHT 2014 PDF group, in exclusive HT2 bins, together with a
breakdown on the general source uncertainties: PDF parametrization, theoretical
scale, non-pQCD tune and αs(mZ) variation. These sources are added together in
quadrature.
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6.8 Comparison of theory and experiment

The experimental results for the TEEC and ATEEC functions are compared to
the pQCD predictions, once corrected for non-pQCD effects. Figures 6.78 to 6.83
show the ratio of the data to the theoretical predictions calculated using the PDF
groups available at NNLO in pQCD with αs(mZ) = 0.1180; taking into account all
theoretical and experimental uncertainties. The theoretical uncertainty is dominated
by the scale uncertainty in most of the phase space, therefore, all other sources are
depicted together under the label of non-scale uncertainty.

In addition, Figures 6.84 to 6.89 compare the experimental data to the pQCD pre-
dictions for each of the PDF groups available. In order to have an idea about the
size of the so-called K-factors, a comparison between the LO and NNLO predic-
tions to the NLO calculations is also presented. For higher perturbative orders, the
scale uncertainty is substantially reduced, improving the description of experimental
data. The dependence of the other theoretical uncertainties with the perturbative
order is mild, and therefore, they are not shown in the comparison. The statistical
uncertainties are shown with a grey shaded band when larger than the scale ones.

The agreement between theoretical predictions at NNLO and experimental data is
excellent over the whole phase space. The reduction of the scale uncertainties is
made evident from these figures, as well as the improvement of the description.
In particular, the collinear part, cosϕ > 0.80, shows a great improvement for all
HT2 bins. However, for the higher HT2 bins, and for some PDF sets, the NNLO
theoretical predictions are slightly above the data.

This trend in normalization is understood to be due to the limited accuracy of the
PDF determinations at high values of x, which are limited by the statistics and
larger systematic uncertainties of the measurements used to constrain these regions.
Indeed, the predictions for the TEEC functions vary less than 1% with the PDF set
choice for lower HT2 intervals, but around 2-3% for higher ones. Figure 6.90 com-
pares the theoretical predictions at NLO for the TEEC function. Notice that their
differences increase slightly at high-energy scales and that the results obtained with
CT18 coincide with those of MMHT 2014 for the whole phase space. The ratios
remain stable when higher order pQCD corrections are included in the calculations.
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Figure 6.78: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using MMHT 2014 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.79: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using NNPDF 3.0 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.80: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using CT14 PDF group, in inclusive and ex-
clusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180. The non-
scale uncertainty corresponds to the PDF parametrization uncertainty, the αs(mZ)
parameter uncertainty and the non-pQCD uncertainty from the MC model added
in quadrature. The theoretical uncertainty includes both non-scale and scale uncer-
tainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.81: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the ATEEC function obtained using MMHT 2014 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.82: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the ATEEC function obtained using NNPDF 3.0 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.83: Ratios of the unfolded data to the particle-level NNLO pQCD pre-
dictions for the ATEEC function obtained using CT14 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure 6.84: Theoretical predictions using MMHT 2014 PDF group for the TEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure 6.85: Theoretical predictions using NNPDF 3.0 PDF group for the TEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure 6.86: Theoretical predictions using CT14 PDF group for the TEEC functions
at LO (green) and NNLO (red) compared to the NLO calculations (blue), in inclu-
sive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180,
the coloured areas show the scale uncertainties, and the shaded area (grey) shows
the statistical uncertainties in the ratios between theoretical predictions. A compar-
ison of unfolded data to pQCD predictions is also presented, where the error bars
correpond to the experimental uncertainties.
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Figure 6.87: Theoretical predictions using MMHT 2014 PDF group for the ATEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure 6.88: Theoretical predictions using NNPDF 3.0 PDF group for the ATEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure 6.89: Theoretical predictions using the CT14 PDF group for the ATEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure 6.90: Theoretical predictions for the TEEC functions using NNPDF 3.0
(blue), CT14 (green), and CT18 (red) PDF groups compared to the calculations
using MMHT 2014, in inclusive and exclusive HT2 bins. Their differences increase
slightly at high-energy scales and that the results obtained with CT18 coincide with
those of MMHT 2014 for the whole phase space. The strong coupling constant is
set to αs(mZ) = 0.1180, the theoretical scale choice is µR,F = ĤT, and the shaded
areas show the statistical uncertainties in the ratios between theoretical predictions.
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Chapter 6. Asymptotic freedom beyond the TeV scale

6.9 Determination of the strong coupling

In physical analyses, there are fundamental parameters that characterize theoretical
predictions. These parameters can be estimated from a fit of theory to data, where
the former carries an analytical dependence with the parameter. Thus, the value
of the strong coupling is determined from the comparison of unfolded experimental
results with their theoretical predictions at NNLO in pQCD.

This comparison requires an analytical expression for the dependence of the theoret-
ical predictions with the αs(mZ) parameters provided by the PDFs. These functions
are obtained at NNLO by fitting each cosϕ bin to a cubic polynomial, i.e.

ti(αs) = t(cosϕi;αs) =
3∑

n=0

pn(cosϕi) α
n
s .

Figure 6.91 shows the results of fitting the dependence with αs(mZ) for a couple of
cosϕ bins in a given HT2 interval. Note that each group of PDFs provides different
values for the parameter, with MMHT 2014 having the widest range.
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Figure 6.91: Fit to a third-order polynomial in αs(mZ) considering cosϕ bins in the
1.8 TeV < HT2 < 2.0 TeV interval of the TEEC functions at NNLO using MMHT
2014 (top), NNPDF 3.0 (bottom left), and CT14 (bottom right) PDF groups.

The value of the fundamental QCD parameter is then extracted at different HT2

intervals by fitting these analytical predictions on αs(mZ) to the unfolded experi-
mental results for the TEEC functions, di = d(cosϕi). The estimator of the unknown
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6.9. Determination of the strong coupling

parameter αs is the one maximizing the following likelihood function:

L(d⃗;αs) =
bins∏
i=1

f(di;αs); f(di;αs) =
1√
2π∆2

i

exp

[
−(di − ti(αs))

2

2∆2
i

]
;

where the product acts for all independent bins in the histogram with measured data
points {di}. The value di is considered Gaussian distributed around the theoretical
prediction ti(αs) with variance ∆2

i = ∆d2i + ∆t2i , where ∆di is the experimental
statistical uncertainty and ∆ti is the theoretical statistical uncertainty.

In order to compensate for the effect of correlated uncertainties in the shape of the
distribution, nuisance parameters {λk} are introduced, one for each source of corre-
lated systematic uncertainty. These nuisance parameters shift the theory separately
and are assumed to be normally distributed. The analytical prediction is varied to

t̃i(αs) = ti(αs) +
corr.∑
k=1

λk∆di,k,

where ∆di,k is the systematic uncertainty of the experimental source k. It is im-
portant to note that, for those systematic sources which are asymmetric, the uncer-
tainty ∆di,k is then defined as the average of the up and down variations. The JES,
JER, JAR, and unfolding closure uncertainties are considered as correlated sources.
Therefore, 149 nuisance parameters are introduced in total. The MC model uncer-
tainty is not considered as a correlated source in order to extract the estimator with
a well-defined MC model. The final likelihood function is given by

L(d⃗;αs, λ⃗) =

{
bins∏
i=1

1√
2π∆2

i

exp

[
−(di − t̃i(αs))

2

2∆2
i

]}{corr.∏
k=1

1√
2π

exp

[
−λ

2
k

2

]}

Maximizing the likelihood function is tantamount to minimizing the χ2 function
defined in Eq. (6.4). The minimum of the χ2 function is found using techniques
implemented in the Minuit package and considering a 150-dimensional space, in
which 149 correspond to the nuisance parameters {λk} and one to the QCD param-
eter αs(mZ).

χ2(αs, λ⃗) =
bins∑
i=1

(di − t̃i(αs))
2

∆2
i

+
corr.∑
k=1

λ2k (6.4)

For both the TEEC and ATEEC functions, the fits to extract αs(mZ) are repeated
separately for each HT2 interval, thus determining a value of αs(mZ) for each energy
bin. The theoretical uncertainties are determined by shifting the theory distribu-
tions by each of the uncertainties separately, recalculating the functions ti(αs) and
determining a new value of αs(mZ). The uncertainty is determined by taking the
difference between this value and the nominal one. The PDF parametrization un-
certainties are combined following the recommendations introduced in Section 6.7
and the scale uncertainties are combined, taking the envelope with respect to the
nominal scale. The uncertainties due to the choice of the MC model in the unfolding
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Chapter 6. Asymptotic freedom beyond the TeV scale

and of the MC tune in the non-perturbative correction are estimated by repeating
the fit considering the data and theory distributions corrected with the other mod-
els and tunes, and taking the envelope with respect to the nominal fit. In addition,
given the fact that the dependence of the TEEC and ATEEC functions on the PDF
is small, a combined determination of αs and the PDF is not attempted [140].

The quality of the fit and the validity of the estimator of αs(mZ) come from the χ2

value. These values denoted with x follow the probability distribution:

f(x;Ndof) =
xNdof/2−1 e−x/2

2Ndof/2 Γ(Ndof/2)

where the gamma function generalizes the concept Γ(n) = (n − 1)! for n ∈ N
to real numbers. The parameter Ndof corresponds with the number of degrees of
freedom in the fit, which is the number of independent bins minus the number of
parameters extracted. The goodness-of-fit test says that the fit must be rejected
when the minimum χ2 value lies in the boundary of its probability distribution,
which translates into ∫ +∞

χ2

dxf(x;Ndof) ≤ α

where α = 0.05 determines by convention the threshold area. As a general approxi-
mation, a good fit satisfies the requirement χ2/Ndof ≃ 1 to validate the estimator.

6.9.1 Scale evolution of the coupling

In order to obtain physical quantities, each of the estimated values of αs(mZ) has to
be evolved to αs(Q). The interaction scale Q is the one considered as the nominal
renormalization and factorization scale in the calculation, µR,F = ĤT. The average
value of the scale ⟨ĤT⟩ is calculated at NNLO in pQCD for each of the HT2 intervals
through the differential cross section:

dσ2jet

dQ
=

∫ part.∑
a,b

fa/pfb/p ⊗ dσ̂ab→2 δ(Q− ĤT).

The theoretical distributions are calculated using the PDF groups available with the
nominal values of the strong coupling constant and the theoretical scales. Figure 6.92
shows the average value of the parton-level scale ĤT which is clearly correlated with
detector-level scale HT2.

The extracted values of αs(mZ) are then evolved to these average values using the
approximate analytic solution to the RGE for αs at NNLO in pQCD, formulated in
Eq. (2.1). The value of the beta coefficients can be found in Eq. (6.5) where nf is
the number of flavours with mass far below the scale Q, i.e. active flavours.

β0 = 11− 2

3
nf ; β1 = 102− 38

3
nf ; β2 =

2857

2
− 5033

18
nf −

325

54
n2

f . (6.5)
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6.9. Determination of the strong coupling

The proper transition rules for nf = 5 to nf = 6 are applied, so that the running of
αs is a continuous function across top quark mass threshold at scale mt = 173 GeV.
Additionally, the scale ΛQCD is determined in each case from the fitted value of the
strong coupling constant αs(mZ).
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Figure 6.92: Values of the average interaction scale ⟨ĤT⟩, for each of the exclusive
HT2 bins, calculated at NNLO in pQCD using the PDF groups available. The results
are fitted to a straight line (dashed line) with slope 1.03 ± 0.07, revealing that the
parton-level scale ĤT is correlated with detector-level scale HT2.

6.9.2 Correlations between fits

The correlations between the αs(mZ) results from the fit to the TEEC function and
that from the ATEEC function are evaluated using the bootstrap method mentioned
in Section 6.4. A set of 103 replicas of each distribution is obtained after the un-
folding and the fit is repeated for each. Each replica of the ATEEC distributions
is linked to the corresponding replica of the TEEC distribution, making the evalu-
ation of the correlations straightforward. Figure 6.93 shows the distributions of the
values of αs(mZ) obtained from fits to the set of replicas of the TEEC and ATEEC
functions.

The evaluation of the correlation is done following the usual definition of the Pear-
son correlation coefficient given by Eq. (6.6). This equation defines the correlation
coefficient between two populations X and Y with average values µX and µY and
standard deviations σX and σY , respectively.

ρXY =
⟨(X − µX)(Y − µY )⟩

σXσY
(6.6)
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Chapter 6. Asymptotic freedom beyond the TeV scale

Figure 6.94 shows the scatter plot for the values of αs(mZ) obtained from fits to
the TEEC function on the x-axis and those from fits to the ATEEC function on
y-axis, together with a linear fit to the scatter data. The result for the Pearson
correlation coefficient for the inclusive sample in HT2 is ρ = 0.86± 0.02. Thus, the
values determined from the TEEC and ATEEC functions are strongly correlated.
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Figure 6.93: Distributions of the values of αs(mZ) obtained from fitting each of the
103 replicas of the inclusive TEEC (left) and ATEEC (right) distributions to the
theoretical predictions using MMHT 2014 PDF group.
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Figure 6.94: Scatter plot of the values of αs(mZ) obtained from the HT2-inclusive
TEEC (x-axis) and ATEEC (y-axis) fit using MMHT 2014 PDF group. The points
are fitted to a first order polynomial, shown as a red line across the data. The result
for the Pearson correlation coefficient is ρ = 0.86± 0.02.
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6.9. Determination of the strong coupling

6.9.3 Fits to the TEEC function

The values of αs(mZ) extracted from a global fit to the TEEC function at NNLO as
well as the individual fits in each exclusive HT2 bin and in the fully inclusive sample
are summarized in Table 6.28. The theoretical predictions used for this extraction
use MMHT 2014 as the nominal PDF group, which is the one providing a wider
range of variations for αs(mZ). In addition, the extracted values using NNPDF 3.0
and CT14 as the PDF group are also presented in Tables 6.29 and 6.30, respectively.
The uncertainty derived from the χ2 fit includes both experimental and theoreti-
cal statistical uncertainties, along with the experimental systematic uncertainties
constrained by the nuisance parameters.

The χ2 values indicate that the agreement between the data and the theoretical
predictions is good in each exclusive HT2 bin and in the fully inclusive sample. The
critical value with a significance level of α = 0.05 for the global fit is χ2 = 289.0.
Thus, a slight tension arises in the global fit for certain PDF groups. This tension
comes from the drop at high energy scales of the fitted values of αs in exclusive bins.
However, this effect is not found when using CT14 PDF. The nuisance parameters
from the TEEC function fits are shown in Figures 6.95 and 6.96 and generally they
are found to be compatible with zero. Nevertheless, there are few exceptions like
the one associated to Flavour Response (i = 9), which is largely pulled, enhancing
the agreement between data and theory. The nuisance parameters which are usually
slightly pulled correspond to EtaIntercalibration Modelling (i = 2), Gjet GamESZee
(i = 10), and JAR (i = 148).

The correlation coefficients between nuisance parameters are shown in Figures 6.97
and 6.98. The fact that the correlation matrices have very small off-diagonal terms
indicates that the systematic sources are not significantly correlated between them.
Nevertheless, the nuisance parameters associated to Flavour Composition (i = 8)
and Flavour Response (i = 9) are slightly anti-correlated. This anti-correlation is
only significant when evaluating the uncertainties assuming the fraction of quark-
and gluon-initiated jets 0.5 ± 0.5 by default. Figures 6.102 to 6.101 compare the
experimental results with fitted theoretical predictions; the ones where the fitted
values of αs(mZ) and the nuisance parameters are already constrained.

The extracted values of the strong coupling constant αs(mZ) are in good agreement
with the 2022 world average value αs(mZ) = 0.1179 ± 0.0009 [11]. A comparison
of the results of αs is shown in Figure 6.105. The results from previous extractions
using LHC data [1, 2, 141–145] and Tevatron data [146, 147] are also shown, to-
gether with the world average band [11]. The values of αs are evolved from mZ to
the corresponding scale Q using the three-loop solution of the RGE, introduced in
Eq. (2.1), where the interaction scale is evaluated for each analysis at the central
value of the renormalization scale. Tables 6.31 to 6.33 summarize the extracted val-
ues of the physical strong coupling constant αs(Q) that enter the matrix elements
in the calculation.
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Chapter 6. Asymptotic freedom beyond the TeV scale

⟨Q
⟩

[G
eV

]
α

s(
m

Z
)

va
lu

e
(C

T
14

)
χ
2
/N

do
f

G
lo

ba
l

0.
11

96
±

0.
00

01
(s

ta
t.

)
±

0.
00

06
(s

ys
t.

)
+
0
.0
0
3
5

−
0
.0
0
1
0

(s
ca

le
)
±

0.
00

16
(p

ar
am

.)
±

0.
00

02
(t

un
e)
±

0.
00

06
(m

od
el

)
26

1.
7

/
25

1
In

cl
us

iv
e

0.
11

97
±

0.
00

03
(s

ta
t.

)
±

0.
00

08
(s

ys
t.

)
+
0
.0
0
3
4

−
0
.0
0
0
3

(s
ca

le
)
±

0.
00

15
(p

ar
am

.)
±

0.
00

02
(t

un
e)
±

0.
00

10
(m

od
el

)
18

.0
/

27
13

02
0.

11
93
±

0.
00

04
(s

ta
t.

)
±

0.
00

10
(s

ys
t.

)
+
0
.0
0
3
5

−
0
.0
0
0
2

(s
ca

le
)
±

0.
00

15
(p

ar
am

.)
±

0.
00

03
(t

un
e)
±

0.
00

08
(m

od
el

)
17

.2
/

27
15

18
0.

11
93
±

0.
00

03
(s

ta
t.

)
±

0.
00

10
(s

ys
t.

)
+
0
.0
0
3
2

−
0
.0
0
0
6

(s
ca

le
)
±

0.
00

16
(p

ar
am

.)
±

0.
00

04
(t

un
e)
±

0.
00

09
(m

od
el

)
15

.7
/

27
17

32
0.

12
06
±

0.
00

03
(s

ta
t.

)
±

0.
00

12
(s

ys
t.

)
+
0
.0
0
3
3

−
0
.0
0
0
5

(s
ca

le
)
±

0.
00

15
(p

ar
am

.)
±

0.
00

05
(t

un
e)
±

0.
00

10
(m

od
el

)
19

.3
/

27
19

44
0.

11
93
±

0.
00

04
(s

ta
t.

)
±

0.
00

13
(s

ys
t.

)
+
0
.0
0
3
6

−
0
.0
0
0
7

(s
ca

le
)
±

0.
00

17
(p

ar
am

.)
±

0.
00

06
(t

un
e)
±

0.
00

12
(m

od
el

)
23

.1
/

27
21

53
0.

11
92
±

0.
00

04
(s

ta
t.

)
±

0.
00

14
(s

ys
t.

)
+
0
.0
0
3
4

−
0
.0
0
0
6

(s
ca

le
)
±

0.
00

17
(p

ar
am

.)
±

0.
00

04
(t

un
e)
±

0.
00

11
(m

od
el

)
34

.1
/

27
23

96
0.

11
99
±

0.
00

04
(s

ta
t.

)
±

0.
00

14
(s

ys
t.

)
+
0
.0
0
3
7

−
0
.0
0
0
7

(s
ca

le
)
±

0.
00

19
(p

ar
am

.)
±

0.
00

12
(t

un
e)
±

0.
00

15
(m

od
el

)
29

.3
/

27
27

06
0.

11
85
±

0.
00

05
(s

ta
t.

)
±

0.
00

18
(s

ys
t.

)
+
0
.0
0
3
5

−
0
.0
0
0
8

(s
ca

le
)
±

0.
00

19
(p

ar
am

.)
±

0.
00

06
(t

un
e)
±

0.
00

14
(m

od
el

)
34

.1
/

27
30

42
0.

11
84
±

0.
00

06
(s

ta
t.

)
±

0.
00

19
(s

ys
t.

)
+
0
.0
0
3
3

−
0
.0
0
0
6

(s
ca

le
)
±

0.
00

20
(p

ar
am

.)
±

0.
00

02
(t

un
e)
±

0.
00

19
(m

od
el

)
32

.6
/

27
34

76
0.

11
61
±

0.
00

09
(s

ta
t.

)
±

0.
00

24
(s

ys
t.

)
+
0
.0
0
4
1

−
0
.0
0
1
9

(s
ca

le
)
±

0.
00

23
(p

ar
am

.)
±

0.
00

03
(t

un
e)
±

0.
00

28
(m

od
el

)
14

.7
/

13
41

89
0.

11
23
±

0.
00

19
(s

ta
t.

)
±

0.
00

29
(s

ys
t.

)
+
0
.0
0
4
7

−
0
.0
0
2
5

(s
ca

le
)
±

0.
00

33
(p

ar
am

.)
±

0.
00

04
(t

un
e)
±

0.
00

42
(m

od
el

)
14

.1
/

13

Ta
bl

e
6.

30
:

V
al

ue
s

of
th

e
st

ro
ng

co
up

lin
g

co
ns

ta
nt

at
th

e
Z

bo
so

n
m

as
s

sc
al

e,
α

s(
m

Z
),

ob
ta

in
ed

fr
om

fit
s

to
th

e
T

E
E

C
fu

nc
ti

on
at

N
N

LO
us

in
g

C
T

14
P

D
F

gr
ou

p.
T

he
va

lu
es

of
th

e
av

er
ag

e
in

te
ra

ct
io

n
sc

al
e
⟨Q
⟩

ar
e

sh
ow

n
in

th
e

fir
st

co
lu

m
n,

w
hi

le
th

e
va

lu
es

of
th

e
χ
2

fu
nc

ti
on

at
th

e
m

in
im

um
ar

e
sh

ow
n

in
th

e
th

ir
d

co
lu

m
n.

T
he

la
be

l
(s

ta
t.

)
in

cl
ud

es
th

e
ex

pe
ri

m
en

ta
l

an
d

th
eo

re
ti

ca
l

st
at

is
ti

ca
l

un
ce

rt
ai

nt
ie

s,
w

he
re

as
th

e
la

be
l

(s
ys

t.
)

in
di

ca
te

s
on

ly
th

e
ex

pe
ri

m
en

ta
l

sy
st

em
at

ic
un

ce
rt

ai
nt

ie
s

ad
de

d
in

qu
ad

ra
tu

re
.

T
he

un
ce

rt
ai

nt
y

re
la

te
d

to
th

e
M

C
m

od
el

in
th

e
IB

un
fo

ld
in

g
is

di
sp

la
ye

d
se

pa
ra

te
ly

as
(m

od
el

)
an

d
th

e
on

e
re

fe
rr

ed
to

as
(t

un
e)

is
re

la
te

d
to

th
e

no
n-

pQ
C

D
co

rr
ec

ti
on

s.

196



6.9. Determination of the strong coupling
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Figure 6.95: Values of the nuisance parameters obtained from individual fits, in
inclusive (top) and exclusive (bottom) HT2 bins, to the TEEC function at NNLO
using MMHT 2014 PDF group. They lie within the ±1σ contour (green band) or
±2σ contour (yellow band), and are generally found to be compatible with zero.
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Figure 6.96: Values of the nuisance parameters obtained from individual fits, in
exclusive HT2 bins, to the TEEC function at NNLO using MMHT 2014 PDF group.
They lie within the ±1σ contour (green band) or ±2σ contour (yellow band), and
are generally found to be compatible with zero.
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Figure 6.97: Correlation coefficients between the nuisance parameters obtained from
individual fits, in inclusive (top) and exclusive (bottom) HT2 bins, to the TEEC
function at NNLO using MMHT 2014 PDF group. The fact that the correlation
matrices have very small off-diagonal terms indicates that the systematic sources
are not significantly correlated between them.
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Figure 6.98: Correlation coefficients between the nuisance parameters obtained from
individual fits, in exclusive HT2 bins, to the TEEC function at NNLO using MMHT
2014 PDF group. The fact that the correlation matrices have very small off-diagonal
terms indicates that the systematic sources are not significantly correlated between
them.
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Figure 6.99: Comparison of the experimental results for the TEEC function, in in-
clusive and exclusive HT2 bins, and their fitted theoretical predictions at NNLO
in pQCD using MMHT 2014 PDF group. The green band shows the theoretical
uncertainties while the error bars show the experimental uncertainties, where corre-
lations between the fit parameters have been taken into account.
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Figure 6.100: Comparison of the experimental results for the TEEC function, in
exclusive HT2 bins, and their fitted theoretical predictions at NNLO in pQCD using
MMHT 2014 PDF group. The green band shows the theoretical uncertainties while
the error bars show the experimental uncertainties, where correlations between the
fit parameters have been taken into account.
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Figure 6.101: Comparison of the experimental results for the TEEC function, in
exclusive HT2 bins, and their fitted theoretical predictions at NNLO in pQCD using
MMHT 2014 PDF group. The green band shows the theoretical uncertainties while
the error bars show the experimental uncertainties, where correlations between the
fit parameters have been taken into account.
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Figure 6.102: Ratios of the data to the fitted theoretical predictions at NNLO for
the TEEC measurements, obtained using MMHT 2014 PDF group, in inclusive and
exclusive HT2 bins. The green band shows the theoretical uncertainties, dominated
by the scale variations, while the error bars show the experimental uncertainties,
where correlations between the fit parameters have been taken into account.
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Figure 6.103: Ratios of the data to the fitted theoretical predictions at NNLO for
the TEEC measurements, obtained using NNPDF 3.0 PDF group, in inclusive and
exclusive HT2 bins. The green band shows the theoretical uncertainties, dominated
by the scale variations, while the error bars show the experimental uncertainties,
where correlations between the fit parameters have been taken into account.
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Figure 6.104: Ratios of the data to the fitted theoretical predictions at NNLO for the
TEEC measurements, obtained using CT14 PDF group, in inclusive and exclusive
HT2 bins. The green band shows the theoretical uncertainties, dominated by the
scale variations, while the error bars show the experimental uncertainties, where
correlations between the fit parameters have been taken into account.
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Figure 6.105: Comparison of the values of αs(Q) obtained from fits to the TEEC
function at NNLO in pQCD with the RGE prediction using the world average pro-
vided by the PDG (blue band) and with the value obtained from the global fit to
all HT2 bins of the TEEC function (yellow band). Results from previous analyses,
both from ATLAS and from other experiments, are also included, showing a very
good agreement with the current measurements and with the world average. The
interaction scale choice considered for each analysis is specified in the legend. The
fits are performed using MMHT 2014 (top) and NNPDF 3.0 (bottom) PDF groups
for the theoretical predictions.
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Figure 6.106: Comparison of the values of αs(Q) obtained from fits to the TEEC
function at NNLO in pQCD with the RGE prediction using the world average pro-
vided by the PDG (blue band) and with the value obtained from the global fit to
all HT2 bins of the TEEC function (yellow band). Results from previous analyses,
both from ATLAS and from other experiments, are also included, showing a very
good agreement with the current measurements and with the world average. The
interaction scale choice considered for each analysis is specified in the legend. The
fits are performed using CT14 PDF group for the theoretical predictions.

⟨Q⟩ αs(Q) value (MMHT 2014)
1302 0.0866 ± 0.0005 (fit) +0.0016

−0.0001 (scale) ± 0.0005 (par.) ± 0.0001 (tune) ± 0.0004 (model)
1518 0.0851 ± 0.0005 (fit) +0.0014

−0.0002 (scale) ± 0.0005 (par.) ± 0.0002 (tune) ± 0.0004 (model)
1732 0.0845 ± 0.0006 (fit) +0.0015

−0.0002 (scale) ± 0.0005 (par.) ± 0.0002 (tune) ± 0.0005 (model)
1944 0.0830 ± 0.0006 (fit) +0.0015

−0.0003 (scale) ± 0.0006 (par.) ± 0.0003 (tune) ± 0.0005 (model)
2153 0.0820 ± 0.0006 (fit) +0.0014

−0.0002 (scale) ± 0.0006 (par.) ± 0.0001 (tune) ± 0.0004 (model)
2396 0.0814 ± 0.0006 (fit) +0.0014

−0.0002 (scale) ± 0.0006 (par.) ± 0.0005 (tune) ± 0.0006 (model)
2706 0.0798 ± 0.0007 (fit) +0.0014

−0.0003 (scale) ± 0.0006 (par.) ± 0.0002 (tune) ± 0.0005 (model)
3042 0.0789 ± 0.0008 (fit) +0.0014

−0.0002 (scale) ± 0.0006 (par.) ± 0.0001 (tune) ± 0.0007 (model)
3476 0.0770 ± 0.0008 (fit) +0.0015

−0.0005 (scale) ± 0.0006 (par.) ± 0.0001 (tune) ± 0.0009 (model)
4189 0.0747 ± 0.0009 (fit) +0.0013

−0.0004 (scale) ± 0.0007 (par.) ± 0.0001 (tune) ± 0.0009 (model)

Table 6.31: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the TEEC function for each HT2 interval using MMHT 2014.
The label (fit) indicates the statistical and experimental systematic uncertainties
added in quadrature. The uncertainty related to the MC model in the IB unfolding
is displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.
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⟨Q⟩ αs(Q) value (NNPDF 3.0)
1302 0.0872 ± 0.0006 (fit) +0.0019

−0.0001 (scale) ± 0.0007 (par.) ± 0.0002 (tune) ± 0.0004 (model)
1518 0.0858 ± 0.0005 (fit) +0.0016

−0.0003 (scale) ± 0.0008 (par.) ± 0.0002 (tune) ± 0.0004 (model)
1732 0.0853 ± 0.0006 (fit) +0.0018

−0.0002 (scale) ± 0.0008 (par.) ± 0.0003 (tune) ± 0.0005 (model)
1944 0.0837 ± 0.0006 (fit) +0.0017

−0.0003 (scale) ± 0.0009 (par.) ± 0.0003 (tune) ± 0.0005 (model)
2153 0.0827 ± 0.0006 (fit) +0.0016

−0.0002 (scale) ± 0.0009 (par.) ± 0.0002 (tune) ± 0.0005 (model)
2396 0.0820 ± 0.0007 (fit) +0.0016

−0.0002 (scale) ± 0.0010 (par.) ± 0.0005 (tune) ± 0.0006 (model)
2706 0.0803 ± 0.0008 (fit) +0.0015

−0.0003 (scale) ± 0.0010 (par.) ± 0.0002 (tune) ± 0.0005 (model)
3042 0.0793 ± 0.0008 (fit) +0.0014

−0.0002 (scale) ± 0.0010 (par.) ± 0.0001 (tune) ± 0.0007 (model)
3476 0.0774 ± 0.0009 (fit) +0.0016

−0.0005 (scale) ± 0.0010 (par.) ± 0.0001 (tune) ± 0.0009 (model)
4189 0.0755 ± 0.0008 (fit) +0.0009

−0.0003 (scale) ± 0.0008 (par.) ± 0.0001 (tune) ± 0.0007 (model)

Table 6.32: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the TEEC function for each HT2 interval using NNPDF 3.0.
The label (fit) indicates the statistical and experimental systematic uncertainties
added in quadrature. The uncertainty related to the MC model in the IB unfolding
is displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.

⟨Q⟩ αs(Q) value (CT14)
1302 0.0870 ± 0.0006 (fit) +0.0018

−0.0001 (scale) ± 0.0008 (par.) ± 0.0002 (tune) ± 0.0004 (model)
1518 0.0857 ± 0.0006 (fit) +0.0016

−0.0003 (scale) ± 0.0008 (par.) ± 0.0002 (tune) ± 0.0005 (model)
1732 0.0853 ± 0.0006 (fit) +0.0016

−0.0003 (scale) ± 0.0007 (par.) ± 0.0003 (tune) ± 0.0005 (model)
1944 0.0837 ± 0.0007 (fit) +0.0017

−0.0003 (scale) ± 0.0008 (par.) ± 0.0003 (tune) ± 0.0006 (model)
2153 0.0828 ± 0.0007 (fit) +0.0016

−0.0003 (scale) ± 0.0008 (par.) ± 0.0002 (tune) ± 0.0005 (model)
2396 0.0823 ± 0.0007 (fit) +0.0017

−0.0003 (scale) ± 0.0009 (par.) ± 0.0006 (tune) ± 0.0007 (model)
2706 0.0808 ± 0.0008 (fit) +0.0016

−0.0004 (scale) ± 0.0009 (par.) ± 0.0003 (tune) ± 0.0006 (model)
3042 0.0799 ± 0.0009 (fit) +0.0015

−0.0003 (scale) ± 0.0009 (par.) ± 0.0001 (tune) ± 0.0009 (model)
3476 0.0779 ± 0.0011 (fit) +0.0018

−0.0009 (scale) ± 0.0010 (par.) ± 0.0001 (tune) ± 0.0013 (model)
4189 0.0750 ± 0.0015 (fit) +0.0021

−0.0011 (scale) ± 0.0014 (par.) ± 0.0002 (tune) ± 0.0018 (model)

Table 6.33: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the TEEC function for each HT2 interval using CT14. The
label (fit) indicates the statistical and experimental systematic uncertainties added
in quadrature. The uncertainty related to the MC model in the IB unfolding is
displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.
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6.9.4 Fits to the ATEEC function

The values of αs(mZ) extracted from a global fit to the ATEEC function at NNLO
as well as to those individual fits in each exclusive HT2 bin and in the fully inclu-
sive sample are summarized in Table 6.34. The theoretical predictions used for this
extraction use MMHT 2014 as the nominal PDF group, which is the one provid-
ing a wider range of variations for αs(mZ). In addition, the extracted values using
NNPDF 3.0 and CT14 as the PDF group are also presented in Tables 6.35 and
6.36, respectively. The uncertainty derived from the χ2 fit includes both experimen-
tal and theoretical statistical uncertainties, along with the experimental systematic
uncertainties constrained by the nuisance parameters.

The χ2 values indicate that the agreement between the data and the theoretical
predictions is good in each exclusive HT2 bin and in the fully inclusive sample. The
critical value with a significance level of α = 0.05 for the global fit is χ2 = 143.2.
Thus, the tension found in the correlations is not presented, mainly due to the sta-
tistical fluctuations that partially cover the drop at high energy scales of the fitted
values of αs. The nuisance parameters from the ATEEC function fits are shown
in Figures 6.107 and 6.108 The large theoretical statistical uncertainties prevent
from constraining the nuisance parameters, thus they are all found to be compatible
with zero. Nevertheless, for small theoretical statistical uncertainties, the nuisance
parameters which are usually slightly pulled correspond to EtaIntercalibration Mod-
elling (i = 2), Flavour Response (i = 9), Pileup RhoTopology (i = 71), Zjet MC
(i = 91), and JAR (i = 148).

The correlation coefficients between nuisance parameters are shown in Figures 6.109
and 6.110. The fact that the correlation matrices have very small off-diagonal terms
indicates that the systematic sources are not significantly correlated between them
when large statistical uncertainties are involved. Otherwise, the nuisance parameters
associated to Flavour Composition (i = 8) and Flavour Response (i = 9) would be
slightly anti-correlated. Figures 6.114 to 6.113 compare the experimental results
with fitted theoretical predictions; the ones where the fitted values of αs(mZ) and
the nuisance parameters are already constrained.

The extracted values of the strong coupling constant αs(mZ) are in good agreement
with the 2022 world average value αs(mZ) = 0.1179 ± 0.0009 [11]. A comparison
of the results of αs is shown in Figures 6.117 and 6.118. The results from previous
extractions using LHC data [1, 2, 141–145] and Tevatron data [146, 147] are also
shown, together with the world average band [11]. The values of αs are evolved
from mZ to the corresponding scale Q using the three-loop solution of the RGE,
introduced in Eq. (2.1), where the interaction scale is evaluated for each analysis
at the central value of the renormalization scale. Tables 6.37 to 6.39 summarize
the extracted values of the physical strong coupling constant αs(Q) that enter the
matrix elements in the calculation.
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6.9. Determination of the strong coupling
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Chapter 6. Asymptotic freedom beyond the TeV scale
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Figure 6.107: Values of the nuisance parameters obtained from individual fits, in
inclusive (top) and exclusive (bottom) HT2 bins, to the ATEEC function at NNLO
using MMHT 2014 PDF group. They lie within the ±1σ contour (green band) or
±2σ contour (yellow band), and are generally found to be compatible with zero.
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6.9. Determination of the strong coupling

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 < 2000 GeVT21800 GeV < H

MMHT 2014 (NNLO)

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 < 2300 GeVT22000 GeV < H

MMHT 2014 (NNLO)

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 < 2600 GeVT22300 GeV < H

MMHT 2014 (NNLO)

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 < 3000 GeVT22600 GeV < H

MMHT 2014 (NNLO)

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 < 3500 GeVT23000 GeV < H

MMHT 2014 (NNLO)

0 20 40 60 80 100 120 140

iλNuisance parameter 

3−

2−

1−

0

1

2

3

4

F
it 

R
es

ul
t

NP Values

 contourσ 1 ±

 contourσ 2 ±
 = 13 TeVsATEEC  

 > 3500 GeVT2H

MMHT 2014 (NNLO)

Figure 6.108: Values of the nuisance parameters obtained from individual fits, in
exclusive HT2 bins, to the ATEEC function at NNLO using MMHT 2014 PDF
group. They lie within the ±1σ contour (green band) or ±2σ contour (yellow band),
and are generally found to be compatible with zero.

215



Chapter 6. Asymptotic freedom beyond the TeV scale
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Figure 6.109: Correlation coefficients between the nuisance parameters obtained
from individual fits, in inclusive (top) and exclusive (bottom) HT2 bins, to the
ATEEC function at NNLO using MMHT 2014 PDF group. The fact that the
correlation matrices have very small off-diagonal terms indicates that the systematic
sources are not significantly correlated between them.
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Figure 6.110: Correlation coefficients between the nuisance parameters obtained
from individual fits, in exclusive HT2 bins, to the ATEEC function at NNLO using
MMHT 2014 PDF group. The fact that the correlation matrices have very small off-
diagonal terms indicates that the systematic sources are not significantly correlated
between them.
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Figure 6.111: Comparison of the experimental results for the ATEEC function, in
inclusive (top) and exclusive (bottom) HT2 bins, and their fitted theoretical predic-
tions at NNLO in pQCD using MMHT 2014 PDF group. The green band shows the
theoretical uncertainties while the error bars show the experimental uncertainties,
where correlations between the fit parameters have been taken into account.
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Figure 6.112: Comparison of the experimental results for the ATEEC function, in
exclusive HT2 bins, and their fitted theoretical predictions at NNLO in pQCD using
MMHT 2014 PDF group. The green band shows the theoretical uncertainties while
the error bars show the experimental uncertainties, where correlations between the
fit parameters have been taken into account.

219



Chapter 6. Asymptotic freedom beyond the TeV scale

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

4−10

3−10

2−10

1−10

1

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Exp. unc.)

MMHT 2014 (NNLO)
NNLO pQCD (Th. unc.)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

) = 0.1148
Z

(ms
fitted α

 < 2600 GeVT22300 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.5

1

1.5

T
he

or
y

R
at

io
 to

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

4−10

3−10

2−10

1−10

1

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Exp. unc.)

MMHT 2014 (NNLO)
NNLO pQCD (Th. unc.)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

) = 0.1169
Z

(ms
fitted α

 < 3000 GeVT22600 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.5

1

1.5

T
he

or
y

R
at

io
 to

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

4−10

3−10

2−10

1−10

1

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Exp. unc.)

MMHT 2014 (NNLO)
NNLO pQCD (Th. unc.)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

) = 0.1141
Z

(ms
fitted α

 < 3500 GeVT23000 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.5

1

1.5

T
he

or
y

R
at

io
 to

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

4−10

3−10

2−10

1−10

1

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Data (Exp. unc.)

MMHT 2014 (NNLO)
NNLO pQCD (Th. unc.)

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

) = 0.1096
Z

(ms
fitted α

 > 3500 GeVT2H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.5

1

1.5

T
he

or
y

R
at

io
 to

Figure 6.113: Comparison of the experimental results for the ATEEC function, in
exclusive HT2 bins, and their fitted theoretical predictions at NNLO in pQCD using
MMHT 2014 PDF group. The green band shows the theoretical uncertainties while
the error bars show the experimental uncertainties, where correlations between the
fit parameters have been taken into account.
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Figure 6.114: Ratios of the data to the fitted theoretical predictions at NNLO for the
ATEEC measurements, obtained using MMHT 2014 PDF group, in inclusive and
exclusive HT2 bins. The green band shows the theoretical uncertainties, dominated
by the scale variations, while the error bars show the experimental uncertainties,
where correlations between the fit parameters have been taken into account.
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Figure 6.115: Ratios of the data to the fitted theoretical predictions at NNLO for the
ATEEC measurements, obtained using CT14 PDF group, in inclusive and exclusive
HT2 bins. The green band shows the theoretical uncertainties, dominated by the
scale variations, while the error bars show the experimental uncertainties, where
correlations between the fit parameters have been taken into account.
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Figure 6.116: Ratios of the data to the fitted theoretical predictions at NNLO for the
ATEEC measurements, obtained using NNPDF 3.0 PDF group, in inclusive and
exclusive HT2 bins. The green band shows the theoretical uncertainties, dominated
by the scale variations, while the error bars show the experimental uncertainties,
where correlations between the fit parameters have been taken into account.
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Figure 6.117: Comparison of the values of αs(Q) obtained from fits to the ATEEC
function at NNLO in pQCD with the RGE prediction using the world average pro-
vided by the PDG (blue band) and with the value obtained from the global fit to
all HT2 bins of the ATEEC function (yellow band). Results from previous analyses,
both from ATLAS and from other experiments, are also included, showing a very
good agreement with the current measurements and with the world average. The
interaction scale choice considered for each analysis is specified in the legend. The
fits are performed using MMHT 2014 (top) and NNPDF 3.0 (bottom) PDF groups
for the theoretical predictions.
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Figure 6.118: Comparison of the values of αs(Q) obtained from fits to the ATEEC
function at NNLO in pQCD with the RGE prediction using the world average pro-
vided by the PDG (blue band) and with the value obtained from the global fit to
all HT2 bins of the ATEEC function (yellow band). Results from previous analyses,
both from ATLAS and from other experiments, are also included, showing a very
good agreement with the current measurements and with the world average. The
interaction scale choice considered for each analysis is specified in the legend. The
fits are performed using CT14 PDF group for the theoretical predictions.

⟨Q⟩ αs(Q) value (MMHT 2014)
1302 0.0871 ± 0.0007 (fit) +0.0012

−0.0000 (scale) ± 0.0006 (par.) ± 0.0003 (tune) ± 0.0000 (model)
1518 0.0856 ± 0.0007 (fit) +0.0010

−0.0000 (scale) ± 0.0006 (par.) ± 0.0002 (tune) ± 0.0000 (model)
1732 0.0843 ± 0.0009 (fit) +0.0013

−0.0001 (scale) ± 0.0006 (par.) ± 0.0005 (tune) ± 0.0001 (model)
1944 0.0829 ± 0.0009 (fit) +0.0011

−0.0000 (scale) ± 0.0006 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2153 0.0820 ± 0.0009 (fit) +0.0010

−0.0001 (scale) ± 0.0006 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2396 0.0818 ± 0.0009 (fit) +0.0008

−0.0000 (scale) ± 0.0006 (par.) ± 0.0003 (tune) ± 0.0002 (model)
2706 0.0790 ± 0.0014 (fit) +0.0011

−0.0001 (scale) ± 0.0007 (par.) ± 0.0004 (tune) ± 0.0001 (model)
3042 0.0792 ± 0.0015 (fit) +0.0008

−0.0000 (scale) ± 0.0007 (par.) ± 0.0006 (tune) ± 0.0004 (model)
3476 0.0770 ± 0.0024 (fit) +0.0011

−0.0003 (scale) ± 0.0008 (par.) ± 0.0003 (tune) ± 0.0005 (model)
4189 0.0737 ± 0.0037 (fit) +0.0006

−0.0000 (scale) ± 0.0004 (par.) ± 0.0001 (tune) ± 0.0003 (model)

Table 6.37: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the ATEEC function for each HT2 interval using MMHT 2014.
The label (fit) indicates the statistical and experimental systematic uncertainties
added in quadrature. The uncertainty related to the MC model in the IB unfolding
is displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.
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⟨Q⟩ αs(Q) value (NNPDF 3.0)
1302 0.0878 ± 0.0008 (fit) +0.0015

−0.0000 (scale) ± 0.0008 (par.) ± 0.0003 (tune) ± 0.0000 (model)
1518 0.0863 ± 0.0008 (fit) +0.0011

−0.0001 (scale) ± 0.0008 (par.) ± 0.0002 (tune) ± 0.0000 (model)
1732 0.0850 ± 0.0009 (fit) +0.0015

−0.0001 (scale) ± 0.0009 (par.) ± 0.0005 (tune) ± 0.0001 (model)
1944 0.0837 ± 0.0010 (fit) +0.0012

−0.0001 (scale) ± 0.0010 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2153 0.0828 ± 0.0010 (fit) +0.0011

−0.0001 (scale) ± 0.0010 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2396 0.0826 ± 0.0010 (fit) +0.0010

−0.0000 (scale) ± 0.0011 (par.) ± 0.0005 (tune) ± 0.0002 (model)
2706 0.0797 ± 0.0014 (fit) +0.0011

−0.0001 (scale) ± 0.0011 (par.) ± 0.0004 (tune) ± 0.0001 (model)
3042 0.0797 ± 0.0016 (fit) +0.0008

−0.0000 (scale) ± 0.0012 (par.) ± 0.0007 (tune) ± 0.0004 (model)
3476 0.0774 ± 0.0023 (fit) +0.0011

−0.0003 (scale) ± 0.0013 (par.) ± 0.0003 (tune) ± 0.0005 (model)
4189 0.0752 ± 0.0042 (fit) +0.0024

−0.0009 (scale) ± 0.0014 (par.) ± 0.0001 (tune) ± 0.0006 (model)

Table 6.38: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the ATEEC function for each HT2 interval using NNPDF 3.0.
The label (fit) indicates the statistical and experimental systematic uncertainties
added in quadrature. The uncertainty related to the MC model in the IB unfolding
is displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.

⟨Q⟩ αs(Q) value (CT14)
1302 0.0876 ± 0.0008 (fit) +0.0014

−0.0000 (scale) ± 0.0009 (par.) ± 0.0004 (tune) ± 0.0000 (model)
1518 0.0864 ± 0.0008 (fit) +0.0012

−0.0001 (scale) ± 0.0009 (par.) ± 0.0002 (tune) ± 0.0000 (model)
1732 0.0851 ± 0.0009 (fit) +0.0015

−0.0002 (scale) ± 0.0009 (par.) ± 0.0006 (tune) ± 0.0001 (model)
1944 0.0839 ± 0.0011 (fit) +0.0013

−0.0001 (scale) ± 0.0010 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2153 0.0830 ± 0.0011 (fit) +0.0012

−0.0001 (scale) ± 0.0009 (par.) ± 0.0004 (tune) ± 0.0000 (model)
2396 0.0833 ± 0.0011 (fit) +0.0010

−0.0000 (scale) ± 0.0010 (par.) ± 0.0005 (tune) ± 0.0002 (model)
2706 0.0801 ± 0.0018 (fit) +0.0014

−0.0001 (scale) ± 0.0012 (par.) ± 0.0005 (tune) ± 0.0001 (model)
3042 0.0809 ± 0.0019 (fit) +0.0009

−0.0000 (scale) ± 0.0011 (par.) ± 0.0009 (tune) ± 0.0005 (model)
3476 0.0787 ± 0.0033 (fit) +0.0014

−0.0005 (scale) ± 0.0014 (par.) ± 0.0005 (tune) ± 0.0008 (model)
4189 0.0722 ± 0.0081 (fit) +0.0000

−0.0002 (scale) ± 0.0000 (par.) ± 0.0000 (tune) ± 0.0000 (model)

Table 6.39: Values of the strong coupling constant at the interaction scale, αs(Q),
obtained from fits to the ATEEC function for each HT2 interval using CT14. The
label (fit) indicates the statistical and experimental systematic uncertainties added
in quadrature. The uncertainty related to the MC model in the IB unfolding is
displayed separately as (model) and the one referred to as (tune) is related to the
non-pQCD corrections. The average values of the scale are given in GeV.
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6.9.5 Comparison with previous extractions

This analysis contains the first determination of the strong coupling at NNLO in
three-jet production. The extracted values are in good agreement with the latest
measurements in collider experiments [2, 148–150], one of them also at NNLO in
multi-jet production [151]. These values are depicted in Figure 6.119.
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Figure 6.119: Values of the strong coupling constant αs(mZ) recently extracted and
compared with the world average provided by the PDG (green band). Results from
previous analyses, both from ATLAS and CMS experiments, are included, most of
them extracted at NNLO in pQCD. The ATLAS analyses use MMHT 2014 as the
nominal PDF. However, the results extracted using all PDF sets available for this
analysis are depicted for the TEEC (bottom left) and the ATEEC (bottom right).
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CHAPTER 7

Summary and conclusions

Multi-jet events produced by the LHC and registered with the ATLAS detector
during the pp Run 2 are used to determine the strong coupling constant αs from
a particular event-shape measurement at high-energy scales. This gauge coupling
is the fundamental parameter of the theory that describes strong interactions of
gluons and coloured quarks. It is important to note that this study contains the
first determination of the strong coupling constant from multi-jet events at next-
to-next-to-leading-order accuracy in perturbative QCD. The information related to
the analysis is summarized in the following paragraphs.

A measurement of transverse energy-energy correlations and their corresponding
asymmetries in multi-jet events produced in pp collisions at a centre-of-mass energy√
s = 13 TeV and registered with the ATLAS detector at the LHC is presented. The

total integrated luminosity of the full data sample is 139.0 fb−1. High-energy multi-
jet events are selected by requiring the scalar sum of the two leading jets transverse
momenta, HT2 = pT1 + pT2, to be above 1.0 TeV; and the data are binned in ten
intervals of this variable in order to study the scale dependence of these observables.
The fully inclusive distribution is measured in bins of width ∆cosϕ = 0.02.

The data are corrected for detector effects and systematic uncertainties are evalu-
ated. The experimental uncertainties are dominated by the uncertainty on the jet
energy scale and the model used in the correction for detector effects. The total
uncertainty is found to be of the order of 2% for the correlations and 1% for the
asymmetries. The results are compared to Monte Carlo predictions by different
generators, including Pythia 8.235, Sherpa 2.1.1, and Herwig 7.1.3 with two
different parton showers, one angular-ordered and one based on dipole radiation.
Current MC event generators describe the gross features of the data fairly well.
In particular, Sherpa and Herwig 7 matched to the angular-ordered shower are
found to give an overall good description of the data, while Herwig 7 matched
to the dipole parton shower is found to be disfavoured and Pythia 8 gives an
intermediate description.

Finite theoretical predictions are calculated at parton level from the next-to-next-
to-leading order 3-jet cross sections based on perturbative QCD with different PDF
sets and corrected for non-perturbative effects such as hadronization and multi-
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parton interaction effects. The agreement between data and theory is excellent,
thus providing a precision test of QCD at large momentum transfers. The strong
coupling constant αs is determined from a χ2 fit to the theoretical predictions for
both the inclusive measurement and the different inclusive bins in HT2; along with
its evolution with the interaction scale, studying asymptotic freedom beyond the
TeV scale. Additionally, a global fit to all HT2 bins of each observable is performed,
leading to the following values for the strong coupling constant:

αs(mZ) = 0.1175± 0.0006 (fit) +0.0034
−0.0017 (theo.) TEEC (NNLO pQCD),

αs(mZ) = 0.1185± 0.0009 (fit) +0.0025
−0.0012 (theo.) ATEEC (NNLO pQCD).

These two values are strongly correlated and obtained using MMHT 2014 PDF,
as this set provides a wider range of αs variations. The extracted values are in
good agreement with the current world average αs(mZ) = 0.1179 ± 0.0009. The
evolution of the values obtained from each of the exclusive fits to their corresponding
physical scales leads to values of αs(Q) which are compared to the solution of the
renormalization group equation. The results show a good agreement with the current
prediction up to the highest energy scales, as well as with previous measurements
both in ATLAS and in other experiments.

The theoretical scale choice µR,F = ĤT and the inclusion of next-to-next-to-leading-
order pQCD corrections reduce down to 2% the scale theoretical uncertainties on
both the cross-section calculation for the correlations and their asymmetries, and on
the determination of the strong coupling constant αs. This is a significant improve-
ment when compared with previous results at

√
s = 7 and 8 TeV. The resummation

effects are expected to be negligible within the region where the coupling is deter-
mined, | cosϕ| < 0.92; and electroweak corrections are not accounted for due to
lack of knowledge, although their effect should be similar for three-jet and two-jet
production and, thus, cancel to a large extent for this kind of observables.

These results provide a tighter constraint for new physics and are a milestone in
QCD studies owing to the accuracy and precision achieved. Likewise, they not only
supersede previous event-shape measurements but also previous αs determinations
in multi-jet production. The paper associated to this novel study is expected to be
published soon with the approval of the ATLAS Collaboration.
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Resumen y conclusiones en español

La constante de acoplo fuerte αs ha sido extraída a altas energías usando sucesos
multijet producidos en colisiones protón-protón y registrados por el detector ATLAS
durante el LHC Run 2. Esto ha sido posible gracias a la medida de determinados
observables pertenecientes a la familia de los event shapes. Esta constante de recali-
bración es el parámetro fundamental en la teoría que explica las interacciones entre
gluones y quarks con carga de color. Tengamos también en cuenta que este estudio
contiene la primera determinación de dicho parámetro usando sucesos multijet y con
precisión next-to-next-to-leading-order en cromodinámica cuántica perturbativa. La
información relativa al análisis se encuentra resumida en los siguientes párrafos.

Hemos presentado una medida de las correlaciones de energía-energía transversa y de
sus asimetrías usando sucesos multijet producidos en colisiones protón-protón a una
energía de centro-de-masas de

√
s = 13 TeV y registrados por el detector ATLAS

en el LHC. La luminosidad integrada total es de 139,0 fb−1. A altas energías, los
sucesos multijet son seleccionados si la suma del momento transverso de los dos jets
principales, HT2 = pT1 + pT2, es mayor que 1,0 TeV. Estos sucesos se clasifican en
diez intervalos en función de dicha variable; lo que permite estudiar la dependencia
de los observables con la escala. A su vez, la distribución completamente inclusiva
se mide con una anchura angular de ∆cosϕ = 0,02.

A continuación, la muestra experimental se corrige a partir de los efectos del detec-
tor y se evalúan las incertidumbres sistemáticas. Las incertidumbres experimentales
están dominadas por la escala de energía del jet y el modelo usado en la corrección
de los efectos del detector. La incertidumbre total resultante es del orden del 2 %
para las correlaciones y del 1 % para las asimetrías. Los resultados han sido compara-
dos con diferentes predicciones Monte Carlo generadas con Pythia 8.235, Sherpa
2.1.1 y Herwig 7.1.3 con dos tipos de cascadas de radiación, una ordenada de forma
angular y otra basada en la radiación dipolar. Estas predicciones describen bastante
bien las características generales de los datos. En concreto, Sherpa and Herwig
7 con una cascada ordenada de forma angular proporcionan una buena descripción
a nivel general, mientras que Herwig 7 con radiación dipolar está claramente en
desventaja y Pythia 8 proporciona una descripción intermedia.

Las predicciones teóricas se han calculado a nivel de partones a partir de las secciones
eficaces para tres jets evaluadas a next-to-next-to-leading-order en cromodinámica
cuántica perturbativa. Estas secciones eficaces han sido convolucionadas con varios
conjuntos de funciones PDF y corregidas a partir de los efectos no-perturbativos
derivados de la hadronización y las interacciones multipartón. Los datos y la teoría
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concuerdan perfectamente, lo que implica que la cromodinámica cuántica es válida
en procesos que involucran grandes transferencias de momento. La constante de
acoplo fuerte αs se extrae a partir de un ajuste χ2 a las predicciones teóricas, tanto
para la medida inclusiva como para los diferentes intervalos de HT2. También se
estudia su evolución con la escala de interacción, estudiando la libertad asintótica
más allá de la escala del teraelectronvoltio. Igualmente, se ha realizado un ajuste
global para cada observable combinando todos los intervalos de HT2 y obteniendo
los siguientes valores para la constante de acoplo fuerte:

αs(mZ) = 0,1175± 0,0006 (ajuste) +0,0034
−0,0017 (teoría) TEEC (NNLO pQCD),

αs(mZ) = 0,1185± 0,0009 (ajuste) +0,0025
−0,0012 (teoría) ATEEC (NNLO pQCD).

Estos dos valores están fuertemente correlaciones y se han obtenido usando MMHT
2014 PDF, siendo estas funciones las que contienen el rango más amplio de va-
riaciones de αs. Además, estos valores concuerdan con el promedio mundial actual
αs(mZ) = 0,1179 ± 0,0009. Los valores extraídos en cada uno de los ajustes son
evolucionados hasta sus escalas físicas correspondientes. Estos nuevos valores αs(Q)
se han comparado con la solución de la ecuación de grupo de renormalización. Los
resultados son compatibles con la predicción actual para todas las escalas de energía
disponibles, así como con las mediciones anteriores realizadas tanto en ATLAS como
en otros experimentos.

La elección de la escala teórica µR,F = ĤT y la inclusión de las correcciones next-to-
next-to-leading-order en cromodinámica cuántica perturbativa han reducido hasta
el 2 % la incertidumbre teórica de escala, tanto en el cálculo de las secciones eficaces
de las correlaciones y sus asimetrías como en el valor de la constante de acoplo fuerte
αs. Esto constituye una mejora significativa si comparamos con los anteriores análisis
realizados a

√
s = 7 y 8 TeV. Los efectos de la resumación parecen ser despreciables

en la región donde se realiza el ajuste, | cosϕ| < 0,92, y las correcciones electrodébiles
no se han tenido en cuenta por desconocimiento. Sin embargo, sus efectos deben ser
similares en sucesos con dos y tres jets, cancelándose prácticamente para este tipo
de observables.

Estos resultados proporcionan límites más estrictos para las búsquedas de nueva
física y constituyen un hito en los estudios de la fuerza fuerte, debido a la exactitud
y a la precisión que se han alcanzado. Asimismo, no solo superan las medidas de
event shapes realizadas hasta la fecha, sino que también mejoran las extracciones
previas de αs a partir de sucesos multijet. El artículo asociado a este innovador
estudio será publicado tras la aprobación de la colaboración ATLAS.
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APPENDIX A

Appendix

A.1 Complementary and additional studies

This section includes complementary and additional studies to the analysis in Chap-
ter 6. These studies show how certain conditions can affect the measurement of the
transverse energy-energy correlations and their asymmetries. Moreover, additional
predictions are presented for these observables using Monte Carlo event generators
with other parton showers and different hadronization schemes.

A.1.1 Dead tile modules

The ATLAS calorimeter system includes a scintillator tile calorimeter whose active
material may turn unusable due to radiation exposure. The tile modules that suffer
from this problem are labelled as “dead modules” and can affect the measurement.
Thus, a study of the effect of the dead tile modules is performed. In this case, all
events with at least one jet passing the experimental requirements and tagged by
the TileTripReader tool are removed at detector level. In order to avoid troubles
close to the threshold, events are also removed if a jet with pT > 50 GeV is tagged.
The new selection criteria give rise to a difference of 0.4% in the central plateau of the
correlations compared to the nominal distributions at detector level. Nevertheless,
the unfolding procedure corrects for detector effects, and any difference at particle
level is well below the statistical uncertainty, as it can be seen in Figure A.1.

A.1.2 Bin-by-bin migrations

The IB unfolding procedure introduced in Section 6.3 considers only bin-by-bin mi-
grations in cosϕ since the effect of migrations in the variable HT2 is negligible. In
order to prove this assertion, data are unfolded using a transfer matrix parametrizing
the bin-by-bin migrations in cosϕ and HT2. Figure A.2 shows the transfer matrices,
normalizing each row. The phase space is binned in HT2 and then each interval in
cosϕ. The underflow bins correspond to the negative values. The transfer matrices
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have very small off-diagonal terms, leading to very small migrations between cosϕ
bins and even smaller migrations between HT2 intervals. The unfolded data consid-
ering cosϕ and HT2 migrations are compared to the unfolded data considering only
cosϕ migrations. The deviations are within the expected statistical uncertainty for
the whole phase space, and therefore, both results are compatible.

A.1.3 Jets’ collections

Particle-level jets are simulated in the MC samples using the Antikt4TruthJets col-
lection. These samples are used to correct data for detector effects and compared
to the unfolded results. In addition, we consider the Antikt4TruthWZJets collec-
tion in this study. This particular collection includes jets initiated by the hadronic
decay of electroweak bosons which can alter the measurement. To estimate their
effect, a sample is generated in Pythia 8.235 with both particle-level jet collec-
tions and used to compute the observables. Figures A.3 compares the TEEC and
ATEEC predictions using both collections. The difference between both predictions
in the central plateau is around 0.5% at low HT2 and increases to 1.0% at high HT2.
However, half of the deviation is explained through the difference in the non-pQCD
correction factors using both jet collections. This result is shown in Figure A.4 for
the first HT2 bins of the analysis.

A.1.4 Parton showers and hadronization schemes

The predictions for the transverse energy-energy correlations and their asymme-
tries are also computed using the Sherpa 2.2.5 generated sample with the CT14
PDF group and the default CSS parton shower. The calculation only contains ma-
trix elements for 2 → 2 hard processes at LO but the fragmentation follows two
different hadronization schemes, the AHADIC model used in the Sherpa 2.1.1
sample and the Lund string model. Figures A.5 to A.10 show the TEEC and the
ATEEC unfolded results from Section 6.6 compared with the two Sherpa 2.2.5
predictions along with the previous predictions generated with Sherpa 2.1.1 and
Sherpa 2.2.11 with a second parton shower called DIRE. Sherpa 2.2.5 with both
hadronization schemes give a similar description for the distributions. Nevertheless,
a systematic deviation in data arises after unfolding with the two hadronization
schemes. This divergence is found to be around 2% in the central plateau of the
correlations and coincides with the one found between Pythia 8.325 and Herwig
7.1.3. Thus, it is already taken into account within the MC model uncertainty.
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Figure A.1: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins for the nominal data sample and a new sample where events
at detector level are removed if a jet tagged is by the TileTipReader tool. The
difference at particle level caused by dead tile modules is well below the statistical
uncertainty (blue area).
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Figure A.2: Transfer matrices normalizing each row, in inclusive (top) and exclusive
(bottom) HT2 bins, for the TEEC function obtained from the MC simulated sample
with the Pythia 8.235 event generator. The phase space is binned in HT2 and then
each interval in cosϕ, where the underflow bins correspond to negative values. The
off-diagonal terms are negligible since the excellent resolution of the detector leads
to very small migrations between HT2 and cosϕ bins.

235



Appendix A. Appendix

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

Pythia 8.235

Antikt4TruthJets

Antikt4TruthWZJets

-1 = 13 TeV;  139 fbs

Particle-level TEEC

 < 1400 GeVT21200 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.99

1

1.01

T
ru

th
Je

ts
 R

at
io

 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Pythia 8.235

Antikt4TruthJets

Antikt4TruthWZJets

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

 < 1400 GeVT21200 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.99

1

1.01
T

ru
th

Je
ts

 R
at

io
 to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

2−10

1−10

1

10

)φ
/d

(c
os

 
Σ

) 
d

σ
(1

/

Pythia 8.235

Antikt4TruthJets

Antikt4TruthWZJets

-1 = 13 TeV;  139 fbs

Particle-level TEEC

 < 3500 GeVT23000 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

φcos 

0.99

1

1.01

T
ru

th
Je

ts
 R

at
io

 to

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

4−10

3−10

2−10

1−10

1

10

)φ
/d

(c
os

 
as

ym
Σ

) 
d

σ
(1

/

Pythia 8.235

Antikt4TruthJets

Antikt4TruthWZJets

-1 = 13 TeV;  139 fbs

Particle-level ATEEC

 < 3500 GeVT23000 GeV < H

| < 2.4η > 60 GeV;  |
T

 R = 0.4;  ptanti-k

1− 0.9− 0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0

φcos 

0.99

1

1.01

T
ru

th
Je

ts
 R

at
io

 to

Figure A.3: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins for two simulated samples by Pythia 8.235 using the jets’
collections Antikt4TruthJets and Antikt4TruthWZJets. The difference originated
from jets initiated by the hadronic decay of electroweak bosons is partially explained
through the difference in their non-pQCD correction factors.
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Figure A.4: Ratios of the non-perturbative QCD correction factors using the collec-
tion Antikt4TruthWZJets, in inclusive (top) and two exclusive (bottom) HT2 bins,
compared with the factors using the nominal collection Antikt4TruthJets. The MC
simulated samples are obtained with Pythia 8.235 event generator and partially
compensate the differences observed at particle level for the TEEC distributions.
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Figure A.5: Particle-level TEEC (top) and ATEEC (bottom) distribution for the
inclusive HT2 sample with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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Figure A.6: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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Figure A.7: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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Figure A.8: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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Figure A.9: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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Figure A.10: Particle-level TEEC (left) and ATEEC (right) distributions in two
exclusive HT2 bins with the total experimental uncertainty (blue area), along with
particle-level MC predictions. The MC samples are simulated with Sherpa event
generators and they differ in the parton shower, hadronization scheme, and matrix
elements considered.
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A.2 Fits using the binning in data

This section includes the results of Sections 6.8 and 6.9 for the correlations. However,
the theory is binned the same way as the measurement in order to appreciate in
detail the agreement in cosϕ. The experimental results for the TEEC functions
are compared to the pQCD predictions, once corrected for non-pQCD effects, in
Figures A.11 to A.13. They show the ratio of the data to the theoretical predictions
calculated using the PDF groups available at NNLO in pQCD with αs(mZ) = 0.1180;
taking into account all theoretical and experimental uncertainties. In addition,
Figures A.14 to A.16 compare the experimental data to the pQCD predictions for
each of the PDF groups available. In order to have an idea about the size of the
so-called K-factors, a comparison between the LO and NNLO predictions to the
NLO calculations is also presented.

The value of the strong coupling is again determined from the comparison of un-
folded experimental results with their theoretical predictions at NNLO in pQCD.
The values of αs(mZ) extracted from a global fit to the TEEC function at NNLO
as well as the individual fits in each HT2 bin and in the fully inclusive sample are
summarized in Table A.1 using the same binning as experimental data. The theoret-
ical predictions used for this extraction use MMHT 2014 as the nominal PDF set,
which is the one providing a wider range of variations for αs(mZ). In addition, the
extracted values using NNPDF 3.0 and CT14 as the PDF set are also presented in
Tables A.2 and A.3, respectively.

The χ2 values indicate that the agreement between the data and the theoretical
predictions is good in each exclusive HT2 bin and in the fully inclusive sample. The
critical value with a significance level of α = 0.05 for the global fit is χ2 = 391.4.
Thus, a slight tension arises in the global fit for the nominal PDF group. This tension
comes from the drop at high energy scales of the fitted values of αs in exclusive bins.
However, this effect is not found when using the other PDF groups. Figures A.17 to
A.19 compare the experimental results with fitted theoretical predictions, i.e. where
the fitted values of αs(mZ) and the nuisance parameters are already constrained.
The results are compatible with the ones obtained using a coarser binning. Thus,
the extracted values are also in good agreement with the current world average, as
well as with previous measurements both in ATLAS and in other experiments. The
asymmetries are quite sensitive to statistical fluctuations, in particular, the region
of the tail. Therefore, they are only studied with coarser intervals in order to extract
reliable results for the strong coupling constant.
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Figure A.11: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using MMHT 2014 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure A.12: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using NNPDF 3.0 PDF group, in inclusive
and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180.
The non-scale uncertainty corresponds to the PDF parametrization uncertainty, the
αs(mZ) parameter uncertainty and the non-pQCD uncertainty from the MC model
added in quadrature. The theoretical uncertainty includes both non-scale and scale
uncertainties. The experimental uncertainty includes the statistical uncertainty.
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Figure A.13: Ratios of the unfolded data to the particle-level NNLO pQCD predic-
tions for the TEEC function obtained using CT14 PDF group, in inclusive and ex-
clusive HT2 bins. The strong coupling constant is set to αs(mZ) = 0.1180. The non-
scale uncertainty corresponds to the PDF parametrization uncertainty, the αs(mZ)
parameter uncertainty and the non-pQCD uncertainty from the MC model added
in quadrature. The theoretical uncertainty includes both non-scale and scale uncer-
tainties. The experimental uncertainty includes the statistical uncertainty.
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Figure A.14: Theoretical predictions using MMHT 2014 PDF group for the TEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure A.15: Theoretical predictions using NNPDF 3.0 PDF group for the TEEC
functions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to αs(mZ) =
0.1180, the coloured areas show the scale uncertainties, and the shaded area (grey)
shows the statistical uncertainties in the ratios between theoretical predictions. A
comparison of unfolded data to pQCD predictions is also presented, where the error
bars correpond to the experimental uncertainties.
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Figure A.16: Theoretical predictions using CT14 PDF group for the TEEC func-
tions at LO (green) and NNLO (red) compared to the NLO calculations (blue),
in inclusive and exclusive HT2 bins. The strong coupling constant is set to
αs(mZ) = 0.1180, the coloured areas show the scale uncertainties, and the shaded
area (grey) shows the statistical uncertainties in the ratios between theoretical pre-
dictions. A comparison of unfolded data to pQCD predictions is also presented,
where the error bars correpond to the experimental uncertainties.
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Figure A.17: Ratios of the data to the fitted theoretical predictions at NNLO for
the TEEC measurements, obtained using MMHT 2014, in inclusive and exclusive
HT2 bins. The green band shows the theoretical uncertainties, dominated by the
scale variations, while the error bars show the experimental uncertainties, where
correlations between the fit parameters have been taken into account. The label
exp. also includes the theoretical statistical uncertainty.
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Figure A.18: Ratios of the data to the fitted theoretical predictions at NNLO for
the TEEC measurements, obtained using NNPDF 3.0, in inclusive and exclusive
HT2 bins. The green band shows the theoretical uncertainties, dominated by the
scale variations, while the error bars show the experimental uncertainties, where
correlations between the fit parameters have been taken into account. The label
exp. also includes the theoretical statistical uncertainty.
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Figure A.19: Ratios of the data to the fitted theoretical predictions at NNLO for
the TEEC measurements, obtained using CT14, in inclusive and exclusive HT2 bins.
The green band shows the theoretical uncertainties, dominated by the scale varia-
tions, while the error bars show the experimental uncertainties, where correlations
between the fit parameters have been taken into account. The label exp. also in-
cludes the theoretical statistical uncertainty.
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